This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
mvs_tets99.63 599.67 599.49 4999.88 798.61 9299.34 1599.71 1199.27 4499.90 499.74 899.68 299.97 399.55 899.99 599.88 3
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3499.95 1699.78 14
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9299.28 3099.66 1999.09 6799.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 899.64 1299.84 899.83 299.50 599.87 8799.36 1499.92 3799.64 41
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5999.90 199.78 699.63 1499.78 1099.67 1699.48 699.81 16799.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XVG-OURS98.53 11498.34 12099.11 10999.50 7998.82 7795.97 29399.50 6097.30 20199.05 11498.98 13599.35 799.32 33895.72 24099.68 13899.18 221
XVG-OURS-SEG-HR98.49 11898.28 12899.14 10599.49 8698.83 7596.54 26799.48 7097.32 19999.11 10098.61 21899.33 899.30 34196.23 21598.38 31099.28 199
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11099.07 5399.55 4698.30 11699.65 2299.45 5099.22 999.76 21598.44 6899.77 9399.64 41
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cdsmvs_eth3d_5k24.66 34132.88 3440.00 3590.00 3820.00 3830.00 37099.10 2040.00 3770.00 37897.58 30199.21 100.00 3780.00 3760.00 3760.00 374
wuyk23d96.06 27897.62 18891.38 35398.65 27198.57 9698.85 7196.95 33096.86 23099.90 499.16 9099.18 1198.40 36689.23 35299.77 9377.18 371
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9599.27 3299.57 3599.39 3399.75 1299.62 2199.17 1299.83 14299.06 3099.62 15899.66 36
ANet_high99.57 799.67 599.28 8399.89 698.09 13499.14 4699.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 8999.29 2699.63 2199.30 4299.65 2299.60 2599.16 1499.82 15399.07 2999.83 6599.56 74
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8199.39 1399.56 4299.11 5799.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
DeepC-MVS97.60 498.97 4598.93 4399.10 11199.35 12197.98 15098.01 15399.46 7897.56 17299.54 3099.50 3998.97 1699.84 12798.06 8999.92 3799.49 109
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi98.32 13698.39 11398.13 23099.57 5795.54 25297.78 17399.49 6897.37 19499.19 9197.65 29798.96 1799.49 31596.50 19998.99 28499.34 179
GeoE99.05 3698.99 4299.25 9199.44 10298.35 11598.73 7699.56 4298.42 11098.91 14198.81 17998.94 1899.91 4598.35 7499.73 11099.49 109
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6399.34 1599.69 1598.93 8499.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
ACMM96.08 1298.91 5298.73 5899.48 5199.55 6799.14 5298.07 14199.37 10597.62 16599.04 11698.96 14098.84 2099.79 19097.43 12299.65 15099.49 109
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11899.17 4399.78 699.11 5799.27 7699.48 4498.82 2199.95 1598.94 3699.93 2899.59 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 3599.00 4099.33 7699.71 3298.83 7598.60 8699.58 2899.11 5799.53 3399.18 8498.81 2299.67 25796.71 18099.77 9399.50 105
SD-MVS98.40 12998.68 6897.54 26898.96 20397.99 14697.88 16499.36 10998.20 12899.63 2599.04 11598.76 2395.33 37396.56 19299.74 10799.31 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.01 3898.82 5099.57 1899.71 3299.35 1299.00 5999.50 6097.33 19798.94 13898.86 16598.75 2499.82 15397.53 11899.71 12299.56 74
XXY-MVS99.14 3299.15 3299.10 11199.76 2397.74 17798.85 7199.62 2298.48 10899.37 5899.49 4298.75 2499.86 9498.20 8199.80 8099.71 26
DROMVSNet99.09 3499.05 3799.20 9699.28 12998.93 7099.24 3499.84 399.08 6998.12 22598.37 24698.72 2699.90 4999.05 3199.77 9398.77 283
LPG-MVS_test98.71 7898.46 10099.47 5499.57 5798.97 6698.23 12399.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
LGP-MVS_train99.47 5499.57 5798.97 6699.48 7096.60 23999.10 10399.06 10598.71 2799.83 14295.58 24999.78 8999.62 46
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1199.38 3499.53 3399.61 2398.64 2999.80 17698.24 7899.84 5999.52 98
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5598.98 6299.48 7099.68 999.46 4399.26 7398.62 3099.73 23099.17 2699.92 3799.76 20
HPM-MVScopyleft98.79 6598.53 8699.59 1799.65 4599.29 1899.16 4499.43 9096.74 23498.61 18498.38 24498.62 3099.87 8796.47 20099.67 14499.59 58
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
canonicalmvs98.34 13598.26 13098.58 18698.46 29097.82 16998.96 6399.46 7899.19 5397.46 27295.46 35398.59 3299.46 32298.08 8898.71 29998.46 301
EG-PatchMatch MVS98.99 4099.01 3998.94 13999.50 7997.47 19098.04 14799.59 2698.15 13499.40 5399.36 6198.58 3399.76 21598.78 4699.68 13899.59 58
Effi-MVS+98.02 16397.82 17398.62 18198.53 28597.19 20897.33 21899.68 1697.30 20196.68 30897.46 31098.56 3499.80 17696.63 18598.20 31598.86 269
abl_698.99 4098.78 5499.61 999.45 10099.46 498.60 8699.50 6098.59 10199.24 8599.04 11598.54 3599.89 5996.45 20299.62 15899.50 105
Fast-Effi-MVS+97.67 19397.38 20398.57 18998.71 25297.43 19397.23 22599.45 8194.82 28896.13 32496.51 33398.52 3699.91 4596.19 21898.83 29298.37 309
xiu_mvs_v1_base_debu97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
xiu_mvs_v1_base_debi97.86 17798.17 14196.92 29498.98 20093.91 29896.45 27399.17 18997.85 15298.41 20897.14 32598.47 3799.92 3598.02 9199.05 27396.92 350
v7n99.53 899.57 899.41 6199.88 798.54 10099.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
ETV-MVS98.03 16197.86 17198.56 19398.69 26098.07 14097.51 20599.50 6098.10 13597.50 26995.51 35198.41 4199.88 7096.27 21499.24 24797.71 337
COLMAP_ROBcopyleft96.50 1098.99 4098.85 4899.41 6199.58 5399.10 6098.74 7499.56 4299.09 6799.33 6599.19 8298.40 4299.72 23895.98 22799.76 10399.42 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 11698.87 7298.39 11299.42 9399.42 3199.36 6099.06 10598.38 4399.95 1598.34 7599.90 4799.57 69
SED-MVS98.91 5298.72 6099.49 4999.49 8699.17 3998.10 13799.31 13498.03 13899.66 2099.02 11998.36 4499.88 7096.91 15699.62 15899.41 148
test_241102_ONE99.49 8699.17 3999.31 13497.98 14099.66 2098.90 15298.36 4499.48 318
ACMP95.32 1598.41 12698.09 15199.36 6599.51 7698.79 7997.68 18599.38 10195.76 26898.81 16298.82 17798.36 4499.82 15394.75 26499.77 9399.48 119
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvs98.95 4899.00 4098.81 15699.38 11297.33 19697.82 17199.57 3599.17 5499.35 6299.17 8898.35 4799.69 24598.46 6799.73 11099.41 148
test_040298.76 7198.71 6298.93 14099.56 6498.14 13298.45 10899.34 12199.28 4398.95 13298.91 14998.34 4899.79 19095.63 24699.91 4398.86 269
xiu_mvs_v2_base97.16 23397.49 19596.17 31398.54 28392.46 32395.45 31898.84 25497.25 20697.48 27196.49 33498.31 4999.90 4996.34 21098.68 30196.15 361
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8698.36 11499.00 5999.45 8199.63 1499.52 3599.44 5198.25 5099.88 7099.09 2899.84 5999.62 46
MVS_111021_LR98.30 13898.12 14998.83 15399.16 16198.03 14496.09 29099.30 14497.58 16998.10 22898.24 25798.25 5099.34 33596.69 18199.65 15099.12 230
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6099.29 2699.53 5499.53 2399.46 4399.41 5598.23 5299.95 1598.89 4099.95 1699.81 11
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2199.51 5899.64 1299.56 2899.46 4698.23 5299.97 398.78 4699.93 2899.72 25
baseline98.96 4799.02 3898.76 16699.38 11297.26 20198.49 10199.50 6098.86 8799.19 9199.06 10598.23 5299.69 24598.71 5399.76 10399.33 185
PC_three_145293.27 31599.40 5398.54 22498.22 5597.00 37095.17 25599.45 21499.49 109
Gipumacopyleft99.03 3799.16 3098.64 17699.94 298.51 10299.32 1799.75 999.58 2298.60 18699.62 2198.22 5599.51 31397.70 11299.73 11097.89 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re98.64 9398.48 9699.11 10998.85 22798.51 10298.49 10199.83 498.37 11199.69 1799.46 4698.21 5799.92 3594.13 28799.30 23898.91 264
tfpnnormal98.90 5498.90 4498.91 14399.67 4297.82 16999.00 5999.44 8499.45 2899.51 3899.24 7698.20 5899.86 9495.92 22999.69 13399.04 240
DVP-MVS++98.90 5498.70 6599.51 4598.43 29399.15 4899.43 1099.32 12898.17 13199.26 8099.02 11998.18 5999.88 7097.07 14499.45 21499.49 109
OPU-MVS98.82 15498.59 27698.30 11698.10 13798.52 22798.18 5998.75 36494.62 26899.48 20999.41 148
OPM-MVS98.56 10598.32 12499.25 9199.41 10998.73 8497.13 23799.18 18397.10 22098.75 16998.92 14898.18 5999.65 27096.68 18299.56 18699.37 167
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5299.29 2699.54 5099.62 1799.56 2899.42 5298.16 6299.96 898.78 4699.93 2899.77 16
DeepPCF-MVS96.93 598.32 13698.01 15999.23 9498.39 29898.97 6695.03 32899.18 18396.88 22999.33 6598.78 18398.16 6299.28 34496.74 17599.62 15899.44 138
MVS_111021_HR98.25 14698.08 15498.75 16899.09 17697.46 19195.97 29399.27 15797.60 16897.99 23698.25 25698.15 6499.38 33296.87 16499.57 18199.42 145
Fast-Effi-MVS+-dtu98.27 14298.09 15198.81 15698.43 29398.11 13397.61 19399.50 6098.64 9597.39 27797.52 30598.12 6599.95 1596.90 16198.71 29998.38 307
pcd_1.5k_mvsjas8.17 34410.90 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37798.07 660.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13099.20 3899.65 2099.48 2499.92 399.71 1298.07 6699.96 899.53 9100.00 199.93 1
PS-MVSNAJ97.08 23797.39 20296.16 31598.56 28092.46 32395.24 32398.85 25397.25 20697.49 27095.99 34398.07 6699.90 4996.37 20798.67 30296.12 362
UA-Net99.47 1199.40 1499.70 299.49 8699.29 1899.80 399.72 1099.82 399.04 11699.81 398.05 6999.96 898.85 4299.99 599.86 6
ACMMP_NAP98.75 7398.48 9699.57 1899.58 5399.29 1897.82 17199.25 16396.94 22698.78 16399.12 9898.02 7099.84 12797.13 14099.67 14499.59 58
MP-MVS-pluss98.57 10498.23 13499.60 1399.69 4099.35 1297.16 23599.38 10194.87 28798.97 12998.99 13198.01 7199.88 7097.29 12899.70 12799.58 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS98.68 8798.40 11099.54 2999.57 5799.21 2798.46 10699.29 15197.28 20398.11 22798.39 24298.00 7299.87 8796.86 16699.64 15299.55 82
PGM-MVS98.66 9098.37 11699.55 2699.53 7299.18 3898.23 12399.49 6897.01 22498.69 17398.88 16198.00 7299.89 5995.87 23399.59 17199.58 64
SteuartSystems-ACMMP98.79 6598.54 8599.54 2999.73 2599.16 4398.23 12399.31 13497.92 14698.90 14298.90 15298.00 7299.88 7096.15 22199.72 11799.58 64
Skip Steuart: Steuart Systems R&D Blog.
TinyColmap97.89 17397.98 16197.60 26198.86 22594.35 28496.21 28699.44 8497.45 18699.06 10998.88 16197.99 7599.28 34494.38 28099.58 17799.18 221
HFP-MVS98.71 7898.44 10499.51 4599.49 8699.16 4398.52 9599.31 13497.47 17998.58 19098.50 23197.97 7699.85 10996.57 18999.59 17199.53 94
#test#98.50 11798.16 14499.51 4599.49 8699.16 4398.03 14899.31 13496.30 25198.58 19098.50 23197.97 7699.85 10995.68 24399.59 17199.53 94
3Dnovator98.27 298.81 6398.73 5899.05 12598.76 24397.81 17199.25 3399.30 14498.57 10598.55 19699.33 6697.95 7899.90 4997.16 13499.67 14499.44 138
test_0728_THIRD98.17 13199.08 10699.02 11997.89 7999.88 7097.07 14499.71 12299.70 31
APD-MVS_3200maxsize98.84 6098.61 7899.53 3699.19 15099.27 2198.49 10199.33 12698.64 9599.03 11998.98 13597.89 7999.85 10996.54 19699.42 21899.46 129
CS-MVS-test98.41 12698.30 12598.73 17298.84 23098.39 10898.71 7999.79 597.98 14096.86 30297.38 31497.86 8199.83 14297.81 10399.46 21197.97 322
CP-MVS98.70 8198.42 10899.52 4199.36 11799.12 5798.72 7799.36 10997.54 17498.30 21498.40 24097.86 8199.89 5996.53 19799.72 11799.56 74
TSAR-MVS + MP.98.63 9598.49 9499.06 12399.64 4897.90 16098.51 9998.94 23296.96 22599.24 8598.89 16097.83 8399.81 16796.88 16399.49 20799.48 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R98.69 8398.40 11099.54 2999.53 7299.17 3998.52 9599.31 13497.46 18498.44 20498.51 22897.83 8399.88 7096.46 20199.58 17799.58 64
APDe-MVS98.99 4098.79 5399.60 1399.21 14399.15 4898.87 6899.48 7097.57 17099.35 6299.24 7697.83 8399.89 5997.88 10099.70 12799.75 22
FMVSNet199.17 3099.17 2999.17 9999.55 6798.24 12099.20 3899.44 8499.21 4699.43 4899.55 3297.82 8699.86 9498.42 7099.89 5199.41 148
xxxxxxxxxxxxxcwj98.44 12398.24 13299.06 12399.11 16997.97 15196.53 26899.54 5098.24 12298.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
SF-MVS98.53 11498.27 12999.32 7899.31 12498.75 8098.19 12799.41 9496.77 23398.83 15698.90 15297.80 8799.82 15395.68 24399.52 19699.38 164
PHI-MVS98.29 14197.95 16399.34 7398.44 29299.16 4398.12 13499.38 10196.01 26098.06 23198.43 23897.80 8799.67 25795.69 24299.58 17799.20 214
RE-MVS-def98.58 8299.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.75 9096.56 19299.39 22299.45 133
ACMMPR98.70 8198.42 10899.54 2999.52 7499.14 5298.52 9599.31 13497.47 17998.56 19498.54 22497.75 9099.88 7096.57 18999.59 17199.58 64
CS-MVS98.16 15698.22 13597.97 24298.56 28097.01 21798.10 13799.70 1497.45 18697.29 28097.19 32097.72 9299.80 17698.37 7299.62 15897.11 349
ACMMPcopyleft98.75 7398.50 9199.52 4199.56 6499.16 4398.87 6899.37 10597.16 21798.82 16099.01 12897.71 9399.87 8796.29 21399.69 13399.54 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS98.00 16597.74 17798.80 15898.72 24998.09 13498.05 14599.60 2597.39 19296.63 31095.55 35097.68 9499.80 17696.73 17799.27 24298.52 299
GST-MVS98.61 9898.30 12599.52 4199.51 7699.20 3398.26 12199.25 16397.44 18898.67 17598.39 24297.68 9499.85 10996.00 22599.51 19999.52 98
CSCG98.68 8798.50 9199.20 9699.45 10098.63 8998.56 9199.57 3597.87 15098.85 15398.04 27497.66 9699.84 12796.72 17899.81 7299.13 229
AllTest98.44 12398.20 13799.16 10299.50 7998.55 9798.25 12299.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
TestCases99.16 10299.50 7998.55 9799.58 2896.80 23198.88 14999.06 10597.65 9799.57 29494.45 27499.61 16599.37 167
test20.0398.78 6898.77 5698.78 16399.46 9797.20 20797.78 17399.24 16899.04 7299.41 5098.90 15297.65 9799.76 21597.70 11299.79 8599.39 157
test_one_060199.39 11199.20 3399.31 13498.49 10798.66 17799.02 11997.64 100
ITE_SJBPF98.87 14899.22 14198.48 10499.35 11597.50 17698.28 21698.60 21997.64 10099.35 33493.86 29699.27 24298.79 281
mPP-MVS98.64 9398.34 12099.54 2999.54 7099.17 3998.63 8399.24 16897.47 17998.09 22998.68 19997.62 10299.89 5996.22 21699.62 15899.57 69
DVP-MVScopyleft98.77 7098.52 8799.52 4199.50 7999.21 2798.02 15098.84 25497.97 14299.08 10699.02 11997.61 10399.88 7096.99 15099.63 15599.48 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 7999.21 2798.17 13199.35 11597.97 14299.26 8099.06 10597.61 103
9.1497.78 17499.07 18097.53 20299.32 12895.53 27398.54 19898.70 19697.58 10599.76 21594.32 28199.46 211
CLD-MVS97.49 20597.16 21798.48 20399.07 18097.03 21594.71 33599.21 17294.46 29498.06 23197.16 32397.57 10699.48 31894.46 27399.78 8998.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast96.85 698.30 13898.15 14698.75 16898.61 27297.23 20297.76 17899.09 20597.31 20098.75 16998.66 20497.56 10799.64 27296.10 22499.55 18899.39 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EGC-MVSNET85.24 33880.54 34199.34 7399.77 2099.20 3399.08 5099.29 15112.08 37420.84 37599.42 5297.55 10899.85 10997.08 14399.72 11798.96 254
PM-MVS98.82 6198.72 6099.12 10799.64 4898.54 10097.98 15699.68 1697.62 16599.34 6499.18 8497.54 10999.77 20897.79 10499.74 10799.04 240
XVG-ACMP-BASELINE98.56 10598.34 12099.22 9599.54 7098.59 9497.71 18299.46 7897.25 20698.98 12698.99 13197.54 10999.84 12795.88 23099.74 10799.23 209
SR-MVS98.71 7898.43 10699.57 1899.18 15799.35 1298.36 11599.29 15198.29 11998.88 14998.85 16897.53 11199.87 8796.14 22299.31 23599.48 119
DPE-MVScopyleft98.59 10398.26 13099.57 1899.27 13199.15 4897.01 24099.39 9997.67 16199.44 4798.99 13197.53 11199.89 5995.40 25399.68 13899.66 36
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft98.40 12998.03 15899.51 4599.16 16199.21 2798.05 14599.22 17194.16 30398.98 12699.10 10297.52 11399.79 19096.45 20299.64 15299.53 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_TWO99.30 14498.03 13899.26 8099.02 11997.51 11499.88 7096.91 15699.60 16799.66 36
XVS98.72 7798.45 10299.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26598.63 21397.50 11599.83 14296.79 16999.53 19399.56 74
X-MVStestdata94.32 30892.59 32699.53 3699.46 9799.21 2798.65 8199.34 12198.62 9997.54 26545.85 37297.50 11599.83 14296.79 16999.53 19399.56 74
DELS-MVS98.27 14298.20 13798.48 20398.86 22596.70 22795.60 31299.20 17497.73 15898.45 20398.71 19397.50 11599.82 15398.21 8099.59 17198.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test117298.76 7198.49 9499.57 1899.18 15799.37 998.39 11299.31 13498.43 10998.90 14298.88 16197.49 11899.86 9496.43 20499.37 22699.48 119
SR-MVS-dyc-post98.81 6398.55 8499.57 1899.20 14799.38 698.48 10499.30 14498.64 9598.95 13298.96 14097.49 11899.86 9496.56 19299.39 22299.45 133
TSAR-MVS + GP.98.18 15297.98 16198.77 16598.71 25297.88 16196.32 28198.66 27796.33 24899.23 8898.51 22897.48 12099.40 32897.16 13499.46 21199.02 243
Regformer-498.73 7698.68 6898.89 14699.02 19297.22 20497.17 23399.06 20999.21 4699.17 9698.85 16897.45 12199.86 9498.48 6699.70 12799.60 52
new-patchmatchnet98.35 13498.74 5797.18 28399.24 13692.23 32896.42 27699.48 7098.30 11699.69 1799.53 3697.44 12299.82 15398.84 4399.77 9399.49 109
PMVScopyleft91.26 2097.86 17797.94 16597.65 25799.71 3297.94 15898.52 9598.68 27698.99 7697.52 26799.35 6297.41 12398.18 36791.59 33599.67 14496.82 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft98.46 12198.09 15199.54 2999.57 5799.22 2698.50 10099.19 17997.61 16797.58 26198.66 20497.40 12499.88 7094.72 26799.60 16799.54 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSDG97.71 19097.52 19398.28 22198.91 21596.82 22294.42 34599.37 10597.65 16398.37 21398.29 25597.40 12499.33 33794.09 28899.22 24998.68 295
Regformer-298.60 10098.46 10099.02 13198.85 22797.71 17996.91 24999.09 20598.98 7899.01 12098.64 20997.37 12699.84 12797.75 11199.57 18199.52 98
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6498.69 8099.54 5099.31 4099.62 2799.53 3697.36 12799.86 9499.24 2299.71 12299.39 157
LS3D98.63 9598.38 11599.36 6597.25 35099.38 699.12 4999.32 12899.21 4698.44 20498.88 16197.31 12899.80 17696.58 18799.34 23198.92 261
EI-MVSNet-UG-set98.69 8398.71 6298.62 18199.10 17396.37 23397.23 22598.87 24599.20 4999.19 9198.99 13197.30 12999.85 10998.77 4999.79 8599.65 40
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1799.55 4699.46 2799.50 3999.34 6497.30 12999.93 2898.90 3899.93 2899.77 16
EI-MVSNet-Vis-set98.68 8798.70 6598.63 17999.09 17696.40 23297.23 22598.86 25099.20 4999.18 9598.97 13797.29 13199.85 10998.72 5299.78 8999.64 41
pmmvs-eth3d98.47 12098.34 12098.86 15099.30 12797.76 17497.16 23599.28 15495.54 27199.42 4999.19 8297.27 13299.63 27597.89 9799.97 1199.20 214
CNVR-MVS98.17 15497.87 17099.07 11898.67 26598.24 12097.01 24098.93 23497.25 20697.62 25798.34 25097.27 13299.57 29496.42 20599.33 23299.39 157
OMC-MVS97.88 17597.49 19599.04 12798.89 22198.63 8996.94 24499.25 16395.02 28298.53 19998.51 22897.27 13299.47 32093.50 30699.51 19999.01 244
Regformer-198.55 10998.44 10498.87 14898.85 22797.29 19896.91 24998.99 22998.97 7998.99 12498.64 20997.26 13599.81 16797.79 10499.57 18199.51 101
Regformer-398.61 9898.61 7898.63 17999.02 19296.53 23097.17 23398.84 25499.13 5699.10 10398.85 16897.24 13699.79 19098.41 7199.70 12799.57 69
DP-MVS98.93 5098.81 5299.28 8399.21 14398.45 10698.46 10699.33 12699.63 1499.48 4099.15 9497.23 13799.75 22297.17 13399.66 14999.63 45
MVS_Test98.18 15298.36 11797.67 25598.48 28894.73 27598.18 12899.02 22297.69 16098.04 23499.11 10097.22 13899.56 29798.57 6098.90 29098.71 289
MCST-MVS98.00 16597.63 18799.10 11199.24 13698.17 12996.89 25198.73 27395.66 26997.92 23797.70 29597.17 13999.66 26596.18 22099.23 24899.47 127
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11199.30 2599.57 3599.61 1999.40 5399.50 3997.12 14099.85 10999.02 3399.94 2499.80 12
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2699.59 2099.71 1499.57 2897.12 14099.90 4999.21 2399.87 5599.54 86
3Dnovator+97.89 398.69 8398.51 8999.24 9398.81 23898.40 10799.02 5699.19 17998.99 7698.07 23099.28 6997.11 14299.84 12796.84 16799.32 23399.47 127
Anonymous2024052998.93 5098.87 4599.12 10799.19 15098.22 12599.01 5798.99 22999.25 4599.54 3099.37 5897.04 14399.80 17697.89 9799.52 19699.35 177
MSLP-MVS++98.02 16398.14 14897.64 25998.58 27795.19 26597.48 20799.23 17097.47 17997.90 23998.62 21597.04 14398.81 36397.55 11599.41 21998.94 259
APD-MVScopyleft98.10 15797.67 18199.42 5899.11 16998.93 7097.76 17899.28 15494.97 28498.72 17298.77 18597.04 14399.85 10993.79 29899.54 18999.49 109
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp97.02 146
CP-MVSNet99.21 2999.09 3499.56 2499.65 4598.96 6999.13 4799.34 12199.42 3199.33 6599.26 7397.01 14799.94 2398.74 5199.93 2899.79 13
ambc98.24 22498.82 23695.97 24398.62 8499.00 22899.27 7699.21 7996.99 14899.50 31496.55 19599.50 20699.26 204
zzz-MVS98.79 6598.52 8799.61 999.67 4299.36 1097.33 21899.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
MTAPA98.88 5698.64 7399.61 999.67 4299.36 1098.43 10999.20 17498.83 9098.89 14598.90 15296.98 14999.92 3597.16 13499.70 12799.56 74
v899.01 3899.16 3098.57 18999.47 9696.31 23698.90 6699.47 7699.03 7399.52 3599.57 2896.93 15199.81 16799.60 499.98 999.60 52
QAPM97.31 21996.81 23998.82 15498.80 24097.49 18999.06 5599.19 17990.22 34797.69 25399.16 9096.91 15299.90 4990.89 34699.41 21999.07 234
CDPH-MVS97.26 22396.66 24999.07 11899.00 19598.15 13096.03 29199.01 22591.21 34197.79 24797.85 28696.89 15399.69 24592.75 32099.38 22599.39 157
PVSNet_Blended_VisFu98.17 15498.15 14698.22 22599.73 2595.15 26697.36 21699.68 1694.45 29698.99 12499.27 7196.87 15499.94 2397.13 14099.91 4399.57 69
Anonymous2023121199.27 2599.27 2499.26 8999.29 12898.18 12799.49 899.51 5899.70 899.80 999.68 1496.84 15599.83 14299.21 2399.91 4399.77 16
V4298.78 6898.78 5498.76 16699.44 10297.04 21498.27 12099.19 17997.87 15099.25 8499.16 9096.84 15599.78 20299.21 2399.84 5999.46 129
PMMVS298.07 16098.08 15498.04 23899.41 10994.59 28194.59 34299.40 9797.50 17698.82 16098.83 17496.83 15799.84 12797.50 12099.81 7299.71 26
PVSNet_BlendedMVS97.55 20197.53 19297.60 26198.92 21293.77 30596.64 26499.43 9094.49 29297.62 25799.18 8496.82 15899.67 25794.73 26599.93 2899.36 173
PVSNet_Blended96.88 25096.68 24697.47 27298.92 21293.77 30594.71 33599.43 9090.98 34397.62 25797.36 31796.82 15899.67 25794.73 26599.56 18698.98 249
ab-mvs98.41 12698.36 11798.59 18599.19 15097.23 20299.32 1798.81 26097.66 16298.62 18299.40 5796.82 15899.80 17695.88 23099.51 19998.75 286
FIs99.14 3299.09 3499.29 8199.70 3898.28 11799.13 4799.52 5799.48 2499.24 8599.41 5596.79 16199.82 15398.69 5599.88 5299.76 20
UniMVSNet (Re)98.87 5798.71 6299.35 7099.24 13698.73 8497.73 18199.38 10198.93 8499.12 9898.73 19096.77 16299.86 9498.63 5799.80 8099.46 129
API-MVS97.04 24296.91 23297.42 27597.88 32598.23 12498.18 12898.50 28697.57 17097.39 27796.75 33096.77 16299.15 35390.16 34999.02 28094.88 367
diffmvs98.22 14898.24 13298.17 22899.00 19595.44 25796.38 27899.58 2897.79 15698.53 19998.50 23196.76 16499.74 22697.95 9699.64 15299.34 179
DU-MVS98.82 6198.63 7499.39 6499.16 16198.74 8197.54 20199.25 16398.84 8999.06 10998.76 18796.76 16499.93 2898.57 6099.77 9399.50 105
Baseline_NR-MVSNet98.98 4498.86 4799.36 6599.82 1698.55 9797.47 20999.57 3599.37 3599.21 8999.61 2396.76 16499.83 14298.06 8999.83 6599.71 26
VPNet98.87 5798.83 4999.01 13299.70 3897.62 18598.43 10999.35 11599.47 2699.28 7499.05 11296.72 16799.82 15398.09 8799.36 22799.59 58
UniMVSNet_NR-MVSNet98.86 5998.68 6899.40 6399.17 15998.74 8197.68 18599.40 9799.14 5599.06 10998.59 22096.71 16899.93 2898.57 6099.77 9399.53 94
LF4IMVS97.90 17197.69 18098.52 19899.17 15997.66 18197.19 23299.47 7696.31 25097.85 24398.20 26196.71 16899.52 30994.62 26899.72 11798.38 307
v14898.45 12298.60 8098.00 24099.44 10294.98 27097.44 21299.06 20998.30 11699.32 7198.97 13796.65 17099.62 27798.37 7299.85 5799.39 157
v1098.97 4599.11 3398.55 19499.44 10296.21 23898.90 6699.55 4698.73 9399.48 4099.60 2596.63 17199.83 14299.70 399.99 599.61 51
ETH3D-3000-0.198.03 16197.62 18899.29 8199.11 16998.80 7897.47 20999.32 12895.54 27198.43 20798.62 21596.61 17299.77 20893.95 29299.49 20799.30 194
OpenMVScopyleft96.65 797.09 23696.68 24698.32 21698.32 30197.16 21198.86 7099.37 10589.48 35196.29 32399.15 9496.56 17399.90 4992.90 31499.20 25297.89 324
UGNet98.53 11498.45 10298.79 16097.94 32296.96 21899.08 5098.54 28399.10 6496.82 30599.47 4596.55 17499.84 12798.56 6399.94 2499.55 82
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST998.71 25298.08 13895.96 29599.03 21891.40 33895.85 33197.53 30396.52 17599.76 215
Test By Simon96.52 175
agg_prior197.06 23996.40 26199.03 12898.68 26397.99 14695.76 30599.01 22591.73 33295.59 33497.50 30696.49 17799.77 20893.71 29999.14 26399.34 179
train_agg97.10 23596.45 26099.07 11898.71 25298.08 13895.96 29599.03 21891.64 33395.85 33197.53 30396.47 17899.76 21593.67 30099.16 25999.36 173
test_898.67 26598.01 14595.91 30099.02 22291.64 33395.79 33397.50 30696.47 17899.76 215
Effi-MVS+-dtu98.26 14497.90 16899.35 7098.02 31899.49 398.02 15099.16 19298.29 11997.64 25697.99 27696.44 18099.95 1596.66 18398.93 28998.60 296
mvs-test197.83 18597.48 19898.89 14698.02 31899.20 3397.20 22999.16 19298.29 11996.46 32097.17 32296.44 18099.92 3596.66 18397.90 32897.54 343
ppachtmachnet_test97.50 20397.74 17796.78 30298.70 25691.23 34294.55 34399.05 21396.36 24799.21 8998.79 18296.39 18299.78 20296.74 17599.82 6899.34 179
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6599.63 699.58 2899.44 2999.78 1099.76 696.39 18299.92 3599.44 1399.92 3799.68 33
NR-MVSNet98.95 4898.82 5099.36 6599.16 16198.72 8699.22 3599.20 17499.10 6499.72 1398.76 18796.38 18499.86 9498.00 9499.82 6899.50 105
v119298.60 10098.66 7198.41 20999.27 13195.88 24597.52 20399.36 10997.41 19099.33 6599.20 8196.37 18599.82 15399.57 699.92 3799.55 82
ZD-MVS99.01 19498.84 7499.07 20894.10 30498.05 23398.12 26796.36 18699.86 9492.70 32299.19 256
v114498.60 10098.66 7198.41 20999.36 11795.90 24497.58 19799.34 12197.51 17599.27 7699.15 9496.34 18799.80 17699.47 1299.93 2899.51 101
mvs_anonymous97.83 18598.16 14496.87 29798.18 31091.89 33097.31 22098.90 24097.37 19498.83 15699.46 4696.28 18899.79 19098.90 3898.16 31898.95 255
DSMNet-mixed97.42 21297.60 19096.87 29799.15 16591.46 33498.54 9399.12 20192.87 32197.58 26199.63 2096.21 18999.90 4995.74 23999.54 18999.27 201
TAPA-MVS96.21 1196.63 26195.95 27198.65 17598.93 20898.09 13496.93 24699.28 15483.58 36698.13 22497.78 28996.13 19099.40 32893.52 30499.29 24098.45 303
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124098.55 10998.62 7598.32 21699.22 14195.58 25197.51 20599.45 8197.16 21799.45 4699.24 7696.12 19199.85 10999.60 499.88 5299.55 82
RPSCF98.62 9798.36 11799.42 5899.65 4599.42 598.55 9299.57 3597.72 15998.90 14299.26 7396.12 19199.52 30995.72 24099.71 12299.32 187
MS-PatchMatch97.68 19297.75 17697.45 27398.23 30893.78 30497.29 22198.84 25496.10 25698.64 17998.65 20696.04 19399.36 33396.84 16799.14 26399.20 214
v192192098.54 11298.60 8098.38 21299.20 14795.76 25097.56 19999.36 10997.23 21299.38 5699.17 8896.02 19499.84 12799.57 699.90 4799.54 86
HPM-MVS++copyleft98.10 15797.64 18699.48 5199.09 17699.13 5597.52 20398.75 27097.46 18496.90 29997.83 28796.01 19599.84 12795.82 23799.35 22999.46 129
Anonymous2023120698.21 14998.21 13698.20 22699.51 7695.43 25898.13 13299.32 12896.16 25498.93 13998.82 17796.00 19699.83 14297.32 12799.73 11099.36 173
EI-MVSNet98.40 12998.51 8998.04 23899.10 17394.73 27597.20 22998.87 24598.97 7999.06 10999.02 11996.00 19699.80 17698.58 5899.82 6899.60 52
IterMVS-LS98.55 10998.70 6598.09 23199.48 9494.73 27597.22 22899.39 9998.97 7999.38 5699.31 6896.00 19699.93 2898.58 5899.97 1199.60 52
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NCCC97.86 17797.47 19999.05 12598.61 27298.07 14096.98 24298.90 24097.63 16497.04 29097.93 28295.99 19999.66 26595.31 25498.82 29399.43 142
our_test_397.39 21497.73 17996.34 30898.70 25689.78 34694.61 34198.97 23196.50 24299.04 11698.85 16895.98 20099.84 12797.26 13099.67 14499.41 148
v2v48298.56 10598.62 7598.37 21399.42 10795.81 24897.58 19799.16 19297.90 14899.28 7499.01 12895.98 20099.79 19099.33 1599.90 4799.51 101
MVS93.19 32592.09 32996.50 30696.91 35494.03 29298.07 14198.06 30568.01 37094.56 35296.48 33595.96 20299.30 34183.84 36396.89 34796.17 359
MVP-Stereo98.08 15997.92 16698.57 18998.96 20396.79 22397.90 16399.18 18396.41 24698.46 20298.95 14495.93 20399.60 28496.51 19898.98 28699.31 191
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior397.48 20797.00 22598.95 13798.69 26097.95 15695.74 30799.03 21896.48 24396.11 32597.63 29995.92 20499.59 28894.16 28299.20 25299.30 194
test_prior295.74 30796.48 24396.11 32597.63 29995.92 20494.16 28299.20 252
AdaColmapbinary97.14 23496.71 24498.46 20598.34 30097.80 17296.95 24398.93 23495.58 27096.92 29497.66 29695.87 20699.53 30590.97 34399.14 26398.04 318
v14419298.54 11298.57 8398.45 20699.21 14395.98 24297.63 19099.36 10997.15 21999.32 7199.18 8495.84 20799.84 12799.50 1099.91 4399.54 86
ETH3D cwj APD-0.1697.55 20197.00 22599.19 9898.51 28698.64 8896.85 25299.13 19994.19 30297.65 25598.40 24095.78 20899.81 16793.37 30999.16 25999.12 230
PatchMatch-RL97.24 22696.78 24098.61 18399.03 19097.83 16696.36 27999.06 20993.49 31497.36 27997.78 28995.75 20999.49 31593.44 30798.77 29498.52 299
F-COLMAP97.30 22096.68 24699.14 10599.19 15098.39 10897.27 22499.30 14492.93 31996.62 31198.00 27595.73 21099.68 25492.62 32398.46 30999.35 177
PMMVS96.51 26495.98 27098.09 23197.53 34095.84 24694.92 33198.84 25491.58 33596.05 32995.58 34995.68 21199.66 26595.59 24898.09 32298.76 285
N_pmnet97.63 19797.17 21698.99 13499.27 13197.86 16395.98 29293.41 35995.25 28099.47 4298.90 15295.63 21299.85 10996.91 15699.73 11099.27 201
WR-MVS98.40 12998.19 13999.03 12899.00 19597.65 18296.85 25298.94 23298.57 10598.89 14598.50 23195.60 21399.85 10997.54 11799.85 5799.59 58
CANet97.87 17697.76 17598.19 22797.75 33095.51 25496.76 25899.05 21397.74 15796.93 29398.21 26095.59 21499.89 5997.86 10299.93 2899.19 219
131495.74 28695.60 28096.17 31397.53 34092.75 32098.07 14198.31 29491.22 34094.25 35396.68 33195.53 21599.03 35591.64 33497.18 34296.74 354
114514_t96.50 26695.77 27398.69 17399.48 9497.43 19397.84 16999.55 4681.42 36896.51 31698.58 22195.53 21599.67 25793.41 30899.58 17798.98 249
test1298.93 14098.58 27797.83 16698.66 27796.53 31495.51 21799.69 24599.13 26699.27 201
testtj97.79 18797.25 21199.42 5899.03 19098.85 7397.78 17399.18 18395.83 26698.12 22598.50 23195.50 21899.86 9492.23 32899.07 27299.54 86
旧先验198.82 23697.45 19298.76 26798.34 25095.50 21899.01 28299.23 209
YYNet197.60 19897.67 18197.39 27799.04 18793.04 31595.27 32198.38 29297.25 20698.92 14098.95 14495.48 22099.73 23096.99 15098.74 29599.41 148
MDA-MVSNet_test_wron97.60 19897.66 18497.41 27699.04 18793.09 31195.27 32198.42 28997.26 20598.88 14998.95 14495.43 22199.73 23097.02 14798.72 29799.41 148
原ACMM198.35 21498.90 21696.25 23798.83 25992.48 32596.07 32898.10 26995.39 22299.71 23992.61 32498.99 28499.08 233
USDC97.41 21397.40 20197.44 27498.94 20693.67 30795.17 32499.53 5494.03 30698.97 12999.10 10295.29 22399.34 33595.84 23699.73 11099.30 194
testdata98.09 23198.93 20895.40 25998.80 26290.08 34997.45 27398.37 24695.26 22499.70 24193.58 30398.95 28899.17 225
BH-untuned96.83 25296.75 24297.08 28798.74 24693.33 30996.71 26198.26 29596.72 23598.44 20497.37 31695.20 22599.47 32091.89 33097.43 33598.44 304
MVEpermissive83.40 2292.50 33091.92 33394.25 34098.83 23391.64 33292.71 36183.52 37695.92 26386.46 37395.46 35395.20 22595.40 37280.51 36998.64 30395.73 365
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-RMVSNet96.83 25296.58 25497.58 26398.47 28994.05 29096.67 26397.36 32096.70 23797.87 24197.98 27795.14 22799.44 32590.47 34898.58 30799.25 205
pmmvs497.58 20097.28 21098.51 20098.84 23096.93 22095.40 32098.52 28593.60 31198.61 18498.65 20695.10 22899.60 28496.97 15399.79 8598.99 248
EU-MVSNet97.66 19498.50 9195.13 33399.63 5085.84 36298.35 11698.21 29798.23 12499.54 3099.46 4695.02 22999.68 25498.24 7899.87 5599.87 4
DP-MVS Recon97.33 21896.92 23098.57 18999.09 17697.99 14696.79 25599.35 11593.18 31697.71 25198.07 27395.00 23099.31 33993.97 29099.13 26698.42 306
HQP_MVS97.99 16897.67 18198.93 14099.19 15097.65 18297.77 17699.27 15798.20 12897.79 24797.98 27794.90 23199.70 24194.42 27699.51 19999.45 133
plane_prior698.99 19997.70 18094.90 231
CPTT-MVS97.84 18397.36 20599.27 8699.31 12498.46 10598.29 11899.27 15794.90 28697.83 24498.37 24694.90 23199.84 12793.85 29799.54 18999.51 101
new_pmnet96.99 24796.76 24197.67 25598.72 24994.89 27295.95 29798.20 29892.62 32498.55 19698.54 22494.88 23499.52 30993.96 29199.44 21798.59 298
VDD-MVS98.56 10598.39 11399.07 11899.13 16898.07 14098.59 8897.01 32899.59 2099.11 10099.27 7194.82 23599.79 19098.34 7599.63 15599.34 179
jason97.45 21097.35 20697.76 25199.24 13693.93 29795.86 30198.42 28994.24 30098.50 20198.13 26494.82 23599.91 4597.22 13199.73 11099.43 142
jason: jason.
TAMVS98.24 14798.05 15698.80 15899.07 18097.18 20997.88 16498.81 26096.66 23899.17 9699.21 7994.81 23799.77 20896.96 15499.88 5299.44 138
新几何198.91 14398.94 20697.76 17498.76 26787.58 36096.75 30798.10 26994.80 23899.78 20292.73 32199.00 28399.20 214
VNet98.42 12598.30 12598.79 16098.79 24297.29 19898.23 12398.66 27799.31 4098.85 15398.80 18094.80 23899.78 20298.13 8399.13 26699.31 191
MAR-MVS96.47 26895.70 27698.79 16097.92 32399.12 5798.28 11998.60 28192.16 33095.54 34196.17 34194.77 24099.52 30989.62 35198.23 31397.72 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CL-MVSNet_self_test97.44 21197.22 21498.08 23498.57 27995.78 24994.30 34898.79 26396.58 24198.60 18698.19 26294.74 24199.64 27296.41 20698.84 29198.82 272
MSP-MVS98.40 12998.00 16099.61 999.57 5799.25 2398.57 9099.35 11597.55 17399.31 7397.71 29394.61 24299.88 7096.14 22299.19 25699.70 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPR95.29 29494.47 30497.75 25297.50 34495.14 26794.89 33298.71 27591.39 33995.35 34595.48 35294.57 24399.14 35484.95 36197.37 33798.97 253
112196.73 25696.00 26998.91 14398.95 20597.76 17498.07 14198.73 27387.65 35996.54 31398.13 26494.52 24499.73 23092.38 32699.02 28099.24 208
test22298.92 21296.93 22095.54 31398.78 26585.72 36396.86 30298.11 26894.43 24599.10 27199.23 209
PLCcopyleft94.65 1696.51 26495.73 27598.85 15198.75 24597.91 15996.42 27699.06 20990.94 34495.59 33497.38 31494.41 24699.59 28890.93 34498.04 32699.05 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS97.84 18397.84 17297.83 24799.14 16694.74 27496.94 24498.88 24395.84 26598.89 14598.96 14094.40 24799.69 24597.55 11599.95 1699.05 236
CNLPA97.17 23296.71 24498.55 19498.56 28098.05 14396.33 28098.93 23496.91 22897.06 28997.39 31394.38 24899.45 32491.66 33299.18 25898.14 315
MDA-MVSNet-bldmvs97.94 16997.91 16798.06 23699.44 10294.96 27196.63 26599.15 19898.35 11298.83 15699.11 10094.31 24999.85 10996.60 18698.72 29799.37 167
OpenMVS_ROBcopyleft95.38 1495.84 28495.18 29597.81 24898.41 29797.15 21297.37 21598.62 28083.86 36598.65 17898.37 24694.29 25099.68 25488.41 35498.62 30596.60 356
TR-MVS95.55 29095.12 29796.86 30097.54 33993.94 29696.49 27296.53 33794.36 29997.03 29196.61 33294.26 25199.16 35286.91 35896.31 35397.47 345
GBi-Net98.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
test198.65 9198.47 9899.17 9998.90 21698.24 12099.20 3899.44 8498.59 10198.95 13299.55 3294.14 25299.86 9497.77 10699.69 13399.41 148
FMVSNet298.49 11898.40 11098.75 16898.90 21697.14 21398.61 8599.13 19998.59 10199.19 9199.28 6994.14 25299.82 15397.97 9599.80 8099.29 198
PAPM_NR96.82 25496.32 26498.30 21999.07 18096.69 22897.48 20798.76 26795.81 26796.61 31296.47 33694.12 25599.17 35190.82 34797.78 32999.06 235
Anonymous2024052198.69 8398.87 4598.16 22999.77 2095.11 26999.08 5099.44 8499.34 3899.33 6599.55 3294.10 25699.94 2399.25 2099.96 1499.42 145
HQP2-MVS93.84 257
HQP-MVS97.00 24696.49 25998.55 19498.67 26596.79 22396.29 28299.04 21696.05 25795.55 33896.84 32893.84 25799.54 30392.82 31799.26 24599.32 187
MVSFormer98.26 14498.43 10697.77 25098.88 22293.89 30199.39 1399.56 4299.11 5798.16 22198.13 26493.81 25999.97 399.26 1899.57 18199.43 142
lupinMVS97.06 23996.86 23497.65 25798.88 22293.89 30195.48 31797.97 30793.53 31298.16 22197.58 30193.81 25999.91 4596.77 17299.57 18199.17 225
MG-MVS96.77 25596.61 25197.26 28198.31 30293.06 31295.93 29898.12 30396.45 24597.92 23798.73 19093.77 26199.39 33091.19 34299.04 27699.33 185
PVSNet93.40 1795.67 28795.70 27695.57 32598.83 23388.57 34992.50 36297.72 31292.69 32396.49 31996.44 33793.72 26299.43 32693.61 30199.28 24198.71 289
MVS_030497.64 19597.35 20698.52 19897.87 32696.69 22898.59 8898.05 30697.44 18893.74 36198.85 16893.69 26399.88 7098.11 8499.81 7298.98 249
ETH3 D test640096.46 26995.59 28199.08 11598.88 22298.21 12696.53 26899.18 18388.87 35597.08 28797.79 28893.64 26499.77 20888.92 35399.40 22199.28 199
pmmvs597.64 19597.49 19598.08 23499.14 16695.12 26896.70 26299.05 21393.77 30998.62 18298.83 17493.23 26599.75 22298.33 7799.76 10399.36 173
CANet_DTU97.26 22397.06 22297.84 24697.57 33794.65 27996.19 28898.79 26397.23 21295.14 34798.24 25793.22 26699.84 12797.34 12699.84 5999.04 240
UnsupCasMVSNet_bld97.30 22096.92 23098.45 20699.28 12996.78 22696.20 28799.27 15795.42 27698.28 21698.30 25493.16 26799.71 23994.99 25997.37 33798.87 268
IterMVS97.73 18998.11 15096.57 30499.24 13690.28 34495.52 31699.21 17298.86 8799.33 6599.33 6693.11 26899.94 2398.49 6599.94 2499.48 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.85 18298.18 14096.87 29799.27 13191.16 34395.53 31499.25 16399.10 6499.41 5099.35 6293.10 26999.96 898.65 5699.94 2499.49 109
SCA96.41 27196.66 24995.67 32298.24 30688.35 35195.85 30396.88 33396.11 25597.67 25498.67 20193.10 26999.85 10994.16 28299.22 24998.81 275
DPM-MVS96.32 27295.59 28198.51 20098.76 24397.21 20694.54 34498.26 29591.94 33196.37 32197.25 31993.06 27199.43 32691.42 33898.74 29598.89 265
BH-w/o95.13 29894.89 30295.86 31798.20 30991.31 33895.65 31097.37 31993.64 31096.52 31595.70 34893.04 27299.02 35688.10 35595.82 35897.24 347
cascas94.79 30394.33 30996.15 31696.02 36992.36 32692.34 36499.26 16285.34 36495.08 34894.96 36092.96 27398.53 36594.41 27998.59 30697.56 342
c3_l97.36 21597.37 20497.31 27898.09 31593.25 31095.01 32999.16 19297.05 22198.77 16698.72 19292.88 27499.64 27296.93 15599.76 10399.05 236
MVS-HIRNet94.32 30895.62 27990.42 35498.46 29075.36 37796.29 28289.13 37195.25 28095.38 34499.75 792.88 27499.19 35094.07 28999.39 22296.72 355
sss97.21 22896.93 22898.06 23698.83 23395.22 26496.75 25998.48 28794.49 29297.27 28197.90 28392.77 27699.80 17696.57 18999.32 23399.16 228
miper_ehance_all_eth97.06 23997.03 22397.16 28697.83 32793.06 31294.66 33899.09 20595.99 26198.69 17398.45 23792.73 27799.61 28396.79 16999.03 27798.82 272
SixPastTwentyTwo98.75 7398.62 7599.16 10299.83 1597.96 15599.28 3098.20 29899.37 3599.70 1599.65 1992.65 27899.93 2899.04 3299.84 5999.60 52
UnsupCasMVSNet_eth97.89 17397.60 19098.75 16899.31 12497.17 21097.62 19199.35 11598.72 9498.76 16898.68 19992.57 27999.74 22697.76 11095.60 35999.34 179
CHOSEN 1792x268897.49 20597.14 22098.54 19799.68 4196.09 24196.50 27199.62 2291.58 33598.84 15598.97 13792.36 28099.88 7096.76 17399.95 1699.67 35
PCF-MVS92.86 1894.36 30793.00 32498.42 20898.70 25697.56 18693.16 36099.11 20379.59 36997.55 26497.43 31192.19 28199.73 23079.85 37099.45 21497.97 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet98.30 13898.04 15799.07 11899.56 6497.83 16699.29 2698.07 30499.03 7398.59 18899.13 9792.16 28299.90 4996.87 16499.68 13899.49 109
1112_ss97.29 22296.86 23498.58 18699.34 12396.32 23596.75 25999.58 2893.14 31796.89 30097.48 30892.11 28399.86 9496.91 15699.54 18999.57 69
CDS-MVSNet97.69 19197.35 20698.69 17398.73 24797.02 21696.92 24898.75 27095.89 26498.59 18898.67 20192.08 28499.74 22696.72 17899.81 7299.32 187
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth97.23 22797.25 21197.17 28498.00 32092.77 31994.71 33599.18 18397.27 20498.56 19498.74 18991.89 28599.69 24597.06 14699.81 7299.05 236
IS-MVSNet98.19 15197.90 16899.08 11599.57 5797.97 15199.31 2198.32 29399.01 7598.98 12699.03 11891.59 28699.79 19095.49 25199.80 8099.48 119
Test_1112_low_res96.99 24796.55 25798.31 21899.35 12195.47 25695.84 30499.53 5491.51 33796.80 30698.48 23691.36 28799.83 14296.58 18799.53 19399.62 46
WTY-MVS96.67 25996.27 26797.87 24598.81 23894.61 28096.77 25797.92 30994.94 28597.12 28497.74 29291.11 28899.82 15393.89 29498.15 31999.18 221
PVSNet_089.98 2191.15 33790.30 34093.70 34697.72 33184.34 37090.24 36697.42 31890.20 34893.79 35993.09 36990.90 28998.89 36286.57 35972.76 37397.87 326
miper_enhance_ethall96.01 27995.74 27496.81 30196.41 36492.27 32793.69 35798.89 24291.14 34298.30 21497.35 31890.58 29099.58 29396.31 21199.03 27798.60 296
VDDNet98.21 14997.95 16399.01 13299.58 5397.74 17799.01 5797.29 32499.67 1098.97 12999.50 3990.45 29199.80 17697.88 10099.20 25299.48 119
Anonymous20240521197.90 17197.50 19499.08 11598.90 21698.25 11998.53 9496.16 34098.87 8699.11 10098.86 16590.40 29299.78 20297.36 12599.31 23599.19 219
miper_lstm_enhance97.18 23197.16 21797.25 28298.16 31192.85 31795.15 32699.31 13497.25 20698.74 17198.78 18390.07 29399.78 20297.19 13299.80 8099.11 232
lessismore_v098.97 13599.73 2597.53 18886.71 37399.37 5899.52 3889.93 29499.92 3598.99 3599.72 11799.44 138
HY-MVS95.94 1395.90 28295.35 29097.55 26797.95 32194.79 27398.81 7396.94 33192.28 32895.17 34698.57 22289.90 29599.75 22291.20 34197.33 34198.10 316
K. test v398.00 16597.66 18499.03 12899.79 1997.56 18699.19 4292.47 36299.62 1799.52 3599.66 1789.61 29699.96 899.25 2099.81 7299.56 74
CMPMVSbinary75.91 2396.29 27395.44 28698.84 15296.25 36698.69 8797.02 23999.12 20188.90 35497.83 24498.86 16589.51 29798.90 36191.92 32999.51 19998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet96.25 27597.21 21593.38 35099.10 17380.56 37697.20 22998.19 30096.94 22699.00 12399.02 11989.50 29899.80 17696.36 20999.59 17199.78 14
DeepMVS_CXcopyleft93.44 34998.24 30694.21 28794.34 35164.28 37191.34 36794.87 36389.45 29992.77 37477.54 37293.14 36893.35 369
EPNet96.14 27795.44 28698.25 22390.76 37795.50 25597.92 16094.65 34998.97 7992.98 36298.85 16889.12 30099.87 8795.99 22699.68 13899.39 157
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
bset_n11_16_dypcd96.99 24796.56 25698.27 22299.00 19595.25 26192.18 36594.05 35798.75 9299.01 12098.38 24488.98 30199.93 2898.77 4999.92 3799.64 41
Vis-MVSNet (Re-imp)97.46 20897.16 21798.34 21599.55 6796.10 23998.94 6498.44 28898.32 11598.16 22198.62 21588.76 30299.73 23093.88 29599.79 8599.18 221
test111196.49 26796.82 23895.52 32799.42 10787.08 35899.22 3587.14 37299.11 5799.46 4399.58 2788.69 30399.86 9498.80 4599.95 1699.62 46
DIV-MVS_self_test97.02 24396.84 23697.58 26397.82 32894.03 29294.66 33899.16 19297.04 22298.63 18098.71 19388.69 30399.69 24597.00 14899.81 7299.01 244
cl____97.02 24396.83 23797.58 26397.82 32894.04 29194.66 33899.16 19297.04 22298.63 18098.71 19388.68 30599.69 24597.00 14899.81 7299.00 247
h-mvs3397.77 18897.33 20999.10 11199.21 14397.84 16598.35 11698.57 28299.11 5798.58 19099.02 11988.65 30699.96 898.11 8496.34 35299.49 109
hse-mvs297.46 20897.07 22198.64 17698.73 24797.33 19697.45 21197.64 31799.11 5798.58 19097.98 27788.65 30699.79 19098.11 8497.39 33698.81 275
ECVR-MVScopyleft96.42 27096.61 25195.85 31899.38 11288.18 35399.22 3586.00 37499.08 6999.36 6099.57 2888.47 30899.82 15398.52 6499.95 1699.54 86
EPNet_dtu94.93 30294.78 30395.38 33193.58 37487.68 35596.78 25695.69 34697.35 19689.14 37098.09 27188.15 30999.49 31594.95 26199.30 23898.98 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.35 21696.88 23398.78 16398.54 28398.09 13497.71 18297.69 31499.20 4997.59 26095.90 34588.12 31099.55 30098.18 8298.96 28798.70 291
FMVSNet397.50 20397.24 21398.29 22098.08 31695.83 24797.86 16798.91 23997.89 14998.95 13298.95 14487.06 31199.81 16797.77 10699.69 13399.23 209
baseline195.96 28195.44 28697.52 27098.51 28693.99 29598.39 11296.09 34298.21 12598.40 21297.76 29186.88 31299.63 27595.42 25289.27 37198.95 255
RPMNet97.02 24396.93 22897.30 27997.71 33294.22 28598.11 13599.30 14499.37 3596.91 29699.34 6486.72 31399.87 8797.53 11897.36 33997.81 330
HyFIR lowres test97.19 23096.60 25398.96 13699.62 5297.28 20095.17 32499.50 6094.21 30199.01 12098.32 25386.61 31499.99 297.10 14299.84 5999.60 52
PAPM91.88 33690.34 33996.51 30598.06 31792.56 32192.44 36397.17 32586.35 36190.38 36896.01 34286.61 31499.21 34970.65 37395.43 36097.75 334
test_yl96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
DCV-MVSNet96.69 25796.29 26597.90 24398.28 30395.24 26297.29 22197.36 32098.21 12598.17 21997.86 28486.27 31699.55 30094.87 26298.32 31198.89 265
CHOSEN 280x42095.51 29295.47 28395.65 32498.25 30588.27 35293.25 35998.88 24393.53 31294.65 35097.15 32486.17 31899.93 2897.41 12399.93 2898.73 288
EMVS93.83 31894.02 31093.23 35196.83 35784.96 36589.77 36896.32 33997.92 14697.43 27596.36 34086.17 31898.93 36087.68 35697.73 33095.81 364
MIMVSNet96.62 26296.25 26897.71 25499.04 18794.66 27899.16 4496.92 33297.23 21297.87 24199.10 10286.11 32099.65 27091.65 33399.21 25198.82 272
tpmvs95.02 30195.25 29294.33 33996.39 36585.87 36198.08 14096.83 33495.46 27595.51 34398.69 19785.91 32199.53 30594.16 28296.23 35497.58 341
MDTV_nov1_ep13_2view74.92 37897.69 18490.06 35097.75 25085.78 32293.52 30498.69 292
ADS-MVSNet295.43 29394.98 29996.76 30398.14 31291.74 33197.92 16097.76 31190.23 34596.51 31698.91 14985.61 32399.85 10992.88 31596.90 34598.69 292
ADS-MVSNet95.24 29694.93 30196.18 31298.14 31290.10 34597.92 16097.32 32390.23 34596.51 31698.91 14985.61 32399.74 22692.88 31596.90 34598.69 292
tpmrst95.07 29995.46 28493.91 34397.11 35284.36 36997.62 19196.96 32994.98 28396.35 32298.80 18085.46 32599.59 28895.60 24796.23 35497.79 333
CR-MVSNet96.28 27495.95 27197.28 28097.71 33294.22 28598.11 13598.92 23792.31 32796.91 29699.37 5885.44 32699.81 16797.39 12497.36 33997.81 330
Patchmtry97.35 21696.97 22798.50 20297.31 34996.47 23198.18 12898.92 23798.95 8398.78 16399.37 5885.44 32699.85 10995.96 22899.83 6599.17 225
test_method79.78 33979.50 34280.62 35580.21 37845.76 38070.82 36998.41 29131.08 37380.89 37497.71 29384.85 32897.37 36991.51 33780.03 37298.75 286
PatchmatchNetpermissive95.58 28995.67 27895.30 33297.34 34787.32 35697.65 18996.65 33595.30 27997.07 28898.69 19784.77 32999.75 22294.97 26098.64 30398.83 271
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs184.74 33098.81 275
E-PMN94.17 31294.37 30793.58 34796.86 35585.71 36490.11 36797.07 32798.17 13197.82 24697.19 32084.62 33198.94 35989.77 35097.68 33196.09 363
LFMVS97.20 22996.72 24398.64 17698.72 24996.95 21998.93 6594.14 35699.74 798.78 16399.01 12884.45 33299.73 23097.44 12199.27 24299.25 205
patchmatchnet-post98.77 18584.37 33399.85 109
PatchT96.65 26096.35 26297.54 26897.40 34595.32 26097.98 15696.64 33699.33 3996.89 30099.42 5284.32 33499.81 16797.69 11497.49 33297.48 344
Patchmatch-RL test97.26 22397.02 22497.99 24199.52 7495.53 25396.13 28999.71 1197.47 17999.27 7699.16 9084.30 33599.62 27797.89 9799.77 9398.81 275
sam_mvs84.29 336
MDTV_nov1_ep1395.22 29397.06 35383.20 37197.74 18096.16 34094.37 29896.99 29298.83 17483.95 33799.53 30593.90 29397.95 327
test_post21.25 37583.86 33899.70 241
Patchmatch-test96.55 26396.34 26397.17 28498.35 29993.06 31298.40 11197.79 31097.33 19798.41 20898.67 20183.68 33999.69 24595.16 25699.31 23598.77 283
GA-MVS95.86 28395.32 29197.49 27198.60 27494.15 28993.83 35597.93 30895.49 27496.68 30897.42 31283.21 34099.30 34196.22 21698.55 30899.01 244
JIA-IIPM95.52 29195.03 29897.00 28996.85 35694.03 29296.93 24695.82 34499.20 4994.63 35199.71 1283.09 34199.60 28494.42 27694.64 36397.36 346
test_post197.59 19620.48 37683.07 34299.66 26594.16 282
tpm cat193.29 32493.13 32393.75 34597.39 34684.74 36697.39 21397.65 31583.39 36794.16 35498.41 23982.86 34399.39 33091.56 33695.35 36197.14 348
cl2295.79 28595.39 28996.98 29196.77 35892.79 31894.40 34698.53 28494.59 29197.89 24098.17 26382.82 34499.24 34696.37 20799.03 27798.92 261
RRT_MVS97.07 23896.57 25598.58 18695.89 37096.33 23497.36 21698.77 26697.85 15299.08 10699.12 9882.30 34599.96 898.82 4499.90 4799.45 133
test-LLR93.90 31793.85 31194.04 34196.53 36084.62 36794.05 35292.39 36396.17 25294.12 35595.07 35582.30 34599.67 25795.87 23398.18 31697.82 328
test0.0.03 194.51 30593.69 31496.99 29096.05 36793.61 30894.97 33093.49 35896.17 25297.57 26394.88 36182.30 34599.01 35893.60 30294.17 36798.37 309
test_part197.91 17097.46 20099.27 8698.80 24098.18 12799.07 5399.36 10999.75 599.63 2599.49 4282.20 34899.89 5998.87 4199.95 1699.74 24
AUN-MVS96.24 27695.45 28598.60 18498.70 25697.22 20497.38 21497.65 31595.95 26295.53 34297.96 28182.11 34999.79 19096.31 21197.44 33498.80 280
MVSTER96.86 25196.55 25797.79 24997.91 32494.21 28797.56 19998.87 24597.49 17899.06 10999.05 11280.72 35099.80 17698.44 6899.82 6899.37 167
tmp_tt78.77 34078.73 34378.90 35658.45 37974.76 37994.20 34978.26 37939.16 37286.71 37292.82 37080.50 35175.19 37586.16 36092.29 36986.74 370
thres20093.72 32093.14 32295.46 33098.66 27091.29 33996.61 26694.63 35097.39 19296.83 30493.71 36879.88 35299.56 29782.40 36798.13 32095.54 366
thres100view90094.19 31193.67 31595.75 32199.06 18491.35 33798.03 14894.24 35498.33 11497.40 27694.98 35979.84 35399.62 27783.05 36498.08 32396.29 357
thres600view794.45 30693.83 31296.29 30999.06 18491.53 33397.99 15494.24 35498.34 11397.44 27495.01 35779.84 35399.67 25784.33 36298.23 31397.66 338
tfpn200view994.03 31593.44 31795.78 32098.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32396.29 357
thres40094.14 31393.44 31796.24 31198.93 20891.44 33597.60 19494.29 35297.94 14497.10 28594.31 36579.67 35599.62 27783.05 36498.08 32397.66 338
pmmvs395.03 30094.40 30696.93 29397.70 33492.53 32295.08 32797.71 31388.57 35697.71 25198.08 27279.39 35799.82 15396.19 21899.11 27098.43 305
baseline293.73 31992.83 32596.42 30797.70 33491.28 34096.84 25489.77 37093.96 30892.44 36495.93 34479.14 35899.77 20892.94 31396.76 34998.21 311
tpm94.67 30494.34 30895.66 32397.68 33688.42 35097.88 16494.90 34894.46 29496.03 33098.56 22378.66 35999.79 19095.88 23095.01 36298.78 282
CostFormer93.97 31693.78 31394.51 33897.53 34085.83 36397.98 15695.96 34389.29 35394.99 34998.63 21378.63 36099.62 27794.54 27096.50 35098.09 317
ET-MVSNet_ETH3D94.30 31093.21 32097.58 26398.14 31294.47 28294.78 33493.24 36194.72 28989.56 36995.87 34678.57 36199.81 16796.91 15697.11 34498.46 301
dp93.47 32293.59 31693.13 35296.64 35981.62 37597.66 18796.42 33892.80 32296.11 32598.64 20978.55 36299.59 28893.31 31092.18 37098.16 314
EPMVS93.72 32093.27 31995.09 33496.04 36887.76 35498.13 13285.01 37594.69 29096.92 29498.64 20978.47 36399.31 33995.04 25796.46 35198.20 312
tpm293.09 32692.58 32794.62 33797.56 33886.53 36097.66 18795.79 34586.15 36294.07 35798.23 25975.95 36499.53 30590.91 34596.86 34897.81 330
FPMVS93.44 32392.23 32897.08 28799.25 13597.86 16395.61 31197.16 32692.90 32093.76 36098.65 20675.94 36595.66 37179.30 37197.49 33297.73 335
thisisatest051594.12 31493.16 32196.97 29298.60 27492.90 31693.77 35690.61 36794.10 30496.91 29695.87 34674.99 36699.80 17694.52 27199.12 26998.20 312
tttt051795.64 28894.98 29997.64 25999.36 11793.81 30398.72 7790.47 36898.08 13698.67 17598.34 25073.88 36799.92 3597.77 10699.51 19999.20 214
thisisatest053095.27 29594.45 30597.74 25399.19 15094.37 28397.86 16790.20 36997.17 21698.22 21897.65 29773.53 36899.90 4996.90 16199.35 22998.95 255
DWT-MVSNet_test92.75 32992.05 33094.85 33596.48 36287.21 35797.83 17094.99 34792.22 32992.72 36394.11 36770.75 36999.46 32295.01 25894.33 36697.87 326
FMVSNet596.01 27995.20 29498.41 20997.53 34096.10 23998.74 7499.50 6097.22 21598.03 23599.04 11569.80 37099.88 7097.27 12999.71 12299.25 205
gg-mvs-nofinetune92.37 33291.20 33795.85 31895.80 37192.38 32599.31 2181.84 37799.75 591.83 36699.74 868.29 37199.02 35687.15 35797.12 34396.16 360
KD-MVS_2432*160092.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
miper_refine_blended92.87 32791.99 33195.51 32891.37 37589.27 34794.07 35098.14 30195.42 27697.25 28296.44 33767.86 37299.24 34691.28 33996.08 35698.02 319
GG-mvs-BLEND94.76 33694.54 37392.13 32999.31 2180.47 37888.73 37191.01 37167.59 37498.16 36882.30 36894.53 36593.98 368
RRT_test8_iter0595.24 29695.13 29695.57 32597.32 34887.02 35997.99 15499.41 9498.06 13799.12 9899.05 11266.85 37599.85 10998.93 3799.47 21099.84 8
TESTMET0.1,192.19 33591.77 33593.46 34896.48 36282.80 37294.05 35291.52 36694.45 29694.00 35894.88 36166.65 37699.56 29795.78 23898.11 32198.02 319
test250692.39 33191.89 33493.89 34499.38 11282.28 37399.32 1766.03 38099.08 6998.77 16699.57 2866.26 37799.84 12798.71 5399.95 1699.54 86
IB-MVS91.63 1992.24 33490.90 33896.27 31097.22 35191.24 34194.36 34793.33 36092.37 32692.24 36594.58 36466.20 37899.89 5993.16 31294.63 36497.66 338
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter92.33 33391.76 33694.04 34196.53 36084.62 36794.05 35292.39 36394.00 30794.12 35595.07 35565.63 37999.67 25795.87 23398.18 31697.82 328
test12317.04 34320.11 3467.82 35710.25 3814.91 38194.80 3334.47 3824.93 37510.00 37724.28 3749.69 3803.64 37610.14 37412.43 37514.92 372
testmvs17.12 34220.53 3456.87 35812.05 3804.20 38293.62 3586.73 3814.62 37610.41 37624.33 3738.28 3813.56 3779.69 37515.07 37412.86 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.12 34510.83 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.48 3080.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.73 2599.67 299.43 1099.54 5099.43 3099.26 80
MSC_two_6792asdad99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
No_MVS99.32 7898.43 29398.37 11198.86 25099.89 5997.14 13899.60 16799.71 26
eth-test20.00 382
eth-test0.00 382
IU-MVS99.49 8699.15 4898.87 24592.97 31899.41 5096.76 17399.62 15899.66 36
save fliter99.11 16997.97 15196.53 26899.02 22298.24 122
test_0728_SECOND99.60 1399.50 7999.23 2598.02 15099.32 12899.88 7096.99 15099.63 15599.68 33
GSMVS98.81 275
test_part299.36 11799.10 6099.05 114
MTGPAbinary99.20 174
MTMP97.93 15991.91 365
gm-plane-assit94.83 37281.97 37488.07 35894.99 35899.60 28491.76 331
test9_res93.28 31199.15 26299.38 164
agg_prior292.50 32599.16 25999.37 167
agg_prior98.68 26397.99 14699.01 22595.59 33499.77 208
test_prior497.97 15195.86 301
test_prior98.95 13798.69 26097.95 15699.03 21899.59 28899.30 194
旧先验295.76 30588.56 35797.52 26799.66 26594.48 272
新几何295.93 298
无先验95.74 30798.74 27289.38 35299.73 23092.38 32699.22 213
原ACMM295.53 314
testdata299.79 19092.80 319
testdata195.44 31996.32 249
plane_prior799.19 15097.87 162
plane_prior599.27 15799.70 24194.42 27699.51 19999.45 133
plane_prior497.98 277
plane_prior397.78 17397.41 19097.79 247
plane_prior297.77 17698.20 128
plane_prior199.05 186
plane_prior97.65 18297.07 23896.72 23599.36 227
n20.00 383
nn0.00 383
door-mid99.57 35
test1198.87 245
door99.41 94
HQP5-MVS96.79 223
HQP-NCC98.67 26596.29 28296.05 25795.55 338
ACMP_Plane98.67 26596.29 28296.05 25795.55 338
BP-MVS92.82 317
HQP4-MVS95.56 33799.54 30399.32 187
HQP3-MVS99.04 21699.26 245
NP-MVS98.84 23097.39 19596.84 328
ACMMP++_ref99.77 93
ACMMP++99.68 138