This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
Gipumacopyleft99.03 3499.16 2998.64 16599.94 298.51 9299.32 1599.75 799.58 2198.60 17299.62 2198.22 5499.51 29397.70 10099.73 10497.89 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2199.31 2299.53 3499.91 398.98 5799.63 699.58 2699.44 2899.78 1099.76 696.39 17299.92 3299.44 1399.92 3399.68 30
pmmvs699.67 399.70 399.60 1399.90 499.27 1799.53 799.76 699.64 1199.84 899.83 299.50 599.87 7899.36 1499.92 3399.64 38
PS-MVSNAJss99.46 1299.49 1099.35 6699.90 498.15 11599.20 3299.65 1799.48 2399.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
ANet_high99.57 799.67 599.28 7699.89 698.09 11999.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5699.34 1399.69 1298.93 7499.65 2299.72 1198.93 1899.95 1499.11 25100.00 199.82 9
v7n99.53 899.57 899.41 5799.88 798.54 9099.45 999.61 2199.66 1099.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
mvs_tets99.63 599.67 599.49 4699.88 798.61 8299.34 1399.71 999.27 4099.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 4899.87 1098.61 8299.28 2799.66 1699.09 6099.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
test_djsdf99.52 999.51 999.53 3499.86 1198.74 7199.39 1199.56 4099.11 5399.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
MIMVSNet199.38 2099.32 2199.55 2499.86 1199.19 3199.41 1099.59 2499.59 1999.71 1499.57 2797.12 13099.90 4599.21 2199.87 5099.54 81
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1399.11 5299.90 199.78 499.63 1399.78 1099.67 1699.48 699.81 14999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1199.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3199.95 1599.78 14
SixPastTwentyTwo98.75 6898.62 7199.16 9299.83 1597.96 14199.28 2798.20 28099.37 3399.70 1599.65 1992.65 26599.93 2699.04 2999.84 5499.60 47
Baseline_NR-MVSNet98.98 4198.86 4499.36 6199.82 1698.55 8797.47 19499.57 3399.37 3399.21 8299.61 2396.76 15499.83 12698.06 7899.83 6099.71 25
pm-mvs199.44 1399.48 1199.33 7199.80 1798.63 7999.29 2399.63 1899.30 3899.65 2299.60 2599.16 1499.82 13699.07 2799.83 6099.56 69
TransMVSNet (Re)99.44 1399.47 1299.36 6199.80 1798.58 8599.27 2999.57 3399.39 3199.75 1299.62 2199.17 1299.83 12699.06 2899.62 14999.66 33
K. test v398.00 15797.66 17599.03 11799.79 1997.56 17199.19 3692.47 34099.62 1699.52 3399.66 1789.61 28399.96 899.25 2099.81 6799.56 69
FC-MVSNet-test99.27 2599.25 2599.34 6999.77 2098.37 10099.30 2299.57 3399.61 1899.40 5199.50 3497.12 13099.85 9499.02 3099.94 1999.80 12
XXY-MVS99.14 3199.15 3199.10 10199.76 2197.74 16298.85 6299.62 1998.48 9499.37 5599.49 3798.75 2399.86 8498.20 7299.80 7599.71 25
TDRefinement99.42 1699.38 1599.55 2499.76 2199.33 1299.68 599.71 999.38 3299.53 3199.61 2398.64 2799.80 15998.24 6999.84 5499.52 91
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4599.29 2399.54 4799.62 1699.56 2699.42 4798.16 6099.96 898.78 4299.93 2499.77 16
lessismore_v098.97 12499.73 2397.53 17386.71 35099.37 5599.52 3389.93 28199.92 3298.99 3299.72 11099.44 125
SteuartSystems-ACMMP98.79 6198.54 7999.54 2799.73 2399.16 3798.23 10799.31 12697.92 12998.90 13198.90 14198.00 7099.88 6296.15 20199.72 11099.58 59
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 14798.15 13798.22 21299.73 2395.15 24797.36 19999.68 1394.45 27598.99 11699.27 6596.87 14499.94 2297.13 12699.91 3899.57 64
Vis-MVSNetpermissive99.34 2299.36 1699.27 7999.73 2398.26 10499.17 3799.78 499.11 5399.27 7199.48 3898.82 2099.95 1498.94 3399.93 2499.59 53
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH96.65 799.25 2799.24 2699.26 8199.72 2898.38 9999.07 4599.55 4398.30 10199.65 2299.45 4499.22 999.76 19598.44 6199.77 8899.64 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5399.29 2399.53 4999.53 2299.46 4199.41 4998.23 5199.95 1498.89 3799.95 1599.81 11
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1399.31 1899.51 5399.64 1199.56 2699.46 4098.23 5199.97 398.78 4299.93 2499.72 24
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2099.32 1599.55 4399.46 2699.50 3799.34 5897.30 11999.93 2698.90 3599.93 2499.77 16
HPM-MVS_fast99.01 3598.82 4799.57 1899.71 2999.35 899.00 5099.50 5597.33 17998.94 12898.86 15398.75 2399.82 13697.53 10699.71 11499.56 69
ACMH+96.62 999.08 3399.00 3899.33 7199.71 2998.83 6598.60 7499.58 2699.11 5399.53 3199.18 7898.81 2199.67 23896.71 16499.77 8899.50 99
PMVScopyleft91.26 2097.86 16897.94 15697.65 24199.71 2997.94 14498.52 8398.68 26098.99 6697.52 24899.35 5697.41 11498.18 34591.59 31399.67 13596.82 329
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 3199.09 3399.29 7499.70 3598.28 10399.13 4199.52 5299.48 2399.24 7899.41 4996.79 15199.82 13698.69 4999.88 4799.76 20
VPNet98.87 5498.83 4699.01 12199.70 3597.62 17098.43 9599.35 10899.47 2599.28 6999.05 10696.72 15799.82 13698.09 7699.36 20999.59 53
MP-MVS-pluss98.57 9898.23 12699.60 1399.69 3799.35 897.16 21899.38 9594.87 26698.97 12198.99 12298.01 6999.88 6297.29 11699.70 11899.58 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CHOSEN 1792x268897.49 19697.14 20998.54 18499.68 3896.09 22496.50 25499.62 1991.58 31298.84 14398.97 12892.36 26799.88 6296.76 15799.95 1599.67 32
tfpnnormal98.90 5298.90 4298.91 13299.67 3997.82 15499.00 5099.44 7999.45 2799.51 3699.24 7098.20 5799.86 8495.92 20999.69 12499.04 225
zzz-MVS98.79 6198.52 8199.61 999.67 3999.36 697.33 20199.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
MTAPA98.88 5398.64 6999.61 999.67 3999.36 698.43 9599.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
CP-MVSNet99.21 2899.09 3399.56 2299.65 4298.96 6199.13 4199.34 11499.42 2999.33 6199.26 6797.01 13799.94 2298.74 4699.93 2499.79 13
HPM-MVScopyleft98.79 6198.53 8099.59 1799.65 4299.29 1499.16 3899.43 8496.74 21798.61 17098.38 23098.62 2899.87 7896.47 18299.67 13599.59 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 9198.36 11099.42 5499.65 4299.42 498.55 8099.57 3397.72 14298.90 13199.26 6796.12 18099.52 28995.72 22099.71 11499.32 172
TSAR-MVS + MP.98.63 8998.49 8899.06 11299.64 4597.90 14698.51 8798.94 21996.96 20899.24 7898.89 14997.83 8099.81 14996.88 14799.49 19599.48 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 5898.72 5799.12 9799.64 4598.54 9097.98 14099.68 1397.62 14899.34 6099.18 7897.54 10299.77 18897.79 9299.74 10199.04 225
EU-MVSNet97.66 18598.50 8595.13 31399.63 4785.84 33898.35 10198.21 27998.23 10999.54 2899.46 4095.02 21899.68 23598.24 6999.87 5099.87 4
HyFIR lowres test97.19 21996.60 23998.96 12599.62 4897.28 18495.17 30799.50 5594.21 28099.01 11398.32 23786.61 29699.99 297.10 12899.84 5499.60 47
ACMMP_NAP98.75 6898.48 8999.57 1899.58 4999.29 1497.82 15699.25 15096.94 20998.78 15199.12 9298.02 6899.84 11197.13 12699.67 13599.59 53
nrg03099.40 1899.35 1799.54 2799.58 4999.13 4898.98 5399.48 6599.68 899.46 4199.26 6798.62 2899.73 21199.17 2499.92 3399.76 20
VDDNet98.21 14297.95 15499.01 12199.58 4997.74 16299.01 4897.29 30299.67 998.97 12199.50 3490.45 27899.80 15997.88 8999.20 23499.48 109
COLMAP_ROBcopyleft96.50 1098.99 3798.85 4599.41 5799.58 4999.10 5398.74 6599.56 4099.09 6099.33 6199.19 7698.40 4099.72 21995.98 20799.76 9799.42 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ZNCC-MVS98.68 8198.40 10399.54 2799.57 5399.21 2398.46 9299.29 13897.28 18598.11 20998.39 22898.00 7099.87 7896.86 15099.64 14399.55 77
DVP-MVS98.40 12298.00 15199.61 999.57 5399.25 1998.57 7899.35 10897.55 15699.31 6897.71 27394.61 23099.88 6296.14 20299.19 23899.70 28
testing_298.93 4798.99 4098.76 15599.57 5397.03 19897.85 15399.13 18698.46 9599.44 4499.44 4598.22 5499.74 20698.85 3899.94 1999.51 94
testgi98.32 12998.39 10698.13 21699.57 5395.54 23497.78 15899.49 6397.37 17699.19 8497.65 27698.96 1799.49 29596.50 18198.99 26699.34 164
MP-MVScopyleft98.46 11598.09 14299.54 2799.57 5399.22 2298.50 8899.19 16697.61 15097.58 24298.66 19197.40 11599.88 6294.72 24699.60 15799.54 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 7398.46 9399.47 5199.57 5398.97 5898.23 10799.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
LGP-MVS_train99.47 5199.57 5398.97 5899.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
IS-MVSNet98.19 14497.90 15999.08 10499.57 5397.97 13799.31 1898.32 27599.01 6598.98 11899.03 11291.59 27399.79 17295.49 23199.80 7599.48 109
test_040298.76 6798.71 5998.93 12999.56 6198.14 11798.45 9499.34 11499.28 3998.95 12498.91 13898.34 4699.79 17295.63 22699.91 3898.86 253
EPP-MVSNet98.30 13198.04 14899.07 10799.56 6197.83 15199.29 2398.07 28499.03 6398.59 17399.13 9192.16 26999.90 4596.87 14899.68 12999.49 103
ACMMPcopyleft98.75 6898.50 8599.52 3999.56 6199.16 3798.87 5999.37 9997.16 19998.82 14899.01 11997.71 8899.87 7896.29 19399.69 12499.54 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
FMVSNet199.17 2999.17 2899.17 8999.55 6498.24 10699.20 3299.44 7999.21 4299.43 4699.55 2997.82 8399.86 8498.42 6399.89 4699.41 134
Vis-MVSNet (Re-imp)97.46 19997.16 20698.34 20399.55 6496.10 22298.94 5598.44 27198.32 10098.16 20498.62 20288.76 28899.73 21193.88 27499.79 8099.18 206
ACMM96.08 1298.91 5098.73 5599.48 4899.55 6499.14 4598.07 12599.37 9997.62 14899.04 10998.96 13198.84 1999.79 17297.43 11099.65 14199.49 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS98.64 8798.34 11399.54 2799.54 6799.17 3398.63 7199.24 15597.47 16298.09 21198.68 18697.62 9699.89 5496.22 19699.62 14999.57 64
XVG-ACMP-BASELINE98.56 9998.34 11399.22 8699.54 6798.59 8497.71 16799.46 7397.25 18898.98 11898.99 12297.54 10299.84 11195.88 21099.74 10199.23 194
region2R98.69 7898.40 10399.54 2799.53 6999.17 3398.52 8399.31 12697.46 16798.44 18798.51 21497.83 8099.88 6296.46 18399.58 16599.58 59
PGM-MVS98.66 8498.37 10999.55 2499.53 6999.18 3298.23 10799.49 6397.01 20798.69 16098.88 15098.00 7099.89 5495.87 21399.59 15999.58 59
Patchmatch-RL test97.26 21297.02 21297.99 22699.52 7195.53 23596.13 27299.71 997.47 16299.27 7199.16 8484.30 31699.62 25797.89 8699.77 8898.81 258
ACMMPR98.70 7698.42 10199.54 2799.52 7199.14 4598.52 8399.31 12697.47 16298.56 17798.54 21197.75 8799.88 6296.57 17399.59 15999.58 59
GST-MVS98.61 9298.30 11899.52 3999.51 7399.20 2998.26 10599.25 15097.44 17098.67 16298.39 22897.68 8999.85 9496.00 20599.51 18799.52 91
Anonymous2023120698.21 14298.21 12798.20 21399.51 7395.43 24098.13 11799.32 12196.16 23698.93 12998.82 16596.00 18599.83 12697.32 11599.73 10499.36 158
ACMP95.32 1598.41 12098.09 14299.36 6199.51 7398.79 6997.68 17099.38 9595.76 24998.81 15098.82 16598.36 4299.82 13694.75 24399.77 8899.48 109
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MSP-MVS98.77 6698.52 8199.52 3999.50 7699.21 2398.02 13498.84 23997.97 12599.08 9999.02 11397.61 9799.88 6296.99 13499.63 14699.48 109
test_0728_SECOND99.60 1399.50 7699.23 2198.02 13499.32 12199.88 6296.99 13499.63 14699.68 30
test072699.50 7699.21 2398.17 11699.35 10897.97 12599.26 7599.06 9997.61 97
AllTest98.44 11798.20 12899.16 9299.50 7698.55 8798.25 10699.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
TestCases99.16 9299.50 7698.55 8799.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
XVG-OURS98.53 10898.34 11399.11 9999.50 7698.82 6795.97 27699.50 5597.30 18399.05 10798.98 12699.35 799.32 31895.72 22099.68 12999.18 206
EG-PatchMatch MVS98.99 3799.01 3798.94 12899.50 7697.47 17598.04 13199.59 2498.15 11899.40 5199.36 5598.58 3199.76 19598.78 4299.68 12999.59 53
SED-MVS98.91 5098.72 5799.49 4699.49 8399.17 3398.10 12299.31 12698.03 12299.66 2099.02 11398.36 4299.88 6296.91 14099.62 14999.41 134
IU-MVS99.49 8399.15 4298.87 23292.97 29599.41 4896.76 15799.62 14999.66 33
test_241102_ONE99.49 8399.17 3399.31 12697.98 12499.66 2098.90 14198.36 4299.48 298
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1499.80 399.72 899.82 399.04 10999.81 398.05 6799.96 898.85 3899.99 599.86 6
HFP-MVS98.71 7398.44 9799.51 4399.49 8399.16 3798.52 8399.31 12697.47 16298.58 17598.50 21797.97 7499.85 9496.57 17399.59 15999.53 87
#test#98.50 11198.16 13599.51 4399.49 8399.16 3798.03 13299.31 12696.30 23398.58 17598.50 21797.97 7499.85 9495.68 22399.59 15999.53 87
VPA-MVSNet99.30 2499.30 2399.28 7699.49 8398.36 10199.00 5099.45 7699.63 1399.52 3399.44 4598.25 4999.88 6299.09 2699.84 5499.62 42
XVG-OURS-SEG-HR98.49 11298.28 12099.14 9599.49 8398.83 6596.54 25099.48 6597.32 18199.11 9398.61 20599.33 899.30 32196.23 19598.38 29199.28 184
114514_t96.50 25495.77 25898.69 16299.48 9197.43 17897.84 15499.55 4381.42 34596.51 29398.58 20895.53 20499.67 23893.41 28799.58 16598.98 234
IterMVS-LS98.55 10398.70 6298.09 21799.48 9194.73 25597.22 21199.39 9398.97 6999.38 5399.31 6296.00 18599.93 2698.58 5299.97 1199.60 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 3599.16 2998.57 17699.47 9396.31 21998.90 5799.47 7199.03 6399.52 3399.57 2796.93 14199.81 14999.60 499.98 999.60 47
XVS98.72 7298.45 9599.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24698.63 20097.50 10899.83 12696.79 15399.53 18199.56 69
X-MVStestdata94.32 29392.59 31099.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24645.85 34897.50 10899.83 12696.79 15399.53 18199.56 69
test20.0398.78 6498.77 5398.78 15299.46 9497.20 19097.78 15899.24 15599.04 6299.41 4898.90 14197.65 9299.76 19597.70 10099.79 8099.39 143
abl_698.99 3798.78 5199.61 999.45 9799.46 398.60 7499.50 5598.59 8899.24 7899.04 10998.54 3399.89 5496.45 18499.62 14999.50 99
CSCG98.68 8198.50 8599.20 8799.45 9798.63 7998.56 7999.57 3397.87 13398.85 14198.04 25697.66 9199.84 11196.72 16299.81 6799.13 214
v14898.45 11698.60 7698.00 22599.44 9994.98 25097.44 19699.06 19698.30 10199.32 6698.97 12896.65 16099.62 25798.37 6599.85 5299.39 143
v1098.97 4299.11 3298.55 18199.44 9996.21 22198.90 5799.55 4398.73 8299.48 3899.60 2596.63 16199.83 12699.70 399.99 599.61 46
V4298.78 6498.78 5198.76 15599.44 9997.04 19798.27 10499.19 16697.87 13399.25 7799.16 8496.84 14599.78 18299.21 2199.84 5499.46 118
MDA-MVSNet-bldmvs97.94 16197.91 15898.06 22199.44 9994.96 25196.63 24899.15 18598.35 9798.83 14499.11 9494.31 23799.85 9496.60 17098.72 27899.37 152
v2v48298.56 9998.62 7198.37 20199.42 10395.81 23197.58 18299.16 17997.90 13199.28 6999.01 11995.98 18999.79 17299.33 1599.90 4299.51 94
OPM-MVS98.56 9998.32 11799.25 8399.41 10498.73 7497.13 22099.18 17097.10 20298.75 15698.92 13798.18 5899.65 25196.68 16699.56 17499.37 152
PMMVS298.07 15298.08 14598.04 22399.41 10494.59 26194.59 32599.40 9197.50 15998.82 14898.83 16296.83 14799.84 11197.50 10899.81 6799.71 25
casdiffmvs98.95 4599.00 3898.81 14599.38 10697.33 18197.82 15699.57 3399.17 5099.35 5899.17 8298.35 4599.69 22698.46 6099.73 10499.41 134
baseline98.96 4499.02 3698.76 15599.38 10697.26 18598.49 8999.50 5598.86 7799.19 8499.06 9998.23 5199.69 22698.71 4899.76 9799.33 170
TranMVSNet+NR-MVSNet99.17 2999.07 3599.46 5399.37 10898.87 6398.39 9899.42 8799.42 2999.36 5799.06 9998.38 4199.95 1498.34 6699.90 4299.57 64
tttt051795.64 27394.98 28397.64 24399.36 10993.81 28398.72 6790.47 34698.08 12098.67 16298.34 23473.88 34699.92 3297.77 9499.51 18799.20 199
test_part299.36 10999.10 5399.05 107
v114498.60 9498.66 6798.41 19799.36 10995.90 22797.58 18299.34 11497.51 15899.27 7199.15 8896.34 17699.80 15999.47 1299.93 2499.51 94
CP-MVS98.70 7698.42 10199.52 3999.36 10999.12 5098.72 6799.36 10397.54 15798.30 19798.40 22697.86 7999.89 5496.53 17999.72 11099.56 69
Test_1112_low_res96.99 23596.55 24298.31 20699.35 11395.47 23895.84 28799.53 4991.51 31496.80 28398.48 22291.36 27499.83 12696.58 17199.53 18199.62 42
DeepC-MVS97.60 498.97 4298.93 4199.10 10199.35 11397.98 13698.01 13799.46 7397.56 15599.54 2899.50 3498.97 1699.84 11198.06 7899.92 3399.49 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 21196.86 22198.58 17399.34 11596.32 21896.75 24299.58 2693.14 29496.89 27897.48 28792.11 27099.86 8496.91 14099.54 17799.57 64
SF-MVS98.53 10898.27 12199.32 7399.31 11698.75 7098.19 11299.41 8896.77 21698.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
CPTT-MVS97.84 17497.36 19699.27 7999.31 11698.46 9598.29 10299.27 14494.90 26597.83 22598.37 23194.90 22099.84 11193.85 27699.54 17799.51 94
UnsupCasMVSNet_eth97.89 16497.60 18198.75 15899.31 11697.17 19397.62 17699.35 10898.72 8398.76 15598.68 18692.57 26699.74 20697.76 9895.60 33599.34 164
pmmvs-eth3d98.47 11498.34 11398.86 13999.30 11997.76 15997.16 21899.28 14095.54 25299.42 4799.19 7697.27 12299.63 25597.89 8699.97 1199.20 199
Anonymous2023121199.27 2599.27 2499.26 8199.29 12098.18 11399.49 899.51 5399.70 799.80 999.68 1496.84 14599.83 12699.21 2199.91 3899.77 16
UnsupCasMVSNet_bld97.30 20996.92 21798.45 19499.28 12196.78 20996.20 27099.27 14495.42 25798.28 19998.30 23893.16 25499.71 22094.99 23897.37 31698.87 252
DPE-MVS98.59 9798.26 12299.57 1899.27 12299.15 4297.01 22399.39 9397.67 14499.44 4498.99 12297.53 10499.89 5495.40 23399.68 12999.66 33
IterMVS-SCA-FT97.85 17398.18 13196.87 28199.27 12291.16 32395.53 29799.25 15099.10 5799.41 4899.35 5693.10 25699.96 898.65 5099.94 1999.49 103
v119298.60 9498.66 6798.41 19799.27 12295.88 22897.52 18899.36 10397.41 17299.33 6199.20 7596.37 17599.82 13699.57 699.92 3399.55 77
N_pmnet97.63 18897.17 20598.99 12399.27 12297.86 14995.98 27593.41 33795.25 25999.47 4098.90 14195.63 20199.85 9496.91 14099.73 10499.27 186
FPMVS93.44 30892.23 31297.08 27199.25 12697.86 14995.61 29497.16 30492.90 29793.76 33798.65 19375.94 34495.66 34779.30 34697.49 31397.73 311
new-patchmatchnet98.35 12798.74 5497.18 26799.24 12792.23 30896.42 25999.48 6598.30 10199.69 1799.53 3297.44 11399.82 13698.84 4099.77 8899.49 103
MCST-MVS98.00 15797.63 17899.10 10199.24 12798.17 11496.89 23498.73 25795.66 25097.92 21897.70 27497.17 12999.66 24696.18 20099.23 23099.47 116
UniMVSNet (Re)98.87 5498.71 5999.35 6699.24 12798.73 7497.73 16699.38 9598.93 7499.12 9198.73 17796.77 15299.86 8498.63 5199.80 7599.46 118
jason97.45 20097.35 19797.76 23599.24 12793.93 27795.86 28498.42 27294.24 27998.50 18498.13 24794.82 22499.91 4297.22 11999.73 10499.43 129
jason: jason.
IterMVS97.73 18098.11 14196.57 28899.24 12790.28 32495.52 29999.21 15998.86 7799.33 6199.33 6093.11 25599.94 2298.49 5899.94 1999.48 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 10398.62 7198.32 20499.22 13295.58 23397.51 19099.45 7697.16 19999.45 4399.24 7096.12 18099.85 9499.60 499.88 4799.55 77
ITE_SJBPF98.87 13799.22 13298.48 9499.35 10897.50 15998.28 19998.60 20697.64 9599.35 31493.86 27599.27 22498.79 262
v14419298.54 10698.57 7898.45 19499.21 13495.98 22597.63 17599.36 10397.15 20199.32 6699.18 7895.84 19699.84 11199.50 1099.91 3899.54 81
APDe-MVS98.99 3798.79 5099.60 1399.21 13499.15 4298.87 5999.48 6597.57 15399.35 5899.24 7097.83 8099.89 5497.88 8999.70 11899.75 22
DP-MVS98.93 4798.81 4999.28 7699.21 13498.45 9698.46 9299.33 11999.63 1399.48 3899.15 8897.23 12799.75 20297.17 12199.66 14099.63 41
v192192098.54 10698.60 7698.38 20099.20 13795.76 23297.56 18499.36 10397.23 19499.38 5399.17 8296.02 18399.84 11199.57 699.90 4299.54 81
thisisatest053095.27 28094.45 28997.74 23799.19 13894.37 26397.86 15190.20 34797.17 19898.22 20197.65 27673.53 34799.90 4596.90 14599.35 21198.95 239
Anonymous2024052998.93 4798.87 4399.12 9799.19 13898.22 11199.01 4898.99 21699.25 4199.54 2899.37 5297.04 13399.80 15997.89 8699.52 18499.35 162
APD-MVS_3200maxsize98.84 5798.61 7499.53 3499.19 13899.27 1798.49 8999.33 11998.64 8499.03 11298.98 12697.89 7799.85 9496.54 17899.42 20399.46 118
HQP_MVS97.99 16097.67 17298.93 12999.19 13897.65 16797.77 16199.27 14498.20 11397.79 22897.98 25994.90 22099.70 22294.42 25599.51 18799.45 122
plane_prior799.19 13897.87 148
ab-mvs98.41 12098.36 11098.59 17299.19 13897.23 18699.32 1598.81 24597.66 14598.62 16899.40 5196.82 14899.80 15995.88 21099.51 18798.75 266
F-COLMAP97.30 20996.68 23299.14 9599.19 13898.39 9897.27 20799.30 13492.93 29696.62 28898.00 25795.73 19999.68 23592.62 30198.46 29099.35 162
SR-MVS98.71 7398.43 9999.57 1899.18 14599.35 898.36 10099.29 13898.29 10498.88 13798.85 15697.53 10499.87 7896.14 20299.31 21799.48 109
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 5999.17 14698.74 7197.68 17099.40 9199.14 5199.06 10298.59 20796.71 15899.93 2698.57 5499.77 8899.53 87
LF4IMVS97.90 16297.69 17198.52 18599.17 14697.66 16697.19 21599.47 7196.31 23297.85 22498.20 24596.71 15899.52 28994.62 24799.72 11098.38 286
SMA-MVS98.40 12298.03 14999.51 4399.16 14899.21 2398.05 12999.22 15894.16 28298.98 11899.10 9697.52 10699.79 17296.45 18499.64 14399.53 87
DU-MVS98.82 5898.63 7099.39 6099.16 14898.74 7197.54 18699.25 15098.84 7999.06 10298.76 17496.76 15499.93 2698.57 5499.77 8899.50 99
NR-MVSNet98.95 4598.82 4799.36 6199.16 14898.72 7699.22 3199.20 16199.10 5799.72 1398.76 17496.38 17499.86 8498.00 8399.82 6399.50 99
MVS_111021_LR98.30 13198.12 14098.83 14299.16 14898.03 13096.09 27399.30 13497.58 15298.10 21098.24 24198.25 4999.34 31596.69 16599.65 14199.12 215
DSMNet-mixed97.42 20197.60 18196.87 28199.15 15291.46 31498.54 8199.12 18992.87 29897.58 24299.63 2096.21 17899.90 4595.74 21999.54 17799.27 186
D2MVS97.84 17497.84 16397.83 23199.14 15394.74 25496.94 22798.88 23095.84 24698.89 13398.96 13194.40 23599.69 22697.55 10399.95 1599.05 221
pmmvs597.64 18697.49 18798.08 22099.14 15395.12 24996.70 24599.05 20093.77 28798.62 16898.83 16293.23 25299.75 20298.33 6899.76 9799.36 158
VDD-MVS98.56 9998.39 10699.07 10799.13 15598.07 12598.59 7697.01 30699.59 1999.11 9399.27 6594.82 22499.79 17298.34 6699.63 14699.34 164
xxxxxxxxxxxxxcwj98.44 11798.24 12499.06 11299.11 15697.97 13796.53 25199.54 4798.24 10798.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
ETH3D-3000-0.198.03 15397.62 17999.29 7499.11 15698.80 6897.47 19499.32 12195.54 25298.43 19098.62 20296.61 16299.77 18893.95 27199.49 19599.30 179
save fliter99.11 15697.97 13796.53 25199.02 20998.24 107
APD-MVScopyleft98.10 14997.67 17299.42 5499.11 15698.93 6297.76 16399.28 14094.97 26398.72 15998.77 17297.04 13399.85 9493.79 27799.54 17799.49 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 7898.71 5998.62 16999.10 16096.37 21697.23 20898.87 23299.20 4599.19 8498.99 12297.30 11999.85 9498.77 4599.79 8099.65 37
EI-MVSNet98.40 12298.51 8398.04 22399.10 16094.73 25597.20 21298.87 23298.97 6999.06 10299.02 11396.00 18599.80 15998.58 5299.82 6399.60 47
CVMVSNet96.25 26197.21 20493.38 32999.10 16080.56 35197.20 21298.19 28296.94 20999.00 11599.02 11389.50 28599.80 15996.36 18999.59 15999.78 14
EI-MVSNet-Vis-set98.68 8198.70 6298.63 16799.09 16396.40 21597.23 20898.86 23799.20 4599.18 8898.97 12897.29 12199.85 9498.72 4799.78 8499.64 38
HPM-MVS++copyleft98.10 14997.64 17799.48 4899.09 16399.13 4897.52 18898.75 25497.46 16796.90 27797.83 26796.01 18499.84 11195.82 21799.35 21199.46 118
DP-MVS Recon97.33 20796.92 21798.57 17699.09 16397.99 13296.79 23899.35 10893.18 29397.71 23298.07 25595.00 21999.31 31993.97 26999.13 24898.42 285
MVS_111021_HR98.25 13998.08 14598.75 15899.09 16397.46 17695.97 27699.27 14497.60 15197.99 21798.25 24098.15 6299.38 31296.87 14899.57 16999.42 132
9.1497.78 16599.07 16797.53 18799.32 12195.53 25498.54 18198.70 18397.58 9999.76 19594.32 26099.46 199
PAPM_NR96.82 24196.32 24998.30 20799.07 16796.69 21197.48 19298.76 25195.81 24896.61 28996.47 31394.12 24399.17 32990.82 32297.78 31099.06 220
TAMVS98.24 14098.05 14798.80 14799.07 16797.18 19297.88 14898.81 24596.66 22199.17 8999.21 7394.81 22699.77 18896.96 13899.88 4799.44 125
CLD-MVS97.49 19697.16 20698.48 19199.07 16797.03 19894.71 31899.21 15994.46 27398.06 21397.16 30097.57 10099.48 29894.46 25299.78 8498.95 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
thres100view90094.19 29693.67 29995.75 30499.06 17191.35 31798.03 13294.24 33398.33 9997.40 25794.98 33479.84 33299.62 25783.05 33998.08 30496.29 333
thres600view794.45 29193.83 29696.29 29399.06 17191.53 31397.99 13894.24 33398.34 9897.44 25595.01 33279.84 33299.67 23884.33 33798.23 29497.66 315
plane_prior199.05 173
YYNet197.60 18997.67 17297.39 26199.04 17493.04 29595.27 30498.38 27497.25 18898.92 13098.95 13395.48 20999.73 21196.99 13498.74 27699.41 134
MDA-MVSNet_test_wron97.60 18997.66 17597.41 26099.04 17493.09 29195.27 30498.42 27297.26 18798.88 13798.95 13395.43 21099.73 21197.02 13198.72 27899.41 134
MIMVSNet96.62 25096.25 25397.71 23899.04 17494.66 25899.16 3896.92 31097.23 19497.87 22299.10 9686.11 30299.65 25191.65 31199.21 23398.82 256
testtj97.79 17997.25 20199.42 5499.03 17798.85 6497.78 15899.18 17095.83 24798.12 20898.50 21795.50 20799.86 8492.23 30699.07 25499.54 81
PatchMatch-RL97.24 21596.78 22698.61 17199.03 17797.83 15196.36 26299.06 19693.49 29297.36 26097.78 26995.75 19899.49 29593.44 28698.77 27598.52 278
Regformer-398.61 9298.61 7498.63 16799.02 17996.53 21397.17 21698.84 23999.13 5299.10 9698.85 15697.24 12699.79 17298.41 6499.70 11899.57 64
Regformer-498.73 7198.68 6498.89 13599.02 17997.22 18897.17 21699.06 19699.21 4299.17 8998.85 15697.45 11299.86 8498.48 5999.70 11899.60 47
CDPH-MVS97.26 21296.66 23599.07 10799.00 18198.15 11596.03 27499.01 21291.21 31897.79 22897.85 26696.89 14399.69 22692.75 29999.38 20899.39 143
diffmvs98.22 14198.24 12498.17 21599.00 18195.44 23996.38 26199.58 2697.79 13998.53 18298.50 21796.76 15499.74 20697.95 8599.64 14399.34 164
WR-MVS98.40 12298.19 13099.03 11799.00 18197.65 16796.85 23598.94 21998.57 9298.89 13398.50 21795.60 20299.85 9497.54 10599.85 5299.59 53
plane_prior698.99 18497.70 16594.90 220
xiu_mvs_v1_base_debu97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base_debi97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
MVP-Stereo98.08 15197.92 15798.57 17698.96 18896.79 20697.90 14799.18 17096.41 22898.46 18598.95 13395.93 19299.60 26496.51 18098.98 26899.31 176
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 12298.68 6497.54 25298.96 18897.99 13297.88 14899.36 10398.20 11399.63 2599.04 10998.76 2295.33 34996.56 17699.74 10199.31 176
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
112196.73 24496.00 25498.91 13298.95 19097.76 15998.07 12598.73 25787.65 33696.54 29098.13 24794.52 23299.73 21192.38 30499.02 26299.24 193
新几何198.91 13298.94 19197.76 15998.76 25187.58 33796.75 28498.10 25194.80 22799.78 18292.73 30099.00 26599.20 199
USDC97.41 20297.40 19297.44 25898.94 19193.67 28795.17 30799.53 4994.03 28498.97 12199.10 9695.29 21299.34 31595.84 21699.73 10499.30 179
tfpn200view994.03 30093.44 30195.78 30398.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30496.29 333
testdata98.09 21798.93 19395.40 24198.80 24790.08 32697.45 25498.37 23195.26 21399.70 22293.58 28298.95 27099.17 210
thres40094.14 29893.44 30196.24 29598.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30497.66 315
TAPA-MVS96.21 1196.63 24995.95 25698.65 16498.93 19398.09 11996.93 22999.28 14083.58 34398.13 20797.78 26996.13 17999.40 30893.52 28399.29 22298.45 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 19796.93 20395.54 29698.78 24985.72 34096.86 28098.11 25094.43 23399.10 25399.23 194
PVSNet_BlendedMVS97.55 19297.53 18497.60 24598.92 19793.77 28596.64 24799.43 8494.49 27197.62 23899.18 7896.82 14899.67 23894.73 24499.93 2499.36 158
PVSNet_Blended96.88 23796.68 23297.47 25698.92 19793.77 28594.71 31899.43 8490.98 32097.62 23897.36 29596.82 14899.67 23894.73 24499.56 17498.98 234
MSDG97.71 18197.52 18598.28 20998.91 20096.82 20594.42 32899.37 9997.65 14698.37 19698.29 23997.40 11599.33 31794.09 26799.22 23198.68 274
Anonymous20240521197.90 16297.50 18699.08 10498.90 20198.25 10598.53 8296.16 31998.87 7699.11 9398.86 15390.40 27999.78 18297.36 11399.31 21799.19 204
原ACMM198.35 20298.90 20196.25 22098.83 24492.48 30296.07 30598.10 25195.39 21199.71 22092.61 30298.99 26699.08 218
GBi-Net98.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
test198.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
FMVSNet298.49 11298.40 10398.75 15898.90 20197.14 19698.61 7399.13 18698.59 8899.19 8499.28 6394.14 24099.82 13697.97 8499.80 7599.29 183
OMC-MVS97.88 16697.49 18799.04 11698.89 20698.63 7996.94 22799.25 15095.02 26198.53 18298.51 21497.27 12299.47 30093.50 28599.51 18799.01 229
ETH3 D test640096.46 25695.59 26699.08 10498.88 20798.21 11296.53 25199.18 17088.87 33297.08 26597.79 26893.64 25199.77 18888.92 32899.40 20699.28 184
MVSFormer98.26 13798.43 9997.77 23498.88 20793.89 28199.39 1199.56 4099.11 5398.16 20498.13 24793.81 24699.97 399.26 1899.57 16999.43 129
lupinMVS97.06 22896.86 22197.65 24198.88 20793.89 28195.48 30097.97 28793.53 29098.16 20497.58 28093.81 24699.91 4296.77 15699.57 16999.17 210
DELS-MVS98.27 13598.20 12898.48 19198.86 21096.70 21095.60 29599.20 16197.73 14198.45 18698.71 18097.50 10899.82 13698.21 7199.59 15998.93 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 16497.98 15297.60 24598.86 21094.35 26496.21 26999.44 7997.45 16999.06 10298.88 15097.99 7399.28 32494.38 25999.58 16599.18 206
Regformer-198.55 10398.44 9798.87 13798.85 21297.29 18296.91 23298.99 21698.97 6998.99 11698.64 19697.26 12599.81 14997.79 9299.57 16999.51 94
Regformer-298.60 9498.46 9399.02 12098.85 21297.71 16496.91 23299.09 19398.98 6899.01 11398.64 19697.37 11799.84 11197.75 9999.57 16999.52 91
LCM-MVSNet-Re98.64 8798.48 8999.11 9998.85 21298.51 9298.49 8999.83 398.37 9699.69 1799.46 4098.21 5699.92 3294.13 26699.30 22098.91 248
pmmvs497.58 19197.28 20098.51 18898.84 21596.93 20395.40 30398.52 26893.60 28998.61 17098.65 19395.10 21799.60 26496.97 13799.79 8098.99 233
NP-MVS98.84 21597.39 18096.84 305
sss97.21 21796.93 21698.06 22198.83 21795.22 24596.75 24298.48 27094.49 27197.27 26197.90 26392.77 26399.80 15996.57 17399.32 21599.16 213
PVSNet93.40 1795.67 27295.70 26195.57 30898.83 21788.57 32792.50 34297.72 29292.69 30096.49 29696.44 31493.72 24999.43 30693.61 28099.28 22398.71 268
MVEpermissive83.40 2292.50 31391.92 31594.25 32098.83 21791.64 31292.71 34183.52 35295.92 24486.46 35095.46 32895.20 21495.40 34880.51 34498.64 28495.73 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc98.24 21198.82 22095.97 22698.62 7299.00 21599.27 7199.21 7396.99 13899.50 29496.55 17799.50 19499.26 189
旧先验198.82 22097.45 17798.76 25198.34 23495.50 20799.01 26499.23 194
WTY-MVS96.67 24796.27 25297.87 22998.81 22294.61 26096.77 24097.92 28994.94 26497.12 26297.74 27291.11 27599.82 13693.89 27398.15 30099.18 206
3Dnovator+97.89 398.69 7898.51 8399.24 8498.81 22298.40 9799.02 4799.19 16698.99 6698.07 21299.28 6397.11 13299.84 11196.84 15199.32 21599.47 116
QAPM97.31 20896.81 22598.82 14398.80 22497.49 17499.06 4699.19 16690.22 32497.69 23499.16 8496.91 14299.90 4590.89 32199.41 20499.07 219
VNet98.42 11998.30 11898.79 14998.79 22597.29 18298.23 10798.66 26199.31 3798.85 14198.80 16794.80 22799.78 18298.13 7499.13 24899.31 176
CS-MVS97.82 17897.59 18398.52 18598.76 22698.04 12998.20 11199.61 2197.10 20296.02 30894.87 33898.27 4899.84 11196.31 19199.17 24097.69 314
DPM-MVS96.32 25895.59 26698.51 18898.76 22697.21 18994.54 32798.26 27791.94 30896.37 29897.25 29793.06 25899.43 30691.42 31598.74 27698.89 249
3Dnovator98.27 298.81 6098.73 5599.05 11498.76 22697.81 15699.25 3099.30 13498.57 9298.55 17999.33 6097.95 7699.90 4597.16 12299.67 13599.44 125
PLCcopyleft94.65 1696.51 25295.73 26098.85 14098.75 22997.91 14596.42 25999.06 19690.94 32195.59 31297.38 29394.41 23499.59 26890.93 31998.04 30799.05 221
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 23996.75 22897.08 27198.74 23093.33 28996.71 24498.26 27796.72 21898.44 18797.37 29495.20 21499.47 30091.89 30897.43 31598.44 283
CDS-MVSNet97.69 18297.35 19798.69 16298.73 23197.02 20096.92 23198.75 25495.89 24598.59 17398.67 18892.08 27199.74 20696.72 16299.81 6799.32 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 15797.74 16898.80 14798.72 23298.09 11998.05 12999.60 2397.39 17496.63 28795.55 32597.68 8999.80 15996.73 16199.27 22498.52 278
LFMVS97.20 21896.72 22998.64 16598.72 23296.95 20298.93 5694.14 33599.74 698.78 15199.01 11984.45 31399.73 21197.44 10999.27 22499.25 190
new_pmnet96.99 23596.76 22797.67 23998.72 23294.89 25295.95 28098.20 28092.62 30198.55 17998.54 21194.88 22399.52 28993.96 27099.44 20298.59 277
Fast-Effi-MVS+97.67 18497.38 19498.57 17698.71 23597.43 17897.23 20899.45 7694.82 26796.13 30196.51 31098.52 3499.91 4296.19 19898.83 27398.37 288
TEST998.71 23598.08 12395.96 27899.03 20591.40 31595.85 30997.53 28296.52 16599.76 195
train_agg97.10 22496.45 24599.07 10798.71 23598.08 12395.96 27899.03 20591.64 31095.85 30997.53 28296.47 16899.76 19593.67 27999.16 24199.36 158
TSAR-MVS + GP.98.18 14597.98 15298.77 15498.71 23597.88 14796.32 26498.66 26196.33 23099.23 8198.51 21497.48 11199.40 30897.16 12299.46 19999.02 228
our_test_397.39 20397.73 17096.34 29298.70 23989.78 32694.61 32498.97 21896.50 22499.04 10998.85 15695.98 18999.84 11197.26 11899.67 13599.41 134
ppachtmachnet_test97.50 19497.74 16896.78 28698.70 23991.23 32294.55 32699.05 20096.36 22999.21 8298.79 16996.39 17299.78 18296.74 15999.82 6399.34 164
PCF-MVS92.86 1894.36 29293.00 30898.42 19698.70 23997.56 17193.16 34099.11 19179.59 34697.55 24597.43 29092.19 26899.73 21179.85 34599.45 20197.97 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS98.03 15397.86 16298.56 18098.69 24298.07 12597.51 19099.50 5598.10 11997.50 25095.51 32698.41 3999.88 6296.27 19499.24 22997.71 313
test_prior397.48 19897.00 21398.95 12698.69 24297.95 14295.74 29099.03 20596.48 22596.11 30297.63 27895.92 19399.59 26894.16 26199.20 23499.30 179
test_prior98.95 12698.69 24297.95 14299.03 20599.59 26899.30 179
agg_prior197.06 22896.40 24699.03 11798.68 24597.99 13295.76 28899.01 21291.73 30995.59 31297.50 28596.49 16799.77 18893.71 27899.14 24599.34 164
agg_prior98.68 24597.99 13299.01 21295.59 31299.77 188
test_898.67 24798.01 13195.91 28399.02 20991.64 31095.79 31197.50 28596.47 16899.76 195
HQP-NCC98.67 24796.29 26596.05 23995.55 316
ACMP_Plane98.67 24796.29 26596.05 23995.55 316
CNVR-MVS98.17 14797.87 16199.07 10798.67 24798.24 10697.01 22398.93 22197.25 18897.62 23898.34 23497.27 12299.57 27496.42 18699.33 21499.39 143
HQP-MVS97.00 23496.49 24498.55 18198.67 24796.79 20696.29 26599.04 20396.05 23995.55 31696.84 30593.84 24499.54 28392.82 29699.26 22799.32 172
thres20093.72 30593.14 30695.46 31098.66 25291.29 31996.61 24994.63 32997.39 17496.83 28193.71 34479.88 33199.56 27782.40 34298.13 30195.54 342
wuyk23d96.06 26397.62 17991.38 33298.65 25398.57 8698.85 6296.95 30896.86 21399.90 499.16 8499.18 1198.40 34489.23 32799.77 8877.18 347
NCCC97.86 16897.47 19199.05 11498.61 25498.07 12596.98 22598.90 22797.63 14797.04 26897.93 26295.99 18899.66 24695.31 23498.82 27499.43 129
DeepC-MVS_fast96.85 698.30 13198.15 13798.75 15898.61 25497.23 18697.76 16399.09 19397.31 18298.75 15698.66 19197.56 10199.64 25396.10 20499.55 17699.39 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051594.12 29993.16 30596.97 27698.60 25692.90 29693.77 33690.61 34594.10 28396.91 27495.87 32174.99 34599.80 15994.52 25099.12 25198.20 291
GA-MVS95.86 26895.32 27597.49 25598.60 25694.15 26993.83 33597.93 28895.49 25596.68 28597.42 29183.21 32199.30 32196.22 19698.55 28999.01 229
OPU-MVS98.82 14398.59 25898.30 10298.10 12298.52 21398.18 5898.75 34294.62 24799.48 19799.41 134
MSLP-MVS++98.02 15598.14 13997.64 24398.58 25995.19 24697.48 19299.23 15797.47 16297.90 22098.62 20297.04 13398.81 34197.55 10399.41 20498.94 243
test1298.93 12998.58 25997.83 15198.66 26196.53 29195.51 20699.69 22699.13 24899.27 186
PS-MVSNAJ97.08 22697.39 19396.16 29998.56 26192.46 30395.24 30698.85 23897.25 18897.49 25195.99 31898.07 6499.90 4596.37 18798.67 28396.12 338
CNLPA97.17 22196.71 23098.55 18198.56 26198.05 12896.33 26398.93 22196.91 21197.06 26797.39 29294.38 23699.45 30491.66 31099.18 23998.14 294
xiu_mvs_v2_base97.16 22297.49 18796.17 29798.54 26392.46 30395.45 30198.84 23997.25 18897.48 25296.49 31198.31 4799.90 4596.34 19098.68 28296.15 337
alignmvs97.35 20596.88 22098.78 15298.54 26398.09 11997.71 16797.69 29499.20 4597.59 24195.90 32088.12 29299.55 28098.18 7398.96 26998.70 270
Effi-MVS+98.02 15597.82 16498.62 16998.53 26597.19 19197.33 20199.68 1397.30 18396.68 28597.46 28998.56 3299.80 15996.63 16998.20 29698.86 253
ETH3D cwj APD-0.1697.55 19297.00 21399.19 8898.51 26698.64 7896.85 23599.13 18694.19 28197.65 23698.40 22695.78 19799.81 14993.37 28899.16 24199.12 215
baseline195.96 26695.44 27097.52 25498.51 26693.99 27598.39 9896.09 32198.21 11098.40 19597.76 27186.88 29499.63 25595.42 23289.27 34798.95 239
MVS_Test98.18 14598.36 11097.67 23998.48 26894.73 25598.18 11399.02 20997.69 14398.04 21599.11 9497.22 12899.56 27798.57 5498.90 27298.71 268
BH-RMVSNet96.83 23996.58 24097.58 24798.47 26994.05 27096.67 24697.36 29896.70 22097.87 22297.98 25995.14 21699.44 30590.47 32398.58 28899.25 190
canonicalmvs98.34 12898.26 12298.58 17398.46 27097.82 15498.96 5499.46 7399.19 4997.46 25395.46 32898.59 3099.46 30298.08 7798.71 28098.46 280
MVS-HIRNet94.32 29395.62 26490.42 33398.46 27075.36 35296.29 26589.13 34995.25 25995.38 32199.75 792.88 26199.19 32894.07 26899.39 20796.72 331
PHI-MVS98.29 13497.95 15499.34 6998.44 27299.16 3798.12 11999.38 9596.01 24298.06 21398.43 22497.80 8499.67 23895.69 22299.58 16599.20 199
Fast-Effi-MVS+-dtu98.27 13598.09 14298.81 14598.43 27398.11 11897.61 17899.50 5598.64 8497.39 25897.52 28498.12 6399.95 1496.90 14598.71 28098.38 286
OpenMVS_ROBcopyleft95.38 1495.84 26995.18 27997.81 23298.41 27497.15 19597.37 19898.62 26483.86 34298.65 16498.37 23194.29 23899.68 23588.41 32998.62 28696.60 332
DeepPCF-MVS96.93 598.32 12998.01 15099.23 8598.39 27598.97 5895.03 31199.18 17096.88 21299.33 6198.78 17098.16 6099.28 32496.74 15999.62 14999.44 125
Patchmatch-test96.55 25196.34 24897.17 26898.35 27693.06 29298.40 9797.79 29097.33 17998.41 19198.67 18883.68 32099.69 22695.16 23599.31 21798.77 264
AdaColmapbinary97.14 22396.71 23098.46 19398.34 27797.80 15796.95 22698.93 22195.58 25196.92 27297.66 27595.87 19599.53 28590.97 31899.14 24598.04 297
OpenMVScopyleft96.65 797.09 22596.68 23298.32 20498.32 27897.16 19498.86 6199.37 9989.48 32896.29 30099.15 8896.56 16399.90 4592.90 29399.20 23497.89 300
MG-MVS96.77 24396.61 23897.26 26598.31 27993.06 29295.93 28198.12 28396.45 22797.92 21898.73 17793.77 24899.39 31091.19 31799.04 25899.33 170
test_yl96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
DCV-MVSNet96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
CHOSEN 280x42095.51 27795.47 26895.65 30798.25 28288.27 33093.25 33998.88 23093.53 29094.65 32797.15 30186.17 30099.93 2697.41 11199.93 2498.73 267
SCA96.41 25796.66 23595.67 30598.24 28388.35 32995.85 28696.88 31296.11 23797.67 23598.67 18893.10 25699.85 9494.16 26199.22 23198.81 258
DeepMVS_CXcopyleft93.44 32898.24 28394.21 26794.34 33064.28 34891.34 34494.87 33889.45 28692.77 35077.54 34793.14 34493.35 345
MS-PatchMatch97.68 18397.75 16797.45 25798.23 28593.78 28497.29 20498.84 23996.10 23898.64 16598.65 19396.04 18299.36 31396.84 15199.14 24599.20 199
BH-w/o95.13 28394.89 28695.86 30198.20 28691.31 31895.65 29397.37 29793.64 28896.52 29295.70 32393.04 25999.02 33488.10 33095.82 33497.24 324
mvs_anonymous97.83 17698.16 13596.87 28198.18 28791.89 31097.31 20398.90 22797.37 17698.83 14499.46 4096.28 17799.79 17298.90 3598.16 29998.95 239
miper_lstm_enhance97.18 22097.16 20697.25 26698.16 28892.85 29795.15 30999.31 12697.25 18898.74 15898.78 17090.07 28099.78 18297.19 12099.80 7599.11 217
ET-MVSNet_ETH3D94.30 29593.21 30497.58 24798.14 28994.47 26294.78 31793.24 33994.72 26889.56 34695.87 32178.57 34099.81 14996.91 14097.11 32398.46 280
ADS-MVSNet295.43 27894.98 28396.76 28798.14 28991.74 31197.92 14497.76 29190.23 32296.51 29398.91 13885.61 30599.85 9492.88 29496.90 32498.69 271
ADS-MVSNet95.24 28194.93 28596.18 29698.14 28990.10 32597.92 14497.32 30190.23 32296.51 29398.91 13885.61 30599.74 20692.88 29496.90 32498.69 271
cl_fuxian97.36 20497.37 19597.31 26298.09 29293.25 29095.01 31299.16 17997.05 20498.77 15498.72 17992.88 26199.64 25396.93 13999.76 9799.05 221
FMVSNet397.50 19497.24 20398.29 20898.08 29395.83 23097.86 15198.91 22697.89 13298.95 12498.95 13387.06 29399.81 14997.77 9499.69 12499.23 194
PAPM91.88 31890.34 32096.51 28998.06 29492.56 30192.44 34397.17 30386.35 33890.38 34596.01 31786.61 29699.21 32770.65 34895.43 33697.75 310
Effi-MVS+-dtu98.26 13797.90 15999.35 6698.02 29599.49 298.02 13499.16 17998.29 10497.64 23797.99 25896.44 17099.95 1496.66 16798.93 27198.60 275
mvs-test197.83 17697.48 19098.89 13598.02 29599.20 2997.20 21299.16 17998.29 10496.46 29797.17 29996.44 17099.92 3296.66 16797.90 30997.54 320
eth_miper_zixun_eth97.23 21697.25 20197.17 26898.00 29792.77 29994.71 31899.18 17097.27 18698.56 17798.74 17691.89 27299.69 22697.06 13099.81 6799.05 221
HY-MVS95.94 1395.90 26795.35 27497.55 25197.95 29894.79 25398.81 6496.94 30992.28 30595.17 32398.57 20989.90 28299.75 20291.20 31697.33 32098.10 295
UGNet98.53 10898.45 9598.79 14997.94 29996.96 20199.08 4498.54 26699.10 5796.82 28299.47 3996.55 16499.84 11198.56 5799.94 1999.55 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 25595.70 26198.79 14997.92 30099.12 5098.28 10398.60 26592.16 30795.54 31996.17 31694.77 22999.52 28989.62 32698.23 29497.72 312
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 23896.55 24297.79 23397.91 30194.21 26797.56 18498.87 23297.49 16199.06 10299.05 10680.72 32999.80 15998.44 6199.82 6399.37 152
API-MVS97.04 23196.91 21997.42 25997.88 30298.23 11098.18 11398.50 26997.57 15397.39 25896.75 30796.77 15299.15 33190.16 32499.02 26294.88 343
MVS_030497.64 18697.35 19798.52 18597.87 30396.69 21198.59 7698.05 28697.44 17093.74 33898.85 15693.69 25099.88 6298.11 7599.81 6798.98 234
miper_ehance_all_eth97.06 22897.03 21197.16 27097.83 30493.06 29294.66 32199.09 19395.99 24398.69 16098.45 22392.73 26499.61 26396.79 15399.03 25998.82 256
cl-mvsnet_97.02 23296.83 22497.58 24797.82 30594.04 27194.66 32199.16 17997.04 20598.63 16698.71 18088.68 29099.69 22697.00 13299.81 6799.00 232
cl-mvsnet197.02 23296.84 22397.58 24797.82 30594.03 27294.66 32199.16 17997.04 20598.63 16698.71 18088.69 28999.69 22697.00 13299.81 6799.01 229
CANet97.87 16797.76 16698.19 21497.75 30795.51 23696.76 24199.05 20097.74 14096.93 27198.21 24495.59 20399.89 5497.86 9199.93 2499.19 204
PVSNet_089.98 2191.15 31990.30 32193.70 32597.72 30884.34 34690.24 34597.42 29690.20 32593.79 33693.09 34590.90 27698.89 34086.57 33472.76 34897.87 302
CR-MVSNet96.28 26095.95 25697.28 26397.71 30994.22 26598.11 12098.92 22492.31 30496.91 27499.37 5285.44 30899.81 14997.39 11297.36 31897.81 306
RPMNet96.82 24196.66 23597.28 26397.71 30994.22 26598.11 12096.90 31199.37 3396.91 27499.34 5886.72 29599.81 14997.53 10697.36 31897.81 306
pmmvs395.03 28594.40 29096.93 27797.70 31192.53 30295.08 31097.71 29388.57 33397.71 23298.08 25479.39 33699.82 13696.19 19899.11 25298.43 284
baseline293.73 30492.83 30996.42 29197.70 31191.28 32096.84 23789.77 34893.96 28692.44 34195.93 31979.14 33799.77 18892.94 29296.76 32898.21 290
tpm94.67 28994.34 29295.66 30697.68 31388.42 32897.88 14894.90 32794.46 27396.03 30798.56 21078.66 33899.79 17295.88 21095.01 33898.78 263
CANet_DTU97.26 21297.06 21097.84 23097.57 31494.65 25996.19 27198.79 24897.23 19495.14 32498.24 24193.22 25399.84 11197.34 11499.84 5499.04 225
tpm293.09 31192.58 31194.62 31797.56 31586.53 33697.66 17295.79 32486.15 33994.07 33498.23 24375.95 34399.53 28590.91 32096.86 32797.81 306
TR-MVS95.55 27595.12 28196.86 28497.54 31693.94 27696.49 25596.53 31694.36 27897.03 26996.61 30994.26 23999.16 33086.91 33396.31 33197.47 322
131495.74 27195.60 26596.17 29797.53 31792.75 30098.07 12598.31 27691.22 31794.25 33096.68 30895.53 20499.03 33391.64 31297.18 32196.74 330
CostFormer93.97 30193.78 29794.51 31897.53 31785.83 33997.98 14095.96 32289.29 33094.99 32698.63 20078.63 33999.62 25794.54 24996.50 32998.09 296
FMVSNet596.01 26495.20 27898.41 19797.53 31796.10 22298.74 6599.50 5597.22 19798.03 21699.04 10969.80 34999.88 6297.27 11799.71 11499.25 190
PMMVS96.51 25295.98 25598.09 21797.53 31795.84 22994.92 31498.84 23991.58 31296.05 30695.58 32495.68 20099.66 24695.59 22898.09 30398.76 265
PAPR95.29 27994.47 28897.75 23697.50 32195.14 24894.89 31598.71 25991.39 31695.35 32295.48 32794.57 23199.14 33284.95 33697.37 31698.97 238
PatchT96.65 24896.35 24797.54 25297.40 32295.32 24297.98 14096.64 31599.33 3696.89 27899.42 4784.32 31599.81 14997.69 10297.49 31397.48 321
tpm cat193.29 30993.13 30793.75 32497.39 32384.74 34297.39 19797.65 29583.39 34494.16 33198.41 22582.86 32499.39 31091.56 31495.35 33797.14 325
PatchmatchNetpermissive95.58 27495.67 26395.30 31297.34 32487.32 33397.65 17496.65 31495.30 25897.07 26698.69 18484.77 31099.75 20294.97 23998.64 28498.83 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_test8_iter0595.24 28195.13 28095.57 30897.32 32587.02 33597.99 13899.41 8898.06 12199.12 9199.05 10666.85 35299.85 9498.93 3499.47 19899.84 8
Patchmtry97.35 20596.97 21598.50 19097.31 32696.47 21498.18 11398.92 22498.95 7398.78 15199.37 5285.44 30899.85 9495.96 20899.83 6099.17 210
LS3D98.63 8998.38 10899.36 6197.25 32799.38 599.12 4399.32 12199.21 4298.44 18798.88 15097.31 11899.80 15996.58 17199.34 21398.92 245
IB-MVS91.63 1992.24 31690.90 31996.27 29497.22 32891.24 32194.36 33093.33 33892.37 30392.24 34294.58 34066.20 35499.89 5493.16 29194.63 34097.66 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst95.07 28495.46 26993.91 32397.11 32984.36 34597.62 17696.96 30794.98 26296.35 29998.80 16785.46 30799.59 26895.60 22796.23 33297.79 309
MDTV_nov1_ep1395.22 27797.06 33083.20 34797.74 16596.16 31994.37 27796.99 27098.83 16283.95 31899.53 28593.90 27297.95 308
MVS93.19 31092.09 31396.50 29096.91 33194.03 27298.07 12598.06 28568.01 34794.56 32996.48 31295.96 19199.30 32183.84 33896.89 32696.17 335
E-PMN94.17 29794.37 29193.58 32696.86 33285.71 34090.11 34697.07 30598.17 11697.82 22797.19 29884.62 31298.94 33789.77 32597.68 31296.09 339
JIA-IIPM95.52 27695.03 28297.00 27396.85 33394.03 27296.93 22995.82 32399.20 4594.63 32899.71 1283.09 32299.60 26494.42 25594.64 33997.36 323
EMVS93.83 30394.02 29493.23 33096.83 33484.96 34189.77 34796.32 31897.92 12997.43 25696.36 31586.17 30098.93 33887.68 33197.73 31195.81 340
cl-mvsnet295.79 27095.39 27396.98 27596.77 33592.79 29894.40 32998.53 26794.59 27097.89 22198.17 24682.82 32599.24 32696.37 18799.03 25998.92 245
dp93.47 30793.59 30093.13 33196.64 33681.62 35097.66 17296.42 31792.80 29996.11 30298.64 19678.55 34199.59 26893.31 28992.18 34698.16 293
test-LLR93.90 30293.85 29594.04 32196.53 33784.62 34394.05 33292.39 34196.17 23494.12 33295.07 33082.30 32699.67 23895.87 21398.18 29797.82 304
test-mter92.33 31591.76 31794.04 32196.53 33784.62 34394.05 33292.39 34194.00 28594.12 33295.07 33065.63 35599.67 23895.87 21398.18 29797.82 304
TESTMET0.1,192.19 31791.77 31693.46 32796.48 33982.80 34894.05 33291.52 34494.45 27594.00 33594.88 33666.65 35399.56 27795.78 21898.11 30298.02 298
DWT-MVSNet_test92.75 31292.05 31494.85 31596.48 33987.21 33497.83 15594.99 32692.22 30692.72 34094.11 34370.75 34899.46 30295.01 23794.33 34297.87 302
miper_enhance_ethall96.01 26495.74 25996.81 28596.41 34192.27 30793.69 33798.89 22991.14 31998.30 19797.35 29690.58 27799.58 27396.31 19199.03 25998.60 275
tpmvs95.02 28695.25 27694.33 31996.39 34285.87 33798.08 12496.83 31395.46 25695.51 32098.69 18485.91 30399.53 28594.16 26196.23 33297.58 318
CMPMVSbinary75.91 2396.29 25995.44 27098.84 14196.25 34398.69 7797.02 22299.12 18988.90 33197.83 22598.86 15389.51 28498.90 33991.92 30799.51 18798.92 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 29093.69 29896.99 27496.05 34493.61 28894.97 31393.49 33696.17 23497.57 24494.88 33682.30 32699.01 33693.60 28194.17 34398.37 288
EPMVS93.72 30593.27 30395.09 31496.04 34587.76 33198.13 11785.01 35194.69 26996.92 27298.64 19678.47 34299.31 31995.04 23696.46 33098.20 291
cascas94.79 28894.33 29396.15 30096.02 34692.36 30692.34 34499.26 14985.34 34195.08 32594.96 33592.96 26098.53 34394.41 25898.59 28797.56 319
RRT_MVS97.07 22796.57 24198.58 17395.89 34796.33 21797.36 19998.77 25097.85 13599.08 9999.12 9282.30 32699.96 898.82 4199.90 4299.45 122
gg-mvs-nofinetune92.37 31491.20 31895.85 30295.80 34892.38 30599.31 1881.84 35399.75 591.83 34399.74 868.29 35099.02 33487.15 33297.12 32296.16 336
gm-plane-assit94.83 34981.97 34988.07 33594.99 33399.60 26491.76 309
GG-mvs-BLEND94.76 31694.54 35092.13 30999.31 1880.47 35488.73 34891.01 34767.59 35198.16 34682.30 34394.53 34193.98 344
EPNet_dtu94.93 28794.78 28795.38 31193.58 35187.68 33296.78 23995.69 32597.35 17889.14 34798.09 25388.15 29199.49 29594.95 24099.30 22098.98 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet96.14 26295.44 27098.25 21090.76 35295.50 23797.92 14494.65 32898.97 6992.98 33998.85 15689.12 28799.87 7895.99 20699.68 12999.39 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tmp_tt78.77 32078.73 32278.90 33458.45 35374.76 35494.20 33178.26 35539.16 34986.71 34992.82 34680.50 33075.19 35186.16 33592.29 34586.74 346
testmvs17.12 32220.53 3246.87 33612.05 3544.20 35693.62 3386.73 3564.62 35110.41 35124.33 3498.28 3573.56 3539.69 35015.07 34912.86 349
test12317.04 32320.11 3257.82 33510.25 3554.91 35594.80 3164.47 3574.93 35010.00 35224.28 3509.69 3563.64 35210.14 34912.43 35014.92 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.66 32132.88 3230.00 3370.00 3560.00 3570.00 34899.10 1920.00 3520.00 35397.58 28099.21 100.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.17 32410.90 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35398.07 640.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.12 32510.83 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35397.48 2870.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_TWO99.30 13498.03 12299.26 7599.02 11397.51 10799.88 6296.91 14099.60 15799.66 33
test_0728_THIRD98.17 11699.08 9999.02 11397.89 7799.88 6297.07 12999.71 11499.70 28
GSMVS98.81 258
test_part10.00 3370.00 3570.00 34899.28 1400.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs184.74 31198.81 258
sam_mvs84.29 317
MTGPAbinary99.20 161
test_post197.59 18120.48 35283.07 32399.66 24694.16 261
test_post21.25 35183.86 31999.70 222
patchmatchnet-post98.77 17284.37 31499.85 94
MTMP97.93 14391.91 343
test9_res93.28 29099.15 24499.38 149
agg_prior292.50 30399.16 24199.37 152
test_prior497.97 13795.86 284
test_prior295.74 29096.48 22596.11 30297.63 27895.92 19394.16 26199.20 234
旧先验295.76 28888.56 33497.52 24899.66 24694.48 251
新几何295.93 281
无先验95.74 29098.74 25689.38 32999.73 21192.38 30499.22 198
原ACMM295.53 297
testdata299.79 17292.80 298
segment_acmp97.02 136
testdata195.44 30296.32 231
plane_prior599.27 14499.70 22294.42 25599.51 18799.45 122
plane_prior497.98 259
plane_prior397.78 15897.41 17297.79 228
plane_prior297.77 16198.20 113
plane_prior97.65 16797.07 22196.72 21899.36 209
n20.00 358
nn0.00 358
door-mid99.57 33
test1198.87 232
door99.41 88
HQP5-MVS96.79 206
BP-MVS92.82 296
HQP4-MVS95.56 31599.54 28399.32 172
HQP3-MVS99.04 20399.26 227
HQP2-MVS93.84 244
MDTV_nov1_ep13_2view74.92 35397.69 16990.06 32797.75 23185.78 30493.52 28398.69 271
ACMMP++_ref99.77 88
ACMMP++99.68 129
Test By Simon96.52 165