This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1199.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3199.95 1599.78 14
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1499.80 399.72 899.82 399.04 10999.81 398.05 6799.96 898.85 3899.99 599.86 6
ANet_high99.57 799.67 599.28 7699.89 698.09 11999.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
gg-mvs-nofinetune92.37 31491.20 31895.85 30295.80 34892.38 30599.31 1881.84 35399.75 591.83 34399.74 868.29 35099.02 33487.15 33297.12 32296.16 336
LFMVS97.20 21896.72 22998.64 16598.72 23296.95 20298.93 5694.14 33599.74 698.78 15199.01 11984.45 31399.73 21197.44 10999.27 22499.25 190
Anonymous2023121199.27 2599.27 2499.26 8199.29 12098.18 11399.49 899.51 5399.70 799.80 999.68 1496.84 14599.83 12699.21 2199.91 3899.77 16
nrg03099.40 1899.35 1799.54 2799.58 4999.13 4898.98 5399.48 6599.68 899.46 4199.26 6798.62 2899.73 21199.17 2499.92 3399.76 20
VDDNet98.21 14297.95 15499.01 12199.58 4997.74 16299.01 4897.29 30299.67 998.97 12199.50 3490.45 27899.80 15997.88 8999.20 23499.48 109
v7n99.53 899.57 899.41 5799.88 798.54 9099.45 999.61 2199.66 1099.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
pmmvs699.67 399.70 399.60 1399.90 499.27 1799.53 799.76 699.64 1199.84 899.83 299.50 599.87 7899.36 1499.92 3399.64 38
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1399.31 1899.51 5399.64 1199.56 2699.46 4098.23 5199.97 398.78 4299.93 2499.72 24
VPA-MVSNet99.30 2499.30 2399.28 7699.49 8398.36 10199.00 5099.45 7699.63 1399.52 3399.44 4598.25 4999.88 6299.09 2699.84 5499.62 42
DP-MVS98.93 4798.81 4999.28 7699.21 13498.45 9698.46 9299.33 11999.63 1399.48 3899.15 8897.23 12799.75 20297.17 12199.66 14099.63 41
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1399.11 5299.90 199.78 499.63 1399.78 1099.67 1699.48 699.81 14999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4599.29 2399.54 4799.62 1699.56 2699.42 4798.16 6099.96 898.78 4299.93 2499.77 16
K. test v398.00 15797.66 17599.03 11799.79 1997.56 17199.19 3692.47 34099.62 1699.52 3399.66 1789.61 28399.96 899.25 2099.81 6799.56 69
FC-MVSNet-test99.27 2599.25 2599.34 6999.77 2098.37 10099.30 2299.57 3399.61 1899.40 5199.50 3497.12 13099.85 9499.02 3099.94 1999.80 12
VDD-MVS98.56 9998.39 10699.07 10799.13 15598.07 12598.59 7697.01 30699.59 1999.11 9399.27 6594.82 22499.79 17298.34 6699.63 14699.34 164
MIMVSNet199.38 2099.32 2199.55 2499.86 1199.19 3199.41 1099.59 2499.59 1999.71 1499.57 2797.12 13099.90 4599.21 2199.87 5099.54 81
Gipumacopyleft99.03 3499.16 2998.64 16599.94 298.51 9299.32 1599.75 799.58 2198.60 17299.62 2198.22 5499.51 29397.70 10099.73 10497.89 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5399.29 2399.53 4999.53 2299.46 4199.41 4998.23 5199.95 1498.89 3799.95 1599.81 11
FIs99.14 3199.09 3399.29 7499.70 3598.28 10399.13 4199.52 5299.48 2399.24 7899.41 4996.79 15199.82 13698.69 4999.88 4799.76 20
PS-MVSNAJss99.46 1299.49 1099.35 6699.90 498.15 11599.20 3299.65 1799.48 2399.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
VPNet98.87 5498.83 4699.01 12199.70 3597.62 17098.43 9599.35 10899.47 2599.28 6999.05 10696.72 15799.82 13698.09 7699.36 20999.59 53
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2099.32 1599.55 4399.46 2699.50 3799.34 5897.30 11999.93 2698.90 3599.93 2499.77 16
tfpnnormal98.90 5298.90 4298.91 13299.67 3997.82 15499.00 5099.44 7999.45 2799.51 3699.24 7098.20 5799.86 8495.92 20999.69 12499.04 225
OurMVSNet-221017-099.37 2199.31 2299.53 3499.91 398.98 5799.63 699.58 2699.44 2899.78 1099.76 696.39 17299.92 3299.44 1399.92 3399.68 30
CP-MVSNet99.21 2899.09 3399.56 2299.65 4298.96 6199.13 4199.34 11499.42 2999.33 6199.26 6797.01 13799.94 2298.74 4699.93 2499.79 13
TranMVSNet+NR-MVSNet99.17 2999.07 3599.46 5399.37 10898.87 6398.39 9899.42 8799.42 2999.36 5799.06 9998.38 4199.95 1498.34 6699.90 4299.57 64
TransMVSNet (Re)99.44 1399.47 1299.36 6199.80 1798.58 8599.27 2999.57 3399.39 3199.75 1299.62 2199.17 1299.83 12699.06 2899.62 14999.66 33
TDRefinement99.42 1699.38 1599.55 2499.76 2199.33 1299.68 599.71 999.38 3299.53 3199.61 2398.64 2799.80 15998.24 6999.84 5499.52 91
Baseline_NR-MVSNet98.98 4198.86 4499.36 6199.82 1698.55 8797.47 19499.57 3399.37 3399.21 8299.61 2396.76 15499.83 12698.06 7899.83 6099.71 25
SixPastTwentyTwo98.75 6898.62 7199.16 9299.83 1597.96 14199.28 2798.20 28099.37 3399.70 1599.65 1992.65 26599.93 2699.04 2999.84 5499.60 47
RPMNet96.82 24196.66 23597.28 26397.71 30994.22 26598.11 12096.90 31199.37 3396.91 27499.34 5886.72 29599.81 14997.53 10697.36 31897.81 306
PatchT96.65 24896.35 24797.54 25297.40 32295.32 24297.98 14096.64 31599.33 3696.89 27899.42 4784.32 31599.81 14997.69 10297.49 31397.48 321
VNet98.42 11998.30 11898.79 14998.79 22597.29 18298.23 10798.66 26199.31 3798.85 14198.80 16794.80 22799.78 18298.13 7499.13 24899.31 176
pm-mvs199.44 1399.48 1199.33 7199.80 1798.63 7999.29 2399.63 1899.30 3899.65 2299.60 2599.16 1499.82 13699.07 2799.83 6099.56 69
test_040298.76 6798.71 5998.93 12999.56 6198.14 11798.45 9499.34 11499.28 3998.95 12498.91 13898.34 4699.79 17295.63 22699.91 3898.86 253
mvs_tets99.63 599.67 599.49 4699.88 798.61 8299.34 1399.71 999.27 4099.90 499.74 899.68 299.97 399.55 899.99 599.88 3
Anonymous2024052998.93 4798.87 4399.12 9799.19 13898.22 11199.01 4898.99 21699.25 4199.54 2899.37 5297.04 13399.80 15997.89 8699.52 18499.35 162
Regformer-498.73 7198.68 6498.89 13599.02 17997.22 18897.17 21699.06 19699.21 4299.17 8998.85 15697.45 11299.86 8498.48 5999.70 11899.60 47
FMVSNet199.17 2999.17 2899.17 8999.55 6498.24 10699.20 3299.44 7999.21 4299.43 4699.55 2997.82 8399.86 8498.42 6399.89 4699.41 134
LS3D98.63 8998.38 10899.36 6197.25 32799.38 599.12 4399.32 12199.21 4298.44 18798.88 15097.31 11899.80 15996.58 17199.34 21398.92 245
alignmvs97.35 20596.88 22098.78 15298.54 26398.09 11997.71 16797.69 29499.20 4597.59 24195.90 32088.12 29299.55 28098.18 7398.96 26998.70 270
EI-MVSNet-UG-set98.69 7898.71 5998.62 16999.10 16096.37 21697.23 20898.87 23299.20 4599.19 8498.99 12297.30 11999.85 9498.77 4599.79 8099.65 37
EI-MVSNet-Vis-set98.68 8198.70 6298.63 16799.09 16396.40 21597.23 20898.86 23799.20 4599.18 8898.97 12897.29 12199.85 9498.72 4799.78 8499.64 38
JIA-IIPM95.52 27695.03 28297.00 27396.85 33394.03 27296.93 22995.82 32399.20 4594.63 32899.71 1283.09 32299.60 26494.42 25594.64 33997.36 323
canonicalmvs98.34 12898.26 12298.58 17398.46 27097.82 15498.96 5499.46 7399.19 4997.46 25395.46 32898.59 3099.46 30298.08 7798.71 28098.46 280
casdiffmvs98.95 4599.00 3898.81 14599.38 10697.33 18197.82 15699.57 3399.17 5099.35 5899.17 8298.35 4599.69 22698.46 6099.73 10499.41 134
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 5999.17 14698.74 7197.68 17099.40 9199.14 5199.06 10298.59 20796.71 15899.93 2698.57 5499.77 8899.53 87
Regformer-398.61 9298.61 7498.63 16799.02 17996.53 21397.17 21698.84 23999.13 5299.10 9698.85 15697.24 12699.79 17298.41 6499.70 11899.57 64
MVSFormer98.26 13798.43 9997.77 23498.88 20793.89 28199.39 1199.56 4099.11 5398.16 20498.13 24793.81 24699.97 399.26 1899.57 16999.43 129
test_djsdf99.52 999.51 999.53 3499.86 1198.74 7199.39 1199.56 4099.11 5399.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
Vis-MVSNetpermissive99.34 2299.36 1699.27 7999.73 2398.26 10499.17 3799.78 499.11 5399.27 7199.48 3898.82 2099.95 1498.94 3399.93 2499.59 53
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 3399.00 3899.33 7199.71 2998.83 6598.60 7499.58 2699.11 5399.53 3199.18 7898.81 2199.67 23896.71 16499.77 8899.50 99
IterMVS-SCA-FT97.85 17398.18 13196.87 28199.27 12291.16 32395.53 29799.25 15099.10 5799.41 4899.35 5693.10 25699.96 898.65 5099.94 1999.49 103
NR-MVSNet98.95 4598.82 4799.36 6199.16 14898.72 7699.22 3199.20 16199.10 5799.72 1398.76 17496.38 17499.86 8498.00 8399.82 6399.50 99
UGNet98.53 10898.45 9598.79 14997.94 29996.96 20199.08 4498.54 26699.10 5796.82 28299.47 3996.55 16499.84 11198.56 5799.94 1999.55 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 799.48 4899.87 1098.61 8299.28 2799.66 1699.09 6099.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
COLMAP_ROBcopyleft96.50 1098.99 3798.85 4599.41 5799.58 4999.10 5398.74 6599.56 4099.09 6099.33 6199.19 7698.40 4099.72 21995.98 20799.76 9799.42 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0398.78 6498.77 5398.78 15299.46 9497.20 19097.78 15899.24 15599.04 6299.41 4898.90 14197.65 9299.76 19597.70 10099.79 8099.39 143
v899.01 3599.16 2998.57 17699.47 9396.31 21998.90 5799.47 7199.03 6399.52 3399.57 2796.93 14199.81 14999.60 499.98 999.60 47
EPP-MVSNet98.30 13198.04 14899.07 10799.56 6197.83 15199.29 2398.07 28499.03 6398.59 17399.13 9192.16 26999.90 4596.87 14899.68 12999.49 103
IS-MVSNet98.19 14497.90 15999.08 10499.57 5397.97 13799.31 1898.32 27599.01 6598.98 11899.03 11291.59 27399.79 17295.49 23199.80 7599.48 109
3Dnovator+97.89 398.69 7898.51 8399.24 8498.81 22298.40 9799.02 4799.19 16698.99 6698.07 21299.28 6397.11 13299.84 11196.84 15199.32 21599.47 116
PMVScopyleft91.26 2097.86 16897.94 15697.65 24199.71 2997.94 14498.52 8398.68 26098.99 6697.52 24899.35 5697.41 11498.18 34591.59 31399.67 13596.82 329
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-298.60 9498.46 9399.02 12098.85 21297.71 16496.91 23299.09 19398.98 6899.01 11398.64 19697.37 11799.84 11197.75 9999.57 16999.52 91
Regformer-198.55 10398.44 9798.87 13798.85 21297.29 18296.91 23298.99 21698.97 6998.99 11698.64 19697.26 12599.81 14997.79 9299.57 16999.51 94
EI-MVSNet98.40 12298.51 8398.04 22399.10 16094.73 25597.20 21298.87 23298.97 6999.06 10299.02 11396.00 18599.80 15998.58 5299.82 6399.60 47
EPNet96.14 26295.44 27098.25 21090.76 35295.50 23797.92 14494.65 32898.97 6992.98 33998.85 15689.12 28799.87 7895.99 20699.68 12999.39 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 10398.70 6298.09 21799.48 9194.73 25597.22 21199.39 9398.97 6999.38 5399.31 6296.00 18599.93 2698.58 5299.97 1199.60 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 20596.97 21598.50 19097.31 32696.47 21498.18 11398.92 22498.95 7398.78 15199.37 5285.44 30899.85 9495.96 20899.83 6099.17 210
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5699.34 1399.69 1298.93 7499.65 2299.72 1198.93 1899.95 1499.11 25100.00 199.82 9
UniMVSNet (Re)98.87 5498.71 5999.35 6699.24 12798.73 7497.73 16699.38 9598.93 7499.12 9198.73 17796.77 15299.86 8498.63 5199.80 7599.46 118
Anonymous20240521197.90 16297.50 18699.08 10498.90 20198.25 10598.53 8296.16 31998.87 7699.11 9398.86 15390.40 27999.78 18297.36 11399.31 21799.19 204
baseline98.96 4499.02 3698.76 15599.38 10697.26 18598.49 8999.50 5598.86 7799.19 8499.06 9998.23 5199.69 22698.71 4899.76 9799.33 170
IterMVS97.73 18098.11 14196.57 28899.24 12790.28 32495.52 29999.21 15998.86 7799.33 6199.33 6093.11 25599.94 2298.49 5899.94 1999.48 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 5898.63 7099.39 6099.16 14898.74 7197.54 18699.25 15098.84 7999.06 10298.76 17496.76 15499.93 2698.57 5499.77 8899.50 99
zzz-MVS98.79 6198.52 8199.61 999.67 3999.36 697.33 20199.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
MTAPA98.88 5398.64 6999.61 999.67 3999.36 698.43 9599.20 16198.83 8098.89 13398.90 14196.98 13999.92 3297.16 12299.70 11899.56 69
v1098.97 4299.11 3298.55 18199.44 9996.21 22198.90 5799.55 4398.73 8299.48 3899.60 2596.63 16199.83 12699.70 399.99 599.61 46
UnsupCasMVSNet_eth97.89 16497.60 18198.75 15899.31 11697.17 19397.62 17699.35 10898.72 8398.76 15598.68 18692.57 26699.74 20697.76 9895.60 33599.34 164
Fast-Effi-MVS+-dtu98.27 13598.09 14298.81 14598.43 27398.11 11897.61 17899.50 5598.64 8497.39 25897.52 28498.12 6399.95 1496.90 14598.71 28098.38 286
APD-MVS_3200maxsize98.84 5798.61 7499.53 3499.19 13899.27 1798.49 8999.33 11998.64 8499.03 11298.98 12697.89 7799.85 9496.54 17899.42 20399.46 118
XVS98.72 7298.45 9599.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24698.63 20097.50 10899.83 12696.79 15399.53 18199.56 69
X-MVStestdata94.32 29392.59 31099.53 3499.46 9499.21 2398.65 6999.34 11498.62 8697.54 24645.85 34897.50 10899.83 12696.79 15399.53 18199.56 69
abl_698.99 3798.78 5199.61 999.45 9799.46 398.60 7499.50 5598.59 8899.24 7899.04 10998.54 3399.89 5496.45 18499.62 14999.50 99
GBi-Net98.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
test198.65 8598.47 9199.17 8998.90 20198.24 10699.20 3299.44 7998.59 8898.95 12499.55 2994.14 24099.86 8497.77 9499.69 12499.41 134
FMVSNet298.49 11298.40 10398.75 15898.90 20197.14 19698.61 7399.13 18698.59 8899.19 8499.28 6394.14 24099.82 13697.97 8499.80 7599.29 183
WR-MVS98.40 12298.19 13099.03 11799.00 18197.65 16796.85 23598.94 21998.57 9298.89 13398.50 21795.60 20299.85 9497.54 10599.85 5299.59 53
3Dnovator98.27 298.81 6098.73 5599.05 11498.76 22697.81 15699.25 3099.30 13498.57 9298.55 17999.33 6097.95 7699.90 4597.16 12299.67 13599.44 125
XXY-MVS99.14 3199.15 3199.10 10199.76 2197.74 16298.85 6299.62 1998.48 9499.37 5599.49 3798.75 2399.86 8498.20 7299.80 7599.71 25
testing_298.93 4798.99 4098.76 15599.57 5397.03 19897.85 15399.13 18698.46 9599.44 4499.44 4598.22 5499.74 20698.85 3899.94 1999.51 94
LCM-MVSNet-Re98.64 8798.48 8999.11 9998.85 21298.51 9298.49 8999.83 398.37 9699.69 1799.46 4098.21 5699.92 3294.13 26699.30 22098.91 248
MDA-MVSNet-bldmvs97.94 16197.91 15898.06 22199.44 9994.96 25196.63 24899.15 18598.35 9798.83 14499.11 9494.31 23799.85 9496.60 17098.72 27899.37 152
thres600view794.45 29193.83 29696.29 29399.06 17191.53 31397.99 13894.24 33398.34 9897.44 25595.01 33279.84 33299.67 23884.33 33798.23 29497.66 315
thres100view90094.19 29693.67 29995.75 30499.06 17191.35 31798.03 13294.24 33398.33 9997.40 25794.98 33479.84 33299.62 25783.05 33998.08 30496.29 333
Vis-MVSNet (Re-imp)97.46 19997.16 20698.34 20399.55 6496.10 22298.94 5598.44 27198.32 10098.16 20498.62 20288.76 28899.73 21193.88 27499.79 8099.18 206
new-patchmatchnet98.35 12798.74 5497.18 26799.24 12792.23 30896.42 25999.48 6598.30 10199.69 1799.53 3297.44 11399.82 13698.84 4099.77 8899.49 103
v14898.45 11698.60 7698.00 22599.44 9994.98 25097.44 19699.06 19698.30 10199.32 6698.97 12896.65 16099.62 25798.37 6599.85 5299.39 143
ACMH96.65 799.25 2799.24 2699.26 8199.72 2898.38 9999.07 4599.55 4398.30 10199.65 2299.45 4499.22 999.76 19598.44 6199.77 8899.64 38
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 7398.43 9999.57 1899.18 14599.35 898.36 10099.29 13898.29 10498.88 13798.85 15697.53 10499.87 7896.14 20299.31 21799.48 109
Effi-MVS+-dtu98.26 13797.90 15999.35 6698.02 29599.49 298.02 13499.16 17998.29 10497.64 23797.99 25896.44 17099.95 1496.66 16798.93 27198.60 275
mvs-test197.83 17697.48 19098.89 13598.02 29599.20 2997.20 21299.16 17998.29 10496.46 29797.17 29996.44 17099.92 3296.66 16797.90 30997.54 320
xxxxxxxxxxxxxcwj98.44 11798.24 12499.06 11299.11 15697.97 13796.53 25199.54 4798.24 10798.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
save fliter99.11 15697.97 13796.53 25199.02 20998.24 107
EU-MVSNet97.66 18598.50 8595.13 31399.63 4785.84 33898.35 10198.21 27998.23 10999.54 2899.46 4095.02 21899.68 23598.24 6999.87 5099.87 4
test_yl96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
DCV-MVSNet96.69 24596.29 25097.90 22798.28 28095.24 24397.29 20497.36 29898.21 11098.17 20297.86 26486.27 29899.55 28094.87 24198.32 29298.89 249
baseline195.96 26695.44 27097.52 25498.51 26693.99 27598.39 9896.09 32198.21 11098.40 19597.76 27186.88 29499.63 25595.42 23289.27 34798.95 239
SD-MVS98.40 12298.68 6497.54 25298.96 18897.99 13297.88 14899.36 10398.20 11399.63 2599.04 10998.76 2295.33 34996.56 17699.74 10199.31 176
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 16097.67 17298.93 12999.19 13897.65 16797.77 16199.27 14498.20 11397.79 22897.98 25994.90 22099.70 22294.42 25599.51 18799.45 122
plane_prior297.77 16198.20 113
test_0728_THIRD98.17 11699.08 9999.02 11397.89 7799.88 6297.07 12999.71 11499.70 28
E-PMN94.17 29794.37 29193.58 32696.86 33285.71 34090.11 34697.07 30598.17 11697.82 22797.19 29884.62 31298.94 33789.77 32597.68 31296.09 339
EG-PatchMatch MVS98.99 3799.01 3798.94 12899.50 7697.47 17598.04 13199.59 2498.15 11899.40 5199.36 5598.58 3199.76 19598.78 4299.68 12999.59 53
ETV-MVS98.03 15397.86 16298.56 18098.69 24298.07 12597.51 19099.50 5598.10 11997.50 25095.51 32698.41 3999.88 6296.27 19499.24 22997.71 313
tttt051795.64 27394.98 28397.64 24399.36 10993.81 28398.72 6790.47 34698.08 12098.67 16298.34 23473.88 34699.92 3297.77 9499.51 18799.20 199
RRT_test8_iter0595.24 28195.13 28095.57 30897.32 32587.02 33597.99 13899.41 8898.06 12199.12 9199.05 10666.85 35299.85 9498.93 3499.47 19899.84 8
SED-MVS98.91 5098.72 5799.49 4699.49 8399.17 3398.10 12299.31 12698.03 12299.66 2099.02 11398.36 4299.88 6296.91 14099.62 14999.41 134
test_241102_TWO99.30 13498.03 12299.26 7599.02 11397.51 10799.88 6296.91 14099.60 15799.66 33
test_241102_ONE99.49 8399.17 3399.31 12697.98 12499.66 2098.90 14198.36 4299.48 298
MSP-MVS98.77 6698.52 8199.52 3999.50 7699.21 2398.02 13498.84 23997.97 12599.08 9999.02 11397.61 9799.88 6296.99 13499.63 14699.48 109
test072699.50 7699.21 2398.17 11699.35 10897.97 12599.26 7599.06 9997.61 97
tfpn200view994.03 30093.44 30195.78 30398.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30496.29 333
thres40094.14 29893.44 30196.24 29598.93 19391.44 31597.60 17994.29 33197.94 12797.10 26394.31 34179.67 33499.62 25783.05 33998.08 30497.66 315
EMVS93.83 30394.02 29493.23 33096.83 33484.96 34189.77 34796.32 31897.92 12997.43 25696.36 31586.17 30098.93 33887.68 33197.73 31195.81 340
SteuartSystems-ACMMP98.79 6198.54 7999.54 2799.73 2399.16 3798.23 10799.31 12697.92 12998.90 13198.90 14198.00 7099.88 6296.15 20199.72 11099.58 59
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 9998.62 7198.37 20199.42 10395.81 23197.58 18299.16 17997.90 13199.28 6999.01 11995.98 18999.79 17299.33 1599.90 4299.51 94
FMVSNet397.50 19497.24 20398.29 20898.08 29395.83 23097.86 15198.91 22697.89 13298.95 12498.95 13387.06 29399.81 14997.77 9499.69 12499.23 194
V4298.78 6498.78 5198.76 15599.44 9997.04 19798.27 10499.19 16697.87 13399.25 7799.16 8496.84 14599.78 18299.21 2199.84 5499.46 118
CSCG98.68 8198.50 8599.20 8799.45 9798.63 7998.56 7999.57 3397.87 13398.85 14198.04 25697.66 9199.84 11196.72 16299.81 6799.13 214
xiu_mvs_v1_base_debu97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
xiu_mvs_v1_base_debi97.86 16898.17 13296.92 27898.98 18593.91 27896.45 25699.17 17697.85 13598.41 19197.14 30298.47 3599.92 3298.02 8099.05 25596.92 326
RRT_MVS97.07 22796.57 24198.58 17395.89 34796.33 21797.36 19998.77 25097.85 13599.08 9999.12 9282.30 32699.96 898.82 4199.90 4299.45 122
diffmvs98.22 14198.24 12498.17 21599.00 18195.44 23996.38 26199.58 2697.79 13998.53 18298.50 21796.76 15499.74 20697.95 8599.64 14399.34 164
CANet97.87 16797.76 16698.19 21497.75 30795.51 23696.76 24199.05 20097.74 14096.93 27198.21 24495.59 20399.89 5497.86 9199.93 2499.19 204
DELS-MVS98.27 13598.20 12898.48 19198.86 21096.70 21095.60 29599.20 16197.73 14198.45 18698.71 18097.50 10899.82 13698.21 7199.59 15998.93 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 9198.36 11099.42 5499.65 4299.42 498.55 8099.57 3397.72 14298.90 13199.26 6796.12 18099.52 28995.72 22099.71 11499.32 172
MVS_Test98.18 14598.36 11097.67 23998.48 26894.73 25598.18 11399.02 20997.69 14398.04 21599.11 9497.22 12899.56 27798.57 5498.90 27298.71 268
DPE-MVS98.59 9798.26 12299.57 1899.27 12299.15 4297.01 22399.39 9397.67 14499.44 4498.99 12297.53 10499.89 5495.40 23399.68 12999.66 33
ab-mvs98.41 12098.36 11098.59 17299.19 13897.23 18699.32 1598.81 24597.66 14598.62 16899.40 5196.82 14899.80 15995.88 21099.51 18798.75 266
MSDG97.71 18197.52 18598.28 20998.91 20096.82 20594.42 32899.37 9997.65 14698.37 19698.29 23997.40 11599.33 31794.09 26799.22 23198.68 274
NCCC97.86 16897.47 19199.05 11498.61 25498.07 12596.98 22598.90 22797.63 14797.04 26897.93 26295.99 18899.66 24695.31 23498.82 27499.43 129
PM-MVS98.82 5898.72 5799.12 9799.64 4598.54 9097.98 14099.68 1397.62 14899.34 6099.18 7897.54 10299.77 18897.79 9299.74 10199.04 225
ACMM96.08 1298.91 5098.73 5599.48 4899.55 6499.14 4598.07 12599.37 9997.62 14899.04 10998.96 13198.84 1999.79 17297.43 11099.65 14199.49 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 11598.09 14299.54 2799.57 5399.22 2298.50 8899.19 16697.61 15097.58 24298.66 19197.40 11599.88 6294.72 24699.60 15799.54 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 13998.08 14598.75 15899.09 16397.46 17695.97 27699.27 14497.60 15197.99 21798.25 24098.15 6299.38 31296.87 14899.57 16999.42 132
MVS_111021_LR98.30 13198.12 14098.83 14299.16 14898.03 13096.09 27399.30 13497.58 15298.10 21098.24 24198.25 4999.34 31596.69 16599.65 14199.12 215
APDe-MVS98.99 3798.79 5099.60 1399.21 13499.15 4298.87 5999.48 6597.57 15399.35 5899.24 7097.83 8099.89 5497.88 8999.70 11899.75 22
API-MVS97.04 23196.91 21997.42 25997.88 30298.23 11098.18 11398.50 26997.57 15397.39 25896.75 30796.77 15299.15 33190.16 32499.02 26294.88 343
DeepC-MVS97.60 498.97 4298.93 4199.10 10199.35 11397.98 13698.01 13799.46 7397.56 15599.54 2899.50 3498.97 1699.84 11198.06 7899.92 3399.49 103
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS98.40 12298.00 15199.61 999.57 5399.25 1998.57 7899.35 10897.55 15699.31 6897.71 27394.61 23099.88 6296.14 20299.19 23899.70 28
CP-MVS98.70 7698.42 10199.52 3999.36 10999.12 5098.72 6799.36 10397.54 15798.30 19798.40 22697.86 7999.89 5496.53 17999.72 11099.56 69
v114498.60 9498.66 6798.41 19799.36 10995.90 22797.58 18299.34 11497.51 15899.27 7199.15 8896.34 17699.80 15999.47 1299.93 2499.51 94
PMMVS298.07 15298.08 14598.04 22399.41 10494.59 26194.59 32599.40 9197.50 15998.82 14898.83 16296.83 14799.84 11197.50 10899.81 6799.71 25
ITE_SJBPF98.87 13799.22 13298.48 9499.35 10897.50 15998.28 19998.60 20697.64 9599.35 31493.86 27599.27 22498.79 262
MVSTER96.86 23896.55 24297.79 23397.91 30194.21 26797.56 18498.87 23297.49 16199.06 10299.05 10680.72 32999.80 15998.44 6199.82 6399.37 152
Patchmatch-RL test97.26 21297.02 21297.99 22699.52 7195.53 23596.13 27299.71 997.47 16299.27 7199.16 8484.30 31699.62 25797.89 8699.77 8898.81 258
HFP-MVS98.71 7398.44 9799.51 4399.49 8399.16 3798.52 8399.31 12697.47 16298.58 17598.50 21797.97 7499.85 9496.57 17399.59 15999.53 87
MSLP-MVS++98.02 15598.14 13997.64 24398.58 25995.19 24697.48 19299.23 15797.47 16297.90 22098.62 20297.04 13398.81 34197.55 10399.41 20498.94 243
ACMMPR98.70 7698.42 10199.54 2799.52 7199.14 4598.52 8399.31 12697.47 16298.56 17798.54 21197.75 8799.88 6296.57 17399.59 15999.58 59
mPP-MVS98.64 8798.34 11399.54 2799.54 6799.17 3398.63 7199.24 15597.47 16298.09 21198.68 18697.62 9699.89 5496.22 19699.62 14999.57 64
region2R98.69 7898.40 10399.54 2799.53 6999.17 3398.52 8399.31 12697.46 16798.44 18798.51 21497.83 8099.88 6296.46 18399.58 16599.58 59
HPM-MVS++copyleft98.10 14997.64 17799.48 4899.09 16399.13 4897.52 18898.75 25497.46 16796.90 27797.83 26796.01 18499.84 11195.82 21799.35 21199.46 118
TinyColmap97.89 16497.98 15297.60 24598.86 21094.35 26496.21 26999.44 7997.45 16999.06 10298.88 15097.99 7399.28 32494.38 25999.58 16599.18 206
GST-MVS98.61 9298.30 11899.52 3999.51 7399.20 2998.26 10599.25 15097.44 17098.67 16298.39 22897.68 8999.85 9496.00 20599.51 18799.52 91
MVS_030497.64 18697.35 19798.52 18597.87 30396.69 21198.59 7698.05 28697.44 17093.74 33898.85 15693.69 25099.88 6298.11 7599.81 6798.98 234
v119298.60 9498.66 6798.41 19799.27 12295.88 22897.52 18899.36 10397.41 17299.33 6199.20 7596.37 17599.82 13699.57 699.92 3399.55 77
plane_prior397.78 15897.41 17297.79 228
EIA-MVS98.00 15797.74 16898.80 14798.72 23298.09 11998.05 12999.60 2397.39 17496.63 28795.55 32597.68 8999.80 15996.73 16199.27 22498.52 278
thres20093.72 30593.14 30695.46 31098.66 25291.29 31996.61 24994.63 32997.39 17496.83 28193.71 34479.88 33199.56 27782.40 34298.13 30195.54 342
testgi98.32 12998.39 10698.13 21699.57 5395.54 23497.78 15899.49 6397.37 17699.19 8497.65 27698.96 1799.49 29596.50 18198.99 26699.34 164
mvs_anonymous97.83 17698.16 13596.87 28198.18 28791.89 31097.31 20398.90 22797.37 17698.83 14499.46 4096.28 17799.79 17298.90 3598.16 29998.95 239
EPNet_dtu94.93 28794.78 28795.38 31193.58 35187.68 33296.78 23995.69 32597.35 17889.14 34798.09 25388.15 29199.49 29594.95 24099.30 22098.98 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 25196.34 24897.17 26898.35 27693.06 29298.40 9797.79 29097.33 17998.41 19198.67 18883.68 32099.69 22695.16 23599.31 21798.77 264
HPM-MVS_fast99.01 3598.82 4799.57 1899.71 2999.35 899.00 5099.50 5597.33 17998.94 12898.86 15398.75 2399.82 13697.53 10699.71 11499.56 69
XVG-OURS-SEG-HR98.49 11298.28 12099.14 9599.49 8398.83 6596.54 25099.48 6597.32 18199.11 9398.61 20599.33 899.30 32196.23 19598.38 29199.28 184
DeepC-MVS_fast96.85 698.30 13198.15 13798.75 15898.61 25497.23 18697.76 16399.09 19397.31 18298.75 15698.66 19197.56 10199.64 25396.10 20499.55 17699.39 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 15597.82 16498.62 16998.53 26597.19 19197.33 20199.68 1397.30 18396.68 28597.46 28998.56 3299.80 15996.63 16998.20 29698.86 253
XVG-OURS98.53 10898.34 11399.11 9999.50 7698.82 6795.97 27699.50 5597.30 18399.05 10798.98 12699.35 799.32 31895.72 22099.68 12999.18 206
ZNCC-MVS98.68 8198.40 10399.54 2799.57 5399.21 2398.46 9299.29 13897.28 18598.11 20998.39 22898.00 7099.87 7896.86 15099.64 14399.55 77
eth_miper_zixun_eth97.23 21697.25 20197.17 26898.00 29792.77 29994.71 31899.18 17097.27 18698.56 17798.74 17691.89 27299.69 22697.06 13099.81 6799.05 221
MDA-MVSNet_test_wron97.60 18997.66 17597.41 26099.04 17493.09 29195.27 30498.42 27297.26 18798.88 13798.95 13395.43 21099.73 21197.02 13198.72 27899.41 134
miper_lstm_enhance97.18 22097.16 20697.25 26698.16 28892.85 29795.15 30999.31 12697.25 18898.74 15898.78 17090.07 28099.78 18297.19 12099.80 7599.11 217
xiu_mvs_v2_base97.16 22297.49 18796.17 29798.54 26392.46 30395.45 30198.84 23997.25 18897.48 25296.49 31198.31 4799.90 4596.34 19098.68 28296.15 337
PS-MVSNAJ97.08 22697.39 19396.16 29998.56 26192.46 30395.24 30698.85 23897.25 18897.49 25195.99 31898.07 6499.90 4596.37 18798.67 28396.12 338
YYNet197.60 18997.67 17297.39 26199.04 17493.04 29595.27 30498.38 27497.25 18898.92 13098.95 13395.48 20999.73 21196.99 13498.74 27699.41 134
XVG-ACMP-BASELINE98.56 9998.34 11399.22 8699.54 6798.59 8497.71 16799.46 7397.25 18898.98 11898.99 12297.54 10299.84 11195.88 21099.74 10199.23 194
CNVR-MVS98.17 14797.87 16199.07 10798.67 24798.24 10697.01 22398.93 22197.25 18897.62 23898.34 23497.27 12299.57 27496.42 18699.33 21499.39 143
CANet_DTU97.26 21297.06 21097.84 23097.57 31494.65 25996.19 27198.79 24897.23 19495.14 32498.24 24193.22 25399.84 11197.34 11499.84 5499.04 225
v192192098.54 10698.60 7698.38 20099.20 13795.76 23297.56 18499.36 10397.23 19499.38 5399.17 8296.02 18399.84 11199.57 699.90 4299.54 81
MIMVSNet96.62 25096.25 25397.71 23899.04 17494.66 25899.16 3896.92 31097.23 19497.87 22299.10 9686.11 30299.65 25191.65 31199.21 23398.82 256
FMVSNet596.01 26495.20 27898.41 19797.53 31796.10 22298.74 6599.50 5597.22 19798.03 21699.04 10969.80 34999.88 6297.27 11799.71 11499.25 190
thisisatest053095.27 28094.45 28997.74 23799.19 13894.37 26397.86 15190.20 34797.17 19898.22 20197.65 27673.53 34799.90 4596.90 14599.35 21198.95 239
v124098.55 10398.62 7198.32 20499.22 13295.58 23397.51 19099.45 7697.16 19999.45 4399.24 7096.12 18099.85 9499.60 499.88 4799.55 77
ACMMPcopyleft98.75 6898.50 8599.52 3999.56 6199.16 3798.87 5999.37 9997.16 19998.82 14899.01 11997.71 8899.87 7896.29 19399.69 12499.54 81
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 10698.57 7898.45 19499.21 13495.98 22597.63 17599.36 10397.15 20199.32 6699.18 7895.84 19699.84 11199.50 1099.91 3899.54 81
CS-MVS97.82 17897.59 18398.52 18598.76 22698.04 12998.20 11199.61 2197.10 20296.02 30894.87 33898.27 4899.84 11196.31 19199.17 24097.69 314
OPM-MVS98.56 9998.32 11799.25 8399.41 10498.73 7497.13 22099.18 17097.10 20298.75 15698.92 13798.18 5899.65 25196.68 16699.56 17499.37 152
cl_fuxian97.36 20497.37 19597.31 26298.09 29293.25 29095.01 31299.16 17997.05 20498.77 15498.72 17992.88 26199.64 25396.93 13999.76 9799.05 221
cl-mvsnet_97.02 23296.83 22497.58 24797.82 30594.04 27194.66 32199.16 17997.04 20598.63 16698.71 18088.68 29099.69 22697.00 13299.81 6799.00 232
cl-mvsnet197.02 23296.84 22397.58 24797.82 30594.03 27294.66 32199.16 17997.04 20598.63 16698.71 18088.69 28999.69 22697.00 13299.81 6799.01 229
PGM-MVS98.66 8498.37 10999.55 2499.53 6999.18 3298.23 10799.49 6397.01 20798.69 16098.88 15098.00 7099.89 5495.87 21399.59 15999.58 59
TSAR-MVS + MP.98.63 8998.49 8899.06 11299.64 4597.90 14698.51 8798.94 21996.96 20899.24 7898.89 14997.83 8099.81 14996.88 14799.49 19599.48 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP98.75 6898.48 8999.57 1899.58 4999.29 1497.82 15699.25 15096.94 20998.78 15199.12 9298.02 6899.84 11197.13 12699.67 13599.59 53
CVMVSNet96.25 26197.21 20493.38 32999.10 16080.56 35197.20 21298.19 28296.94 20999.00 11599.02 11389.50 28599.80 15996.36 18999.59 15999.78 14
CNLPA97.17 22196.71 23098.55 18198.56 26198.05 12896.33 26398.93 22196.91 21197.06 26797.39 29294.38 23699.45 30491.66 31099.18 23998.14 294
DeepPCF-MVS96.93 598.32 12998.01 15099.23 8598.39 27598.97 5895.03 31199.18 17096.88 21299.33 6198.78 17098.16 6099.28 32496.74 15999.62 14999.44 125
wuyk23d96.06 26397.62 17991.38 33298.65 25398.57 8698.85 6296.95 30896.86 21399.90 499.16 8499.18 1198.40 34489.23 32799.77 8877.18 347
AllTest98.44 11798.20 12899.16 9299.50 7698.55 8798.25 10699.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
TestCases99.16 9299.50 7698.55 8799.58 2696.80 21498.88 13799.06 9997.65 9299.57 27494.45 25399.61 15599.37 152
SF-MVS98.53 10898.27 12199.32 7399.31 11698.75 7098.19 11299.41 8896.77 21698.83 14498.90 14197.80 8499.82 13695.68 22399.52 18499.38 149
HPM-MVScopyleft98.79 6198.53 8099.59 1799.65 4299.29 1499.16 3899.43 8496.74 21798.61 17098.38 23098.62 2899.87 7896.47 18299.67 13599.59 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 16797.07 22196.72 21899.36 209
BH-untuned96.83 23996.75 22897.08 27198.74 23093.33 28996.71 24498.26 27796.72 21898.44 18797.37 29495.20 21499.47 30091.89 30897.43 31598.44 283
BH-RMVSNet96.83 23996.58 24097.58 24798.47 26994.05 27096.67 24697.36 29896.70 22097.87 22297.98 25995.14 21699.44 30590.47 32398.58 28899.25 190
TAMVS98.24 14098.05 14798.80 14799.07 16797.18 19297.88 14898.81 24596.66 22199.17 8999.21 7394.81 22699.77 18896.96 13899.88 4799.44 125
LPG-MVS_test98.71 7398.46 9399.47 5199.57 5398.97 5898.23 10799.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
LGP-MVS_train99.47 5199.57 5398.97 5899.48 6596.60 22299.10 9699.06 9998.71 2599.83 12695.58 22999.78 8499.62 42
our_test_397.39 20397.73 17096.34 29298.70 23989.78 32694.61 32498.97 21896.50 22499.04 10998.85 15695.98 18999.84 11197.26 11899.67 13599.41 134
test_prior397.48 19897.00 21398.95 12698.69 24297.95 14295.74 29099.03 20596.48 22596.11 30297.63 27895.92 19399.59 26894.16 26199.20 23499.30 179
test_prior295.74 29096.48 22596.11 30297.63 27895.92 19394.16 26199.20 234
MG-MVS96.77 24396.61 23897.26 26598.31 27993.06 29295.93 28198.12 28396.45 22797.92 21898.73 17793.77 24899.39 31091.19 31799.04 25899.33 170
MVP-Stereo98.08 15197.92 15798.57 17698.96 18896.79 20697.90 14799.18 17096.41 22898.46 18598.95 13395.93 19299.60 26496.51 18098.98 26899.31 176
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 19497.74 16896.78 28698.70 23991.23 32294.55 32699.05 20096.36 22999.21 8298.79 16996.39 17299.78 18296.74 15999.82 6399.34 164
TSAR-MVS + GP.98.18 14597.98 15298.77 15498.71 23597.88 14796.32 26498.66 26196.33 23099.23 8198.51 21497.48 11199.40 30897.16 12299.46 19999.02 228
testdata195.44 30296.32 231
LF4IMVS97.90 16297.69 17198.52 18599.17 14697.66 16697.19 21599.47 7196.31 23297.85 22498.20 24596.71 15899.52 28994.62 24799.72 11098.38 286
#test#98.50 11198.16 13599.51 4399.49 8399.16 3798.03 13299.31 12696.30 23398.58 17598.50 21797.97 7499.85 9495.68 22399.59 15999.53 87
test-LLR93.90 30293.85 29594.04 32196.53 33784.62 34394.05 33292.39 34196.17 23494.12 33295.07 33082.30 32699.67 23895.87 21398.18 29797.82 304
test0.0.03 194.51 29093.69 29896.99 27496.05 34493.61 28894.97 31393.49 33696.17 23497.57 24494.88 33682.30 32699.01 33693.60 28194.17 34398.37 288
Anonymous2023120698.21 14298.21 12798.20 21399.51 7395.43 24098.13 11799.32 12196.16 23698.93 12998.82 16596.00 18599.83 12697.32 11599.73 10499.36 158
SCA96.41 25796.66 23595.67 30598.24 28388.35 32995.85 28696.88 31296.11 23797.67 23598.67 18893.10 25699.85 9494.16 26199.22 23198.81 258
MS-PatchMatch97.68 18397.75 16797.45 25798.23 28593.78 28497.29 20498.84 23996.10 23898.64 16598.65 19396.04 18299.36 31396.84 15199.14 24599.20 199
HQP-NCC98.67 24796.29 26596.05 23995.55 316
ACMP_Plane98.67 24796.29 26596.05 23995.55 316
HQP-MVS97.00 23496.49 24498.55 18198.67 24796.79 20696.29 26599.04 20396.05 23995.55 31696.84 30593.84 24499.54 28392.82 29699.26 22799.32 172
PHI-MVS98.29 13497.95 15499.34 6998.44 27299.16 3798.12 11999.38 9596.01 24298.06 21398.43 22497.80 8499.67 23895.69 22299.58 16599.20 199
miper_ehance_all_eth97.06 22897.03 21197.16 27097.83 30493.06 29294.66 32199.09 19395.99 24398.69 16098.45 22392.73 26499.61 26396.79 15399.03 25998.82 256
MVEpermissive83.40 2292.50 31391.92 31594.25 32098.83 21791.64 31292.71 34183.52 35295.92 24486.46 35095.46 32895.20 21495.40 34880.51 34498.64 28495.73 341
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 18297.35 19798.69 16298.73 23197.02 20096.92 23198.75 25495.89 24598.59 17398.67 18892.08 27199.74 20696.72 16299.81 6799.32 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 17497.84 16397.83 23199.14 15394.74 25496.94 22798.88 23095.84 24698.89 13398.96 13194.40 23599.69 22697.55 10399.95 1599.05 221
testtj97.79 17997.25 20199.42 5499.03 17798.85 6497.78 15899.18 17095.83 24798.12 20898.50 21795.50 20799.86 8492.23 30699.07 25499.54 81
PAPM_NR96.82 24196.32 24998.30 20799.07 16796.69 21197.48 19298.76 25195.81 24896.61 28996.47 31394.12 24399.17 32990.82 32297.78 31099.06 220
ACMP95.32 1598.41 12098.09 14299.36 6199.51 7398.79 6997.68 17099.38 9595.76 24998.81 15098.82 16598.36 4299.82 13694.75 24399.77 8899.48 109
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 15797.63 17899.10 10199.24 12798.17 11496.89 23498.73 25795.66 25097.92 21897.70 27497.17 12999.66 24696.18 20099.23 23099.47 116
AdaColmapbinary97.14 22396.71 23098.46 19398.34 27797.80 15796.95 22698.93 22195.58 25196.92 27297.66 27595.87 19599.53 28590.97 31899.14 24598.04 297
ETH3D-3000-0.198.03 15397.62 17999.29 7499.11 15698.80 6897.47 19499.32 12195.54 25298.43 19098.62 20296.61 16299.77 18893.95 27199.49 19599.30 179
pmmvs-eth3d98.47 11498.34 11398.86 13999.30 11997.76 15997.16 21899.28 14095.54 25299.42 4799.19 7697.27 12299.63 25597.89 8699.97 1199.20 199
9.1497.78 16599.07 16797.53 18799.32 12195.53 25498.54 18198.70 18397.58 9999.76 19594.32 26099.46 199
GA-MVS95.86 26895.32 27597.49 25598.60 25694.15 26993.83 33597.93 28895.49 25596.68 28597.42 29183.21 32199.30 32196.22 19698.55 28999.01 229
tpmvs95.02 28695.25 27694.33 31996.39 34285.87 33798.08 12496.83 31395.46 25695.51 32098.69 18485.91 30399.53 28594.16 26196.23 33297.58 318
UnsupCasMVSNet_bld97.30 20996.92 21798.45 19499.28 12196.78 20996.20 27099.27 14495.42 25798.28 19998.30 23893.16 25499.71 22094.99 23897.37 31698.87 252
PatchmatchNetpermissive95.58 27495.67 26395.30 31297.34 32487.32 33397.65 17496.65 31495.30 25897.07 26698.69 18484.77 31099.75 20294.97 23998.64 28498.83 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 18897.17 20598.99 12399.27 12297.86 14995.98 27593.41 33795.25 25999.47 4098.90 14195.63 20199.85 9496.91 14099.73 10499.27 186
MVS-HIRNet94.32 29395.62 26490.42 33398.46 27075.36 35296.29 26589.13 34995.25 25995.38 32199.75 792.88 26199.19 32894.07 26899.39 20796.72 331
OMC-MVS97.88 16697.49 18799.04 11698.89 20698.63 7996.94 22799.25 15095.02 26198.53 18298.51 21497.27 12299.47 30093.50 28599.51 18799.01 229
tpmrst95.07 28495.46 26993.91 32397.11 32984.36 34597.62 17696.96 30794.98 26296.35 29998.80 16785.46 30799.59 26895.60 22796.23 33297.79 309
APD-MVScopyleft98.10 14997.67 17299.42 5499.11 15698.93 6297.76 16399.28 14094.97 26398.72 15998.77 17297.04 13399.85 9493.79 27799.54 17799.49 103
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 24796.27 25297.87 22998.81 22294.61 26096.77 24097.92 28994.94 26497.12 26297.74 27291.11 27599.82 13693.89 27398.15 30099.18 206
CPTT-MVS97.84 17497.36 19699.27 7999.31 11698.46 9598.29 10299.27 14494.90 26597.83 22598.37 23194.90 22099.84 11193.85 27699.54 17799.51 94
MP-MVS-pluss98.57 9898.23 12699.60 1399.69 3799.35 897.16 21899.38 9594.87 26698.97 12198.99 12298.01 6999.88 6297.29 11699.70 11899.58 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 18497.38 19498.57 17698.71 23597.43 17897.23 20899.45 7694.82 26796.13 30196.51 31098.52 3499.91 4296.19 19898.83 27398.37 288
ET-MVSNet_ETH3D94.30 29593.21 30497.58 24798.14 28994.47 26294.78 31793.24 33994.72 26889.56 34695.87 32178.57 34099.81 14996.91 14097.11 32398.46 280
EPMVS93.72 30593.27 30395.09 31496.04 34587.76 33198.13 11785.01 35194.69 26996.92 27298.64 19678.47 34299.31 31995.04 23696.46 33098.20 291
cl-mvsnet295.79 27095.39 27396.98 27596.77 33592.79 29894.40 32998.53 26794.59 27097.89 22198.17 24682.82 32599.24 32696.37 18799.03 25998.92 245
PVSNet_BlendedMVS97.55 19297.53 18497.60 24598.92 19793.77 28596.64 24799.43 8494.49 27197.62 23899.18 7896.82 14899.67 23894.73 24499.93 2499.36 158
sss97.21 21796.93 21698.06 22198.83 21795.22 24596.75 24298.48 27094.49 27197.27 26197.90 26392.77 26399.80 15996.57 17399.32 21599.16 213
tpm94.67 28994.34 29295.66 30697.68 31388.42 32897.88 14894.90 32794.46 27396.03 30798.56 21078.66 33899.79 17295.88 21095.01 33898.78 263
CLD-MVS97.49 19697.16 20698.48 19199.07 16797.03 19894.71 31899.21 15994.46 27398.06 21397.16 30097.57 10099.48 29894.46 25299.78 8498.95 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 31791.77 31693.46 32796.48 33982.80 34894.05 33291.52 34494.45 27594.00 33594.88 33666.65 35399.56 27795.78 21898.11 30298.02 298
PVSNet_Blended_VisFu98.17 14798.15 13798.22 21299.73 2395.15 24797.36 19999.68 1394.45 27598.99 11699.27 6596.87 14499.94 2297.13 12699.91 3899.57 64
MDTV_nov1_ep1395.22 27797.06 33083.20 34797.74 16596.16 31994.37 27796.99 27098.83 16283.95 31899.53 28593.90 27297.95 308
TR-MVS95.55 27595.12 28196.86 28497.54 31693.94 27696.49 25596.53 31694.36 27897.03 26996.61 30994.26 23999.16 33086.91 33396.31 33197.47 322
jason97.45 20097.35 19797.76 23599.24 12793.93 27795.86 28498.42 27294.24 27998.50 18498.13 24794.82 22499.91 4297.22 11999.73 10499.43 129
jason: jason.
HyFIR lowres test97.19 21996.60 23998.96 12599.62 4897.28 18495.17 30799.50 5594.21 28099.01 11398.32 23786.61 29699.99 297.10 12899.84 5499.60 47
ETH3D cwj APD-0.1697.55 19297.00 21399.19 8898.51 26698.64 7896.85 23599.13 18694.19 28197.65 23698.40 22695.78 19799.81 14993.37 28899.16 24199.12 215
SMA-MVS98.40 12298.03 14999.51 4399.16 14899.21 2398.05 12999.22 15894.16 28298.98 11899.10 9697.52 10699.79 17296.45 18499.64 14399.53 87
thisisatest051594.12 29993.16 30596.97 27698.60 25692.90 29693.77 33690.61 34594.10 28396.91 27495.87 32174.99 34599.80 15994.52 25099.12 25198.20 291
USDC97.41 20297.40 19297.44 25898.94 19193.67 28795.17 30799.53 4994.03 28498.97 12199.10 9695.29 21299.34 31595.84 21699.73 10499.30 179
test-mter92.33 31591.76 31794.04 32196.53 33784.62 34394.05 33292.39 34194.00 28594.12 33295.07 33065.63 35599.67 23895.87 21398.18 29797.82 304
baseline293.73 30492.83 30996.42 29197.70 31191.28 32096.84 23789.77 34893.96 28692.44 34195.93 31979.14 33799.77 18892.94 29296.76 32898.21 290
pmmvs597.64 18697.49 18798.08 22099.14 15395.12 24996.70 24599.05 20093.77 28798.62 16898.83 16293.23 25299.75 20298.33 6899.76 9799.36 158
BH-w/o95.13 28394.89 28695.86 30198.20 28691.31 31895.65 29397.37 29793.64 28896.52 29295.70 32393.04 25999.02 33488.10 33095.82 33497.24 324
pmmvs497.58 19197.28 20098.51 18898.84 21596.93 20395.40 30398.52 26893.60 28998.61 17098.65 19395.10 21799.60 26496.97 13799.79 8098.99 233
CHOSEN 280x42095.51 27795.47 26895.65 30798.25 28288.27 33093.25 33998.88 23093.53 29094.65 32797.15 30186.17 30099.93 2697.41 11199.93 2498.73 267
lupinMVS97.06 22896.86 22197.65 24198.88 20793.89 28195.48 30097.97 28793.53 29098.16 20497.58 28093.81 24699.91 4296.77 15699.57 16999.17 210
PatchMatch-RL97.24 21596.78 22698.61 17199.03 17797.83 15196.36 26299.06 19693.49 29297.36 26097.78 26995.75 19899.49 29593.44 28698.77 27598.52 278
DP-MVS Recon97.33 20796.92 21798.57 17699.09 16397.99 13296.79 23899.35 10893.18 29397.71 23298.07 25595.00 21999.31 31993.97 26999.13 24898.42 285
1112_ss97.29 21196.86 22198.58 17399.34 11596.32 21896.75 24299.58 2693.14 29496.89 27897.48 28792.11 27099.86 8496.91 14099.54 17799.57 64
IU-MVS99.49 8399.15 4298.87 23292.97 29599.41 4896.76 15799.62 14999.66 33
F-COLMAP97.30 20996.68 23299.14 9599.19 13898.39 9897.27 20799.30 13492.93 29696.62 28898.00 25795.73 19999.68 23592.62 30198.46 29099.35 162
FPMVS93.44 30892.23 31297.08 27199.25 12697.86 14995.61 29497.16 30492.90 29793.76 33798.65 19375.94 34495.66 34779.30 34697.49 31397.73 311
DSMNet-mixed97.42 20197.60 18196.87 28199.15 15291.46 31498.54 8199.12 18992.87 29897.58 24299.63 2096.21 17899.90 4595.74 21999.54 17799.27 186
dp93.47 30793.59 30093.13 33196.64 33681.62 35097.66 17296.42 31792.80 29996.11 30298.64 19678.55 34199.59 26893.31 28992.18 34698.16 293
PVSNet93.40 1795.67 27295.70 26195.57 30898.83 21788.57 32792.50 34297.72 29292.69 30096.49 29696.44 31493.72 24999.43 30693.61 28099.28 22398.71 268
new_pmnet96.99 23596.76 22797.67 23998.72 23294.89 25295.95 28098.20 28092.62 30198.55 17998.54 21194.88 22399.52 28993.96 27099.44 20298.59 277
原ACMM198.35 20298.90 20196.25 22098.83 24492.48 30296.07 30598.10 25195.39 21199.71 22092.61 30298.99 26699.08 218
IB-MVS91.63 1992.24 31690.90 31996.27 29497.22 32891.24 32194.36 33093.33 33892.37 30392.24 34294.58 34066.20 35499.89 5493.16 29194.63 34097.66 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 26095.95 25697.28 26397.71 30994.22 26598.11 12098.92 22492.31 30496.91 27499.37 5285.44 30899.81 14997.39 11297.36 31897.81 306
HY-MVS95.94 1395.90 26795.35 27497.55 25197.95 29894.79 25398.81 6496.94 30992.28 30595.17 32398.57 20989.90 28299.75 20291.20 31697.33 32098.10 295
DWT-MVSNet_test92.75 31292.05 31494.85 31596.48 33987.21 33497.83 15594.99 32692.22 30692.72 34094.11 34370.75 34899.46 30295.01 23794.33 34297.87 302
MAR-MVS96.47 25595.70 26198.79 14997.92 30099.12 5098.28 10398.60 26592.16 30795.54 31996.17 31694.77 22999.52 28989.62 32698.23 29497.72 312
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 25895.59 26698.51 18898.76 22697.21 18994.54 32798.26 27791.94 30896.37 29897.25 29793.06 25899.43 30691.42 31598.74 27698.89 249
agg_prior197.06 22896.40 24699.03 11798.68 24597.99 13295.76 28899.01 21291.73 30995.59 31297.50 28596.49 16799.77 18893.71 27899.14 24599.34 164
train_agg97.10 22496.45 24599.07 10798.71 23598.08 12395.96 27899.03 20591.64 31095.85 30997.53 28296.47 16899.76 19593.67 27999.16 24199.36 158
test_898.67 24798.01 13195.91 28399.02 20991.64 31095.79 31197.50 28596.47 16899.76 195
CHOSEN 1792x268897.49 19697.14 20998.54 18499.68 3896.09 22496.50 25499.62 1991.58 31298.84 14398.97 12892.36 26799.88 6296.76 15799.95 1599.67 32
PMMVS96.51 25295.98 25598.09 21797.53 31795.84 22994.92 31498.84 23991.58 31296.05 30695.58 32495.68 20099.66 24695.59 22898.09 30398.76 265
Test_1112_low_res96.99 23596.55 24298.31 20699.35 11395.47 23895.84 28799.53 4991.51 31496.80 28398.48 22291.36 27499.83 12696.58 17199.53 18199.62 42
TEST998.71 23598.08 12395.96 27899.03 20591.40 31595.85 30997.53 28296.52 16599.76 195
PAPR95.29 27994.47 28897.75 23697.50 32195.14 24894.89 31598.71 25991.39 31695.35 32295.48 32794.57 23199.14 33284.95 33697.37 31698.97 238
131495.74 27195.60 26596.17 29797.53 31792.75 30098.07 12598.31 27691.22 31794.25 33096.68 30895.53 20499.03 33391.64 31297.18 32196.74 330
CDPH-MVS97.26 21296.66 23599.07 10799.00 18198.15 11596.03 27499.01 21291.21 31897.79 22897.85 26696.89 14399.69 22692.75 29999.38 20899.39 143
miper_enhance_ethall96.01 26495.74 25996.81 28596.41 34192.27 30793.69 33798.89 22991.14 31998.30 19797.35 29690.58 27799.58 27396.31 19199.03 25998.60 275
PVSNet_Blended96.88 23796.68 23297.47 25698.92 19793.77 28594.71 31899.43 8490.98 32097.62 23897.36 29596.82 14899.67 23894.73 24499.56 17498.98 234
PLCcopyleft94.65 1696.51 25295.73 26098.85 14098.75 22997.91 14596.42 25999.06 19690.94 32195.59 31297.38 29394.41 23499.59 26890.93 31998.04 30799.05 221
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 27894.98 28396.76 28798.14 28991.74 31197.92 14497.76 29190.23 32296.51 29398.91 13885.61 30599.85 9492.88 29496.90 32498.69 271
ADS-MVSNet95.24 28194.93 28596.18 29698.14 28990.10 32597.92 14497.32 30190.23 32296.51 29398.91 13885.61 30599.74 20692.88 29496.90 32498.69 271
QAPM97.31 20896.81 22598.82 14398.80 22497.49 17499.06 4699.19 16690.22 32497.69 23499.16 8496.91 14299.90 4590.89 32199.41 20499.07 219
PVSNet_089.98 2191.15 31990.30 32193.70 32597.72 30884.34 34690.24 34597.42 29690.20 32593.79 33693.09 34590.90 27698.89 34086.57 33472.76 34897.87 302
testdata98.09 21798.93 19395.40 24198.80 24790.08 32697.45 25498.37 23195.26 21399.70 22293.58 28298.95 27099.17 210
MDTV_nov1_ep13_2view74.92 35397.69 16990.06 32797.75 23185.78 30493.52 28398.69 271
OpenMVScopyleft96.65 797.09 22596.68 23298.32 20498.32 27897.16 19498.86 6199.37 9989.48 32896.29 30099.15 8896.56 16399.90 4592.90 29399.20 23497.89 300
无先验95.74 29098.74 25689.38 32999.73 21192.38 30499.22 198
CostFormer93.97 30193.78 29794.51 31897.53 31785.83 33997.98 14095.96 32289.29 33094.99 32698.63 20078.63 33999.62 25794.54 24996.50 32998.09 296
CMPMVSbinary75.91 2396.29 25995.44 27098.84 14196.25 34398.69 7797.02 22299.12 18988.90 33197.83 22598.86 15389.51 28498.90 33991.92 30799.51 18798.92 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETH3 D test640096.46 25695.59 26699.08 10498.88 20798.21 11296.53 25199.18 17088.87 33297.08 26597.79 26893.64 25199.77 18888.92 32899.40 20699.28 184
pmmvs395.03 28594.40 29096.93 27797.70 31192.53 30295.08 31097.71 29388.57 33397.71 23298.08 25479.39 33699.82 13696.19 19899.11 25298.43 284
旧先验295.76 28888.56 33497.52 24899.66 24694.48 251
gm-plane-assit94.83 34981.97 34988.07 33594.99 33399.60 26491.76 309
112196.73 24496.00 25498.91 13298.95 19097.76 15998.07 12598.73 25787.65 33696.54 29098.13 24794.52 23299.73 21192.38 30499.02 26299.24 193
新几何198.91 13298.94 19197.76 15998.76 25187.58 33796.75 28498.10 25194.80 22799.78 18292.73 30099.00 26599.20 199
PAPM91.88 31890.34 32096.51 28998.06 29492.56 30192.44 34397.17 30386.35 33890.38 34596.01 31786.61 29699.21 32770.65 34895.43 33697.75 310
tpm293.09 31192.58 31194.62 31797.56 31586.53 33697.66 17295.79 32486.15 33994.07 33498.23 24375.95 34399.53 28590.91 32096.86 32797.81 306
test22298.92 19796.93 20395.54 29698.78 24985.72 34096.86 28098.11 25094.43 23399.10 25399.23 194
cascas94.79 28894.33 29396.15 30096.02 34692.36 30692.34 34499.26 14985.34 34195.08 32594.96 33592.96 26098.53 34394.41 25898.59 28797.56 319
OpenMVS_ROBcopyleft95.38 1495.84 26995.18 27997.81 23298.41 27497.15 19597.37 19898.62 26483.86 34298.65 16498.37 23194.29 23899.68 23588.41 32998.62 28696.60 332
TAPA-MVS96.21 1196.63 24995.95 25698.65 16498.93 19398.09 11996.93 22999.28 14083.58 34398.13 20797.78 26996.13 17999.40 30893.52 28399.29 22298.45 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 30993.13 30793.75 32497.39 32384.74 34297.39 19797.65 29583.39 34494.16 33198.41 22582.86 32499.39 31091.56 31495.35 33797.14 325
114514_t96.50 25495.77 25898.69 16299.48 9197.43 17897.84 15499.55 4381.42 34596.51 29398.58 20895.53 20499.67 23893.41 28799.58 16598.98 234
PCF-MVS92.86 1894.36 29293.00 30898.42 19698.70 23997.56 17193.16 34099.11 19179.59 34697.55 24597.43 29092.19 26899.73 21179.85 34599.45 20197.97 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS93.19 31092.09 31396.50 29096.91 33194.03 27298.07 12598.06 28568.01 34794.56 32996.48 31295.96 19199.30 32183.84 33896.89 32696.17 335
DeepMVS_CXcopyleft93.44 32898.24 28394.21 26794.34 33064.28 34891.34 34494.87 33889.45 28692.77 35077.54 34793.14 34493.35 345
tmp_tt78.77 32078.73 32278.90 33458.45 35374.76 35494.20 33178.26 35539.16 34986.71 34992.82 34680.50 33075.19 35186.16 33592.29 34586.74 346
test12317.04 32320.11 3257.82 33510.25 3554.91 35594.80 3164.47 3574.93 35010.00 35224.28 3509.69 3563.64 35210.14 34912.43 35014.92 348
testmvs17.12 32220.53 3246.87 33612.05 3544.20 35693.62 3386.73 3564.62 35110.41 35124.33 3498.28 3573.56 3539.69 35015.07 34912.86 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.66 32132.88 3230.00 3370.00 3560.00 3570.00 34899.10 1920.00 3520.00 35397.58 28099.21 100.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas8.17 32410.90 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35398.07 640.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.12 32510.83 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35397.48 2870.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS98.82 14398.59 25898.30 10298.10 12298.52 21398.18 5898.75 34294.62 24799.48 19799.41 134
test_0728_SECOND99.60 1399.50 7699.23 2198.02 13499.32 12199.88 6296.99 13499.63 14699.68 30
GSMVS98.81 258
test_part299.36 10999.10 5399.05 107
test_part10.00 3370.00 3570.00 34899.28 1400.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs184.74 31198.81 258
sam_mvs84.29 317
ambc98.24 21198.82 22095.97 22698.62 7299.00 21599.27 7199.21 7396.99 13899.50 29496.55 17799.50 19499.26 189
MTGPAbinary99.20 161
test_post197.59 18120.48 35283.07 32399.66 24694.16 261
test_post21.25 35183.86 31999.70 222
patchmatchnet-post98.77 17284.37 31499.85 94
GG-mvs-BLEND94.76 31694.54 35092.13 30999.31 1880.47 35488.73 34891.01 34767.59 35198.16 34682.30 34394.53 34193.98 344
MTMP97.93 14391.91 343
test9_res93.28 29099.15 24499.38 149
agg_prior292.50 30399.16 24199.37 152
agg_prior98.68 24597.99 13299.01 21295.59 31299.77 188
test_prior497.97 13795.86 284
test_prior98.95 12698.69 24297.95 14299.03 20599.59 26899.30 179
新几何295.93 281
旧先验198.82 22097.45 17798.76 25198.34 23495.50 20799.01 26499.23 194
原ACMM295.53 297
testdata299.79 17292.80 298
segment_acmp97.02 136
test1298.93 12998.58 25997.83 15198.66 26196.53 29195.51 20699.69 22699.13 24899.27 186
plane_prior799.19 13897.87 148
plane_prior698.99 18497.70 16594.90 220
plane_prior599.27 14499.70 22294.42 25599.51 18799.45 122
plane_prior497.98 259
plane_prior199.05 173
n20.00 358
nn0.00 358
door-mid99.57 33
lessismore_v098.97 12499.73 2397.53 17386.71 35099.37 5599.52 3389.93 28199.92 3298.99 3299.72 11099.44 125
test1198.87 232
door99.41 88
HQP5-MVS96.79 206
BP-MVS92.82 296
HQP4-MVS95.56 31599.54 28399.32 172
HQP3-MVS99.04 20399.26 227
HQP2-MVS93.84 244
NP-MVS98.84 21597.39 18096.84 305
ACMMP++_ref99.77 88
ACMMP++99.68 129
Test By Simon96.52 165