This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
ANet_high99.57 799.67 599.28 7699.89 698.09 11999.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
PS-MVSNAJss99.46 1299.49 1099.35 6699.90 498.15 11599.20 3299.65 1799.48 2399.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
mvs_tets99.63 599.67 599.49 4699.88 798.61 8299.34 1399.71 999.27 4099.90 499.74 899.68 299.97 399.55 899.99 599.88 3
wuyk23d96.06 26397.62 17991.38 33298.65 25398.57 8698.85 6296.95 30896.86 21399.90 499.16 8499.18 1198.40 34489.23 32799.77 8877.18 347
jajsoiax99.58 699.61 799.48 4899.87 1098.61 8299.28 2799.66 1699.09 6099.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1199.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3199.95 1599.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 1799.53 799.76 699.64 1199.84 899.83 299.50 599.87 7899.36 1499.92 3399.64 38
Anonymous2023121199.27 2599.27 2499.26 8199.29 12098.18 11399.49 899.51 5399.70 799.80 999.68 1496.84 14599.83 12699.21 2199.91 3899.77 16
OurMVSNet-221017-099.37 2199.31 2299.53 3499.91 398.98 5799.63 699.58 2699.44 2899.78 1099.76 696.39 17299.92 3299.44 1399.92 3399.68 30
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1399.11 5299.90 199.78 499.63 1399.78 1099.67 1699.48 699.81 14999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)99.44 1399.47 1299.36 6199.80 1798.58 8599.27 2999.57 3399.39 3199.75 1299.62 2199.17 1299.83 12699.06 2899.62 14999.66 33
NR-MVSNet98.95 4598.82 4799.36 6199.16 14898.72 7699.22 3199.20 16199.10 5799.72 1398.76 17496.38 17499.86 8498.00 8399.82 6399.50 99
MIMVSNet199.38 2099.32 2199.55 2499.86 1199.19 3199.41 1099.59 2499.59 1999.71 1499.57 2797.12 13099.90 4599.21 2199.87 5099.54 81
test_djsdf99.52 999.51 999.53 3499.86 1198.74 7199.39 1199.56 4099.11 5399.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
SixPastTwentyTwo98.75 6898.62 7199.16 9299.83 1597.96 14199.28 2798.20 28099.37 3399.70 1599.65 1992.65 26599.93 2699.04 2999.84 5499.60 47
new-patchmatchnet98.35 12798.74 5497.18 26799.24 12792.23 30896.42 25999.48 6598.30 10199.69 1799.53 3297.44 11399.82 13698.84 4099.77 8899.49 103
LCM-MVSNet-Re98.64 8798.48 8999.11 9998.85 21298.51 9298.49 8999.83 398.37 9699.69 1799.46 4098.21 5699.92 3294.13 26699.30 22098.91 248
v7n99.53 899.57 899.41 5799.88 798.54 9099.45 999.61 2199.66 1099.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
SED-MVS98.91 5098.72 5799.49 4699.49 8399.17 3398.10 12299.31 12698.03 12299.66 2099.02 11398.36 4299.88 6296.91 14099.62 14999.41 134
test_241102_ONE99.49 8399.17 3399.31 12697.98 12499.66 2098.90 14198.36 4299.48 298
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5699.34 1399.69 1298.93 7499.65 2299.72 1198.93 1899.95 1499.11 25100.00 199.82 9
pm-mvs199.44 1399.48 1199.33 7199.80 1798.63 7999.29 2399.63 1899.30 3899.65 2299.60 2599.16 1499.82 13699.07 2799.83 6099.56 69
ACMH96.65 799.25 2799.24 2699.26 8199.72 2898.38 9999.07 4599.55 4398.30 10199.65 2299.45 4499.22 999.76 19598.44 6199.77 8899.64 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS98.40 12298.68 6497.54 25298.96 18897.99 13297.88 14899.36 10398.20 11399.63 2599.04 10998.76 2295.33 34996.56 17699.74 10199.31 176
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4599.29 2399.54 4799.62 1699.56 2699.42 4798.16 6099.96 898.78 4299.93 2499.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1399.31 1899.51 5399.64 1199.56 2699.46 4098.23 5199.97 398.78 4299.93 2499.72 24
Anonymous2024052998.93 4798.87 4399.12 9799.19 13898.22 11199.01 4898.99 21699.25 4199.54 2899.37 5297.04 13399.80 15997.89 8699.52 18499.35 162
EU-MVSNet97.66 18598.50 8595.13 31399.63 4785.84 33898.35 10198.21 27998.23 10999.54 2899.46 4095.02 21899.68 23598.24 6999.87 5099.87 4
DeepC-MVS97.60 498.97 4298.93 4199.10 10199.35 11397.98 13698.01 13799.46 7397.56 15599.54 2899.50 3498.97 1699.84 11198.06 7899.92 3399.49 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TDRefinement99.42 1699.38 1599.55 2499.76 2199.33 1299.68 599.71 999.38 3299.53 3199.61 2398.64 2799.80 15998.24 6999.84 5499.52 91
ACMH+96.62 999.08 3399.00 3899.33 7199.71 2998.83 6598.60 7499.58 2699.11 5399.53 3199.18 7898.81 2199.67 23896.71 16499.77 8899.50 99
v899.01 3599.16 2998.57 17699.47 9396.31 21998.90 5799.47 7199.03 6399.52 3399.57 2796.93 14199.81 14999.60 499.98 999.60 47
VPA-MVSNet99.30 2499.30 2399.28 7699.49 8398.36 10199.00 5099.45 7699.63 1399.52 3399.44 4598.25 4999.88 6299.09 2699.84 5499.62 42
K. test v398.00 15797.66 17599.03 11799.79 1997.56 17199.19 3692.47 34099.62 1699.52 3399.66 1789.61 28399.96 899.25 2099.81 6799.56 69
tfpnnormal98.90 5298.90 4298.91 13299.67 3997.82 15499.00 5099.44 7999.45 2799.51 3699.24 7098.20 5799.86 8495.92 20999.69 12499.04 225
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2099.32 1599.55 4399.46 2699.50 3799.34 5897.30 11999.93 2698.90 3599.93 2499.77 16
v1098.97 4299.11 3298.55 18199.44 9996.21 22198.90 5799.55 4398.73 8299.48 3899.60 2596.63 16199.83 12699.70 399.99 599.61 46
DP-MVS98.93 4798.81 4999.28 7699.21 13498.45 9698.46 9299.33 11999.63 1399.48 3899.15 8897.23 12799.75 20297.17 12199.66 14099.63 41
N_pmnet97.63 18897.17 20598.99 12399.27 12297.86 14995.98 27593.41 33795.25 25999.47 4098.90 14195.63 20199.85 9496.91 14099.73 10499.27 186
nrg03099.40 1899.35 1799.54 2799.58 4999.13 4898.98 5399.48 6599.68 899.46 4199.26 6798.62 2899.73 21199.17 2499.92 3399.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5399.29 2399.53 4999.53 2299.46 4199.41 4998.23 5199.95 1498.89 3799.95 1599.81 11
v124098.55 10398.62 7198.32 20499.22 13295.58 23397.51 19099.45 7697.16 19999.45 4399.24 7096.12 18099.85 9499.60 499.88 4799.55 77
DPE-MVS98.59 9798.26 12299.57 1899.27 12299.15 4297.01 22399.39 9397.67 14499.44 4498.99 12297.53 10499.89 5495.40 23399.68 12999.66 33
testing_298.93 4798.99 4098.76 15599.57 5397.03 19897.85 15399.13 18698.46 9599.44 4499.44 4598.22 5499.74 20698.85 3899.94 1999.51 94
FMVSNet199.17 2999.17 2899.17 8999.55 6498.24 10699.20 3299.44 7999.21 4299.43 4699.55 2997.82 8399.86 8498.42 6399.89 4699.41 134
pmmvs-eth3d98.47 11498.34 11398.86 13999.30 11997.76 15997.16 21899.28 14095.54 25299.42 4799.19 7697.27 12299.63 25597.89 8699.97 1199.20 199
IU-MVS99.49 8399.15 4298.87 23292.97 29599.41 4896.76 15799.62 14999.66 33
IterMVS-SCA-FT97.85 17398.18 13196.87 28199.27 12291.16 32395.53 29799.25 15099.10 5799.41 4899.35 5693.10 25699.96 898.65 5099.94 1999.49 103
test20.0398.78 6498.77 5398.78 15299.46 9497.20 19097.78 15899.24 15599.04 6299.41 4898.90 14197.65 9299.76 19597.70 10099.79 8099.39 143
FC-MVSNet-test99.27 2599.25 2599.34 6999.77 2098.37 10099.30 2299.57 3399.61 1899.40 5199.50 3497.12 13099.85 9499.02 3099.94 1999.80 12
EG-PatchMatch MVS98.99 3799.01 3798.94 12899.50 7697.47 17598.04 13199.59 2498.15 11899.40 5199.36 5598.58 3199.76 19598.78 4299.68 12999.59 53
v192192098.54 10698.60 7698.38 20099.20 13795.76 23297.56 18499.36 10397.23 19499.38 5399.17 8296.02 18399.84 11199.57 699.90 4299.54 81
IterMVS-LS98.55 10398.70 6298.09 21799.48 9194.73 25597.22 21199.39 9398.97 6999.38 5399.31 6296.00 18599.93 2698.58 5299.97 1199.60 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lessismore_v098.97 12499.73 2397.53 17386.71 35099.37 5599.52 3389.93 28199.92 3298.99 3299.72 11099.44 125
XXY-MVS99.14 3199.15 3199.10 10199.76 2197.74 16298.85 6299.62 1998.48 9499.37 5599.49 3798.75 2399.86 8498.20 7299.80 7599.71 25
TranMVSNet+NR-MVSNet99.17 2999.07 3599.46 5399.37 10898.87 6398.39 9899.42 8799.42 2999.36 5799.06 9998.38 4199.95 1498.34 6699.90 4299.57 64
APDe-MVS98.99 3798.79 5099.60 1399.21 13499.15 4298.87 5999.48 6597.57 15399.35 5899.24 7097.83 8099.89 5497.88 8999.70 11899.75 22
casdiffmvs98.95 4599.00 3898.81 14599.38 10697.33 18197.82 15699.57 3399.17 5099.35 5899.17 8298.35 4599.69 22698.46 6099.73 10499.41 134
PM-MVS98.82 5898.72 5799.12 9799.64 4598.54 9097.98 14099.68 1397.62 14899.34 6099.18 7897.54 10299.77 18897.79 9299.74 10199.04 225
v119298.60 9498.66 6798.41 19799.27 12295.88 22897.52 18899.36 10397.41 17299.33 6199.20 7596.37 17599.82 13699.57 699.92 3399.55 77
CP-MVSNet99.21 2899.09 3399.56 2299.65 4298.96 6199.13 4199.34 11499.42 2999.33 6199.26 6797.01 13799.94 2298.74 4699.93 2499.79 13
IterMVS97.73 18098.11 14196.57 28899.24 12790.28 32495.52 29999.21 15998.86 7799.33 6199.33 6093.11 25599.94 2298.49 5899.94 1999.48 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepPCF-MVS96.93 598.32 12998.01 15099.23 8598.39 27598.97 5895.03 31199.18 17096.88 21299.33 6198.78 17098.16 6099.28 32496.74 15999.62 14999.44 125
COLMAP_ROBcopyleft96.50 1098.99 3798.85 4599.41 5799.58 4999.10 5398.74 6599.56 4099.09 6099.33 6199.19 7698.40 4099.72 21995.98 20799.76 9799.42 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 10698.57 7898.45 19499.21 13495.98 22597.63 17599.36 10397.15 20199.32 6699.18 7895.84 19699.84 11199.50 1099.91 3899.54 81
v14898.45 11698.60 7698.00 22599.44 9994.98 25097.44 19699.06 19698.30 10199.32 6698.97 12896.65 16099.62 25798.37 6599.85 5299.39 143
DVP-MVS98.40 12298.00 15199.61 999.57 5399.25 1998.57 7899.35 10897.55 15699.31 6897.71 27394.61 23099.88 6296.14 20299.19 23899.70 28
VPNet98.87 5498.83 4699.01 12199.70 3597.62 17098.43 9599.35 10899.47 2599.28 6999.05 10696.72 15799.82 13698.09 7699.36 20999.59 53
v2v48298.56 9998.62 7198.37 20199.42 10395.81 23197.58 18299.16 17997.90 13199.28 6999.01 11995.98 18999.79 17299.33 1599.90 4299.51 94
ambc98.24 21198.82 22095.97 22698.62 7299.00 21599.27 7199.21 7396.99 13899.50 29496.55 17799.50 19499.26 189
Patchmatch-RL test97.26 21297.02 21297.99 22699.52 7195.53 23596.13 27299.71 997.47 16299.27 7199.16 8484.30 31699.62 25797.89 8699.77 8898.81 258
v114498.60 9498.66 6798.41 19799.36 10995.90 22797.58 18299.34 11497.51 15899.27 7199.15 8896.34 17699.80 15999.47 1299.93 2499.51 94
Vis-MVSNetpermissive99.34 2299.36 1699.27 7999.73 2398.26 10499.17 3799.78 499.11 5399.27 7199.48 3898.82 2099.95 1498.94 3399.93 2499.59 53
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_241102_TWO99.30 13498.03 12299.26 7599.02 11397.51 10799.88 6296.91 14099.60 15799.66 33
test072699.50 7699.21 2398.17 11699.35 10897.97 12599.26 7599.06 9997.61 97
V4298.78 6498.78 5198.76 15599.44 9997.04 19798.27 10499.19 16697.87 13399.25 7799.16 8496.84 14599.78 18299.21 2199.84 5499.46 118
TSAR-MVS + MP.98.63 8998.49 8899.06 11299.64 4597.90 14698.51 8798.94 21996.96 20899.24 7898.89 14997.83 8099.81 14996.88 14799.49 19599.48 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs99.14 3199.09 3399.29 7499.70 3598.28 10399.13 4199.52 5299.48 2399.24 7899.41 4996.79 15199.82 13698.69 4999.88 4799.76 20
abl_698.99 3798.78 5199.61 999.45 9799.46 398.60 7499.50 5598.59 8899.24 7899.04 10998.54 3399.89 5496.45 18499.62 14999.50 99
TSAR-MVS + GP.98.18 14597.98 15298.77 15498.71 23597.88 14796.32 26498.66 26196.33 23099.23 8198.51 21497.48 11199.40 30897.16 12299.46 19999.02 228
ppachtmachnet_test97.50 19497.74 16896.78 28698.70 23991.23 32294.55 32699.05 20096.36 22999.21 8298.79 16996.39 17299.78 18296.74 15999.82 6399.34 164
Baseline_NR-MVSNet98.98 4198.86 4499.36 6199.82 1698.55 8797.47 19499.57 3399.37 3399.21 8299.61 2396.76 15499.83 12698.06 7899.83 6099.71 25
EI-MVSNet-UG-set98.69 7898.71 5998.62 16999.10 16096.37 21697.23 20898.87 23299.20 4599.19 8498.99 12297.30 11999.85 9498.77 4599.79 8099.65 37
testgi98.32 12998.39 10698.13 21699.57 5395.54 23497.78 15899.49 6397.37 17699.19 8497.65 27698.96 1799.49 29596.50 18198.99 26699.34 164
baseline98.96 4499.02 3698.76 15599.38 10697.26 18598.49 8999.50 5598.86 7799.19 8499.06 9998.23 5199.69 22698.71 4899.76 9799.33 170
FMVSNet298.49 11298.40 10398.75 15898.90 20197.14 19698.61 7399.13 18698.59 8899.19 8499.28 6394.14 24099.82 13697.97 8499.80 7599.29 183
EI-MVSNet-Vis-set98.68 8198.70 6298.63 16799.09 16396.40 21597.23 20898.86 23799.20 4599.18 8898.97 12897.29 12199.85 9498.72 4799.78 8499.64 38
Regformer-498.73 7198.68 6498.89 13599.02 17997.22 18897.17 21699.06 19699.21 4299.17 8998.85 15697.45 11299.86 8498.48 5999.70 11899.60 47
TAMVS98.24 14098.05 14798.80 14799.07 16797.18 19297.88 14898.81 24596.66 22199.17 8999.21 7394.81 22699.77 18896.96 13899.88 4799.44 125
UniMVSNet (Re)98.87 5498.71 5999.35 6699.24 12798.73 7497.73 16699.38 9598.93 7499.12 9198.73 17796.77 15299.86 8498.63 5199.80 7599.46 118
RRT_test8_iter0595.24 28195.13 28095.57 30897.32 32587.02 33597.99 13899.41 8898.06 12199.12 9199.05 10666.85 35299.85 9498.93 3499.47 19899.84 8
Anonymous20240521197.90 16297.50 18699.08 10498.90 20198.25 10598.53 8296.16 31998.87 7699.11 9398.86 15390.40 27999.78 18297.36 11399.31 21799.19 204
VDD-MVS98.56 9998.39 10699.07 10799.13 15598.07 12598.59 7697.01 30699.59 1999.11 9399.27 6594.82 22499.79 17298.34 6699.63 14699.34 164
XVG-OURS-SEG-HR98.49 11298.28 12099.14 9599.49 8398.83 6596.54 25099.48 6597.32 18199.11 9398.61 20599.33 899.30 32196.23 19598.38 29199.28 184
Regformer-398.61 9298.61 7498.63 16799.02 17996.53 21397.17 21698.84 23999.13 5299.10 9698.85 15697.24 12699.79 17298.41 6499.70 11899.57 64
LPG-MVS_test98.71 7398.46 9399.47 5199.57 5398.97 5898.23 10799.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
LGP-MVS_train99.47 5199.57 5398.97 5899.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
MSP-MVS98.77 6698.52 8199.52 3999.50 7699.21 2398.02 13498.84 23997.97 12599.08 9999.02 11397.61 9799.88 6296.99 13499.63 14699.48 109
test_0728_THIRD98.17 11699.08 9999.02 11397.89 7799.88 6297.07 12999.71 11499.70 28
RRT_MVS97.07 22796.57 24198.58 17395.89 34796.33 21797.36 19998.77 25097.85 13599.08 9999.12 9282.30 32699.96 898.82 4199.90 4299.45 122
EI-MVSNet98.40 12298.51 8398.04 22399.10 16094.73 25597.20 21298.87 23298.97 6999.06 10299.02 11396.00 18599.80 15998.58 5299.82 6399.60 47
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 5999.17 14698.74 7197.68 17099.40 9199.14 5199.06 10298.59 20796.71 15899.93 2698.57 5499.77 8899.53 87
DU-MVS98.82 5898.63 7099.39 6099.16 14898.74 7197.54 18699.25 15098.84 7999.06 10298.76 17496.76 15499.93 2698.57 5499.77 8899.50 99
MVSTER96.86 23896.55 24297.79 23397.91 30194.21 26797.56 18498.87 23297.49 16199.06 10299.05 10680.72 32999.80 15998.44 6199.82 6399.37 152
TinyColmap97.89 16497.98 15297.60 24598.86 21094.35 26496.21 26999.44 7997.45 16999.06 10298.88 15097.99 7399.28 32494.38 25999.58 16599.18 206
test_part299.36 10999.10 5399.05 107
XVG-OURS98.53 10898.34 11399.11 9999.50 7698.82 6795.97 27699.50 5597.30 18399.05 10798.98 12699.35 799.32 31895.72 22099.68 12999.18 206
our_test_397.39 20397.73 17096.34 29298.70 23989.78 32694.61 32498.97 21896.50 22499.04 10998.85 15695.98 18999.84 11197.26 11899.67 13599.41 134
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1499.80 399.72 899.82 399.04 10999.81 398.05 6799.96 898.85 3899.99 599.86 6
ACMM96.08 1298.91 5098.73 5599.48 4899.55 6499.14 4598.07 12599.37 9997.62 14899.04 10998.96 13198.84 1999.79 17297.43 11099.65 14199.49 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD-MVS_3200maxsize98.84 5798.61 7499.53 3499.19 13899.27 1798.49 8999.33 11998.64 8499.03 11298.98 12697.89 7799.85 9496.54 17899.42 20399.46 118
Regformer-298.60 9498.46 9399.02 12098.85 21297.71 16496.91 23299.09 19398.98 6899.01 11398.64 19697.37 11799.84 11197.75 9999.57 16999.52 91
HyFIR lowres test97.19 21996.60 23998.96 12599.62 4897.28 18495.17 30799.50 5594.21 28099.01 11398.32 23786.61 29699.99 297.10 12899.84 5499.60 47
CVMVSNet96.25 26197.21 20493.38 32999.10 16080.56 35197.20 21298.19 28296.94 20999.00 11599.02 11389.50 28599.80 15996.36 18999.59 15999.78 14
Regformer-198.55 10398.44 9798.87 13798.85 21297.29 18296.91 23298.99 21698.97 6998.99 11698.64 19697.26 12599.81 14997.79 9299.57 16999.51 94
PVSNet_Blended_VisFu98.17 14798.15 13798.22 21299.73 2395.15 24797.36 19999.68 1394.45 27598.99 11699.27 6596.87 14499.94 2297.13 12699.91 3899.57 64
SMA-MVS98.40 12298.03 14999.51 4399.16 14899.21 2398.05 12999.22 15894.16 28298.98 11899.10 9697.52 10699.79 17296.45 18499.64 14399.53 87
XVG-ACMP-BASELINE98.56 9998.34 11399.22 8699.54 6798.59 8497.71 16799.46 7397.25 18898.98 11898.99 12297.54 10299.84 11195.88 21099.74 10199.23 194
IS-MVSNet98.19 14497.90 15999.08 10499.57 5397.97 13799.31 1898.32 27599.01 6598.98 11899.03 11291.59 27399.79 17295.49 23199.80 7599.48 109
MP-MVS-pluss98.57 9898.23 12699.60 1399.69 3799.35 897.16 21899.38 9594.87 26698.97 12198.99 12298.01 6999.88 6297.29 11699.70 11899.58 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDDNet98.21 14297.95 15499.01 12199.58 4997.74 16299.01 4897.29 30299.67 998.97 12199.50 3490.45 27899.80 15997.88 8999.20 23499.48 109
USDC97.41 20297.40 19297.44 25898.94 19193.67 28795.17 30799.53 4994.03 28498.97 12199.10 9695.29 21299.34 31595.84 21699.73 10499.30 179
GBi-Net98.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
test198.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
FMVSNet397.50 19497.24 20398.29 20898.08 29395.83 23097.86 15198.91 22697.89 13298.95 12498.95 13387.06 29399.81 14997.77 9499.69 12499.23 194
test_040298.76 6798.71 5998.93 12999.56 6198.14 11798.45 9499.34 11499.28 3998.95 12498.91 13898.34 4699.79 17295.63 22699.91 3898.86 253
HPM-MVS_fast99.01 3598.82 4799.57 1899.71 2999.35 899.00 5099.50 5597.33 17998.94 12898.86 15398.75 2399.82 13697.53 10699.71 11499.56 69
Anonymous2023120698.21 14298.21 12798.20 21399.51 7395.43 24098.13 11799.32 12196.16 23698.93 12998.82 16596.00 18599.83 12697.32 11599.73 10499.36 158
YYNet197.60 18997.67 17297.39 26199.04 17493.04 29595.27 30498.38 27497.25 18898.92 13098.95 13395.48 20999.73 21196.99 13498.74 27699.41 134
SteuartSystems-ACMMP98.79 6198.54 7999.54 2799.73 2399.16 3798.23 10799.31 12697.92 12998.90 13198.90 14198.00 7099.88 6296.15 20199.72 11099.58 59
Skip Steuart: Steuart Systems R&D Blog.
RPSCF98.62 9198.36 11099.42 5499.65 4299.42 498.55 8099.57 3397.72 14298.90 13199.26 6796.12 18099.52 28995.72 22099.71 11499.32 172
D2MVS97.84 17497.84 16397.83 23199.14 15394.74 25496.94 22798.88 23095.84 24698.89 13398.96 13194.40 23599.69 22697.55 10399.95 1599.05 221
zzz-MVS98.79 6198.52 8199.61 999.67 3999.36 697.33 20199.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
MTAPA98.88 5398.64 6999.61 999.67 3999.36 698.43 9599.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
WR-MVS98.40 12298.19 13099.03 11799.00 18197.65 16796.85 23598.94 21998.57 9298.89 13398.50 21795.60 20299.85 9497.54 10599.85 5299.59 53
SR-MVS98.71 7398.43 9999.57 1899.18 14599.35 898.36 10099.29 13898.29 10498.88 13798.85 15697.53 10499.87 7896.14 20299.31 21799.48 109
AllTest98.44 11798.20 12899.16 9299.50 7698.55 8798.25 10699.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
TestCases99.16 9299.50 7698.55 8799.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
MDA-MVSNet_test_wron97.60 18997.66 17597.41 26099.04 17493.09 29195.27 30498.42 27297.26 18798.88 13798.95 13395.43 21099.73 21197.02 13198.72 27899.41 134
VNet98.42 11998.30 11898.79 14998.79 22597.29 18298.23 10798.66 26199.31 3798.85 14198.80 16794.80 22799.78 18298.13 7499.13 24899.31 176
CSCG98.68 8198.50 8599.20 8799.45 9798.63 7998.56 7999.57 3397.87 13398.85 14198.04 25697.66 9199.84 11196.72 16299.81 6799.13 214
CHOSEN 1792x268897.49 19697.14 20998.54 18499.68 3896.09 22496.50 25499.62 1991.58 31298.84 14398.97 12892.36 26799.88 6296.76 15799.95 1599.67 32
xxxxxxxxxxxxxcwj98.44 11798.24 12499.06 11299.11 15697.97 13796.53 25199.54 4798.24 10798.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
SF-MVS98.53 10898.27 12199.32 7399.31 11698.75 7098.19 11299.41 8896.77 21698.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
mvs_anonymous97.83 17698.16 13596.87 28198.18 28791.89 31097.31 20398.90 22797.37 17698.83 14499.46 4096.28 17799.79 17298.90 3598.16 29998.95 239
MDA-MVSNet-bldmvs97.94 16197.91 15898.06 22199.44 9994.96 25196.63 24899.15 18598.35 9798.83 14499.11 9494.31 23799.85 9496.60 17098.72 27899.37 152
PMMVS298.07 15298.08 14598.04 22399.41 10494.59 26194.59 32599.40 9197.50 15998.82 14898.83 16296.83 14799.84 11197.50 10899.81 6799.71 25
ACMMPcopyleft98.75 6898.50 8599.52 3999.56 6199.16 3798.87 5999.37 9997.16 19998.82 14899.01 11997.71 8899.87 7896.29 19399.69 12499.54 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMP95.32 1598.41 12098.09 14299.36 6199.51 7398.79 6997.68 17099.38 9595.76 24998.81 15098.82 16598.36 4299.82 13694.75 24399.77 8899.48 109
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMP_NAP98.75 6898.48 8999.57 1899.58 4999.29 1497.82 15699.25 15096.94 20998.78 15199.12 9298.02 6899.84 11197.13 12699.67 13599.59 53
LFMVS97.20 21896.72 22998.64 16598.72 23296.95 20298.93 5694.14 33599.74 698.78 15199.01 11984.45 31399.73 21197.44 10999.27 22499.25 190
Patchmtry97.35 20596.97 21598.50 19097.31 32696.47 21498.18 11398.92 22498.95 7398.78 15199.37 5285.44 30899.85 9495.96 20899.83 6099.17 210
cl_fuxian97.36 20497.37 19597.31 26298.09 29293.25 29095.01 31299.16 17997.05 20498.77 15498.72 17992.88 26199.64 25396.93 13999.76 9799.05 221
UnsupCasMVSNet_eth97.89 16497.60 18198.75 15899.31 11697.17 19397.62 17699.35 10898.72 8398.76 15598.68 18692.57 26699.74 20697.76 9895.60 33599.34 164
OPM-MVS98.56 9998.32 11799.25 8399.41 10498.73 7497.13 22099.18 17097.10 20298.75 15698.92 13798.18 5899.65 25196.68 16699.56 17499.37 152
DeepC-MVS_fast96.85 698.30 13198.15 13798.75 15898.61 25497.23 18697.76 16399.09 19397.31 18298.75 15698.66 19197.56 10199.64 25396.10 20499.55 17699.39 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance97.18 22097.16 20697.25 26698.16 28892.85 29795.15 30999.31 12697.25 18898.74 15898.78 17090.07 28099.78 18297.19 12099.80 7599.11 217
APD-MVScopyleft98.10 14997.67 17299.42 5499.11 15698.93 6297.76 16399.28 14094.97 26398.72 15998.77 17297.04 13399.85 9493.79 27799.54 17799.49 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
miper_ehance_all_eth97.06 22897.03 21197.16 27097.83 30493.06 29294.66 32199.09 19395.99 24398.69 16098.45 22392.73 26499.61 26396.79 15399.03 25998.82 256
PGM-MVS98.66 8498.37 10999.55 2499.53 6999.18 3298.23 10799.49 6397.01 20798.69 16098.88 15098.00 7099.89 5495.87 21399.59 15999.58 59
GST-MVS98.61 9298.30 11899.52 3999.51 7399.20 2998.26 10599.25 15097.44 17098.67 16298.39 22897.68 8999.85 9496.00 20599.51 18799.52 91
tttt051795.64 27394.98 28397.64 24399.36 10993.81 28398.72 6790.47 34698.08 12098.67 16298.34 23473.88 34699.92 3297.77 9499.51 18799.20 199
OpenMVS_ROBcopyleft95.38 1495.84 26995.18 27997.81 23298.41 27497.15 19597.37 19898.62 26483.86 34298.65 16498.37 23194.29 23899.68 23588.41 32998.62 28696.60 332
MS-PatchMatch97.68 18397.75 16797.45 25798.23 28593.78 28497.29 20498.84 23996.10 23898.64 16598.65 19396.04 18299.36 31396.84 15199.14 24599.20 199
cl-mvsnet_97.02 23296.83 22497.58 24797.82 30594.04 27194.66 32199.16 17997.04 20598.63 16698.71 18088.68 29099.69 22697.00 13299.81 6799.00 232
cl-mvsnet197.02 23296.84 22397.58 24797.82 30594.03 27294.66 32199.16 17997.04 20598.63 16698.71 18088.69 28999.69 22697.00 13299.81 6799.01 229
pmmvs597.64 18697.49 18798.08 22099.14 15395.12 24996.70 24599.05 20093.77 28798.62 16898.83 16293.23 25299.75 20298.33 6899.76 9799.36 158
ab-mvs98.41 12098.36 11098.59 17299.19 13897.23 18699.32 1598.81 24597.66 14598.62 16899.40 5196.82 14899.80 15995.88 21099.51 18798.75 266
pmmvs497.58 19197.28 20098.51 18898.84 21596.93 20395.40 30398.52 26893.60 28998.61 17098.65 19395.10 21799.60 26496.97 13799.79 8098.99 233
HPM-MVScopyleft98.79 6198.53 8099.59 1799.65 4299.29 1499.16 3899.43 8496.74 21798.61 17098.38 23098.62 2899.87 7896.47 18299.67 13599.59 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Gipumacopyleft99.03 3499.16 2998.64 16599.94 298.51 9299.32 1599.75 799.58 2198.60 17299.62 2198.22 5499.51 29397.70 10099.73 10497.89 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CDS-MVSNet97.69 18297.35 19798.69 16298.73 23197.02 20096.92 23198.75 25495.89 24598.59 17398.67 18892.08 27199.74 20696.72 16299.81 6799.32 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EPP-MVSNet98.30 13198.04 14899.07 10799.56 6197.83 15199.29 2398.07 28499.03 6398.59 17399.13 9192.16 26999.90 4596.87 14899.68 12999.49 103
HFP-MVS98.71 7398.44 9799.51 4399.49 8399.16 3798.52 8399.31 12697.47 16298.58 17598.50 21797.97 7499.85 9496.57 17399.59 15999.53 87
#test#98.50 11198.16 13599.51 4399.49 8399.16 3798.03 13299.31 12696.30 23398.58 17598.50 21797.97 7499.85 9495.68 22399.59 15999.53 87
eth_miper_zixun_eth97.23 21697.25 20197.17 26898.00 29792.77 29994.71 31899.18 17097.27 18698.56 17798.74 17691.89 27299.69 22697.06 13099.81 6799.05 221
ACMMPR98.70 7698.42 10199.54 2799.52 7199.14 4598.52 8399.31 12697.47 16298.56 17798.54 21197.75 8799.88 6296.57 17399.59 15999.58 59
new_pmnet96.99 23596.76 22797.67 23998.72 23294.89 25295.95 28098.20 28092.62 30198.55 17998.54 21194.88 22399.52 28993.96 27099.44 20298.59 277
3Dnovator98.27 298.81 6098.73 5599.05 11498.76 22697.81 15699.25 3099.30 13498.57 9298.55 17999.33 6097.95 7699.90 4597.16 12299.67 13599.44 125
9.1497.78 16599.07 16797.53 18799.32 12195.53 25498.54 18198.70 18397.58 9999.76 19594.32 26099.46 199
diffmvs98.22 14198.24 12498.17 21599.00 18195.44 23996.38 26199.58 2697.79 13998.53 18298.50 21796.76 15499.74 20697.95 8599.64 14399.34 164
OMC-MVS97.88 16697.49 18799.04 11698.89 20698.63 7996.94 22799.25 15095.02 26198.53 18298.51 21497.27 12299.47 30093.50 28599.51 18799.01 229
jason97.45 20097.35 19797.76 23599.24 12793.93 27795.86 28498.42 27294.24 27998.50 18498.13 24794.82 22499.91 4297.22 11999.73 10499.43 129
jason: jason.
MVP-Stereo98.08 15197.92 15798.57 17698.96 18896.79 20697.90 14799.18 17096.41 22898.46 18598.95 13395.93 19299.60 26496.51 18098.98 26899.31 176
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DELS-MVS98.27 13598.20 12898.48 19198.86 21096.70 21095.60 29599.20 16197.73 14198.45 18698.71 18097.50 10899.82 13698.21 7199.59 15998.93 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 7898.40 10399.54 2799.53 6999.17 3398.52 8399.31 12697.46 16798.44 18798.51 21497.83 8099.88 6296.46 18399.58 16599.58 59
BH-untuned96.83 23996.75 22897.08 27198.74 23093.33 28996.71 24498.26 27796.72 21898.44 18797.37 29495.20 21499.47 30091.89 30897.43 31598.44 283
LS3D98.63 8998.38 10899.36 6197.25 32799.38 599.12 4399.32 12199.21 4298.44 18798.88 15097.31 11899.80 15996.58 17199.34 21398.92 245
ETH3D-3000-0.198.03 15397.62 17999.29 7499.11 15698.80 6897.47 19499.32 12195.54 25298.43 19098.62 20296.61 16299.77 18893.95 27199.49 19599.30 179
xiu_mvs_v1_base_debu97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base_debi97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
Patchmatch-test96.55 25196.34 24897.17 26898.35 27693.06 29298.40 9797.79 29097.33 17998.41 19198.67 18883.68 32099.69 22695.16 23599.31 21798.77 264
baseline195.96 26695.44 27097.52 25498.51 26693.99 27598.39 9896.09 32198.21 11098.40 19597.76 27186.88 29499.63 25595.42 23289.27 34798.95 239
MSDG97.71 18197.52 18598.28 20998.91 20096.82 20594.42 32899.37 9997.65 14698.37 19698.29 23997.40 11599.33 31794.09 26799.22 23198.68 274
miper_enhance_ethall96.01 26495.74 25996.81 28596.41 34192.27 30793.69 33798.89 22991.14 31998.30 19797.35 29690.58 27799.58 27396.31 19199.03 25998.60 275
CP-MVS98.70 7698.42 10199.52 3999.36 10999.12 5098.72 6799.36 10397.54 15798.30 19798.40 22697.86 7999.89 5496.53 17999.72 11099.56 69
UnsupCasMVSNet_bld97.30 20996.92 21798.45 19499.28 12196.78 20996.20 27099.27 14495.42 25798.28 19998.30 23893.16 25499.71 22094.99 23897.37 31698.87 252
ITE_SJBPF98.87 13799.22 13298.48 9499.35 10897.50 15998.28 19998.60 20697.64 9599.35 31493.86 27599.27 22498.79 262
thisisatest053095.27 28094.45 28997.74 23799.19 13894.37 26397.86 15190.20 34797.17 19898.22 20197.65 27673.53 34799.90 4596.90 14599.35 21198.95 239
test_yl96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
DCV-MVSNet96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
MVSFormer98.26 13798.43 9997.77 23498.88 20793.89 28199.39 1199.56 4099.11 5398.16 20498.13 24793.81 24699.97 399.26 1899.57 16999.43 129
lupinMVS97.06 22896.86 22197.65 24198.88 20793.89 28195.48 30097.97 28793.53 29098.16 20497.58 28093.81 24699.91 4296.77 15699.57 16999.17 210
Vis-MVSNet (Re-imp)97.46 19997.16 20698.34 20399.55 6496.10 22298.94 5598.44 27198.32 10098.16 20498.62 20288.76 28899.73 21193.88 27499.79 8099.18 206
TAPA-MVS96.21 1196.63 24995.95 25698.65 16498.93 19398.09 11996.93 22999.28 14083.58 34398.13 20797.78 26996.13 17999.40 30893.52 28399.29 22298.45 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testtj97.79 17997.25 20199.42 5499.03 17798.85 6497.78 15899.18 17095.83 24798.12 20898.50 21795.50 20799.86 8492.23 30699.07 25499.54 81
ZNCC-MVS98.68 8198.40 10399.54 2799.57 5399.21 2398.46 9299.29 13897.28 18598.11 20998.39 22898.00 7099.87 7896.86 15099.64 14399.55 77
MVS_111021_LR98.30 13198.12 14098.83 14299.16 14898.03 13096.09 27399.30 13497.58 15298.10 21098.24 24198.25 4999.34 31596.69 16599.65 14199.12 215
mPP-MVS98.64 8798.34 11399.54 2799.54 6799.17 3398.63 7199.24 15597.47 16298.09 21198.68 18697.62 9699.89 5496.22 19699.62 14999.57 64
3Dnovator+97.89 398.69 7898.51 8399.24 8498.81 22298.40 9799.02 4799.19 16698.99 6698.07 21299.28 6397.11 13299.84 11196.84 15199.32 21599.47 116
PHI-MVS98.29 13497.95 15499.34 6998.44 27299.16 3798.12 11999.38 9596.01 24298.06 21398.43 22497.80 8499.67 23895.69 22299.58 16599.20 199
CLD-MVS97.49 19697.16 20698.48 19199.07 16797.03 19894.71 31899.21 15994.46 27398.06 21397.16 30097.57 10099.48 29894.46 25299.78 8498.95 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_Test98.18 14598.36 11097.67 23998.48 26894.73 25598.18 11399.02 20997.69 14398.04 21599.11 9497.22 12899.56 27798.57 5498.90 27298.71 268
FMVSNet596.01 26495.20 27898.41 19797.53 31796.10 22298.74 6599.50 5597.22 19798.03 21699.04 10969.80 34999.88 6297.27 11799.71 11499.25 190
MVS_111021_HR98.25 13998.08 14598.75 15899.09 16397.46 17695.97 27699.27 14497.60 15197.99 21798.25 24098.15 6299.38 31296.87 14899.57 16999.42 132
MCST-MVS98.00 15797.63 17899.10 10199.24 12798.17 11496.89 23498.73 25795.66 25097.92 21897.70 27497.17 12999.66 24696.18 20099.23 23099.47 116
MG-MVS96.77 24396.61 23897.26 26598.31 27993.06 29295.93 28198.12 28396.45 22797.92 21898.73 17793.77 24899.39 31091.19 31799.04 25899.33 170
MSLP-MVS++98.02 15598.14 13997.64 24398.58 25995.19 24697.48 19299.23 15797.47 16297.90 22098.62 20297.04 13398.81 34197.55 10399.41 20498.94 243
cl-mvsnet295.79 27095.39 27396.98 27596.77 33592.79 29894.40 32998.53 26794.59 27097.89 22198.17 24682.82 32599.24 32696.37 18799.03 25998.92 245
BH-RMVSNet96.83 23996.58 24097.58 24798.47 26994.05 27096.67 24697.36 29896.70 22097.87 22297.98 25995.14 21699.44 30590.47 32398.58 28899.25 190
MIMVSNet96.62 25096.25 25397.71 23899.04 17494.66 25899.16 3896.92 31097.23 19497.87 22299.10 9686.11 30299.65 25191.65 31199.21 23398.82 256
LF4IMVS97.90 16297.69 17198.52 18599.17 14697.66 16697.19 21599.47 7196.31 23297.85 22498.20 24596.71 15899.52 28994.62 24799.72 11098.38 286
CPTT-MVS97.84 17497.36 19699.27 7999.31 11698.46 9598.29 10299.27 14494.90 26597.83 22598.37 23194.90 22099.84 11193.85 27699.54 17799.51 94
CMPMVSbinary75.91 2396.29 25995.44 27098.84 14196.25 34398.69 7797.02 22299.12 18988.90 33197.83 22598.86 15389.51 28498.90 33991.92 30799.51 18798.92 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN94.17 29794.37 29193.58 32696.86 33285.71 34090.11 34697.07 30598.17 11697.82 22797.19 29884.62 31298.94 33789.77 32597.68 31296.09 339
CDPH-MVS97.26 21296.66 23599.07 10799.00 18198.15 11596.03 27499.01 21291.21 31897.79 22897.85 26696.89 14399.69 22692.75 29999.38 20899.39 143
HQP_MVS97.99 16097.67 17298.93 12999.19 13897.65 16797.77 16199.27 14498.20 11397.79 22897.98 25994.90 22099.70 22294.42 25599.51 18799.45 122
plane_prior397.78 15897.41 17297.79 228
MDTV_nov1_ep13_2view74.92 35397.69 16990.06 32797.75 23185.78 30493.52 28398.69 271
pmmvs395.03 28594.40 29096.93 27797.70 31192.53 30295.08 31097.71 29388.57 33397.71 23298.08 25479.39 33699.82 13696.19 19899.11 25298.43 284
DP-MVS Recon97.33 20796.92 21798.57 17699.09 16397.99 13296.79 23899.35 10893.18 29397.71 23298.07 25595.00 21999.31 31993.97 26999.13 24898.42 285
QAPM97.31 20896.81 22598.82 14398.80 22497.49 17499.06 4699.19 16690.22 32497.69 23499.16 8496.91 14299.90 4590.89 32199.41 20499.07 219
SCA96.41 25796.66 23595.67 30598.24 28388.35 32995.85 28696.88 31296.11 23797.67 23598.67 18893.10 25699.85 9494.16 26199.22 23198.81 258
ETH3D cwj APD-0.1697.55 19297.00 21399.19 8898.51 26698.64 7896.85 23599.13 18694.19 28197.65 23698.40 22695.78 19799.81 14993.37 28899.16 24199.12 215
Effi-MVS+-dtu98.26 13797.90 15999.35 6698.02 29599.49 298.02 13499.16 17998.29 10497.64 23797.99 25896.44 17099.95 1496.66 16798.93 27198.60 275
CNVR-MVS98.17 14797.87 16199.07 10798.67 24798.24 10697.01 22398.93 22197.25 18897.62 23898.34 23497.27 12299.57 27496.42 18699.33 21499.39 143
PVSNet_BlendedMVS97.55 19297.53 18497.60 24598.92 19793.77 28596.64 24799.43 8494.49 27197.62 23899.18 7896.82 14899.67 23894.73 24499.93 2499.36 158
PVSNet_Blended96.88 23796.68 23297.47 25698.92 19793.77 28594.71 31899.43 8490.98 32097.62 23897.36 29596.82 14899.67 23894.73 24499.56 17498.98 234
alignmvs97.35 20596.88 22098.78 15298.54 26398.09 11997.71 16797.69 29499.20 4597.59 24195.90 32088.12 29299.55 28098.18 7398.96 26998.70 270
MP-MVScopyleft98.46 11598.09 14299.54 2799.57 5399.22 2298.50 8899.19 16697.61 15097.58 24298.66 19197.40 11599.88 6294.72 24699.60 15799.54 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DSMNet-mixed97.42 20197.60 18196.87 28199.15 15291.46 31498.54 8199.12 18992.87 29897.58 24299.63 2096.21 17899.90 4595.74 21999.54 17799.27 186
test0.0.03 194.51 29093.69 29896.99 27496.05 34493.61 28894.97 31393.49 33696.17 23497.57 24494.88 33682.30 32699.01 33693.60 28194.17 34398.37 288
PCF-MVS92.86 1894.36 29293.00 30898.42 19698.70 23997.56 17193.16 34099.11 19179.59 34697.55 24597.43 29092.19 26899.73 21179.85 34599.45 20197.97 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
XVS98.72 7298.45 9599.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24698.63 20097.50 10899.83 12696.79 15399.53 18199.56 69
X-MVStestdata94.32 29392.59 31099.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24645.85 34897.50 10899.83 12696.79 15399.53 18199.56 69
旧先验295.76 28888.56 33497.52 24899.66 24694.48 251
PMVScopyleft91.26 2097.86 16897.94 15697.65 24199.71 2997.94 14498.52 8398.68 26098.99 6697.52 24899.35 5697.41 11498.18 34591.59 31399.67 13596.82 329
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETV-MVS98.03 15397.86 16298.56 18098.69 24298.07 12597.51 19099.50 5598.10 11997.50 25095.51 32698.41 3999.88 6296.27 19499.24 22997.71 313
PS-MVSNAJ97.08 22697.39 19396.16 29998.56 26192.46 30395.24 30698.85 23897.25 18897.49 25195.99 31898.07 6499.90 4596.37 18798.67 28396.12 338
xiu_mvs_v2_base97.16 22297.49 18796.17 29798.54 26392.46 30395.45 30198.84 23997.25 18897.48 25296.49 31198.31 4799.90 4596.34 19098.68 28296.15 337
canonicalmvs98.34 12898.26 12298.58 17398.46 27097.82 15498.96 5499.46 7399.19 4997.46 25395.46 32898.59 3099.46 30298.08 7798.71 28098.46 280
testdata98.09 21798.93 19395.40 24198.80 24790.08 32697.45 25498.37 23195.26 21399.70 22293.58 28298.95 27099.17 210
thres600view794.45 29193.83 29696.29 29399.06 17191.53 31397.99 13894.24 33398.34 9897.44 25595.01 33279.84 33299.67 23884.33 33798.23 29497.66 315
EMVS93.83 30394.02 29493.23 33096.83 33484.96 34189.77 34796.32 31897.92 12997.43 25696.36 31586.17 30098.93 33887.68 33197.73 31195.81 340
thres100view90094.19 29693.67 29995.75 30499.06 17191.35 31798.03 13294.24 33398.33 9997.40 25794.98 33479.84 33299.62 25783.05 33998.08 30496.29 333
Fast-Effi-MVS+-dtu98.27 13598.09 14298.81 14598.43 27398.11 11897.61 17899.50 5598.64 8497.39 25897.52 28498.12 6399.95 1496.90 14598.71 28098.38 286
API-MVS97.04 23196.91 21997.42 25997.88 30298.23 11098.18 11398.50 26997.57 15397.39 25896.75 30796.77 15299.15 33190.16 32499.02 26294.88 343
PatchMatch-RL97.24 21596.78 22698.61 17199.03 17797.83 15196.36 26299.06 19693.49 29297.36 26097.78 26995.75 19899.49 29593.44 28698.77 27598.52 278
sss97.21 21796.93 21698.06 22198.83 21795.22 24596.75 24298.48 27094.49 27197.27 26197.90 26392.77 26399.80 15996.57 17399.32 21599.16 213
WTY-MVS96.67 24796.27 25297.87 22998.81 22294.61 26096.77 24097.92 28994.94 26497.12 26297.74 27291.11 27599.82 13693.89 27398.15 30099.18 206
tfpn200view994.03 30093.44 30195.78 30398.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30496.29 333
thres40094.14 29893.44 30196.24 29598.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30497.66 315
ETH3 D test640096.46 25695.59 26699.08 10498.88 20798.21 11296.53 25199.18 17088.87 33297.08 26597.79 26893.64 25199.77 18888.92 32899.40 20699.28 184
PatchmatchNetpermissive95.58 27495.67 26395.30 31297.34 32487.32 33397.65 17496.65 31495.30 25897.07 26698.69 18484.77 31099.75 20294.97 23998.64 28498.83 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CNLPA97.17 22196.71 23098.55 18198.56 26198.05 12896.33 26398.93 22196.91 21197.06 26797.39 29294.38 23699.45 30491.66 31099.18 23998.14 294
NCCC97.86 16897.47 19199.05 11498.61 25498.07 12596.98 22598.90 22797.63 14797.04 26897.93 26295.99 18899.66 24695.31 23498.82 27499.43 129
TR-MVS95.55 27595.12 28196.86 28497.54 31693.94 27696.49 25596.53 31694.36 27897.03 26996.61 30994.26 23999.16 33086.91 33396.31 33197.47 322
MDTV_nov1_ep1395.22 27797.06 33083.20 34797.74 16596.16 31994.37 27796.99 27098.83 16283.95 31899.53 28593.90 27297.95 308
CANet97.87 16797.76 16698.19 21497.75 30795.51 23696.76 24199.05 20097.74 14096.93 27198.21 24495.59 20399.89 5497.86 9199.93 2499.19 204
EPMVS93.72 30593.27 30395.09 31496.04 34587.76 33198.13 11785.01 35194.69 26996.92 27298.64 19678.47 34299.31 31995.04 23696.46 33098.20 291
AdaColmapbinary97.14 22396.71 23098.46 19398.34 27797.80 15796.95 22698.93 22195.58 25196.92 27297.66 27595.87 19599.53 28590.97 31899.14 24598.04 297
thisisatest051594.12 29993.16 30596.97 27698.60 25692.90 29693.77 33690.61 34594.10 28396.91 27495.87 32174.99 34599.80 15994.52 25099.12 25198.20 291
CR-MVSNet96.28 26095.95 25697.28 26397.71 30994.22 26598.11 12098.92 22492.31 30496.91 27499.37 5285.44 30899.81 14997.39 11297.36 31897.81 306
RPMNet96.82 24196.66 23597.28 26397.71 30994.22 26598.11 12096.90 31199.37 3396.91 27499.34 5886.72 29599.81 14997.53 10697.36 31897.81 306
HPM-MVS++copyleft98.10 14997.64 17799.48 4899.09 16399.13 4897.52 18898.75 25497.46 16796.90 27797.83 26796.01 18499.84 11195.82 21799.35 21199.46 118
PatchT96.65 24896.35 24797.54 25297.40 32295.32 24297.98 14096.64 31599.33 3696.89 27899.42 4784.32 31599.81 14997.69 10297.49 31397.48 321
1112_ss97.29 21196.86 22198.58 17399.34 11596.32 21896.75 24299.58 2693.14 29496.89 27897.48 28792.11 27099.86 8496.91 14099.54 17799.57 64
test22298.92 19796.93 20395.54 29698.78 24985.72 34096.86 28098.11 25094.43 23399.10 25399.23 194
thres20093.72 30593.14 30695.46 31098.66 25291.29 31996.61 24994.63 32997.39 17496.83 28193.71 34479.88 33199.56 27782.40 34298.13 30195.54 342
UGNet98.53 10898.45 9598.79 14997.94 29996.96 20199.08 4498.54 26699.10 5796.82 28299.47 3996.55 16499.84 11198.56 5799.94 1999.55 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Test_1112_low_res96.99 23596.55 24298.31 20699.35 11395.47 23895.84 28799.53 4991.51 31496.80 28398.48 22291.36 27499.83 12696.58 17199.53 18199.62 42
新几何198.91 13298.94 19197.76 15998.76 25187.58 33796.75 28498.10 25194.80 22799.78 18292.73 30099.00 26599.20 199
Effi-MVS+98.02 15597.82 16498.62 16998.53 26597.19 19197.33 20199.68 1397.30 18396.68 28597.46 28998.56 3299.80 15996.63 16998.20 29698.86 253
GA-MVS95.86 26895.32 27597.49 25598.60 25694.15 26993.83 33597.93 28895.49 25596.68 28597.42 29183.21 32199.30 32196.22 19698.55 28999.01 229
EIA-MVS98.00 15797.74 16898.80 14798.72 23298.09 11998.05 12999.60 2397.39 17496.63 28795.55 32597.68 8999.80 15996.73 16199.27 22498.52 278
F-COLMAP97.30 20996.68 23299.14 9599.19 13898.39 9897.27 20799.30 13492.93 29696.62 28898.00 25795.73 19999.68 23592.62 30198.46 29099.35 162
PAPM_NR96.82 24196.32 24998.30 20799.07 16796.69 21197.48 19298.76 25195.81 24896.61 28996.47 31394.12 24399.17 32990.82 32297.78 31099.06 220
112196.73 24496.00 25498.91 13298.95 19097.76 15998.07 12598.73 25787.65 33696.54 29098.13 24794.52 23299.73 21192.38 30499.02 26299.24 193
test1298.93 12998.58 25997.83 15198.66 26196.53 29195.51 20699.69 22699.13 24899.27 186
BH-w/o95.13 28394.89 28695.86 30198.20 28691.31 31895.65 29397.37 29793.64 28896.52 29295.70 32393.04 25999.02 33488.10 33095.82 33497.24 324
ADS-MVSNet295.43 27894.98 28396.76 28798.14 28991.74 31197.92 14497.76 29190.23 32296.51 29398.91 13885.61 30599.85 9492.88 29496.90 32498.69 271
ADS-MVSNet95.24 28194.93 28596.18 29698.14 28990.10 32597.92 14497.32 30190.23 32296.51 29398.91 13885.61 30599.74 20692.88 29496.90 32498.69 271
114514_t96.50 25495.77 25898.69 16299.48 9197.43 17897.84 15499.55 4381.42 34596.51 29398.58 20895.53 20499.67 23893.41 28799.58 16598.98 234
PVSNet93.40 1795.67 27295.70 26195.57 30898.83 21788.57 32792.50 34297.72 29292.69 30096.49 29696.44 31493.72 24999.43 30693.61 28099.28 22398.71 268
mvs-test197.83 17697.48 19098.89 13598.02 29599.20 2997.20 21299.16 17998.29 10496.46 29797.17 29996.44 17099.92 3296.66 16797.90 30997.54 320
DPM-MVS96.32 25895.59 26698.51 18898.76 22697.21 18994.54 32798.26 27791.94 30896.37 29897.25 29793.06 25899.43 30691.42 31598.74 27698.89 249
tpmrst95.07 28495.46 26993.91 32397.11 32984.36 34597.62 17696.96 30794.98 26296.35 29998.80 16785.46 30799.59 26895.60 22796.23 33297.79 309
OpenMVScopyleft96.65 797.09 22596.68 23298.32 20498.32 27897.16 19498.86 6199.37 9989.48 32896.29 30099.15 8896.56 16399.90 4592.90 29399.20 23497.89 300
Fast-Effi-MVS+97.67 18497.38 19498.57 17698.71 23597.43 17897.23 20899.45 7694.82 26796.13 30196.51 31098.52 3499.91 4296.19 19898.83 27398.37 288
test_prior397.48 19897.00 21398.95 12698.69 24297.95 14295.74 29099.03 20596.48 22596.11 30297.63 27895.92 19399.59 26894.16 26199.20 23499.30 179
test_prior295.74 29096.48 22596.11 30297.63 27895.92 19394.16 26199.20 234
dp93.47 30793.59 30093.13 33196.64 33681.62 35097.66 17296.42 31792.80 29996.11 30298.64 19678.55 34199.59 26893.31 28992.18 34698.16 293
原ACMM198.35 20298.90 20196.25 22098.83 24492.48 30296.07 30598.10 25195.39 21199.71 22092.61 30298.99 26699.08 218
PMMVS96.51 25295.98 25598.09 21797.53 31795.84 22994.92 31498.84 23991.58 31296.05 30695.58 32495.68 20099.66 24695.59 22898.09 30398.76 265
tpm94.67 28994.34 29295.66 30697.68 31388.42 32897.88 14894.90 32794.46 27396.03 30798.56 21078.66 33899.79 17295.88 21095.01 33898.78 263
CS-MVS97.82 17897.59 18398.52 18598.76 22698.04 12998.20 11199.61 2197.10 20296.02 30894.87 33898.27 4899.84 11196.31 19199.17 24097.69 314
TEST998.71 23598.08 12395.96 27899.03 20591.40 31595.85 30997.53 28296.52 16599.76 195
train_agg97.10 22496.45 24599.07 10798.71 23598.08 12395.96 27899.03 20591.64 31095.85 30997.53 28296.47 16899.76 19593.67 27999.16 24199.36 158
test_898.67 24798.01 13195.91 28399.02 20991.64 31095.79 31197.50 28596.47 16899.76 195
agg_prior197.06 22896.40 24699.03 11798.68 24597.99 13295.76 28899.01 21291.73 30995.59 31297.50 28596.49 16799.77 18893.71 27899.14 24599.34 164
agg_prior98.68 24597.99 13299.01 21295.59 31299.77 188
PLCcopyleft94.65 1696.51 25295.73 26098.85 14098.75 22997.91 14596.42 25999.06 19690.94 32195.59 31297.38 29394.41 23499.59 26890.93 31998.04 30799.05 221
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HQP4-MVS95.56 31599.54 28399.32 172
HQP-NCC98.67 24796.29 26596.05 23995.55 316
ACMP_Plane98.67 24796.29 26596.05 23995.55 316
HQP-MVS97.00 23496.49 24498.55 18198.67 24796.79 20696.29 26599.04 20396.05 23995.55 31696.84 30593.84 24499.54 28392.82 29699.26 22799.32 172
MAR-MVS96.47 25595.70 26198.79 14997.92 30099.12 5098.28 10398.60 26592.16 30795.54 31996.17 31694.77 22999.52 28989.62 32698.23 29497.72 312
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmvs95.02 28695.25 27694.33 31996.39 34285.87 33798.08 12496.83 31395.46 25695.51 32098.69 18485.91 30399.53 28594.16 26196.23 33297.58 318
MVS-HIRNet94.32 29395.62 26490.42 33398.46 27075.36 35296.29 26589.13 34995.25 25995.38 32199.75 792.88 26199.19 32894.07 26899.39 20796.72 331
PAPR95.29 27994.47 28897.75 23697.50 32195.14 24894.89 31598.71 25991.39 31695.35 32295.48 32794.57 23199.14 33284.95 33697.37 31698.97 238
HY-MVS95.94 1395.90 26795.35 27497.55 25197.95 29894.79 25398.81 6496.94 30992.28 30595.17 32398.57 20989.90 28299.75 20291.20 31697.33 32098.10 295
CANet_DTU97.26 21297.06 21097.84 23097.57 31494.65 25996.19 27198.79 24897.23 19495.14 32498.24 24193.22 25399.84 11197.34 11499.84 5499.04 225
cascas94.79 28894.33 29396.15 30096.02 34692.36 30692.34 34499.26 14985.34 34195.08 32594.96 33592.96 26098.53 34394.41 25898.59 28797.56 319
CostFormer93.97 30193.78 29794.51 31897.53 31785.83 33997.98 14095.96 32289.29 33094.99 32698.63 20078.63 33999.62 25794.54 24996.50 32998.09 296
CHOSEN 280x42095.51 27795.47 26895.65 30798.25 28288.27 33093.25 33998.88 23093.53 29094.65 32797.15 30186.17 30099.93 2697.41 11199.93 2498.73 267
JIA-IIPM95.52 27695.03 28297.00 27396.85 33394.03 27296.93 22995.82 32399.20 4594.63 32899.71 1283.09 32299.60 26494.42 25594.64 33997.36 323
MVS93.19 31092.09 31396.50 29096.91 33194.03 27298.07 12598.06 28568.01 34794.56 32996.48 31295.96 19199.30 32183.84 33896.89 32696.17 335
131495.74 27195.60 26596.17 29797.53 31792.75 30098.07 12598.31 27691.22 31794.25 33096.68 30895.53 20499.03 33391.64 31297.18 32196.74 330
tpm cat193.29 30993.13 30793.75 32497.39 32384.74 34297.39 19797.65 29583.39 34494.16 33198.41 22582.86 32499.39 31091.56 31495.35 33797.14 325
test-LLR93.90 30293.85 29594.04 32196.53 33784.62 34394.05 33292.39 34196.17 23494.12 33295.07 33082.30 32699.67 23895.87 21398.18 29797.82 304
test-mter92.33 31591.76 31794.04 32196.53 33784.62 34394.05 33292.39 34194.00 28594.12 33295.07 33065.63 35599.67 23895.87 21398.18 29797.82 304
tpm293.09 31192.58 31194.62 31797.56 31586.53 33697.66 17295.79 32486.15 33994.07 33498.23 24375.95 34399.53 28590.91 32096.86 32797.81 306
TESTMET0.1,192.19 31791.77 31693.46 32796.48 33982.80 34894.05 33291.52 34494.45 27594.00 33594.88 33666.65 35399.56 27795.78 21898.11 30298.02 298
PVSNet_089.98 2191.15 31990.30 32193.70 32597.72 30884.34 34690.24 34597.42 29690.20 32593.79 33693.09 34590.90 27698.89 34086.57 33472.76 34897.87 302
FPMVS93.44 30892.23 31297.08 27199.25 12697.86 14995.61 29497.16 30492.90 29793.76 33798.65 19375.94 34495.66 34779.30 34697.49 31397.73 311
MVS_030497.64 18697.35 19798.52 18597.87 30396.69 21198.59 7698.05 28697.44 17093.74 33898.85 15693.69 25099.88 6298.11 7599.81 6798.98 234
EPNet96.14 26295.44 27098.25 21090.76 35295.50 23797.92 14494.65 32898.97 6992.98 33998.85 15689.12 28799.87 7895.99 20699.68 12999.39 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DWT-MVSNet_test92.75 31292.05 31494.85 31596.48 33987.21 33497.83 15594.99 32692.22 30692.72 34094.11 34370.75 34899.46 30295.01 23794.33 34297.87 302
baseline293.73 30492.83 30996.42 29197.70 31191.28 32096.84 23789.77 34893.96 28692.44 34195.93 31979.14 33799.77 18892.94 29296.76 32898.21 290
IB-MVS91.63 1992.24 31690.90 31996.27 29497.22 32891.24 32194.36 33093.33 33892.37 30392.24 34294.58 34066.20 35499.89 5493.16 29194.63 34097.66 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune92.37 31491.20 31895.85 30295.80 34892.38 30599.31 1881.84 35399.75 591.83 34399.74 868.29 35099.02 33487.15 33297.12 32296.16 336
DeepMVS_CXcopyleft93.44 32898.24 28394.21 26794.34 33064.28 34891.34 34494.87 33889.45 28692.77 35077.54 34793.14 34493.35 345
PAPM91.88 31890.34 32096.51 28998.06 29492.56 30192.44 34397.17 30386.35 33890.38 34596.01 31786.61 29699.21 32770.65 34895.43 33697.75 310
ET-MVSNet_ETH3D94.30 29593.21 30497.58 24798.14 28994.47 26294.78 31793.24 33994.72 26889.56 34695.87 32178.57 34099.81 14996.91 14097.11 32398.46 280
EPNet_dtu94.93 28794.78 28795.38 31193.58 35187.68 33296.78 23995.69 32597.35 17889.14 34798.09 25388.15 29199.49 29594.95 24099.30 22098.98 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
GG-mvs-BLEND94.76 31694.54 35092.13 30999.31 1880.47 35488.73 34891.01 34767.59 35198.16 34682.30 34394.53 34193.98 344
tmp_tt78.77 32078.73 32278.90 33458.45 35374.76 35494.20 33178.26 35539.16 34986.71 34992.82 34680.50 33075.19 35186.16 33592.29 34586.74 346
MVEpermissive83.40 2292.50 31391.92 31594.25 32098.83 21791.64 31292.71 34183.52 35295.92 24486.46 35095.46 32895.20 21495.40 34880.51 34498.64 28495.73 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs17.12 32220.53 3246.87 33612.05 3544.20 35693.62 3386.73 3564.62 35110.41 35124.33 3498.28 3573.56 3539.69 35015.07 34912.86 349
test12317.04 32320.11 3257.82 33510.25 3554.91 35594.80 3164.47 3574.93 35010.00 35224.28 3509.69 3563.64 35210.14 34912.43 35014.92 348
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.66 32132.88 3230.00 3370.00 3560.00 3570.00 34899.10 1920.00 3520.00 35397.58 28099.21 100.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.17 32410.90 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35398.07 640.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.12 32510.83 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35397.48 2870.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS98.82 14398.59 25898.30 10298.10 12298.52 21398.18 5898.75 34294.62 24799.48 19799.41 134
save fliter99.11 15697.97 13796.53 25199.02 20998.24 107
test_0728_SECOND99.60 1399.50 7699.23 2198.02 13499.32 12199.88 6296.99 13499.63 14699.68 30
GSMVS98.81 258
test_part10.00 3370.00 3570.00 34899.28 1400.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs184.74 31198.81 258
sam_mvs84.29 317
MTGPAbinary99.20 161
test_post197.59 18120.48 35283.07 32399.66 24694.16 261
test_post21.25 35183.86 31999.70 222
patchmatchnet-post98.77 17284.37 31499.85 94
MTMP97.93 14391.91 343
gm-plane-assit94.83 34981.97 34988.07 33594.99 33399.60 26491.76 309
test9_res93.28 29099.15 24499.38 149
agg_prior292.50 30399.16 24199.37 152
test_prior497.97 13795.86 284
test_prior98.95 12698.69 24297.95 14299.03 20599.59 26899.30 179
新几何295.93 281
旧先验198.82 22097.45 17798.76 25198.34 23495.50 20799.01 26499.23 194
无先验95.74 29098.74 25689.38 32999.73 21192.38 30499.22 198
原ACMM295.53 297
testdata299.79 17292.80 298
segment_acmp97.02 136
testdata195.44 30296.32 231
plane_prior799.19 13897.87 148
plane_prior698.99 18497.70 16594.90 220
plane_prior599.27 14499.70 22294.42 25599.51 18799.45 122
plane_prior497.98 259
plane_prior297.77 16198.20 113
plane_prior199.05 173
plane_prior97.65 16797.07 22196.72 21899.36 209
n20.00 358
nn0.00 358
door-mid99.57 33
test1198.87 232
door99.41 88
HQP5-MVS96.79 206
BP-MVS92.82 296
HQP3-MVS99.04 20399.26 227
HQP2-MVS93.84 244
NP-MVS98.84 21597.39 18096.84 305
ACMMP++_ref99.77 88
ACMMP++99.68 129
Test By Simon96.52 165