This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4299.90 499.74 899.68 299.97 399.55 899.99 599.88 3
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3299.95 1599.78 14
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6299.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8099.36 1499.92 3399.64 39
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15699.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS98.53 11098.34 11699.11 10399.50 7698.82 7295.97 28199.50 5697.30 18899.05 10898.98 12799.35 799.32 32595.72 22799.68 13199.18 211
XVG-OURS-SEG-HR98.49 11498.28 12399.14 9999.49 8398.83 7096.54 25599.48 6697.32 18699.11 9498.61 20999.33 899.30 32896.23 20298.38 29899.28 189
ACMH96.65 799.25 2799.24 2699.26 8599.72 2898.38 10499.07 4599.55 4398.30 10699.65 2299.45 4699.22 999.76 20298.44 6399.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cdsmvs_eth3d_5k24.66 32932.88 3320.00 3450.00 3660.00 3670.00 35799.10 1960.00 3620.00 36397.58 28899.21 100.00 3630.00 3610.00 3610.00 359
wuyk23d96.06 26997.62 18291.38 34098.65 26098.57 9198.85 6396.95 31796.86 21899.90 499.16 8599.18 1198.40 35389.23 33799.77 8977.18 356
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13399.06 2999.62 15199.66 34
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4099.65 2299.60 2599.16 1499.82 14399.07 2899.83 6199.56 71
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5599.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11397.98 14298.01 14299.46 7497.56 16099.54 3099.50 3598.97 1699.84 11898.06 8099.92 3399.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi98.32 13198.39 10998.13 22199.57 5495.54 24197.78 16299.49 6497.37 18199.19 8597.65 28498.96 1799.49 30296.50 18598.99 27299.34 169
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7699.65 2299.72 1198.93 1899.95 1499.11 26100.00 199.82 9
ACMM96.08 1298.91 5098.73 5599.48 5099.55 6499.14 4898.07 13099.37 10097.62 15399.04 11098.96 13298.84 1999.79 17897.43 11299.65 14399.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2398.26 10999.17 3799.78 499.11 5599.27 7299.48 4098.82 2099.95 1498.94 3499.93 2499.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 3499.00 3999.33 7499.71 2998.83 7098.60 7699.58 2699.11 5599.53 3399.18 7998.81 2199.67 24496.71 16699.77 8999.50 100
SD-MVS98.40 12498.68 6497.54 25898.96 19397.99 13897.88 15399.36 10498.20 11899.63 2599.04 11098.76 2295.33 35896.56 17899.74 10299.31 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.01 3698.82 4799.57 1899.71 2999.35 1199.00 5199.50 5697.33 18498.94 13298.86 15798.75 2399.82 14397.53 10899.71 11599.56 71
XXY-MVS99.14 3299.15 3299.10 10599.76 2197.74 16898.85 6399.62 1998.48 9999.37 5699.49 3898.75 2399.86 8798.20 7499.80 7699.71 26
LPG-MVS_test98.71 7598.46 9699.47 5399.57 5498.97 6298.23 11299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
LGP-MVS_train99.47 5399.57 5498.97 6299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
TDRefinement99.42 1699.38 1599.55 2699.76 2199.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16598.24 7199.84 5599.52 93
nrg03099.40 1899.35 1799.54 2999.58 5099.13 5198.98 5499.48 6699.68 999.46 4399.26 6898.62 2899.73 21799.17 2599.92 3399.76 20
HPM-MVScopyleft98.79 6298.53 8299.59 1799.65 4299.29 1799.16 3899.43 8596.74 22298.61 17598.38 23498.62 2899.87 8096.47 18699.67 13799.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
canonicalmvs98.34 13098.26 12598.58 17798.46 27897.82 16098.96 5599.46 7499.19 5197.46 26095.46 33898.59 3099.46 30998.08 7998.71 28798.46 287
EG-PatchMatch MVS98.99 3899.01 3898.94 13299.50 7697.47 18198.04 13699.59 2498.15 12399.40 5299.36 5698.58 3199.76 20298.78 4399.68 13199.59 55
Effi-MVS+98.02 15797.82 16798.62 17298.53 27397.19 19897.33 20699.68 1397.30 18896.68 29497.46 29798.56 3299.80 16596.63 17198.20 30398.86 258
abl_698.99 3898.78 5199.61 999.45 9799.46 398.60 7699.50 5698.59 9399.24 7999.04 11098.54 3399.89 5596.45 18899.62 15199.50 100
Fast-Effi-MVS+97.67 18797.38 19898.57 18098.71 24197.43 18497.23 21399.45 7794.82 27696.13 31096.51 31898.52 3499.91 4396.19 20598.83 28098.37 295
xiu_mvs_v1_base_debu97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base_debi97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
ETV-MVS98.03 15597.86 16598.56 18498.69 24998.07 13197.51 19499.50 5698.10 12497.50 25795.51 33698.41 3999.88 6496.27 20199.24 23497.71 322
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4599.41 6099.58 5099.10 5698.74 6699.56 4099.09 6299.33 6299.19 7798.40 4099.72 22595.98 21499.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10898.87 6798.39 10299.42 8899.42 3099.36 5899.06 10098.38 4199.95 1498.34 6899.90 4399.57 66
SED-MVS98.91 5098.72 5799.49 4899.49 8399.17 3698.10 12799.31 12898.03 12799.66 2099.02 11498.36 4299.88 6496.91 14299.62 15199.41 138
test_241102_ONE99.49 8399.17 3699.31 12897.98 12999.66 2098.90 14498.36 4299.48 305
ACMP95.32 1598.41 12298.09 14599.36 6499.51 7398.79 7497.68 17499.38 9695.76 25698.81 15598.82 16998.36 4299.82 14394.75 25099.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvs98.95 4699.00 3998.81 14999.38 10697.33 18797.82 16099.57 3399.17 5299.35 5999.17 8398.35 4599.69 23298.46 6299.73 10599.41 138
test_040298.76 6898.71 5998.93 13399.56 6198.14 12398.45 9899.34 11699.28 4198.95 12698.91 14198.34 4699.79 17895.63 23399.91 3998.86 258
xiu_mvs_v2_base97.16 22697.49 19096.17 30398.54 27192.46 31195.45 30698.84 24497.25 19397.48 25996.49 31998.31 4799.90 4696.34 19698.68 28996.15 346
CS-MVS97.82 18197.59 18698.52 18998.76 23298.04 13598.20 11699.61 2197.10 20796.02 31794.87 34898.27 4899.84 11896.31 19799.17 24697.69 323
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8398.36 10699.00 5199.45 7799.63 1499.52 3599.44 4798.25 4999.88 6499.09 2799.84 5599.62 44
MVS_111021_LR98.30 13398.12 14398.83 14699.16 15198.03 13696.09 27899.30 13797.58 15798.10 21698.24 24698.25 4999.34 32296.69 16799.65 14399.12 220
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5699.29 2399.53 5099.53 2399.46 4399.41 5098.23 5199.95 1498.89 3899.95 1599.81 11
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1699.31 1899.51 5499.64 1299.56 2899.46 4298.23 5199.97 398.78 4399.93 2499.72 25
baseline98.96 4599.02 3798.76 15999.38 10697.26 19198.49 9199.50 5698.86 7999.19 8599.06 10098.23 5199.69 23298.71 5099.76 9899.33 175
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1599.75 799.58 2298.60 17799.62 2198.22 5499.51 30097.70 10299.73 10597.89 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re98.64 8998.48 9299.11 10398.85 21798.51 9798.49 9199.83 398.37 10199.69 1799.46 4298.21 5599.92 3394.13 27399.30 22598.91 253
tfpnnormal98.90 5298.90 4298.91 13699.67 3997.82 16099.00 5199.44 8099.45 2899.51 3899.24 7198.20 5699.86 8795.92 21699.69 12699.04 230
OPU-MVS98.82 14798.59 26598.30 10798.10 12798.52 21798.18 5798.75 35194.62 25499.48 19999.41 138
OPM-MVS98.56 10198.32 12099.25 8799.41 10498.73 7997.13 22599.18 17597.10 20798.75 16198.92 14098.18 5799.65 25796.68 16899.56 17699.37 157
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4899.29 2399.54 4799.62 1799.56 2899.42 4898.16 5999.96 898.78 4399.93 2499.77 16
DeepPCF-MVS96.93 598.32 13198.01 15399.23 8998.39 28398.97 6295.03 31699.18 17596.88 21799.33 6298.78 17498.16 5999.28 33196.74 16199.62 15199.44 129
MVS_111021_HR98.25 14198.08 14898.75 16199.09 16697.46 18295.97 28199.27 14997.60 15697.99 22498.25 24598.15 6199.38 31996.87 15099.57 17199.42 136
Fast-Effi-MVS+-dtu98.27 13798.09 14598.81 14998.43 28198.11 12497.61 18299.50 5698.64 8797.39 26597.52 29298.12 6299.95 1496.90 14798.71 28798.38 293
pcd_1.5k_mvsjas8.17 33210.90 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36398.07 630.00 3630.00 3610.00 3610.00 359
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
PS-MVSNAJ97.08 23097.39 19796.16 30598.56 26992.46 31195.24 31198.85 24397.25 19397.49 25895.99 32898.07 6399.90 4696.37 19398.67 29096.12 347
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1799.80 399.72 899.82 399.04 11099.81 398.05 6699.96 898.85 4099.99 599.86 6
ACMMP_NAP98.75 7098.48 9299.57 1899.58 5099.29 1797.82 16099.25 15596.94 21498.78 15699.12 9398.02 6799.84 11897.13 12899.67 13799.59 55
MP-MVS-pluss98.57 10098.23 12999.60 1399.69 3799.35 1197.16 22399.38 9694.87 27598.97 12398.99 12398.01 6899.88 6497.29 11899.70 12099.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS98.68 8398.40 10699.54 2999.57 5499.21 2698.46 9699.29 14497.28 19098.11 21598.39 23298.00 6999.87 8096.86 15299.64 14599.55 79
PGM-MVS98.66 8698.37 11299.55 2699.53 6999.18 3598.23 11299.49 6497.01 21298.69 16598.88 15398.00 6999.89 5595.87 22099.59 16199.58 61
SteuartSystems-ACMMP98.79 6298.54 8199.54 2999.73 2399.16 4098.23 11299.31 12897.92 13498.90 13598.90 14498.00 6999.88 6496.15 20899.72 11199.58 61
Skip Steuart: Steuart Systems R&D Blog.
TinyColmap97.89 16797.98 15597.60 25198.86 21594.35 27296.21 27499.44 8097.45 17499.06 10398.88 15397.99 7299.28 33194.38 26699.58 16799.18 211
HFP-MVS98.71 7598.44 10099.51 4599.49 8399.16 4098.52 8599.31 12897.47 16798.58 18198.50 22197.97 7399.85 10196.57 17599.59 16199.53 89
#test#98.50 11398.16 13899.51 4599.49 8399.16 4098.03 13799.31 12896.30 23998.58 18198.50 22197.97 7399.85 10195.68 23099.59 16199.53 89
3Dnovator98.27 298.81 6098.73 5599.05 11898.76 23297.81 16299.25 3099.30 13798.57 9798.55 18599.33 6197.95 7599.90 4697.16 12499.67 13799.44 129
test_0728_THIRD98.17 12199.08 10099.02 11497.89 7699.88 6497.07 13199.71 11599.70 29
APD-MVS_3200maxsize98.84 5798.61 7499.53 3699.19 14099.27 2098.49 9199.33 12198.64 8799.03 11398.98 12797.89 7699.85 10196.54 18299.42 20599.46 120
CP-MVS98.70 7898.42 10499.52 4199.36 10999.12 5398.72 6899.36 10497.54 16298.30 20398.40 23097.86 7899.89 5596.53 18399.72 11199.56 71
TSAR-MVS + MP.98.63 9198.49 9099.06 11699.64 4597.90 15298.51 8998.94 22496.96 21399.24 7998.89 15297.83 7999.81 15696.88 14999.49 19799.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R98.69 8098.40 10699.54 2999.53 6999.17 3698.52 8599.31 12897.46 17298.44 19398.51 21897.83 7999.88 6496.46 18799.58 16799.58 61
APDe-MVS98.99 3898.79 5099.60 1399.21 13499.15 4598.87 6099.48 6697.57 15899.35 5999.24 7197.83 7999.89 5597.88 9199.70 12099.75 22
FMVSNet199.17 3099.17 2999.17 9399.55 6498.24 11199.20 3299.44 8099.21 4499.43 4799.55 2997.82 8299.86 8798.42 6599.89 4799.41 138
xxxxxxxxxxxxxcwj98.44 11998.24 12799.06 11699.11 15997.97 14396.53 25699.54 4798.24 11298.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
SF-MVS98.53 11098.27 12499.32 7699.31 11698.75 7598.19 11799.41 8996.77 22198.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
PHI-MVS98.29 13697.95 15799.34 7298.44 28099.16 4098.12 12499.38 9696.01 24898.06 21998.43 22897.80 8399.67 24495.69 22999.58 16799.20 204
RE-MVS-def98.58 7899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.75 8696.56 17899.39 20999.45 124
ACMMPR98.70 7898.42 10499.54 2999.52 7199.14 4898.52 8599.31 12897.47 16798.56 18398.54 21597.75 8699.88 6496.57 17599.59 16199.58 61
ACMMPcopyleft98.75 7098.50 8799.52 4199.56 6199.16 4098.87 6099.37 10097.16 20498.82 15399.01 12097.71 8899.87 8096.29 20099.69 12699.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS98.00 15997.74 17198.80 15198.72 23898.09 12598.05 13499.60 2397.39 17996.63 29695.55 33597.68 8999.80 16596.73 16399.27 22998.52 285
GST-MVS98.61 9498.30 12199.52 4199.51 7399.20 3298.26 11099.25 15597.44 17598.67 16798.39 23297.68 8999.85 10196.00 21299.51 18999.52 93
CSCG98.68 8398.50 8799.20 9199.45 9798.63 8498.56 8199.57 3397.87 13898.85 14698.04 26397.66 9199.84 11896.72 16499.81 6899.13 219
AllTest98.44 11998.20 13199.16 9699.50 7698.55 9298.25 11199.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
TestCases99.16 9699.50 7698.55 9299.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
test20.0398.78 6598.77 5398.78 15699.46 9497.20 19797.78 16299.24 16099.04 6499.41 4998.90 14497.65 9299.76 20297.70 10299.79 8199.39 147
ITE_SJBPF98.87 14199.22 13298.48 9999.35 11097.50 16498.28 20598.60 21097.64 9599.35 32193.86 28299.27 22998.79 269
mPP-MVS98.64 8998.34 11699.54 2999.54 6799.17 3698.63 7399.24 16097.47 16798.09 21798.68 19097.62 9699.89 5596.22 20399.62 15199.57 66
DVP-MVS98.77 6798.52 8399.52 4199.50 7699.21 2698.02 13998.84 24497.97 13099.08 10099.02 11497.61 9799.88 6496.99 13699.63 14899.48 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 7699.21 2698.17 12199.35 11097.97 13099.26 7699.06 10097.61 97
9.1497.78 16899.07 17097.53 19199.32 12395.53 26198.54 18798.70 18797.58 9999.76 20294.32 26799.46 201
CLD-MVS97.49 19997.16 21198.48 19599.07 17097.03 20594.71 32399.21 16494.46 28298.06 21997.16 30897.57 10099.48 30594.46 25999.78 8598.95 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast96.85 698.30 13398.15 14098.75 16198.61 26197.23 19297.76 16799.09 19797.31 18798.75 16198.66 19597.56 10199.64 25996.10 21199.55 17899.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS98.82 5898.72 5799.12 10199.64 4598.54 9597.98 14599.68 1397.62 15399.34 6199.18 7997.54 10299.77 19597.79 9499.74 10299.04 230
XVG-ACMP-BASELINE98.56 10198.34 11699.22 9099.54 6798.59 8997.71 17199.46 7497.25 19398.98 12098.99 12397.54 10299.84 11895.88 21799.74 10299.23 199
SR-MVS98.71 7598.43 10299.57 1899.18 14799.35 1198.36 10599.29 14498.29 10998.88 14298.85 16097.53 10499.87 8096.14 20999.31 22299.48 110
DPE-MVS98.59 9998.26 12599.57 1899.27 12299.15 4597.01 22899.39 9497.67 14999.44 4698.99 12397.53 10499.89 5595.40 24099.68 13199.66 34
SMA-MVScopyleft98.40 12498.03 15299.51 4599.16 15199.21 2698.05 13499.22 16394.16 29198.98 12099.10 9797.52 10699.79 17896.45 18899.64 14599.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_TWO99.30 13798.03 12799.26 7699.02 11497.51 10799.88 6496.91 14299.60 15999.66 34
XVS98.72 7498.45 9899.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25398.63 20497.50 10899.83 13396.79 15599.53 18399.56 71
X-MVStestdata94.32 29992.59 31799.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25345.85 35897.50 10899.83 13396.79 15599.53 18399.56 71
DELS-MVS98.27 13798.20 13198.48 19598.86 21596.70 21695.60 30099.20 16697.73 14698.45 19298.71 18497.50 10899.82 14398.21 7399.59 16198.93 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test117298.76 6898.49 9099.57 1899.18 14799.37 898.39 10299.31 12898.43 10098.90 13598.88 15397.49 11199.86 8796.43 19099.37 21399.48 110
SR-MVS-dyc-post98.81 6098.55 8099.57 1899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.49 11199.86 8796.56 17899.39 20999.45 124
TSAR-MVS + GP.98.18 14797.98 15598.77 15898.71 24197.88 15396.32 26998.66 26796.33 23699.23 8298.51 21897.48 11399.40 31597.16 12499.46 20199.02 233
Regformer-498.73 7398.68 6498.89 13999.02 18297.22 19497.17 22199.06 20199.21 4499.17 9098.85 16097.45 11499.86 8798.48 6199.70 12099.60 49
new-patchmatchnet98.35 12998.74 5497.18 27399.24 12792.23 31696.42 26499.48 6698.30 10699.69 1799.53 3297.44 11599.82 14398.84 4199.77 8999.49 104
PMVScopyleft91.26 2097.86 17197.94 15997.65 24799.71 2997.94 15098.52 8598.68 26698.99 6897.52 25599.35 5797.41 11698.18 35491.59 32199.67 13796.82 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft98.46 11798.09 14599.54 2999.57 5499.22 2598.50 9099.19 17197.61 15597.58 24998.66 19597.40 11799.88 6494.72 25399.60 15999.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSDG97.71 18497.52 18898.28 21398.91 20596.82 21194.42 33399.37 10097.65 15198.37 20298.29 24497.40 11799.33 32494.09 27499.22 23698.68 281
Regformer-298.60 9698.46 9699.02 12498.85 21797.71 17096.91 23799.09 19798.98 7099.01 11498.64 20097.37 11999.84 11897.75 10199.57 17199.52 93
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4799.06 6098.69 7099.54 4799.31 3899.62 2799.53 3297.36 12099.86 8799.24 2199.71 11599.39 147
LS3D98.63 9198.38 11199.36 6497.25 33599.38 599.12 4399.32 12399.21 4498.44 19398.88 15397.31 12199.80 16596.58 17399.34 21898.92 250
EI-MVSNet-UG-set98.69 8098.71 5998.62 17299.10 16396.37 22297.23 21398.87 23799.20 4799.19 8598.99 12397.30 12299.85 10198.77 4699.79 8199.65 38
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2399.32 1599.55 4399.46 2799.50 3999.34 5997.30 12299.93 2698.90 3699.93 2499.77 16
EI-MVSNet-Vis-set98.68 8398.70 6298.63 17099.09 16696.40 22197.23 21398.86 24299.20 4799.18 8998.97 12997.29 12499.85 10198.72 4999.78 8599.64 39
pmmvs-eth3d98.47 11698.34 11698.86 14399.30 11997.76 16597.16 22399.28 14695.54 25999.42 4899.19 7797.27 12599.63 26297.89 8899.97 1199.20 204
CNVR-MVS98.17 14997.87 16499.07 11198.67 25498.24 11197.01 22898.93 22697.25 19397.62 24598.34 23997.27 12599.57 28196.42 19199.33 21999.39 147
OMC-MVS97.88 16997.49 19099.04 12098.89 21198.63 8496.94 23299.25 15595.02 27098.53 18898.51 21897.27 12599.47 30793.50 29299.51 18999.01 234
Regformer-198.55 10598.44 10098.87 14198.85 21797.29 18896.91 23798.99 22198.97 7198.99 11898.64 20097.26 12899.81 15697.79 9499.57 17199.51 96
Regformer-398.61 9498.61 7498.63 17099.02 18296.53 21997.17 22198.84 24499.13 5499.10 9798.85 16097.24 12999.79 17898.41 6699.70 12099.57 66
DP-MVS98.93 4898.81 4999.28 7999.21 13498.45 10198.46 9699.33 12199.63 1499.48 4099.15 8997.23 13099.75 20997.17 12399.66 14299.63 43
MVS_Test98.18 14798.36 11397.67 24598.48 27694.73 26398.18 11899.02 21497.69 14898.04 22299.11 9597.22 13199.56 28498.57 5698.90 27898.71 275
MCST-MVS98.00 15997.63 18199.10 10599.24 12798.17 12096.89 23998.73 26395.66 25797.92 22597.70 28297.17 13299.66 25296.18 20799.23 23599.47 118
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3597.12 13399.85 10199.02 3199.94 2099.80 12
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4699.21 2299.87 5199.54 83
3Dnovator+97.89 398.69 8098.51 8599.24 8898.81 22798.40 10299.02 4899.19 17198.99 6898.07 21899.28 6497.11 13599.84 11896.84 15399.32 22099.47 118
Anonymous2024052998.93 4898.87 4399.12 10199.19 14098.22 11699.01 4998.99 22199.25 4399.54 3099.37 5397.04 13699.80 16597.89 8899.52 18699.35 167
MSLP-MVS++98.02 15798.14 14297.64 24998.58 26695.19 25497.48 19699.23 16297.47 16797.90 22798.62 20697.04 13698.81 35097.55 10599.41 20698.94 248
APD-MVScopyleft98.10 15197.67 17599.42 5799.11 15998.93 6697.76 16799.28 14694.97 27298.72 16498.77 17697.04 13699.85 10193.79 28499.54 17999.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp97.02 139
CP-MVSNet99.21 2999.09 3499.56 2499.65 4298.96 6599.13 4199.34 11699.42 3099.33 6299.26 6897.01 14099.94 2298.74 4899.93 2499.79 13
ambc98.24 21698.82 22595.97 23298.62 7499.00 22099.27 7299.21 7496.99 14199.50 30196.55 18199.50 19699.26 194
zzz-MVS98.79 6298.52 8399.61 999.67 3999.36 997.33 20699.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
MTAPA98.88 5398.64 6999.61 999.67 3999.36 998.43 9999.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
v899.01 3699.16 3098.57 18099.47 9396.31 22598.90 5899.47 7299.03 6599.52 3599.57 2796.93 14499.81 15699.60 499.98 999.60 49
QAPM97.31 21296.81 23198.82 14798.80 22997.49 18099.06 4799.19 17190.22 33497.69 24199.16 8596.91 14599.90 4690.89 33199.41 20699.07 224
CDPH-MVS97.26 21696.66 24199.07 11199.00 18598.15 12196.03 27999.01 21791.21 32897.79 23597.85 27496.89 14699.69 23292.75 30699.38 21299.39 147
PVSNet_Blended_VisFu98.17 14998.15 14098.22 21799.73 2395.15 25597.36 20499.68 1394.45 28498.99 11899.27 6696.87 14799.94 2297.13 12899.91 3999.57 66
Anonymous2023121199.27 2599.27 2499.26 8599.29 12098.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13399.21 2299.91 3999.77 16
V4298.78 6598.78 5198.76 15999.44 9997.04 20498.27 10999.19 17197.87 13899.25 7899.16 8596.84 14899.78 18999.21 2299.84 5599.46 120
PMMVS298.07 15498.08 14898.04 22999.41 10494.59 26994.59 33099.40 9297.50 16498.82 15398.83 16696.83 15099.84 11897.50 11099.81 6899.71 26
PVSNet_BlendedMVS97.55 19597.53 18797.60 25198.92 20293.77 29396.64 25299.43 8594.49 28097.62 24599.18 7996.82 15199.67 24494.73 25199.93 2499.36 163
PVSNet_Blended96.88 24396.68 23897.47 26298.92 20293.77 29394.71 32399.43 8590.98 33097.62 24597.36 30396.82 15199.67 24494.73 25199.56 17698.98 239
ab-mvs98.41 12298.36 11398.59 17699.19 14097.23 19299.32 1598.81 25097.66 15098.62 17399.40 5296.82 15199.80 16595.88 21799.51 18998.75 273
FIs99.14 3299.09 3499.29 7799.70 3598.28 10899.13 4199.52 5399.48 2499.24 7999.41 5096.79 15499.82 14398.69 5199.88 4899.76 20
UniMVSNet (Re)98.87 5498.71 5999.35 6999.24 12798.73 7997.73 17099.38 9698.93 7699.12 9298.73 18196.77 15599.86 8798.63 5399.80 7699.46 120
API-MVS97.04 23596.91 22597.42 26597.88 31098.23 11598.18 11898.50 27597.57 15897.39 26596.75 31596.77 15599.15 34090.16 33499.02 26894.88 352
diffmvs98.22 14398.24 12798.17 22099.00 18595.44 24696.38 26699.58 2697.79 14498.53 18898.50 22196.76 15799.74 21397.95 8799.64 14599.34 169
DU-MVS98.82 5898.63 7099.39 6399.16 15198.74 7697.54 19099.25 15598.84 8199.06 10398.76 17896.76 15799.93 2698.57 5699.77 8999.50 100
Baseline_NR-MVSNet98.98 4298.86 4499.36 6499.82 1698.55 9297.47 19899.57 3399.37 3499.21 8399.61 2396.76 15799.83 13398.06 8099.83 6199.71 26
VPNet98.87 5498.83 4699.01 12599.70 3597.62 17698.43 9999.35 11099.47 2699.28 7099.05 10796.72 16099.82 14398.09 7899.36 21499.59 55
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 6299.17 14998.74 7697.68 17499.40 9299.14 5399.06 10398.59 21196.71 16199.93 2698.57 5699.77 8999.53 89
LF4IMVS97.90 16597.69 17498.52 18999.17 14997.66 17297.19 22099.47 7296.31 23897.85 23198.20 25096.71 16199.52 29694.62 25499.72 11198.38 293
v14898.45 11898.60 7698.00 23199.44 9994.98 25897.44 20099.06 20198.30 10699.32 6798.97 12996.65 16399.62 26498.37 6799.85 5399.39 147
v1098.97 4399.11 3398.55 18599.44 9996.21 22798.90 5899.55 4398.73 8599.48 4099.60 2596.63 16499.83 13399.70 399.99 599.61 48
ETH3D-3000-0.198.03 15597.62 18299.29 7799.11 15998.80 7397.47 19899.32 12395.54 25998.43 19698.62 20696.61 16599.77 19593.95 27899.49 19799.30 184
OpenMVScopyleft96.65 797.09 22996.68 23898.32 20898.32 28697.16 20198.86 6299.37 10089.48 33896.29 30999.15 8996.56 16699.90 4692.90 30099.20 23997.89 309
UGNet98.53 11098.45 9898.79 15397.94 30796.96 20799.08 4498.54 27299.10 5996.82 29199.47 4196.55 16799.84 11898.56 5999.94 2099.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST998.71 24198.08 12995.96 28399.03 21091.40 32595.85 31897.53 29096.52 16899.76 202
Test By Simon96.52 168
agg_prior197.06 23296.40 25299.03 12198.68 25297.99 13895.76 29399.01 21791.73 31995.59 32197.50 29396.49 17099.77 19593.71 28599.14 25199.34 169
train_agg97.10 22896.45 25199.07 11198.71 24198.08 12995.96 28399.03 21091.64 32095.85 31897.53 29096.47 17199.76 20293.67 28699.16 24799.36 163
test_898.67 25498.01 13795.91 28899.02 21491.64 32095.79 32097.50 29396.47 17199.76 202
Effi-MVS+-dtu98.26 13997.90 16299.35 6998.02 30399.49 298.02 13999.16 18498.29 10997.64 24497.99 26596.44 17399.95 1496.66 16998.93 27798.60 282
mvs-test197.83 17997.48 19398.89 13998.02 30399.20 3297.20 21799.16 18498.29 10996.46 30697.17 30796.44 17399.92 3396.66 16997.90 31697.54 329
ppachtmachnet_test97.50 19797.74 17196.78 29298.70 24591.23 33094.55 33199.05 20596.36 23599.21 8398.79 17396.39 17599.78 18996.74 16199.82 6499.34 169
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3399.44 1399.92 3399.68 31
NR-MVSNet98.95 4698.82 4799.36 6499.16 15198.72 8199.22 3199.20 16699.10 5999.72 1398.76 17896.38 17799.86 8798.00 8599.82 6499.50 100
v119298.60 9698.66 6798.41 20199.27 12295.88 23497.52 19299.36 10497.41 17799.33 6299.20 7696.37 17899.82 14399.57 699.92 3399.55 79
ZD-MVS99.01 18498.84 6999.07 20094.10 29298.05 22198.12 25696.36 17999.86 8792.70 30899.19 243
v114498.60 9698.66 6798.41 20199.36 10995.90 23397.58 18699.34 11697.51 16399.27 7299.15 8996.34 18099.80 16599.47 1299.93 2499.51 96
mvs_anonymous97.83 17998.16 13896.87 28798.18 29591.89 31897.31 20898.90 23297.37 18198.83 14999.46 4296.28 18199.79 17898.90 3698.16 30698.95 244
DSMNet-mixed97.42 20597.60 18496.87 28799.15 15591.46 32298.54 8399.12 19392.87 30897.58 24999.63 2096.21 18299.90 4695.74 22699.54 17999.27 191
TAPA-MVS96.21 1196.63 25495.95 26298.65 16798.93 19898.09 12596.93 23499.28 14683.58 35398.13 21397.78 27796.13 18399.40 31593.52 29099.29 22798.45 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124098.55 10598.62 7198.32 20899.22 13295.58 24097.51 19499.45 7797.16 20499.45 4599.24 7196.12 18499.85 10199.60 499.88 4899.55 79
RPSCF98.62 9398.36 11399.42 5799.65 4299.42 498.55 8299.57 3397.72 14798.90 13599.26 6896.12 18499.52 29695.72 22799.71 11599.32 177
MS-PatchMatch97.68 18697.75 17097.45 26398.23 29393.78 29297.29 20998.84 24496.10 24498.64 17098.65 19796.04 18699.36 32096.84 15399.14 25199.20 204
v192192098.54 10898.60 7698.38 20499.20 13795.76 23997.56 18899.36 10497.23 19999.38 5499.17 8396.02 18799.84 11899.57 699.90 4399.54 83
HPM-MVS++copyleft98.10 15197.64 18099.48 5099.09 16699.13 5197.52 19298.75 26097.46 17296.90 28697.83 27596.01 18899.84 11895.82 22499.35 21699.46 120
Anonymous2023120698.21 14498.21 13098.20 21899.51 7395.43 24798.13 12299.32 12396.16 24298.93 13398.82 16996.00 18999.83 13397.32 11799.73 10599.36 163
EI-MVSNet98.40 12498.51 8598.04 22999.10 16394.73 26397.20 21798.87 23798.97 7199.06 10399.02 11496.00 18999.80 16598.58 5499.82 6499.60 49
IterMVS-LS98.55 10598.70 6298.09 22299.48 9194.73 26397.22 21699.39 9498.97 7199.38 5499.31 6396.00 18999.93 2698.58 5499.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NCCC97.86 17197.47 19499.05 11898.61 26198.07 13196.98 23098.90 23297.63 15297.04 27797.93 27095.99 19299.66 25295.31 24198.82 28199.43 133
our_test_397.39 20797.73 17396.34 29898.70 24589.78 33494.61 32998.97 22396.50 23099.04 11098.85 16095.98 19399.84 11897.26 12099.67 13799.41 138
v2v48298.56 10198.62 7198.37 20599.42 10395.81 23797.58 18699.16 18497.90 13699.28 7099.01 12095.98 19399.79 17899.33 1599.90 4399.51 96
MVS93.19 31692.09 32096.50 29696.91 33994.03 28098.07 13098.06 29368.01 35794.56 33996.48 32095.96 19599.30 32883.84 34896.89 33496.17 344
MVP-Stereo98.08 15397.92 16098.57 18098.96 19396.79 21297.90 15299.18 17596.41 23498.46 19198.95 13695.93 19699.60 27196.51 18498.98 27499.31 181
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior397.48 20197.00 21898.95 13098.69 24997.95 14895.74 29599.03 21096.48 23196.11 31197.63 28695.92 19799.59 27594.16 26899.20 23999.30 184
test_prior295.74 29596.48 23196.11 31197.63 28695.92 19794.16 26899.20 239
AdaColmapbinary97.14 22796.71 23698.46 19798.34 28597.80 16396.95 23198.93 22695.58 25896.92 28197.66 28395.87 19999.53 29290.97 32899.14 25198.04 304
v14419298.54 10898.57 7998.45 19899.21 13495.98 23197.63 17999.36 10497.15 20699.32 6799.18 7995.84 20099.84 11899.50 1099.91 3999.54 83
ETH3D cwj APD-0.1697.55 19597.00 21899.19 9298.51 27498.64 8396.85 24099.13 19194.19 29097.65 24398.40 23095.78 20199.81 15693.37 29599.16 24799.12 220
PatchMatch-RL97.24 21996.78 23298.61 17499.03 18097.83 15796.36 26799.06 20193.49 30297.36 26797.78 27795.75 20299.49 30293.44 29398.77 28298.52 285
F-COLMAP97.30 21396.68 23899.14 9999.19 14098.39 10397.27 21299.30 13792.93 30696.62 29798.00 26495.73 20399.68 24192.62 30998.46 29799.35 167
PMMVS96.51 25795.98 26198.09 22297.53 32595.84 23594.92 31998.84 24491.58 32296.05 31595.58 33495.68 20499.66 25295.59 23598.09 31098.76 272
N_pmnet97.63 19197.17 21098.99 12799.27 12297.86 15595.98 28093.41 34695.25 26899.47 4298.90 14495.63 20599.85 10196.91 14299.73 10599.27 191
WR-MVS98.40 12498.19 13399.03 12199.00 18597.65 17396.85 24098.94 22498.57 9798.89 13898.50 22195.60 20699.85 10197.54 10799.85 5399.59 55
CANet97.87 17097.76 16998.19 21997.75 31595.51 24396.76 24699.05 20597.74 14596.93 28098.21 24995.59 20799.89 5597.86 9399.93 2499.19 209
131495.74 27795.60 27196.17 30397.53 32592.75 30898.07 13098.31 28291.22 32794.25 34096.68 31695.53 20899.03 34291.64 32097.18 32996.74 339
114514_t96.50 25995.77 26498.69 16599.48 9197.43 18497.84 15899.55 4381.42 35596.51 30298.58 21295.53 20899.67 24493.41 29499.58 16798.98 239
test1298.93 13398.58 26697.83 15798.66 26796.53 30095.51 21099.69 23299.13 25499.27 191
testtj97.79 18297.25 20599.42 5799.03 18098.85 6897.78 16299.18 17595.83 25498.12 21498.50 22195.50 21199.86 8792.23 31499.07 26099.54 83
旧先验198.82 22597.45 18398.76 25798.34 23995.50 21199.01 27099.23 199
YYNet197.60 19297.67 17597.39 26799.04 17793.04 30395.27 30998.38 28097.25 19398.92 13498.95 13695.48 21399.73 21796.99 13698.74 28399.41 138
MDA-MVSNet_test_wron97.60 19297.66 17897.41 26699.04 17793.09 29995.27 30998.42 27897.26 19298.88 14298.95 13695.43 21499.73 21797.02 13398.72 28599.41 138
原ACMM198.35 20698.90 20696.25 22698.83 24992.48 31296.07 31498.10 25895.39 21599.71 22692.61 31098.99 27299.08 223
USDC97.41 20697.40 19697.44 26498.94 19693.67 29595.17 31299.53 5094.03 29498.97 12399.10 9795.29 21699.34 32295.84 22399.73 10599.30 184
testdata98.09 22298.93 19895.40 24898.80 25290.08 33697.45 26198.37 23695.26 21799.70 22893.58 28998.95 27699.17 215
BH-untuned96.83 24596.75 23497.08 27798.74 23693.33 29796.71 24998.26 28396.72 22398.44 19397.37 30295.20 21899.47 30791.89 31697.43 32398.44 290
MVEpermissive83.40 2292.50 32191.92 32494.25 32898.83 22291.64 32092.71 34983.52 36195.92 25186.46 36095.46 33895.20 21895.40 35780.51 35498.64 29195.73 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-RMVSNet96.83 24596.58 24597.58 25398.47 27794.05 27896.67 25197.36 30796.70 22597.87 22997.98 26695.14 22099.44 31290.47 33398.58 29599.25 195
pmmvs497.58 19497.28 20498.51 19298.84 22096.93 20995.40 30898.52 27493.60 29998.61 17598.65 19795.10 22199.60 27196.97 13999.79 8198.99 238
EU-MVSNet97.66 18898.50 8795.13 32199.63 4785.84 34898.35 10698.21 28598.23 11499.54 3099.46 4295.02 22299.68 24198.24 7199.87 5199.87 4
DP-MVS Recon97.33 21196.92 22398.57 18099.09 16697.99 13896.79 24399.35 11093.18 30397.71 23998.07 26295.00 22399.31 32693.97 27699.13 25498.42 292
HQP_MVS97.99 16297.67 17598.93 13399.19 14097.65 17397.77 16599.27 14998.20 11897.79 23597.98 26694.90 22499.70 22894.42 26299.51 18999.45 124
plane_prior698.99 18997.70 17194.90 224
CPTT-MVS97.84 17797.36 20099.27 8299.31 11698.46 10098.29 10799.27 14994.90 27497.83 23298.37 23694.90 22499.84 11893.85 28399.54 17999.51 96
new_pmnet96.99 24096.76 23397.67 24598.72 23894.89 26095.95 28598.20 28692.62 31198.55 18598.54 21594.88 22799.52 29693.96 27799.44 20498.59 284
VDD-MVS98.56 10198.39 10999.07 11199.13 15898.07 13198.59 7897.01 31599.59 2099.11 9499.27 6694.82 22899.79 17898.34 6899.63 14899.34 169
jason97.45 20397.35 20197.76 24199.24 12793.93 28595.86 28998.42 27894.24 28898.50 19098.13 25394.82 22899.91 4397.22 12199.73 10599.43 133
jason: jason.
TAMVS98.24 14298.05 15098.80 15199.07 17097.18 19997.88 15398.81 25096.66 22699.17 9099.21 7494.81 23099.77 19596.96 14099.88 4899.44 129
新几何198.91 13698.94 19697.76 16598.76 25787.58 34796.75 29398.10 25894.80 23199.78 18992.73 30799.00 27199.20 204
VNet98.42 12198.30 12198.79 15398.79 23197.29 18898.23 11298.66 26799.31 3898.85 14698.80 17194.80 23199.78 18998.13 7699.13 25499.31 181
MAR-MVS96.47 26095.70 26798.79 15397.92 30899.12 5398.28 10898.60 27192.16 31795.54 32896.17 32694.77 23399.52 29689.62 33698.23 30197.72 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CL-MVSNet_2432*160097.44 20497.22 20898.08 22598.57 26895.78 23894.30 33698.79 25396.58 22998.60 17798.19 25194.74 23499.64 25996.41 19298.84 27998.82 261
MSP-MVS98.40 12498.00 15499.61 999.57 5499.25 2298.57 8099.35 11097.55 16199.31 6997.71 28194.61 23599.88 6496.14 20999.19 24399.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPR95.29 28594.47 29597.75 24297.50 32995.14 25694.89 32098.71 26591.39 32695.35 33295.48 33794.57 23699.14 34184.95 34697.37 32498.97 243
112196.73 24996.00 26098.91 13698.95 19597.76 16598.07 13098.73 26387.65 34696.54 29998.13 25394.52 23799.73 21792.38 31299.02 26899.24 198
test22298.92 20296.93 20995.54 30198.78 25585.72 35096.86 28998.11 25794.43 23899.10 25999.23 199
PLCcopyleft94.65 1696.51 25795.73 26698.85 14498.75 23597.91 15196.42 26499.06 20190.94 33195.59 32197.38 30194.41 23999.59 27590.93 32998.04 31499.05 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS97.84 17797.84 16697.83 23799.14 15694.74 26296.94 23298.88 23595.84 25398.89 13898.96 13294.40 24099.69 23297.55 10599.95 1599.05 226
CNLPA97.17 22596.71 23698.55 18598.56 26998.05 13496.33 26898.93 22696.91 21697.06 27697.39 30094.38 24199.45 31191.66 31899.18 24598.14 301
MDA-MVSNet-bldmvs97.94 16397.91 16198.06 22799.44 9994.96 25996.63 25399.15 19098.35 10298.83 14999.11 9594.31 24299.85 10196.60 17298.72 28599.37 157
OpenMVS_ROBcopyleft95.38 1495.84 27595.18 28697.81 23898.41 28297.15 20297.37 20398.62 27083.86 35298.65 16998.37 23694.29 24399.68 24188.41 33998.62 29396.60 341
TR-MVS95.55 28195.12 28896.86 29097.54 32493.94 28496.49 26096.53 32494.36 28797.03 27896.61 31794.26 24499.16 33986.91 34396.31 33997.47 331
GBi-Net98.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
test198.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
FMVSNet298.49 11498.40 10698.75 16198.90 20697.14 20398.61 7599.13 19198.59 9399.19 8599.28 6494.14 24599.82 14397.97 8699.80 7699.29 188
PAPM_NR96.82 24796.32 25598.30 21199.07 17096.69 21797.48 19698.76 25795.81 25596.61 29896.47 32194.12 24899.17 33890.82 33297.78 31799.06 225
HQP2-MVS93.84 249
HQP-MVS97.00 23996.49 25098.55 18598.67 25496.79 21296.29 27099.04 20896.05 24595.55 32596.84 31393.84 24999.54 29092.82 30399.26 23299.32 177
MVSFormer98.26 13998.43 10297.77 24098.88 21293.89 28999.39 1199.56 4099.11 5598.16 21098.13 25393.81 25199.97 399.26 1899.57 17199.43 133
lupinMVS97.06 23296.86 22797.65 24798.88 21293.89 28995.48 30597.97 29593.53 30098.16 21097.58 28893.81 25199.91 4396.77 15899.57 17199.17 215
MG-MVS96.77 24896.61 24397.26 27198.31 28793.06 30095.93 28698.12 29196.45 23397.92 22598.73 18193.77 25399.39 31791.19 32799.04 26499.33 175
PVSNet93.40 1795.67 27895.70 26795.57 31498.83 22288.57 33792.50 35097.72 30092.69 31096.49 30596.44 32293.72 25499.43 31393.61 28799.28 22898.71 275
MVS_030497.64 18997.35 20198.52 18997.87 31196.69 21798.59 7898.05 29497.44 17593.74 34898.85 16093.69 25599.88 6498.11 7799.81 6898.98 239
ETH3 D test640096.46 26195.59 27299.08 10898.88 21298.21 11796.53 25699.18 17588.87 34297.08 27497.79 27693.64 25699.77 19588.92 33899.40 20899.28 189
pmmvs597.64 18997.49 19098.08 22599.14 15695.12 25796.70 25099.05 20593.77 29798.62 17398.83 16693.23 25799.75 20998.33 7099.76 9899.36 163
CANet_DTU97.26 21697.06 21597.84 23697.57 32294.65 26796.19 27698.79 25397.23 19995.14 33498.24 24693.22 25899.84 11897.34 11699.84 5599.04 230
UnsupCasMVSNet_bld97.30 21396.92 22398.45 19899.28 12196.78 21596.20 27599.27 14995.42 26498.28 20598.30 24393.16 25999.71 22694.99 24597.37 32498.87 257
IterMVS97.73 18398.11 14496.57 29499.24 12790.28 33295.52 30499.21 16498.86 7999.33 6299.33 6193.11 26099.94 2298.49 6099.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.85 17698.18 13496.87 28799.27 12291.16 33195.53 30299.25 15599.10 5999.41 4999.35 5793.10 26199.96 898.65 5299.94 2099.49 104
SCA96.41 26296.66 24195.67 31198.24 29188.35 33995.85 29196.88 32096.11 24397.67 24298.67 19293.10 26199.85 10194.16 26899.22 23698.81 264
DPM-MVS96.32 26395.59 27298.51 19298.76 23297.21 19694.54 33298.26 28391.94 31896.37 30797.25 30593.06 26399.43 31391.42 32398.74 28398.89 254
BH-w/o95.13 28994.89 29395.86 30798.20 29491.31 32695.65 29897.37 30693.64 29896.52 30195.70 33393.04 26499.02 34388.10 34095.82 34497.24 333
cascas94.79 29494.33 30096.15 30696.02 35492.36 31492.34 35299.26 15485.34 35195.08 33594.96 34592.96 26598.53 35294.41 26598.59 29497.56 328
cl_fuxian97.36 20897.37 19997.31 26898.09 30093.25 29895.01 31799.16 18497.05 20998.77 15998.72 18392.88 26699.64 25996.93 14199.76 9899.05 226
MVS-HIRNet94.32 29995.62 27090.42 34198.46 27875.36 36296.29 27089.13 35895.25 26895.38 33199.75 792.88 26699.19 33794.07 27599.39 20996.72 340
sss97.21 22196.93 22198.06 22798.83 22295.22 25396.75 24798.48 27694.49 28097.27 26897.90 27192.77 26899.80 16596.57 17599.32 22099.16 218
miper_ehance_all_eth97.06 23297.03 21697.16 27697.83 31293.06 30094.66 32699.09 19795.99 24998.69 16598.45 22792.73 26999.61 27096.79 15599.03 26598.82 261
SixPastTwentyTwo98.75 7098.62 7199.16 9699.83 1597.96 14799.28 2798.20 28699.37 3499.70 1599.65 1992.65 27099.93 2699.04 3099.84 5599.60 49
UnsupCasMVSNet_eth97.89 16797.60 18498.75 16199.31 11697.17 20097.62 18099.35 11098.72 8698.76 16098.68 19092.57 27199.74 21397.76 10095.60 34599.34 169
CHOSEN 1792x268897.49 19997.14 21498.54 18899.68 3896.09 23096.50 25999.62 1991.58 32298.84 14898.97 12992.36 27299.88 6496.76 15999.95 1599.67 33
PCF-MVS92.86 1894.36 29893.00 31598.42 20098.70 24597.56 17793.16 34899.11 19579.59 35697.55 25297.43 29892.19 27399.73 21779.85 35599.45 20397.97 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet98.30 13398.04 15199.07 11199.56 6197.83 15799.29 2398.07 29299.03 6598.59 17999.13 9292.16 27499.90 4696.87 15099.68 13199.49 104
1112_ss97.29 21596.86 22798.58 17799.34 11596.32 22496.75 24799.58 2693.14 30496.89 28797.48 29592.11 27599.86 8796.91 14299.54 17999.57 66
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23797.02 20696.92 23698.75 26095.89 25298.59 17998.67 19292.08 27699.74 21396.72 16499.81 6899.32 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth97.23 22097.25 20597.17 27498.00 30592.77 30794.71 32399.18 17597.27 19198.56 18398.74 18091.89 27799.69 23297.06 13299.81 6899.05 226
IS-MVSNet98.19 14697.90 16299.08 10899.57 5497.97 14399.31 1898.32 28199.01 6798.98 12099.03 11391.59 27899.79 17895.49 23899.80 7699.48 110
Test_1112_low_res96.99 24096.55 24898.31 21099.35 11395.47 24595.84 29299.53 5091.51 32496.80 29298.48 22691.36 27999.83 13396.58 17399.53 18399.62 44
WTY-MVS96.67 25296.27 25897.87 23598.81 22794.61 26896.77 24597.92 29794.94 27397.12 27197.74 28091.11 28099.82 14393.89 28098.15 30799.18 211
PVSNet_089.98 2191.15 32790.30 33093.70 33397.72 31684.34 35690.24 35497.42 30590.20 33593.79 34693.09 35590.90 28198.89 34986.57 34472.76 35897.87 311
miper_enhance_ethall96.01 27095.74 26596.81 29196.41 34992.27 31593.69 34598.89 23491.14 32998.30 20397.35 30490.58 28299.58 28096.31 19799.03 26598.60 282
VDDNet98.21 14497.95 15799.01 12599.58 5097.74 16899.01 4997.29 31199.67 1098.97 12399.50 3590.45 28399.80 16597.88 9199.20 23999.48 110
Anonymous20240521197.90 16597.50 18999.08 10898.90 20698.25 11098.53 8496.16 32798.87 7899.11 9498.86 15790.40 28499.78 18997.36 11599.31 22299.19 209
miper_lstm_enhance97.18 22497.16 21197.25 27298.16 29692.85 30595.15 31499.31 12897.25 19398.74 16398.78 17490.07 28599.78 18997.19 12299.80 7699.11 222
lessismore_v098.97 12899.73 2397.53 17986.71 35999.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
HY-MVS95.94 1395.90 27395.35 28197.55 25797.95 30694.79 26198.81 6596.94 31892.28 31595.17 33398.57 21389.90 28799.75 20991.20 32697.33 32898.10 302
K. test v398.00 15997.66 17899.03 12199.79 1997.56 17799.19 3692.47 34999.62 1799.52 3599.66 1789.61 28899.96 899.25 2099.81 6899.56 71
CMPMVSbinary75.91 2396.29 26495.44 27798.84 14596.25 35198.69 8297.02 22799.12 19388.90 34197.83 23298.86 15789.51 28998.90 34891.92 31599.51 18998.92 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet96.25 26697.21 20993.38 33799.10 16380.56 36197.20 21798.19 28896.94 21499.00 11799.02 11489.50 29099.80 16596.36 19599.59 16199.78 14
DeepMVS_CXcopyleft93.44 33698.24 29194.21 27594.34 33864.28 35891.34 35494.87 34889.45 29192.77 35977.54 35793.14 35493.35 354
EPNet96.14 26895.44 27798.25 21590.76 36295.50 24497.92 14994.65 33698.97 7192.98 34998.85 16089.12 29299.87 8095.99 21399.68 13199.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bset_n11_16_dypcd96.99 24096.56 24798.27 21499.00 18595.25 25092.18 35394.05 34498.75 8499.01 11498.38 23488.98 29399.93 2698.77 4699.92 3399.64 39
Vis-MVSNet (Re-imp)97.46 20297.16 21198.34 20799.55 6496.10 22898.94 5698.44 27798.32 10598.16 21098.62 20688.76 29499.73 21793.88 28199.79 8199.18 211
cl-mvsnet197.02 23696.84 22997.58 25397.82 31394.03 28094.66 32699.16 18497.04 21098.63 17198.71 18488.69 29599.69 23297.00 13499.81 6899.01 234
cl-mvsnet_97.02 23696.83 23097.58 25397.82 31394.04 27994.66 32699.16 18497.04 21098.63 17198.71 18488.68 29699.69 23297.00 13499.81 6899.00 237
EPNet_dtu94.93 29394.78 29495.38 31993.58 35987.68 34296.78 24495.69 33397.35 18389.14 35798.09 26088.15 29799.49 30294.95 24799.30 22598.98 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.35 20996.88 22698.78 15698.54 27198.09 12597.71 17197.69 30299.20 4797.59 24895.90 33088.12 29899.55 28798.18 7598.96 27598.70 277
FMVSNet397.50 19797.24 20798.29 21298.08 30195.83 23697.86 15698.91 23197.89 13798.95 12698.95 13687.06 29999.81 15697.77 9699.69 12699.23 199
baseline195.96 27295.44 27797.52 26098.51 27493.99 28398.39 10296.09 32998.21 11598.40 20197.76 27986.88 30099.63 26295.42 23989.27 35798.95 244
RPMNet97.02 23696.93 22197.30 26997.71 31794.22 27398.11 12599.30 13799.37 3496.91 28399.34 5986.72 30199.87 8097.53 10897.36 32697.81 315
HyFIR lowres test97.19 22396.60 24498.96 12999.62 4997.28 19095.17 31299.50 5694.21 28999.01 11498.32 24286.61 30299.99 297.10 13099.84 5599.60 49
PAPM91.88 32690.34 32996.51 29598.06 30292.56 30992.44 35197.17 31286.35 34890.38 35596.01 32786.61 30299.21 33670.65 35895.43 34697.75 319
test_yl96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
DCV-MVSNet96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
CHOSEN 280x42095.51 28395.47 27495.65 31398.25 29088.27 34093.25 34798.88 23593.53 30094.65 33797.15 30986.17 30699.93 2697.41 11399.93 2498.73 274
EMVS93.83 30994.02 30193.23 33896.83 34284.96 35189.77 35696.32 32697.92 13497.43 26396.36 32586.17 30698.93 34787.68 34197.73 31895.81 349
MIMVSNet96.62 25596.25 25997.71 24499.04 17794.66 26699.16 3896.92 31997.23 19997.87 22999.10 9786.11 30899.65 25791.65 31999.21 23898.82 261
tpmvs95.02 29295.25 28394.33 32796.39 35085.87 34798.08 12996.83 32195.46 26395.51 33098.69 18885.91 30999.53 29294.16 26896.23 34097.58 327
MDTV_nov1_ep13_2view74.92 36397.69 17390.06 33797.75 23885.78 31093.52 29098.69 278
ADS-MVSNet295.43 28494.98 29096.76 29398.14 29791.74 31997.92 14997.76 29990.23 33296.51 30298.91 14185.61 31199.85 10192.88 30196.90 33298.69 278
ADS-MVSNet95.24 28794.93 29296.18 30298.14 29790.10 33397.92 14997.32 31090.23 33296.51 30298.91 14185.61 31199.74 21392.88 30196.90 33298.69 278
tpmrst95.07 29095.46 27593.91 33197.11 33784.36 35597.62 18096.96 31694.98 27196.35 30898.80 17185.46 31399.59 27595.60 23496.23 34097.79 318
CR-MVSNet96.28 26595.95 26297.28 27097.71 31794.22 27398.11 12598.92 22992.31 31496.91 28399.37 5385.44 31499.81 15697.39 11497.36 32697.81 315
Patchmtry97.35 20996.97 22098.50 19497.31 33496.47 22098.18 11898.92 22998.95 7598.78 15699.37 5385.44 31499.85 10195.96 21599.83 6199.17 215
PatchmatchNetpermissive95.58 28095.67 26995.30 32097.34 33287.32 34397.65 17896.65 32295.30 26797.07 27598.69 18884.77 31699.75 20994.97 24698.64 29198.83 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs184.74 31798.81 264
E-PMN94.17 30394.37 29893.58 33496.86 34085.71 35090.11 35597.07 31498.17 12197.82 23497.19 30684.62 31898.94 34689.77 33597.68 31996.09 348
LFMVS97.20 22296.72 23598.64 16898.72 23896.95 20898.93 5794.14 34399.74 798.78 15699.01 12084.45 31999.73 21797.44 11199.27 22999.25 195
patchmatchnet-post98.77 17684.37 32099.85 101
PatchT96.65 25396.35 25397.54 25897.40 33095.32 24997.98 14596.64 32399.33 3796.89 28799.42 4884.32 32199.81 15697.69 10497.49 32097.48 330
Patchmatch-RL test97.26 21697.02 21797.99 23299.52 7195.53 24296.13 27799.71 997.47 16799.27 7299.16 8584.30 32299.62 26497.89 8899.77 8998.81 264
sam_mvs84.29 323
MDTV_nov1_ep1395.22 28497.06 33883.20 35797.74 16996.16 32794.37 28696.99 27998.83 16683.95 32499.53 29293.90 27997.95 315
test_post21.25 36183.86 32599.70 228
Patchmatch-test96.55 25696.34 25497.17 27498.35 28493.06 30098.40 10197.79 29897.33 18498.41 19798.67 19283.68 32699.69 23295.16 24299.31 22298.77 271
GA-MVS95.86 27495.32 28297.49 26198.60 26394.15 27793.83 34397.93 29695.49 26296.68 29497.42 29983.21 32799.30 32896.22 20398.55 29699.01 234
JIA-IIPM95.52 28295.03 28997.00 27996.85 34194.03 28096.93 23495.82 33199.20 4794.63 33899.71 1283.09 32899.60 27194.42 26294.64 34997.36 332
test_post197.59 18520.48 36283.07 32999.66 25294.16 268
tpm cat193.29 31593.13 31493.75 33297.39 33184.74 35297.39 20197.65 30383.39 35494.16 34198.41 22982.86 33099.39 31791.56 32295.35 34797.14 334
cl-mvsnet295.79 27695.39 28096.98 28196.77 34392.79 30694.40 33498.53 27394.59 27997.89 22898.17 25282.82 33199.24 33396.37 19399.03 26598.92 250
RRT_MVS97.07 23196.57 24698.58 17795.89 35596.33 22397.36 20498.77 25697.85 14099.08 10099.12 9382.30 33299.96 898.82 4299.90 4399.45 124
test-LLR93.90 30893.85 30294.04 32996.53 34584.62 35394.05 34092.39 35096.17 24094.12 34295.07 34082.30 33299.67 24495.87 22098.18 30497.82 313
test0.0.03 194.51 29693.69 30596.99 28096.05 35293.61 29694.97 31893.49 34596.17 24097.57 25194.88 34682.30 33299.01 34593.60 28894.17 35398.37 295
test_part197.91 16497.46 19599.27 8298.80 22998.18 11899.07 4599.36 10499.75 599.63 2599.49 3882.20 33599.89 5598.87 3999.95 1599.74 24
AUN-MVS96.24 26795.45 27698.60 17598.70 24597.22 19497.38 20297.65 30395.95 25095.53 32997.96 26982.11 33699.79 17896.31 19797.44 32298.80 268
MVSTER96.86 24496.55 24897.79 23997.91 30994.21 27597.56 18898.87 23797.49 16699.06 10399.05 10780.72 33799.80 16598.44 6399.82 6499.37 157
tmp_tt78.77 32878.73 33178.90 34258.45 36374.76 36494.20 33778.26 36439.16 35986.71 35992.82 35680.50 33875.19 36086.16 34592.29 35586.74 355
thres20093.72 31193.14 31395.46 31898.66 25991.29 32796.61 25494.63 33797.39 17996.83 29093.71 35479.88 33999.56 28482.40 35298.13 30895.54 351
thres100view90094.19 30293.67 30695.75 31099.06 17491.35 32598.03 13794.24 34198.33 10497.40 26494.98 34479.84 34099.62 26483.05 34998.08 31196.29 342
thres600view794.45 29793.83 30396.29 29999.06 17491.53 32197.99 14394.24 34198.34 10397.44 26295.01 34279.84 34099.67 24484.33 34798.23 30197.66 324
tfpn200view994.03 30693.44 30895.78 30998.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31196.29 342
thres40094.14 30493.44 30896.24 30198.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31197.66 324
pmmvs395.03 29194.40 29796.93 28397.70 31992.53 31095.08 31597.71 30188.57 34397.71 23998.08 26179.39 34499.82 14396.19 20599.11 25898.43 291
baseline293.73 31092.83 31696.42 29797.70 31991.28 32896.84 24289.77 35793.96 29692.44 35195.93 32979.14 34599.77 19592.94 29996.76 33698.21 297
tpm94.67 29594.34 29995.66 31297.68 32188.42 33897.88 15394.90 33594.46 28296.03 31698.56 21478.66 34699.79 17895.88 21795.01 34898.78 270
CostFormer93.97 30793.78 30494.51 32697.53 32585.83 34997.98 14595.96 33089.29 34094.99 33698.63 20478.63 34799.62 26494.54 25696.50 33798.09 303
ET-MVSNet_ETH3D94.30 30193.21 31197.58 25398.14 29794.47 27094.78 32293.24 34894.72 27789.56 35695.87 33178.57 34899.81 15696.91 14297.11 33198.46 287
dp93.47 31393.59 30793.13 33996.64 34481.62 36097.66 17696.42 32592.80 30996.11 31198.64 20078.55 34999.59 27593.31 29692.18 35698.16 300
EPMVS93.72 31193.27 31095.09 32296.04 35387.76 34198.13 12285.01 36094.69 27896.92 28198.64 20078.47 35099.31 32695.04 24396.46 33898.20 298
tpm293.09 31792.58 31894.62 32597.56 32386.53 34697.66 17695.79 33286.15 34994.07 34498.23 24875.95 35199.53 29290.91 33096.86 33597.81 315
FPMVS93.44 31492.23 31997.08 27799.25 12697.86 15595.61 29997.16 31392.90 30793.76 34798.65 19775.94 35295.66 35679.30 35697.49 32097.73 320
thisisatest051594.12 30593.16 31296.97 28298.60 26392.90 30493.77 34490.61 35494.10 29296.91 28395.87 33174.99 35399.80 16594.52 25799.12 25798.20 298
tttt051795.64 27994.98 29097.64 24999.36 10993.81 29198.72 6890.47 35598.08 12598.67 16798.34 23973.88 35499.92 3397.77 9699.51 18999.20 204
thisisatest053095.27 28694.45 29697.74 24399.19 14094.37 27197.86 15690.20 35697.17 20398.22 20797.65 28473.53 35599.90 4696.90 14799.35 21698.95 244
DWT-MVSNet_test92.75 32092.05 32194.85 32396.48 34787.21 34497.83 15994.99 33492.22 31692.72 35094.11 35370.75 35699.46 30995.01 24494.33 35297.87 311
FMVSNet596.01 27095.20 28598.41 20197.53 32596.10 22898.74 6699.50 5697.22 20298.03 22399.04 11069.80 35799.88 6497.27 11999.71 11599.25 195
gg-mvs-nofinetune92.37 32291.20 32795.85 30895.80 35692.38 31399.31 1881.84 36299.75 591.83 35399.74 868.29 35899.02 34387.15 34297.12 33096.16 345
KD-MVS_2432*160092.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
miper_refine_blended92.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
GG-mvs-BLEND94.76 32494.54 35892.13 31799.31 1880.47 36388.73 35891.01 35767.59 36198.16 35582.30 35394.53 35193.98 353
RRT_test8_iter0595.24 28795.13 28795.57 31497.32 33387.02 34597.99 14399.41 8998.06 12699.12 9299.05 10766.85 36299.85 10198.93 3599.47 20099.84 8
TESTMET0.1,192.19 32591.77 32593.46 33596.48 34782.80 35894.05 34091.52 35394.45 28494.00 34594.88 34666.65 36399.56 28495.78 22598.11 30998.02 305
IB-MVS91.63 1992.24 32490.90 32896.27 30097.22 33691.24 32994.36 33593.33 34792.37 31392.24 35294.58 35066.20 36499.89 5593.16 29894.63 35097.66 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter92.33 32391.76 32694.04 32996.53 34584.62 35394.05 34092.39 35094.00 29594.12 34295.07 34065.63 36599.67 24495.87 22098.18 30497.82 313
test12317.04 33120.11 3347.82 34310.25 3654.91 36594.80 3214.47 3664.93 36010.00 36224.28 3609.69 3663.64 36110.14 35912.43 36014.92 357
testmvs17.12 33020.53 3336.87 34412.05 3644.20 36693.62 3466.73 3654.62 36110.41 36124.33 3598.28 3673.56 3629.69 36015.07 35912.86 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.12 33310.83 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36397.48 2950.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
IU-MVS99.49 8399.15 4598.87 23792.97 30599.41 4996.76 15999.62 15199.66 34
save fliter99.11 15997.97 14396.53 25699.02 21498.24 112
test_0728_SECOND99.60 1399.50 7699.23 2498.02 13999.32 12399.88 6496.99 13699.63 14899.68 31
GSMVS98.81 264
test_part299.36 10999.10 5699.05 108
MTGPAbinary99.20 166
MTMP97.93 14891.91 352
gm-plane-assit94.83 35781.97 35988.07 34594.99 34399.60 27191.76 317
test9_res93.28 29799.15 25099.38 154
agg_prior292.50 31199.16 24799.37 157
agg_prior98.68 25297.99 13899.01 21795.59 32199.77 195
test_prior497.97 14395.86 289
test_prior98.95 13098.69 24997.95 14899.03 21099.59 27599.30 184
旧先验295.76 29388.56 34497.52 25599.66 25294.48 258
新几何295.93 286
无先验95.74 29598.74 26289.38 33999.73 21792.38 31299.22 203
原ACMM295.53 302
testdata299.79 17892.80 305
testdata195.44 30796.32 237
plane_prior799.19 14097.87 154
plane_prior599.27 14999.70 22894.42 26299.51 18999.45 124
plane_prior497.98 266
plane_prior397.78 16497.41 17797.79 235
plane_prior297.77 16598.20 118
plane_prior199.05 176
plane_prior97.65 17397.07 22696.72 22399.36 214
n20.00 367
nn0.00 367
door-mid99.57 33
test1198.87 237
door99.41 89
HQP5-MVS96.79 212
HQP-NCC98.67 25496.29 27096.05 24595.55 325
ACMP_Plane98.67 25496.29 27096.05 24595.55 325
BP-MVS92.82 303
HQP4-MVS95.56 32499.54 29099.32 177
HQP3-MVS99.04 20899.26 232
NP-MVS98.84 22097.39 18696.84 313
ACMMP++_ref99.77 89
ACMMP++99.68 131