This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3299.95 1599.78 14
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1799.80 399.72 899.82 399.04 11099.81 398.05 6699.96 898.85 4099.99 599.86 6
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
test_part197.91 16497.46 19599.27 8298.80 22998.18 11899.07 4599.36 10499.75 599.63 2599.49 3882.20 33599.89 5598.87 3999.95 1599.74 24
gg-mvs-nofinetune92.37 32291.20 32795.85 30895.80 35692.38 31399.31 1881.84 36299.75 591.83 35399.74 868.29 35899.02 34387.15 34297.12 33096.16 345
LFMVS97.20 22296.72 23598.64 16898.72 23896.95 20898.93 5794.14 34399.74 798.78 15699.01 12084.45 31999.73 21797.44 11199.27 22999.25 195
Anonymous2023121199.27 2599.27 2499.26 8599.29 12098.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13399.21 2299.91 3999.77 16
nrg03099.40 1899.35 1799.54 2999.58 5099.13 5198.98 5499.48 6699.68 999.46 4399.26 6898.62 2899.73 21799.17 2599.92 3399.76 20
VDDNet98.21 14497.95 15799.01 12599.58 5097.74 16899.01 4997.29 31199.67 1098.97 12399.50 3590.45 28399.80 16597.88 9199.20 23999.48 110
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8099.36 1499.92 3399.64 39
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1699.31 1899.51 5499.64 1299.56 2899.46 4298.23 5199.97 398.78 4399.93 2499.72 25
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8398.36 10699.00 5199.45 7799.63 1499.52 3599.44 4798.25 4999.88 6499.09 2799.84 5599.62 44
DP-MVS98.93 4898.81 4999.28 7999.21 13498.45 10198.46 9699.33 12199.63 1499.48 4099.15 8997.23 13099.75 20997.17 12399.66 14299.63 43
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15699.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4899.29 2399.54 4799.62 1799.56 2899.42 4898.16 5999.96 898.78 4399.93 2499.77 16
K. test v398.00 15997.66 17899.03 12199.79 1997.56 17799.19 3692.47 34999.62 1799.52 3599.66 1789.61 28899.96 899.25 2099.81 6899.56 71
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3597.12 13399.85 10199.02 3199.94 2099.80 12
VDD-MVS98.56 10198.39 10999.07 11199.13 15898.07 13198.59 7897.01 31599.59 2099.11 9499.27 6694.82 22899.79 17898.34 6899.63 14899.34 169
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4699.21 2299.87 5199.54 83
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1599.75 799.58 2298.60 17799.62 2198.22 5499.51 30097.70 10299.73 10597.89 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5699.29 2399.53 5099.53 2399.46 4399.41 5098.23 5199.95 1498.89 3899.95 1599.81 11
FIs99.14 3299.09 3499.29 7799.70 3598.28 10899.13 4199.52 5399.48 2499.24 7999.41 5096.79 15499.82 14398.69 5199.88 4899.76 20
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
VPNet98.87 5498.83 4699.01 12599.70 3597.62 17698.43 9999.35 11099.47 2699.28 7099.05 10796.72 16099.82 14398.09 7899.36 21499.59 55
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2399.32 1599.55 4399.46 2799.50 3999.34 5997.30 12299.93 2698.90 3699.93 2499.77 16
tfpnnormal98.90 5298.90 4298.91 13699.67 3997.82 16099.00 5199.44 8099.45 2899.51 3899.24 7198.20 5699.86 8795.92 21699.69 12699.04 230
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3399.44 1399.92 3399.68 31
CP-MVSNet99.21 2999.09 3499.56 2499.65 4298.96 6599.13 4199.34 11699.42 3099.33 6299.26 6897.01 14099.94 2298.74 4899.93 2499.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10898.87 6798.39 10299.42 8899.42 3099.36 5899.06 10098.38 4199.95 1498.34 6899.90 4399.57 66
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13399.06 2999.62 15199.66 34
TDRefinement99.42 1699.38 1599.55 2699.76 2199.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16598.24 7199.84 5599.52 93
Baseline_NR-MVSNet98.98 4298.86 4499.36 6499.82 1698.55 9297.47 19899.57 3399.37 3499.21 8399.61 2396.76 15799.83 13398.06 8099.83 6199.71 26
SixPastTwentyTwo98.75 7098.62 7199.16 9699.83 1597.96 14799.28 2798.20 28699.37 3499.70 1599.65 1992.65 27099.93 2699.04 3099.84 5599.60 49
RPMNet97.02 23696.93 22197.30 26997.71 31794.22 27398.11 12599.30 13799.37 3496.91 28399.34 5986.72 30199.87 8097.53 10897.36 32697.81 315
PatchT96.65 25396.35 25397.54 25897.40 33095.32 24997.98 14596.64 32399.33 3796.89 28799.42 4884.32 32199.81 15697.69 10497.49 32097.48 330
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4799.06 6098.69 7099.54 4799.31 3899.62 2799.53 3297.36 12099.86 8799.24 2199.71 11599.39 147
VNet98.42 12198.30 12198.79 15398.79 23197.29 18898.23 11298.66 26799.31 3898.85 14698.80 17194.80 23199.78 18998.13 7699.13 25499.31 181
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4099.65 2299.60 2599.16 1499.82 14399.07 2899.83 6199.56 71
test_040298.76 6898.71 5998.93 13399.56 6198.14 12398.45 9899.34 11699.28 4198.95 12698.91 14198.34 4699.79 17895.63 23399.91 3998.86 258
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4299.90 499.74 899.68 299.97 399.55 899.99 599.88 3
Anonymous2024052998.93 4898.87 4399.12 10199.19 14098.22 11699.01 4998.99 22199.25 4399.54 3099.37 5397.04 13699.80 16597.89 8899.52 18699.35 167
Regformer-498.73 7398.68 6498.89 13999.02 18297.22 19497.17 22199.06 20199.21 4499.17 9098.85 16097.45 11499.86 8798.48 6199.70 12099.60 49
FMVSNet199.17 3099.17 2999.17 9399.55 6498.24 11199.20 3299.44 8099.21 4499.43 4799.55 2997.82 8299.86 8798.42 6599.89 4799.41 138
LS3D98.63 9198.38 11199.36 6497.25 33599.38 599.12 4399.32 12399.21 4498.44 19398.88 15397.31 12199.80 16596.58 17399.34 21898.92 250
alignmvs97.35 20996.88 22698.78 15698.54 27198.09 12597.71 17197.69 30299.20 4797.59 24895.90 33088.12 29899.55 28798.18 7598.96 27598.70 277
EI-MVSNet-UG-set98.69 8098.71 5998.62 17299.10 16396.37 22297.23 21398.87 23799.20 4799.19 8598.99 12397.30 12299.85 10198.77 4699.79 8199.65 38
EI-MVSNet-Vis-set98.68 8398.70 6298.63 17099.09 16696.40 22197.23 21398.86 24299.20 4799.18 8998.97 12997.29 12499.85 10198.72 4999.78 8599.64 39
JIA-IIPM95.52 28295.03 28997.00 27996.85 34194.03 28096.93 23495.82 33199.20 4794.63 33899.71 1283.09 32899.60 27194.42 26294.64 34997.36 332
canonicalmvs98.34 13098.26 12598.58 17798.46 27897.82 16098.96 5599.46 7499.19 5197.46 26095.46 33898.59 3099.46 30998.08 7998.71 28798.46 287
casdiffmvs98.95 4699.00 3998.81 14999.38 10697.33 18797.82 16099.57 3399.17 5299.35 5999.17 8398.35 4599.69 23298.46 6299.73 10599.41 138
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 6299.17 14998.74 7697.68 17499.40 9299.14 5399.06 10398.59 21196.71 16199.93 2698.57 5699.77 8999.53 89
Regformer-398.61 9498.61 7498.63 17099.02 18296.53 21997.17 22198.84 24499.13 5499.10 9798.85 16097.24 12999.79 17898.41 6699.70 12099.57 66
MVSFormer98.26 13998.43 10297.77 24098.88 21293.89 28999.39 1199.56 4099.11 5598.16 21098.13 25393.81 25199.97 399.26 1899.57 17199.43 133
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5599.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2398.26 10999.17 3799.78 499.11 5599.27 7299.48 4098.82 2099.95 1498.94 3499.93 2499.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 3499.00 3999.33 7499.71 2998.83 7098.60 7699.58 2699.11 5599.53 3399.18 7998.81 2199.67 24496.71 16699.77 8999.50 100
IterMVS-SCA-FT97.85 17698.18 13496.87 28799.27 12291.16 33195.53 30299.25 15599.10 5999.41 4999.35 5793.10 26199.96 898.65 5299.94 2099.49 104
NR-MVSNet98.95 4698.82 4799.36 6499.16 15198.72 8199.22 3199.20 16699.10 5999.72 1398.76 17896.38 17799.86 8798.00 8599.82 6499.50 100
UGNet98.53 11098.45 9898.79 15397.94 30796.96 20799.08 4498.54 27299.10 5996.82 29199.47 4196.55 16799.84 11898.56 5999.94 2099.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6299.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4599.41 6099.58 5099.10 5698.74 6699.56 4099.09 6299.33 6299.19 7798.40 4099.72 22595.98 21499.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0398.78 6598.77 5398.78 15699.46 9497.20 19797.78 16299.24 16099.04 6499.41 4998.90 14497.65 9299.76 20297.70 10299.79 8199.39 147
v899.01 3699.16 3098.57 18099.47 9396.31 22598.90 5899.47 7299.03 6599.52 3599.57 2796.93 14499.81 15699.60 499.98 999.60 49
EPP-MVSNet98.30 13398.04 15199.07 11199.56 6197.83 15799.29 2398.07 29299.03 6598.59 17999.13 9292.16 27499.90 4696.87 15099.68 13199.49 104
IS-MVSNet98.19 14697.90 16299.08 10899.57 5497.97 14399.31 1898.32 28199.01 6798.98 12099.03 11391.59 27899.79 17895.49 23899.80 7699.48 110
3Dnovator+97.89 398.69 8098.51 8599.24 8898.81 22798.40 10299.02 4899.19 17198.99 6898.07 21899.28 6497.11 13599.84 11896.84 15399.32 22099.47 118
PMVScopyleft91.26 2097.86 17197.94 15997.65 24799.71 2997.94 15098.52 8598.68 26698.99 6897.52 25599.35 5797.41 11698.18 35491.59 32199.67 13796.82 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-298.60 9698.46 9699.02 12498.85 21797.71 17096.91 23799.09 19798.98 7099.01 11498.64 20097.37 11999.84 11897.75 10199.57 17199.52 93
Regformer-198.55 10598.44 10098.87 14198.85 21797.29 18896.91 23798.99 22198.97 7198.99 11898.64 20097.26 12899.81 15697.79 9499.57 17199.51 96
EI-MVSNet98.40 12498.51 8598.04 22999.10 16394.73 26397.20 21798.87 23798.97 7199.06 10399.02 11496.00 18999.80 16598.58 5499.82 6499.60 49
EPNet96.14 26895.44 27798.25 21590.76 36295.50 24497.92 14994.65 33698.97 7192.98 34998.85 16089.12 29299.87 8095.99 21399.68 13199.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 10598.70 6298.09 22299.48 9194.73 26397.22 21699.39 9498.97 7199.38 5499.31 6396.00 18999.93 2698.58 5499.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 20996.97 22098.50 19497.31 33496.47 22098.18 11898.92 22998.95 7598.78 15699.37 5385.44 31499.85 10195.96 21599.83 6199.17 215
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7699.65 2299.72 1198.93 1899.95 1499.11 26100.00 199.82 9
UniMVSNet (Re)98.87 5498.71 5999.35 6999.24 12798.73 7997.73 17099.38 9698.93 7699.12 9298.73 18196.77 15599.86 8798.63 5399.80 7699.46 120
Anonymous20240521197.90 16597.50 18999.08 10898.90 20698.25 11098.53 8496.16 32798.87 7899.11 9498.86 15790.40 28499.78 18997.36 11599.31 22299.19 209
baseline98.96 4599.02 3798.76 15999.38 10697.26 19198.49 9199.50 5698.86 7999.19 8599.06 10098.23 5199.69 23298.71 5099.76 9899.33 175
IterMVS97.73 18398.11 14496.57 29499.24 12790.28 33295.52 30499.21 16498.86 7999.33 6299.33 6193.11 26099.94 2298.49 6099.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 5898.63 7099.39 6399.16 15198.74 7697.54 19099.25 15598.84 8199.06 10398.76 17896.76 15799.93 2698.57 5699.77 8999.50 100
zzz-MVS98.79 6298.52 8399.61 999.67 3999.36 997.33 20699.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
MTAPA98.88 5398.64 6999.61 999.67 3999.36 998.43 9999.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
bset_n11_16_dypcd96.99 24096.56 24798.27 21499.00 18595.25 25092.18 35394.05 34498.75 8499.01 11498.38 23488.98 29399.93 2698.77 4699.92 3399.64 39
v1098.97 4399.11 3398.55 18599.44 9996.21 22798.90 5899.55 4398.73 8599.48 4099.60 2596.63 16499.83 13399.70 399.99 599.61 48
UnsupCasMVSNet_eth97.89 16797.60 18498.75 16199.31 11697.17 20097.62 18099.35 11098.72 8698.76 16098.68 19092.57 27199.74 21397.76 10095.60 34599.34 169
SR-MVS-dyc-post98.81 6098.55 8099.57 1899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.49 11199.86 8796.56 17899.39 20999.45 124
RE-MVS-def98.58 7899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.75 8696.56 17899.39 20999.45 124
Fast-Effi-MVS+-dtu98.27 13798.09 14598.81 14998.43 28198.11 12497.61 18299.50 5698.64 8797.39 26597.52 29298.12 6299.95 1496.90 14798.71 28798.38 293
APD-MVS_3200maxsize98.84 5798.61 7499.53 3699.19 14099.27 2098.49 9199.33 12198.64 8799.03 11398.98 12797.89 7699.85 10196.54 18299.42 20599.46 120
XVS98.72 7498.45 9899.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25398.63 20497.50 10899.83 13396.79 15599.53 18399.56 71
X-MVStestdata94.32 29992.59 31799.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25345.85 35897.50 10899.83 13396.79 15599.53 18399.56 71
abl_698.99 3898.78 5199.61 999.45 9799.46 398.60 7699.50 5698.59 9399.24 7999.04 11098.54 3399.89 5596.45 18899.62 15199.50 100
GBi-Net98.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
test198.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
FMVSNet298.49 11498.40 10698.75 16198.90 20697.14 20398.61 7599.13 19198.59 9399.19 8599.28 6494.14 24599.82 14397.97 8699.80 7699.29 188
WR-MVS98.40 12498.19 13399.03 12199.00 18597.65 17396.85 24098.94 22498.57 9798.89 13898.50 22195.60 20699.85 10197.54 10799.85 5399.59 55
3Dnovator98.27 298.81 6098.73 5599.05 11898.76 23297.81 16299.25 3099.30 13798.57 9798.55 18599.33 6197.95 7599.90 4697.16 12499.67 13799.44 129
XXY-MVS99.14 3299.15 3299.10 10599.76 2197.74 16898.85 6399.62 1998.48 9999.37 5699.49 3898.75 2399.86 8798.20 7499.80 7699.71 26
test117298.76 6898.49 9099.57 1899.18 14799.37 898.39 10299.31 12898.43 10098.90 13598.88 15397.49 11199.86 8796.43 19099.37 21399.48 110
LCM-MVSNet-Re98.64 8998.48 9299.11 10398.85 21798.51 9798.49 9199.83 398.37 10199.69 1799.46 4298.21 5599.92 3394.13 27399.30 22598.91 253
MDA-MVSNet-bldmvs97.94 16397.91 16198.06 22799.44 9994.96 25996.63 25399.15 19098.35 10298.83 14999.11 9594.31 24299.85 10196.60 17298.72 28599.37 157
thres600view794.45 29793.83 30396.29 29999.06 17491.53 32197.99 14394.24 34198.34 10397.44 26295.01 34279.84 34099.67 24484.33 34798.23 30197.66 324
thres100view90094.19 30293.67 30695.75 31099.06 17491.35 32598.03 13794.24 34198.33 10497.40 26494.98 34479.84 34099.62 26483.05 34998.08 31196.29 342
Vis-MVSNet (Re-imp)97.46 20297.16 21198.34 20799.55 6496.10 22898.94 5698.44 27798.32 10598.16 21098.62 20688.76 29499.73 21793.88 28199.79 8199.18 211
new-patchmatchnet98.35 12998.74 5497.18 27399.24 12792.23 31696.42 26499.48 6698.30 10699.69 1799.53 3297.44 11599.82 14398.84 4199.77 8999.49 104
v14898.45 11898.60 7698.00 23199.44 9994.98 25897.44 20099.06 20198.30 10699.32 6798.97 12996.65 16399.62 26498.37 6799.85 5399.39 147
ACMH96.65 799.25 2799.24 2699.26 8599.72 2898.38 10499.07 4599.55 4398.30 10699.65 2299.45 4699.22 999.76 20298.44 6399.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 7598.43 10299.57 1899.18 14799.35 1198.36 10599.29 14498.29 10998.88 14298.85 16097.53 10499.87 8096.14 20999.31 22299.48 110
Effi-MVS+-dtu98.26 13997.90 16299.35 6998.02 30399.49 298.02 13999.16 18498.29 10997.64 24497.99 26596.44 17399.95 1496.66 16998.93 27798.60 282
mvs-test197.83 17997.48 19398.89 13998.02 30399.20 3297.20 21799.16 18498.29 10996.46 30697.17 30796.44 17399.92 3396.66 16997.90 31697.54 329
xxxxxxxxxxxxxcwj98.44 11998.24 12799.06 11699.11 15997.97 14396.53 25699.54 4798.24 11298.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
save fliter99.11 15997.97 14396.53 25699.02 21498.24 112
EU-MVSNet97.66 18898.50 8795.13 32199.63 4785.84 34898.35 10698.21 28598.23 11499.54 3099.46 4295.02 22299.68 24198.24 7199.87 5199.87 4
test_yl96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
DCV-MVSNet96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
baseline195.96 27295.44 27797.52 26098.51 27493.99 28398.39 10296.09 32998.21 11598.40 20197.76 27986.88 30099.63 26295.42 23989.27 35798.95 244
SD-MVS98.40 12498.68 6497.54 25898.96 19397.99 13897.88 15399.36 10498.20 11899.63 2599.04 11098.76 2295.33 35896.56 17899.74 10299.31 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 16297.67 17598.93 13399.19 14097.65 17397.77 16599.27 14998.20 11897.79 23597.98 26694.90 22499.70 22894.42 26299.51 18999.45 124
plane_prior297.77 16598.20 118
test_0728_THIRD98.17 12199.08 10099.02 11497.89 7699.88 6497.07 13199.71 11599.70 29
E-PMN94.17 30394.37 29893.58 33496.86 34085.71 35090.11 35597.07 31498.17 12197.82 23497.19 30684.62 31898.94 34689.77 33597.68 31996.09 348
EG-PatchMatch MVS98.99 3899.01 3898.94 13299.50 7697.47 18198.04 13699.59 2498.15 12399.40 5299.36 5698.58 3199.76 20298.78 4399.68 13199.59 55
ETV-MVS98.03 15597.86 16598.56 18498.69 24998.07 13197.51 19499.50 5698.10 12497.50 25795.51 33698.41 3999.88 6496.27 20199.24 23497.71 322
tttt051795.64 27994.98 29097.64 24999.36 10993.81 29198.72 6890.47 35598.08 12598.67 16798.34 23973.88 35499.92 3397.77 9699.51 18999.20 204
RRT_test8_iter0595.24 28795.13 28795.57 31497.32 33387.02 34597.99 14399.41 8998.06 12699.12 9299.05 10766.85 36299.85 10198.93 3599.47 20099.84 8
SED-MVS98.91 5098.72 5799.49 4899.49 8399.17 3698.10 12799.31 12898.03 12799.66 2099.02 11498.36 4299.88 6496.91 14299.62 15199.41 138
test_241102_TWO99.30 13798.03 12799.26 7699.02 11497.51 10799.88 6496.91 14299.60 15999.66 34
test_241102_ONE99.49 8399.17 3699.31 12897.98 12999.66 2098.90 14498.36 4299.48 305
DVP-MVS98.77 6798.52 8399.52 4199.50 7699.21 2698.02 13998.84 24497.97 13099.08 10099.02 11497.61 9799.88 6496.99 13699.63 14899.48 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 7699.21 2698.17 12199.35 11097.97 13099.26 7699.06 10097.61 97
tfpn200view994.03 30693.44 30895.78 30998.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31196.29 342
thres40094.14 30493.44 30896.24 30198.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31197.66 324
EMVS93.83 30994.02 30193.23 33896.83 34284.96 35189.77 35696.32 32697.92 13497.43 26396.36 32586.17 30698.93 34787.68 34197.73 31895.81 349
SteuartSystems-ACMMP98.79 6298.54 8199.54 2999.73 2399.16 4098.23 11299.31 12897.92 13498.90 13598.90 14498.00 6999.88 6496.15 20899.72 11199.58 61
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 10198.62 7198.37 20599.42 10395.81 23797.58 18699.16 18497.90 13699.28 7099.01 12095.98 19399.79 17899.33 1599.90 4399.51 96
FMVSNet397.50 19797.24 20798.29 21298.08 30195.83 23697.86 15698.91 23197.89 13798.95 12698.95 13687.06 29999.81 15697.77 9699.69 12699.23 199
V4298.78 6598.78 5198.76 15999.44 9997.04 20498.27 10999.19 17197.87 13899.25 7899.16 8596.84 14899.78 18999.21 2299.84 5599.46 120
CSCG98.68 8398.50 8799.20 9199.45 9798.63 8498.56 8199.57 3397.87 13898.85 14698.04 26397.66 9199.84 11896.72 16499.81 6899.13 219
xiu_mvs_v1_base_debu97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base_debi97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
RRT_MVS97.07 23196.57 24698.58 17795.89 35596.33 22397.36 20498.77 25697.85 14099.08 10099.12 9382.30 33299.96 898.82 4299.90 4399.45 124
diffmvs98.22 14398.24 12798.17 22099.00 18595.44 24696.38 26699.58 2697.79 14498.53 18898.50 22196.76 15799.74 21397.95 8799.64 14599.34 169
CANet97.87 17097.76 16998.19 21997.75 31595.51 24396.76 24699.05 20597.74 14596.93 28098.21 24995.59 20799.89 5597.86 9399.93 2499.19 209
DELS-MVS98.27 13798.20 13198.48 19598.86 21596.70 21695.60 30099.20 16697.73 14698.45 19298.71 18497.50 10899.82 14398.21 7399.59 16198.93 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 9398.36 11399.42 5799.65 4299.42 498.55 8299.57 3397.72 14798.90 13599.26 6896.12 18499.52 29695.72 22799.71 11599.32 177
MVS_Test98.18 14798.36 11397.67 24598.48 27694.73 26398.18 11899.02 21497.69 14898.04 22299.11 9597.22 13199.56 28498.57 5698.90 27898.71 275
DPE-MVS98.59 9998.26 12599.57 1899.27 12299.15 4597.01 22899.39 9497.67 14999.44 4698.99 12397.53 10499.89 5595.40 24099.68 13199.66 34
ab-mvs98.41 12298.36 11398.59 17699.19 14097.23 19299.32 1598.81 25097.66 15098.62 17399.40 5296.82 15199.80 16595.88 21799.51 18998.75 273
MSDG97.71 18497.52 18898.28 21398.91 20596.82 21194.42 33399.37 10097.65 15198.37 20298.29 24497.40 11799.33 32494.09 27499.22 23698.68 281
NCCC97.86 17197.47 19499.05 11898.61 26198.07 13196.98 23098.90 23297.63 15297.04 27797.93 27095.99 19299.66 25295.31 24198.82 28199.43 133
PM-MVS98.82 5898.72 5799.12 10199.64 4598.54 9597.98 14599.68 1397.62 15399.34 6199.18 7997.54 10299.77 19597.79 9499.74 10299.04 230
ACMM96.08 1298.91 5098.73 5599.48 5099.55 6499.14 4898.07 13099.37 10097.62 15399.04 11098.96 13298.84 1999.79 17897.43 11299.65 14399.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 11798.09 14599.54 2999.57 5499.22 2598.50 9099.19 17197.61 15597.58 24998.66 19597.40 11799.88 6494.72 25399.60 15999.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 14198.08 14898.75 16199.09 16697.46 18295.97 28199.27 14997.60 15697.99 22498.25 24598.15 6199.38 31996.87 15099.57 17199.42 136
MVS_111021_LR98.30 13398.12 14398.83 14699.16 15198.03 13696.09 27899.30 13797.58 15798.10 21698.24 24698.25 4999.34 32296.69 16799.65 14399.12 220
APDe-MVS98.99 3898.79 5099.60 1399.21 13499.15 4598.87 6099.48 6697.57 15899.35 5999.24 7197.83 7999.89 5597.88 9199.70 12099.75 22
API-MVS97.04 23596.91 22597.42 26597.88 31098.23 11598.18 11898.50 27597.57 15897.39 26596.75 31596.77 15599.15 34090.16 33499.02 26894.88 352
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11397.98 14298.01 14299.46 7497.56 16099.54 3099.50 3598.97 1699.84 11898.06 8099.92 3399.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.40 12498.00 15499.61 999.57 5499.25 2298.57 8099.35 11097.55 16199.31 6997.71 28194.61 23599.88 6496.14 20999.19 24399.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.70 7898.42 10499.52 4199.36 10999.12 5398.72 6899.36 10497.54 16298.30 20398.40 23097.86 7899.89 5596.53 18399.72 11199.56 71
v114498.60 9698.66 6798.41 20199.36 10995.90 23397.58 18699.34 11697.51 16399.27 7299.15 8996.34 18099.80 16599.47 1299.93 2499.51 96
PMMVS298.07 15498.08 14898.04 22999.41 10494.59 26994.59 33099.40 9297.50 16498.82 15398.83 16696.83 15099.84 11897.50 11099.81 6899.71 26
ITE_SJBPF98.87 14199.22 13298.48 9999.35 11097.50 16498.28 20598.60 21097.64 9599.35 32193.86 28299.27 22998.79 269
MVSTER96.86 24496.55 24897.79 23997.91 30994.21 27597.56 18898.87 23797.49 16699.06 10399.05 10780.72 33799.80 16598.44 6399.82 6499.37 157
Patchmatch-RL test97.26 21697.02 21797.99 23299.52 7195.53 24296.13 27799.71 997.47 16799.27 7299.16 8584.30 32299.62 26497.89 8899.77 8998.81 264
HFP-MVS98.71 7598.44 10099.51 4599.49 8399.16 4098.52 8599.31 12897.47 16798.58 18198.50 22197.97 7399.85 10196.57 17599.59 16199.53 89
MSLP-MVS++98.02 15798.14 14297.64 24998.58 26695.19 25497.48 19699.23 16297.47 16797.90 22798.62 20697.04 13698.81 35097.55 10599.41 20698.94 248
ACMMPR98.70 7898.42 10499.54 2999.52 7199.14 4898.52 8599.31 12897.47 16798.56 18398.54 21597.75 8699.88 6496.57 17599.59 16199.58 61
mPP-MVS98.64 8998.34 11699.54 2999.54 6799.17 3698.63 7399.24 16097.47 16798.09 21798.68 19097.62 9699.89 5596.22 20399.62 15199.57 66
region2R98.69 8098.40 10699.54 2999.53 6999.17 3698.52 8599.31 12897.46 17298.44 19398.51 21897.83 7999.88 6496.46 18799.58 16799.58 61
HPM-MVS++copyleft98.10 15197.64 18099.48 5099.09 16699.13 5197.52 19298.75 26097.46 17296.90 28697.83 27596.01 18899.84 11895.82 22499.35 21699.46 120
TinyColmap97.89 16797.98 15597.60 25198.86 21594.35 27296.21 27499.44 8097.45 17499.06 10398.88 15397.99 7299.28 33194.38 26699.58 16799.18 211
GST-MVS98.61 9498.30 12199.52 4199.51 7399.20 3298.26 11099.25 15597.44 17598.67 16798.39 23297.68 8999.85 10196.00 21299.51 18999.52 93
MVS_030497.64 18997.35 20198.52 18997.87 31196.69 21798.59 7898.05 29497.44 17593.74 34898.85 16093.69 25599.88 6498.11 7799.81 6898.98 239
v119298.60 9698.66 6798.41 20199.27 12295.88 23497.52 19299.36 10497.41 17799.33 6299.20 7696.37 17899.82 14399.57 699.92 3399.55 79
plane_prior397.78 16497.41 17797.79 235
EIA-MVS98.00 15997.74 17198.80 15198.72 23898.09 12598.05 13499.60 2397.39 17996.63 29695.55 33597.68 8999.80 16596.73 16399.27 22998.52 285
thres20093.72 31193.14 31395.46 31898.66 25991.29 32796.61 25494.63 33797.39 17996.83 29093.71 35479.88 33999.56 28482.40 35298.13 30895.54 351
testgi98.32 13198.39 10998.13 22199.57 5495.54 24197.78 16299.49 6497.37 18199.19 8597.65 28498.96 1799.49 30296.50 18598.99 27299.34 169
mvs_anonymous97.83 17998.16 13896.87 28798.18 29591.89 31897.31 20898.90 23297.37 18198.83 14999.46 4296.28 18199.79 17898.90 3698.16 30698.95 244
EPNet_dtu94.93 29394.78 29495.38 31993.58 35987.68 34296.78 24495.69 33397.35 18389.14 35798.09 26088.15 29799.49 30294.95 24799.30 22598.98 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 25696.34 25497.17 27498.35 28493.06 30098.40 10197.79 29897.33 18498.41 19798.67 19283.68 32699.69 23295.16 24299.31 22298.77 271
HPM-MVS_fast99.01 3698.82 4799.57 1899.71 2999.35 1199.00 5199.50 5697.33 18498.94 13298.86 15798.75 2399.82 14397.53 10899.71 11599.56 71
XVG-OURS-SEG-HR98.49 11498.28 12399.14 9999.49 8398.83 7096.54 25599.48 6697.32 18699.11 9498.61 20999.33 899.30 32896.23 20298.38 29899.28 189
DeepC-MVS_fast96.85 698.30 13398.15 14098.75 16198.61 26197.23 19297.76 16799.09 19797.31 18798.75 16198.66 19597.56 10199.64 25996.10 21199.55 17899.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 15797.82 16798.62 17298.53 27397.19 19897.33 20699.68 1397.30 18896.68 29497.46 29798.56 3299.80 16596.63 17198.20 30398.86 258
XVG-OURS98.53 11098.34 11699.11 10399.50 7698.82 7295.97 28199.50 5697.30 18899.05 10898.98 12799.35 799.32 32595.72 22799.68 13199.18 211
ZNCC-MVS98.68 8398.40 10699.54 2999.57 5499.21 2698.46 9699.29 14497.28 19098.11 21598.39 23298.00 6999.87 8096.86 15299.64 14599.55 79
eth_miper_zixun_eth97.23 22097.25 20597.17 27498.00 30592.77 30794.71 32399.18 17597.27 19198.56 18398.74 18091.89 27799.69 23297.06 13299.81 6899.05 226
MDA-MVSNet_test_wron97.60 19297.66 17897.41 26699.04 17793.09 29995.27 30998.42 27897.26 19298.88 14298.95 13695.43 21499.73 21797.02 13398.72 28599.41 138
miper_lstm_enhance97.18 22497.16 21197.25 27298.16 29692.85 30595.15 31499.31 12897.25 19398.74 16398.78 17490.07 28599.78 18997.19 12299.80 7699.11 222
xiu_mvs_v2_base97.16 22697.49 19096.17 30398.54 27192.46 31195.45 30698.84 24497.25 19397.48 25996.49 31998.31 4799.90 4696.34 19698.68 28996.15 346
PS-MVSNAJ97.08 23097.39 19796.16 30598.56 26992.46 31195.24 31198.85 24397.25 19397.49 25895.99 32898.07 6399.90 4696.37 19398.67 29096.12 347
YYNet197.60 19297.67 17597.39 26799.04 17793.04 30395.27 30998.38 28097.25 19398.92 13498.95 13695.48 21399.73 21796.99 13698.74 28399.41 138
XVG-ACMP-BASELINE98.56 10198.34 11699.22 9099.54 6798.59 8997.71 17199.46 7497.25 19398.98 12098.99 12397.54 10299.84 11895.88 21799.74 10299.23 199
CNVR-MVS98.17 14997.87 16499.07 11198.67 25498.24 11197.01 22898.93 22697.25 19397.62 24598.34 23997.27 12599.57 28196.42 19199.33 21999.39 147
CANet_DTU97.26 21697.06 21597.84 23697.57 32294.65 26796.19 27698.79 25397.23 19995.14 33498.24 24693.22 25899.84 11897.34 11699.84 5599.04 230
v192192098.54 10898.60 7698.38 20499.20 13795.76 23997.56 18899.36 10497.23 19999.38 5499.17 8396.02 18799.84 11899.57 699.90 4399.54 83
MIMVSNet96.62 25596.25 25997.71 24499.04 17794.66 26699.16 3896.92 31997.23 19997.87 22999.10 9786.11 30899.65 25791.65 31999.21 23898.82 261
FMVSNet596.01 27095.20 28598.41 20197.53 32596.10 22898.74 6699.50 5697.22 20298.03 22399.04 11069.80 35799.88 6497.27 11999.71 11599.25 195
thisisatest053095.27 28694.45 29697.74 24399.19 14094.37 27197.86 15690.20 35697.17 20398.22 20797.65 28473.53 35599.90 4696.90 14799.35 21698.95 244
v124098.55 10598.62 7198.32 20899.22 13295.58 24097.51 19499.45 7797.16 20499.45 4599.24 7196.12 18499.85 10199.60 499.88 4899.55 79
ACMMPcopyleft98.75 7098.50 8799.52 4199.56 6199.16 4098.87 6099.37 10097.16 20498.82 15399.01 12097.71 8899.87 8096.29 20099.69 12699.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 10898.57 7998.45 19899.21 13495.98 23197.63 17999.36 10497.15 20699.32 6799.18 7995.84 20099.84 11899.50 1099.91 3999.54 83
CS-MVS97.82 18197.59 18698.52 18998.76 23298.04 13598.20 11699.61 2197.10 20796.02 31794.87 34898.27 4899.84 11896.31 19799.17 24697.69 323
OPM-MVS98.56 10198.32 12099.25 8799.41 10498.73 7997.13 22599.18 17597.10 20798.75 16198.92 14098.18 5799.65 25796.68 16899.56 17699.37 157
cl_fuxian97.36 20897.37 19997.31 26898.09 30093.25 29895.01 31799.16 18497.05 20998.77 15998.72 18392.88 26699.64 25996.93 14199.76 9899.05 226
cl-mvsnet_97.02 23696.83 23097.58 25397.82 31394.04 27994.66 32699.16 18497.04 21098.63 17198.71 18488.68 29699.69 23297.00 13499.81 6899.00 237
cl-mvsnet197.02 23696.84 22997.58 25397.82 31394.03 28094.66 32699.16 18497.04 21098.63 17198.71 18488.69 29599.69 23297.00 13499.81 6899.01 234
PGM-MVS98.66 8698.37 11299.55 2699.53 6999.18 3598.23 11299.49 6497.01 21298.69 16598.88 15398.00 6999.89 5595.87 22099.59 16199.58 61
TSAR-MVS + MP.98.63 9198.49 9099.06 11699.64 4597.90 15298.51 8998.94 22496.96 21399.24 7998.89 15297.83 7999.81 15696.88 14999.49 19799.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP98.75 7098.48 9299.57 1899.58 5099.29 1797.82 16099.25 15596.94 21498.78 15699.12 9398.02 6799.84 11897.13 12899.67 13799.59 55
CVMVSNet96.25 26697.21 20993.38 33799.10 16380.56 36197.20 21798.19 28896.94 21499.00 11799.02 11489.50 29099.80 16596.36 19599.59 16199.78 14
CNLPA97.17 22596.71 23698.55 18598.56 26998.05 13496.33 26898.93 22696.91 21697.06 27697.39 30094.38 24199.45 31191.66 31899.18 24598.14 301
DeepPCF-MVS96.93 598.32 13198.01 15399.23 8998.39 28398.97 6295.03 31699.18 17596.88 21799.33 6298.78 17498.16 5999.28 33196.74 16199.62 15199.44 129
wuyk23d96.06 26997.62 18291.38 34098.65 26098.57 9198.85 6396.95 31796.86 21899.90 499.16 8599.18 1198.40 35389.23 33799.77 8977.18 356
AllTest98.44 11998.20 13199.16 9699.50 7698.55 9298.25 11199.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
TestCases99.16 9699.50 7698.55 9299.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
SF-MVS98.53 11098.27 12499.32 7699.31 11698.75 7598.19 11799.41 8996.77 22198.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
HPM-MVScopyleft98.79 6298.53 8299.59 1799.65 4299.29 1799.16 3899.43 8596.74 22298.61 17598.38 23498.62 2899.87 8096.47 18699.67 13799.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 17397.07 22696.72 22399.36 214
BH-untuned96.83 24596.75 23497.08 27798.74 23693.33 29796.71 24998.26 28396.72 22398.44 19397.37 30295.20 21899.47 30791.89 31697.43 32398.44 290
BH-RMVSNet96.83 24596.58 24597.58 25398.47 27794.05 27896.67 25197.36 30796.70 22597.87 22997.98 26695.14 22099.44 31290.47 33398.58 29599.25 195
TAMVS98.24 14298.05 15098.80 15199.07 17097.18 19997.88 15398.81 25096.66 22699.17 9099.21 7494.81 23099.77 19596.96 14099.88 4899.44 129
LPG-MVS_test98.71 7598.46 9699.47 5399.57 5498.97 6298.23 11299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
LGP-MVS_train99.47 5399.57 5498.97 6299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
CL-MVSNet_2432*160097.44 20497.22 20898.08 22598.57 26895.78 23894.30 33698.79 25396.58 22998.60 17798.19 25194.74 23499.64 25996.41 19298.84 27998.82 261
our_test_397.39 20797.73 17396.34 29898.70 24589.78 33494.61 32998.97 22396.50 23099.04 11098.85 16095.98 19399.84 11897.26 12099.67 13799.41 138
test_prior397.48 20197.00 21898.95 13098.69 24997.95 14895.74 29599.03 21096.48 23196.11 31197.63 28695.92 19799.59 27594.16 26899.20 23999.30 184
test_prior295.74 29596.48 23196.11 31197.63 28695.92 19794.16 26899.20 239
MG-MVS96.77 24896.61 24397.26 27198.31 28793.06 30095.93 28698.12 29196.45 23397.92 22598.73 18193.77 25399.39 31791.19 32799.04 26499.33 175
MVP-Stereo98.08 15397.92 16098.57 18098.96 19396.79 21297.90 15299.18 17596.41 23498.46 19198.95 13695.93 19699.60 27196.51 18498.98 27499.31 181
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 19797.74 17196.78 29298.70 24591.23 33094.55 33199.05 20596.36 23599.21 8398.79 17396.39 17599.78 18996.74 16199.82 6499.34 169
TSAR-MVS + GP.98.18 14797.98 15598.77 15898.71 24197.88 15396.32 26998.66 26796.33 23699.23 8298.51 21897.48 11399.40 31597.16 12499.46 20199.02 233
testdata195.44 30796.32 237
LF4IMVS97.90 16597.69 17498.52 18999.17 14997.66 17297.19 22099.47 7296.31 23897.85 23198.20 25096.71 16199.52 29694.62 25499.72 11198.38 293
#test#98.50 11398.16 13899.51 4599.49 8399.16 4098.03 13799.31 12896.30 23998.58 18198.50 22197.97 7399.85 10195.68 23099.59 16199.53 89
test-LLR93.90 30893.85 30294.04 32996.53 34584.62 35394.05 34092.39 35096.17 24094.12 34295.07 34082.30 33299.67 24495.87 22098.18 30497.82 313
test0.0.03 194.51 29693.69 30596.99 28096.05 35293.61 29694.97 31893.49 34596.17 24097.57 25194.88 34682.30 33299.01 34593.60 28894.17 35398.37 295
Anonymous2023120698.21 14498.21 13098.20 21899.51 7395.43 24798.13 12299.32 12396.16 24298.93 13398.82 16996.00 18999.83 13397.32 11799.73 10599.36 163
SCA96.41 26296.66 24195.67 31198.24 29188.35 33995.85 29196.88 32096.11 24397.67 24298.67 19293.10 26199.85 10194.16 26899.22 23698.81 264
MS-PatchMatch97.68 18697.75 17097.45 26398.23 29393.78 29297.29 20998.84 24496.10 24498.64 17098.65 19796.04 18699.36 32096.84 15399.14 25199.20 204
HQP-NCC98.67 25496.29 27096.05 24595.55 325
ACMP_Plane98.67 25496.29 27096.05 24595.55 325
HQP-MVS97.00 23996.49 25098.55 18598.67 25496.79 21296.29 27099.04 20896.05 24595.55 32596.84 31393.84 24999.54 29092.82 30399.26 23299.32 177
PHI-MVS98.29 13697.95 15799.34 7298.44 28099.16 4098.12 12499.38 9696.01 24898.06 21998.43 22897.80 8399.67 24495.69 22999.58 16799.20 204
miper_ehance_all_eth97.06 23297.03 21697.16 27697.83 31293.06 30094.66 32699.09 19795.99 24998.69 16598.45 22792.73 26999.61 27096.79 15599.03 26598.82 261
AUN-MVS96.24 26795.45 27698.60 17598.70 24597.22 19497.38 20297.65 30395.95 25095.53 32997.96 26982.11 33699.79 17896.31 19797.44 32298.80 268
MVEpermissive83.40 2292.50 32191.92 32494.25 32898.83 22291.64 32092.71 34983.52 36195.92 25186.46 36095.46 33895.20 21895.40 35780.51 35498.64 29195.73 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23797.02 20696.92 23698.75 26095.89 25298.59 17998.67 19292.08 27699.74 21396.72 16499.81 6899.32 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 17797.84 16697.83 23799.14 15694.74 26296.94 23298.88 23595.84 25398.89 13898.96 13294.40 24099.69 23297.55 10599.95 1599.05 226
testtj97.79 18297.25 20599.42 5799.03 18098.85 6897.78 16299.18 17595.83 25498.12 21498.50 22195.50 21199.86 8792.23 31499.07 26099.54 83
PAPM_NR96.82 24796.32 25598.30 21199.07 17096.69 21797.48 19698.76 25795.81 25596.61 29896.47 32194.12 24899.17 33890.82 33297.78 31799.06 225
ACMP95.32 1598.41 12298.09 14599.36 6499.51 7398.79 7497.68 17499.38 9695.76 25698.81 15598.82 16998.36 4299.82 14394.75 25099.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 15997.63 18199.10 10599.24 12798.17 12096.89 23998.73 26395.66 25797.92 22597.70 28297.17 13299.66 25296.18 20799.23 23599.47 118
AdaColmapbinary97.14 22796.71 23698.46 19798.34 28597.80 16396.95 23198.93 22695.58 25896.92 28197.66 28395.87 19999.53 29290.97 32899.14 25198.04 304
ETH3D-3000-0.198.03 15597.62 18299.29 7799.11 15998.80 7397.47 19899.32 12395.54 25998.43 19698.62 20696.61 16599.77 19593.95 27899.49 19799.30 184
pmmvs-eth3d98.47 11698.34 11698.86 14399.30 11997.76 16597.16 22399.28 14695.54 25999.42 4899.19 7797.27 12599.63 26297.89 8899.97 1199.20 204
9.1497.78 16899.07 17097.53 19199.32 12395.53 26198.54 18798.70 18797.58 9999.76 20294.32 26799.46 201
GA-MVS95.86 27495.32 28297.49 26198.60 26394.15 27793.83 34397.93 29695.49 26296.68 29497.42 29983.21 32799.30 32896.22 20398.55 29699.01 234
tpmvs95.02 29295.25 28394.33 32796.39 35085.87 34798.08 12996.83 32195.46 26395.51 33098.69 18885.91 30999.53 29294.16 26896.23 34097.58 327
KD-MVS_2432*160092.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
miper_refine_blended92.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
UnsupCasMVSNet_bld97.30 21396.92 22398.45 19899.28 12196.78 21596.20 27599.27 14995.42 26498.28 20598.30 24393.16 25999.71 22694.99 24597.37 32498.87 257
PatchmatchNetpermissive95.58 28095.67 26995.30 32097.34 33287.32 34397.65 17896.65 32295.30 26797.07 27598.69 18884.77 31699.75 20994.97 24698.64 29198.83 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 19197.17 21098.99 12799.27 12297.86 15595.98 28093.41 34695.25 26899.47 4298.90 14495.63 20599.85 10196.91 14299.73 10599.27 191
MVS-HIRNet94.32 29995.62 27090.42 34198.46 27875.36 36296.29 27089.13 35895.25 26895.38 33199.75 792.88 26699.19 33794.07 27599.39 20996.72 340
OMC-MVS97.88 16997.49 19099.04 12098.89 21198.63 8496.94 23299.25 15595.02 27098.53 18898.51 21897.27 12599.47 30793.50 29299.51 18999.01 234
tpmrst95.07 29095.46 27593.91 33197.11 33784.36 35597.62 18096.96 31694.98 27196.35 30898.80 17185.46 31399.59 27595.60 23496.23 34097.79 318
APD-MVScopyleft98.10 15197.67 17599.42 5799.11 15998.93 6697.76 16799.28 14694.97 27298.72 16498.77 17697.04 13699.85 10193.79 28499.54 17999.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 25296.27 25897.87 23598.81 22794.61 26896.77 24597.92 29794.94 27397.12 27197.74 28091.11 28099.82 14393.89 28098.15 30799.18 211
CPTT-MVS97.84 17797.36 20099.27 8299.31 11698.46 10098.29 10799.27 14994.90 27497.83 23298.37 23694.90 22499.84 11893.85 28399.54 17999.51 96
MP-MVS-pluss98.57 10098.23 12999.60 1399.69 3799.35 1197.16 22399.38 9694.87 27598.97 12398.99 12398.01 6899.88 6497.29 11899.70 12099.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 18797.38 19898.57 18098.71 24197.43 18497.23 21399.45 7794.82 27696.13 31096.51 31898.52 3499.91 4396.19 20598.83 28098.37 295
ET-MVSNet_ETH3D94.30 30193.21 31197.58 25398.14 29794.47 27094.78 32293.24 34894.72 27789.56 35695.87 33178.57 34899.81 15696.91 14297.11 33198.46 287
EPMVS93.72 31193.27 31095.09 32296.04 35387.76 34198.13 12285.01 36094.69 27896.92 28198.64 20078.47 35099.31 32695.04 24396.46 33898.20 298
cl-mvsnet295.79 27695.39 28096.98 28196.77 34392.79 30694.40 33498.53 27394.59 27997.89 22898.17 25282.82 33199.24 33396.37 19399.03 26598.92 250
PVSNet_BlendedMVS97.55 19597.53 18797.60 25198.92 20293.77 29396.64 25299.43 8594.49 28097.62 24599.18 7996.82 15199.67 24494.73 25199.93 2499.36 163
sss97.21 22196.93 22198.06 22798.83 22295.22 25396.75 24798.48 27694.49 28097.27 26897.90 27192.77 26899.80 16596.57 17599.32 22099.16 218
tpm94.67 29594.34 29995.66 31297.68 32188.42 33897.88 15394.90 33594.46 28296.03 31698.56 21478.66 34699.79 17895.88 21795.01 34898.78 270
CLD-MVS97.49 19997.16 21198.48 19599.07 17097.03 20594.71 32399.21 16494.46 28298.06 21997.16 30897.57 10099.48 30594.46 25999.78 8598.95 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 32591.77 32593.46 33596.48 34782.80 35894.05 34091.52 35394.45 28494.00 34594.88 34666.65 36399.56 28495.78 22598.11 30998.02 305
PVSNet_Blended_VisFu98.17 14998.15 14098.22 21799.73 2395.15 25597.36 20499.68 1394.45 28498.99 11899.27 6696.87 14799.94 2297.13 12899.91 3999.57 66
MDTV_nov1_ep1395.22 28497.06 33883.20 35797.74 16996.16 32794.37 28696.99 27998.83 16683.95 32499.53 29293.90 27997.95 315
TR-MVS95.55 28195.12 28896.86 29097.54 32493.94 28496.49 26096.53 32494.36 28797.03 27896.61 31794.26 24499.16 33986.91 34396.31 33997.47 331
jason97.45 20397.35 20197.76 24199.24 12793.93 28595.86 28998.42 27894.24 28898.50 19098.13 25394.82 22899.91 4397.22 12199.73 10599.43 133
jason: jason.
HyFIR lowres test97.19 22396.60 24498.96 12999.62 4997.28 19095.17 31299.50 5694.21 28999.01 11498.32 24286.61 30299.99 297.10 13099.84 5599.60 49
ETH3D cwj APD-0.1697.55 19597.00 21899.19 9298.51 27498.64 8396.85 24099.13 19194.19 29097.65 24398.40 23095.78 20199.81 15693.37 29599.16 24799.12 220
SMA-MVScopyleft98.40 12498.03 15299.51 4599.16 15199.21 2698.05 13499.22 16394.16 29198.98 12099.10 9797.52 10699.79 17896.45 18899.64 14599.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ZD-MVS99.01 18498.84 6999.07 20094.10 29298.05 22198.12 25696.36 17999.86 8792.70 30899.19 243
thisisatest051594.12 30593.16 31296.97 28298.60 26392.90 30493.77 34490.61 35494.10 29296.91 28395.87 33174.99 35399.80 16594.52 25799.12 25798.20 298
USDC97.41 20697.40 19697.44 26498.94 19693.67 29595.17 31299.53 5094.03 29498.97 12399.10 9795.29 21699.34 32295.84 22399.73 10599.30 184
test-mter92.33 32391.76 32694.04 32996.53 34584.62 35394.05 34092.39 35094.00 29594.12 34295.07 34065.63 36599.67 24495.87 22098.18 30497.82 313
baseline293.73 31092.83 31696.42 29797.70 31991.28 32896.84 24289.77 35793.96 29692.44 35195.93 32979.14 34599.77 19592.94 29996.76 33698.21 297
pmmvs597.64 18997.49 19098.08 22599.14 15695.12 25796.70 25099.05 20593.77 29798.62 17398.83 16693.23 25799.75 20998.33 7099.76 9899.36 163
BH-w/o95.13 28994.89 29395.86 30798.20 29491.31 32695.65 29897.37 30693.64 29896.52 30195.70 33393.04 26499.02 34388.10 34095.82 34497.24 333
pmmvs497.58 19497.28 20498.51 19298.84 22096.93 20995.40 30898.52 27493.60 29998.61 17598.65 19795.10 22199.60 27196.97 13999.79 8198.99 238
CHOSEN 280x42095.51 28395.47 27495.65 31398.25 29088.27 34093.25 34798.88 23593.53 30094.65 33797.15 30986.17 30699.93 2697.41 11399.93 2498.73 274
lupinMVS97.06 23296.86 22797.65 24798.88 21293.89 28995.48 30597.97 29593.53 30098.16 21097.58 28893.81 25199.91 4396.77 15899.57 17199.17 215
PatchMatch-RL97.24 21996.78 23298.61 17499.03 18097.83 15796.36 26799.06 20193.49 30297.36 26797.78 27795.75 20299.49 30293.44 29398.77 28298.52 285
DP-MVS Recon97.33 21196.92 22398.57 18099.09 16697.99 13896.79 24399.35 11093.18 30397.71 23998.07 26295.00 22399.31 32693.97 27699.13 25498.42 292
1112_ss97.29 21596.86 22798.58 17799.34 11596.32 22496.75 24799.58 2693.14 30496.89 28797.48 29592.11 27599.86 8796.91 14299.54 17999.57 66
IU-MVS99.49 8399.15 4598.87 23792.97 30599.41 4996.76 15999.62 15199.66 34
F-COLMAP97.30 21396.68 23899.14 9999.19 14098.39 10397.27 21299.30 13792.93 30696.62 29798.00 26495.73 20399.68 24192.62 30998.46 29799.35 167
FPMVS93.44 31492.23 31997.08 27799.25 12697.86 15595.61 29997.16 31392.90 30793.76 34798.65 19775.94 35295.66 35679.30 35697.49 32097.73 320
DSMNet-mixed97.42 20597.60 18496.87 28799.15 15591.46 32298.54 8399.12 19392.87 30897.58 24999.63 2096.21 18299.90 4695.74 22699.54 17999.27 191
dp93.47 31393.59 30793.13 33996.64 34481.62 36097.66 17696.42 32592.80 30996.11 31198.64 20078.55 34999.59 27593.31 29692.18 35698.16 300
PVSNet93.40 1795.67 27895.70 26795.57 31498.83 22288.57 33792.50 35097.72 30092.69 31096.49 30596.44 32293.72 25499.43 31393.61 28799.28 22898.71 275
new_pmnet96.99 24096.76 23397.67 24598.72 23894.89 26095.95 28598.20 28692.62 31198.55 18598.54 21594.88 22799.52 29693.96 27799.44 20498.59 284
原ACMM198.35 20698.90 20696.25 22698.83 24992.48 31296.07 31498.10 25895.39 21599.71 22692.61 31098.99 27299.08 223
IB-MVS91.63 1992.24 32490.90 32896.27 30097.22 33691.24 32994.36 33593.33 34792.37 31392.24 35294.58 35066.20 36499.89 5593.16 29894.63 35097.66 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 26595.95 26297.28 27097.71 31794.22 27398.11 12598.92 22992.31 31496.91 28399.37 5385.44 31499.81 15697.39 11497.36 32697.81 315
HY-MVS95.94 1395.90 27395.35 28197.55 25797.95 30694.79 26198.81 6596.94 31892.28 31595.17 33398.57 21389.90 28799.75 20991.20 32697.33 32898.10 302
DWT-MVSNet_test92.75 32092.05 32194.85 32396.48 34787.21 34497.83 15994.99 33492.22 31692.72 35094.11 35370.75 35699.46 30995.01 24494.33 35297.87 311
MAR-MVS96.47 26095.70 26798.79 15397.92 30899.12 5398.28 10898.60 27192.16 31795.54 32896.17 32694.77 23399.52 29689.62 33698.23 30197.72 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 26395.59 27298.51 19298.76 23297.21 19694.54 33298.26 28391.94 31896.37 30797.25 30593.06 26399.43 31391.42 32398.74 28398.89 254
agg_prior197.06 23296.40 25299.03 12198.68 25297.99 13895.76 29399.01 21791.73 31995.59 32197.50 29396.49 17099.77 19593.71 28599.14 25199.34 169
train_agg97.10 22896.45 25199.07 11198.71 24198.08 12995.96 28399.03 21091.64 32095.85 31897.53 29096.47 17199.76 20293.67 28699.16 24799.36 163
test_898.67 25498.01 13795.91 28899.02 21491.64 32095.79 32097.50 29396.47 17199.76 202
CHOSEN 1792x268897.49 19997.14 21498.54 18899.68 3896.09 23096.50 25999.62 1991.58 32298.84 14898.97 12992.36 27299.88 6496.76 15999.95 1599.67 33
PMMVS96.51 25795.98 26198.09 22297.53 32595.84 23594.92 31998.84 24491.58 32296.05 31595.58 33495.68 20499.66 25295.59 23598.09 31098.76 272
Test_1112_low_res96.99 24096.55 24898.31 21099.35 11395.47 24595.84 29299.53 5091.51 32496.80 29298.48 22691.36 27999.83 13396.58 17399.53 18399.62 44
TEST998.71 24198.08 12995.96 28399.03 21091.40 32595.85 31897.53 29096.52 16899.76 202
PAPR95.29 28594.47 29597.75 24297.50 32995.14 25694.89 32098.71 26591.39 32695.35 33295.48 33794.57 23699.14 34184.95 34697.37 32498.97 243
131495.74 27795.60 27196.17 30397.53 32592.75 30898.07 13098.31 28291.22 32794.25 34096.68 31695.53 20899.03 34291.64 32097.18 32996.74 339
CDPH-MVS97.26 21696.66 24199.07 11199.00 18598.15 12196.03 27999.01 21791.21 32897.79 23597.85 27496.89 14699.69 23292.75 30699.38 21299.39 147
miper_enhance_ethall96.01 27095.74 26596.81 29196.41 34992.27 31593.69 34598.89 23491.14 32998.30 20397.35 30490.58 28299.58 28096.31 19799.03 26598.60 282
PVSNet_Blended96.88 24396.68 23897.47 26298.92 20293.77 29394.71 32399.43 8590.98 33097.62 24597.36 30396.82 15199.67 24494.73 25199.56 17698.98 239
PLCcopyleft94.65 1696.51 25795.73 26698.85 14498.75 23597.91 15196.42 26499.06 20190.94 33195.59 32197.38 30194.41 23999.59 27590.93 32998.04 31499.05 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 28494.98 29096.76 29398.14 29791.74 31997.92 14997.76 29990.23 33296.51 30298.91 14185.61 31199.85 10192.88 30196.90 33298.69 278
ADS-MVSNet95.24 28794.93 29296.18 30298.14 29790.10 33397.92 14997.32 31090.23 33296.51 30298.91 14185.61 31199.74 21392.88 30196.90 33298.69 278
QAPM97.31 21296.81 23198.82 14798.80 22997.49 18099.06 4799.19 17190.22 33497.69 24199.16 8596.91 14599.90 4690.89 33199.41 20699.07 224
PVSNet_089.98 2191.15 32790.30 33093.70 33397.72 31684.34 35690.24 35497.42 30590.20 33593.79 34693.09 35590.90 28198.89 34986.57 34472.76 35897.87 311
testdata98.09 22298.93 19895.40 24898.80 25290.08 33697.45 26198.37 23695.26 21799.70 22893.58 28998.95 27699.17 215
MDTV_nov1_ep13_2view74.92 36397.69 17390.06 33797.75 23885.78 31093.52 29098.69 278
OpenMVScopyleft96.65 797.09 22996.68 23898.32 20898.32 28697.16 20198.86 6299.37 10089.48 33896.29 30999.15 8996.56 16699.90 4692.90 30099.20 23997.89 309
无先验95.74 29598.74 26289.38 33999.73 21792.38 31299.22 203
CostFormer93.97 30793.78 30494.51 32697.53 32585.83 34997.98 14595.96 33089.29 34094.99 33698.63 20478.63 34799.62 26494.54 25696.50 33798.09 303
CMPMVSbinary75.91 2396.29 26495.44 27798.84 14596.25 35198.69 8297.02 22799.12 19388.90 34197.83 23298.86 15789.51 28998.90 34891.92 31599.51 18998.92 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETH3 D test640096.46 26195.59 27299.08 10898.88 21298.21 11796.53 25699.18 17588.87 34297.08 27497.79 27693.64 25699.77 19588.92 33899.40 20899.28 189
pmmvs395.03 29194.40 29796.93 28397.70 31992.53 31095.08 31597.71 30188.57 34397.71 23998.08 26179.39 34499.82 14396.19 20599.11 25898.43 291
旧先验295.76 29388.56 34497.52 25599.66 25294.48 258
gm-plane-assit94.83 35781.97 35988.07 34594.99 34399.60 27191.76 317
112196.73 24996.00 26098.91 13698.95 19597.76 16598.07 13098.73 26387.65 34696.54 29998.13 25394.52 23799.73 21792.38 31299.02 26899.24 198
新几何198.91 13698.94 19697.76 16598.76 25787.58 34796.75 29398.10 25894.80 23199.78 18992.73 30799.00 27199.20 204
PAPM91.88 32690.34 32996.51 29598.06 30292.56 30992.44 35197.17 31286.35 34890.38 35596.01 32786.61 30299.21 33670.65 35895.43 34697.75 319
tpm293.09 31792.58 31894.62 32597.56 32386.53 34697.66 17695.79 33286.15 34994.07 34498.23 24875.95 35199.53 29290.91 33096.86 33597.81 315
test22298.92 20296.93 20995.54 30198.78 25585.72 35096.86 28998.11 25794.43 23899.10 25999.23 199
cascas94.79 29494.33 30096.15 30696.02 35492.36 31492.34 35299.26 15485.34 35195.08 33594.96 34592.96 26598.53 35294.41 26598.59 29497.56 328
OpenMVS_ROBcopyleft95.38 1495.84 27595.18 28697.81 23898.41 28297.15 20297.37 20398.62 27083.86 35298.65 16998.37 23694.29 24399.68 24188.41 33998.62 29396.60 341
TAPA-MVS96.21 1196.63 25495.95 26298.65 16798.93 19898.09 12596.93 23499.28 14683.58 35398.13 21397.78 27796.13 18399.40 31593.52 29099.29 22798.45 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 31593.13 31493.75 33297.39 33184.74 35297.39 20197.65 30383.39 35494.16 34198.41 22982.86 33099.39 31791.56 32295.35 34797.14 334
114514_t96.50 25995.77 26498.69 16599.48 9197.43 18497.84 15899.55 4381.42 35596.51 30298.58 21295.53 20899.67 24493.41 29499.58 16798.98 239
PCF-MVS92.86 1894.36 29893.00 31598.42 20098.70 24597.56 17793.16 34899.11 19579.59 35697.55 25297.43 29892.19 27399.73 21779.85 35599.45 20397.97 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS93.19 31692.09 32096.50 29696.91 33994.03 28098.07 13098.06 29368.01 35794.56 33996.48 32095.96 19599.30 32883.84 34896.89 33496.17 344
DeepMVS_CXcopyleft93.44 33698.24 29194.21 27594.34 33864.28 35891.34 35494.87 34889.45 29192.77 35977.54 35793.14 35493.35 354
tmp_tt78.77 32878.73 33178.90 34258.45 36374.76 36494.20 33778.26 36439.16 35986.71 35992.82 35680.50 33875.19 36086.16 34592.29 35586.74 355
test12317.04 33120.11 3347.82 34310.25 3654.91 36594.80 3214.47 3664.93 36010.00 36224.28 3609.69 3663.64 36110.14 35912.43 36014.92 357
testmvs17.12 33020.53 3336.87 34412.05 3644.20 36693.62 3466.73 3654.62 36110.41 36124.33 3598.28 3673.56 3629.69 36015.07 35912.86 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.66 32932.88 3320.00 3450.00 3660.00 3670.00 35799.10 1960.00 3620.00 36397.58 28899.21 100.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.17 33210.90 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36398.07 630.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.12 33310.83 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36397.48 2950.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS98.82 14798.59 26598.30 10798.10 12798.52 21798.18 5798.75 35194.62 25499.48 19999.41 138
test_0728_SECOND99.60 1399.50 7699.23 2498.02 13999.32 12399.88 6496.99 13699.63 14899.68 31
GSMVS98.81 264
test_part299.36 10999.10 5699.05 108
sam_mvs184.74 31798.81 264
sam_mvs84.29 323
ambc98.24 21698.82 22595.97 23298.62 7499.00 22099.27 7299.21 7496.99 14199.50 30196.55 18199.50 19699.26 194
MTGPAbinary99.20 166
test_post197.59 18520.48 36283.07 32999.66 25294.16 268
test_post21.25 36183.86 32599.70 228
patchmatchnet-post98.77 17684.37 32099.85 101
GG-mvs-BLEND94.76 32494.54 35892.13 31799.31 1880.47 36388.73 35891.01 35767.59 36198.16 35582.30 35394.53 35193.98 353
MTMP97.93 14891.91 352
test9_res93.28 29799.15 25099.38 154
agg_prior292.50 31199.16 24799.37 157
agg_prior98.68 25297.99 13899.01 21795.59 32199.77 195
test_prior497.97 14395.86 289
test_prior98.95 13098.69 24997.95 14899.03 21099.59 27599.30 184
新几何295.93 286
旧先验198.82 22597.45 18398.76 25798.34 23995.50 21199.01 27099.23 199
原ACMM295.53 302
testdata299.79 17892.80 305
segment_acmp97.02 139
test1298.93 13398.58 26697.83 15798.66 26796.53 30095.51 21099.69 23299.13 25499.27 191
plane_prior799.19 14097.87 154
plane_prior698.99 18997.70 17194.90 224
plane_prior599.27 14999.70 22894.42 26299.51 18999.45 124
plane_prior497.98 266
plane_prior199.05 176
n20.00 367
nn0.00 367
door-mid99.57 33
lessismore_v098.97 12899.73 2397.53 17986.71 35999.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
test1198.87 237
door99.41 89
HQP5-MVS96.79 212
BP-MVS92.82 303
HQP4-MVS95.56 32499.54 29099.32 177
HQP3-MVS99.04 20899.26 232
HQP2-MVS93.84 249
NP-MVS98.84 22097.39 18696.84 313
ACMMP++_ref99.77 89
ACMMP++99.68 131
Test By Simon96.52 168