This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8299.36 1499.92 3499.64 39
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 899.82 399.04 11199.81 398.05 6699.96 898.85 4199.99 599.86 6
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3599.44 1399.92 3499.68 31
MVS-HIRNet94.32 30295.62 27390.42 34498.46 28175.36 36596.29 27389.13 36195.25 27195.38 33499.75 792.88 26799.19 34094.07 27899.39 21096.72 343
gg-mvs-nofinetune92.37 32591.20 33095.85 31195.80 35992.38 31699.31 1881.84 36599.75 591.83 35699.74 868.29 36199.02 34687.15 34597.12 33296.16 348
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7999.65 2299.72 1198.93 1899.95 1599.11 27100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
JIA-IIPM95.52 28595.03 29297.00 28296.85 34494.03 28396.93 23795.82 33499.20 4894.63 34199.71 1283.09 33199.60 27494.42 26594.64 35297.36 335
Anonymous2023121199.27 2599.27 2499.26 8599.29 12198.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13599.21 2399.91 4099.77 16
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15899.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1599.73 299.96 1499.75 22
K. test v398.00 16097.66 17999.03 12299.79 1997.56 17899.19 3692.47 35299.62 1799.52 3599.66 1789.61 28999.96 899.25 2099.81 6999.56 71
SixPastTwentyTwo98.75 7098.62 7299.16 9699.83 1597.96 14799.28 2798.20 28899.37 3499.70 1599.65 1992.65 27199.93 2899.04 3199.84 5699.60 49
DSMNet-mixed97.42 20897.60 18596.87 29099.15 15791.46 32598.54 8499.12 19492.87 31197.58 25299.63 2096.21 18299.90 4895.74 22999.54 18099.27 193
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13599.06 3099.62 15299.66 34
Gipumacopyleft99.03 3599.16 3098.64 16999.94 298.51 9799.32 1599.75 799.58 2298.60 17899.62 2198.22 5499.51 30397.70 10599.73 10697.89 312
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1698.55 9297.47 20099.57 3399.37 3499.21 8499.61 2396.76 15799.83 13598.06 8399.83 6299.71 26
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16798.24 7299.84 5699.52 93
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4199.65 2299.60 2599.16 1499.82 14599.07 2999.83 6299.56 71
v1098.97 4399.11 3398.55 18799.44 10096.21 22998.90 5999.55 4398.73 8899.48 4099.60 2596.63 16499.83 13599.70 399.99 599.61 48
v899.01 3699.16 3098.57 18299.47 9496.31 22798.90 5999.47 7299.03 6899.52 3599.57 2796.93 14499.81 15899.60 499.98 999.60 49
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4899.21 2399.87 5299.54 83
Anonymous2024052198.69 8098.87 4398.16 22399.77 2095.11 26099.08 4499.44 8099.34 3799.33 6299.55 2994.10 24999.94 2399.25 2099.96 1499.42 137
GBi-Net98.65 8898.47 9599.17 9398.90 20898.24 11199.20 3299.44 8098.59 9698.95 12799.55 2994.14 24599.86 8997.77 9999.69 12799.41 140
test198.65 8898.47 9599.17 9398.90 20898.24 11199.20 3299.44 8098.59 9698.95 12799.55 2994.14 24599.86 8997.77 9999.69 12799.41 140
FMVSNet199.17 3099.17 2999.17 9399.55 6598.24 11199.20 3299.44 8099.21 4599.43 4799.55 2997.82 8299.86 8998.42 6699.89 4899.41 140
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7199.54 4799.31 3999.62 2799.53 3397.36 12099.86 8999.24 2299.71 11699.39 149
new-patchmatchnet98.35 13098.74 5597.18 27699.24 12892.23 31996.42 26799.48 6698.30 10999.69 1799.53 3397.44 11599.82 14598.84 4299.77 9099.49 104
lessismore_v098.97 12999.73 2497.53 18086.71 36299.37 5699.52 3589.93 28799.92 3598.99 3499.72 11299.44 130
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13399.85 10399.02 3299.94 2199.80 12
VDDNet98.21 14597.95 15899.01 12699.58 5197.74 16999.01 5097.29 31499.67 1098.97 12499.50 3690.45 28499.80 16797.88 9499.20 24099.48 111
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11497.98 14298.01 14499.46 7497.56 16399.54 3099.50 3698.97 1699.84 12098.06 8399.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part197.91 16597.46 19699.27 8298.80 23198.18 11899.07 4699.36 10599.75 599.63 2599.49 3982.20 33899.89 5798.87 4099.95 1699.74 24
XXY-MVS99.14 3299.15 3299.10 10599.76 2297.74 16998.85 6499.62 1998.48 10299.37 5699.49 3998.75 2399.86 8998.20 7599.80 7799.71 26
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 10999.17 3799.78 499.11 5699.27 7399.48 4198.82 2099.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 11198.45 9998.79 15497.94 31096.96 20999.08 4498.54 27499.10 6296.82 29499.47 4296.55 16799.84 12098.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 19098.50 8895.13 32499.63 4885.84 35198.35 10798.21 28798.23 11799.54 3099.46 4395.02 22299.68 24498.24 7299.87 5299.87 4
LCM-MVSNet-Re98.64 9098.48 9399.11 10398.85 21998.51 9798.49 9299.83 398.37 10499.69 1799.46 4398.21 5599.92 3594.13 27699.30 22698.91 255
mvs_anonymous97.83 18098.16 13996.87 29098.18 29891.89 32197.31 21198.90 23397.37 18498.83 15099.46 4396.28 18199.79 18098.90 3798.16 30798.95 246
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5499.64 1299.56 2899.46 4398.23 5199.97 398.78 4499.93 2599.72 25
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4398.30 10999.65 2299.45 4799.22 999.76 20598.44 6499.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7799.63 1499.52 3599.44 4898.25 4999.88 6699.09 2899.84 5699.62 44
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4799.62 1799.56 2899.42 4998.16 5999.96 898.78 4499.93 2599.77 16
PatchT96.65 25696.35 25697.54 26197.40 33395.32 25197.98 14796.64 32699.33 3896.89 29099.42 4984.32 32499.81 15897.69 10797.49 32197.48 333
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4199.52 5399.48 2499.24 8099.41 5196.79 15499.82 14598.69 5299.88 4999.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5099.53 2399.46 4399.41 5198.23 5199.95 1598.89 3999.95 1699.81 11
ab-mvs98.41 12398.36 11498.59 17899.19 14297.23 19499.32 1598.81 25197.66 15398.62 17499.40 5396.82 15199.80 16795.88 22099.51 19098.75 276
Anonymous2024052998.93 4898.87 4399.12 10199.19 14298.22 11699.01 5098.99 22299.25 4499.54 3099.37 5497.04 13699.80 16797.89 9199.52 18799.35 169
CR-MVSNet96.28 26895.95 26597.28 27397.71 32094.22 27698.11 12798.92 23092.31 31796.91 28699.37 5485.44 31799.81 15897.39 11797.36 32897.81 318
Patchmtry97.35 21296.97 22398.50 19697.31 33796.47 22298.18 12098.92 23098.95 7898.78 15799.37 5485.44 31799.85 10395.96 21899.83 6299.17 217
EG-PatchMatch MVS98.99 3899.01 3898.94 13399.50 7797.47 18298.04 13899.59 2498.15 12699.40 5299.36 5798.58 3199.76 20598.78 4499.68 13299.59 55
IterMVS-SCA-FT97.85 17798.18 13596.87 29099.27 12391.16 33495.53 30599.25 15699.10 6299.41 4999.35 5893.10 26299.96 898.65 5399.94 2199.49 104
PMVScopyleft91.26 2097.86 17297.94 16097.65 25099.71 3097.94 15098.52 8698.68 26798.99 7197.52 25899.35 5897.41 11698.18 35791.59 32499.67 13896.82 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4399.46 2799.50 3999.34 6097.30 12299.93 2898.90 3799.93 2599.77 16
RPMNet97.02 23996.93 22497.30 27297.71 32094.22 27698.11 12799.30 13899.37 3496.91 28699.34 6086.72 30499.87 8297.53 11197.36 32897.81 318
IterMVS97.73 18598.11 14596.57 29799.24 12890.28 33595.52 30799.21 16598.86 8299.33 6299.33 6293.11 26199.94 2398.49 6199.94 2199.48 111
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 6098.73 5699.05 11998.76 23497.81 16399.25 3099.30 13898.57 10098.55 18899.33 6297.95 7599.90 4897.16 12799.67 13899.44 130
IterMVS-LS98.55 10698.70 6398.09 22599.48 9294.73 26697.22 21999.39 9598.97 7499.38 5499.31 6496.00 18999.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet298.49 11598.40 10798.75 16298.90 20897.14 20598.61 7699.13 19298.59 9699.19 8699.28 6594.14 24599.82 14597.97 8999.80 7799.29 190
3Dnovator+97.89 398.69 8098.51 8699.24 8898.81 22998.40 10299.02 4999.19 17298.99 7198.07 22199.28 6597.11 13599.84 12096.84 15699.32 22199.47 119
VDD-MVS98.56 10298.39 11099.07 11299.13 16098.07 13198.59 7997.01 31899.59 2099.11 9599.27 6794.82 22899.79 18098.34 6999.63 14999.34 171
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21999.73 2495.15 25797.36 20799.68 1394.45 28798.99 11999.27 6796.87 14799.94 2397.13 13199.91 4099.57 66
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6699.68 999.46 4399.26 6998.62 2899.73 22099.17 2699.92 3499.76 20
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11799.42 3099.33 6299.26 6997.01 14099.94 2398.74 4999.93 2599.79 13
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 498.55 8399.57 3397.72 15098.90 13699.26 6996.12 18499.52 29995.72 23099.71 11699.32 179
tfpnnormal98.90 5298.90 4298.91 13799.67 4097.82 16199.00 5299.44 8099.45 2899.51 3899.24 7298.20 5699.86 8995.92 21999.69 12799.04 232
v124098.55 10698.62 7298.32 21099.22 13395.58 24297.51 19699.45 7797.16 20799.45 4599.24 7296.12 18499.85 10399.60 499.88 4999.55 79
APDe-MVS98.99 3898.79 5199.60 1399.21 13599.15 4598.87 6199.48 6697.57 16199.35 5999.24 7297.83 7999.89 5797.88 9499.70 12199.75 22
ambc98.24 21898.82 22795.97 23498.62 7599.00 22199.27 7399.21 7596.99 14199.50 30496.55 18499.50 19799.26 196
TAMVS98.24 14398.05 15198.80 15299.07 17297.18 20197.88 15598.81 25196.66 22999.17 9199.21 7594.81 23099.77 19896.96 14399.88 4999.44 130
v119298.60 9798.66 6898.41 20399.27 12395.88 23697.52 19499.36 10597.41 18099.33 6299.20 7796.37 17899.82 14599.57 699.92 3499.55 79
pmmvs-eth3d98.47 11798.34 11798.86 14499.30 12097.76 16697.16 22699.28 14795.54 26299.42 4899.19 7897.27 12599.63 26597.89 9199.97 1199.20 206
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5199.10 5698.74 6799.56 4099.09 6599.33 6299.19 7898.40 4099.72 22895.98 21799.76 9999.42 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 10998.57 8098.45 20099.21 13595.98 23397.63 18199.36 10597.15 20999.32 6899.18 8095.84 20099.84 12099.50 1099.91 4099.54 83
PM-MVS98.82 5898.72 5899.12 10199.64 4698.54 9597.98 14799.68 1397.62 15699.34 6199.18 8097.54 10299.77 19897.79 9799.74 10399.04 232
PVSNet_BlendedMVS97.55 19797.53 18897.60 25498.92 20493.77 29696.64 25599.43 8694.49 28397.62 24899.18 8096.82 15199.67 24794.73 25499.93 2599.36 165
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7799.58 2699.11 5699.53 3399.18 8098.81 2199.67 24796.71 16999.77 9099.50 100
v192192098.54 10998.60 7798.38 20699.20 13995.76 24197.56 19099.36 10597.23 20299.38 5499.17 8496.02 18799.84 12099.57 699.90 4499.54 83
casdiffmvs98.95 4699.00 3998.81 15099.38 10797.33 18897.82 16299.57 3399.17 5399.35 5999.17 8498.35 4599.69 23598.46 6399.73 10699.41 140
Patchmatch-RL test97.26 21997.02 22097.99 23599.52 7295.53 24496.13 28099.71 997.47 17099.27 7399.16 8684.30 32599.62 26797.89 9199.77 9098.81 266
V4298.78 6598.78 5298.76 16099.44 10097.04 20698.27 11199.19 17297.87 14199.25 7999.16 8696.84 14899.78 19299.21 2399.84 5699.46 121
QAPM97.31 21596.81 23498.82 14898.80 23197.49 18199.06 4899.19 17290.22 33797.69 24499.16 8696.91 14599.90 4890.89 33499.41 20799.07 226
wuyk23d96.06 27297.62 18391.38 34398.65 26398.57 9198.85 6496.95 32096.86 22199.90 499.16 8699.18 1198.40 35689.23 34099.77 9077.18 359
v114498.60 9798.66 6898.41 20399.36 11095.90 23597.58 18899.34 11797.51 16699.27 7399.15 9096.34 18099.80 16799.47 1299.93 2599.51 96
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9799.33 12299.63 1499.48 4099.15 9097.23 13099.75 21297.17 12699.66 14399.63 43
OpenMVScopyleft96.65 797.09 23296.68 24198.32 21098.32 28997.16 20398.86 6399.37 10189.48 34196.29 31299.15 9096.56 16699.90 4892.90 30399.20 24097.89 312
EPP-MVSNet98.30 13498.04 15299.07 11299.56 6297.83 15899.29 2398.07 29499.03 6898.59 18099.13 9392.16 27599.90 4896.87 15399.68 13299.49 104
ACMMP_NAP98.75 7098.48 9399.57 1899.58 5199.29 1797.82 16299.25 15696.94 21798.78 15799.12 9498.02 6799.84 12097.13 13199.67 13899.59 55
RRT_MVS97.07 23496.57 24998.58 17995.89 35896.33 22597.36 20798.77 25797.85 14399.08 10199.12 9482.30 33599.96 898.82 4399.90 4499.45 125
MVS_Test98.18 14898.36 11497.67 24898.48 27994.73 26698.18 12099.02 21597.69 15198.04 22599.11 9697.22 13199.56 28798.57 5798.90 27998.71 278
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 23099.44 10094.96 26296.63 25699.15 19198.35 10598.83 15099.11 9694.31 24299.85 10396.60 17598.72 28699.37 159
SMA-MVScopyleft98.40 12598.03 15399.51 4599.16 15399.21 2698.05 13699.22 16494.16 29498.98 12199.10 9897.52 10699.79 18096.45 19199.64 14699.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 25896.25 26297.71 24799.04 17994.66 26999.16 3896.92 32297.23 20297.87 23299.10 9886.11 31199.65 26091.65 32299.21 23998.82 263
USDC97.41 20997.40 19797.44 26798.94 19893.67 29895.17 31599.53 5094.03 29798.97 12499.10 9895.29 21699.34 32595.84 22699.73 10699.30 186
test072699.50 7799.21 2698.17 12399.35 11197.97 13399.26 7799.06 10197.61 97
AllTest98.44 12098.20 13299.16 9699.50 7798.55 9298.25 11399.58 2696.80 22298.88 14399.06 10197.65 9299.57 28494.45 26399.61 15899.37 159
TestCases99.16 9699.50 7798.55 9299.58 2696.80 22298.88 14399.06 10197.65 9299.57 28494.45 26399.61 15899.37 159
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10998.87 6798.39 10399.42 8999.42 3099.36 5899.06 10198.38 4199.95 1598.34 6999.90 4499.57 66
LPG-MVS_test98.71 7598.46 9799.47 5399.57 5598.97 6298.23 11499.48 6696.60 23099.10 9899.06 10198.71 2599.83 13595.58 23999.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6696.60 23099.10 9899.06 10198.71 2599.83 13595.58 23999.78 8699.62 44
baseline98.96 4599.02 3798.76 16099.38 10797.26 19398.49 9299.50 5698.86 8299.19 8699.06 10198.23 5199.69 23598.71 5199.76 9999.33 177
VPNet98.87 5498.83 4799.01 12699.70 3697.62 17798.43 10099.35 11199.47 2699.28 7199.05 10896.72 16099.82 14598.09 8199.36 21599.59 55
RRT_test8_iter0595.24 29095.13 29095.57 31797.32 33687.02 34897.99 14599.41 9098.06 12999.12 9399.05 10866.85 36599.85 10398.93 3699.47 20199.84 8
MVSTER96.86 24796.55 25197.79 24297.91 31294.21 27897.56 19098.87 23897.49 16999.06 10499.05 10880.72 34099.80 16798.44 6499.82 6599.37 159
SD-MVS98.40 12598.68 6597.54 26198.96 19597.99 13897.88 15599.36 10598.20 12199.63 2599.04 11198.76 2295.33 36196.56 18199.74 10399.31 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
abl_698.99 3898.78 5299.61 999.45 9899.46 398.60 7799.50 5698.59 9699.24 8099.04 11198.54 3399.89 5796.45 19199.62 15299.50 100
FMVSNet596.01 27395.20 28898.41 20397.53 32896.10 23098.74 6799.50 5697.22 20598.03 22699.04 11169.80 36099.88 6697.27 12299.71 11699.25 197
IS-MVSNet98.19 14797.90 16399.08 10999.57 5597.97 14399.31 1898.32 28399.01 7098.98 12199.03 11491.59 27999.79 18095.49 24199.80 7799.48 111
hse-mvs397.77 18497.33 20599.10 10599.21 13597.84 15798.35 10798.57 27399.11 5698.58 18299.02 11588.65 29899.96 898.11 7896.34 34199.49 104
SED-MVS98.91 5098.72 5899.49 4899.49 8499.17 3698.10 12999.31 12998.03 13099.66 2099.02 11598.36 4299.88 6696.91 14599.62 15299.41 140
test_241102_TWO99.30 13898.03 13099.26 7799.02 11597.51 10799.88 6696.91 14599.60 16099.66 34
DVP-MVS98.77 6798.52 8499.52 4199.50 7799.21 2698.02 14198.84 24597.97 13399.08 10199.02 11597.61 9799.88 6696.99 13999.63 14999.48 111
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12499.08 10199.02 11597.89 7699.88 6697.07 13499.71 11699.70 29
EI-MVSNet98.40 12598.51 8698.04 23299.10 16594.73 26697.20 22098.87 23898.97 7499.06 10499.02 11596.00 18999.80 16798.58 5599.82 6599.60 49
CVMVSNet96.25 26997.21 21193.38 34099.10 16580.56 36497.20 22098.19 29096.94 21799.00 11899.02 11589.50 29199.80 16796.36 19899.59 16299.78 14
LFMVS97.20 22596.72 23898.64 16998.72 24196.95 21098.93 5894.14 34699.74 798.78 15799.01 12284.45 32299.73 22097.44 11499.27 23099.25 197
v2v48298.56 10298.62 7298.37 20799.42 10495.81 23997.58 18899.16 18597.90 13999.28 7199.01 12295.98 19399.79 18099.33 1599.90 4499.51 96
ACMMPcopyleft98.75 7098.50 8899.52 4199.56 6299.16 4098.87 6199.37 10197.16 20798.82 15499.01 12297.71 8899.87 8296.29 20399.69 12799.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 10098.26 12699.57 1899.27 12399.15 4597.01 23199.39 9597.67 15299.44 4698.99 12597.53 10499.89 5795.40 24399.68 13299.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 10198.23 13099.60 1399.69 3899.35 1197.16 22699.38 9794.87 27898.97 12498.99 12598.01 6899.88 6697.29 12199.70 12199.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 8098.71 6098.62 17499.10 16596.37 22497.23 21698.87 23899.20 4899.19 8698.99 12597.30 12299.85 10398.77 4799.79 8299.65 38
XVG-ACMP-BASELINE98.56 10298.34 11799.22 9099.54 6898.59 8997.71 17399.46 7497.25 19698.98 12198.99 12597.54 10299.84 12095.88 22099.74 10399.23 201
APD-MVS_3200maxsize98.84 5798.61 7599.53 3699.19 14299.27 2098.49 9299.33 12298.64 9099.03 11498.98 12997.89 7699.85 10396.54 18599.42 20699.46 121
XVG-OURS98.53 11198.34 11799.11 10399.50 7798.82 7295.97 28499.50 5697.30 19199.05 10998.98 12999.35 799.32 32895.72 23099.68 13299.18 213
v14898.45 11998.60 7798.00 23499.44 10094.98 26197.44 20399.06 20298.30 10999.32 6898.97 13196.65 16399.62 26798.37 6899.85 5499.39 149
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17299.09 16896.40 22397.23 21698.86 24399.20 4899.18 9098.97 13197.29 12499.85 10398.72 5099.78 8699.64 39
CHOSEN 1792x268897.49 20197.14 21698.54 19099.68 3996.09 23296.50 26299.62 1991.58 32598.84 14998.97 13192.36 27399.88 6696.76 16299.95 1699.67 33
SR-MVS-dyc-post98.81 6098.55 8199.57 1899.20 13999.38 598.48 9599.30 13898.64 9098.95 12798.96 13497.49 11199.86 8996.56 18199.39 21099.45 125
RE-MVS-def98.58 7999.20 13999.38 598.48 9599.30 13898.64 9098.95 12798.96 13497.75 8696.56 18199.39 21099.45 125
D2MVS97.84 17897.84 16797.83 24099.14 15894.74 26596.94 23598.88 23695.84 25698.89 13998.96 13494.40 24099.69 23597.55 10899.95 1699.05 228
ACMM96.08 1298.91 5098.73 5699.48 5099.55 6599.14 4898.07 13299.37 10197.62 15699.04 11198.96 13498.84 1999.79 18097.43 11599.65 14499.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo98.08 15497.92 16198.57 18298.96 19596.79 21497.90 15499.18 17696.41 23798.46 19498.95 13895.93 19699.60 27496.51 18798.98 27599.31 183
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
YYNet197.60 19497.67 17697.39 27099.04 17993.04 30695.27 31298.38 28297.25 19698.92 13598.95 13895.48 21399.73 22096.99 13998.74 28499.41 140
MDA-MVSNet_test_wron97.60 19497.66 17997.41 26999.04 17993.09 30295.27 31298.42 28097.26 19598.88 14398.95 13895.43 21499.73 22097.02 13698.72 28699.41 140
FMVSNet397.50 19997.24 20998.29 21498.08 30495.83 23897.86 15898.91 23297.89 14098.95 12798.95 13887.06 30299.81 15897.77 9999.69 12799.23 201
OPM-MVS98.56 10298.32 12199.25 8799.41 10598.73 7997.13 22899.18 17697.10 21098.75 16298.92 14298.18 5799.65 26096.68 17199.56 17799.37 159
ADS-MVSNet295.43 28794.98 29396.76 29698.14 30091.74 32297.92 15197.76 30190.23 33596.51 30598.91 14385.61 31499.85 10392.88 30496.90 33498.69 281
ADS-MVSNet95.24 29094.93 29596.18 30598.14 30090.10 33697.92 15197.32 31390.23 33596.51 30598.91 14385.61 31499.74 21692.88 30496.90 33498.69 281
test_040298.76 6898.71 6098.93 13499.56 6298.14 12398.45 9999.34 11799.28 4298.95 12798.91 14398.34 4699.79 18095.63 23699.91 4098.86 260
test_241102_ONE99.49 8499.17 3699.31 12997.98 13299.66 2098.90 14698.36 4299.48 308
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11799.11 16197.97 14396.53 25999.54 4798.24 11598.83 15098.90 14697.80 8399.82 14595.68 23399.52 18799.38 156
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11999.41 9096.77 22498.83 15098.90 14697.80 8399.82 14595.68 23399.52 18799.38 156
zzz-MVS98.79 6298.52 8499.61 999.67 4099.36 997.33 20999.20 16798.83 8598.89 13998.90 14696.98 14299.92 3597.16 12799.70 12199.56 71
MTAPA98.88 5398.64 7099.61 999.67 4099.36 998.43 10099.20 16798.83 8598.89 13998.90 14696.98 14299.92 3597.16 12799.70 12199.56 71
test20.0398.78 6598.77 5498.78 15799.46 9597.20 19997.78 16499.24 16199.04 6799.41 4998.90 14697.65 9299.76 20597.70 10599.79 8299.39 149
SteuartSystems-ACMMP98.79 6298.54 8299.54 2999.73 2499.16 4098.23 11499.31 12997.92 13798.90 13698.90 14698.00 6999.88 6696.15 21199.72 11299.58 61
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 19397.17 21298.99 12899.27 12397.86 15595.98 28393.41 34995.25 27199.47 4298.90 14695.63 20599.85 10396.91 14599.73 10699.27 193
TSAR-MVS + MP.98.63 9298.49 9199.06 11799.64 4697.90 15298.51 9098.94 22596.96 21699.24 8098.89 15497.83 7999.81 15896.88 15299.49 19899.48 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test117298.76 6898.49 9199.57 1899.18 14999.37 898.39 10399.31 12998.43 10398.90 13698.88 15597.49 11199.86 8996.43 19399.37 21499.48 111
PGM-MVS98.66 8798.37 11399.55 2699.53 7099.18 3598.23 11499.49 6497.01 21598.69 16698.88 15598.00 6999.89 5795.87 22399.59 16299.58 61
TinyColmap97.89 16897.98 15697.60 25498.86 21794.35 27596.21 27799.44 8097.45 17799.06 10498.88 15597.99 7299.28 33494.38 26999.58 16899.18 213
LS3D98.63 9298.38 11299.36 6497.25 33899.38 599.12 4399.32 12499.21 4598.44 19698.88 15597.31 12199.80 16796.58 17699.34 21998.92 252
Anonymous20240521197.90 16697.50 19099.08 10998.90 20898.25 11098.53 8596.16 33098.87 8199.11 9598.86 15990.40 28599.78 19297.36 11899.31 22399.19 211
HPM-MVS_fast99.01 3698.82 4899.57 1899.71 3099.35 1199.00 5299.50 5697.33 18798.94 13398.86 15998.75 2399.82 14597.53 11199.71 11699.56 71
CMPMVSbinary75.91 2396.29 26795.44 28098.84 14696.25 35498.69 8297.02 23099.12 19488.90 34497.83 23598.86 15989.51 29098.90 35191.92 31899.51 19098.92 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 7598.43 10399.57 1899.18 14999.35 1198.36 10699.29 14598.29 11298.88 14398.85 16297.53 10499.87 8296.14 21299.31 22399.48 111
our_test_397.39 21097.73 17496.34 30198.70 24889.78 33794.61 33298.97 22496.50 23399.04 11198.85 16295.98 19399.84 12097.26 12399.67 13899.41 140
MVS_030497.64 19197.35 20298.52 19197.87 31496.69 21998.59 7998.05 29697.44 17893.74 35198.85 16293.69 25699.88 6698.11 7899.81 6998.98 241
Regformer-398.61 9598.61 7598.63 17299.02 18496.53 22197.17 22498.84 24599.13 5599.10 9898.85 16297.24 12999.79 18098.41 6799.70 12199.57 66
Regformer-498.73 7398.68 6598.89 14099.02 18497.22 19697.17 22499.06 20299.21 4599.17 9198.85 16297.45 11499.86 8998.48 6299.70 12199.60 49
EPNet96.14 27195.44 28098.25 21790.76 36595.50 24697.92 15194.65 33998.97 7492.98 35298.85 16289.12 29399.87 8295.99 21699.68 13299.39 149
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 19197.49 19198.08 22899.14 15895.12 25996.70 25399.05 20693.77 30098.62 17498.83 16893.23 25899.75 21298.33 7199.76 9999.36 165
PMMVS298.07 15598.08 14998.04 23299.41 10594.59 27294.59 33399.40 9397.50 16798.82 15498.83 16896.83 15099.84 12097.50 11399.81 6999.71 26
MDTV_nov1_ep1395.22 28797.06 34183.20 36097.74 17196.16 33094.37 28996.99 28298.83 16883.95 32799.53 29593.90 28297.95 316
Anonymous2023120698.21 14598.21 13198.20 22099.51 7495.43 24998.13 12499.32 12496.16 24598.93 13498.82 17196.00 18999.83 13597.32 12099.73 10699.36 165
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17699.38 9795.76 25998.81 15698.82 17198.36 4299.82 14594.75 25399.77 9099.48 111
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VNet98.42 12298.30 12298.79 15498.79 23397.29 19098.23 11498.66 26899.31 3998.85 14798.80 17394.80 23199.78 19298.13 7799.13 25599.31 183
tpmrst95.07 29395.46 27893.91 33497.11 34084.36 35897.62 18296.96 31994.98 27496.35 31198.80 17385.46 31699.59 27895.60 23796.23 34397.79 321
ppachtmachnet_test97.50 19997.74 17296.78 29598.70 24891.23 33394.55 33499.05 20696.36 23899.21 8498.79 17596.39 17599.78 19296.74 16499.82 6599.34 171
miper_lstm_enhance97.18 22797.16 21397.25 27598.16 29992.85 30895.15 31799.31 12997.25 19698.74 16498.78 17690.07 28699.78 19297.19 12599.80 7799.11 224
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8998.39 28698.97 6295.03 31999.18 17696.88 22099.33 6298.78 17698.16 5999.28 33496.74 16499.62 15299.44 130
patchmatchnet-post98.77 17884.37 32399.85 103
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16198.93 6697.76 16999.28 14794.97 27598.72 16598.77 17897.04 13699.85 10393.79 28799.54 18099.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 5898.63 7199.39 6399.16 15398.74 7697.54 19299.25 15698.84 8499.06 10498.76 18096.76 15799.93 2898.57 5799.77 9099.50 100
NR-MVSNet98.95 4698.82 4899.36 6499.16 15398.72 8199.22 3199.20 16799.10 6299.72 1398.76 18096.38 17799.86 8998.00 8899.82 6599.50 100
eth_miper_zixun_eth97.23 22397.25 20797.17 27798.00 30892.77 31094.71 32699.18 17697.27 19498.56 18698.74 18291.89 27899.69 23597.06 13599.81 6999.05 228
UniMVSNet (Re)98.87 5498.71 6099.35 6999.24 12898.73 7997.73 17299.38 9798.93 7999.12 9398.73 18396.77 15599.86 8998.63 5499.80 7799.46 121
MG-MVS96.77 25196.61 24697.26 27498.31 29093.06 30395.93 28998.12 29396.45 23697.92 22898.73 18393.77 25499.39 32091.19 33099.04 26599.33 177
cl_fuxian97.36 21197.37 20097.31 27198.09 30393.25 30195.01 32099.16 18597.05 21298.77 16098.72 18592.88 26799.64 26296.93 14499.76 9999.05 228
cl-mvsnet_97.02 23996.83 23397.58 25697.82 31694.04 28294.66 32999.16 18597.04 21398.63 17298.71 18688.68 29799.69 23597.00 13799.81 6999.00 239
cl-mvsnet197.02 23996.84 23297.58 25697.82 31694.03 28394.66 32999.16 18597.04 21398.63 17298.71 18688.69 29699.69 23597.00 13799.81 6999.01 236
DELS-MVS98.27 13898.20 13298.48 19798.86 21796.70 21895.60 30399.20 16797.73 14998.45 19598.71 18697.50 10899.82 14598.21 7499.59 16298.93 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 16999.07 17297.53 19399.32 12495.53 26498.54 19098.70 18997.58 9999.76 20594.32 27099.46 202
tpmvs95.02 29595.25 28694.33 33096.39 35385.87 35098.08 13196.83 32495.46 26695.51 33398.69 19085.91 31299.53 29594.16 27196.23 34397.58 330
PatchmatchNetpermissive95.58 28395.67 27295.30 32397.34 33587.32 34697.65 18096.65 32595.30 27097.07 27898.69 19084.77 31999.75 21294.97 24998.64 29298.83 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 9098.34 11799.54 2999.54 6899.17 3698.63 7499.24 16197.47 17098.09 22098.68 19297.62 9699.89 5796.22 20699.62 15299.57 66
UnsupCasMVSNet_eth97.89 16897.60 18598.75 16299.31 11797.17 20297.62 18299.35 11198.72 8998.76 16198.68 19292.57 27299.74 21697.76 10395.60 34899.34 171
SCA96.41 26596.66 24495.67 31498.24 29488.35 34295.85 29496.88 32396.11 24697.67 24598.67 19493.10 26299.85 10394.16 27199.22 23798.81 266
Patchmatch-test96.55 25996.34 25797.17 27798.35 28793.06 30398.40 10297.79 30097.33 18798.41 20098.67 19483.68 32999.69 23595.16 24599.31 22398.77 274
CDS-MVSNet97.69 18797.35 20298.69 16698.73 23997.02 20896.92 23998.75 26195.89 25598.59 18098.67 19492.08 27799.74 21696.72 16799.81 6999.32 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 11898.09 14699.54 2999.57 5599.22 2598.50 9199.19 17297.61 15897.58 25298.66 19797.40 11799.88 6694.72 25699.60 16099.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16298.61 26497.23 19497.76 16999.09 19897.31 19098.75 16298.66 19797.56 10199.64 26296.10 21499.55 17999.39 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 18897.75 17197.45 26698.23 29693.78 29597.29 21298.84 24596.10 24798.64 17198.65 19996.04 18699.36 32396.84 15699.14 25299.20 206
pmmvs497.58 19697.28 20698.51 19498.84 22296.93 21195.40 31198.52 27693.60 30298.61 17698.65 19995.10 22199.60 27496.97 14299.79 8298.99 240
FPMVS93.44 31792.23 32297.08 28099.25 12797.86 15595.61 30297.16 31692.90 31093.76 35098.65 19975.94 35595.66 35979.30 35997.49 32197.73 323
Regformer-198.55 10698.44 10198.87 14298.85 21997.29 19096.91 24098.99 22298.97 7498.99 11998.64 20297.26 12899.81 15897.79 9799.57 17299.51 96
Regformer-298.60 9798.46 9799.02 12598.85 21997.71 17196.91 24099.09 19898.98 7399.01 11598.64 20297.37 11999.84 12097.75 10499.57 17299.52 93
dp93.47 31693.59 31093.13 34296.64 34781.62 36397.66 17896.42 32892.80 31296.11 31498.64 20278.55 35299.59 27893.31 29992.18 35998.16 303
EPMVS93.72 31493.27 31395.09 32596.04 35687.76 34498.13 12485.01 36394.69 28196.92 28498.64 20278.47 35399.31 32995.04 24696.46 34098.20 301
XVS98.72 7498.45 9999.53 3699.46 9599.21 2698.65 7299.34 11798.62 9497.54 25698.63 20697.50 10899.83 13596.79 15899.53 18499.56 71
CostFormer93.97 31093.78 30794.51 32997.53 32885.83 35297.98 14795.96 33389.29 34394.99 33998.63 20678.63 35099.62 26794.54 25996.50 33998.09 306
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16198.80 7397.47 20099.32 12495.54 26298.43 19998.62 20896.61 16599.77 19893.95 28199.49 19899.30 186
MSLP-MVS++98.02 15898.14 14397.64 25298.58 26995.19 25697.48 19899.23 16397.47 17097.90 23098.62 20897.04 13698.81 35397.55 10899.41 20798.94 250
Vis-MVSNet (Re-imp)97.46 20497.16 21398.34 20999.55 6596.10 23098.94 5798.44 27998.32 10898.16 21398.62 20888.76 29599.73 22093.88 28499.79 8299.18 213
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9999.49 8498.83 7096.54 25899.48 6697.32 18999.11 9598.61 21199.33 899.30 33196.23 20598.38 29999.28 191
ITE_SJBPF98.87 14299.22 13398.48 9999.35 11197.50 16798.28 20898.60 21297.64 9599.35 32493.86 28599.27 23098.79 272
UniMVSNet_NR-MVSNet98.86 5698.68 6599.40 6299.17 15198.74 7697.68 17699.40 9399.14 5499.06 10498.59 21396.71 16199.93 2898.57 5799.77 9099.53 89
114514_t96.50 26295.77 26798.69 16699.48 9297.43 18597.84 16099.55 4381.42 35896.51 30598.58 21495.53 20899.67 24793.41 29799.58 16898.98 241
HY-MVS95.94 1395.90 27695.35 28497.55 26097.95 30994.79 26498.81 6696.94 32192.28 31895.17 33698.57 21589.90 28899.75 21291.20 32997.33 33098.10 305
tpm94.67 29894.34 30295.66 31597.68 32488.42 34197.88 15594.90 33894.46 28596.03 31998.56 21678.66 34999.79 18095.88 22095.01 35198.78 273
ACMMPR98.70 7898.42 10599.54 2999.52 7299.14 4898.52 8699.31 12997.47 17098.56 18698.54 21797.75 8699.88 6696.57 17899.59 16299.58 61
new_pmnet96.99 24396.76 23697.67 24898.72 24194.89 26395.95 28898.20 28892.62 31498.55 18898.54 21794.88 22799.52 29993.96 28099.44 20598.59 287
OPU-MVS98.82 14898.59 26898.30 10798.10 12998.52 21998.18 5798.75 35494.62 25799.48 20099.41 140
region2R98.69 8098.40 10799.54 2999.53 7099.17 3698.52 8699.31 12997.46 17598.44 19698.51 22097.83 7999.88 6696.46 19099.58 16899.58 61
TSAR-MVS + GP.98.18 14897.98 15698.77 15998.71 24497.88 15396.32 27298.66 26896.33 23999.23 8398.51 22097.48 11399.40 31897.16 12799.46 20299.02 235
OMC-MVS97.88 17097.49 19199.04 12198.89 21398.63 8496.94 23599.25 15695.02 27398.53 19198.51 22097.27 12599.47 31093.50 29599.51 19099.01 236
testtj97.79 18397.25 20799.42 5799.03 18298.85 6897.78 16499.18 17695.83 25798.12 21798.50 22395.50 21199.86 8992.23 31799.07 26199.54 83
HFP-MVS98.71 7598.44 10199.51 4599.49 8499.16 4098.52 8699.31 12997.47 17098.58 18298.50 22397.97 7399.85 10396.57 17899.59 16299.53 89
#test#98.50 11498.16 13999.51 4599.49 8499.16 4098.03 13999.31 12996.30 24298.58 18298.50 22397.97 7399.85 10395.68 23399.59 16299.53 89
diffmvs98.22 14498.24 12898.17 22299.00 18795.44 24896.38 26999.58 2697.79 14798.53 19198.50 22396.76 15799.74 21697.95 9099.64 14699.34 171
WR-MVS98.40 12598.19 13499.03 12299.00 18797.65 17496.85 24398.94 22598.57 10098.89 13998.50 22395.60 20699.85 10397.54 11099.85 5499.59 55
Test_1112_low_res96.99 24396.55 25198.31 21299.35 11495.47 24795.84 29599.53 5091.51 32796.80 29598.48 22891.36 28099.83 13596.58 17699.53 18499.62 44
miper_ehance_all_eth97.06 23597.03 21997.16 27997.83 31593.06 30394.66 32999.09 19895.99 25298.69 16698.45 22992.73 27099.61 27396.79 15899.03 26698.82 263
PHI-MVS98.29 13797.95 15899.34 7298.44 28399.16 4098.12 12699.38 9796.01 25198.06 22298.43 23097.80 8399.67 24795.69 23299.58 16899.20 206
tpm cat193.29 31893.13 31793.75 33597.39 33484.74 35597.39 20497.65 30583.39 35794.16 34498.41 23182.86 33399.39 32091.56 32595.35 35097.14 337
ETH3D cwj APD-0.1697.55 19797.00 22199.19 9298.51 27798.64 8396.85 24399.13 19294.19 29397.65 24698.40 23295.78 20199.81 15893.37 29899.16 24899.12 222
CP-MVS98.70 7898.42 10599.52 4199.36 11099.12 5398.72 6999.36 10597.54 16598.30 20698.40 23297.86 7899.89 5796.53 18699.72 11299.56 71
ZNCC-MVS98.68 8498.40 10799.54 2999.57 5599.21 2698.46 9799.29 14597.28 19398.11 21898.39 23498.00 6999.87 8296.86 15599.64 14699.55 79
GST-MVS98.61 9598.30 12299.52 4199.51 7499.20 3298.26 11299.25 15697.44 17898.67 16898.39 23497.68 8999.85 10396.00 21599.51 19099.52 93
bset_n11_16_dypcd96.99 24396.56 25098.27 21699.00 18795.25 25292.18 35694.05 34798.75 8799.01 11598.38 23688.98 29499.93 2898.77 4799.92 3499.64 39
HPM-MVScopyleft98.79 6298.53 8399.59 1799.65 4399.29 1799.16 3899.43 8696.74 22598.61 17698.38 23698.62 2899.87 8296.47 18999.67 13899.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 22598.93 20095.40 25098.80 25390.08 33997.45 26498.37 23895.26 21799.70 23193.58 29298.95 27799.17 217
CPTT-MVS97.84 17897.36 20199.27 8299.31 11798.46 10098.29 10999.27 15094.90 27797.83 23598.37 23894.90 22499.84 12093.85 28699.54 18099.51 96
OpenMVS_ROBcopyleft95.38 1495.84 27895.18 28997.81 24198.41 28597.15 20497.37 20698.62 27183.86 35598.65 17098.37 23894.29 24399.68 24488.41 34298.62 29496.60 344
tttt051795.64 28294.98 29397.64 25299.36 11093.81 29498.72 6990.47 35898.08 12898.67 16898.34 24173.88 35799.92 3597.77 9999.51 19099.20 206
旧先验198.82 22797.45 18498.76 25898.34 24195.50 21199.01 27199.23 201
CNVR-MVS98.17 15097.87 16599.07 11298.67 25798.24 11197.01 23198.93 22797.25 19697.62 24898.34 24197.27 12599.57 28496.42 19499.33 22099.39 149
HyFIR lowres test97.19 22696.60 24798.96 13099.62 5097.28 19295.17 31599.50 5694.21 29299.01 11598.32 24486.61 30599.99 297.10 13399.84 5699.60 49
UnsupCasMVSNet_bld97.30 21696.92 22698.45 20099.28 12296.78 21796.20 27899.27 15095.42 26798.28 20898.30 24593.16 26099.71 22994.99 24897.37 32698.87 259
MSDG97.71 18697.52 18998.28 21598.91 20796.82 21394.42 33699.37 10197.65 15498.37 20598.29 24697.40 11799.33 32794.09 27799.22 23798.68 284
MVS_111021_HR98.25 14298.08 14998.75 16299.09 16897.46 18395.97 28499.27 15097.60 15997.99 22798.25 24798.15 6199.38 32296.87 15399.57 17299.42 137
CANet_DTU97.26 21997.06 21897.84 23997.57 32594.65 27096.19 27998.79 25497.23 20295.14 33798.24 24893.22 25999.84 12097.34 11999.84 5699.04 232
MVS_111021_LR98.30 13498.12 14498.83 14799.16 15398.03 13696.09 28199.30 13897.58 16098.10 21998.24 24898.25 4999.34 32596.69 17099.65 14499.12 222
tpm293.09 32092.58 32194.62 32897.56 32686.53 34997.66 17895.79 33586.15 35294.07 34798.23 25075.95 35499.53 29590.91 33396.86 33797.81 318
CANet97.87 17197.76 17098.19 22197.75 31895.51 24596.76 24999.05 20697.74 14896.93 28398.21 25195.59 20799.89 5797.86 9699.93 2599.19 211
LF4IMVS97.90 16697.69 17598.52 19199.17 15197.66 17397.19 22399.47 7296.31 24197.85 23498.20 25296.71 16199.52 29994.62 25799.72 11298.38 296
CL-MVSNet_2432*160097.44 20797.22 21098.08 22898.57 27195.78 24094.30 33998.79 25496.58 23298.60 17898.19 25394.74 23499.64 26296.41 19598.84 28098.82 263
cl-mvsnet295.79 27995.39 28396.98 28496.77 34692.79 30994.40 33798.53 27594.59 28297.89 23198.17 25482.82 33499.24 33696.37 19699.03 26698.92 252
112196.73 25296.00 26398.91 13798.95 19797.76 16698.07 13298.73 26487.65 34996.54 30298.13 25594.52 23799.73 22092.38 31599.02 26999.24 200
MVSFormer98.26 14098.43 10397.77 24398.88 21493.89 29299.39 1199.56 4099.11 5698.16 21398.13 25593.81 25299.97 399.26 1899.57 17299.43 134
jason97.45 20697.35 20297.76 24499.24 12893.93 28895.86 29298.42 28094.24 29198.50 19398.13 25594.82 22899.91 4597.22 12499.73 10699.43 134
jason: jason.
ZD-MVS99.01 18698.84 6999.07 20194.10 29598.05 22498.12 25896.36 17999.86 8992.70 31199.19 244
test22298.92 20496.93 21195.54 30498.78 25685.72 35396.86 29298.11 25994.43 23899.10 26099.23 201
新几何198.91 13798.94 19897.76 16698.76 25887.58 35096.75 29698.10 26094.80 23199.78 19292.73 31099.00 27299.20 206
原ACMM198.35 20898.90 20896.25 22898.83 25092.48 31596.07 31798.10 26095.39 21599.71 22992.61 31398.99 27399.08 225
EPNet_dtu94.93 29694.78 29795.38 32293.58 36287.68 34596.78 24795.69 33697.35 18689.14 36098.09 26288.15 30099.49 30594.95 25099.30 22698.98 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 29494.40 30096.93 28697.70 32292.53 31395.08 31897.71 30388.57 34697.71 24298.08 26379.39 34799.82 14596.19 20899.11 25998.43 294
DP-MVS Recon97.33 21496.92 22698.57 18299.09 16897.99 13896.79 24699.35 11193.18 30697.71 24298.07 26495.00 22399.31 32993.97 27999.13 25598.42 295
CSCG98.68 8498.50 8899.20 9199.45 9898.63 8498.56 8299.57 3397.87 14198.85 14798.04 26597.66 9199.84 12096.72 16799.81 6999.13 221
F-COLMAP97.30 21696.68 24199.14 9999.19 14298.39 10397.27 21599.30 13892.93 30996.62 30098.00 26695.73 20399.68 24492.62 31298.46 29899.35 169
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30699.49 298.02 14199.16 18598.29 11297.64 24797.99 26796.44 17399.95 1596.66 17298.93 27898.60 285
hse-mvs297.46 20497.07 21798.64 16998.73 23997.33 18897.45 20297.64 30799.11 5698.58 18297.98 26888.65 29899.79 18098.11 7897.39 32598.81 266
HQP_MVS97.99 16397.67 17698.93 13499.19 14297.65 17497.77 16799.27 15098.20 12197.79 23897.98 26894.90 22499.70 23194.42 26599.51 19099.45 125
plane_prior497.98 268
BH-RMVSNet96.83 24896.58 24897.58 25698.47 28094.05 28196.67 25497.36 31096.70 22897.87 23297.98 26895.14 22099.44 31590.47 33698.58 29699.25 197
AUN-MVS96.24 27095.45 27998.60 17798.70 24897.22 19697.38 20597.65 30595.95 25395.53 33297.96 27282.11 33999.79 18096.31 20097.44 32398.80 271
NCCC97.86 17297.47 19599.05 11998.61 26498.07 13196.98 23398.90 23397.63 15597.04 28097.93 27395.99 19299.66 25595.31 24498.82 28299.43 134
sss97.21 22496.93 22498.06 23098.83 22495.22 25596.75 25098.48 27894.49 28397.27 27197.90 27492.77 26999.80 16796.57 17899.32 22199.16 220
test_yl96.69 25396.29 25997.90 23698.28 29195.24 25397.29 21297.36 31098.21 11898.17 21197.86 27586.27 30799.55 29094.87 25198.32 30098.89 256
DCV-MVSNet96.69 25396.29 25997.90 23698.28 29195.24 25397.29 21297.36 31098.21 11898.17 21197.86 27586.27 30799.55 29094.87 25198.32 30098.89 256
CDPH-MVS97.26 21996.66 24499.07 11299.00 18798.15 12196.03 28299.01 21891.21 33197.79 23897.85 27796.89 14699.69 23592.75 30999.38 21399.39 149
HPM-MVS++copyleft98.10 15297.64 18199.48 5099.09 16899.13 5197.52 19498.75 26197.46 17596.90 28997.83 27896.01 18899.84 12095.82 22799.35 21799.46 121
ETH3 D test640096.46 26495.59 27599.08 10998.88 21498.21 11796.53 25999.18 17688.87 34597.08 27797.79 27993.64 25799.77 19888.92 34199.40 20999.28 191
PatchMatch-RL97.24 22296.78 23598.61 17699.03 18297.83 15896.36 27099.06 20293.49 30597.36 27097.78 28095.75 20299.49 30593.44 29698.77 28398.52 288
TAPA-MVS96.21 1196.63 25795.95 26598.65 16898.93 20098.09 12596.93 23799.28 14783.58 35698.13 21697.78 28096.13 18399.40 31893.52 29399.29 22898.45 292
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 27595.44 28097.52 26398.51 27793.99 28698.39 10396.09 33298.21 11898.40 20497.76 28286.88 30399.63 26595.42 24289.27 36098.95 246
WTY-MVS96.67 25596.27 26197.87 23898.81 22994.61 27196.77 24897.92 29994.94 27697.12 27497.74 28391.11 28199.82 14593.89 28398.15 30899.18 213
MSP-MVS98.40 12598.00 15599.61 999.57 5599.25 2298.57 8199.35 11197.55 16499.31 7097.71 28494.61 23599.88 6696.14 21299.19 24499.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 16097.63 18299.10 10599.24 12898.17 12096.89 24298.73 26495.66 26097.92 22897.70 28597.17 13299.66 25596.18 21099.23 23699.47 119
AdaColmapbinary97.14 23096.71 23998.46 19998.34 28897.80 16496.95 23498.93 22795.58 26196.92 28497.66 28695.87 19999.53 29590.97 33199.14 25298.04 307
thisisatest053095.27 28994.45 29997.74 24699.19 14294.37 27497.86 15890.20 35997.17 20698.22 21097.65 28773.53 35899.90 4896.90 15099.35 21798.95 246
testgi98.32 13298.39 11098.13 22499.57 5595.54 24397.78 16499.49 6497.37 18499.19 8697.65 28798.96 1799.49 30596.50 18898.99 27399.34 171
test_prior397.48 20397.00 22198.95 13198.69 25297.95 14895.74 29899.03 21196.48 23496.11 31497.63 28995.92 19799.59 27894.16 27199.20 24099.30 186
test_prior295.74 29896.48 23496.11 31497.63 28995.92 19794.16 27199.20 240
cdsmvs_eth3d_5k24.66 33232.88 3350.00 3480.00 3690.00 3700.00 36099.10 1970.00 3650.00 36697.58 29199.21 100.00 3660.00 3640.00 3640.00 362
lupinMVS97.06 23596.86 23097.65 25098.88 21493.89 29295.48 30897.97 29793.53 30398.16 21397.58 29193.81 25299.91 4596.77 16199.57 17299.17 217
TEST998.71 24498.08 12995.96 28699.03 21191.40 32895.85 32197.53 29396.52 16899.76 205
train_agg97.10 23196.45 25499.07 11298.71 24498.08 12995.96 28699.03 21191.64 32395.85 32197.53 29396.47 17199.76 20593.67 28999.16 24899.36 165
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 15098.43 28498.11 12497.61 18499.50 5698.64 9097.39 26897.52 29598.12 6299.95 1596.90 15098.71 28898.38 296
test_898.67 25798.01 13795.91 29199.02 21591.64 32395.79 32397.50 29696.47 17199.76 205
agg_prior197.06 23596.40 25599.03 12298.68 25597.99 13895.76 29699.01 21891.73 32295.59 32497.50 29696.49 17099.77 19893.71 28899.14 25299.34 171
1112_ss97.29 21896.86 23098.58 17999.34 11696.32 22696.75 25099.58 2693.14 30796.89 29097.48 29892.11 27699.86 8996.91 14599.54 18099.57 66
ab-mvs-re8.12 33610.83 3390.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 36697.48 2980.00 3710.00 3660.00 3640.00 3640.00 362
Effi-MVS+98.02 15897.82 16898.62 17498.53 27697.19 20097.33 20999.68 1397.30 19196.68 29797.46 30098.56 3299.80 16796.63 17498.20 30498.86 260
PCF-MVS92.86 1894.36 30193.00 31898.42 20298.70 24897.56 17893.16 35199.11 19679.59 35997.55 25597.43 30192.19 27499.73 22079.85 35899.45 20497.97 311
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 27795.32 28597.49 26498.60 26694.15 28093.83 34697.93 29895.49 26596.68 29797.42 30283.21 33099.30 33196.22 20698.55 29799.01 236
CNLPA97.17 22896.71 23998.55 18798.56 27298.05 13496.33 27198.93 22796.91 21997.06 27997.39 30394.38 24199.45 31491.66 32199.18 24698.14 304
PLCcopyleft94.65 1696.51 26095.73 26998.85 14598.75 23797.91 15196.42 26799.06 20290.94 33495.59 32497.38 30494.41 23999.59 27890.93 33298.04 31599.05 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 24896.75 23797.08 28098.74 23893.33 30096.71 25298.26 28596.72 22698.44 19697.37 30595.20 21899.47 31091.89 31997.43 32498.44 293
PVSNet_Blended96.88 24696.68 24197.47 26598.92 20493.77 29694.71 32699.43 8690.98 33397.62 24897.36 30696.82 15199.67 24794.73 25499.56 17798.98 241
miper_enhance_ethall96.01 27395.74 26896.81 29496.41 35292.27 31893.69 34898.89 23591.14 33298.30 20697.35 30790.58 28399.58 28396.31 20099.03 26698.60 285
DPM-MVS96.32 26695.59 27598.51 19498.76 23497.21 19894.54 33598.26 28591.94 32196.37 31097.25 30893.06 26499.43 31691.42 32698.74 28498.89 256
E-PMN94.17 30694.37 30193.58 33796.86 34385.71 35390.11 35897.07 31798.17 12497.82 23797.19 30984.62 32198.94 34989.77 33897.68 32096.09 351
mvs-test197.83 18097.48 19498.89 14098.02 30699.20 3297.20 22099.16 18598.29 11296.46 30997.17 31096.44 17399.92 3596.66 17297.90 31797.54 332
CLD-MVS97.49 20197.16 21398.48 19799.07 17297.03 20794.71 32699.21 16594.46 28598.06 22297.16 31197.57 10099.48 30894.46 26299.78 8698.95 246
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 28695.47 27795.65 31698.25 29388.27 34393.25 35098.88 23693.53 30394.65 34097.15 31286.17 30999.93 2897.41 11699.93 2598.73 277
xiu_mvs_v1_base_debu97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
xiu_mvs_v1_base97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
xiu_mvs_v1_base_debi97.86 17298.17 13696.92 28798.98 19293.91 28996.45 26499.17 18297.85 14398.41 20097.14 31398.47 3599.92 3598.02 8599.05 26296.92 338
NP-MVS98.84 22297.39 18796.84 316
HQP-MVS97.00 24296.49 25398.55 18798.67 25796.79 21496.29 27399.04 20996.05 24895.55 32896.84 31693.84 25099.54 29392.82 30699.26 23399.32 179
API-MVS97.04 23896.91 22897.42 26897.88 31398.23 11598.18 12098.50 27797.57 16197.39 26896.75 31896.77 15599.15 34390.16 33799.02 26994.88 355
131495.74 28095.60 27496.17 30697.53 32892.75 31198.07 13298.31 28491.22 33094.25 34396.68 31995.53 20899.03 34591.64 32397.18 33196.74 342
TR-MVS95.55 28495.12 29196.86 29397.54 32793.94 28796.49 26396.53 32794.36 29097.03 28196.61 32094.26 24499.16 34286.91 34696.31 34297.47 334
Fast-Effi-MVS+97.67 18997.38 19998.57 18298.71 24497.43 18597.23 21699.45 7794.82 27996.13 31396.51 32198.52 3499.91 4596.19 20898.83 28198.37 298
xiu_mvs_v2_base97.16 22997.49 19196.17 30698.54 27492.46 31495.45 30998.84 24597.25 19697.48 26296.49 32298.31 4799.90 4896.34 19998.68 29096.15 349
MVS93.19 31992.09 32396.50 29996.91 34294.03 28398.07 13298.06 29568.01 36094.56 34296.48 32395.96 19599.30 33183.84 35196.89 33696.17 347
PAPM_NR96.82 25096.32 25898.30 21399.07 17296.69 21997.48 19898.76 25895.81 25896.61 30196.47 32494.12 24899.17 34190.82 33597.78 31899.06 227
KD-MVS_2432*160092.87 32191.99 32595.51 31991.37 36389.27 33894.07 34198.14 29195.42 26797.25 27296.44 32567.86 36299.24 33691.28 32796.08 34598.02 308
miper_refine_blended92.87 32191.99 32595.51 31991.37 36389.27 33894.07 34198.14 29195.42 26797.25 27296.44 32567.86 36299.24 33691.28 32796.08 34598.02 308
PVSNet93.40 1795.67 28195.70 27095.57 31798.83 22488.57 34092.50 35397.72 30292.69 31396.49 30896.44 32593.72 25599.43 31693.61 29099.28 22998.71 278
EMVS93.83 31294.02 30493.23 34196.83 34584.96 35489.77 35996.32 32997.92 13797.43 26696.36 32886.17 30998.93 35087.68 34497.73 31995.81 352
MAR-MVS96.47 26395.70 27098.79 15497.92 31199.12 5398.28 11098.60 27292.16 32095.54 33196.17 32994.77 23399.52 29989.62 33998.23 30297.72 324
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 32990.34 33296.51 29898.06 30592.56 31292.44 35497.17 31586.35 35190.38 35896.01 33086.61 30599.21 33970.65 36195.43 34997.75 322
PS-MVSNAJ97.08 23397.39 19896.16 30898.56 27292.46 31495.24 31498.85 24497.25 19697.49 26195.99 33198.07 6399.90 4896.37 19698.67 29196.12 350
baseline293.73 31392.83 31996.42 30097.70 32291.28 33196.84 24589.77 36093.96 29992.44 35495.93 33279.14 34899.77 19892.94 30296.76 33898.21 300
alignmvs97.35 21296.88 22998.78 15798.54 27498.09 12597.71 17397.69 30499.20 4897.59 25195.90 33388.12 30199.55 29098.18 7698.96 27698.70 280
ET-MVSNet_ETH3D94.30 30493.21 31497.58 25698.14 30094.47 27394.78 32593.24 35194.72 28089.56 35995.87 33478.57 35199.81 15896.91 14597.11 33398.46 290
thisisatest051594.12 30893.16 31596.97 28598.60 26692.90 30793.77 34790.61 35794.10 29596.91 28695.87 33474.99 35699.80 16794.52 26099.12 25898.20 301
BH-w/o95.13 29294.89 29695.86 31098.20 29791.31 32995.65 30197.37 30993.64 30196.52 30495.70 33693.04 26599.02 34688.10 34395.82 34797.24 336
PMMVS96.51 26095.98 26498.09 22597.53 32895.84 23794.92 32298.84 24591.58 32596.05 31895.58 33795.68 20499.66 25595.59 23898.09 31198.76 275
EIA-MVS98.00 16097.74 17298.80 15298.72 24198.09 12598.05 13699.60 2397.39 18296.63 29995.55 33897.68 8999.80 16796.73 16699.27 23098.52 288
ETV-MVS98.03 15697.86 16698.56 18698.69 25298.07 13197.51 19699.50 5698.10 12797.50 26095.51 33998.41 3999.88 6696.27 20499.24 23597.71 325
PAPR95.29 28894.47 29897.75 24597.50 33295.14 25894.89 32398.71 26691.39 32995.35 33595.48 34094.57 23699.14 34484.95 34997.37 32698.97 245
canonicalmvs98.34 13198.26 12698.58 17998.46 28197.82 16198.96 5699.46 7499.19 5297.46 26395.46 34198.59 3099.46 31298.08 8298.71 28898.46 290
MVEpermissive83.40 2292.50 32491.92 32794.25 33198.83 22491.64 32392.71 35283.52 36495.92 25486.46 36395.46 34195.20 21895.40 36080.51 35798.64 29295.73 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 31193.85 30594.04 33296.53 34884.62 35694.05 34392.39 35396.17 24394.12 34595.07 34382.30 33599.67 24795.87 22398.18 30597.82 316
test-mter92.33 32691.76 32994.04 33296.53 34884.62 35694.05 34392.39 35394.00 29894.12 34595.07 34365.63 36899.67 24795.87 22398.18 30597.82 316
thres600view794.45 30093.83 30696.29 30299.06 17691.53 32497.99 14594.24 34498.34 10697.44 26595.01 34579.84 34399.67 24784.33 35098.23 30297.66 327
gm-plane-assit94.83 36081.97 36288.07 34894.99 34699.60 27491.76 320
thres100view90094.19 30593.67 30995.75 31399.06 17691.35 32898.03 13994.24 34498.33 10797.40 26794.98 34779.84 34399.62 26783.05 35298.08 31296.29 345
cascas94.79 29794.33 30396.15 30996.02 35792.36 31792.34 35599.26 15585.34 35495.08 33894.96 34892.96 26698.53 35594.41 26898.59 29597.56 331
TESTMET0.1,192.19 32891.77 32893.46 33896.48 35082.80 36194.05 34391.52 35694.45 28794.00 34894.88 34966.65 36699.56 28795.78 22898.11 31098.02 308
test0.0.03 194.51 29993.69 30896.99 28396.05 35593.61 29994.97 32193.49 34896.17 24397.57 25494.88 34982.30 33599.01 34893.60 29194.17 35698.37 298
CS-MVS97.82 18297.59 18798.52 19198.76 23498.04 13598.20 11899.61 2197.10 21096.02 32094.87 35198.27 4899.84 12096.31 20099.17 24797.69 326
DeepMVS_CXcopyleft93.44 33998.24 29494.21 27894.34 34164.28 36191.34 35794.87 35189.45 29292.77 36277.54 36093.14 35793.35 357
IB-MVS91.63 1992.24 32790.90 33196.27 30397.22 33991.24 33294.36 33893.33 35092.37 31692.24 35594.58 35366.20 36799.89 5793.16 30194.63 35397.66 327
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 30993.44 31195.78 31298.93 20091.44 32697.60 18594.29 34297.94 13597.10 27594.31 35479.67 34599.62 26783.05 35298.08 31296.29 345
thres40094.14 30793.44 31196.24 30498.93 20091.44 32697.60 18594.29 34297.94 13597.10 27594.31 35479.67 34599.62 26783.05 35298.08 31297.66 327
DWT-MVSNet_test92.75 32392.05 32494.85 32696.48 35087.21 34797.83 16194.99 33792.22 31992.72 35394.11 35670.75 35999.46 31295.01 24794.33 35597.87 314
thres20093.72 31493.14 31695.46 32198.66 26291.29 33096.61 25794.63 34097.39 18296.83 29393.71 35779.88 34299.56 28782.40 35598.13 30995.54 354
PVSNet_089.98 2191.15 33090.30 33393.70 33697.72 31984.34 35990.24 35797.42 30890.20 33893.79 34993.09 35890.90 28298.89 35286.57 34772.76 36197.87 314
tmp_tt78.77 33178.73 33478.90 34558.45 36674.76 36794.20 34078.26 36739.16 36286.71 36292.82 35980.50 34175.19 36386.16 34892.29 35886.74 358
GG-mvs-BLEND94.76 32794.54 36192.13 32099.31 1880.47 36688.73 36191.01 36067.59 36498.16 35882.30 35694.53 35493.98 356
X-MVStestdata94.32 30292.59 32099.53 3699.46 9599.21 2698.65 7299.34 11798.62 9497.54 25645.85 36197.50 10899.83 13596.79 15899.53 18499.56 71
testmvs17.12 33320.53 3366.87 34712.05 3674.20 36993.62 3496.73 3684.62 36410.41 36424.33 3628.28 3703.56 3659.69 36315.07 36212.86 361
test12317.04 33420.11 3377.82 34610.25 3684.91 36894.80 3244.47 3694.93 36310.00 36524.28 3639.69 3693.64 36410.14 36212.43 36314.92 360
test_post21.25 36483.86 32899.70 231
test_post197.59 18720.48 36583.07 33299.66 25594.16 271
uanet_test0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
pcd_1.5k_mvsjas8.17 33510.90 3380.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 36698.07 630.00 3660.00 3640.00 3640.00 362
sosnet-low-res0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
sosnet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
uncertanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
Regformer0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
uanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
IU-MVS99.49 8499.15 4598.87 23892.97 30899.41 4996.76 16299.62 15299.66 34
save fliter99.11 16197.97 14396.53 25999.02 21598.24 115
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14199.32 12499.88 6696.99 13999.63 14999.68 31
GSMVS98.81 266
test_part299.36 11099.10 5699.05 109
sam_mvs184.74 32098.81 266
sam_mvs84.29 326
MTGPAbinary99.20 167
MTMP97.93 15091.91 355
test9_res93.28 30099.15 25199.38 156
agg_prior292.50 31499.16 24899.37 159
agg_prior98.68 25597.99 13899.01 21895.59 32499.77 198
test_prior497.97 14395.86 292
test_prior98.95 13198.69 25297.95 14899.03 21199.59 27899.30 186
旧先验295.76 29688.56 34797.52 25899.66 25594.48 261
新几何295.93 289
无先验95.74 29898.74 26389.38 34299.73 22092.38 31599.22 205
原ACMM295.53 305
testdata299.79 18092.80 308
segment_acmp97.02 139
testdata195.44 31096.32 240
test1298.93 13498.58 26997.83 15898.66 26896.53 30395.51 21099.69 23599.13 25599.27 193
plane_prior799.19 14297.87 154
plane_prior698.99 19197.70 17294.90 224
plane_prior599.27 15099.70 23194.42 26599.51 19099.45 125
plane_prior397.78 16597.41 18097.79 238
plane_prior297.77 16798.20 121
plane_prior199.05 178
plane_prior97.65 17497.07 22996.72 22699.36 215
n20.00 370
nn0.00 370
door-mid99.57 33
test1198.87 238
door99.41 90
HQP5-MVS96.79 214
HQP-NCC98.67 25796.29 27396.05 24895.55 328
ACMP_Plane98.67 25796.29 27396.05 24895.55 328
BP-MVS92.82 306
HQP4-MVS95.56 32799.54 29399.32 179
HQP3-MVS99.04 20999.26 233
HQP2-MVS93.84 250
MDTV_nov1_ep13_2view74.92 36697.69 17590.06 34097.75 24185.78 31393.52 29398.69 281
ACMMP++_ref99.77 90
ACMMP++99.68 132
Test By Simon96.52 168