This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1299.84 899.83 299.50 599.87 9199.36 1499.92 3799.64 43
UA-Net99.47 1199.40 1499.70 299.49 8799.29 1899.80 399.72 1299.82 399.04 11799.81 398.05 7099.96 1098.85 4499.99 599.86 6
ANet_high99.57 799.67 599.28 8399.89 698.09 13599.14 4799.93 199.82 399.93 299.81 399.17 1299.94 2599.31 16100.00 199.82 9
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1599.69 499.58 3099.90 299.86 799.78 599.58 399.95 1799.00 3699.95 1699.78 14
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6799.63 699.58 3099.44 3099.78 1099.76 696.39 18499.92 3999.44 1399.92 3799.68 34
MVS-HIRNet94.32 31095.62 28190.42 35698.46 29275.36 37996.29 28489.13 37395.25 28295.38 34699.75 792.88 27699.19 35294.07 29199.39 22496.72 357
gg-mvs-nofinetune92.37 33491.20 33995.85 32095.80 37392.38 32799.31 2281.84 37999.75 591.83 36899.74 868.29 37399.02 35887.15 35997.12 34596.16 362
mvs_tets99.63 599.67 599.49 4999.88 798.61 9499.34 1699.71 1399.27 4799.90 499.74 899.68 299.97 499.55 899.99 599.88 3
test_djsdf99.52 999.51 999.53 3699.86 1198.74 8399.39 1399.56 4499.11 6099.70 1599.73 1099.00 1599.97 499.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6599.34 1699.69 1698.93 8799.65 2399.72 1198.93 1999.95 1799.11 27100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 7099.90 498.15 13199.20 3999.65 2299.48 2599.92 399.71 1298.07 6799.96 1099.53 9100.00 199.93 1
JIA-IIPM95.52 29395.03 30097.00 29196.85 35894.03 29396.93 24895.82 34699.20 5294.63 35399.71 1283.09 34399.60 28694.42 27894.64 36597.36 349
Anonymous2023121199.27 2599.27 2499.26 8999.29 13098.18 12899.49 899.51 6099.70 899.80 999.68 1496.84 15799.83 14699.21 2399.91 4399.77 16
jajsoiax99.58 699.61 799.48 5199.87 1098.61 9499.28 3199.66 2199.09 7099.89 699.68 1499.53 499.97 499.50 1099.99 599.87 4
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 6199.90 199.78 899.63 1499.78 1099.67 1699.48 699.81 17099.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 6199.88 798.54 10299.45 999.61 2699.66 1199.68 1999.66 1798.44 4199.95 1799.73 299.96 1499.75 23
K. test v398.00 16797.66 18699.03 13099.79 1997.56 18799.19 4392.47 36499.62 1799.52 3699.66 1789.61 29899.96 1099.25 2099.81 7699.56 76
SixPastTwentyTwo98.75 7698.62 7999.16 10499.83 1597.96 15699.28 3198.20 30099.37 3699.70 1599.65 1992.65 28099.93 3099.04 3299.84 6399.60 54
DSMNet-mixed97.42 21497.60 19296.87 29999.15 16791.46 33698.54 9599.12 20392.87 32397.58 26599.63 2096.21 19199.90 5395.74 24199.54 19299.27 203
TransMVSNet (Re)99.44 1399.47 1299.36 6599.80 1798.58 9799.27 3399.57 3799.39 3499.75 1299.62 2199.17 1299.83 14699.06 3099.62 16299.66 38
Gipumacopyleft99.03 3899.16 3098.64 17799.94 298.51 10499.32 1899.75 1199.58 2298.60 18799.62 2198.22 5699.51 31597.70 11499.73 11497.89 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 4598.86 4999.36 6599.82 1698.55 9997.47 21099.57 3799.37 3699.21 9099.61 2396.76 16699.83 14698.06 9199.83 6999.71 27
TDRefinement99.42 1699.38 1599.55 2699.76 2399.33 1699.68 599.71 1399.38 3599.53 3499.61 2398.64 3099.80 17998.24 8099.84 6399.52 100
pm-mvs199.44 1399.48 1199.33 7699.80 1798.63 9199.29 2799.63 2399.30 4599.65 2399.60 2599.16 1499.82 15699.07 2999.83 6999.56 76
v1098.97 4699.11 3398.55 19599.44 10396.21 23898.90 6899.55 4898.73 9699.48 4199.60 2596.63 17399.83 14699.70 399.99 599.61 53
test111196.49 26996.82 24095.52 32999.42 10887.08 36099.22 3687.14 37499.11 6099.46 4499.58 2788.69 30599.86 9898.80 4799.95 1699.62 48
test250692.39 33391.89 33693.89 34699.38 11382.28 37599.32 1866.03 38299.08 7298.77 16799.57 2866.26 37999.84 13198.71 5599.95 1699.54 88
ECVR-MVScopyleft96.42 27296.61 25395.85 32099.38 11388.18 35599.22 3686.00 37699.08 7299.36 6199.57 2888.47 31099.82 15698.52 6699.95 1699.54 88
v899.01 3999.16 3098.57 19099.47 9796.31 23698.90 6899.47 7899.03 7699.52 3699.57 2896.93 15399.81 17099.60 499.98 999.60 54
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3799.41 1299.59 2899.59 2099.71 1499.57 2897.12 14199.90 5399.21 2399.87 5799.54 88
Anonymous2024052198.69 8698.87 4798.16 23199.77 2095.11 26999.08 5199.44 8699.34 4199.33 6699.55 3294.10 25899.94 2599.25 2099.96 1499.42 147
GBi-Net98.65 9498.47 10299.17 10198.90 22098.24 12199.20 3999.44 8698.59 10498.95 13399.55 3294.14 25499.86 9897.77 10899.69 13799.41 150
test198.65 9498.47 10299.17 10198.90 22098.24 12199.20 3999.44 8698.59 10498.95 13399.55 3294.14 25499.86 9897.77 10899.69 13799.41 150
FMVSNet199.17 3099.17 2999.17 10199.55 6898.24 12199.20 3999.44 8699.21 4999.43 4999.55 3297.82 8799.86 9898.42 7299.89 5399.41 150
KD-MVS_self_test99.25 2799.18 2899.44 5799.63 5099.06 6698.69 8299.54 5299.31 4399.62 2899.53 3697.36 12799.86 9899.24 2299.71 12699.39 159
new-patchmatchnet98.35 13798.74 6097.18 28599.24 13892.23 33096.42 27899.48 7298.30 11999.69 1799.53 3697.44 12299.82 15698.84 4599.77 9799.49 111
lessismore_v098.97 13799.73 2597.53 18986.71 37599.37 5999.52 3889.93 29699.92 3998.99 3799.72 12199.44 140
FC-MVSNet-test99.27 2599.25 2599.34 7399.77 2098.37 11299.30 2699.57 3799.61 1999.40 5499.50 3997.12 14199.85 11399.02 3599.94 2499.80 12
VDDNet98.21 15297.95 16599.01 13499.58 5397.74 17899.01 5997.29 32699.67 1098.97 13099.50 3990.45 29399.80 17997.88 10399.20 25499.48 121
DeepC-MVS97.60 498.97 4698.93 4599.10 11399.35 12397.98 15198.01 15499.46 8097.56 17599.54 3199.50 3998.97 1699.84 13198.06 9199.92 3799.49 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part197.91 17297.46 20299.27 8698.80 24398.18 12899.07 5499.36 11199.75 599.63 2699.49 4282.20 35099.89 6398.87 4399.95 1699.74 25
XXY-MVS99.14 3299.15 3299.10 11399.76 2397.74 17898.85 7399.62 2498.48 11199.37 5999.49 4298.75 2499.86 9898.20 8399.80 8499.71 27
Vis-MVSNetpermissive99.34 2299.36 1699.27 8699.73 2598.26 11999.17 4499.78 899.11 6099.27 7799.48 4498.82 2199.95 1798.94 3899.93 2899.59 60
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 11798.45 10698.79 16297.94 32496.96 21899.08 5198.54 28599.10 6796.82 30799.47 4596.55 17699.84 13198.56 6599.94 2499.55 84
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 19698.50 9595.13 33599.63 5085.84 36498.35 11898.21 29998.23 12799.54 3199.46 4695.02 23199.68 25698.24 8099.87 5799.87 4
LCM-MVSNet-Re98.64 9698.48 10099.11 11198.85 23198.51 10498.49 10399.83 698.37 11499.69 1799.46 4698.21 5899.92 3994.13 28999.30 24098.91 266
mvs_anonymous97.83 18798.16 14696.87 29998.18 31291.89 33297.31 22298.90 24297.37 19698.83 15799.46 4696.28 19099.79 19298.90 4098.16 32098.95 257
DTE-MVSNet99.43 1599.35 1799.66 499.71 3299.30 1799.31 2299.51 6099.64 1299.56 2999.46 4698.23 5399.97 498.78 4899.93 2899.72 26
ACMH96.65 799.25 2799.24 2699.26 8999.72 3198.38 11199.07 5499.55 4898.30 11999.65 2399.45 5099.22 999.76 21798.44 7099.77 9799.64 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet99.30 2499.30 2399.28 8399.49 8798.36 11599.00 6199.45 8399.63 1499.52 3699.44 5198.25 5199.88 7499.09 2899.84 6399.62 48
EGC-MVSNET85.24 34080.54 34399.34 7399.77 2099.20 3399.08 5199.29 15312.08 37620.84 37799.42 5297.55 10899.85 11397.08 14599.72 12198.96 256
PEN-MVS99.41 1799.34 1999.62 699.73 2599.14 5399.29 2799.54 5299.62 1799.56 2999.42 5298.16 6399.96 1098.78 4899.93 2899.77 16
PatchT96.65 26296.35 26497.54 27097.40 34795.32 26097.98 15796.64 33899.33 4296.89 30399.42 5284.32 33699.81 17097.69 11697.49 33497.48 347
FIs99.14 3299.09 3699.29 8199.70 3898.28 11899.13 4899.52 5999.48 2599.24 8699.41 5596.79 16399.82 15698.69 5799.88 5499.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3299.10 6299.29 2799.53 5699.53 2399.46 4499.41 5598.23 5399.95 1798.89 4299.95 1699.81 11
ab-mvs98.41 13098.36 12198.59 18699.19 15297.23 20399.32 1898.81 26297.66 16598.62 18399.40 5796.82 16099.80 17995.88 23299.51 20298.75 288
Anonymous2024052998.93 5198.87 4799.12 10999.19 15298.22 12699.01 5998.99 23199.25 4899.54 3199.37 5897.04 14599.80 17997.89 10099.52 19999.35 179
CR-MVSNet96.28 27695.95 27397.28 28297.71 33494.22 28698.11 13798.92 23992.31 32996.91 29999.37 5885.44 32899.81 17097.39 12697.36 34197.81 333
Patchmtry97.35 21896.97 22998.50 20397.31 35196.47 23198.18 13098.92 23998.95 8698.78 16499.37 5885.44 32899.85 11395.96 23099.83 6999.17 227
EG-PatchMatch MVS98.99 4199.01 4198.94 14199.50 8097.47 19198.04 14899.59 2898.15 13899.40 5499.36 6198.58 3499.76 21798.78 4899.68 14299.59 60
IterMVS-SCA-FT97.85 18498.18 14296.87 29999.27 13391.16 34595.53 31699.25 16599.10 6799.41 5199.35 6293.10 27199.96 1098.65 5899.94 2499.49 111
PMVScopyleft91.26 2097.86 17997.94 16797.65 25999.71 3297.94 15998.52 9798.68 27898.99 7997.52 27199.35 6297.41 12398.18 36991.59 33799.67 14896.82 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2399.22 2799.65 599.71 3299.24 2499.32 1899.55 4899.46 2899.50 4099.34 6497.30 12999.93 3098.90 4099.93 2899.77 16
RPMNet97.02 24596.93 23097.30 28197.71 33494.22 28698.11 13799.30 14699.37 3696.91 29999.34 6486.72 31599.87 9197.53 12097.36 34197.81 333
IterMVS97.73 19198.11 15296.57 30699.24 13890.28 34695.52 31899.21 17498.86 9099.33 6699.33 6693.11 27099.94 2598.49 6799.94 2499.48 121
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 6598.73 6199.05 12798.76 24697.81 17299.25 3499.30 14698.57 10898.55 19799.33 6697.95 7999.90 5397.16 13699.67 14899.44 140
IterMVS-LS98.55 11298.70 6898.09 23399.48 9594.73 27697.22 23099.39 10198.97 8299.38 5799.31 6896.00 19899.93 3098.58 6099.97 1199.60 54
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
patch_mono-298.51 12098.63 7798.17 22999.38 11394.78 27497.36 21799.69 1698.16 13798.49 20399.29 6997.06 14499.97 498.29 7999.91 4399.76 20
FMVSNet298.49 12298.40 11498.75 17098.90 22097.14 21498.61 8799.13 20198.59 10499.19 9299.28 7094.14 25499.82 15697.97 9899.80 8499.29 200
3Dnovator+97.89 398.69 8698.51 9399.24 9498.81 24198.40 10999.02 5899.19 18198.99 7998.07 23499.28 7097.11 14399.84 13196.84 16999.32 23599.47 129
VDD-MVS98.56 10898.39 11799.07 12099.13 17098.07 14198.59 9097.01 33099.59 2099.11 10199.27 7294.82 23799.79 19298.34 7699.63 15999.34 181
PVSNet_Blended_VisFu98.17 15798.15 14898.22 22699.73 2595.15 26697.36 21799.68 1894.45 29898.99 12599.27 7296.87 15699.94 2597.13 14299.91 4399.57 71
dcpmvs_298.78 7099.11 3397.78 25199.56 6493.67 30899.06 5699.86 499.50 2499.66 2099.26 7497.21 13999.99 298.00 9699.91 4399.68 34
nrg03099.40 1899.35 1799.54 2999.58 5399.13 5798.98 6499.48 7299.68 999.46 4499.26 7498.62 3199.73 23299.17 2699.92 3799.76 20
CP-MVSNet99.21 2999.09 3699.56 2499.65 4598.96 7199.13 4899.34 12399.42 3299.33 6699.26 7497.01 14999.94 2598.74 5399.93 2899.79 13
RPSCF98.62 10098.36 12199.42 5899.65 4599.42 598.55 9499.57 3797.72 16298.90 14399.26 7496.12 19399.52 31195.72 24299.71 12699.32 189
tfpnnormal98.90 5698.90 4698.91 14599.67 4297.82 17099.00 6199.44 8699.45 2999.51 3999.24 7898.20 5999.86 9895.92 23199.69 13799.04 242
v124098.55 11298.62 7998.32 21799.22 14395.58 25197.51 20699.45 8397.16 21999.45 4799.24 7896.12 19399.85 11399.60 499.88 5499.55 84
APDe-MVS98.99 4198.79 5699.60 1399.21 14599.15 4898.87 7099.48 7297.57 17399.35 6399.24 7897.83 8499.89 6397.88 10399.70 13199.75 23
ambc98.24 22598.82 23995.97 24398.62 8699.00 23099.27 7799.21 8196.99 15099.50 31696.55 19799.50 20999.26 206
TAMVS98.24 15098.05 15898.80 16099.07 18397.18 21097.88 16598.81 26296.66 24099.17 9799.21 8194.81 23999.77 21096.96 15699.88 5499.44 140
v119298.60 10398.66 7498.41 21099.27 13395.88 24597.52 20499.36 11197.41 19299.33 6699.20 8396.37 18799.82 15699.57 699.92 3799.55 84
pmmvs-eth3d98.47 12498.34 12498.86 15299.30 12997.76 17597.16 23799.28 15695.54 27399.42 5099.19 8497.27 13299.63 27797.89 10099.97 1199.20 216
COLMAP_ROBcopyleft96.50 1098.99 4198.85 5099.41 6199.58 5399.10 6298.74 7699.56 4499.09 7099.33 6699.19 8498.40 4399.72 24095.98 22999.76 10799.42 147
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 11598.57 8798.45 20799.21 14595.98 24297.63 19199.36 11197.15 22199.32 7299.18 8695.84 20999.84 13199.50 1099.91 4399.54 88
PM-MVS98.82 6398.72 6399.12 10999.64 4898.54 10297.98 15799.68 1897.62 16899.34 6599.18 8697.54 10999.77 21097.79 10699.74 11199.04 242
PVSNet_BlendedMVS97.55 20397.53 19497.60 26398.92 21693.77 30696.64 26699.43 9294.49 29497.62 26199.18 8696.82 16099.67 25994.73 26799.93 2899.36 175
ACMH+96.62 999.08 3699.00 4299.33 7699.71 3298.83 7798.60 8899.58 3099.11 6099.53 3499.18 8698.81 2299.67 25996.71 18299.77 9799.50 107
v192192098.54 11598.60 8498.38 21399.20 14995.76 25097.56 20099.36 11197.23 21499.38 5799.17 9096.02 19699.84 13199.57 699.90 4999.54 88
casdiffmvs98.95 4999.00 4298.81 15899.38 11397.33 19797.82 17299.57 3799.17 5799.35 6399.17 9098.35 4899.69 24798.46 6999.73 11499.41 150
Patchmatch-RL test97.26 22597.02 22697.99 24399.52 7595.53 25396.13 29199.71 1397.47 18299.27 7799.16 9284.30 33799.62 27997.89 10099.77 9798.81 277
V4298.78 7098.78 5798.76 16899.44 10397.04 21598.27 12299.19 18197.87 15399.25 8599.16 9296.84 15799.78 20499.21 2399.84 6399.46 131
QAPM97.31 22196.81 24198.82 15698.80 24397.49 19099.06 5699.19 18190.22 34997.69 25799.16 9296.91 15499.90 5390.89 34899.41 22199.07 236
wuyk23d96.06 28097.62 19091.38 35598.65 27498.57 9898.85 7396.95 33296.86 23299.90 499.16 9299.18 1198.40 36889.23 35499.77 9777.18 373
v114498.60 10398.66 7498.41 21099.36 11995.90 24497.58 19899.34 12397.51 17899.27 7799.15 9696.34 18999.80 17999.47 1299.93 2899.51 103
DP-MVS98.93 5198.81 5499.28 8399.21 14598.45 10898.46 10899.33 12899.63 1499.48 4199.15 9697.23 13799.75 22497.17 13599.66 15399.63 47
OpenMVScopyleft96.65 797.09 23896.68 24898.32 21798.32 30397.16 21298.86 7299.37 10789.48 35396.29 32599.15 9696.56 17599.90 5392.90 31699.20 25497.89 327
EPP-MVSNet98.30 14198.04 15999.07 12099.56 6497.83 16799.29 2798.07 30699.03 7698.59 18999.13 9992.16 28499.90 5396.87 16699.68 14299.49 111
ACMMP_NAP98.75 7698.48 10099.57 1899.58 5399.29 1897.82 17299.25 16596.94 22898.78 16499.12 10098.02 7199.84 13197.13 14299.67 14899.59 60
RRT_MVS97.07 24096.57 25798.58 18795.89 37296.33 23497.36 21798.77 26897.85 15599.08 10799.12 10082.30 34799.96 1098.82 4699.90 4999.45 135
MVS_Test98.18 15598.36 12197.67 25798.48 29094.73 27698.18 13099.02 22497.69 16398.04 23899.11 10297.22 13899.56 29998.57 6298.90 29298.71 291
MDA-MVSNet-bldmvs97.94 17197.91 16998.06 23899.44 10394.96 27196.63 26799.15 20098.35 11598.83 15799.11 10294.31 25199.85 11396.60 18898.72 29999.37 169
SMA-MVScopyleft98.40 13298.03 16099.51 4599.16 16399.21 2798.05 14699.22 17394.16 30598.98 12799.10 10497.52 11399.79 19296.45 20499.64 15699.53 96
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 26496.25 27097.71 25699.04 19194.66 27999.16 4596.92 33497.23 21497.87 24599.10 10486.11 32299.65 27291.65 33599.21 25398.82 274
USDC97.41 21597.40 20397.44 27698.94 21093.67 30895.17 32699.53 5694.03 30898.97 13099.10 10495.29 22599.34 33795.84 23899.73 11499.30 196
test072699.50 8099.21 2798.17 13399.35 11797.97 14599.26 8199.06 10797.61 103
AllTest98.44 12798.20 13999.16 10499.50 8098.55 9998.25 12499.58 3096.80 23398.88 15099.06 10797.65 9799.57 29694.45 27699.61 16899.37 169
TestCases99.16 10499.50 8098.55 9999.58 3096.80 23398.88 15099.06 10797.65 9799.57 29694.45 27699.61 16899.37 169
TranMVSNet+NR-MVSNet99.17 3099.07 3899.46 5699.37 11898.87 7498.39 11499.42 9599.42 3299.36 6199.06 10798.38 4499.95 1798.34 7699.90 4999.57 71
LPG-MVS_test98.71 8198.46 10499.47 5499.57 5798.97 6898.23 12599.48 7296.60 24199.10 10499.06 10798.71 2799.83 14695.58 25199.78 9399.62 48
LGP-MVS_train99.47 5499.57 5798.97 6899.48 7296.60 24199.10 10499.06 10798.71 2799.83 14695.58 25199.78 9399.62 48
baseline98.96 4899.02 4098.76 16899.38 11397.26 20298.49 10399.50 6298.86 9099.19 9299.06 10798.23 5399.69 24798.71 5599.76 10799.33 187
VPNet98.87 5998.83 5199.01 13499.70 3897.62 18698.43 11199.35 11799.47 2799.28 7599.05 11496.72 16999.82 15698.09 8999.36 22999.59 60
RRT_test8_iter0595.24 29895.13 29895.57 32797.32 35087.02 36197.99 15599.41 9698.06 14199.12 9999.05 11466.85 37799.85 11398.93 3999.47 21399.84 8
MVSTER96.86 25396.55 25997.79 25097.91 32694.21 28897.56 20098.87 24797.49 18199.06 11099.05 11480.72 35299.80 17998.44 7099.82 7299.37 169
SD-MVS98.40 13298.68 7197.54 27098.96 20797.99 14797.88 16599.36 11198.20 13199.63 2699.04 11798.76 2395.33 37596.56 19499.74 11199.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_698.99 4198.78 5799.61 999.45 10199.46 498.60 8899.50 6298.59 10499.24 8699.04 11798.54 3699.89 6396.45 20499.62 16299.50 107
FMVSNet596.01 28195.20 29698.41 21097.53 34296.10 23998.74 7699.50 6297.22 21798.03 23999.04 11769.80 37299.88 7497.27 13199.71 12699.25 207
IS-MVSNet98.19 15497.90 17099.08 11799.57 5797.97 15299.31 2298.32 29599.01 7898.98 12799.03 12091.59 28899.79 19295.49 25399.80 8499.48 121
DVP-MVS++98.90 5698.70 6899.51 4598.43 29599.15 4899.43 1099.32 13098.17 13499.26 8199.02 12198.18 6099.88 7497.07 14699.45 21699.49 111
test_one_060199.39 11299.20 3399.31 13698.49 11098.66 17899.02 12197.64 100
h-mvs3397.77 19097.33 21199.10 11399.21 14597.84 16698.35 11898.57 28499.11 6098.58 19199.02 12188.65 30899.96 1098.11 8696.34 35499.49 111
SED-MVS98.91 5498.72 6399.49 4999.49 8799.17 3998.10 13999.31 13698.03 14299.66 2099.02 12198.36 4599.88 7496.91 15899.62 16299.41 150
test_241102_TWO99.30 14698.03 14299.26 8199.02 12197.51 11499.88 7496.91 15899.60 17099.66 38
DVP-MVScopyleft98.77 7398.52 9199.52 4199.50 8099.21 2798.02 15198.84 25697.97 14599.08 10799.02 12197.61 10399.88 7496.99 15299.63 15999.48 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 13499.08 10799.02 12197.89 8099.88 7497.07 14699.71 12699.70 32
EI-MVSNet98.40 13298.51 9398.04 24099.10 17594.73 27697.20 23198.87 24798.97 8299.06 11099.02 12196.00 19899.80 17998.58 6099.82 7299.60 54
CVMVSNet96.25 27797.21 21793.38 35299.10 17580.56 37897.20 23198.19 30296.94 22899.00 12499.02 12189.50 30099.80 17996.36 21199.59 17499.78 14
LFMVS97.20 23196.72 24598.64 17798.72 25296.95 21998.93 6794.14 35899.74 798.78 16499.01 13084.45 33499.73 23297.44 12399.27 24499.25 207
v2v48298.56 10898.62 7998.37 21499.42 10895.81 24897.58 19899.16 19497.90 15199.28 7599.01 13095.98 20299.79 19299.33 1599.90 4999.51 103
ACMMPcopyleft98.75 7698.50 9599.52 4199.56 6499.16 4398.87 7099.37 10797.16 21998.82 16199.01 13097.71 9399.87 9196.29 21599.69 13799.54 88
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 10698.26 13399.57 1899.27 13399.15 4897.01 24299.39 10197.67 16499.44 4898.99 13397.53 11199.89 6395.40 25599.68 14299.66 38
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 10798.23 13799.60 1399.69 4099.35 1297.16 23799.38 10394.87 28998.97 13098.99 13398.01 7299.88 7497.29 13099.70 13199.58 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 8698.71 6598.62 18299.10 17596.37 23397.23 22798.87 24799.20 5299.19 9298.99 13397.30 12999.85 11398.77 5199.79 8999.65 42
XVG-ACMP-BASELINE98.56 10898.34 12499.22 9799.54 7198.59 9697.71 18399.46 8097.25 20898.98 12798.99 13397.54 10999.84 13195.88 23299.74 11199.23 211
APD-MVS_3200maxsize98.84 6298.61 8299.53 3699.19 15299.27 2198.49 10399.33 12898.64 9899.03 12098.98 13797.89 8099.85 11396.54 19899.42 22099.46 131
XVG-OURS98.53 11798.34 12499.11 11199.50 8098.82 7995.97 29599.50 6297.30 20399.05 11598.98 13799.35 799.32 34095.72 24299.68 14299.18 223
v14898.45 12698.60 8498.00 24299.44 10394.98 27097.44 21399.06 21198.30 11999.32 7298.97 13996.65 17299.62 27998.37 7499.85 5999.39 159
EI-MVSNet-Vis-set98.68 9098.70 6898.63 18099.09 17896.40 23297.23 22798.86 25299.20 5299.18 9698.97 13997.29 13199.85 11398.72 5499.78 9399.64 43
CHOSEN 1792x268897.49 20797.14 22298.54 19899.68 4196.09 24196.50 27399.62 2491.58 33798.84 15698.97 13992.36 28299.88 7496.76 17599.95 1699.67 37
SR-MVS-dyc-post98.81 6598.55 8899.57 1899.20 14999.38 698.48 10699.30 14698.64 9898.95 13398.96 14297.49 11899.86 9896.56 19499.39 22499.45 135
RE-MVS-def98.58 8699.20 14999.38 698.48 10699.30 14698.64 9898.95 13398.96 14297.75 9196.56 19499.39 22499.45 135
D2MVS97.84 18597.84 17497.83 24899.14 16894.74 27596.94 24698.88 24595.84 26798.89 14698.96 14294.40 24999.69 24797.55 11799.95 1699.05 238
ACMM96.08 1298.91 5498.73 6199.48 5199.55 6899.14 5398.07 14299.37 10797.62 16899.04 11798.96 14298.84 2099.79 19297.43 12499.65 15499.49 111
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo98.08 16197.92 16898.57 19098.96 20796.79 22397.90 16499.18 18596.41 24898.46 20498.95 14695.93 20599.60 28696.51 20098.98 28899.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
YYNet197.60 20097.67 18397.39 27999.04 19193.04 31795.27 32398.38 29497.25 20898.92 14198.95 14695.48 22299.73 23296.99 15298.74 29799.41 150
MDA-MVSNet_test_wron97.60 20097.66 18697.41 27899.04 19193.09 31395.27 32398.42 29197.26 20798.88 15098.95 14695.43 22399.73 23297.02 14998.72 29999.41 150
FMVSNet397.50 20597.24 21598.29 22198.08 31895.83 24797.86 16898.91 24197.89 15298.95 13398.95 14687.06 31399.81 17097.77 10899.69 13799.23 211
OPM-MVS98.56 10898.32 12899.25 9199.41 11098.73 8697.13 23999.18 18597.10 22298.75 17098.92 15098.18 6099.65 27296.68 18499.56 18999.37 169
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ADS-MVSNet295.43 29594.98 30196.76 30598.14 31491.74 33397.92 16197.76 31390.23 34796.51 31898.91 15185.61 32599.85 11392.88 31796.90 34798.69 294
ADS-MVSNet95.24 29894.93 30396.18 31498.14 31490.10 34797.92 16197.32 32590.23 34796.51 31898.91 15185.61 32599.74 22892.88 31796.90 34798.69 294
test_040298.76 7498.71 6598.93 14299.56 6498.14 13398.45 11099.34 12399.28 4698.95 13398.91 15198.34 4999.79 19295.63 24899.91 4398.86 271
test_241102_ONE99.49 8799.17 3999.31 13697.98 14499.66 2098.90 15498.36 4599.48 320
xxxxxxxxxxxxxcwj98.44 12798.24 13599.06 12599.11 17197.97 15296.53 27099.54 5298.24 12598.83 15798.90 15497.80 8899.82 15695.68 24599.52 19999.38 166
SF-MVS98.53 11798.27 13299.32 7899.31 12698.75 8298.19 12999.41 9696.77 23598.83 15798.90 15497.80 8899.82 15695.68 24599.52 19999.38 166
zzz-MVS98.79 6798.52 9199.61 999.67 4299.36 1097.33 22099.20 17698.83 9398.89 14698.90 15496.98 15199.92 3997.16 13699.70 13199.56 76
MTAPA98.88 5898.64 7699.61 999.67 4299.36 1098.43 11199.20 17698.83 9398.89 14698.90 15496.98 15199.92 3997.16 13699.70 13199.56 76
test20.0398.78 7098.77 5998.78 16599.46 9897.20 20897.78 17499.24 17099.04 7599.41 5198.90 15497.65 9799.76 21797.70 11499.79 8999.39 159
SteuartSystems-ACMMP98.79 6798.54 8999.54 2999.73 2599.16 4398.23 12599.31 13697.92 14998.90 14398.90 15498.00 7399.88 7496.15 22399.72 12199.58 66
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 19997.17 21898.99 13699.27 13397.86 16495.98 29493.41 36195.25 28299.47 4398.90 15495.63 21499.85 11396.91 15899.73 11499.27 203
TSAR-MVS + MP.98.63 9898.49 9899.06 12599.64 4897.90 16198.51 10198.94 23496.96 22799.24 8698.89 16297.83 8499.81 17096.88 16599.49 21099.48 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test117298.76 7498.49 9899.57 1899.18 15999.37 998.39 11499.31 13698.43 11298.90 14398.88 16397.49 11899.86 9896.43 20699.37 22899.48 121
PGM-MVS98.66 9398.37 12099.55 2699.53 7399.18 3898.23 12599.49 7097.01 22698.69 17498.88 16398.00 7399.89 6395.87 23599.59 17499.58 66
TinyColmap97.89 17597.98 16397.60 26398.86 22994.35 28596.21 28899.44 8697.45 18999.06 11098.88 16397.99 7699.28 34694.38 28299.58 18099.18 223
LS3D98.63 9898.38 11999.36 6597.25 35299.38 699.12 5099.32 13099.21 4998.44 20698.88 16397.31 12899.80 17996.58 18999.34 23398.92 263
Anonymous20240521197.90 17397.50 19699.08 11798.90 22098.25 12098.53 9696.16 34298.87 8999.11 10198.86 16790.40 29499.78 20497.36 12799.31 23799.19 221
HPM-MVS_fast99.01 3998.82 5299.57 1899.71 3299.35 1299.00 6199.50 6297.33 19998.94 13998.86 16798.75 2499.82 15697.53 12099.71 12699.56 76
CMPMVSbinary75.91 2396.29 27595.44 28898.84 15496.25 36898.69 8997.02 24199.12 20388.90 35697.83 24898.86 16789.51 29998.90 36391.92 33199.51 20298.92 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 8198.43 11099.57 1899.18 15999.35 1298.36 11799.29 15398.29 12298.88 15098.85 17097.53 11199.87 9196.14 22499.31 23799.48 121
our_test_397.39 21697.73 18196.34 31098.70 25989.78 34894.61 34398.97 23396.50 24499.04 11798.85 17095.98 20299.84 13197.26 13299.67 14899.41 150
MVS_030497.64 19797.35 20898.52 19997.87 32896.69 22898.59 9098.05 30897.44 19093.74 36398.85 17093.69 26599.88 7498.11 8699.81 7698.98 251
Regformer-398.61 10198.61 8298.63 18099.02 19696.53 23097.17 23598.84 25699.13 5999.10 10498.85 17097.24 13699.79 19298.41 7399.70 13199.57 71
Regformer-498.73 7998.68 7198.89 14899.02 19697.22 20597.17 23599.06 21199.21 4999.17 9798.85 17097.45 12199.86 9898.48 6899.70 13199.60 54
EPNet96.14 27995.44 28898.25 22490.76 37995.50 25597.92 16194.65 35198.97 8292.98 36498.85 17089.12 30299.87 9195.99 22899.68 14299.39 159
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 19797.49 19798.08 23699.14 16895.12 26896.70 26499.05 21593.77 31198.62 18398.83 17693.23 26799.75 22498.33 7899.76 10799.36 175
PMMVS298.07 16298.08 15698.04 24099.41 11094.59 28294.59 34499.40 9997.50 17998.82 16198.83 17696.83 15999.84 13197.50 12299.81 7699.71 27
MDTV_nov1_ep1395.22 29597.06 35583.20 37397.74 18196.16 34294.37 30096.99 29598.83 17683.95 33999.53 30793.90 29597.95 329
Anonymous2023120698.21 15298.21 13898.20 22799.51 7795.43 25898.13 13499.32 13096.16 25698.93 14098.82 17996.00 19899.83 14697.32 12999.73 11499.36 175
ACMP95.32 1598.41 13098.09 15399.36 6599.51 7798.79 8197.68 18699.38 10395.76 27098.81 16398.82 17998.36 4599.82 15694.75 26699.77 9799.48 121
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 3798.99 4499.25 9199.44 10398.35 11698.73 7899.56 4498.42 11398.91 14298.81 18198.94 1899.91 4998.35 7599.73 11499.49 111
VNet98.42 12998.30 12998.79 16298.79 24597.29 19998.23 12598.66 27999.31 4398.85 15498.80 18294.80 24099.78 20498.13 8599.13 26899.31 193
tpmrst95.07 30195.46 28693.91 34597.11 35484.36 37197.62 19296.96 33194.98 28596.35 32498.80 18285.46 32799.59 29095.60 24996.23 35697.79 336
ppachtmachnet_test97.50 20597.74 17996.78 30498.70 25991.23 34494.55 34599.05 21596.36 24999.21 9098.79 18496.39 18499.78 20496.74 17799.82 7299.34 181
miper_lstm_enhance97.18 23397.16 21997.25 28498.16 31392.85 31995.15 32899.31 13697.25 20898.74 17298.78 18590.07 29599.78 20497.19 13499.80 8499.11 234
DeepPCF-MVS96.93 598.32 13998.01 16199.23 9698.39 30098.97 6895.03 33099.18 18596.88 23199.33 6698.78 18598.16 6399.28 34696.74 17799.62 16299.44 140
patchmatchnet-post98.77 18784.37 33599.85 113
APD-MVScopyleft98.10 15997.67 18399.42 5899.11 17198.93 7297.76 17999.28 15694.97 28698.72 17398.77 18797.04 14599.85 11393.79 30099.54 19299.49 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 6398.63 7799.39 6499.16 16398.74 8397.54 20299.25 16598.84 9299.06 11098.76 18996.76 16699.93 3098.57 6299.77 9799.50 107
NR-MVSNet98.95 4998.82 5299.36 6599.16 16398.72 8899.22 3699.20 17699.10 6799.72 1398.76 18996.38 18699.86 9898.00 9699.82 7299.50 107
eth_miper_zixun_eth97.23 22997.25 21397.17 28698.00 32292.77 32194.71 33799.18 18597.27 20698.56 19598.74 19191.89 28799.69 24797.06 14899.81 7699.05 238
UniMVSNet (Re)98.87 5998.71 6599.35 7099.24 13898.73 8697.73 18299.38 10398.93 8799.12 9998.73 19296.77 16499.86 9898.63 5999.80 8499.46 131
MG-MVS96.77 25796.61 25397.26 28398.31 30493.06 31495.93 30098.12 30596.45 24797.92 24198.73 19293.77 26399.39 33291.19 34499.04 27899.33 187
c3_l97.36 21797.37 20697.31 28098.09 31793.25 31295.01 33199.16 19497.05 22398.77 16798.72 19492.88 27699.64 27496.93 15799.76 10799.05 238
cl____97.02 24596.83 23997.58 26597.82 33094.04 29294.66 34099.16 19497.04 22498.63 18198.71 19588.68 30799.69 24797.00 15099.81 7699.00 249
DIV-MVS_self_test97.02 24596.84 23897.58 26597.82 33094.03 29394.66 34099.16 19497.04 22498.63 18198.71 19588.69 30599.69 24797.00 15099.81 7699.01 246
DELS-MVS98.27 14598.20 13998.48 20498.86 22996.70 22795.60 31499.20 17697.73 16198.45 20598.71 19597.50 11599.82 15698.21 8299.59 17498.93 262
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 17699.07 18397.53 20399.32 13095.53 27598.54 19998.70 19897.58 10599.76 21794.32 28399.46 214
tpmvs95.02 30395.25 29494.33 34196.39 36785.87 36398.08 14196.83 33695.46 27795.51 34598.69 19985.91 32399.53 30794.16 28496.23 35697.58 344
PatchmatchNetpermissive95.58 29195.67 28095.30 33497.34 34987.32 35897.65 19096.65 33795.30 28197.07 29198.69 19984.77 33199.75 22494.97 26298.64 30598.83 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 9698.34 12499.54 2999.54 7199.17 3998.63 8599.24 17097.47 18298.09 23398.68 20197.62 10299.89 6396.22 21899.62 16299.57 71
UnsupCasMVSNet_eth97.89 17597.60 19298.75 17099.31 12697.17 21197.62 19299.35 11798.72 9798.76 16998.68 20192.57 28199.74 22897.76 11295.60 36199.34 181
SCA96.41 27396.66 25195.67 32498.24 30888.35 35395.85 30596.88 33596.11 25797.67 25898.67 20393.10 27199.85 11394.16 28499.22 25198.81 277
Patchmatch-test96.55 26596.34 26597.17 28698.35 30193.06 31498.40 11397.79 31297.33 19998.41 21098.67 20383.68 34199.69 24795.16 25899.31 23798.77 285
CDS-MVSNet97.69 19397.35 20898.69 17498.73 25097.02 21796.92 25098.75 27295.89 26698.59 18998.67 20392.08 28699.74 22896.72 18099.81 7699.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 12598.09 15399.54 2999.57 5799.22 2698.50 10299.19 18197.61 17097.58 26598.66 20697.40 12499.88 7494.72 26999.60 17099.54 88
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 14198.15 14898.75 17098.61 27597.23 20397.76 17999.09 20797.31 20298.75 17098.66 20697.56 10799.64 27496.10 22699.55 19199.39 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 19497.75 17897.45 27598.23 31093.78 30597.29 22398.84 25696.10 25898.64 18098.65 20896.04 19599.36 33596.84 16999.14 26599.20 216
pmmvs497.58 20297.28 21298.51 20198.84 23496.93 22095.40 32298.52 28793.60 31398.61 18598.65 20895.10 23099.60 28696.97 15599.79 8998.99 250
FPMVS93.44 32592.23 33097.08 28999.25 13797.86 16495.61 31397.16 32892.90 32293.76 36298.65 20875.94 36795.66 37379.30 37397.49 33497.73 338
Regformer-198.55 11298.44 10898.87 15098.85 23197.29 19996.91 25198.99 23198.97 8298.99 12598.64 21197.26 13599.81 17097.79 10699.57 18499.51 103
Regformer-298.60 10398.46 10499.02 13398.85 23197.71 18096.91 25199.09 20798.98 8199.01 12198.64 21197.37 12699.84 13197.75 11399.57 18499.52 100
dp93.47 32493.59 31893.13 35496.64 36181.62 37797.66 18896.42 34092.80 32496.11 32798.64 21178.55 36499.59 29093.31 31292.18 37298.16 318
EPMVS93.72 32293.27 32195.09 33696.04 37087.76 35698.13 13485.01 37794.69 29296.92 29798.64 21178.47 36599.31 34195.04 25996.46 35398.20 316
XVS98.72 8098.45 10699.53 3699.46 9899.21 2798.65 8399.34 12398.62 10297.54 26998.63 21597.50 11599.83 14696.79 17199.53 19699.56 76
CostFormer93.97 31893.78 31594.51 34097.53 34285.83 36597.98 15795.96 34589.29 35594.99 35198.63 21578.63 36299.62 27994.54 27296.50 35298.09 321
ETH3D-3000-0.198.03 16397.62 19099.29 8199.11 17198.80 8097.47 21099.32 13095.54 27398.43 20998.62 21796.61 17499.77 21093.95 29499.49 21099.30 196
MSLP-MVS++98.02 16598.14 15097.64 26198.58 28095.19 26597.48 20899.23 17297.47 18297.90 24398.62 21797.04 14598.81 36597.55 11799.41 22198.94 261
Vis-MVSNet (Re-imp)97.46 21097.16 21998.34 21699.55 6896.10 23998.94 6698.44 29098.32 11898.16 22598.62 21788.76 30499.73 23293.88 29799.79 8999.18 223
XVG-OURS-SEG-HR98.49 12298.28 13199.14 10799.49 8798.83 7796.54 26999.48 7297.32 20199.11 10198.61 22099.33 899.30 34396.23 21798.38 31299.28 201
ITE_SJBPF98.87 15099.22 14398.48 10699.35 11797.50 17998.28 21898.60 22197.64 10099.35 33693.86 29899.27 24498.79 283
UniMVSNet_NR-MVSNet98.86 6198.68 7199.40 6399.17 16198.74 8397.68 18699.40 9999.14 5899.06 11098.59 22296.71 17099.93 3098.57 6299.77 9799.53 96
114514_t96.50 26895.77 27598.69 17499.48 9597.43 19497.84 17099.55 4881.42 37096.51 31898.58 22395.53 21799.67 25993.41 31099.58 18098.98 251
HY-MVS95.94 1395.90 28495.35 29297.55 26997.95 32394.79 27398.81 7596.94 33392.28 33095.17 34898.57 22489.90 29799.75 22491.20 34397.33 34398.10 320
tpm94.67 30694.34 31095.66 32597.68 33888.42 35297.88 16594.90 35094.46 29696.03 33298.56 22578.66 36199.79 19295.88 23295.01 36498.78 284
PC_three_145293.27 31799.40 5498.54 22698.22 5697.00 37295.17 25799.45 21699.49 111
ACMMPR98.70 8498.42 11299.54 2999.52 7599.14 5398.52 9799.31 13697.47 18298.56 19598.54 22697.75 9199.88 7496.57 19199.59 17499.58 66
new_pmnet96.99 24996.76 24397.67 25798.72 25294.89 27295.95 29998.20 30092.62 32698.55 19798.54 22694.88 23699.52 31193.96 29399.44 21998.59 302
OPU-MVS98.82 15698.59 27998.30 11798.10 13998.52 22998.18 6098.75 36694.62 27099.48 21299.41 150
region2R98.69 8698.40 11499.54 2999.53 7399.17 3998.52 9799.31 13697.46 18798.44 20698.51 23097.83 8499.88 7496.46 20399.58 18099.58 66
TSAR-MVS + GP.98.18 15597.98 16398.77 16798.71 25597.88 16296.32 28398.66 27996.33 25099.23 8998.51 23097.48 12099.40 33097.16 13699.46 21499.02 245
OMC-MVS97.88 17797.49 19799.04 12998.89 22598.63 9196.94 24699.25 16595.02 28498.53 20098.51 23097.27 13299.47 32293.50 30899.51 20299.01 246
testtj97.79 18997.25 21399.42 5899.03 19498.85 7597.78 17499.18 18595.83 26898.12 22998.50 23395.50 22099.86 9892.23 33099.07 27499.54 88
HFP-MVS98.71 8198.44 10899.51 4599.49 8799.16 4398.52 9799.31 13697.47 18298.58 19198.50 23397.97 7799.85 11396.57 19199.59 17499.53 96
#test#98.50 12198.16 14699.51 4599.49 8799.16 4398.03 14999.31 13696.30 25398.58 19198.50 23397.97 7799.85 11395.68 24599.59 17499.53 96
diffmvs98.22 15198.24 13598.17 22999.00 19995.44 25796.38 28099.58 3097.79 15998.53 20098.50 23396.76 16699.74 22897.95 9999.64 15699.34 181
WR-MVS98.40 13298.19 14199.03 13099.00 19997.65 18396.85 25498.94 23498.57 10898.89 14698.50 23395.60 21599.85 11397.54 11999.85 5999.59 60
Test_1112_low_res96.99 24996.55 25998.31 21999.35 12395.47 25695.84 30699.53 5691.51 33996.80 30898.48 23891.36 28999.83 14696.58 18999.53 19699.62 48
CS-MVS99.13 3499.10 3599.24 9499.07 18399.14 5399.36 1599.88 399.36 4098.20 22198.46 23998.66 2999.93 3099.03 3499.85 5998.65 299
miper_ehance_all_eth97.06 24197.03 22597.16 28897.83 32993.06 31494.66 34099.09 20795.99 26398.69 17498.45 24092.73 27999.61 28596.79 17199.03 27998.82 274
PHI-MVS98.29 14497.95 16599.34 7398.44 29499.16 4398.12 13699.38 10396.01 26298.06 23598.43 24197.80 8899.67 25995.69 24499.58 18099.20 216
tpm cat193.29 32693.13 32593.75 34797.39 34884.74 36897.39 21497.65 31783.39 36994.16 35698.41 24282.86 34599.39 33291.56 33895.35 36397.14 351
ETH3D cwj APD-0.1697.55 20397.00 22799.19 10098.51 28898.64 9096.85 25499.13 20194.19 30497.65 25998.40 24395.78 21099.81 17093.37 31199.16 26199.12 232
CP-MVS98.70 8498.42 11299.52 4199.36 11999.12 5998.72 7999.36 11197.54 17798.30 21698.40 24397.86 8299.89 6396.53 19999.72 12199.56 76
ZNCC-MVS98.68 9098.40 11499.54 2999.57 5799.21 2798.46 10899.29 15397.28 20598.11 23198.39 24598.00 7399.87 9196.86 16899.64 15699.55 84
GST-MVS98.61 10198.30 12999.52 4199.51 7799.20 3398.26 12399.25 16597.44 19098.67 17698.39 24597.68 9499.85 11396.00 22799.51 20299.52 100
bset_n11_16_dypcd96.99 24996.56 25898.27 22399.00 19995.25 26192.18 36794.05 35998.75 9599.01 12198.38 24788.98 30399.93 3098.77 5199.92 3799.64 43
HPM-MVScopyleft98.79 6798.53 9099.59 1799.65 4599.29 1899.16 4599.43 9296.74 23698.61 18598.38 24798.62 3199.87 9196.47 20299.67 14899.59 60
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 23398.93 21295.40 25998.80 26490.08 35197.45 27798.37 24995.26 22699.70 24393.58 30598.95 29099.17 227
CPTT-MVS97.84 18597.36 20799.27 8699.31 12698.46 10798.29 12099.27 15994.90 28897.83 24898.37 24994.90 23399.84 13193.85 29999.54 19299.51 103
DROMVSNet99.09 3599.05 3999.20 9899.28 13198.93 7299.24 3599.84 599.08 7298.12 22998.37 24998.72 2699.90 5399.05 3199.77 9798.77 285
OpenMVS_ROBcopyleft95.38 1495.84 28695.18 29797.81 24998.41 29997.15 21397.37 21698.62 28283.86 36798.65 17998.37 24994.29 25299.68 25688.41 35698.62 30796.60 358
tttt051795.64 29094.98 30197.64 26199.36 11993.81 30498.72 7990.47 37098.08 14098.67 17698.34 25373.88 36999.92 3997.77 10899.51 20299.20 216
旧先验198.82 23997.45 19398.76 26998.34 25395.50 22099.01 28499.23 211
CNVR-MVS98.17 15797.87 17299.07 12098.67 26898.24 12197.01 24298.93 23697.25 20897.62 26198.34 25397.27 13299.57 29696.42 20799.33 23499.39 159
HyFIR lowres test97.19 23296.60 25598.96 13899.62 5297.28 20195.17 32699.50 6294.21 30399.01 12198.32 25686.61 31699.99 297.10 14499.84 6399.60 54
UnsupCasMVSNet_bld97.30 22296.92 23298.45 20799.28 13196.78 22696.20 28999.27 15995.42 27898.28 21898.30 25793.16 26999.71 24194.99 26197.37 33998.87 270
MSDG97.71 19297.52 19598.28 22298.91 21996.82 22294.42 34799.37 10797.65 16698.37 21598.29 25897.40 12499.33 33994.09 29099.22 25198.68 297
MVS_111021_HR98.25 14998.08 15698.75 17099.09 17897.46 19295.97 29599.27 15997.60 17197.99 24098.25 25998.15 6599.38 33496.87 16699.57 18499.42 147
CANet_DTU97.26 22597.06 22497.84 24797.57 33994.65 28096.19 29098.79 26597.23 21495.14 34998.24 26093.22 26899.84 13197.34 12899.84 6399.04 242
MVS_111021_LR98.30 14198.12 15198.83 15599.16 16398.03 14596.09 29299.30 14697.58 17298.10 23298.24 26098.25 5199.34 33796.69 18399.65 15499.12 232
tpm293.09 32892.58 32994.62 33997.56 34086.53 36297.66 18895.79 34786.15 36494.07 35998.23 26275.95 36699.53 30790.91 34796.86 35097.81 333
CANet97.87 17897.76 17798.19 22897.75 33295.51 25496.76 26099.05 21597.74 16096.93 29698.21 26395.59 21699.89 6397.86 10599.93 2899.19 221
LF4IMVS97.90 17397.69 18298.52 19999.17 16197.66 18297.19 23499.47 7896.31 25297.85 24798.20 26496.71 17099.52 31194.62 27099.72 12198.38 311
CL-MVSNet_self_test97.44 21397.22 21698.08 23698.57 28295.78 24994.30 35098.79 26596.58 24398.60 18798.19 26594.74 24399.64 27496.41 20898.84 29398.82 274
cl2295.79 28795.39 29196.98 29396.77 36092.79 32094.40 34898.53 28694.59 29397.89 24498.17 26682.82 34699.24 34896.37 20999.03 27998.92 263
112196.73 25896.00 27198.91 14598.95 20997.76 17598.07 14298.73 27587.65 36196.54 31598.13 26794.52 24699.73 23292.38 32899.02 28299.24 210
MVSFormer98.26 14798.43 11097.77 25298.88 22693.89 30299.39 1399.56 4499.11 6098.16 22598.13 26793.81 26199.97 499.26 1899.57 18499.43 144
jason97.45 21297.35 20897.76 25399.24 13893.93 29895.86 30398.42 29194.24 30298.50 20298.13 26794.82 23799.91 4997.22 13399.73 11499.43 144
jason: jason.
ZD-MVS99.01 19898.84 7699.07 21094.10 30698.05 23798.12 27096.36 18899.86 9892.70 32499.19 258
test22298.92 21696.93 22095.54 31598.78 26785.72 36596.86 30598.11 27194.43 24799.10 27399.23 211
新几何198.91 14598.94 21097.76 17598.76 26987.58 36296.75 30998.10 27294.80 24099.78 20492.73 32399.00 28599.20 216
原ACMM198.35 21598.90 22096.25 23798.83 26192.48 32796.07 33098.10 27295.39 22499.71 24192.61 32698.99 28699.08 235
EPNet_dtu94.93 30494.78 30595.38 33393.58 37687.68 35796.78 25895.69 34897.35 19889.14 37298.09 27488.15 31199.49 31794.95 26399.30 24098.98 251
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 30294.40 30896.93 29597.70 33692.53 32495.08 32997.71 31588.57 35897.71 25598.08 27579.39 35999.82 15696.19 22099.11 27298.43 309
DP-MVS Recon97.33 22096.92 23298.57 19099.09 17897.99 14796.79 25799.35 11793.18 31897.71 25598.07 27695.00 23299.31 34193.97 29299.13 26898.42 310
CSCG98.68 9098.50 9599.20 9899.45 10198.63 9198.56 9399.57 3797.87 15398.85 15498.04 27797.66 9699.84 13196.72 18099.81 7699.13 231
F-COLMAP97.30 22296.68 24899.14 10799.19 15298.39 11097.27 22699.30 14692.93 32196.62 31398.00 27895.73 21299.68 25692.62 32598.46 31199.35 179
Effi-MVS+-dtu98.26 14797.90 17099.35 7098.02 32099.49 398.02 15199.16 19498.29 12297.64 26097.99 27996.44 18299.95 1796.66 18598.93 29198.60 300
hse-mvs297.46 21097.07 22398.64 17798.73 25097.33 19797.45 21297.64 31999.11 6098.58 19197.98 28088.65 30899.79 19298.11 8697.39 33898.81 277
HQP_MVS97.99 17097.67 18398.93 14299.19 15297.65 18397.77 17799.27 15998.20 13197.79 25197.98 28094.90 23399.70 24394.42 27899.51 20299.45 135
plane_prior497.98 280
BH-RMVSNet96.83 25496.58 25697.58 26598.47 29194.05 29196.67 26597.36 32296.70 23997.87 24597.98 28095.14 22999.44 32790.47 35098.58 30999.25 207
AUN-MVS96.24 27895.45 28798.60 18598.70 25997.22 20597.38 21597.65 31795.95 26495.53 34497.96 28482.11 35199.79 19296.31 21397.44 33698.80 282
NCCC97.86 17997.47 20199.05 12798.61 27598.07 14196.98 24498.90 24297.63 16797.04 29397.93 28595.99 20199.66 26795.31 25698.82 29599.43 144
sss97.21 23096.93 23098.06 23898.83 23695.22 26496.75 26198.48 28994.49 29497.27 28497.90 28692.77 27899.80 17996.57 19199.32 23599.16 230
test_yl96.69 25996.29 26797.90 24498.28 30595.24 26297.29 22397.36 32298.21 12898.17 22397.86 28786.27 31899.55 30294.87 26498.32 31398.89 267
DCV-MVSNet96.69 25996.29 26797.90 24498.28 30595.24 26297.29 22397.36 32298.21 12898.17 22397.86 28786.27 31899.55 30294.87 26498.32 31398.89 267
CDPH-MVS97.26 22596.66 25199.07 12099.00 19998.15 13196.03 29399.01 22791.21 34397.79 25197.85 28996.89 15599.69 24792.75 32299.38 22799.39 159
HPM-MVS++copyleft98.10 15997.64 18899.48 5199.09 17899.13 5797.52 20498.75 27297.46 18796.90 30297.83 29096.01 19799.84 13195.82 23999.35 23199.46 131
ETH3 D test640096.46 27195.59 28399.08 11798.88 22698.21 12796.53 27099.18 18588.87 35797.08 29097.79 29193.64 26699.77 21088.92 35599.40 22399.28 201
PatchMatch-RL97.24 22896.78 24298.61 18499.03 19497.83 16796.36 28199.06 21193.49 31697.36 28397.78 29295.75 21199.49 31793.44 30998.77 29698.52 303
TAPA-MVS96.21 1196.63 26395.95 27398.65 17698.93 21298.09 13596.93 24899.28 15683.58 36898.13 22897.78 29296.13 19299.40 33093.52 30699.29 24298.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 28395.44 28897.52 27298.51 28893.99 29698.39 11496.09 34498.21 12898.40 21497.76 29486.88 31499.63 27795.42 25489.27 37398.95 257
WTY-MVS96.67 26196.27 26997.87 24698.81 24194.61 28196.77 25997.92 31194.94 28797.12 28797.74 29591.11 29099.82 15693.89 29698.15 32199.18 223
test_method79.78 34179.50 34480.62 35780.21 38045.76 38270.82 37198.41 29331.08 37580.89 37697.71 29684.85 33097.37 37191.51 33980.03 37498.75 288
MSP-MVS98.40 13298.00 16299.61 999.57 5799.25 2398.57 9299.35 11797.55 17699.31 7497.71 29694.61 24499.88 7496.14 22499.19 25899.70 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 16797.63 18999.10 11399.24 13898.17 13096.89 25398.73 27595.66 27197.92 24197.70 29897.17 14099.66 26796.18 22299.23 25099.47 129
AdaColmapbinary97.14 23696.71 24698.46 20698.34 30297.80 17396.95 24598.93 23695.58 27296.92 29797.66 29995.87 20899.53 30790.97 34599.14 26598.04 322
thisisatest053095.27 29794.45 30797.74 25599.19 15294.37 28497.86 16890.20 37197.17 21898.22 22097.65 30073.53 37099.90 5396.90 16399.35 23198.95 257
testgi98.32 13998.39 11798.13 23299.57 5795.54 25297.78 17499.49 7097.37 19699.19 9297.65 30098.96 1799.49 31796.50 20198.99 28699.34 181
test_prior397.48 20997.00 22798.95 13998.69 26397.95 15795.74 30999.03 22096.48 24596.11 32797.63 30295.92 20699.59 29094.16 28499.20 25499.30 196
test_prior295.74 30996.48 24596.11 32797.63 30295.92 20694.16 28499.20 254
cdsmvs_eth3d_5k24.66 34332.88 3460.00 3610.00 3840.00 3850.00 37299.10 2060.00 3790.00 38097.58 30499.21 100.00 3800.00 3780.00 3780.00 376
lupinMVS97.06 24196.86 23697.65 25998.88 22693.89 30295.48 31997.97 30993.53 31498.16 22597.58 30493.81 26199.91 4996.77 17499.57 18499.17 227
TEST998.71 25598.08 13995.96 29799.03 22091.40 34095.85 33397.53 30696.52 17799.76 217
train_agg97.10 23796.45 26299.07 12098.71 25598.08 13995.96 29799.03 22091.64 33595.85 33397.53 30696.47 18099.76 21793.67 30299.16 26199.36 175
Fast-Effi-MVS+-dtu98.27 14598.09 15398.81 15898.43 29598.11 13497.61 19499.50 6298.64 9897.39 28197.52 30898.12 6699.95 1796.90 16398.71 30198.38 311
test_898.67 26898.01 14695.91 30299.02 22491.64 33595.79 33597.50 30996.47 18099.76 217
agg_prior197.06 24196.40 26399.03 13098.68 26697.99 14795.76 30799.01 22791.73 33495.59 33697.50 30996.49 17999.77 21093.71 30199.14 26599.34 181
1112_ss97.29 22496.86 23698.58 18799.34 12596.32 23596.75 26199.58 3093.14 31996.89 30397.48 31192.11 28599.86 9896.91 15899.54 19299.57 71
ab-mvs-re8.12 34710.83 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38097.48 3110.00 3840.00 3800.00 3780.00 3780.00 376
Effi-MVS+98.02 16597.82 17598.62 18298.53 28797.19 20997.33 22099.68 1897.30 20396.68 31097.46 31398.56 3599.80 17996.63 18798.20 31798.86 271
PCF-MVS92.86 1894.36 30993.00 32698.42 20998.70 25997.56 18793.16 36299.11 20579.59 37197.55 26897.43 31492.19 28399.73 23279.85 37299.45 21697.97 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 28595.32 29397.49 27398.60 27794.15 29093.83 35797.93 31095.49 27696.68 31097.42 31583.21 34299.30 34396.22 21898.55 31099.01 246
CNLPA97.17 23496.71 24698.55 19598.56 28398.05 14496.33 28298.93 23696.91 23097.06 29297.39 31694.38 25099.45 32691.66 33499.18 26098.14 319
CS-MVS-test98.92 5398.81 5499.25 9199.08 18299.15 4898.71 8199.79 799.37 3698.20 22197.38 31797.86 8299.93 3099.04 3299.85 5998.67 298
PLCcopyleft94.65 1696.51 26695.73 27798.85 15398.75 24897.91 16096.42 27899.06 21190.94 34695.59 33697.38 31794.41 24899.59 29090.93 34698.04 32899.05 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 25496.75 24497.08 28998.74 24993.33 31196.71 26398.26 29796.72 23798.44 20697.37 31995.20 22799.47 32291.89 33297.43 33798.44 308
PVSNet_Blended96.88 25296.68 24897.47 27498.92 21693.77 30694.71 33799.43 9290.98 34597.62 26197.36 32096.82 16099.67 25994.73 26799.56 18998.98 251
miper_enhance_ethall96.01 28195.74 27696.81 30396.41 36692.27 32993.69 35998.89 24491.14 34498.30 21697.35 32190.58 29299.58 29596.31 21399.03 27998.60 300
DPM-MVS96.32 27495.59 28398.51 20198.76 24697.21 20794.54 34698.26 29791.94 33396.37 32397.25 32293.06 27399.43 32891.42 34098.74 29798.89 267
E-PMN94.17 31494.37 30993.58 34996.86 35785.71 36690.11 36997.07 32998.17 13497.82 25097.19 32384.62 33398.94 36189.77 35297.68 33396.09 365
mvs-test197.83 18797.48 20098.89 14898.02 32099.20 3397.20 23199.16 19498.29 12296.46 32297.17 32496.44 18299.92 3996.66 18597.90 33097.54 346
CLD-MVS97.49 20797.16 21998.48 20499.07 18397.03 21694.71 33799.21 17494.46 29698.06 23597.16 32597.57 10699.48 32094.46 27599.78 9398.95 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 29495.47 28595.65 32698.25 30788.27 35493.25 36198.88 24593.53 31494.65 35297.15 32686.17 32099.93 3097.41 12599.93 2898.73 290
xiu_mvs_v1_base_debu97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
xiu_mvs_v1_base97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
xiu_mvs_v1_base_debi97.86 17998.17 14396.92 29698.98 20493.91 29996.45 27599.17 19197.85 15598.41 21097.14 32798.47 3899.92 3998.02 9399.05 27596.92 352
NP-MVS98.84 23497.39 19696.84 330
HQP-MVS97.00 24896.49 26198.55 19598.67 26896.79 22396.29 28499.04 21896.05 25995.55 34096.84 33093.84 25999.54 30592.82 31999.26 24799.32 189
API-MVS97.04 24496.91 23497.42 27797.88 32798.23 12598.18 13098.50 28897.57 17397.39 28196.75 33296.77 16499.15 35590.16 35199.02 28294.88 369
131495.74 28895.60 28296.17 31597.53 34292.75 32298.07 14298.31 29691.22 34294.25 35596.68 33395.53 21799.03 35791.64 33697.18 34496.74 356
TR-MVS95.55 29295.12 29996.86 30297.54 34193.94 29796.49 27496.53 33994.36 30197.03 29496.61 33494.26 25399.16 35486.91 36096.31 35597.47 348
Fast-Effi-MVS+97.67 19597.38 20598.57 19098.71 25597.43 19497.23 22799.45 8394.82 29096.13 32696.51 33598.52 3799.91 4996.19 22098.83 29498.37 313
xiu_mvs_v2_base97.16 23597.49 19796.17 31598.54 28592.46 32595.45 32098.84 25697.25 20897.48 27596.49 33698.31 5099.90 5396.34 21298.68 30396.15 363
MVS93.19 32792.09 33196.50 30896.91 35694.03 29398.07 14298.06 30768.01 37294.56 35496.48 33795.96 20499.30 34383.84 36596.89 34996.17 361
PAPM_NR96.82 25696.32 26698.30 22099.07 18396.69 22897.48 20898.76 26995.81 26996.61 31496.47 33894.12 25799.17 35390.82 34997.78 33199.06 237
KD-MVS_2432*160092.87 32991.99 33395.51 33091.37 37789.27 34994.07 35298.14 30395.42 27897.25 28596.44 33967.86 37499.24 34891.28 34196.08 35898.02 323
miper_refine_blended92.87 32991.99 33395.51 33091.37 37789.27 34994.07 35298.14 30395.42 27897.25 28596.44 33967.86 37499.24 34891.28 34196.08 35898.02 323
PVSNet93.40 1795.67 28995.70 27895.57 32798.83 23688.57 35192.50 36497.72 31492.69 32596.49 32196.44 33993.72 26499.43 32893.61 30399.28 24398.71 291
EMVS93.83 32094.02 31293.23 35396.83 35984.96 36789.77 37096.32 34197.92 14997.43 27996.36 34286.17 32098.93 36287.68 35897.73 33295.81 366
MAR-MVS96.47 27095.70 27898.79 16297.92 32599.12 5998.28 12198.60 28392.16 33295.54 34396.17 34394.77 24299.52 31189.62 35398.23 31597.72 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 33890.34 34196.51 30798.06 31992.56 32392.44 36597.17 32786.35 36390.38 37096.01 34486.61 31699.21 35170.65 37595.43 36297.75 337
PS-MVSNAJ97.08 23997.39 20496.16 31798.56 28392.46 32595.24 32598.85 25597.25 20897.49 27495.99 34598.07 6799.90 5396.37 20998.67 30496.12 364
baseline293.73 32192.83 32796.42 30997.70 33691.28 34296.84 25689.77 37293.96 31092.44 36695.93 34679.14 36099.77 21092.94 31596.76 35198.21 315
alignmvs97.35 21896.88 23598.78 16598.54 28598.09 13597.71 18397.69 31699.20 5297.59 26495.90 34788.12 31299.55 30298.18 8498.96 28998.70 293
ET-MVSNet_ETH3D94.30 31293.21 32297.58 26598.14 31494.47 28394.78 33693.24 36394.72 29189.56 37195.87 34878.57 36399.81 17096.91 15897.11 34698.46 305
thisisatest051594.12 31693.16 32396.97 29498.60 27792.90 31893.77 35890.61 36994.10 30696.91 29995.87 34874.99 36899.80 17994.52 27399.12 27198.20 316
BH-w/o95.13 30094.89 30495.86 31998.20 31191.31 34095.65 31297.37 32193.64 31296.52 31795.70 35093.04 27499.02 35888.10 35795.82 36097.24 350
PMMVS96.51 26695.98 27298.09 23397.53 34295.84 24694.92 33398.84 25691.58 33796.05 33195.58 35195.68 21399.66 26795.59 25098.09 32498.76 287
EIA-MVS98.00 16797.74 17998.80 16098.72 25298.09 13598.05 14699.60 2797.39 19496.63 31295.55 35297.68 9499.80 17996.73 17999.27 24498.52 303
ETV-MVS98.03 16397.86 17398.56 19498.69 26398.07 14197.51 20699.50 6298.10 13997.50 27395.51 35398.41 4299.88 7496.27 21699.24 24997.71 340
PAPR95.29 29694.47 30697.75 25497.50 34695.14 26794.89 33498.71 27791.39 34195.35 34795.48 35494.57 24599.14 35684.95 36397.37 33998.97 255
canonicalmvs98.34 13898.26 13398.58 18798.46 29297.82 17098.96 6599.46 8099.19 5697.46 27695.46 35598.59 3399.46 32498.08 9098.71 30198.46 305
MVEpermissive83.40 2292.50 33291.92 33594.25 34298.83 23691.64 33492.71 36383.52 37895.92 26586.46 37595.46 35595.20 22795.40 37480.51 37198.64 30595.73 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 31993.85 31394.04 34396.53 36284.62 36994.05 35492.39 36596.17 25494.12 35795.07 35782.30 34799.67 25995.87 23598.18 31897.82 331
test-mter92.33 33591.76 33894.04 34396.53 36284.62 36994.05 35492.39 36594.00 30994.12 35795.07 35765.63 38199.67 25995.87 23598.18 31897.82 331
thres600view794.45 30893.83 31496.29 31199.06 18891.53 33597.99 15594.24 35698.34 11697.44 27895.01 35979.84 35599.67 25984.33 36498.23 31597.66 341
gm-plane-assit94.83 37481.97 37688.07 36094.99 36099.60 28691.76 333
thres100view90094.19 31393.67 31795.75 32399.06 18891.35 33998.03 14994.24 35698.33 11797.40 28094.98 36179.84 35599.62 27983.05 36698.08 32596.29 359
cascas94.79 30594.33 31196.15 31896.02 37192.36 32892.34 36699.26 16485.34 36695.08 35094.96 36292.96 27598.53 36794.41 28198.59 30897.56 345
TESTMET0.1,192.19 33791.77 33793.46 35096.48 36482.80 37494.05 35491.52 36894.45 29894.00 36094.88 36366.65 37899.56 29995.78 24098.11 32398.02 323
test0.0.03 194.51 30793.69 31696.99 29296.05 36993.61 31094.97 33293.49 36096.17 25497.57 26794.88 36382.30 34799.01 36093.60 30494.17 36998.37 313
DeepMVS_CXcopyleft93.44 35198.24 30894.21 28894.34 35364.28 37391.34 36994.87 36589.45 30192.77 37677.54 37493.14 37093.35 371
IB-MVS91.63 1992.24 33690.90 34096.27 31297.22 35391.24 34394.36 34993.33 36292.37 32892.24 36794.58 36666.20 38099.89 6393.16 31494.63 36697.66 341
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 31793.44 31995.78 32298.93 21291.44 33797.60 19594.29 35497.94 14797.10 28894.31 36779.67 35799.62 27983.05 36698.08 32596.29 359
thres40094.14 31593.44 31996.24 31398.93 21291.44 33797.60 19594.29 35497.94 14797.10 28894.31 36779.67 35799.62 27983.05 36698.08 32597.66 341
DWT-MVSNet_test92.75 33192.05 33294.85 33796.48 36487.21 35997.83 17194.99 34992.22 33192.72 36594.11 36970.75 37199.46 32495.01 26094.33 36897.87 329
thres20093.72 32293.14 32495.46 33298.66 27391.29 34196.61 26894.63 35297.39 19496.83 30693.71 37079.88 35499.56 29982.40 36998.13 32295.54 368
PVSNet_089.98 2191.15 33990.30 34293.70 34897.72 33384.34 37290.24 36897.42 32090.20 35093.79 36193.09 37190.90 29198.89 36486.57 36172.76 37597.87 329
tmp_tt78.77 34278.73 34578.90 35858.45 38174.76 38194.20 35178.26 38139.16 37486.71 37492.82 37280.50 35375.19 37786.16 36292.29 37186.74 372
GG-mvs-BLEND94.76 33894.54 37592.13 33199.31 2280.47 38088.73 37391.01 37367.59 37698.16 37082.30 37094.53 36793.98 370
X-MVStestdata94.32 31092.59 32899.53 3699.46 9899.21 2798.65 8399.34 12398.62 10297.54 26945.85 37497.50 11599.83 14696.79 17199.53 19699.56 76
testmvs17.12 34420.53 3476.87 36012.05 3824.20 38493.62 3606.73 3834.62 37810.41 37824.33 3758.28 3833.56 3799.69 37715.07 37612.86 375
test12317.04 34520.11 3487.82 35910.25 3834.91 38394.80 3354.47 3844.93 37710.00 37924.28 3769.69 3823.64 37810.14 37612.43 37714.92 374
test_post21.25 37783.86 34099.70 243
test_post197.59 19720.48 37883.07 34499.66 26794.16 284
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas8.17 34610.90 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37998.07 670.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.73 2599.67 299.43 1099.54 5299.43 3199.26 81
MSC_two_6792asdad99.32 7898.43 29598.37 11298.86 25299.89 6397.14 14099.60 17099.71 27
No_MVS99.32 7898.43 29598.37 11298.86 25299.89 6397.14 14099.60 17099.71 27
eth-test20.00 384
eth-test0.00 384
IU-MVS99.49 8799.15 4898.87 24792.97 32099.41 5196.76 17599.62 16299.66 38
save fliter99.11 17197.97 15296.53 27099.02 22498.24 125
test_0728_SECOND99.60 1399.50 8099.23 2598.02 15199.32 13099.88 7496.99 15299.63 15999.68 34
GSMVS98.81 277
test_part299.36 11999.10 6299.05 115
sam_mvs184.74 33298.81 277
sam_mvs84.29 338
MTGPAbinary99.20 176
MTMP97.93 16091.91 367
test9_res93.28 31399.15 26499.38 166
agg_prior292.50 32799.16 26199.37 169
agg_prior98.68 26697.99 14799.01 22795.59 33699.77 210
test_prior497.97 15295.86 303
test_prior98.95 13998.69 26397.95 15799.03 22099.59 29099.30 196
旧先验295.76 30788.56 35997.52 27199.66 26794.48 274
新几何295.93 300
无先验95.74 30998.74 27489.38 35499.73 23292.38 32899.22 215
原ACMM295.53 316
testdata299.79 19292.80 321
segment_acmp97.02 148
testdata195.44 32196.32 251
test1298.93 14298.58 28097.83 16798.66 27996.53 31695.51 21999.69 24799.13 26899.27 203
plane_prior799.19 15297.87 163
plane_prior698.99 20397.70 18194.90 233
plane_prior599.27 15999.70 24394.42 27899.51 20299.45 135
plane_prior397.78 17497.41 19297.79 251
plane_prior297.77 17798.20 131
plane_prior199.05 190
plane_prior97.65 18397.07 24096.72 23799.36 229
n20.00 385
nn0.00 385
door-mid99.57 37
test1198.87 247
door99.41 96
HQP5-MVS96.79 223
HQP-NCC98.67 26896.29 28496.05 25995.55 340
ACMP_Plane98.67 26896.29 28496.05 25995.55 340
BP-MVS92.82 319
HQP4-MVS95.56 33999.54 30599.32 189
HQP3-MVS99.04 21899.26 247
HQP2-MVS93.84 259
MDTV_nov1_ep13_2view74.92 38097.69 18590.06 35297.75 25485.78 32493.52 30698.69 294
ACMMP++_ref99.77 97
ACMMP++99.68 142
Test By Simon96.52 177