This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1999.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
wuyk23d96.06 27597.62 18791.38 34698.65 26498.57 9298.85 6596.95 32496.86 22499.90 499.16 8699.18 1198.40 35989.23 34499.77 9077.18 363
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1899.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8499.36 1499.92 3499.64 39
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5799.70 899.80 999.68 1496.84 15199.83 13699.21 2399.91 4099.77 16
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2899.44 2999.78 1099.76 696.39 17899.92 3599.44 1399.92 3499.68 31
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 599.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9199.27 2999.57 3599.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15499.66 34
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 17099.10 6299.72 1398.76 18196.38 18099.86 9198.00 9199.82 6599.50 100
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2699.59 2099.71 1499.57 2797.12 13599.90 4999.21 2399.87 5299.54 83
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4299.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
SixPastTwentyTwo98.75 7298.62 7499.16 9799.83 1597.96 14899.28 2798.20 29299.37 3499.70 1599.65 1992.65 27499.93 2899.04 3199.84 5699.60 49
new-patchmatchnet98.35 13298.74 5797.18 27999.24 12992.23 32296.42 27099.48 6998.30 11199.69 1799.53 3397.44 11799.82 14698.84 4299.77 9099.49 104
LCM-MVSNet-Re98.64 9298.48 9599.11 10498.85 22198.51 9898.49 9499.83 398.37 10699.69 1799.46 4398.21 5699.92 3594.13 27999.30 22998.91 256
v7n99.53 899.57 899.41 6099.88 798.54 9699.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
SED-MVS98.91 5198.72 6099.49 4899.49 8499.17 3698.10 13099.31 13298.03 13299.66 2099.02 11598.36 4499.88 6796.91 14999.62 15499.41 141
test_241102_ONE99.49 8499.17 3699.31 13297.98 13499.66 2098.90 14698.36 4499.48 311
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1498.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 2199.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10599.07 4699.55 4698.30 11199.65 2299.45 4799.22 999.76 20898.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part197.91 16897.46 19999.27 8298.80 23398.18 12099.07 4699.36 10899.75 599.63 2599.49 3982.20 34299.89 5898.87 4099.95 1699.74 24
SD-MVS98.40 12798.68 6797.54 26498.96 19797.99 13997.88 15899.36 10898.20 12399.63 2599.04 11198.76 2395.33 36596.56 18599.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 5099.31 3999.62 2799.53 3397.36 12299.86 9199.24 2299.71 11899.39 150
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 5099.62 1799.56 2899.42 4998.16 6099.96 898.78 4599.93 2599.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5799.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11899.01 5098.99 22599.25 4499.54 3099.37 5497.04 13899.80 16897.89 9499.52 19099.35 170
EU-MVSNet97.66 19398.50 9095.13 32799.63 4885.84 35498.35 10998.21 29198.23 11999.54 3099.46 4395.02 22599.68 24798.24 7599.87 5299.87 4
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14699.46 7797.56 16599.54 3099.50 3698.97 1699.84 12298.06 8699.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7599.84 5699.52 93
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2899.11 5699.53 3399.18 8098.81 2299.67 25096.71 17399.77 9099.50 100
v899.01 3799.16 3098.57 18499.47 9496.31 23098.90 6099.47 7599.03 6899.52 3599.57 2796.93 14799.81 15999.60 499.98 999.60 49
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10799.00 5299.45 8099.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
K. test v398.00 16397.66 18399.03 12399.79 1997.56 18099.19 3692.47 35699.62 1799.52 3599.66 1789.61 29299.96 899.25 2099.81 6999.56 71
tfpnnormal98.90 5398.90 4398.91 13999.67 4097.82 16299.00 5299.44 8399.45 2899.51 3899.24 7298.20 5799.86 9195.92 22299.69 12999.04 233
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4699.46 2799.50 3999.34 6097.30 12499.93 2898.90 3799.93 2599.77 16
v1098.97 4499.11 3398.55 18999.44 10096.21 23298.90 6099.55 4698.73 8899.48 4099.60 2596.63 16799.83 13699.70 399.99 599.61 48
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10298.46 9999.33 12599.63 1499.48 4099.15 9097.23 13299.75 21597.17 13099.66 14599.63 43
N_pmnet97.63 19697.17 21598.99 12999.27 12497.86 15695.98 28693.41 35395.25 27499.47 4298.90 14695.63 20899.85 10596.91 14999.73 10699.27 194
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5699.48 6999.68 999.46 4399.26 6998.62 2999.73 22399.17 2699.92 3499.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5399.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
v124098.55 10898.62 7498.32 21199.22 13495.58 24597.51 19999.45 8097.16 21099.45 4599.24 7296.12 18799.85 10599.60 499.88 4999.55 79
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23499.39 9897.67 15499.44 4698.99 12597.53 10699.89 5895.40 24699.68 13499.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11399.20 3299.44 8399.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
pmmvs-eth3d98.47 11998.34 11998.86 14699.30 12197.76 16797.16 22999.28 15095.54 26599.42 4899.19 7897.27 12799.63 26897.89 9499.97 1199.20 207
IU-MVS99.49 8499.15 4598.87 24192.97 31199.41 4996.76 16699.62 15499.66 34
IterMVS-SCA-FT97.85 18098.18 13896.87 29399.27 12491.16 33795.53 30899.25 15999.10 6299.41 4999.35 5893.10 26599.96 898.65 5499.94 2199.49 104
test20.0398.78 6798.77 5698.78 15999.46 9597.20 20197.78 16799.24 16499.04 6799.41 4998.90 14697.65 9499.76 20897.70 10899.79 8299.39 150
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10699.30 2299.57 3599.61 1999.40 5299.50 3697.12 13599.85 10599.02 3299.94 2199.80 12
EG-PatchMatch MVS98.99 3999.01 3898.94 13599.50 7797.47 18498.04 14099.59 2698.15 12899.40 5299.36 5798.58 3299.76 20898.78 4599.68 13499.59 55
v192192098.54 11198.60 7998.38 20799.20 14095.76 24497.56 19399.36 10897.23 20599.38 5499.17 8496.02 19099.84 12299.57 699.90 4499.54 83
IterMVS-LS98.55 10898.70 6598.09 22699.48 9294.73 26997.22 22299.39 9898.97 7499.38 5499.31 6496.00 19299.93 2898.58 5699.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lessismore_v098.97 13099.73 2497.53 18286.71 36699.37 5699.52 3589.93 29099.92 3598.99 3499.72 11399.44 131
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6599.62 2298.48 10399.37 5699.49 3998.75 2499.86 9198.20 7899.80 7799.71 26
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9299.42 3099.36 5899.06 10198.38 4399.95 1598.34 7299.90 4499.57 66
APDe-MVS98.99 3998.79 5399.60 1399.21 13699.15 4598.87 6299.48 6997.57 16399.35 5999.24 7297.83 8099.89 5897.88 9799.70 12399.75 22
casdiffmvs98.95 4799.00 3998.81 15299.38 10897.33 19097.82 16599.57 3599.17 5399.35 5999.17 8498.35 4799.69 23898.46 6499.73 10699.41 141
PM-MVS98.82 6098.72 6099.12 10299.64 4698.54 9697.98 14999.68 1597.62 15899.34 6199.18 8097.54 10499.77 20197.79 10099.74 10399.04 233
Anonymous2024052198.69 8298.87 4498.16 22499.77 2095.11 26399.08 4499.44 8399.34 3799.33 6299.55 2994.10 25299.94 2399.25 2099.96 1499.42 138
v119298.60 9998.66 7098.41 20499.27 12495.88 23997.52 19799.36 10897.41 18399.33 6299.20 7796.37 18199.82 14699.57 699.92 3499.55 79
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 12099.42 3099.33 6299.26 6997.01 14299.94 2398.74 5099.93 2599.79 13
IterMVS97.73 18898.11 14896.57 30099.24 12990.28 33895.52 31099.21 16898.86 8299.33 6299.33 6293.11 26499.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS96.93 598.32 13498.01 15799.23 9098.39 28898.97 6295.03 32299.18 17996.88 22399.33 6298.78 17798.16 6099.28 33796.74 16899.62 15499.44 131
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4299.09 6599.33 6299.19 7898.40 4299.72 23195.98 22099.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 11198.57 8298.45 20199.21 13695.98 23697.63 18499.36 10897.15 21299.32 6899.18 8095.84 20399.84 12299.50 1099.91 4099.54 83
v14898.45 12198.60 7998.00 23599.44 10094.98 26497.44 20699.06 20598.30 11199.32 6898.97 13196.65 16699.62 27098.37 6999.85 5499.39 150
MSP-MVS98.40 12798.00 15899.61 999.57 5599.25 2298.57 8399.35 11497.55 16699.31 7097.71 28694.61 23899.88 6796.14 21599.19 24899.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17998.43 10299.35 11499.47 2699.28 7199.05 10896.72 16399.82 14698.09 8499.36 21899.59 55
v2v48298.56 10498.62 7498.37 20899.42 10595.81 24297.58 19199.16 18897.90 14199.28 7199.01 12295.98 19699.79 18399.33 1599.90 4499.51 96
ambc98.24 21998.82 22995.97 23798.62 7799.00 22499.27 7399.21 7596.99 14499.50 30796.55 18899.50 20099.26 197
Patchmatch-RL test97.26 22297.02 22397.99 23699.52 7295.53 24796.13 28399.71 1097.47 17299.27 7399.16 8684.30 32999.62 27097.89 9499.77 9098.81 267
v114498.60 9998.66 7098.41 20499.36 11195.90 23897.58 19199.34 12097.51 16899.27 7399.15 9096.34 18399.80 16899.47 1299.93 2599.51 96
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11199.17 3799.78 599.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_241102_TWO99.30 14198.03 13299.26 7799.02 11597.51 10999.88 6796.91 14999.60 16399.66 34
test072699.50 7799.21 2698.17 12499.35 11497.97 13599.26 7799.06 10197.61 99
V4298.78 6798.78 5498.76 16299.44 10097.04 20898.27 11399.19 17597.87 14399.25 7999.16 8696.84 15199.78 19599.21 2399.84 5699.46 122
TSAR-MVS + MP.98.63 9498.49 9399.06 11899.64 4697.90 15398.51 9298.94 22896.96 21899.24 8098.89 15497.83 8099.81 15996.88 15699.49 20199.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs99.14 3299.09 3499.29 7799.70 3698.28 11099.13 4199.52 5699.48 2499.24 8099.41 5196.79 15799.82 14698.69 5399.88 4999.76 20
abl_698.99 3998.78 5499.61 999.45 9899.46 398.60 7999.50 5998.59 9699.24 8099.04 11198.54 3499.89 5896.45 19599.62 15499.50 100
TSAR-MVS + GP.98.18 15097.98 15998.77 16198.71 24597.88 15496.32 27598.66 27196.33 24299.23 8398.51 22197.48 11599.40 32197.16 13199.46 20599.02 236
ppachtmachnet_test97.50 20297.74 17596.78 29898.70 24991.23 33694.55 33799.05 20996.36 24199.21 8498.79 17696.39 17899.78 19596.74 16899.82 6599.34 172
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9397.47 20399.57 3599.37 3499.21 8499.61 2396.76 16099.83 13698.06 8699.83 6299.71 26
EI-MVSNet-UG-set98.69 8298.71 6298.62 17699.10 16696.37 22797.23 21998.87 24199.20 4899.19 8698.99 12597.30 12499.85 10598.77 4899.79 8299.65 38
testgi98.32 13498.39 11298.13 22599.57 5595.54 24697.78 16799.49 6797.37 18799.19 8697.65 29098.96 1799.49 30896.50 19298.99 27699.34 172
baseline98.96 4699.02 3798.76 16299.38 10897.26 19598.49 9499.50 5998.86 8299.19 8699.06 10198.23 5299.69 23898.71 5299.76 9999.33 178
FMVSNet298.49 11798.40 10998.75 16498.90 21097.14 20798.61 7899.13 19598.59 9699.19 8699.28 6594.14 24899.82 14697.97 9299.80 7799.29 191
EI-MVSNet-Vis-set98.68 8698.70 6598.63 17499.09 16996.40 22697.23 21998.86 24699.20 4899.18 9098.97 13197.29 12699.85 10598.72 5199.78 8699.64 39
Regformer-498.73 7598.68 6798.89 14299.02 18697.22 19897.17 22799.06 20599.21 4599.17 9198.85 16297.45 11699.86 9198.48 6399.70 12399.60 49
TAMVS98.24 14598.05 15498.80 15499.07 17497.18 20397.88 15898.81 25496.66 23299.17 9199.21 7594.81 23399.77 20196.96 14799.88 4999.44 131
UniMVSNet (Re)98.87 5598.71 6299.35 6999.24 12998.73 7997.73 17599.38 10098.93 7999.12 9398.73 18496.77 15899.86 9198.63 5599.80 7799.46 122
RRT_test8_iter0595.24 29395.13 29395.57 32097.32 33987.02 35197.99 14799.41 9398.06 13199.12 9399.05 10866.85 36999.85 10598.93 3699.47 20499.84 8
Anonymous20240521197.90 16997.50 19399.08 11098.90 21098.25 11298.53 8796.16 33498.87 8199.11 9598.86 15990.40 28899.78 19597.36 12299.31 22699.19 212
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32299.59 2099.11 9599.27 6794.82 23199.79 18398.34 7299.63 15199.34 172
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 26199.48 6997.32 19299.11 9598.61 21299.33 899.30 33496.23 20898.38 30299.28 192
Regformer-398.61 9798.61 7798.63 17499.02 18696.53 22497.17 22798.84 24899.13 5599.10 9898.85 16297.24 13199.79 18398.41 6899.70 12399.57 66
LPG-MVS_test98.71 7798.46 9999.47 5399.57 5598.97 6298.23 11699.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
DVP-MVS98.77 6998.52 8699.52 4199.50 7799.21 2698.02 14398.84 24897.97 13599.08 10199.02 11597.61 9999.88 6796.99 14399.63 15199.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13899.71 11899.70 29
RRT_MVS97.07 23796.57 25298.58 18195.89 36196.33 22897.36 21098.77 26097.85 14599.08 10199.12 9482.30 33999.96 898.82 4399.90 4499.45 126
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26997.20 22398.87 24198.97 7499.06 10499.02 11596.00 19299.80 16898.58 5699.82 6599.60 49
UniMVSNet_NR-MVSNet98.86 5798.68 6799.40 6299.17 15298.74 7697.68 17999.40 9699.14 5499.06 10498.59 21496.71 16499.93 2898.57 5899.77 9099.53 89
DU-MVS98.82 6098.63 7399.39 6399.16 15498.74 7697.54 19599.25 15998.84 8499.06 10498.76 18196.76 16099.93 2898.57 5899.77 9099.50 100
MVSTER96.86 25096.55 25497.79 24597.91 31594.21 28197.56 19398.87 24197.49 17199.06 10499.05 10880.72 34499.80 16898.44 6599.82 6599.37 160
TinyColmap97.89 17197.98 15997.60 25798.86 21994.35 27896.21 28099.44 8397.45 17999.06 10498.88 15597.99 7399.28 33794.38 27299.58 17199.18 214
test_part299.36 11199.10 5699.05 109
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28799.50 5997.30 19499.05 10998.98 12999.35 799.32 33195.72 23399.68 13499.18 214
our_test_397.39 21397.73 17796.34 30498.70 24989.78 34094.61 33598.97 22796.50 23699.04 11198.85 16295.98 19699.84 12297.26 12799.67 14099.41 141
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
ACMM96.08 1298.91 5198.73 5899.48 5099.55 6599.14 4898.07 13499.37 10497.62 15899.04 11198.96 13498.84 2099.79 18397.43 11999.65 14699.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD-MVS_3200maxsize98.84 5998.61 7799.53 3699.19 14399.27 2098.49 9499.33 12598.64 9099.03 11498.98 12997.89 7799.85 10596.54 18999.42 20999.46 122
bset_n11_16_dypcd96.99 24696.56 25398.27 21799.00 18995.25 25592.18 35994.05 35198.75 8799.01 11598.38 23788.98 29799.93 2898.77 4899.92 3499.64 39
Regformer-298.60 9998.46 9999.02 12698.85 22197.71 17296.91 24399.09 20198.98 7399.01 11598.64 20397.37 12199.84 12297.75 10799.57 17599.52 93
HyFIR lowres test97.19 22996.60 25098.96 13299.62 5097.28 19495.17 31899.50 5994.21 29599.01 11598.32 24586.61 30899.99 297.10 13799.84 5699.60 49
CVMVSNet96.25 27297.21 21493.38 34399.10 16680.56 36797.20 22398.19 29496.94 21999.00 11899.02 11589.50 29499.80 16896.36 20299.59 16599.78 14
Regformer-198.55 10898.44 10398.87 14498.85 22197.29 19296.91 24398.99 22598.97 7498.99 11998.64 20397.26 13099.81 15997.79 10099.57 17599.51 96
PVSNet_Blended_VisFu98.17 15298.15 14498.22 22099.73 2495.15 26097.36 21099.68 1594.45 29098.99 11999.27 6796.87 15099.94 2397.13 13599.91 4099.57 66
SMA-MVScopyleft98.40 12798.03 15699.51 4599.16 15499.21 2698.05 13899.22 16794.16 29798.98 12199.10 9897.52 10899.79 18396.45 19599.64 14899.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 9097.71 17699.46 7797.25 19998.98 12198.99 12597.54 10499.84 12295.88 22399.74 10399.23 202
IS-MVSNet98.19 14997.90 16699.08 11099.57 5597.97 14499.31 1898.32 28799.01 7098.98 12199.03 11491.59 28299.79 18395.49 24499.80 7799.48 112
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22999.38 10094.87 28198.97 12498.99 12598.01 6999.88 6797.29 12599.70 12399.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDDNet98.21 14797.95 16199.01 12799.58 5197.74 17099.01 5097.29 31899.67 1098.97 12499.50 3690.45 28799.80 16897.88 9799.20 24499.48 112
USDC97.41 21297.40 20097.44 27098.94 20093.67 30195.17 31899.53 5394.03 30098.97 12499.10 9895.29 21999.34 32895.84 22999.73 10699.30 187
SR-MVS-dyc-post98.81 6298.55 8399.57 1899.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.49 11399.86 9196.56 18599.39 21399.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.75 8796.56 18599.39 21399.45 126
GBi-Net98.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
test198.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
FMVSNet397.50 20297.24 21298.29 21598.08 30795.83 24197.86 16198.91 23597.89 14298.95 12798.95 13887.06 30599.81 15997.77 10299.69 12999.23 202
test_040298.76 7098.71 6298.93 13699.56 6298.14 12598.45 10199.34 12099.28 4298.95 12798.91 14398.34 4899.79 18395.63 23999.91 4098.86 261
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5997.33 19098.94 13398.86 15998.75 2499.82 14697.53 11599.71 11899.56 71
Anonymous2023120698.21 14798.21 13498.20 22199.51 7495.43 25298.13 12599.32 12796.16 24898.93 13498.82 17196.00 19299.83 13697.32 12499.73 10699.36 166
YYNet197.60 19797.67 18097.39 27399.04 18193.04 30995.27 31598.38 28697.25 19998.92 13598.95 13895.48 21699.73 22396.99 14398.74 28799.41 141
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10898.73 7099.56 4298.42 10598.91 13698.81 17398.94 1899.91 4598.35 7199.73 10699.49 104
test117298.76 7098.49 9399.57 1899.18 15099.37 898.39 10599.31 13298.43 10498.90 13798.88 15597.49 11399.86 9196.43 19799.37 21799.48 112
SteuartSystems-ACMMP98.79 6498.54 8499.54 2999.73 2499.16 4098.23 11699.31 13297.92 13998.90 13798.90 14698.00 7099.88 6796.15 21499.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.62 9698.36 11699.42 5799.65 4399.42 498.55 8599.57 3597.72 15298.90 13799.26 6996.12 18799.52 30295.72 23399.71 11899.32 180
D2MVS97.84 18197.84 17097.83 24399.14 15994.74 26896.94 23898.88 23995.84 25998.89 14098.96 13494.40 24399.69 23897.55 11299.95 1699.05 229
zzz-MVS98.79 6498.52 8699.61 999.67 4099.36 997.33 21299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
MTAPA98.88 5498.64 7299.61 999.67 4099.36 998.43 10299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
WR-MVS98.40 12798.19 13799.03 12399.00 18997.65 17696.85 24698.94 22898.57 10098.89 14098.50 22495.60 20999.85 10597.54 11499.85 5499.59 55
SR-MVS98.71 7798.43 10599.57 1899.18 15099.35 1198.36 10899.29 14898.29 11498.88 14498.85 16297.53 10699.87 8496.14 21599.31 22699.48 112
AllTest98.44 12298.20 13599.16 9799.50 7798.55 9398.25 11599.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
TestCases99.16 9799.50 7798.55 9399.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
MDA-MVSNet_test_wron97.60 19797.66 18397.41 27299.04 18193.09 30595.27 31598.42 28397.26 19898.88 14498.95 13895.43 21799.73 22397.02 14098.72 28999.41 141
VNet98.42 12498.30 12498.79 15698.79 23597.29 19298.23 11698.66 27199.31 3998.85 14898.80 17494.80 23499.78 19598.13 8099.13 25899.31 184
CSCG98.68 8698.50 9099.20 9299.45 9898.63 8498.56 8499.57 3597.87 14398.85 14898.04 26797.66 9399.84 12296.72 17199.81 6999.13 222
CHOSEN 1792x268897.49 20497.14 21998.54 19299.68 3996.09 23596.50 26599.62 2291.58 32898.84 15098.97 13192.36 27699.88 6796.76 16699.95 1699.67 33
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26299.54 5098.24 11798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9396.77 22798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
mvs_anonymous97.83 18398.16 14296.87 29398.18 30191.89 32497.31 21498.90 23697.37 18798.83 15199.46 4396.28 18499.79 18398.90 3798.16 31098.95 247
MDA-MVSNet-bldmvs97.94 16797.91 16598.06 23199.44 10094.96 26596.63 25999.15 19498.35 10798.83 15199.11 9694.31 24599.85 10596.60 17998.72 28999.37 160
PMMVS298.07 15898.08 15298.04 23399.41 10694.59 27594.59 33699.40 9697.50 16998.82 15598.83 16896.83 15399.84 12297.50 11799.81 6999.71 26
ACMMPcopyleft98.75 7298.50 9099.52 4199.56 6299.16 4098.87 6299.37 10497.16 21098.82 15599.01 12297.71 9099.87 8496.29 20699.69 12999.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMP95.32 1598.41 12598.09 14999.36 6499.51 7498.79 7497.68 17999.38 10095.76 26298.81 15798.82 17198.36 4499.82 14694.75 25699.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.75 7298.48 9599.57 1899.58 5199.29 1797.82 16599.25 15996.94 21998.78 15899.12 9498.02 6899.84 12297.13 13599.67 14099.59 55
LFMVS97.20 22896.72 24198.64 17198.72 24296.95 21398.93 5994.14 35099.74 798.78 15899.01 12284.45 32699.73 22397.44 11899.27 23499.25 198
Patchmtry97.35 21596.97 22698.50 19797.31 34096.47 22598.18 12198.92 23398.95 7898.78 15899.37 5485.44 32099.85 10595.96 22199.83 6299.17 218
cl_fuxian97.36 21497.37 20397.31 27498.09 30693.25 30495.01 32399.16 18897.05 21498.77 16198.72 18692.88 27099.64 26596.93 14899.76 9999.05 229
UnsupCasMVSNet_eth97.89 17197.60 18998.75 16499.31 11897.17 20497.62 18599.35 11498.72 8998.76 16298.68 19392.57 27599.74 21997.76 10695.60 35199.34 172
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 23199.18 17997.10 21398.75 16398.92 14298.18 5899.65 26396.68 17599.56 18099.37 160
DeepC-MVS_fast96.85 698.30 13698.15 14498.75 16498.61 26597.23 19697.76 17299.09 20197.31 19398.75 16398.66 19897.56 10399.64 26596.10 21799.55 18299.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance97.18 23097.16 21697.25 27898.16 30292.85 31195.15 32099.31 13297.25 19998.74 16598.78 17790.07 28999.78 19597.19 12999.80 7799.11 225
APD-MVScopyleft98.10 15597.67 18099.42 5799.11 16298.93 6697.76 17299.28 15094.97 27898.72 16698.77 17997.04 13899.85 10593.79 29099.54 18399.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_ehance_all_eth97.06 23897.03 22297.16 28297.83 31893.06 30694.66 33299.09 20195.99 25598.69 16798.45 23092.73 27399.61 27696.79 16299.03 26998.82 264
PGM-MVS98.66 8998.37 11599.55 2699.53 7099.18 3598.23 11699.49 6797.01 21798.69 16798.88 15598.00 7099.89 5895.87 22699.59 16599.58 61
GST-MVS98.61 9798.30 12499.52 4199.51 7499.20 3298.26 11499.25 15997.44 18198.67 16998.39 23597.68 9199.85 10596.00 21899.51 19399.52 93
tttt051795.64 28594.98 29697.64 25599.36 11193.81 29798.72 7190.47 36298.08 13098.67 16998.34 24273.88 36199.92 3597.77 10299.51 19399.20 207
OpenMVS_ROBcopyleft95.38 1495.84 28195.18 29297.81 24498.41 28797.15 20697.37 20998.62 27483.86 35898.65 17198.37 23994.29 24699.68 24788.41 34698.62 29796.60 347
MS-PatchMatch97.68 19197.75 17497.45 26998.23 29993.78 29897.29 21598.84 24896.10 25098.64 17298.65 20096.04 18999.36 32696.84 16099.14 25599.20 207
cl-mvsnet____97.02 24296.83 23697.58 25997.82 31994.04 28594.66 33299.16 18897.04 21598.63 17398.71 18788.68 30099.69 23897.00 14199.81 6999.00 240
cl-mvsnet197.02 24296.84 23597.58 25997.82 31994.03 28694.66 33299.16 18897.04 21598.63 17398.71 18788.69 29999.69 23897.00 14199.81 6999.01 237
pmmvs597.64 19497.49 19498.08 22999.14 15995.12 26296.70 25699.05 20993.77 30398.62 17598.83 16893.23 26199.75 21598.33 7499.76 9999.36 166
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19699.32 1598.81 25497.66 15598.62 17599.40 5396.82 15499.80 16895.88 22399.51 19398.75 277
pmmvs497.58 19997.28 20998.51 19598.84 22496.93 21495.40 31498.52 27993.60 30598.61 17798.65 20095.10 22499.60 27796.97 14699.79 8298.99 241
HPM-MVScopyleft98.79 6498.53 8599.59 1799.65 4399.29 1799.16 3899.43 8996.74 22898.61 17798.38 23798.62 2999.87 8496.47 19399.67 14099.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CL-MVSNet_2432*160097.44 21097.22 21398.08 22998.57 27295.78 24394.30 34298.79 25796.58 23598.60 17998.19 25494.74 23799.64 26596.41 19998.84 28398.82 264
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9899.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30697.70 10899.73 10697.89 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CDS-MVSNet97.69 19097.35 20598.69 16898.73 24097.02 21096.92 24298.75 26495.89 25898.59 18198.67 19592.08 28099.74 21996.72 17199.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet98.30 13698.04 15599.07 11399.56 6297.83 15999.29 2398.07 29899.03 6898.59 18199.13 9392.16 27899.90 4996.87 15799.68 13499.49 104
hse-mvs397.77 18697.33 20899.10 10699.21 13697.84 15898.35 10998.57 27699.11 5698.58 18399.02 11588.65 30199.96 898.11 8196.34 34499.49 104
hse-mvs297.46 20797.07 22098.64 17198.73 24097.33 19097.45 20597.64 31199.11 5698.58 18397.98 27088.65 30199.79 18398.11 8197.39 32898.81 267
HFP-MVS98.71 7798.44 10399.51 4599.49 8499.16 4098.52 8899.31 13297.47 17298.58 18398.50 22497.97 7499.85 10596.57 18299.59 16599.53 89
#test#98.50 11698.16 14299.51 4599.49 8499.16 4098.03 14199.31 13296.30 24598.58 18398.50 22497.97 7499.85 10595.68 23699.59 16599.53 89
eth_miper_zixun_eth97.23 22697.25 21097.17 28098.00 31192.77 31394.71 32999.18 17997.27 19798.56 18798.74 18391.89 28199.69 23897.06 13999.81 6999.05 229
ACMMPR98.70 8098.42 10799.54 2999.52 7299.14 4898.52 8899.31 13297.47 17298.56 18798.54 21897.75 8799.88 6796.57 18299.59 16599.58 61
new_pmnet96.99 24696.76 23997.67 25198.72 24294.89 26695.95 29198.20 29292.62 31798.55 18998.54 21894.88 23099.52 30293.96 28399.44 20898.59 289
3Dnovator98.27 298.81 6298.73 5899.05 12098.76 23697.81 16499.25 3099.30 14198.57 10098.55 18999.33 6297.95 7699.90 4997.16 13199.67 14099.44 131
9.1497.78 17299.07 17497.53 19699.32 12795.53 26798.54 19198.70 19097.58 10199.76 20894.32 27399.46 205
diffmvs98.22 14698.24 13098.17 22399.00 18995.44 25196.38 27299.58 2897.79 14998.53 19298.50 22496.76 16099.74 21997.95 9399.64 14899.34 172
OMC-MVS97.88 17397.49 19499.04 12298.89 21598.63 8496.94 23899.25 15995.02 27698.53 19298.51 22197.27 12799.47 31393.50 29899.51 19399.01 237
jason97.45 20997.35 20597.76 24799.24 12993.93 29195.86 29598.42 28394.24 29498.50 19498.13 25694.82 23199.91 4597.22 12899.73 10699.43 135
jason: jason.
MVP-Stereo98.08 15797.92 16498.57 18498.96 19796.79 21797.90 15799.18 17996.41 24098.46 19598.95 13895.93 19999.60 27796.51 19198.98 27899.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS98.27 14098.20 13598.48 19898.86 21996.70 22195.60 30699.20 17097.73 15198.45 19698.71 18797.50 11099.82 14698.21 7799.59 16598.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 8298.40 10999.54 2999.53 7099.17 3698.52 8899.31 13297.46 17798.44 19798.51 22197.83 8099.88 6796.46 19499.58 17199.58 61
BH-untuned96.83 25196.75 24097.08 28398.74 23993.33 30396.71 25598.26 28996.72 22998.44 19797.37 30895.20 22199.47 31391.89 32297.43 32798.44 295
LS3D98.63 9498.38 11499.36 6497.25 34199.38 599.12 4399.32 12799.21 4598.44 19798.88 15597.31 12399.80 16896.58 18099.34 22298.92 253
ETH3D-3000-0.198.03 15997.62 18799.29 7799.11 16298.80 7397.47 20399.32 12795.54 26598.43 20098.62 20996.61 16899.77 20193.95 28499.49 20199.30 187
xiu_mvs_v1_base_debu97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base_debi97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
Patchmatch-test96.55 26296.34 26097.17 28098.35 28993.06 30698.40 10497.79 30497.33 19098.41 20198.67 19583.68 33399.69 23895.16 24899.31 22698.77 275
baseline195.96 27895.44 28397.52 26698.51 27993.99 28998.39 10596.09 33698.21 12098.40 20597.76 28486.88 30699.63 26895.42 24589.27 36398.95 247
MSDG97.71 18997.52 19298.28 21698.91 20996.82 21694.42 33999.37 10497.65 15698.37 20698.29 24797.40 11999.33 33094.09 28099.22 24198.68 286
miper_enhance_ethall96.01 27695.74 27196.81 29796.41 35592.27 32193.69 35198.89 23891.14 33598.30 20797.35 31090.58 28699.58 28696.31 20499.03 26998.60 287
CP-MVS98.70 8098.42 10799.52 4199.36 11199.12 5398.72 7199.36 10897.54 16798.30 20798.40 23397.86 7999.89 5896.53 19099.72 11399.56 71
UnsupCasMVSNet_bld97.30 21996.92 22998.45 20199.28 12396.78 22096.20 28199.27 15395.42 27098.28 20998.30 24693.16 26399.71 23294.99 25197.37 32998.87 260
ITE_SJBPF98.87 14499.22 13498.48 10099.35 11497.50 16998.28 20998.60 21397.64 9799.35 32793.86 28899.27 23498.79 273
thisisatest053095.27 29294.45 30297.74 24999.19 14394.37 27797.86 16190.20 36397.17 20998.22 21197.65 29073.53 36299.90 4996.90 15499.35 22098.95 247
test_yl96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
DCV-MVSNet96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
MVSFormer98.26 14298.43 10597.77 24698.88 21693.89 29599.39 1199.56 4299.11 5698.16 21498.13 25693.81 25599.97 399.26 1899.57 17599.43 135
lupinMVS97.06 23896.86 23397.65 25398.88 21693.89 29595.48 31197.97 30193.53 30698.16 21497.58 29493.81 25599.91 4596.77 16599.57 17599.17 218
Vis-MVSNet (Re-imp)97.46 20797.16 21698.34 21099.55 6596.10 23398.94 5898.44 28298.32 11098.16 21498.62 20988.76 29899.73 22393.88 28799.79 8299.18 214
TAPA-MVS96.21 1196.63 26095.95 26898.65 17098.93 20298.09 12796.93 24099.28 15083.58 35998.13 21797.78 28296.13 18699.40 32193.52 29699.29 23198.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testtj97.79 18597.25 21099.42 5799.03 18498.85 6897.78 16799.18 17995.83 26098.12 21898.50 22495.50 21499.86 9192.23 32099.07 26499.54 83
ZNCC-MVS98.68 8698.40 10999.54 2999.57 5599.21 2698.46 9999.29 14897.28 19698.11 21998.39 23598.00 7099.87 8496.86 15999.64 14899.55 79
MVS_111021_LR98.30 13698.12 14798.83 14999.16 15498.03 13796.09 28499.30 14197.58 16298.10 22098.24 24998.25 5099.34 32896.69 17499.65 14699.12 223
mPP-MVS98.64 9298.34 11999.54 2999.54 6899.17 3698.63 7699.24 16497.47 17298.09 22198.68 19397.62 9899.89 5896.22 20999.62 15499.57 66
3Dnovator+97.89 398.69 8298.51 8899.24 8998.81 23198.40 10399.02 4999.19 17598.99 7198.07 22299.28 6597.11 13799.84 12296.84 16099.32 22499.47 120
PHI-MVS98.29 13997.95 16199.34 7298.44 28599.16 4098.12 12799.38 10096.01 25498.06 22398.43 23197.80 8499.67 25095.69 23599.58 17199.20 207
CLD-MVS97.49 20497.16 21698.48 19899.07 17497.03 20994.71 32999.21 16894.46 28898.06 22397.16 31597.57 10299.48 31194.46 26599.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.01 18898.84 6999.07 20494.10 29898.05 22598.12 25996.36 18299.86 9192.70 31499.19 248
MVS_Test98.18 15098.36 11697.67 25198.48 28194.73 26998.18 12199.02 21897.69 15398.04 22699.11 9697.22 13399.56 29098.57 5898.90 28298.71 280
FMVSNet596.01 27695.20 29198.41 20497.53 33196.10 23398.74 6899.50 5997.22 20898.03 22799.04 11169.80 36499.88 6797.27 12699.71 11899.25 198
MVS_111021_HR98.25 14498.08 15298.75 16499.09 16997.46 18595.97 28799.27 15397.60 16197.99 22898.25 24898.15 6299.38 32596.87 15799.57 17599.42 138
MCST-MVS98.00 16397.63 18699.10 10699.24 12998.17 12296.89 24598.73 26795.66 26397.92 22997.70 28897.17 13499.66 25896.18 21399.23 24099.47 120
MG-MVS96.77 25496.61 24997.26 27798.31 29293.06 30695.93 29298.12 29796.45 23997.92 22998.73 18493.77 25799.39 32391.19 33499.04 26899.33 178
MSLP-MVS++98.02 16198.14 14697.64 25598.58 27095.19 25997.48 20199.23 16697.47 17297.90 23198.62 20997.04 13898.81 35697.55 11299.41 21098.94 251
cl-mvsnet295.79 28295.39 28696.98 28796.77 34992.79 31294.40 34098.53 27894.59 28597.89 23298.17 25582.82 33899.24 33996.37 20099.03 26998.92 253
BH-RMVSNet96.83 25196.58 25197.58 25998.47 28294.05 28496.67 25797.36 31496.70 23197.87 23397.98 27095.14 22399.44 31890.47 34098.58 29999.25 198
MIMVSNet96.62 26196.25 26597.71 25099.04 18194.66 27299.16 3896.92 32697.23 20597.87 23399.10 9886.11 31499.65 26391.65 32599.21 24398.82 264
LF4IMVS97.90 16997.69 17998.52 19399.17 15297.66 17497.19 22699.47 7596.31 24497.85 23598.20 25396.71 16499.52 30294.62 26099.72 11398.38 299
CPTT-MVS97.84 18197.36 20499.27 8299.31 11898.46 10198.29 11199.27 15394.90 28097.83 23698.37 23994.90 22799.84 12293.85 28999.54 18399.51 96
CMPMVSbinary75.91 2396.29 27095.44 28398.84 14896.25 35798.69 8297.02 23399.12 19788.90 34797.83 23698.86 15989.51 29398.90 35491.92 32199.51 19398.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN94.17 30994.37 30493.58 34096.86 34685.71 35690.11 36197.07 32198.17 12697.82 23897.19 31284.62 32598.94 35289.77 34297.68 32396.09 355
CDPH-MVS97.26 22296.66 24799.07 11399.00 18998.15 12396.03 28599.01 22191.21 33497.79 23997.85 27996.89 14999.69 23892.75 31299.38 21699.39 150
HQP_MVS97.99 16697.67 18098.93 13699.19 14397.65 17697.77 17099.27 15398.20 12397.79 23997.98 27094.90 22799.70 23494.42 26899.51 19399.45 126
plane_prior397.78 16697.41 18397.79 239
MDTV_nov1_ep13_2view74.92 36997.69 17890.06 34397.75 24285.78 31693.52 29698.69 283
DROMVSNet98.85 5898.81 5198.97 13099.08 17398.61 8798.99 5599.81 498.54 10297.73 24398.07 26598.50 3699.88 6798.81 4499.72 11398.42 297
pmmvs395.03 29794.40 30396.93 28997.70 32592.53 31695.08 32197.71 30788.57 34997.71 24498.08 26479.39 35199.82 14696.19 21199.11 26298.43 296
DP-MVS Recon97.33 21796.92 22998.57 18499.09 16997.99 13996.79 24999.35 11493.18 30997.71 24498.07 26595.00 22699.31 33293.97 28299.13 25898.42 297
QAPM97.31 21896.81 23798.82 15098.80 23397.49 18399.06 4899.19 17590.22 34097.69 24699.16 8696.91 14899.90 4990.89 33899.41 21099.07 227
SCA96.41 26896.66 24795.67 31798.24 29788.35 34595.85 29796.88 32796.11 24997.67 24798.67 19593.10 26599.85 10594.16 27499.22 24198.81 267
ETH3D cwj APD-0.1697.55 20097.00 22499.19 9398.51 27998.64 8396.85 24699.13 19594.19 29697.65 24898.40 23395.78 20499.81 15993.37 30199.16 25199.12 223
Effi-MVS+-dtu98.26 14297.90 16699.35 6998.02 30999.49 298.02 14399.16 18898.29 11497.64 24997.99 26996.44 17699.95 1596.66 17698.93 28198.60 287
CNVR-MVS98.17 15297.87 16899.07 11398.67 25898.24 11397.01 23498.93 23097.25 19997.62 25098.34 24297.27 12799.57 28796.42 19899.33 22399.39 150
PVSNet_BlendedMVS97.55 20097.53 19197.60 25798.92 20693.77 29996.64 25899.43 8994.49 28697.62 25099.18 8096.82 15499.67 25094.73 25799.93 2599.36 166
PVSNet_Blended96.88 24996.68 24497.47 26898.92 20693.77 29994.71 32999.43 8990.98 33697.62 25097.36 30996.82 15499.67 25094.73 25799.56 18098.98 242
alignmvs97.35 21596.88 23298.78 15998.54 27698.09 12797.71 17697.69 30899.20 4897.59 25395.90 33888.12 30499.55 29398.18 7998.96 27998.70 282
MP-MVScopyleft98.46 12098.09 14999.54 2999.57 5599.22 2598.50 9399.19 17597.61 16097.58 25498.66 19897.40 11999.88 6794.72 25999.60 16399.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DSMNet-mixed97.42 21197.60 18996.87 29399.15 15891.46 32898.54 8699.12 19792.87 31497.58 25499.63 2096.21 18599.90 4995.74 23299.54 18399.27 194
test0.0.03 194.51 30293.69 31196.99 28696.05 35893.61 30294.97 32493.49 35296.17 24697.57 25694.88 35482.30 33999.01 35193.60 29494.17 35998.37 301
PCF-MVS92.86 1894.36 30493.00 32198.42 20398.70 24997.56 18093.16 35499.11 19979.59 36297.55 25797.43 30492.19 27799.73 22379.85 36299.45 20797.97 314
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVS98.72 7698.45 10199.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25898.63 20797.50 11099.83 13696.79 16299.53 18799.56 71
X-MVStestdata94.32 30592.59 32399.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25845.85 36597.50 11099.83 13696.79 16299.53 18799.56 71
旧先验295.76 29988.56 35097.52 26099.66 25894.48 264
PMVScopyleft91.26 2097.86 17597.94 16397.65 25399.71 3097.94 15198.52 8898.68 27098.99 7197.52 26099.35 5897.41 11898.18 36091.59 32799.67 14096.82 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETV-MVS98.03 15997.86 16998.56 18898.69 25398.07 13397.51 19999.50 5998.10 12997.50 26295.51 34498.41 4199.88 6796.27 20799.24 23997.71 328
PS-MVSNAJ97.08 23697.39 20196.16 31198.56 27392.46 31795.24 31798.85 24797.25 19997.49 26395.99 33698.07 6499.90 4996.37 20098.67 29496.12 354
xiu_mvs_v2_base97.16 23297.49 19496.17 30998.54 27692.46 31795.45 31298.84 24897.25 19997.48 26496.49 32698.31 4999.90 4996.34 20398.68 29396.15 353
canonicalmvs98.34 13398.26 12898.58 18198.46 28397.82 16298.96 5799.46 7799.19 5297.46 26595.46 34698.59 3199.46 31598.08 8598.71 29198.46 292
testdata98.09 22698.93 20295.40 25398.80 25690.08 34297.45 26698.37 23995.26 22099.70 23493.58 29598.95 28099.17 218
thres600view794.45 30393.83 30996.29 30599.06 17891.53 32797.99 14794.24 34898.34 10897.44 26795.01 35079.84 34799.67 25084.33 35498.23 30597.66 329
EMVS93.83 31594.02 30793.23 34496.83 34884.96 35789.77 36296.32 33397.92 13997.43 26896.36 33286.17 31298.93 35387.68 34897.73 32295.81 356
thres100view90094.19 30893.67 31295.75 31699.06 17891.35 33198.03 14194.24 34898.33 10997.40 26994.98 35279.84 34799.62 27083.05 35698.08 31596.29 348
Fast-Effi-MVS+-dtu98.27 14098.09 14998.81 15298.43 28698.11 12697.61 18799.50 5998.64 9097.39 27097.52 29898.12 6399.95 1596.90 15498.71 29198.38 299
API-MVS97.04 24196.91 23197.42 27197.88 31698.23 11798.18 12198.50 28097.57 16397.39 27096.75 32296.77 15899.15 34690.16 34199.02 27294.88 359
PatchMatch-RL97.24 22596.78 23898.61 17899.03 18497.83 15996.36 27399.06 20593.49 30897.36 27297.78 28295.75 20599.49 30893.44 29998.77 28698.52 290
CS-MVS98.16 15498.22 13397.97 23798.56 27397.01 21198.10 13099.70 1397.45 17997.29 27397.19 31297.72 8999.80 16898.37 6999.62 15497.11 340
sss97.21 22796.93 22798.06 23198.83 22695.22 25896.75 25398.48 28194.49 28697.27 27497.90 27692.77 27299.80 16896.57 18299.32 22499.16 221
KD-MVS_2432*160092.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
miper_refine_blended92.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
WTY-MVS96.67 25896.27 26497.87 24198.81 23194.61 27496.77 25197.92 30394.94 27997.12 27797.74 28591.11 28499.82 14693.89 28698.15 31199.18 214
tfpn200view994.03 31293.44 31495.78 31598.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31596.29 348
thres40094.14 31093.44 31496.24 30798.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31597.66 329
ETH3 D test640096.46 26795.59 27899.08 11098.88 21698.21 11996.53 26299.18 17988.87 34897.08 28097.79 28193.64 26099.77 20188.92 34599.40 21299.28 192
PatchmatchNetpermissive95.58 28695.67 27595.30 32697.34 33887.32 34997.65 18396.65 32995.30 27397.07 28198.69 19184.77 32399.75 21594.97 25298.64 29598.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNLPA97.17 23196.71 24298.55 18998.56 27398.05 13696.33 27498.93 23096.91 22197.06 28297.39 30694.38 24499.45 31791.66 32499.18 25098.14 307
NCCC97.86 17597.47 19899.05 12098.61 26598.07 13396.98 23698.90 23697.63 15797.04 28397.93 27595.99 19599.66 25895.31 24798.82 28599.43 135
TR-MVS95.55 28795.12 29496.86 29697.54 33093.94 29096.49 26696.53 33194.36 29397.03 28496.61 32494.26 24799.16 34586.91 35096.31 34597.47 336
MDTV_nov1_ep1395.22 29097.06 34483.20 36397.74 17496.16 33494.37 29296.99 28598.83 16883.95 33199.53 29893.90 28597.95 319
CANet97.87 17497.76 17398.19 22297.75 32195.51 24896.76 25299.05 20997.74 15096.93 28698.21 25295.59 21099.89 5897.86 9999.93 2599.19 212
EPMVS93.72 31793.27 31695.09 32896.04 35987.76 34798.13 12585.01 36794.69 28496.92 28798.64 20378.47 35799.31 33295.04 24996.46 34398.20 304
AdaColmapbinary97.14 23396.71 24298.46 20098.34 29097.80 16596.95 23798.93 23095.58 26496.92 28797.66 28995.87 20299.53 29890.97 33599.14 25598.04 310
thisisatest051594.12 31193.16 31896.97 28898.60 26792.90 31093.77 35090.61 36194.10 29896.91 28995.87 33974.99 36099.80 16894.52 26399.12 26198.20 304
CR-MVSNet96.28 27195.95 26897.28 27697.71 32394.22 27998.11 12898.92 23392.31 32096.91 28999.37 5485.44 32099.81 15997.39 12197.36 33197.81 321
RPMNet97.02 24296.93 22797.30 27597.71 32394.22 27998.11 12899.30 14199.37 3496.91 28999.34 6086.72 30799.87 8497.53 11597.36 33197.81 321
HPM-MVS++copyleft98.10 15597.64 18599.48 5099.09 16999.13 5197.52 19798.75 26497.46 17796.90 29297.83 28096.01 19199.84 12295.82 23099.35 22099.46 122
PatchT96.65 25996.35 25997.54 26497.40 33695.32 25497.98 14996.64 33099.33 3896.89 29399.42 4984.32 32899.81 15997.69 11097.49 32497.48 335
1112_ss97.29 22196.86 23398.58 18199.34 11796.32 22996.75 25399.58 2893.14 31096.89 29397.48 30192.11 27999.86 9196.91 14999.54 18399.57 66
test22298.92 20696.93 21495.54 30798.78 25985.72 35696.86 29598.11 26094.43 24199.10 26399.23 202
thres20093.72 31793.14 31995.46 32498.66 26391.29 33396.61 26094.63 34497.39 18596.83 29693.71 36179.88 34699.56 29082.40 35998.13 31295.54 358
UGNet98.53 11398.45 10198.79 15697.94 31396.96 21299.08 4498.54 27799.10 6296.82 29799.47 4296.55 17099.84 12298.56 6199.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Test_1112_low_res96.99 24696.55 25498.31 21399.35 11595.47 25095.84 29899.53 5391.51 33096.80 29898.48 22991.36 28399.83 13696.58 18099.53 18799.62 44
新几何198.91 13998.94 20097.76 16798.76 26187.58 35396.75 29998.10 26194.80 23499.78 19592.73 31399.00 27599.20 207
Effi-MVS+98.02 16197.82 17198.62 17698.53 27897.19 20297.33 21299.68 1597.30 19496.68 30097.46 30398.56 3399.80 16896.63 17898.20 30798.86 261
GA-MVS95.86 28095.32 28897.49 26798.60 26794.15 28393.83 34997.93 30295.49 26896.68 30097.42 30583.21 33499.30 33496.22 20998.55 30099.01 237
EIA-MVS98.00 16397.74 17598.80 15498.72 24298.09 12798.05 13899.60 2597.39 18596.63 30295.55 34397.68 9199.80 16896.73 17099.27 23498.52 290
F-COLMAP97.30 21996.68 24499.14 10099.19 14398.39 10497.27 21899.30 14192.93 31296.62 30398.00 26895.73 20699.68 24792.62 31598.46 30199.35 170
PAPM_NR96.82 25396.32 26198.30 21499.07 17496.69 22297.48 20198.76 26195.81 26196.61 30496.47 32894.12 25199.17 34490.82 33997.78 32199.06 228
112196.73 25596.00 26698.91 13998.95 19997.76 16798.07 13498.73 26787.65 35296.54 30598.13 25694.52 24099.73 22392.38 31899.02 27299.24 201
test1298.93 13698.58 27097.83 15998.66 27196.53 30695.51 21399.69 23899.13 25899.27 194
BH-w/o95.13 29594.89 29995.86 31398.20 30091.31 33295.65 30497.37 31393.64 30496.52 30795.70 34193.04 26899.02 34988.10 34795.82 35097.24 338
ADS-MVSNet295.43 29094.98 29696.76 29998.14 30391.74 32597.92 15497.76 30590.23 33896.51 30898.91 14385.61 31799.85 10592.88 30796.90 33798.69 283
ADS-MVSNet95.24 29394.93 29896.18 30898.14 30390.10 33997.92 15497.32 31790.23 33896.51 30898.91 14385.61 31799.74 21992.88 30796.90 33798.69 283
114514_t96.50 26595.77 27098.69 16899.48 9297.43 18797.84 16399.55 4681.42 36196.51 30898.58 21595.53 21199.67 25093.41 30099.58 17198.98 242
PVSNet93.40 1795.67 28495.70 27395.57 32098.83 22688.57 34392.50 35697.72 30692.69 31696.49 31196.44 32993.72 25899.43 31993.61 29399.28 23298.71 280
mvs-test197.83 18397.48 19798.89 14298.02 30999.20 3297.20 22399.16 18898.29 11496.46 31297.17 31496.44 17699.92 3596.66 17697.90 32097.54 334
DPM-MVS96.32 26995.59 27898.51 19598.76 23697.21 20094.54 33898.26 28991.94 32496.37 31397.25 31193.06 26799.43 31991.42 33098.74 28798.89 257
tpmrst95.07 29695.46 28193.91 33797.11 34384.36 36197.62 18596.96 32394.98 27796.35 31498.80 17485.46 31999.59 28195.60 24096.23 34697.79 324
OpenMVScopyleft96.65 797.09 23596.68 24498.32 21198.32 29197.16 20598.86 6499.37 10489.48 34496.29 31599.15 9096.56 16999.90 4992.90 30699.20 24497.89 315
CS-MVS-test97.75 18797.70 17897.90 23898.30 29397.66 17497.93 15299.65 1996.91 22196.27 31696.28 33397.00 14399.80 16897.64 11199.28 23296.24 350
Fast-Effi-MVS+97.67 19297.38 20298.57 18498.71 24597.43 18797.23 21999.45 8094.82 28296.13 31796.51 32598.52 3599.91 4596.19 21198.83 28498.37 301
test_prior397.48 20697.00 22498.95 13398.69 25397.95 14995.74 30199.03 21496.48 23796.11 31897.63 29295.92 20099.59 28194.16 27499.20 24499.30 187
test_prior295.74 30196.48 23796.11 31897.63 29295.92 20094.16 27499.20 244
dp93.47 31993.59 31393.13 34596.64 35081.62 36697.66 18196.42 33292.80 31596.11 31898.64 20378.55 35699.59 28193.31 30292.18 36298.16 306
原ACMM198.35 20998.90 21096.25 23198.83 25392.48 31896.07 32198.10 26195.39 21899.71 23292.61 31698.99 27699.08 226
PMMVS96.51 26395.98 26798.09 22697.53 33195.84 24094.92 32598.84 24891.58 32896.05 32295.58 34295.68 20799.66 25895.59 24198.09 31498.76 276
tpm94.67 30194.34 30595.66 31897.68 32788.42 34497.88 15894.90 34294.46 28896.03 32398.56 21778.66 35399.79 18395.88 22395.01 35498.78 274
TEST998.71 24598.08 13195.96 28999.03 21491.40 33195.85 32497.53 29696.52 17199.76 208
train_agg97.10 23496.45 25799.07 11398.71 24598.08 13195.96 28999.03 21491.64 32695.85 32497.53 29696.47 17499.76 20893.67 29299.16 25199.36 166
test_898.67 25898.01 13895.91 29499.02 21891.64 32695.79 32697.50 29996.47 17499.76 208
agg_prior197.06 23896.40 25899.03 12398.68 25697.99 13995.76 29999.01 22191.73 32595.59 32797.50 29996.49 17399.77 20193.71 29199.14 25599.34 172
agg_prior98.68 25697.99 13999.01 22195.59 32799.77 201
PLCcopyleft94.65 1696.51 26395.73 27298.85 14798.75 23897.91 15296.42 27099.06 20590.94 33795.59 32797.38 30794.41 24299.59 28190.93 33698.04 31899.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP4-MVS95.56 33099.54 29699.32 180
HQP-NCC98.67 25896.29 27696.05 25195.55 331
ACMP_Plane98.67 25896.29 27696.05 25195.55 331
HQP-MVS97.00 24596.49 25698.55 18998.67 25896.79 21796.29 27699.04 21296.05 25195.55 33196.84 32093.84 25399.54 29692.82 30999.26 23799.32 180
MAR-MVS96.47 26695.70 27398.79 15697.92 31499.12 5398.28 11298.60 27592.16 32395.54 33496.17 33494.77 23699.52 30289.62 34398.23 30597.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS96.24 27395.45 28298.60 17998.70 24997.22 19897.38 20897.65 30995.95 25695.53 33597.96 27482.11 34399.79 18396.31 20497.44 32698.80 272
tpmvs95.02 29895.25 28994.33 33396.39 35685.87 35398.08 13396.83 32895.46 26995.51 33698.69 19185.91 31599.53 29894.16 27496.23 34697.58 332
MVS-HIRNet94.32 30595.62 27690.42 34798.46 28375.36 36896.29 27689.13 36595.25 27495.38 33799.75 792.88 27099.19 34394.07 28199.39 21396.72 346
PAPR95.29 29194.47 30197.75 24897.50 33595.14 26194.89 32698.71 26991.39 33295.35 33895.48 34594.57 23999.14 34784.95 35397.37 32998.97 246
HY-MVS95.94 1395.90 27995.35 28797.55 26397.95 31294.79 26798.81 6796.94 32592.28 32195.17 33998.57 21689.90 29199.75 21591.20 33397.33 33398.10 308
CANet_DTU97.26 22297.06 22197.84 24297.57 32894.65 27396.19 28298.79 25797.23 20595.14 34098.24 24993.22 26299.84 12297.34 12399.84 5699.04 233
cascas94.79 30094.33 30696.15 31296.02 36092.36 32092.34 35899.26 15885.34 35795.08 34194.96 35392.96 26998.53 35894.41 27198.59 29897.56 333
CostFormer93.97 31393.78 31094.51 33297.53 33185.83 35597.98 14995.96 33789.29 34694.99 34298.63 20778.63 35499.62 27094.54 26296.50 34298.09 309
CHOSEN 280x42095.51 28995.47 28095.65 31998.25 29688.27 34693.25 35398.88 23993.53 30694.65 34397.15 31686.17 31299.93 2897.41 12099.93 2598.73 279
JIA-IIPM95.52 28895.03 29597.00 28596.85 34794.03 28696.93 24095.82 33899.20 4894.63 34499.71 1283.09 33599.60 27794.42 26894.64 35597.36 337
MVS93.19 32292.09 32696.50 30296.91 34594.03 28698.07 13498.06 29968.01 36394.56 34596.48 32795.96 19899.30 33483.84 35596.89 33996.17 351
131495.74 28395.60 27796.17 30997.53 33192.75 31498.07 13498.31 28891.22 33394.25 34696.68 32395.53 21199.03 34891.64 32697.18 33496.74 345
tpm cat193.29 32193.13 32093.75 33897.39 33784.74 35897.39 20797.65 30983.39 36094.16 34798.41 23282.86 33799.39 32391.56 32895.35 35397.14 339
test-LLR93.90 31493.85 30894.04 33596.53 35184.62 35994.05 34692.39 35796.17 24694.12 34895.07 34882.30 33999.67 25095.87 22698.18 30897.82 319
test-mter92.33 32991.76 33294.04 33596.53 35184.62 35994.05 34692.39 35794.00 30194.12 34895.07 34865.63 37299.67 25095.87 22698.18 30897.82 319
tpm293.09 32392.58 32494.62 33197.56 32986.53 35297.66 18195.79 33986.15 35594.07 35098.23 25175.95 35899.53 29890.91 33796.86 34097.81 321
TESTMET0.1,192.19 33191.77 33193.46 34196.48 35382.80 36494.05 34691.52 36094.45 29094.00 35194.88 35466.65 37099.56 29095.78 23198.11 31398.02 311
PVSNet_089.98 2191.15 33390.30 33693.70 33997.72 32284.34 36290.24 36097.42 31290.20 34193.79 35293.09 36290.90 28598.89 35586.57 35172.76 36597.87 317
FPMVS93.44 32092.23 32597.08 28399.25 12897.86 15695.61 30597.16 32092.90 31393.76 35398.65 20075.94 35995.66 36379.30 36397.49 32497.73 326
MVS_030497.64 19497.35 20598.52 19397.87 31796.69 22298.59 8198.05 30097.44 18193.74 35498.85 16293.69 25999.88 6798.11 8199.81 6998.98 242
EPNet96.14 27495.44 28398.25 21890.76 36895.50 24997.92 15494.65 34398.97 7492.98 35598.85 16289.12 29699.87 8495.99 21999.68 13499.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DWT-MVSNet_test92.75 32692.05 32794.85 32996.48 35387.21 35097.83 16494.99 34192.22 32292.72 35694.11 36070.75 36399.46 31595.01 25094.33 35897.87 317
baseline293.73 31692.83 32296.42 30397.70 32591.28 33496.84 24889.77 36493.96 30292.44 35795.93 33779.14 35299.77 20192.94 30596.76 34198.21 303
IB-MVS91.63 1992.24 33090.90 33496.27 30697.22 34291.24 33594.36 34193.33 35492.37 31992.24 35894.58 35766.20 37199.89 5893.16 30494.63 35697.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune92.37 32891.20 33395.85 31495.80 36292.38 31999.31 1881.84 36999.75 591.83 35999.74 868.29 36599.02 34987.15 34997.12 33596.16 352
DeepMVS_CXcopyleft93.44 34298.24 29794.21 28194.34 34564.28 36491.34 36094.87 35689.45 29592.77 36677.54 36493.14 36093.35 361
PAPM91.88 33290.34 33596.51 30198.06 30892.56 31592.44 35797.17 31986.35 35490.38 36196.01 33586.61 30899.21 34270.65 36595.43 35297.75 325
ET-MVSNet_ETH3D94.30 30793.21 31797.58 25998.14 30394.47 27694.78 32893.24 35594.72 28389.56 36295.87 33978.57 35599.81 15996.91 14997.11 33698.46 292
EPNet_dtu94.93 29994.78 30095.38 32593.58 36587.68 34896.78 25095.69 34097.35 18989.14 36398.09 26388.15 30399.49 30894.95 25399.30 22998.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND94.76 33094.54 36492.13 32399.31 1880.47 37088.73 36491.01 36467.59 36898.16 36182.30 36094.53 35793.98 360
tmp_tt78.77 33578.73 33878.90 34958.45 37074.76 37094.20 34378.26 37139.16 36586.71 36592.82 36380.50 34575.19 36786.16 35292.29 36186.74 362
MVEpermissive83.40 2292.50 32791.92 33094.25 33498.83 22691.64 32692.71 35583.52 36895.92 25786.46 36695.46 34695.20 22195.40 36480.51 36198.64 29595.73 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method79.78 33479.50 33780.62 34880.21 36945.76 37170.82 36398.41 28531.08 36680.89 36797.71 28684.85 32297.37 36291.51 32980.03 36498.75 277
testmvs17.12 33720.53 3406.87 35112.05 3714.20 37393.62 3526.73 3724.62 36810.41 36824.33 3668.28 3743.56 3699.69 36715.07 36612.86 365
test12317.04 33820.11 3417.82 35010.25 3724.91 37294.80 3274.47 3734.93 36710.00 36924.28 3679.69 3733.64 36810.14 36612.43 36714.92 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k24.66 33632.88 3390.00 3520.00 3730.00 3740.00 36499.10 2000.00 3690.00 37097.58 29499.21 100.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.17 33910.90 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37098.07 640.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.12 34010.83 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37097.48 3010.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS98.82 15098.59 26998.30 10998.10 13098.52 22098.18 5898.75 35794.62 26099.48 20399.41 141
save fliter99.11 16297.97 14496.53 26299.02 21898.24 117
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14399.32 12799.88 6796.99 14399.63 15199.68 31
GSMVS98.81 267
sam_mvs184.74 32498.81 267
sam_mvs84.29 330
MTGPAbinary99.20 170
test_post197.59 19020.48 36983.07 33699.66 25894.16 274
test_post21.25 36883.86 33299.70 234
patchmatchnet-post98.77 17984.37 32799.85 105
MTMP97.93 15291.91 359
gm-plane-assit94.83 36381.97 36588.07 35194.99 35199.60 27791.76 323
test9_res93.28 30399.15 25499.38 157
agg_prior292.50 31799.16 25199.37 160
test_prior497.97 14495.86 295
test_prior98.95 13398.69 25397.95 14999.03 21499.59 28199.30 187
新几何295.93 292
旧先验198.82 22997.45 18698.76 26198.34 24295.50 21499.01 27499.23 202
无先验95.74 30198.74 26689.38 34599.73 22392.38 31899.22 206
原ACMM295.53 308
testdata299.79 18392.80 311
segment_acmp97.02 141
testdata195.44 31396.32 243
plane_prior799.19 14397.87 155
plane_prior698.99 19397.70 17394.90 227
plane_prior599.27 15399.70 23494.42 26899.51 19399.45 126
plane_prior497.98 270
plane_prior297.77 17098.20 123
plane_prior199.05 180
plane_prior97.65 17697.07 23296.72 22999.36 218
n20.00 374
nn0.00 374
door-mid99.57 35
test1198.87 241
door99.41 93
HQP5-MVS96.79 217
BP-MVS92.82 309
HQP3-MVS99.04 21299.26 237
HQP2-MVS93.84 253
NP-MVS98.84 22497.39 18996.84 320
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 171