This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 8
test_part199.79 299.79 299.78 299.85 1399.46 399.79 499.81 499.98 199.97 299.87 299.27 999.97 399.60 499.99 599.91 2
pmmvs699.67 499.70 499.60 1499.90 499.27 2199.53 899.76 799.64 1299.84 999.83 399.50 599.87 7999.36 1599.92 3499.64 39
UA-Net99.47 1299.40 1599.70 399.49 8499.29 1899.80 399.72 999.82 499.04 11099.81 498.05 6899.96 998.85 3999.99 599.86 7
ANet_high99.57 899.67 699.28 7999.89 698.09 12499.14 4199.93 199.82 499.93 399.81 499.17 1399.94 2399.31 17100.00 199.82 10
UniMVSNet_ETH3D99.69 399.69 599.69 499.84 1599.34 1599.69 599.58 2799.90 399.86 899.78 699.58 399.95 1599.00 3299.95 1699.78 15
OurMVSNet-221017-099.37 2299.31 2399.53 3799.91 398.98 6199.63 799.58 2799.44 2999.78 1199.76 796.39 17699.92 3399.44 1499.92 3499.68 31
MVS-HIRNet94.32 29795.62 26890.42 33798.46 27675.36 35896.29 27089.13 35495.25 26495.38 32799.75 892.88 26699.19 33394.07 27399.39 20896.72 336
gg-mvs-nofinetune92.37 31891.20 32395.85 30695.80 35492.38 31199.31 1981.84 35899.75 691.83 34999.74 968.29 35699.02 33987.15 33897.12 32896.16 341
mvs_tets99.63 699.67 699.49 4999.88 798.61 8799.34 1499.71 1099.27 4199.90 599.74 999.68 299.97 399.55 999.99 599.88 4
test_djsdf99.52 1099.51 1099.53 3799.86 1198.74 7699.39 1299.56 4199.11 5499.70 1699.73 1199.00 1699.97 399.26 1999.98 1099.89 3
anonymousdsp99.51 1199.47 1399.62 799.88 799.08 6099.34 1499.69 1398.93 7599.65 2399.72 1298.93 1999.95 1599.11 26100.00 199.82 10
PS-MVSNAJss99.46 1399.49 1199.35 6999.90 498.15 12099.20 3399.65 1899.48 2499.92 499.71 1398.07 6599.96 999.53 10100.00 199.93 1
JIA-IIPM95.52 28095.03 28797.00 27796.85 33994.03 27896.93 23495.82 32899.20 4694.63 33499.71 1383.09 32799.60 26994.42 26094.64 34597.36 328
Anonymous2023121199.27 2699.27 2599.26 8499.29 12198.18 11899.49 999.51 5499.70 899.80 1099.68 1596.84 14999.83 13199.21 2299.91 3999.77 17
jajsoiax99.58 799.61 899.48 5199.87 1098.61 8799.28 2899.66 1799.09 6199.89 799.68 1599.53 499.97 399.50 1199.99 599.87 5
LTVRE_ROB98.40 199.67 499.71 399.56 2599.85 1399.11 5699.90 199.78 599.63 1499.78 1199.67 1799.48 699.81 15499.30 1899.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 999.57 999.41 6099.88 798.54 9599.45 1099.61 2299.66 1199.68 2099.66 1898.44 3999.95 1599.73 299.96 1599.75 23
K. test v398.00 16097.66 17999.03 12099.79 2097.56 17699.19 3792.47 34599.62 1799.52 3499.66 1889.61 28899.96 999.25 2199.81 6899.56 70
SixPastTwentyTwo98.75 7198.62 7299.16 9599.83 1697.96 14699.28 2898.20 28599.37 3499.70 1699.65 2092.65 27099.93 2799.04 3099.84 5599.60 48
DSMNet-mixed97.42 20497.60 18596.87 28599.15 15691.46 32098.54 8299.12 19392.87 30497.58 24799.63 2196.21 18399.90 4695.74 22499.54 17899.27 190
TransMVSNet (Re)99.44 1499.47 1399.36 6499.80 1898.58 9099.27 3099.57 3499.39 3299.75 1399.62 2299.17 1399.83 13199.06 2999.62 15099.66 34
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1699.75 899.58 2298.60 17699.62 2298.22 5599.51 29897.70 10199.73 10597.89 305
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1798.55 9297.47 19899.57 3499.37 3499.21 8399.61 2496.76 15899.83 13198.06 7999.83 6199.71 26
TDRefinement99.42 1799.38 1699.55 2799.76 2299.33 1699.68 699.71 1099.38 3399.53 3299.61 2498.64 2899.80 16398.24 7099.84 5599.52 92
pm-mvs199.44 1499.48 1299.33 7499.80 1898.63 8499.29 2499.63 1999.30 3999.65 2399.60 2699.16 1599.82 14199.07 2899.83 6199.56 70
v1098.97 4399.11 3398.55 18599.44 10096.21 22798.90 5899.55 4498.73 8399.48 3999.60 2696.63 16599.83 13199.70 399.99 599.61 47
v899.01 3699.16 3098.57 18099.47 9496.31 22598.90 5899.47 7299.03 6499.52 3499.57 2896.93 14599.81 15499.60 499.98 1099.60 48
MIMVSNet199.38 2199.32 2299.55 2799.86 1199.19 3599.41 1199.59 2599.59 2099.71 1599.57 2897.12 13499.90 4699.21 2299.87 5199.54 82
GBi-Net98.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
test198.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
FMVSNet199.17 3099.17 2999.17 9299.55 6598.24 11199.20 3399.44 8099.21 4399.43 4799.55 3097.82 8499.86 8698.42 6499.89 4799.41 138
new-patchmatchnet98.35 13098.74 5597.18 27199.24 12892.23 31496.42 26499.48 6698.30 10599.69 1899.53 3397.44 11799.82 14198.84 4199.77 8999.49 104
lessismore_v098.97 12799.73 2497.53 17886.71 35599.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
FC-MVSNet-test99.27 2699.25 2699.34 7299.77 2198.37 10599.30 2399.57 3499.61 1999.40 5299.50 3597.12 13499.85 9999.02 3199.94 2099.80 13
VDDNet98.21 14597.95 15899.01 12499.58 5097.74 16799.01 4997.29 30899.67 1098.97 12299.50 3590.45 28399.80 16397.88 9099.20 23899.48 110
DeepC-MVS97.60 498.97 4398.93 4299.10 10499.35 11497.98 14198.01 14199.46 7497.56 15999.54 2999.50 3598.97 1799.84 11698.06 7999.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XXY-MVS99.14 3299.15 3299.10 10499.76 2297.74 16798.85 6399.62 2098.48 9799.37 5699.49 3898.75 2499.86 8698.20 7399.80 7699.71 26
Vis-MVSNetpermissive99.34 2399.36 1799.27 8299.73 2498.26 10999.17 3899.78 599.11 5499.27 7299.48 3998.82 2199.95 1598.94 3499.93 2599.59 54
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 11198.45 9998.79 15297.94 30596.96 20799.08 4598.54 27199.10 5896.82 28799.47 4096.55 16899.84 11698.56 5899.94 2099.55 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 18898.50 8895.13 31799.63 4885.84 34498.35 10598.21 28498.23 11399.54 2999.46 4195.02 22399.68 24098.24 7099.87 5199.87 5
LCM-MVSNet-Re98.64 9098.48 9399.11 10298.85 21798.51 9798.49 9099.83 398.37 10099.69 1899.46 4198.21 5799.92 3394.13 27199.30 22498.91 252
mvs_anonymous97.83 17998.16 13996.87 28598.18 29391.89 31697.31 20898.90 23297.37 18098.83 14899.46 4196.28 18299.79 17698.90 3698.16 30498.95 243
DTE-MVSNet99.43 1699.35 1899.66 599.71 3099.30 1799.31 1999.51 5499.64 1299.56 2799.46 4198.23 5299.97 398.78 4399.93 2599.72 25
ACMH96.65 799.25 2899.24 2799.26 8499.72 2998.38 10499.07 4699.55 4498.30 10599.65 2399.45 4599.22 1099.76 20098.44 6299.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testing_298.93 4898.99 4198.76 15899.57 5497.03 20497.85 15799.13 19098.46 9899.44 4599.44 4698.22 5599.74 21198.85 3999.94 2099.51 95
VPA-MVSNet99.30 2599.30 2499.28 7999.49 8498.36 10699.00 5199.45 7799.63 1499.52 3499.44 4698.25 5099.88 6399.09 2799.84 5599.62 43
PEN-MVS99.41 1899.34 2099.62 799.73 2499.14 4999.29 2499.54 4899.62 1799.56 2799.42 4898.16 6199.96 998.78 4399.93 2599.77 17
PatchT96.65 25196.35 25197.54 25697.40 32895.32 24897.98 14496.64 32099.33 3796.89 28399.42 4884.32 32099.81 15497.69 10397.49 31897.48 326
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4299.52 5399.48 2499.24 7999.41 5096.79 15599.82 14198.69 5099.88 4899.76 21
PS-CasMVS99.40 1999.33 2199.62 799.71 3099.10 5799.29 2499.53 5099.53 2399.46 4299.41 5098.23 5299.95 1598.89 3899.95 1699.81 12
ab-mvs98.41 12398.36 11498.59 17699.19 14197.23 19199.32 1698.81 25097.66 14998.62 17299.40 5296.82 15299.80 16395.88 21599.51 18898.75 271
Anonymous2024052998.93 4898.87 4499.12 10099.19 14198.22 11699.01 4998.99 22199.25 4299.54 2999.37 5397.04 13799.80 16397.89 8799.52 18599.35 166
CR-MVSNet96.28 26395.95 26097.28 26897.71 31594.22 27198.11 12498.92 22992.31 31096.91 27999.37 5385.44 31399.81 15497.39 11397.36 32497.81 311
Patchmtry97.35 20896.97 21998.50 19497.31 33296.47 22098.18 11798.92 22998.95 7498.78 15599.37 5385.44 31399.85 9995.96 21399.83 6199.17 214
EG-PatchMatch MVS98.99 3899.01 3898.94 13199.50 7797.47 18098.04 13599.59 2598.15 12299.40 5299.36 5698.58 3299.76 20098.78 4399.68 13099.59 54
IterMVS-SCA-FT97.85 17698.18 13596.87 28599.27 12391.16 32995.53 30299.25 15499.10 5899.41 4999.35 5793.10 26199.96 998.65 5199.94 2099.49 104
PMVScopyleft91.26 2097.86 17197.94 16097.65 24599.71 3097.94 14998.52 8498.68 26598.99 6797.52 25399.35 5797.41 11898.18 35091.59 31999.67 13696.82 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2499.22 2899.65 699.71 3099.24 2499.32 1699.55 4499.46 2799.50 3899.34 5997.30 12399.93 2798.90 3699.93 2599.77 17
RPMNet97.02 23596.93 22097.30 26797.71 31594.22 27198.11 12499.30 13699.37 3496.91 27999.34 5986.72 30099.87 7997.53 10797.36 32497.81 311
IterMVS97.73 18398.11 14596.57 29299.24 12890.28 33095.52 30499.21 16398.86 7899.33 6299.33 6193.11 26099.94 2398.49 5999.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 6198.73 5699.05 11798.76 23197.81 16199.25 3199.30 13698.57 9598.55 18399.33 6197.95 7799.90 4697.16 12399.67 13699.44 129
IterMVS-LS98.55 10698.70 6398.09 22199.48 9294.73 26197.22 21699.39 9498.97 7099.38 5499.31 6396.00 19099.93 2798.58 5399.97 1299.60 48
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet298.49 11598.40 10798.75 16198.90 20697.14 20298.61 7499.13 19098.59 9199.19 8599.28 6494.14 24599.82 14197.97 8599.80 7699.29 187
3Dnovator+97.89 398.69 8198.51 8699.24 8798.81 22798.40 10299.02 4899.19 17098.99 6798.07 21699.28 6497.11 13699.84 11696.84 15299.32 21999.47 118
VDD-MVS98.56 10298.39 11099.07 11099.13 15998.07 13098.59 7797.01 31299.59 2099.11 9499.27 6694.82 22999.79 17698.34 6799.63 14799.34 168
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21699.73 2495.15 25397.36 20499.68 1494.45 28098.99 11799.27 6696.87 14899.94 2397.13 12799.91 3999.57 65
nrg03099.40 1999.35 1899.54 3099.58 5099.13 5298.98 5499.48 6699.68 999.46 4299.26 6898.62 2999.73 21699.17 2599.92 3499.76 21
CP-MVSNet99.21 2999.09 3499.56 2599.65 4398.96 6599.13 4299.34 11599.42 3099.33 6299.26 6897.01 14199.94 2398.74 4799.93 2599.79 14
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 598.55 8199.57 3497.72 14698.90 13499.26 6896.12 18599.52 29495.72 22599.71 11599.32 176
tfpnnormal98.90 5398.90 4398.91 13599.67 4097.82 15999.00 5199.44 8099.45 2899.51 3799.24 7198.20 5899.86 8695.92 21499.69 12599.04 229
v124098.55 10698.62 7298.32 20899.22 13395.58 23997.51 19499.45 7797.16 20399.45 4499.24 7196.12 18599.85 9999.60 499.88 4899.55 78
APDe-MVS98.99 3898.79 5199.60 1499.21 13599.15 4698.87 6099.48 6697.57 15799.35 5999.24 7197.83 8199.89 5597.88 9099.70 11999.75 23
ambc98.24 21598.82 22595.97 23298.62 7399.00 22099.27 7299.21 7496.99 14299.50 29996.55 18099.50 19599.26 193
TAMVS98.24 14398.05 15198.80 15099.07 17197.18 19897.88 15298.81 25096.66 22599.17 9099.21 7494.81 23199.77 19396.96 13999.88 4899.44 129
v119298.60 9798.66 6898.41 20199.27 12395.88 23497.52 19299.36 10497.41 17699.33 6299.20 7696.37 17999.82 14199.57 799.92 3499.55 78
pmmvs-eth3d98.47 11798.34 11798.86 14299.30 12097.76 16497.16 22399.28 14595.54 25799.42 4899.19 7797.27 12699.63 26097.89 8799.97 1299.20 203
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5099.10 5798.74 6699.56 4199.09 6199.33 6299.19 7798.40 4199.72 22495.98 21299.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 10998.57 8098.45 19899.21 13595.98 23197.63 17999.36 10497.15 20599.32 6799.18 7995.84 20199.84 11699.50 1199.91 3999.54 82
PM-MVS98.82 5998.72 5899.12 10099.64 4698.54 9597.98 14499.68 1497.62 15299.34 6199.18 7997.54 10499.77 19397.79 9399.74 10299.04 229
PVSNet_BlendedMVS97.55 19597.53 18897.60 24998.92 20293.77 29196.64 25299.43 8594.49 27697.62 24399.18 7996.82 15299.67 24394.73 24999.93 2599.36 162
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7599.58 2799.11 5499.53 3299.18 7998.81 2299.67 24396.71 16599.77 8999.50 100
v192192098.54 10998.60 7798.38 20499.20 13895.76 23897.56 18899.36 10497.23 19899.38 5499.17 8396.02 18899.84 11699.57 799.90 4399.54 82
casdiffmvs98.95 4699.00 3998.81 14899.38 10797.33 18697.82 16099.57 3499.17 5199.35 5999.17 8398.35 4699.69 23198.46 6199.73 10599.41 138
Patchmatch-RL test97.26 21597.02 21697.99 23099.52 7295.53 24196.13 27799.71 1097.47 16699.27 7299.16 8584.30 32199.62 26297.89 8799.77 8998.81 262
V4298.78 6698.78 5298.76 15899.44 10097.04 20398.27 10899.19 17097.87 13799.25 7899.16 8596.84 14999.78 18799.21 2299.84 5599.46 120
QAPM97.31 21196.81 23098.82 14698.80 22997.49 17999.06 4799.19 17090.22 33097.69 23999.16 8596.91 14699.90 4690.89 32799.41 20599.07 223
wuyk23d96.06 26797.62 18391.38 33698.65 25998.57 9198.85 6396.95 31496.86 21799.90 599.16 8599.18 1298.40 34989.23 33399.77 8977.18 352
v114498.60 9798.66 6898.41 20199.36 11095.90 23397.58 18699.34 11597.51 16299.27 7299.15 8996.34 18199.80 16399.47 1399.93 2599.51 95
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9599.33 12099.63 1499.48 3999.15 8997.23 13199.75 20797.17 12299.66 14199.63 42
OpenMVScopyleft96.65 797.09 22896.68 23798.32 20898.32 28497.16 20098.86 6299.37 10089.48 33496.29 30599.15 8996.56 16799.90 4692.90 29899.20 23897.89 305
EPP-MVSNet98.30 13498.04 15299.07 11099.56 6297.83 15699.29 2498.07 28999.03 6498.59 17799.13 9292.16 27499.90 4696.87 14999.68 13099.49 104
ACMMP_NAP98.75 7198.48 9399.57 1999.58 5099.29 1897.82 16099.25 15496.94 21398.78 15599.12 9398.02 6999.84 11697.13 12799.67 13699.59 54
RRT_MVS97.07 23096.57 24598.58 17795.89 35396.33 22397.36 20498.77 25597.85 13999.08 10099.12 9382.30 33199.96 998.82 4299.90 4399.45 124
MVS_Test98.18 14898.36 11497.67 24398.48 27494.73 26198.18 11799.02 21497.69 14798.04 22099.11 9597.22 13299.56 28298.57 5598.90 27798.71 273
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 22599.44 10094.96 25796.63 25399.15 18998.35 10198.83 14899.11 9594.31 24299.85 9996.60 17198.72 28399.37 156
SMA-MVScopyleft98.40 12598.03 15399.51 4699.16 15299.21 2798.05 13399.22 16294.16 28798.98 11999.10 9797.52 10899.79 17696.45 18799.64 14499.53 88
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 25396.25 25797.71 24299.04 17894.66 26499.16 3996.92 31697.23 19897.87 22799.10 9786.11 30799.65 25691.65 31799.21 23798.82 260
USDC97.41 20597.40 19697.44 26298.94 19693.67 29395.17 31299.53 5094.03 29098.97 12299.10 9795.29 21799.34 32095.84 22199.73 10599.30 183
test072699.50 7799.21 2798.17 12099.35 10997.97 12999.26 7699.06 10097.61 99
AllTest98.44 12098.20 13299.16 9599.50 7798.55 9298.25 11099.58 2796.80 21898.88 14199.06 10097.65 9499.57 27994.45 25899.61 15699.37 156
TestCases99.16 9599.50 7798.55 9299.58 2796.80 21898.88 14199.06 10097.65 9499.57 27994.45 25899.61 15699.37 156
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 10998.87 6798.39 10199.42 8899.42 3099.36 5899.06 10098.38 4299.95 1598.34 6799.90 4399.57 65
LPG-MVS_test98.71 7698.46 9799.47 5499.57 5498.97 6298.23 11199.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23499.78 8599.62 43
LGP-MVS_train99.47 5499.57 5498.97 6299.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23499.78 8599.62 43
baseline98.96 4599.02 3798.76 15899.38 10797.26 19098.49 9099.50 5698.86 7899.19 8599.06 10098.23 5299.69 23198.71 4999.76 9899.33 174
VPNet98.87 5598.83 4799.01 12499.70 3697.62 17598.43 9899.35 10999.47 2699.28 7099.05 10796.72 16199.82 14198.09 7799.36 21399.59 54
RRT_test8_iter0595.24 28595.13 28595.57 31297.32 33187.02 34197.99 14299.41 8998.06 12599.12 9299.05 10766.85 35899.85 9998.93 3599.47 19999.84 9
MVSTER96.86 24296.55 24697.79 23797.91 30794.21 27397.56 18898.87 23797.49 16599.06 10399.05 10780.72 33599.80 16398.44 6299.82 6499.37 156
SD-MVS98.40 12598.68 6597.54 25698.96 19397.99 13797.88 15299.36 10498.20 11799.63 2699.04 11098.76 2395.33 35496.56 17799.74 10299.31 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_698.99 3898.78 5299.61 1099.45 9899.46 398.60 7599.50 5698.59 9199.24 7999.04 11098.54 3499.89 5596.45 18799.62 15099.50 100
FMVSNet596.01 26895.20 28398.41 20197.53 32396.10 22898.74 6699.50 5697.22 20198.03 22199.04 11069.80 35599.88 6397.27 11899.71 11599.25 194
IS-MVSNet98.19 14797.90 16399.08 10799.57 5497.97 14299.31 1998.32 28099.01 6698.98 11999.03 11391.59 27899.79 17695.49 23699.80 7699.48 110
SED-MVS98.91 5198.72 5899.49 4999.49 8499.17 3798.10 12699.31 12798.03 12699.66 2199.02 11498.36 4399.88 6396.91 14199.62 15099.41 138
test_241102_TWO99.30 13698.03 12699.26 7699.02 11497.51 10999.88 6396.91 14199.60 15899.66 34
DVP-MVS98.77 6898.52 8499.52 4299.50 7799.21 2798.02 13898.84 24497.97 12999.08 10099.02 11497.61 9999.88 6396.99 13599.63 14799.48 110
test_0728_THIRD98.17 12099.08 10099.02 11497.89 7899.88 6397.07 13099.71 11599.70 29
EI-MVSNet98.40 12598.51 8698.04 22799.10 16494.73 26197.20 21798.87 23798.97 7099.06 10399.02 11496.00 19099.80 16398.58 5399.82 6499.60 48
CVMVSNet96.25 26497.21 20893.38 33399.10 16480.56 35797.20 21798.19 28796.94 21399.00 11699.02 11489.50 29099.80 16396.36 19399.59 16099.78 15
LFMVS97.20 22196.72 23498.64 16898.72 23796.95 20898.93 5794.14 34099.74 798.78 15599.01 12084.45 31899.73 21697.44 11099.27 22899.25 194
v2v48298.56 10298.62 7298.37 20599.42 10495.81 23797.58 18699.16 18397.90 13599.28 7099.01 12095.98 19499.79 17699.33 1699.90 4399.51 95
ACMMPcopyleft98.75 7198.50 8899.52 4299.56 6299.16 4198.87 6099.37 10097.16 20398.82 15299.01 12097.71 9099.87 7996.29 19899.69 12599.54 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVS98.59 10098.26 12699.57 1999.27 12399.15 4697.01 22899.39 9497.67 14899.44 4598.99 12397.53 10699.89 5595.40 23899.68 13099.66 34
MP-MVS-pluss98.57 10198.23 13099.60 1499.69 3899.35 1297.16 22399.38 9694.87 27198.97 12298.99 12398.01 7099.88 6397.29 11799.70 11999.58 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 8198.71 6098.62 17299.10 16496.37 22297.23 21398.87 23799.20 4699.19 8598.99 12397.30 12399.85 9998.77 4699.79 8199.65 38
XVG-ACMP-BASELINE98.56 10298.34 11799.22 8999.54 6898.59 8997.71 17199.46 7497.25 19298.98 11998.99 12397.54 10499.84 11695.88 21599.74 10299.23 198
APD-MVS_3200maxsize98.84 5898.61 7599.53 3799.19 14199.27 2198.49 9099.33 12098.64 8599.03 11398.98 12797.89 7899.85 9996.54 18199.42 20499.46 120
XVG-OURS98.53 11198.34 11799.11 10299.50 7798.82 7295.97 28199.50 5697.30 18799.05 10898.98 12799.35 799.32 32395.72 22599.68 13099.18 210
v14898.45 11998.60 7798.00 22999.44 10094.98 25697.44 20099.06 20198.30 10599.32 6798.97 12996.65 16499.62 26298.37 6699.85 5399.39 147
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17099.09 16796.40 22197.23 21398.86 24299.20 4699.18 8998.97 12997.29 12599.85 9998.72 4899.78 8599.64 39
CHOSEN 1792x268897.49 19997.14 21398.54 18899.68 3996.09 23096.50 25999.62 2091.58 31898.84 14798.97 12992.36 27299.88 6396.76 15899.95 1699.67 33
SR-MVS-dyc-post98.81 6198.55 8199.57 1999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.49 11399.86 8696.56 17799.39 20899.45 124
RE-MVS-def98.58 7999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.75 8896.56 17799.39 20899.45 124
D2MVS97.84 17797.84 16797.83 23599.14 15794.74 26096.94 23298.88 23595.84 25198.89 13798.96 13294.40 24099.69 23197.55 10499.95 1699.05 225
ACMM96.08 1298.91 5198.73 5699.48 5199.55 6599.14 4998.07 12999.37 10097.62 15299.04 11098.96 13298.84 2099.79 17697.43 11199.65 14299.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo98.08 15497.92 16198.57 18098.96 19396.79 21297.90 15199.18 17496.41 23298.46 18998.95 13695.93 19799.60 26996.51 18398.98 27399.31 180
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
YYNet197.60 19297.67 17697.39 26599.04 17893.04 30195.27 30998.38 27997.25 19298.92 13398.95 13695.48 21499.73 21696.99 13598.74 28199.41 138
MDA-MVSNet_test_wron97.60 19297.66 17997.41 26499.04 17893.09 29795.27 30998.42 27797.26 19198.88 14198.95 13695.43 21599.73 21697.02 13298.72 28399.41 138
FMVSNet397.50 19797.24 20798.29 21298.08 29995.83 23697.86 15598.91 23197.89 13698.95 12598.95 13687.06 29899.81 15497.77 9599.69 12599.23 198
OPM-MVS98.56 10298.32 12199.25 8699.41 10598.73 7997.13 22599.18 17497.10 20698.75 16098.92 14098.18 5999.65 25696.68 16799.56 17599.37 156
ADS-MVSNet295.43 28294.98 28896.76 29198.14 29591.74 31797.92 14897.76 29690.23 32896.51 29898.91 14185.61 31099.85 9992.88 29996.90 33098.69 276
ADS-MVSNet95.24 28594.93 29096.18 30098.14 29590.10 33197.92 14897.32 30790.23 32896.51 29898.91 14185.61 31099.74 21192.88 29996.90 33098.69 276
test_040298.76 6998.71 6098.93 13299.56 6298.14 12298.45 9799.34 11599.28 4098.95 12598.91 14198.34 4799.79 17695.63 23199.91 3998.86 257
test_241102_ONE99.49 8499.17 3799.31 12797.98 12899.66 2198.90 14498.36 4399.48 303
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11599.11 16097.97 14296.53 25699.54 4898.24 11198.83 14898.90 14497.80 8599.82 14195.68 22899.52 18599.38 153
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11699.41 8996.77 22098.83 14898.90 14497.80 8599.82 14195.68 22899.52 18599.38 153
zzz-MVS98.79 6398.52 8499.61 1099.67 4099.36 1097.33 20699.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
MTAPA98.88 5498.64 7099.61 1099.67 4099.36 1098.43 9899.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
test20.0398.78 6698.77 5498.78 15599.46 9597.20 19697.78 16299.24 15999.04 6399.41 4998.90 14497.65 9499.76 20097.70 10199.79 8199.39 147
SteuartSystems-ACMMP98.79 6398.54 8299.54 3099.73 2499.16 4198.23 11199.31 12797.92 13398.90 13498.90 14498.00 7199.88 6396.15 20699.72 11199.58 60
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 19197.17 20998.99 12699.27 12397.86 15495.98 28093.41 34295.25 26499.47 4198.90 14495.63 20699.85 9996.91 14199.73 10599.27 190
TSAR-MVS + MP.98.63 9298.49 9199.06 11599.64 4697.90 15198.51 8898.94 22496.96 21299.24 7998.89 15297.83 8199.81 15496.88 14899.49 19699.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test117298.76 6998.49 9199.57 1999.18 14899.37 998.39 10199.31 12798.43 9998.90 13498.88 15397.49 11399.86 8696.43 18999.37 21299.48 110
PGM-MVS98.66 8798.37 11399.55 2799.53 7099.18 3698.23 11199.49 6497.01 21198.69 16498.88 15398.00 7199.89 5595.87 21899.59 16099.58 60
TinyColmap97.89 16797.98 15697.60 24998.86 21594.35 27096.21 27499.44 8097.45 17399.06 10398.88 15397.99 7499.28 32994.38 26499.58 16699.18 210
LS3D98.63 9298.38 11299.36 6497.25 33399.38 699.12 4499.32 12299.21 4398.44 19198.88 15397.31 12299.80 16396.58 17299.34 21798.92 249
Anonymous20240521197.90 16597.50 19099.08 10798.90 20698.25 11098.53 8396.16 32498.87 7799.11 9498.86 15790.40 28499.78 18797.36 11499.31 22199.19 208
HPM-MVS_fast99.01 3698.82 4899.57 1999.71 3099.35 1299.00 5199.50 5697.33 18398.94 13198.86 15798.75 2499.82 14197.53 10799.71 11599.56 70
CMPMVSbinary75.91 2396.29 26295.44 27598.84 14496.25 34998.69 8297.02 22799.12 19388.90 33797.83 23098.86 15789.51 28998.90 34491.92 31399.51 18898.92 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 7698.43 10399.57 1999.18 14899.35 1298.36 10499.29 14398.29 10898.88 14198.85 16097.53 10699.87 7996.14 20799.31 22199.48 110
our_test_397.39 20697.73 17496.34 29698.70 24489.78 33294.61 32998.97 22396.50 22899.04 11098.85 16095.98 19499.84 11697.26 11999.67 13699.41 138
MVS_030497.64 18997.35 20198.52 18997.87 30996.69 21798.59 7798.05 29197.44 17493.74 34498.85 16093.69 25599.88 6398.11 7699.81 6898.98 238
Regformer-398.61 9598.61 7598.63 17099.02 18396.53 21997.17 22198.84 24499.13 5399.10 9798.85 16097.24 13099.79 17698.41 6599.70 11999.57 65
Regformer-498.73 7498.68 6598.89 13899.02 18397.22 19397.17 22199.06 20199.21 4399.17 9098.85 16097.45 11699.86 8698.48 6099.70 11999.60 48
EPNet96.14 26695.44 27598.25 21490.76 35895.50 24397.92 14894.65 33398.97 7092.98 34598.85 16089.12 29299.87 7995.99 21199.68 13099.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 18997.49 19198.08 22499.14 15795.12 25596.70 25099.05 20593.77 29398.62 17298.83 16693.23 25799.75 20798.33 6999.76 9899.36 162
PMMVS298.07 15598.08 14998.04 22799.41 10594.59 26794.59 33099.40 9297.50 16398.82 15298.83 16696.83 15199.84 11697.50 10999.81 6899.71 26
MDTV_nov1_ep1395.22 28297.06 33683.20 35397.74 16996.16 32494.37 28296.99 27598.83 16683.95 32399.53 29093.90 27797.95 313
Anonymous2023120698.21 14598.21 13198.20 21799.51 7495.43 24698.13 12199.32 12296.16 24098.93 13298.82 16996.00 19099.83 13197.32 11699.73 10599.36 162
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17499.38 9695.76 25498.81 15498.82 16998.36 4399.82 14194.75 24899.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VNet98.42 12298.30 12298.79 15298.79 23097.29 18798.23 11198.66 26699.31 3898.85 14598.80 17194.80 23299.78 18798.13 7599.13 25399.31 180
tpmrst95.07 28895.46 27393.91 32797.11 33584.36 35197.62 18096.96 31394.98 26796.35 30498.80 17185.46 31299.59 27395.60 23296.23 33897.79 314
ppachtmachnet_test97.50 19797.74 17296.78 29098.70 24491.23 32894.55 33199.05 20596.36 23399.21 8398.79 17396.39 17699.78 18796.74 16099.82 6499.34 168
miper_lstm_enhance97.18 22397.16 21097.25 27098.16 29492.85 30395.15 31499.31 12797.25 19298.74 16298.78 17490.07 28599.78 18797.19 12199.80 7699.11 221
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8898.39 28198.97 6295.03 31699.18 17496.88 21699.33 6298.78 17498.16 6199.28 32996.74 16099.62 15099.44 129
patchmatchnet-post98.77 17684.37 31999.85 99
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16098.93 6697.76 16799.28 14594.97 26898.72 16398.77 17697.04 13799.85 9993.79 28299.54 17899.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 5998.63 7199.39 6399.16 15298.74 7697.54 19099.25 15498.84 8099.06 10398.76 17896.76 15899.93 2798.57 5599.77 8999.50 100
NR-MVSNet98.95 4698.82 4899.36 6499.16 15298.72 8199.22 3299.20 16599.10 5899.72 1498.76 17896.38 17899.86 8698.00 8499.82 6499.50 100
eth_miper_zixun_eth97.23 21997.25 20597.17 27298.00 30392.77 30594.71 32399.18 17497.27 19098.56 18198.74 18091.89 27799.69 23197.06 13199.81 6899.05 225
UniMVSNet (Re)98.87 5598.71 6099.35 6999.24 12898.73 7997.73 17099.38 9698.93 7599.12 9298.73 18196.77 15699.86 8698.63 5299.80 7699.46 120
MG-MVS96.77 24696.61 24297.26 26998.31 28593.06 29895.93 28698.12 28896.45 23197.92 22398.73 18193.77 25399.39 31591.19 32399.04 26399.33 174
cl_fuxian97.36 20797.37 19997.31 26698.09 29893.25 29695.01 31799.16 18397.05 20898.77 15898.72 18392.88 26699.64 25896.93 14099.76 9899.05 225
cl-mvsnet_97.02 23596.83 22997.58 25197.82 31194.04 27794.66 32699.16 18397.04 20998.63 17098.71 18488.68 29599.69 23197.00 13399.81 6899.00 236
cl-mvsnet197.02 23596.84 22897.58 25197.82 31194.03 27894.66 32699.16 18397.04 20998.63 17098.71 18488.69 29499.69 23197.00 13399.81 6899.01 233
DELS-MVS98.27 13898.20 13298.48 19598.86 21596.70 21695.60 30099.20 16597.73 14598.45 19098.71 18497.50 11099.82 14198.21 7299.59 16098.93 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 16999.07 17197.53 19199.32 12295.53 25998.54 18598.70 18797.58 10199.76 20094.32 26599.46 200
tpmvs95.02 29095.25 28194.33 32396.39 34885.87 34398.08 12896.83 31895.46 26195.51 32698.69 18885.91 30899.53 29094.16 26696.23 33897.58 323
PatchmatchNetpermissive95.58 27895.67 26795.30 31697.34 33087.32 33997.65 17896.65 31995.30 26397.07 27198.69 18884.77 31599.75 20794.97 24498.64 28998.83 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 9098.34 11799.54 3099.54 6899.17 3798.63 7299.24 15997.47 16698.09 21598.68 19097.62 9899.89 5596.22 20199.62 15099.57 65
UnsupCasMVSNet_eth97.89 16797.60 18598.75 16199.31 11797.17 19997.62 18099.35 10998.72 8498.76 15998.68 19092.57 27199.74 21197.76 9995.60 34199.34 168
SCA96.41 26096.66 24095.67 30998.24 28988.35 33595.85 29196.88 31796.11 24197.67 24098.67 19293.10 26199.85 9994.16 26699.22 23598.81 262
Patchmatch-test96.55 25496.34 25297.17 27298.35 28293.06 29898.40 10097.79 29597.33 18398.41 19598.67 19283.68 32599.69 23195.16 24099.31 22198.77 269
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23697.02 20696.92 23698.75 25995.89 25098.59 17798.67 19292.08 27699.74 21196.72 16399.81 6899.32 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 11898.09 14699.54 3099.57 5499.22 2698.50 8999.19 17097.61 15497.58 24798.66 19597.40 11999.88 6394.72 25199.60 15899.54 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16198.61 26097.23 19197.76 16799.09 19797.31 18698.75 16098.66 19597.56 10399.64 25896.10 20999.55 17799.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 18697.75 17197.45 26198.23 29193.78 29097.29 20998.84 24496.10 24298.64 16998.65 19796.04 18799.36 31896.84 15299.14 25099.20 203
pmmvs497.58 19497.28 20498.51 19298.84 22096.93 20995.40 30898.52 27393.60 29598.61 17498.65 19795.10 22299.60 26996.97 13899.79 8198.99 237
FPMVS93.44 31292.23 31797.08 27599.25 12797.86 15495.61 29997.16 31092.90 30393.76 34398.65 19775.94 35095.66 35279.30 35297.49 31897.73 316
Regformer-198.55 10698.44 10198.87 14098.85 21797.29 18796.91 23798.99 22198.97 7098.99 11798.64 20097.26 12999.81 15497.79 9399.57 17099.51 95
Regformer-298.60 9798.46 9799.02 12398.85 21797.71 16996.91 23799.09 19798.98 6999.01 11498.64 20097.37 12199.84 11697.75 10099.57 17099.52 92
dp93.47 31193.59 30593.13 33596.64 34281.62 35697.66 17696.42 32292.80 30596.11 30798.64 20078.55 34799.59 27393.31 29492.18 35298.16 298
EPMVS93.72 30993.27 30895.09 31896.04 35187.76 33798.13 12185.01 35694.69 27496.92 27798.64 20078.47 34899.31 32495.04 24196.46 33698.20 296
XVS98.72 7598.45 9999.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25198.63 20497.50 11099.83 13196.79 15499.53 18299.56 70
CostFormer93.97 30593.78 30294.51 32297.53 32385.83 34597.98 14495.96 32789.29 33694.99 33298.63 20478.63 34599.62 26294.54 25496.50 33598.09 301
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16098.80 7397.47 19899.32 12295.54 25798.43 19498.62 20696.61 16699.77 19393.95 27699.49 19699.30 183
MSLP-MVS++98.02 15898.14 14397.64 24798.58 26595.19 25297.48 19699.23 16197.47 16697.90 22598.62 20697.04 13798.81 34697.55 10499.41 20598.94 247
Vis-MVSNet (Re-imp)97.46 20297.16 21098.34 20799.55 6596.10 22898.94 5698.44 27698.32 10498.16 20898.62 20688.76 29399.73 21693.88 27999.79 8199.18 210
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9899.49 8498.83 7096.54 25599.48 6697.32 18599.11 9498.61 20999.33 899.30 32696.23 20098.38 29699.28 188
ITE_SJBPF98.87 14099.22 13398.48 9999.35 10997.50 16398.28 20398.60 21097.64 9799.35 31993.86 28099.27 22898.79 267
UniMVSNet_NR-MVSNet98.86 5798.68 6599.40 6299.17 15098.74 7697.68 17499.40 9299.14 5299.06 10398.59 21196.71 16299.93 2798.57 5599.77 8999.53 88
114514_t96.50 25795.77 26298.69 16599.48 9297.43 18397.84 15899.55 4481.42 35196.51 29898.58 21295.53 20999.67 24393.41 29299.58 16698.98 238
HY-MVS95.94 1395.90 27195.35 27997.55 25597.95 30494.79 25998.81 6596.94 31592.28 31195.17 32998.57 21389.90 28799.75 20791.20 32297.33 32698.10 300
tpm94.67 29394.34 29795.66 31097.68 31988.42 33497.88 15294.90 33294.46 27896.03 31298.56 21478.66 34499.79 17695.88 21595.01 34498.78 268
ACMMPR98.70 7998.42 10599.54 3099.52 7299.14 4998.52 8499.31 12797.47 16698.56 18198.54 21597.75 8899.88 6396.57 17499.59 16099.58 60
new_pmnet96.99 23996.76 23297.67 24398.72 23794.89 25895.95 28598.20 28592.62 30798.55 18398.54 21594.88 22899.52 29493.96 27599.44 20398.59 282
OPU-MVS98.82 14698.59 26498.30 10798.10 12698.52 21798.18 5998.75 34794.62 25299.48 19899.41 138
region2R98.69 8198.40 10799.54 3099.53 7099.17 3798.52 8499.31 12797.46 17198.44 19198.51 21897.83 8199.88 6396.46 18699.58 16699.58 60
TSAR-MVS + GP.98.18 14897.98 15698.77 15798.71 24097.88 15296.32 26998.66 26696.33 23499.23 8298.51 21897.48 11599.40 31397.16 12399.46 20099.02 232
OMC-MVS97.88 16997.49 19199.04 11998.89 21198.63 8496.94 23299.25 15495.02 26698.53 18698.51 21897.27 12699.47 30593.50 29099.51 18899.01 233
testtj97.79 18297.25 20599.42 5799.03 18198.85 6897.78 16299.18 17495.83 25298.12 21298.50 22195.50 21299.86 8692.23 31299.07 25999.54 82
HFP-MVS98.71 7698.44 10199.51 4699.49 8499.16 4198.52 8499.31 12797.47 16698.58 17998.50 22197.97 7599.85 9996.57 17499.59 16099.53 88
#test#98.50 11498.16 13999.51 4699.49 8499.16 4198.03 13699.31 12796.30 23798.58 17998.50 22197.97 7599.85 9995.68 22899.59 16099.53 88
diffmvs98.22 14498.24 12898.17 21999.00 18695.44 24596.38 26699.58 2797.79 14398.53 18698.50 22196.76 15899.74 21197.95 8699.64 14499.34 168
WR-MVS98.40 12598.19 13499.03 12099.00 18697.65 17296.85 24098.94 22498.57 9598.89 13798.50 22195.60 20799.85 9997.54 10699.85 5399.59 54
Test_1112_low_res96.99 23996.55 24698.31 21099.35 11495.47 24495.84 29299.53 5091.51 32096.80 28898.48 22691.36 27999.83 13196.58 17299.53 18299.62 43
miper_ehance_all_eth97.06 23197.03 21597.16 27497.83 31093.06 29894.66 32699.09 19795.99 24798.69 16498.45 22792.73 26999.61 26896.79 15499.03 26498.82 260
PHI-MVS98.29 13797.95 15899.34 7298.44 27899.16 4198.12 12399.38 9696.01 24698.06 21798.43 22897.80 8599.67 24395.69 22799.58 16699.20 203
tpm cat193.29 31393.13 31293.75 32897.39 32984.74 34897.39 20197.65 30083.39 35094.16 33798.41 22982.86 32999.39 31591.56 32095.35 34397.14 330
ETH3D cwj APD-0.1697.55 19597.00 21799.19 9198.51 27298.64 8396.85 24099.13 19094.19 28697.65 24198.40 23095.78 20299.81 15493.37 29399.16 24699.12 219
CP-MVS98.70 7998.42 10599.52 4299.36 11099.12 5498.72 6899.36 10497.54 16198.30 20198.40 23097.86 8099.89 5596.53 18299.72 11199.56 70
ZNCC-MVS98.68 8498.40 10799.54 3099.57 5499.21 2798.46 9599.29 14397.28 18998.11 21398.39 23298.00 7199.87 7996.86 15199.64 14499.55 78
GST-MVS98.61 9598.30 12299.52 4299.51 7499.20 3398.26 10999.25 15497.44 17498.67 16698.39 23297.68 9199.85 9996.00 21099.51 18899.52 92
HPM-MVScopyleft98.79 6398.53 8399.59 1899.65 4399.29 1899.16 3999.43 8596.74 22198.61 17498.38 23498.62 2999.87 7996.47 18599.67 13699.59 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 22198.93 19895.40 24798.80 25290.08 33297.45 25998.37 23595.26 21899.70 22793.58 28798.95 27599.17 214
CPTT-MVS97.84 17797.36 20099.27 8299.31 11798.46 10098.29 10699.27 14894.90 27097.83 23098.37 23594.90 22599.84 11693.85 28199.54 17899.51 95
OpenMVS_ROBcopyleft95.38 1495.84 27395.18 28497.81 23698.41 28097.15 20197.37 20398.62 26983.86 34898.65 16898.37 23594.29 24399.68 24088.41 33598.62 29196.60 337
tttt051795.64 27794.98 28897.64 24799.36 11093.81 28998.72 6890.47 35198.08 12498.67 16698.34 23873.88 35299.92 3397.77 9599.51 18899.20 203
旧先验198.82 22597.45 18298.76 25698.34 23895.50 21299.01 26999.23 198
CNVR-MVS98.17 15097.87 16599.07 11098.67 25398.24 11197.01 22898.93 22697.25 19297.62 24398.34 23897.27 12699.57 27996.42 19099.33 21899.39 147
HyFIR lowres test97.19 22296.60 24398.96 12899.62 4997.28 18995.17 31299.50 5694.21 28599.01 11498.32 24186.61 30199.99 297.10 12999.84 5599.60 48
UnsupCasMVSNet_bld97.30 21296.92 22298.45 19899.28 12296.78 21596.20 27599.27 14895.42 26298.28 20398.30 24293.16 25999.71 22594.99 24397.37 32298.87 256
MSDG97.71 18497.52 18998.28 21398.91 20596.82 21194.42 33399.37 10097.65 15098.37 20098.29 24397.40 11999.33 32294.09 27299.22 23598.68 279
MVS_111021_HR98.25 14298.08 14998.75 16199.09 16797.46 18195.97 28199.27 14897.60 15597.99 22298.25 24498.15 6399.38 31796.87 14999.57 17099.42 136
CANet_DTU97.26 21597.06 21497.84 23497.57 32094.65 26596.19 27698.79 25397.23 19895.14 33098.24 24593.22 25899.84 11697.34 11599.84 5599.04 229
MVS_111021_LR98.30 13498.12 14498.83 14599.16 15298.03 13596.09 27899.30 13697.58 15698.10 21498.24 24598.25 5099.34 32096.69 16699.65 14299.12 219
tpm293.09 31592.58 31694.62 32197.56 32186.53 34297.66 17695.79 32986.15 34594.07 34098.23 24775.95 34999.53 29090.91 32696.86 33397.81 311
CANet97.87 17097.76 17098.19 21897.75 31395.51 24296.76 24699.05 20597.74 14496.93 27698.21 24895.59 20899.89 5597.86 9299.93 2599.19 208
LF4IMVS97.90 16597.69 17598.52 18999.17 15097.66 17197.19 22099.47 7296.31 23697.85 22998.20 24996.71 16299.52 29494.62 25299.72 11198.38 291
cl-mvsnet295.79 27495.39 27896.98 27996.77 34192.79 30494.40 33498.53 27294.59 27597.89 22698.17 25082.82 33099.24 33196.37 19199.03 26498.92 249
112196.73 24796.00 25898.91 13598.95 19597.76 16498.07 12998.73 26287.65 34296.54 29598.13 25194.52 23799.73 21692.38 31099.02 26799.24 197
MVSFormer98.26 14098.43 10397.77 23898.88 21293.89 28799.39 1299.56 4199.11 5498.16 20898.13 25193.81 25199.97 399.26 1999.57 17099.43 133
jason97.45 20397.35 20197.76 23999.24 12893.93 28395.86 28998.42 27794.24 28498.50 18898.13 25194.82 22999.91 4397.22 12099.73 10599.43 133
jason: jason.
ZD-MVS99.01 18598.84 6999.07 20094.10 28898.05 21998.12 25496.36 18099.86 8692.70 30699.19 242
test22298.92 20296.93 20995.54 30198.78 25485.72 34696.86 28598.11 25594.43 23899.10 25899.23 198
新几何198.91 13598.94 19697.76 16498.76 25687.58 34396.75 28998.10 25694.80 23299.78 18792.73 30599.00 27099.20 203
原ACMM198.35 20698.90 20696.25 22698.83 24992.48 30896.07 31098.10 25695.39 21699.71 22592.61 30898.99 27199.08 222
EPNet_dtu94.93 29194.78 29295.38 31593.58 35787.68 33896.78 24495.69 33097.35 18289.14 35398.09 25888.15 29699.49 30094.95 24599.30 22498.98 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 28994.40 29596.93 28197.70 31792.53 30895.08 31597.71 29888.57 33997.71 23798.08 25979.39 34299.82 14196.19 20399.11 25798.43 289
DP-MVS Recon97.33 21096.92 22298.57 18099.09 16797.99 13796.79 24399.35 10993.18 29997.71 23798.07 26095.00 22499.31 32493.97 27499.13 25398.42 290
CSCG98.68 8498.50 8899.20 9099.45 9898.63 8498.56 8099.57 3497.87 13798.85 14598.04 26197.66 9399.84 11696.72 16399.81 6899.13 218
F-COLMAP97.30 21296.68 23799.14 9899.19 14198.39 10397.27 21299.30 13692.93 30296.62 29398.00 26295.73 20499.68 24092.62 30798.46 29599.35 166
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30199.49 298.02 13899.16 18398.29 10897.64 24297.99 26396.44 17499.95 1596.66 16898.93 27698.60 280
HQP_MVS97.99 16397.67 17698.93 13299.19 14197.65 17297.77 16599.27 14898.20 11797.79 23397.98 26494.90 22599.70 22794.42 26099.51 18899.45 124
plane_prior497.98 264
BH-RMVSNet96.83 24396.58 24497.58 25198.47 27594.05 27696.67 25197.36 30496.70 22497.87 22797.98 26495.14 22199.44 31090.47 32998.58 29399.25 194
AUN-MVS96.24 26595.45 27498.60 17598.70 24497.22 19397.38 20297.65 30095.95 24895.53 32597.96 26782.11 33499.79 17696.31 19597.44 32098.80 266
NCCC97.86 17197.47 19599.05 11798.61 26098.07 13096.98 23098.90 23297.63 15197.04 27397.93 26895.99 19399.66 25195.31 23998.82 27999.43 133
sss97.21 22096.93 22098.06 22598.83 22295.22 25196.75 24798.48 27594.49 27697.27 26697.90 26992.77 26899.80 16396.57 17499.32 21999.16 217
test_yl96.69 24896.29 25497.90 23198.28 28695.24 24997.29 20997.36 30498.21 11498.17 20697.86 27086.27 30399.55 28594.87 24698.32 29798.89 253
DCV-MVSNet96.69 24896.29 25497.90 23198.28 28695.24 24997.29 20997.36 30498.21 11498.17 20697.86 27086.27 30399.55 28594.87 24698.32 29798.89 253
CDPH-MVS97.26 21596.66 24099.07 11099.00 18698.15 12096.03 27999.01 21791.21 32497.79 23397.85 27296.89 14799.69 23192.75 30499.38 21199.39 147
HPM-MVS++copyleft98.10 15297.64 18199.48 5199.09 16799.13 5297.52 19298.75 25997.46 17196.90 28297.83 27396.01 18999.84 11695.82 22299.35 21599.46 120
ETH3 D test640096.46 25995.59 27099.08 10798.88 21298.21 11796.53 25699.18 17488.87 33897.08 27097.79 27493.64 25699.77 19388.92 33499.40 20799.28 188
PatchMatch-RL97.24 21896.78 23198.61 17499.03 18197.83 15696.36 26799.06 20193.49 29897.36 26597.78 27595.75 20399.49 30093.44 29198.77 28098.52 283
TAPA-MVS96.21 1196.63 25295.95 26098.65 16798.93 19898.09 12496.93 23499.28 14583.58 34998.13 21197.78 27596.13 18499.40 31393.52 28899.29 22698.45 287
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 27095.44 27597.52 25898.51 27293.99 28198.39 10196.09 32698.21 11498.40 19997.76 27786.88 29999.63 26095.42 23789.27 35398.95 243
WTY-MVS96.67 25096.27 25697.87 23398.81 22794.61 26696.77 24597.92 29494.94 26997.12 26797.74 27891.11 28099.82 14193.89 27898.15 30599.18 210
MSP-MVS98.40 12598.00 15599.61 1099.57 5499.25 2398.57 7999.35 10997.55 16099.31 6997.71 27994.61 23599.88 6396.14 20799.19 24299.70 29
MCST-MVS98.00 16097.63 18299.10 10499.24 12898.17 11996.89 23998.73 26295.66 25597.92 22397.70 28097.17 13399.66 25196.18 20599.23 23499.47 118
AdaColmapbinary97.14 22696.71 23598.46 19798.34 28397.80 16296.95 23198.93 22695.58 25696.92 27797.66 28195.87 20099.53 29090.97 32499.14 25098.04 302
thisisatest053095.27 28494.45 29497.74 24199.19 14194.37 26997.86 15590.20 35297.17 20298.22 20597.65 28273.53 35399.90 4696.90 14699.35 21598.95 243
testgi98.32 13298.39 11098.13 22099.57 5495.54 24097.78 16299.49 6497.37 18099.19 8597.65 28298.96 1899.49 30096.50 18498.99 27199.34 168
test_prior397.48 20197.00 21798.95 12998.69 24897.95 14795.74 29599.03 21096.48 22996.11 30797.63 28495.92 19899.59 27394.16 26699.20 23899.30 183
test_prior295.74 29596.48 22996.11 30797.63 28495.92 19894.16 26699.20 238
cdsmvs_eth3d_5k24.66 32532.88 3280.00 3410.00 3620.00 3630.00 35399.10 1960.00 3580.00 35997.58 28699.21 110.00 3590.00 3570.00 3570.00 355
lupinMVS97.06 23196.86 22697.65 24598.88 21293.89 28795.48 30597.97 29293.53 29698.16 20897.58 28693.81 25199.91 4396.77 15799.57 17099.17 214
TEST998.71 24098.08 12895.96 28399.03 21091.40 32195.85 31497.53 28896.52 16999.76 200
train_agg97.10 22796.45 24999.07 11098.71 24098.08 12895.96 28399.03 21091.64 31695.85 31497.53 28896.47 17299.76 20093.67 28499.16 24699.36 162
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 14898.43 27998.11 12397.61 18299.50 5698.64 8597.39 26397.52 29098.12 6499.95 1596.90 14698.71 28598.38 291
test_898.67 25398.01 13695.91 28899.02 21491.64 31695.79 31697.50 29196.47 17299.76 200
agg_prior197.06 23196.40 25099.03 12098.68 25197.99 13795.76 29399.01 21791.73 31595.59 31797.50 29196.49 17199.77 19393.71 28399.14 25099.34 168
1112_ss97.29 21496.86 22698.58 17799.34 11696.32 22496.75 24799.58 2793.14 30096.89 28397.48 29392.11 27599.86 8696.91 14199.54 17899.57 65
ab-mvs-re8.12 32910.83 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35997.48 2930.00 3640.00 3590.00 3570.00 3570.00 355
Effi-MVS+98.02 15897.82 16898.62 17298.53 27197.19 19797.33 20699.68 1497.30 18796.68 29097.46 29598.56 3399.80 16396.63 17098.20 30198.86 257
PCF-MVS92.86 1894.36 29693.00 31398.42 20098.70 24497.56 17693.16 34599.11 19579.59 35297.55 25097.43 29692.19 27399.73 21679.85 35199.45 20297.97 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 27295.32 28097.49 25998.60 26294.15 27593.83 34097.93 29395.49 26096.68 29097.42 29783.21 32699.30 32696.22 20198.55 29499.01 233
CNLPA97.17 22496.71 23598.55 18598.56 26798.05 13396.33 26898.93 22696.91 21597.06 27297.39 29894.38 24199.45 30991.66 31699.18 24498.14 299
PLCcopyleft94.65 1696.51 25595.73 26498.85 14398.75 23497.91 15096.42 26499.06 20190.94 32795.59 31797.38 29994.41 23999.59 27390.93 32598.04 31299.05 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 24396.75 23397.08 27598.74 23593.33 29596.71 24998.26 28296.72 22298.44 19197.37 30095.20 21999.47 30591.89 31497.43 32198.44 288
PVSNet_Blended96.88 24196.68 23797.47 26098.92 20293.77 29194.71 32399.43 8590.98 32697.62 24397.36 30196.82 15299.67 24394.73 24999.56 17598.98 238
miper_enhance_ethall96.01 26895.74 26396.81 28996.41 34792.27 31393.69 34298.89 23491.14 32598.30 20197.35 30290.58 28299.58 27896.31 19599.03 26498.60 280
DPM-MVS96.32 26195.59 27098.51 19298.76 23197.21 19594.54 33298.26 28291.94 31496.37 30397.25 30393.06 26399.43 31191.42 32198.74 28198.89 253
E-PMN94.17 30194.37 29693.58 33096.86 33885.71 34690.11 35197.07 31198.17 12097.82 23297.19 30484.62 31798.94 34289.77 33197.68 31796.09 344
mvs-test197.83 17997.48 19498.89 13898.02 30199.20 3397.20 21799.16 18398.29 10896.46 30297.17 30596.44 17499.92 3396.66 16897.90 31497.54 325
CLD-MVS97.49 19997.16 21098.48 19599.07 17197.03 20494.71 32399.21 16394.46 27898.06 21797.16 30697.57 10299.48 30394.46 25799.78 8598.95 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 28195.47 27295.65 31198.25 28888.27 33693.25 34498.88 23593.53 29694.65 33397.15 30786.17 30599.93 2797.41 11299.93 2598.73 272
xiu_mvs_v1_base_debu97.86 17198.17 13696.92 28298.98 19093.91 28496.45 26199.17 18097.85 13998.41 19597.14 30898.47 3699.92 3398.02 8199.05 26096.92 331
xiu_mvs_v1_base97.86 17198.17 13696.92 28298.98 19093.91 28496.45 26199.17 18097.85 13998.41 19597.14 30898.47 3699.92 3398.02 8199.05 26096.92 331
xiu_mvs_v1_base_debi97.86 17198.17 13696.92 28298.98 19093.91 28496.45 26199.17 18097.85 13998.41 19597.14 30898.47 3699.92 3398.02 8199.05 26096.92 331
NP-MVS98.84 22097.39 18596.84 311
HQP-MVS97.00 23896.49 24898.55 18598.67 25396.79 21296.29 27099.04 20896.05 24395.55 32196.84 31193.84 24999.54 28892.82 30199.26 23199.32 176
API-MVS97.04 23496.91 22497.42 26397.88 30898.23 11598.18 11798.50 27497.57 15797.39 26396.75 31396.77 15699.15 33690.16 33099.02 26794.88 348
131495.74 27595.60 26996.17 30197.53 32392.75 30698.07 12998.31 28191.22 32394.25 33696.68 31495.53 20999.03 33891.64 31897.18 32796.74 335
TR-MVS95.55 27995.12 28696.86 28897.54 32293.94 28296.49 26096.53 32194.36 28397.03 27496.61 31594.26 24499.16 33586.91 33996.31 33797.47 327
Fast-Effi-MVS+97.67 18797.38 19898.57 18098.71 24097.43 18397.23 21399.45 7794.82 27296.13 30696.51 31698.52 3599.91 4396.19 20398.83 27898.37 293
xiu_mvs_v2_base97.16 22597.49 19196.17 30198.54 26992.46 30995.45 30698.84 24497.25 19297.48 25796.49 31798.31 4899.90 4696.34 19498.68 28796.15 342
MVS93.19 31492.09 31896.50 29496.91 33794.03 27898.07 12998.06 29068.01 35394.56 33596.48 31895.96 19699.30 32683.84 34496.89 33296.17 340
PAPM_NR96.82 24596.32 25398.30 21199.07 17196.69 21797.48 19698.76 25695.81 25396.61 29496.47 31994.12 24899.17 33490.82 32897.78 31599.06 224
PVSNet93.40 1795.67 27695.70 26595.57 31298.83 22288.57 33392.50 34797.72 29792.69 30696.49 30196.44 32093.72 25499.43 31193.61 28599.28 22798.71 273
EMVS93.83 30794.02 29993.23 33496.83 34084.96 34789.77 35296.32 32397.92 13397.43 26196.36 32186.17 30598.93 34387.68 33797.73 31695.81 345
MAR-MVS96.47 25895.70 26598.79 15297.92 30699.12 5498.28 10798.60 27092.16 31395.54 32496.17 32294.77 23499.52 29489.62 33298.23 29997.72 317
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 32290.34 32596.51 29398.06 30092.56 30792.44 34897.17 30986.35 34490.38 35196.01 32386.61 30199.21 33270.65 35495.43 34297.75 315
PS-MVSNAJ97.08 22997.39 19796.16 30398.56 26792.46 30995.24 31198.85 24397.25 19297.49 25695.99 32498.07 6599.90 4696.37 19198.67 28896.12 343
baseline293.73 30892.83 31496.42 29597.70 31791.28 32696.84 24289.77 35393.96 29292.44 34795.93 32579.14 34399.77 19392.94 29796.76 33498.21 295
alignmvs97.35 20896.88 22598.78 15598.54 26998.09 12497.71 17197.69 29999.20 4697.59 24695.90 32688.12 29799.55 28598.18 7498.96 27498.70 275
ET-MVSNet_ETH3D94.30 29993.21 30997.58 25198.14 29594.47 26894.78 32293.24 34494.72 27389.56 35295.87 32778.57 34699.81 15496.91 14197.11 32998.46 285
thisisatest051594.12 30393.16 31096.97 28098.60 26292.90 30293.77 34190.61 35094.10 28896.91 27995.87 32774.99 35199.80 16394.52 25599.12 25698.20 296
BH-w/o95.13 28794.89 29195.86 30598.20 29291.31 32495.65 29897.37 30393.64 29496.52 29795.70 32993.04 26499.02 33988.10 33695.82 34097.24 329
PMMVS96.51 25595.98 25998.09 22197.53 32395.84 23594.92 31998.84 24491.58 31896.05 31195.58 33095.68 20599.66 25195.59 23398.09 30898.76 270
EIA-MVS98.00 16097.74 17298.80 15098.72 23798.09 12498.05 13399.60 2497.39 17896.63 29295.55 33197.68 9199.80 16396.73 16299.27 22898.52 283
ETV-MVS98.03 15697.86 16698.56 18498.69 24898.07 13097.51 19499.50 5698.10 12397.50 25595.51 33298.41 4099.88 6396.27 19999.24 23397.71 318
PAPR95.29 28394.47 29397.75 24097.50 32795.14 25494.89 32098.71 26491.39 32295.35 32895.48 33394.57 23699.14 33784.95 34297.37 32298.97 242
canonicalmvs98.34 13198.26 12698.58 17798.46 27697.82 15998.96 5599.46 7499.19 5097.46 25895.46 33498.59 3199.46 30798.08 7898.71 28598.46 285
MVEpermissive83.40 2292.50 31791.92 32094.25 32498.83 22291.64 31892.71 34683.52 35795.92 24986.46 35695.46 33495.20 21995.40 35380.51 35098.64 28995.73 346
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 30693.85 30094.04 32596.53 34384.62 34994.05 33792.39 34696.17 23894.12 33895.07 33682.30 33199.67 24395.87 21898.18 30297.82 309
test-mter92.33 31991.76 32294.04 32596.53 34384.62 34994.05 33792.39 34694.00 29194.12 33895.07 33665.63 36199.67 24395.87 21898.18 30297.82 309
thres600view794.45 29593.83 30196.29 29799.06 17591.53 31997.99 14294.24 33898.34 10297.44 26095.01 33879.84 33899.67 24384.33 34398.23 29997.66 320
gm-plane-assit94.83 35581.97 35588.07 34194.99 33999.60 26991.76 315
thres100view90094.19 30093.67 30495.75 30899.06 17591.35 32398.03 13694.24 33898.33 10397.40 26294.98 34079.84 33899.62 26283.05 34598.08 30996.29 338
cascas94.79 29294.33 29896.15 30496.02 35292.36 31292.34 34999.26 15385.34 34795.08 33194.96 34192.96 26598.53 34894.41 26398.59 29297.56 324
TESTMET0.1,192.19 32191.77 32193.46 33196.48 34582.80 35494.05 33791.52 34994.45 28094.00 34194.88 34266.65 35999.56 28295.78 22398.11 30798.02 303
test0.0.03 194.51 29493.69 30396.99 27896.05 35093.61 29494.97 31893.49 34196.17 23897.57 24994.88 34282.30 33199.01 34193.60 28694.17 34998.37 293
CS-MVS97.82 18197.59 18798.52 18998.76 23198.04 13498.20 11599.61 2297.10 20696.02 31394.87 34498.27 4999.84 11696.31 19599.17 24597.69 319
DeepMVS_CXcopyleft93.44 33298.24 28994.21 27394.34 33564.28 35491.34 35094.87 34489.45 29192.77 35577.54 35393.14 35093.35 350
IB-MVS91.63 1992.24 32090.90 32496.27 29897.22 33491.24 32794.36 33593.33 34392.37 30992.24 34894.58 34666.20 36099.89 5593.16 29694.63 34697.66 320
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 30493.44 30695.78 30798.93 19891.44 32197.60 18394.29 33697.94 13197.10 26894.31 34779.67 34099.62 26283.05 34598.08 30996.29 338
thres40094.14 30293.44 30696.24 29998.93 19891.44 32197.60 18394.29 33697.94 13197.10 26894.31 34779.67 34099.62 26283.05 34598.08 30997.66 320
DWT-MVSNet_test92.75 31692.05 31994.85 31996.48 34587.21 34097.83 15994.99 33192.22 31292.72 34694.11 34970.75 35499.46 30795.01 24294.33 34897.87 307
thres20093.72 30993.14 31195.46 31498.66 25891.29 32596.61 25494.63 33497.39 17896.83 28693.71 35079.88 33799.56 28282.40 34898.13 30695.54 347
PVSNet_089.98 2191.15 32390.30 32693.70 32997.72 31484.34 35290.24 35097.42 30290.20 33193.79 34293.09 35190.90 28198.89 34586.57 34072.76 35497.87 307
tmp_tt78.77 32478.73 32778.90 33858.45 35974.76 36094.20 33678.26 36039.16 35586.71 35592.82 35280.50 33675.19 35686.16 34192.29 35186.74 351
GG-mvs-BLEND94.76 32094.54 35692.13 31599.31 1980.47 35988.73 35491.01 35367.59 35798.16 35182.30 34994.53 34793.98 349
X-MVStestdata94.32 29792.59 31599.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25145.85 35497.50 11099.83 13196.79 15499.53 18299.56 70
testmvs17.12 32620.53 3296.87 34012.05 3604.20 36293.62 3436.73 3614.62 35710.41 35724.33 3558.28 3633.56 3589.69 35615.07 35512.86 354
test12317.04 32720.11 3307.82 33910.25 3614.91 36194.80 3214.47 3624.93 35610.00 35824.28 3569.69 3623.64 35710.14 35512.43 35614.92 353
test_post21.25 35783.86 32499.70 227
test_post197.59 18520.48 35883.07 32899.66 25194.16 266
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas8.17 32810.90 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35998.07 650.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
IU-MVS99.49 8499.15 4698.87 23792.97 30199.41 4996.76 15899.62 15099.66 34
save fliter99.11 16097.97 14296.53 25699.02 21498.24 111
test_0728_SECOND99.60 1499.50 7799.23 2598.02 13899.32 12299.88 6396.99 13599.63 14799.68 31
GSMVS98.81 262
test_part299.36 11099.10 5799.05 108
sam_mvs184.74 31698.81 262
sam_mvs84.29 322
MTGPAbinary99.20 165
MTMP97.93 14791.91 348
test9_res93.28 29599.15 24999.38 153
agg_prior292.50 30999.16 24699.37 156
agg_prior98.68 25197.99 13799.01 21795.59 31799.77 193
test_prior497.97 14295.86 289
test_prior98.95 12998.69 24897.95 14799.03 21099.59 27399.30 183
旧先验295.76 29388.56 34097.52 25399.66 25194.48 256
新几何295.93 286
无先验95.74 29598.74 26189.38 33599.73 21692.38 31099.22 202
原ACMM295.53 302
testdata299.79 17692.80 303
segment_acmp97.02 140
testdata195.44 30796.32 235
test1298.93 13298.58 26597.83 15698.66 26696.53 29695.51 21199.69 23199.13 25399.27 190
plane_prior799.19 14197.87 153
plane_prior698.99 18997.70 17094.90 225
plane_prior599.27 14899.70 22794.42 26099.51 18899.45 124
plane_prior397.78 16397.41 17697.79 233
plane_prior297.77 16598.20 117
plane_prior199.05 177
plane_prior97.65 17297.07 22696.72 22299.36 213
n20.00 363
nn0.00 363
door-mid99.57 34
test1198.87 237
door99.41 89
HQP5-MVS96.79 212
HQP-NCC98.67 25396.29 27096.05 24395.55 321
ACMP_Plane98.67 25396.29 27096.05 24395.55 321
BP-MVS92.82 301
HQP4-MVS95.56 32099.54 28899.32 176
HQP3-MVS99.04 20899.26 231
HQP2-MVS93.84 249
MDTV_nov1_ep13_2view74.92 35997.69 17390.06 33397.75 23685.78 30993.52 28898.69 276
ACMMP++_ref99.77 89
ACMMP++99.68 130
Test By Simon96.52 169