This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 5999.91 399.95 499.96 299.71 9699.91 1999.15 5299.97 1699.50 30100.00 199.90 4
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 3999.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9099.93 499.95 1099.89 2599.71 999.96 3399.51 2899.97 2999.84 14
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1699.61 5099.70 9499.93 499.78 6699.68 12299.10 5899.78 26299.45 3399.96 4099.83 18
mvs_tets99.90 299.90 299.90 499.96 499.79 3499.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1099.72 1999.78 5699.90 799.82 4899.83 4098.45 14799.87 16099.51 2899.97 2999.86 11
EU-MVSNet99.39 7799.62 2598.72 27599.88 2396.44 31299.56 6099.85 2399.90 799.90 2299.85 3598.09 17999.83 22499.58 2199.95 4799.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 43100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4299.54 2499.99 1299.80 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
gg-mvs-nofinetune95.87 31595.17 31897.97 30198.19 34296.95 30399.69 2889.23 35499.89 1196.24 34399.94 1281.19 34899.51 33793.99 32898.20 32897.44 338
jajsoiax99.89 399.89 399.89 799.96 499.78 3799.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
JIA-IIPM98.06 26597.92 26598.50 28398.59 33297.02 30298.80 21998.51 31499.88 1397.89 32499.87 3091.89 30399.90 11998.16 16097.68 33898.59 307
LFMVS98.46 23998.19 24599.26 21699.24 26998.52 24399.62 4696.94 33899.87 1499.31 21099.58 18091.04 31299.81 25098.68 12499.42 26499.45 188
DP-MVS99.48 5299.39 6499.74 5999.57 16099.62 9099.29 11099.61 13799.87 1499.74 8699.76 7498.69 11299.87 16098.20 15399.80 15299.75 38
FIs99.65 2999.58 3499.84 1999.84 3399.85 1199.66 3899.75 7099.86 1699.74 8699.79 5798.27 16499.85 19899.37 4399.93 6899.83 18
RPMNet98.53 23198.44 22198.83 26799.05 29898.12 26599.30 10398.78 30299.86 1699.16 23599.74 8192.53 29999.91 10098.75 11798.77 31098.44 316
UGNet99.38 7999.34 7499.49 15598.90 30898.90 22499.70 2299.35 25199.86 1698.57 29299.81 4998.50 14299.93 6699.38 4199.98 2199.66 73
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 1999.94 1199.95 1199.73 899.90 11999.65 1699.97 2999.69 50
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12799.75 4799.62 4699.69 10099.85 1999.80 5899.81 4998.81 9299.91 10099.47 3299.88 9899.70 47
IterMVS-SCA-FT99.00 17599.16 10898.51 28299.75 9395.90 32098.07 28699.84 2999.84 2199.89 2699.73 8596.01 26799.99 499.33 48100.00 199.63 92
v7n99.82 1099.80 1099.88 1199.96 499.84 1699.82 899.82 3699.84 2199.94 1199.91 1999.13 5799.96 3399.83 999.99 1299.83 18
PatchT98.45 24098.32 23598.83 26798.94 30698.29 25699.24 12198.82 30099.84 2199.08 24599.76 7491.37 30799.94 5398.82 11199.00 30098.26 323
IterMVS98.97 17999.16 10898.42 28699.74 9995.64 32398.06 28899.83 3199.83 2499.85 3899.74 8196.10 26699.99 499.27 60100.00 199.63 92
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023121199.62 3299.57 3799.76 4599.61 14399.60 9799.81 999.73 7899.82 2599.90 2299.90 2197.97 19099.86 18099.42 3999.96 4099.80 23
VDDNet98.97 17998.82 18899.42 17499.71 10998.81 22899.62 4698.68 30699.81 2699.38 19799.80 5194.25 28399.85 19898.79 11399.32 27999.59 124
VPNet99.46 5999.37 6999.71 7599.82 4299.59 10099.48 6899.70 9499.81 2699.69 10199.58 18097.66 21599.86 18099.17 7299.44 25999.67 63
Gipumacopyleft99.57 3799.59 3299.49 15599.98 399.71 5999.72 1999.84 2999.81 2699.94 1199.78 6498.91 8299.71 28698.41 13499.95 4799.05 280
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VDD-MVS99.20 12899.11 12199.44 16999.43 21998.98 21199.50 6498.32 32299.80 2999.56 15199.69 11196.99 24499.85 19898.99 9299.73 18799.50 168
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2099.83 699.85 2399.80 2999.93 1499.93 1398.54 13299.93 6699.59 1999.98 2199.76 35
casdiffmvs99.63 3099.61 2999.67 8399.79 6599.59 10099.13 15899.85 2399.79 3199.76 7399.72 9199.33 3499.82 23499.21 6299.94 6099.59 124
mvs_anonymous99.28 10399.39 6498.94 24999.19 27797.81 28199.02 18099.55 17599.78 3299.85 3899.80 5198.24 16699.86 18099.57 2299.50 25299.15 257
K. test v398.87 19698.60 20599.69 8099.93 1399.46 12199.74 1594.97 34599.78 3299.88 3299.88 2893.66 28999.97 1699.61 1899.95 4799.64 87
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 799.69 2899.77 5999.78 3299.93 1499.89 2597.94 19199.92 8499.65 1699.98 2199.62 104
EPNet98.13 26197.77 27399.18 23094.57 35297.99 27399.24 12197.96 32699.74 3597.29 33699.62 15693.13 29399.97 1698.59 12799.83 13099.58 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2099.76 1399.87 1799.73 3699.89 2699.87 3099.63 1499.87 16099.54 2499.92 7299.63 92
MVSFormer99.41 7099.44 5799.31 20799.57 16098.40 25099.77 1199.80 4699.73 3699.63 12199.30 25798.02 18599.98 699.43 3599.69 20199.55 140
test_djsdf99.84 899.81 999.91 299.94 1099.84 1699.77 1199.80 4699.73 3699.97 699.92 1699.77 799.98 699.43 35100.00 199.90 4
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 799.67 3599.71 9099.72 3999.84 4199.78 6498.67 11699.97 1699.30 5499.95 4799.80 23
tfpnnormal99.43 6399.38 6699.60 12199.87 2799.75 4799.59 5599.78 5699.71 4099.90 2299.69 11198.85 9099.90 11997.25 23199.78 16399.15 257
baseline99.63 3099.62 2599.66 9099.80 5599.62 9099.44 7499.80 4699.71 4099.72 9199.69 11199.15 5299.83 22499.32 5099.94 6099.53 150
PMVScopyleft92.94 2198.82 20198.81 18998.85 26399.84 3397.99 27399.20 13199.47 21599.71 4099.42 18299.82 4698.09 17999.47 33993.88 32999.85 11699.07 278
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 699.73 1699.85 2399.70 4399.92 1899.93 1399.45 2199.97 1699.36 44100.00 199.85 13
PEN-MVS99.66 2499.59 3299.89 799.83 3699.87 799.66 3899.73 7899.70 4399.84 4199.73 8598.56 12999.96 3399.29 5799.94 6099.83 18
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1199.75 1499.86 1999.70 4399.91 2099.89 2599.60 1899.87 16099.59 1999.74 18099.71 44
testing_299.58 3699.56 4199.62 11599.81 4999.44 12899.14 15199.43 22799.69 4699.82 4899.79 5799.14 5499.79 25899.31 5399.95 4799.63 92
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1199.86 599.92 599.69 4699.78 6699.92 1699.37 2999.88 14798.93 10499.95 4799.60 115
EI-MVSNet-UG-set99.48 5299.50 4999.42 17499.57 16098.65 23999.24 12199.46 21999.68 4899.80 5899.66 13298.99 7299.89 13299.19 6799.90 8299.72 41
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1698.83 21199.86 1999.68 4899.65 11599.88 2897.67 21199.87 16099.03 8999.86 11399.76 35
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17499.57 16098.66 23799.24 12199.46 21999.67 5099.79 6399.65 13798.97 7599.89 13299.15 7699.89 9099.71 44
VNet99.18 13599.06 13799.56 13699.24 26999.36 15299.33 9399.31 26099.67 5099.47 17199.57 18796.48 25399.84 21399.15 7699.30 28199.47 182
FMVSNet199.66 2499.63 2499.73 6699.78 7199.77 3999.68 3199.70 9499.67 5099.82 4899.83 4098.98 7399.90 11999.24 6199.97 2999.53 150
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 7799.69 2899.92 599.67 5099.77 7199.75 7899.61 1699.98 699.35 4599.98 2199.72 41
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet98.61 21998.88 18097.80 30699.58 15093.60 33599.26 11599.64 12899.66 5499.72 9199.67 12893.26 29199.93 6699.30 5499.81 14799.87 9
TAMVS99.49 5099.45 5599.63 10699.48 20199.42 13699.45 7199.57 16599.66 5499.78 6699.83 4097.85 19999.86 18099.44 3499.96 4099.61 111
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7599.70 2299.14 28799.65 5699.89 2699.90 2196.20 26399.94 5399.42 3999.92 7299.67 63
Patchmtry98.78 20498.54 21499.49 15598.89 31199.19 19199.32 9699.67 10799.65 5699.72 9199.79 5791.87 30499.95 4298.00 17199.97 2999.33 222
alignmvs98.28 25397.96 25899.25 21999.12 28798.93 22099.03 17998.42 31899.64 5898.72 28197.85 34390.86 31799.62 32598.88 10799.13 29299.19 249
Regformer-499.45 6199.44 5799.50 15299.52 18098.94 21699.17 14199.53 18999.64 5899.76 7399.60 17298.96 7899.90 11998.91 10599.84 12099.67 63
v899.68 2299.69 1899.65 9599.80 5599.40 14199.66 3899.76 6499.64 5899.93 1499.85 3598.66 11899.84 21399.88 699.99 1299.71 44
canonicalmvs99.02 16999.00 15699.09 23699.10 29398.70 23499.61 5099.66 11199.63 6198.64 28697.65 34599.04 6999.54 33498.79 11398.92 30399.04 281
Regformer-399.41 7099.41 6299.40 18399.52 18098.70 23499.17 14199.44 22499.62 6299.75 7899.60 17298.90 8599.85 19898.89 10699.84 12099.65 81
EI-MVSNet99.38 7999.44 5799.21 22599.58 15098.09 26999.26 11599.46 21999.62 6299.75 7899.67 12898.54 13299.85 19899.15 7699.92 7299.68 56
PS-CasMVS99.66 2499.58 3499.89 799.80 5599.85 1199.66 3899.73 7899.62 6299.84 4199.71 9898.62 12299.96 3399.30 5499.96 4099.86 11
IterMVS-LS99.41 7099.47 5199.25 21999.81 4998.09 26998.85 20899.76 6499.62 6299.83 4699.64 13998.54 13299.97 1699.15 7699.99 1299.68 56
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
xiu_mvs_v1_base_debi99.23 11399.34 7498.91 25599.59 14798.23 25898.47 25199.66 11199.61 6699.68 10398.94 31099.39 2399.97 1699.18 6999.55 24098.51 313
diffmvs99.34 9199.32 7999.39 18699.67 13298.77 23198.57 24099.81 4599.61 6699.48 17099.41 23098.47 14399.86 18098.97 9699.90 8299.53 150
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15099.64 8499.30 10399.63 13099.61 6699.71 9699.56 19098.76 10599.96 3399.14 8299.92 7299.68 56
LS3D99.24 11299.11 12199.61 11998.38 33799.79 3499.57 5899.68 10399.61 6699.15 23799.71 9898.70 11199.91 10097.54 21199.68 20499.13 264
v1099.69 2199.69 1899.66 9099.81 4999.39 14399.66 3899.75 7099.60 7299.92 1899.87 3098.75 10799.86 18099.90 299.99 1299.73 40
test20.0399.55 4399.54 4399.58 12799.79 6599.37 14999.02 18099.89 1299.60 7299.82 4899.62 15698.81 9299.89 13299.43 3599.86 11399.47 182
DSMNet-mixed99.48 5299.65 2298.95 24899.71 10997.27 29699.50 6499.82 3699.59 7499.41 19099.85 3599.62 15100.00 199.53 2699.89 9099.59 124
WR-MVS_H99.61 3499.53 4799.87 1499.80 5599.83 2099.67 3599.75 7099.58 7599.85 3899.69 11198.18 17599.94 5399.28 5999.95 4799.83 18
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2499.57 5899.61 13799.54 7699.80 5899.64 13997.79 20399.95 4299.21 6299.94 6099.84 14
test_040299.22 12199.14 11299.45 16799.79 6599.43 13399.28 11199.68 10399.54 7699.40 19599.56 19099.07 6599.82 23496.01 28899.96 4099.11 265
ACMH+98.40 899.50 4899.43 6099.71 7599.86 2999.76 4599.32 9699.77 5999.53 7899.77 7199.76 7499.26 4499.78 26297.77 19099.88 9899.60 115
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 7999.83 3699.70 6699.38 8399.78 5699.53 7899.67 10799.78 6499.19 4899.86 18097.32 22399.87 10699.55 140
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RRT_test8_iter0597.35 28897.25 28497.63 31198.81 32193.13 33799.26 11599.89 1299.51 8099.83 4699.68 12279.03 35499.88 14799.53 2699.72 19299.89 8
Fast-Effi-MVS+-dtu99.20 12899.12 11899.43 17299.25 26799.69 7099.05 17599.82 3699.50 8198.97 25399.05 29498.98 7399.98 698.20 15399.24 28998.62 305
new-patchmatchnet99.35 8699.57 3798.71 27799.82 4296.62 31098.55 24299.75 7099.50 8199.88 3299.87 3099.31 3599.88 14799.43 35100.00 199.62 104
ETV-MVS99.18 13599.18 10699.16 23199.34 24899.28 16799.12 16299.79 5299.48 8398.93 25798.55 33099.40 2299.93 6698.51 13199.52 24998.28 322
CANet_DTU98.91 18898.85 18399.09 23698.79 32398.13 26498.18 27299.31 26099.48 8398.86 26699.51 20596.56 25099.95 4299.05 8899.95 4799.19 249
Regformer-199.32 9799.27 9599.47 16099.41 22498.95 21598.99 18999.48 21199.48 8399.66 11199.52 20298.78 10199.87 16098.36 13799.74 18099.60 115
UnsupCasMVSNet_eth98.83 19998.57 21199.59 12399.68 12799.45 12698.99 18999.67 10799.48 8399.55 15699.36 24394.92 27599.86 18098.95 10296.57 34299.45 188
EPP-MVSNet99.17 13999.00 15699.66 9099.80 5599.43 13399.70 2299.24 27799.48 8399.56 15199.77 7194.89 27699.93 6698.72 12099.89 9099.63 92
Anonymous2024052999.42 6699.34 7499.65 9599.53 17599.60 9799.63 4599.39 24099.47 8899.76 7399.78 6498.13 17799.86 18098.70 12199.68 20499.49 173
xiu_mvs_v2_base99.02 16999.11 12198.77 27299.37 23498.09 26998.13 27899.51 20199.47 8899.42 18298.54 33199.38 2799.97 1698.83 10999.33 27898.24 324
PS-MVSNAJ99.00 17599.08 13198.76 27399.37 23498.10 26898.00 29399.51 20199.47 8899.41 19098.50 33399.28 4099.97 1698.83 10999.34 27698.20 328
Regformer-299.34 9199.27 9599.53 14599.41 22499.10 20298.99 18999.53 18999.47 8899.66 11199.52 20298.80 9699.89 13298.31 14399.74 18099.60 115
NR-MVSNet99.40 7399.31 8099.68 8199.43 21999.55 10999.73 1699.50 20499.46 9299.88 3299.36 24397.54 21999.87 16098.97 9699.87 10699.63 92
CDS-MVSNet99.22 12199.13 11599.50 15299.35 23899.11 19898.96 19699.54 18099.46 9299.61 13499.70 10596.31 26099.83 22499.34 4699.88 9899.55 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
E-PMN97.14 29297.43 28096.27 33098.79 32391.62 34695.54 34699.01 29499.44 9498.88 26499.12 28892.78 29699.68 30594.30 32399.03 29897.50 337
GBi-Net99.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
test199.42 6699.31 8099.73 6699.49 19599.77 3999.68 3199.70 9499.44 9499.62 12899.83 4097.21 23499.90 11998.96 9899.90 8299.53 150
FMVSNet299.35 8699.28 9299.55 13999.49 19599.35 15699.45 7199.57 16599.44 9499.70 9899.74 8197.21 23499.87 16099.03 8999.94 6099.44 193
3Dnovator+98.92 399.35 8699.24 10099.67 8399.35 23899.47 11799.62 4699.50 20499.44 9499.12 24299.78 6498.77 10499.94 5397.87 18299.72 19299.62 104
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7199.47 20699.56 10698.97 19599.61 13799.43 9999.67 10799.28 26297.85 19999.95 4299.17 7299.81 14799.65 81
UniMVSNet (Re)99.37 8199.26 9799.68 8199.51 18499.58 10398.98 19399.60 14799.43 9999.70 9899.36 24397.70 20699.88 14799.20 6599.87 10699.59 124
pmmvs-eth3d99.48 5299.47 5199.51 14999.77 7999.41 14098.81 21699.66 11199.42 10199.75 7899.66 13299.20 4799.76 27298.98 9499.99 1299.36 216
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 5799.59 5599.82 3699.39 10299.82 4899.84 3999.38 2799.91 10099.38 4199.93 6899.80 23
DU-MVS99.33 9599.21 10399.71 7599.43 21999.56 10698.83 21199.53 18999.38 10399.67 10799.36 24397.67 21199.95 4299.17 7299.81 14799.63 92
IS-MVSNet99.03 16798.85 18399.55 13999.80 5599.25 17599.73 1699.15 28699.37 10499.61 13499.71 9894.73 27999.81 25097.70 19799.88 9899.58 129
MVEpermissive92.54 2296.66 30296.11 30598.31 29399.68 12797.55 28997.94 30295.60 34499.37 10490.68 35098.70 32496.56 25098.61 34986.94 34799.55 24098.77 301
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 9199.30 8599.48 15899.51 18499.36 15298.12 27999.53 18999.36 10699.41 19099.61 16599.22 4699.87 16099.21 6299.68 20499.20 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 15998.92 17499.52 14698.89 31199.78 3799.15 14999.66 11199.34 10798.92 26099.24 27397.69 20899.98 698.11 16399.28 28398.81 299
mvs-test198.83 19998.70 19999.22 22498.89 31199.65 8298.88 20299.66 11199.34 10798.29 30398.94 31097.69 20899.96 3398.11 16398.54 32298.04 332
EMVS96.96 29597.28 28295.99 33398.76 32791.03 34995.26 34798.61 31099.34 10798.92 26098.88 31693.79 28799.66 31492.87 33199.05 29697.30 341
baseline197.73 27497.33 28198.96 24799.30 25997.73 28499.40 7998.42 31899.33 11099.46 17499.21 27791.18 31099.82 23498.35 13991.26 34799.32 225
EG-PatchMatch MVS99.57 3799.56 4199.62 11599.77 7999.33 15999.26 11599.76 6499.32 11199.80 5899.78 6499.29 3899.87 16099.15 7699.91 8199.66 73
RRT_MVS98.75 20898.54 21499.41 18198.14 34698.61 24098.98 19399.66 11199.31 11299.84 4199.75 7891.98 30199.98 699.20 6599.95 4799.62 104
XVS99.27 10799.11 12199.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27899.47 22098.47 14399.88 14797.62 20599.73 18799.67 63
X-MVStestdata96.09 31294.87 31999.75 5499.71 10999.71 5999.37 8799.61 13799.29 11398.76 27861.30 35598.47 14399.88 14797.62 20599.73 18799.67 63
MDA-MVSNet-bldmvs99.06 16099.05 14199.07 24099.80 5597.83 28098.89 20199.72 8799.29 11399.63 12199.70 10596.47 25499.89 13298.17 15999.82 13999.50 168
Anonymous20240521198.75 20898.46 21999.63 10699.34 24899.66 7799.47 7097.65 33199.28 11699.56 15199.50 20893.15 29299.84 21398.62 12699.58 23499.40 205
zzz-MVS99.30 10099.14 11299.80 2999.81 4999.81 2798.73 22899.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
MTAPA99.35 8699.20 10499.80 2999.81 4999.81 2799.33 9399.53 18999.27 11799.42 18299.63 14798.21 17099.95 4297.83 18899.79 15799.65 81
MVSTER98.47 23898.22 24099.24 22299.06 29798.35 25599.08 17299.46 21999.27 11799.75 7899.66 13288.61 33099.85 19899.14 8299.92 7299.52 160
DeepC-MVS98.90 499.62 3299.61 2999.67 8399.72 10699.44 12899.24 12199.71 9099.27 11799.93 1499.90 2199.70 1199.93 6698.99 9299.99 1299.64 87
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 15299.05 14199.28 21298.83 31798.56 24198.71 23099.41 23099.25 12199.23 22299.22 27597.66 21599.94 5399.19 6799.97 2999.33 222
v2v48299.50 4899.47 5199.58 12799.78 7199.25 17599.14 15199.58 16399.25 12199.81 5599.62 15698.24 16699.84 21399.83 999.97 2999.64 87
V4299.56 4099.54 4399.63 10699.79 6599.46 12199.39 8199.59 15499.24 12399.86 3799.70 10598.55 13099.82 23499.79 1199.95 4799.60 115
EPNet_dtu97.62 27897.79 27297.11 32296.67 35192.31 34198.51 24898.04 32499.24 12395.77 34599.47 22093.78 28899.66 31498.98 9499.62 22399.37 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120699.35 8699.31 8099.47 16099.74 9999.06 20899.28 11199.74 7599.23 12599.72 9199.53 20097.63 21799.88 14799.11 8499.84 12099.48 177
FMVSNet398.80 20398.63 20499.32 20499.13 28598.72 23399.10 16599.48 21199.23 12599.62 12899.64 13992.57 29799.86 18098.96 9899.90 8299.39 208
3Dnovator99.15 299.43 6399.36 7299.65 9599.39 22899.42 13699.70 2299.56 17099.23 12599.35 20199.80 5199.17 5099.95 4298.21 15299.84 12099.59 124
SD-MVS99.01 17399.30 8598.15 29799.50 19099.40 14198.94 19999.61 13799.22 12899.75 7899.82 4699.54 2095.51 35197.48 21599.87 10699.54 147
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 4599.53 4799.59 12399.79 6599.28 16799.10 16599.61 13799.20 12999.84 4199.73 8598.67 11699.84 21399.86 899.98 2199.64 87
APD-MVS_3200maxsize99.31 9999.16 10899.74 5999.53 17599.75 4799.27 11499.61 13799.19 13099.57 14499.64 13998.76 10599.90 11997.29 22599.62 22399.56 137
test_0728_THIRD99.18 13199.62 12899.61 16598.58 12799.91 10097.72 19499.80 15299.77 31
v14419299.55 4399.54 4399.58 12799.78 7199.20 19099.11 16499.62 13399.18 13199.89 2699.72 9198.66 11899.87 16099.88 699.97 2999.66 73
v119299.57 3799.57 3799.57 13299.77 7999.22 18499.04 17799.60 14799.18 13199.87 3699.72 9199.08 6399.85 19899.89 599.98 2199.66 73
v14899.40 7399.41 6299.39 18699.76 8398.94 21699.09 16999.59 15499.17 13499.81 5599.61 16598.41 15099.69 29499.32 5099.94 6099.53 150
MVS_Test99.28 10399.31 8099.19 22899.35 23898.79 23099.36 8999.49 20999.17 13499.21 22899.67 12898.78 10199.66 31499.09 8599.66 21599.10 267
MSP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3299.14 15199.31 26099.16 13699.62 12899.61 16598.35 15699.91 10097.88 17999.72 19299.61 111
test072699.69 11999.80 3299.24 12199.57 16599.16 13699.73 9099.65 13798.35 156
v192192099.56 4099.57 3799.55 13999.75 9399.11 19899.05 17599.61 13799.15 13899.88 3299.71 9899.08 6399.87 16099.90 299.97 2999.66 73
v124099.56 4099.58 3499.51 14999.80 5599.00 20999.00 18499.65 12299.15 13899.90 2299.75 7899.09 6099.88 14799.90 299.96 4099.67 63
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2499.20 13199.54 18099.13 14099.82 4899.63 14798.91 8299.92 8497.85 18599.70 19899.58 129
test_241102_TWO99.54 18099.13 14099.76 7399.63 14798.32 16199.92 8497.85 18599.69 20199.75 38
MVS-HIRNet97.86 27098.22 24096.76 32399.28 26391.53 34798.38 25992.60 35199.13 14099.31 21099.96 1097.18 23899.68 30598.34 14099.83 13099.07 278
test_241102_ONE99.69 11999.82 2499.54 18099.12 14399.82 4899.49 21398.91 8299.52 336
Vis-MVSNet (Re-imp)98.77 20598.58 21099.34 19899.78 7198.88 22599.61 5099.56 17099.11 14499.24 22199.56 19093.00 29599.78 26297.43 21899.89 9099.35 219
CS-MVS99.09 15799.03 14899.25 21999.45 21499.49 11499.41 7799.82 3699.10 14598.03 31998.48 33499.30 3799.89 13298.30 14499.41 26598.35 319
ppachtmachnet_test98.89 19399.12 11898.20 29699.66 13395.24 32797.63 31699.68 10399.08 14699.78 6699.62 15698.65 12099.88 14798.02 16799.96 4099.48 177
DeepC-MVS_fast98.47 599.23 11399.12 11899.56 13699.28 26399.22 18498.99 18999.40 23799.08 14699.58 14199.64 13998.90 8599.83 22497.44 21799.75 17299.63 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj99.11 15298.96 16799.54 14399.53 17599.25 17598.29 26599.76 6499.07 14899.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
save fliter99.53 17599.25 17598.29 26599.38 24699.07 148
our_test_398.85 19899.09 12998.13 29899.66 13394.90 33097.72 31299.58 16399.07 14899.64 11799.62 15698.19 17399.93 6698.41 13499.95 4799.55 140
abl_699.36 8499.23 10299.75 5499.71 10999.74 5299.33 9399.76 6499.07 14899.65 11599.63 14799.09 6099.92 8497.13 23899.76 16999.58 129
tttt051797.62 27897.20 28698.90 26199.76 8397.40 29399.48 6894.36 34799.06 15299.70 9899.49 21384.55 34599.94 5398.73 11999.65 21899.36 216
WR-MVS99.11 15298.93 17099.66 9099.30 25999.42 13698.42 25799.37 24799.04 15399.57 14499.20 27996.89 24699.86 18098.66 12599.87 10699.70 47
miper_lstm_enhance98.65 21798.60 20598.82 27099.20 27597.33 29597.78 31099.66 11199.01 15499.59 13999.50 20894.62 28099.85 19898.12 16299.90 8299.26 234
APDe-MVS99.48 5299.36 7299.85 1899.55 17199.81 2799.50 6499.69 10098.99 15599.75 7899.71 9898.79 9999.93 6698.46 13399.85 11699.80 23
ACMM98.09 1199.46 5999.38 6699.72 7199.80 5599.69 7099.13 15899.65 12298.99 15599.64 11799.72 9199.39 2399.86 18098.23 15099.81 14799.60 115
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_yl98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
DCV-MVSNet98.25 25597.95 25999.13 23299.17 28098.47 24499.00 18498.67 30898.97 15799.22 22699.02 29891.31 30899.69 29497.26 22898.93 30199.24 237
MIMVSNet98.43 24198.20 24299.11 23499.53 17598.38 25399.58 5798.61 31098.96 15999.33 20699.76 7490.92 31499.81 25097.38 22199.76 16999.15 257
PMMVS299.48 5299.45 5599.57 13299.76 8398.99 21098.09 28399.90 1198.95 16099.78 6699.58 18099.57 1999.93 6699.48 3199.95 4799.79 29
eth_miper_zixun_eth98.68 21598.71 19698.60 27999.10 29396.84 30797.52 32499.54 18098.94 16199.58 14199.48 21596.25 26299.76 27298.01 17099.93 6899.21 244
HQP_MVS98.90 19098.68 20199.55 13999.58 15099.24 18098.80 21999.54 18098.94 16199.14 23999.25 26897.24 23299.82 23495.84 29799.78 16399.60 115
plane_prior298.80 21998.94 161
LCM-MVSNet-Re99.28 10399.15 11199.67 8399.33 25399.76 4599.34 9199.97 298.93 16499.91 2099.79 5798.68 11399.93 6696.80 25599.56 23699.30 228
MDA-MVSNet_test_wron98.95 18598.99 16198.85 26399.64 13797.16 29998.23 27099.33 25498.93 16499.56 15199.66 13297.39 22699.83 22498.29 14599.88 9899.55 140
YYNet198.95 18598.99 16198.84 26599.64 13797.14 30098.22 27199.32 25698.92 16699.59 13999.66 13297.40 22499.83 22498.27 14799.90 8299.55 140
Patchmatch-RL test98.60 22098.36 23099.33 20099.77 7999.07 20698.27 26799.87 1798.91 16799.74 8699.72 9190.57 32199.79 25898.55 12999.85 11699.11 265
cl-mvsnet_98.54 22998.41 22598.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.85 28699.78 26297.97 17499.89 9099.17 253
cl-mvsnet198.54 22998.42 22498.92 25399.03 30197.80 28297.46 32699.59 15498.90 16899.60 13699.46 22393.87 28599.78 26297.97 17499.89 9099.18 251
cl_fuxian98.72 21398.71 19698.72 27599.12 28797.22 29897.68 31599.56 17098.90 16899.54 15899.48 21596.37 25999.73 28097.88 17999.88 9899.21 244
MG-MVS98.52 23298.39 22798.94 24999.15 28297.39 29498.18 27299.21 28198.89 17199.23 22299.63 14797.37 22899.74 27894.22 32499.61 23099.69 50
FMVSNet597.80 27197.25 28499.42 17498.83 31798.97 21399.38 8399.80 4698.87 17299.25 21899.69 11180.60 35199.91 10098.96 9899.90 8299.38 210
ab-mvs99.33 9599.28 9299.47 16099.57 16099.39 14399.78 1099.43 22798.87 17299.57 14499.82 4698.06 18299.87 16098.69 12399.73 18799.15 257
SR-MVS99.19 13199.00 15699.74 5999.51 18499.72 5799.18 13699.60 14798.85 17499.47 17199.58 18098.38 15399.92 8496.92 24699.54 24599.57 135
MSLP-MVS++99.05 16399.09 12998.91 25599.21 27298.36 25498.82 21599.47 21598.85 17498.90 26399.56 19098.78 10199.09 34598.57 12899.68 20499.26 234
PM-MVS99.36 8499.29 9099.58 12799.83 3699.66 7798.95 19799.86 1998.85 17499.81 5599.73 8598.40 15299.92 8498.36 13799.83 13099.17 253
MSDG99.08 15898.98 16499.37 19399.60 14599.13 19697.54 32099.74 7598.84 17799.53 16299.55 19699.10 5899.79 25897.07 24199.86 11399.18 251
pmmvs599.19 13199.11 12199.42 17499.76 8398.88 22598.55 24299.73 7898.82 17899.72 9199.62 15696.56 25099.82 23499.32 5099.95 4799.56 137
Effi-MVS+99.06 16098.97 16599.34 19899.31 25598.98 21198.31 26499.91 898.81 17998.79 27498.94 31099.14 5499.84 21398.79 11398.74 31499.20 247
Patchmatch-test98.10 26397.98 25798.48 28499.27 26596.48 31199.40 7999.07 29098.81 17999.23 22299.57 18790.11 32599.87 16096.69 26099.64 22099.09 270
CHOSEN 280x42098.41 24398.41 22598.40 28799.34 24895.89 32196.94 33999.44 22498.80 18199.25 21899.52 20293.51 29099.98 698.94 10399.98 2199.32 225
CSCG99.37 8199.29 9099.60 12199.71 10999.46 12199.43 7699.85 2398.79 18299.41 19099.60 17298.92 8099.92 8498.02 16799.92 7299.43 199
TinyColmap98.97 17998.93 17099.07 24099.46 21198.19 26197.75 31199.75 7098.79 18299.54 15899.70 10598.97 7599.62 32596.63 26599.83 13099.41 203
pmmvs499.13 14699.06 13799.36 19699.57 16099.10 20298.01 29199.25 27498.78 18499.58 14199.44 22798.24 16699.76 27298.74 11899.93 6899.22 242
TSAR-MVS + MP.99.34 9199.24 10099.63 10699.82 4299.37 14999.26 11599.35 25198.77 18599.57 14499.70 10599.27 4399.88 14797.71 19599.75 17299.65 81
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 30396.16 30497.93 30299.63 13996.09 31899.18 13697.57 33298.77 18598.72 28197.32 34987.04 33599.72 28288.57 34098.62 31997.98 333
ACMH98.42 699.59 3599.54 4399.72 7199.86 2999.62 9099.56 6099.79 5298.77 18599.80 5899.85 3599.64 1399.85 19898.70 12199.89 9099.70 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 14899.02 15099.40 18399.50 19099.11 19897.92 30499.71 9098.76 18899.08 24599.47 22099.17 5099.54 33497.85 18599.76 16999.54 147
thres100view90096.39 30696.03 30797.47 31499.63 13995.93 31999.18 13697.57 33298.75 18998.70 28397.31 35087.04 33599.67 31087.62 34398.51 32396.81 342
DeepPCF-MVS98.42 699.18 13599.02 15099.67 8399.22 27199.75 4797.25 33499.47 21598.72 19099.66 11199.70 10599.29 3899.63 32498.07 16699.81 14799.62 104
jason99.16 14099.11 12199.32 20499.75 9398.44 24798.26 26899.39 24098.70 19199.74 8699.30 25798.54 13299.97 1698.48 13299.82 13999.55 140
jason: jason.
MVS_111021_LR99.13 14699.03 14899.42 17499.58 15099.32 16197.91 30699.73 7898.68 19299.31 21099.48 21599.09 6099.66 31497.70 19799.77 16799.29 231
CHOSEN 1792x268899.39 7799.30 8599.65 9599.88 2399.25 17598.78 22399.88 1598.66 19399.96 899.79 5797.45 22299.93 6699.34 4699.99 1299.78 30
NCCC98.82 20198.57 21199.58 12799.21 27299.31 16298.61 23299.25 27498.65 19498.43 30099.26 26697.86 19899.81 25096.55 26799.27 28699.61 111
HyFIR lowres test98.91 18898.64 20299.73 6699.85 3299.47 11798.07 28699.83 3198.64 19599.89 2699.60 17292.57 297100.00 199.33 4899.97 2999.72 41
MVP-Stereo99.16 14099.08 13199.43 17299.48 20199.07 20699.08 17299.55 17598.63 19699.31 21099.68 12298.19 17399.78 26298.18 15799.58 23499.45 188
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 12699.07 13599.63 10699.78 7199.64 8499.12 16299.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
TestCases99.63 10699.78 7199.64 8499.83 3198.63 19699.63 12199.72 9198.68 11399.75 27696.38 27799.83 13099.51 162
thisisatest053097.45 28396.95 29398.94 24999.68 12797.73 28499.09 16994.19 34998.61 19999.56 15199.30 25784.30 34699.93 6698.27 14799.54 24599.16 255
API-MVS98.38 24698.39 22798.35 28998.83 31799.26 17199.14 15199.18 28398.59 20098.66 28598.78 32198.61 12499.57 33394.14 32599.56 23696.21 344
CNVR-MVS98.99 17898.80 19199.56 13699.25 26799.43 13398.54 24599.27 26998.58 20198.80 27399.43 22898.53 13699.70 28897.22 23399.59 23399.54 147
MVS_030498.88 19498.71 19699.39 18698.85 31598.91 22399.45 7199.30 26398.56 20297.26 33799.68 12296.18 26499.96 3399.17 7299.94 6099.29 231
ITE_SJBPF99.38 19099.63 13999.44 12899.73 7898.56 20299.33 20699.53 20098.88 8799.68 30596.01 28899.65 21899.02 283
D2MVS99.22 12199.19 10599.29 21099.69 11998.74 23298.81 21699.41 23098.55 20499.68 10399.69 11198.13 17799.87 16098.82 11199.98 2199.24 237
DPE-MVS99.14 14498.92 17499.82 2399.57 16099.77 3998.74 22699.60 14798.55 20499.76 7399.69 11198.23 16999.92 8496.39 27699.75 17299.76 35
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 7799.18 13699.60 14798.55 20499.57 14499.67 12899.03 7099.94 5397.01 24299.80 15299.69 50
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS99.04 16698.79 19299.81 2699.78 7199.73 5399.35 9099.57 16598.54 20799.54 15898.99 30096.81 24799.93 6696.97 24499.53 24799.77 31
tpmrst97.73 27498.07 25296.73 32598.71 32992.00 34299.10 16598.86 29798.52 20898.92 26099.54 19891.90 30299.82 23498.02 16799.03 29898.37 318
MDTV_nov1_ep1397.73 27498.70 33090.83 35099.15 14998.02 32598.51 20998.82 27099.61 16590.98 31399.66 31496.89 24998.92 303
miper_ehance_all_eth98.59 22298.59 20798.59 28098.98 30497.07 30197.49 32599.52 19898.50 21099.52 16499.37 23896.41 25899.71 28697.86 18399.62 22399.00 285
OPM-MVS99.26 10899.13 11599.63 10699.70 11699.61 9698.58 23699.48 21198.50 21099.52 16499.63 14799.14 5499.76 27297.89 17899.77 16799.51 162
MS-PatchMatch99.00 17598.97 16599.09 23699.11 29298.19 26198.76 22599.33 25498.49 21299.44 17699.58 18098.21 17099.69 29498.20 15399.62 22399.39 208
CNLPA98.57 22498.34 23399.28 21299.18 27999.10 20298.34 26099.41 23098.48 21398.52 29598.98 30397.05 24299.78 26295.59 30399.50 25298.96 286
HPM-MVS++copyleft98.96 18298.70 19999.74 5999.52 18099.71 5998.86 20699.19 28298.47 21498.59 29099.06 29398.08 18199.91 10096.94 24599.60 23199.60 115
tfpn200view996.30 30995.89 30897.53 31299.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32396.81 342
TESTMET0.1,196.24 31095.84 31197.41 31698.24 34193.84 33497.38 32895.84 34398.43 21597.81 32898.56 32979.77 35299.89 13297.77 19098.77 31098.52 312
thres40096.40 30595.89 30897.92 30399.58 15096.11 31699.00 18497.54 33598.43 21598.52 29596.98 35286.85 33799.67 31087.62 34398.51 32397.98 333
EIA-MVS99.12 14899.01 15399.45 16799.36 23699.62 9099.34 9199.79 5298.41 21898.84 26898.89 31598.75 10799.84 21398.15 16199.51 25098.89 292
region2R99.23 11399.05 14199.77 3999.76 8399.70 6699.31 10099.59 15498.41 21899.32 20899.36 24398.73 11099.93 6697.29 22599.74 18099.67 63
MCST-MVS99.02 16998.81 18999.65 9599.58 15099.49 11498.58 23699.07 29098.40 22099.04 25099.25 26898.51 14199.80 25597.31 22499.51 25099.65 81
XVG-OURS-SEG-HR99.16 14098.99 16199.66 9099.84 3399.64 8498.25 26999.73 7898.39 22199.63 12199.43 22899.70 1199.90 11997.34 22298.64 31899.44 193
testgi99.29 10299.26 9799.37 19399.75 9398.81 22898.84 20999.89 1298.38 22299.75 7899.04 29799.36 3299.86 18099.08 8699.25 28799.45 188
CP-MVS99.23 11399.05 14199.75 5499.66 13399.66 7799.38 8399.62 13398.38 22299.06 24999.27 26498.79 9999.94 5397.51 21499.82 13999.66 73
HFP-MVS99.25 10999.08 13199.76 4599.73 10299.70 6699.31 10099.59 15498.36 22499.36 19999.37 23898.80 9699.91 10097.43 21899.75 17299.68 56
ACMMPR99.23 11399.06 13799.76 4599.74 9999.69 7099.31 10099.59 15498.36 22499.35 20199.38 23798.61 12499.93 6697.43 21899.75 17299.67 63
plane_prior399.31 16298.36 22499.14 239
XVG-OURS99.21 12699.06 13799.65 9599.82 4299.62 9097.87 30799.74 7598.36 22499.66 11199.68 12299.71 999.90 11996.84 25399.88 9899.43 199
XVG-ACMP-BASELINE99.23 11399.10 12899.63 10699.82 4299.58 10398.83 21199.72 8798.36 22499.60 13699.71 9898.92 8099.91 10097.08 24099.84 12099.40 205
MP-MVScopyleft99.06 16098.83 18799.76 4599.76 8399.71 5999.32 9699.50 20498.35 22998.97 25399.48 21598.37 15499.92 8495.95 29499.75 17299.63 92
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3699.81 2799.52 6299.70 9498.35 22999.51 16799.50 20899.31 3599.88 14798.18 15799.84 12099.69 50
N_pmnet98.73 21298.53 21699.35 19799.72 10698.67 23698.34 26094.65 34698.35 22999.79 6399.68 12298.03 18399.93 6698.28 14699.92 7299.44 193
BH-RMVSNet98.41 24398.14 24999.21 22599.21 27298.47 24498.60 23498.26 32398.35 22998.93 25799.31 25597.20 23799.66 31494.32 32299.10 29499.51 162
mPP-MVS99.19 13199.00 15699.76 4599.76 8399.68 7399.38 8399.54 18098.34 23399.01 25199.50 20898.53 13699.93 6697.18 23699.78 16399.66 73
RPSCF99.18 13599.02 15099.64 10299.83 3699.85 1199.44 7499.82 3698.33 23499.50 16899.78 6497.90 19499.65 32196.78 25699.83 13099.44 193
GA-MVS97.99 26997.68 27698.93 25299.52 18098.04 27297.19 33699.05 29398.32 23598.81 27198.97 30689.89 32899.41 34298.33 14199.05 29699.34 221
LF4IMVS99.01 17398.92 17499.27 21499.71 10999.28 16798.59 23599.77 5998.32 23599.39 19699.41 23098.62 12299.84 21396.62 26699.84 12098.69 303
lupinMVS98.96 18298.87 18199.24 22299.57 16098.40 25098.12 27999.18 28398.28 23799.63 12199.13 28498.02 18599.97 1698.22 15199.69 20199.35 219
ACMMP_NAP99.28 10399.11 12199.79 3499.75 9399.81 2798.95 19799.53 18998.27 23899.53 16299.73 8598.75 10799.87 16097.70 19799.83 13099.68 56
SCA98.11 26298.36 23097.36 31799.20 27592.99 33898.17 27498.49 31698.24 23999.10 24499.57 18796.01 26799.94 5396.86 25099.62 22399.14 261
GST-MVS99.16 14098.96 16799.75 5499.73 10299.73 5399.20 13199.55 17598.22 24099.32 20899.35 24898.65 12099.91 10096.86 25099.74 18099.62 104
EPMVS96.53 30496.32 30197.17 32198.18 34392.97 33999.39 8189.95 35398.21 24198.61 28899.59 17886.69 34199.72 28296.99 24399.23 29198.81 299
USDC98.96 18298.93 17099.05 24299.54 17297.99 27397.07 33799.80 4698.21 24199.75 7899.77 7198.43 14899.64 32397.90 17799.88 9899.51 162
ZNCC-MVS99.22 12199.04 14699.77 3999.76 8399.73 5399.28 11199.56 17098.19 24399.14 23999.29 26098.84 9199.92 8497.53 21399.80 15299.64 87
TSAR-MVS + GP.99.12 14899.04 14699.38 19099.34 24899.16 19398.15 27599.29 26598.18 24499.63 12199.62 15699.18 4999.68 30598.20 15399.74 18099.30 228
PatchmatchNetpermissive97.65 27797.80 27097.18 32098.82 32092.49 34099.17 14198.39 32098.12 24598.79 27499.58 18090.71 31999.89 13297.23 23299.41 26599.16 255
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WTY-MVS98.59 22298.37 22999.26 21699.43 21998.40 25098.74 22699.13 28998.10 24699.21 22899.24 27394.82 27799.90 11997.86 18398.77 31099.49 173
ACMMPcopyleft99.25 10999.08 13199.74 5999.79 6599.68 7399.50 6499.65 12298.07 24799.52 16499.69 11198.57 12899.92 8497.18 23699.79 15799.63 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 31295.68 31497.33 31999.48 20196.22 31598.53 24697.57 33298.06 24898.37 30296.73 35486.84 33999.61 32986.99 34698.57 32096.16 345
test-LLR97.15 29096.95 29397.74 30998.18 34395.02 32897.38 32896.10 33998.00 24997.81 32898.58 32690.04 32699.91 10097.69 20398.78 30898.31 320
test0.0.03 197.37 28696.91 29698.74 27497.72 34797.57 28897.60 31897.36 33798.00 24999.21 22898.02 34190.04 32699.79 25898.37 13695.89 34598.86 295
PGM-MVS99.20 12899.01 15399.77 3999.75 9399.71 5999.16 14799.72 8797.99 25199.42 18299.60 17298.81 9299.93 6696.91 24799.74 18099.66 73
new_pmnet98.88 19498.89 17998.84 26599.70 11697.62 28798.15 27599.50 20497.98 25299.62 12899.54 19898.15 17699.94 5397.55 21099.84 12098.95 287
SF-MVS99.10 15698.93 17099.62 11599.58 15099.51 11299.13 15899.65 12297.97 25399.42 18299.61 16598.86 8899.87 16096.45 27499.68 20499.49 173
PVSNet_Blended_VisFu99.40 7399.38 6699.44 16999.90 1998.66 23798.94 19999.91 897.97 25399.79 6399.73 8599.05 6899.97 1699.15 7699.99 1299.68 56
wuyk23d97.58 28099.13 11592.93 33499.69 11999.49 11499.52 6299.77 5997.97 25399.96 899.79 5799.84 399.94 5395.85 29699.82 13979.36 347
ET-MVSNet_ETH3D96.78 29896.07 30698.91 25599.26 26697.92 27997.70 31496.05 34297.96 25692.37 34998.43 33587.06 33499.90 11998.27 14797.56 33998.91 291
sss98.90 19098.77 19399.27 21499.48 20198.44 24798.72 22999.32 25697.94 25799.37 19899.35 24896.31 26099.91 10098.85 10899.63 22299.47 182
test-mter96.23 31195.73 31397.74 30998.18 34395.02 32897.38 32896.10 33997.90 25897.81 32898.58 32679.12 35399.91 10097.69 20398.78 30898.31 320
PHI-MVS99.11 15298.95 16999.59 12399.13 28599.59 10099.17 14199.65 12297.88 25999.25 21899.46 22398.97 7599.80 25597.26 22899.82 13999.37 213
test_prior398.62 21898.34 23399.46 16399.35 23899.22 18497.95 30099.39 24097.87 26098.05 31699.05 29497.90 19499.69 29495.99 29099.49 25499.48 177
test_prior297.95 30097.87 26098.05 31699.05 29497.90 19495.99 29099.49 254
plane_prior99.24 18098.42 25797.87 26099.71 196
testdata197.72 31297.86 263
AdaColmapbinary98.60 22098.35 23299.38 19099.12 28799.22 18498.67 23199.42 22997.84 26498.81 27199.27 26497.32 23099.81 25095.14 31299.53 24799.10 267
BH-untuned98.22 25998.09 25198.58 28199.38 23197.24 29798.55 24298.98 29597.81 26599.20 23398.76 32297.01 24399.65 32194.83 31698.33 32698.86 295
tpmvs97.39 28597.69 27596.52 32898.41 33691.76 34499.30 10398.94 29697.74 26697.85 32799.55 19692.40 30099.73 28096.25 28298.73 31698.06 331
HPM-MVScopyleft99.25 10999.07 13599.78 3799.81 4999.75 4799.61 5099.67 10797.72 26799.35 20199.25 26899.23 4599.92 8497.21 23499.82 13999.67 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 29096.95 29397.75 30898.91 30794.24 33399.32 9697.96 32697.71 26898.29 30399.32 25386.72 34099.92 8498.10 16596.24 34499.09 270
PVSNet97.47 1598.42 24298.44 22198.35 28999.46 21196.26 31496.70 34299.34 25397.68 26999.00 25299.13 28497.40 22499.72 28297.59 20999.68 20499.08 273
1112_ss99.05 16398.84 18599.67 8399.66 13399.29 16598.52 24799.82 3697.65 27099.43 18099.16 28296.42 25699.91 10099.07 8799.84 12099.80 23
PVSNet_BlendedMVS99.03 16799.01 15399.09 23699.54 17297.99 27398.58 23699.82 3697.62 27199.34 20499.71 9898.52 13999.77 27097.98 17299.97 2999.52 160
#test#99.12 14898.90 17899.76 4599.73 10299.70 6699.10 16599.59 15497.60 27299.36 19999.37 23898.80 9699.91 10096.84 25399.75 17299.68 56
LPG-MVS_test99.22 12199.05 14199.74 5999.82 4299.63 8899.16 14799.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
LGP-MVS_train99.74 5999.82 4299.63 8899.73 7897.56 27399.64 11799.69 11199.37 2999.89 13296.66 26399.87 10699.69 50
PAPM_NR98.36 24798.04 25399.33 20099.48 20198.93 22098.79 22299.28 26897.54 27598.56 29398.57 32897.12 23999.69 29494.09 32698.90 30599.38 210
PMMVS98.49 23698.29 23699.11 23498.96 30598.42 24997.54 32099.32 25697.53 27698.47 29998.15 34097.88 19799.82 23497.46 21699.24 28999.09 270
9.1498.64 20299.45 21498.81 21699.60 14797.52 27799.28 21599.56 19098.53 13699.83 22495.36 31099.64 220
IU-MVS99.69 11999.77 3999.22 27997.50 27899.69 10197.75 19299.70 19899.77 31
UnsupCasMVSNet_bld98.55 22898.27 23799.40 18399.56 17099.37 14997.97 29999.68 10397.49 27999.08 24599.35 24895.41 27499.82 23497.70 19798.19 33099.01 284
HQP-NCC99.31 25597.98 29697.45 28098.15 310
ACMP_Plane99.31 25597.98 29697.45 28098.15 310
HQP-MVS98.36 24798.02 25499.39 18699.31 25598.94 21697.98 29699.37 24797.45 28098.15 31098.83 31896.67 24899.70 28894.73 31799.67 21199.53 150
SMA-MVS99.19 13199.00 15699.73 6699.46 21199.73 5399.13 15899.52 19897.40 28399.57 14499.64 13998.93 7999.83 22497.61 20799.79 15799.63 92
CR-MVSNet98.35 25098.20 24298.83 26799.05 29898.12 26599.30 10399.67 10797.39 28499.16 23599.79 5791.87 30499.91 10098.78 11698.77 31098.44 316
MDTV_nov1_ep13_2view91.44 34899.14 15197.37 28599.21 22891.78 30696.75 25799.03 282
dp96.86 29697.07 28996.24 33198.68 33190.30 35399.19 13598.38 32197.35 28698.23 30899.59 17887.23 33399.82 23496.27 28198.73 31698.59 307
ETH3D-3000-0.198.77 20598.50 21799.59 12399.47 20699.53 11198.77 22499.60 14797.33 28799.23 22299.50 20897.91 19399.83 22495.02 31599.67 21199.41 203
cl-mvsnet297.56 28197.28 28298.40 28798.37 33896.75 30897.24 33599.37 24797.31 28899.41 19099.22 27587.30 33299.37 34397.70 19799.62 22399.08 273
OMC-MVS98.90 19098.72 19599.44 16999.39 22899.42 13698.58 23699.64 12897.31 28899.44 17699.62 15698.59 12699.69 29496.17 28499.79 15799.22 242
thisisatest051596.98 29496.42 30098.66 27899.42 22397.47 29097.27 33394.30 34897.24 29099.15 23798.86 31785.01 34399.87 16097.10 23999.39 26898.63 304
baseline296.83 29796.28 30298.46 28599.09 29596.91 30598.83 21193.87 35097.23 29196.23 34498.36 33688.12 33199.90 11996.68 26198.14 33298.57 310
Fast-Effi-MVS+99.02 16998.87 18199.46 16399.38 23199.50 11399.04 17799.79 5297.17 29298.62 28798.74 32399.34 3399.95 4298.32 14299.41 26598.92 290
FPMVS96.32 30895.50 31598.79 27199.60 14598.17 26398.46 25698.80 30197.16 29396.28 34199.63 14782.19 34799.09 34588.45 34198.89 30699.10 267
Test_1112_low_res98.95 18598.73 19499.63 10699.68 12799.15 19598.09 28399.80 4697.14 29499.46 17499.40 23296.11 26599.89 13299.01 9199.84 12099.84 14
PatchMatch-RL98.68 21598.47 21899.30 20999.44 21799.28 16798.14 27799.54 18097.12 29599.11 24399.25 26897.80 20299.70 28896.51 27099.30 28198.93 289
ACMP97.51 1499.05 16398.84 18599.67 8399.78 7199.55 10998.88 20299.66 11197.11 29699.47 17199.60 17299.07 6599.89 13296.18 28399.85 11699.58 129
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 27297.66 27898.12 29999.14 28395.36 32599.22 12898.75 30496.97 29798.25 30699.64 13990.90 31599.94 5396.51 27099.56 23699.08 273
ADS-MVSNet97.72 27697.67 27797.86 30499.14 28394.65 33199.22 12898.86 29796.97 29798.25 30699.64 13990.90 31599.84 21396.51 27099.56 23699.08 273
testtj98.56 22598.17 24799.72 7199.45 21499.60 9798.88 20299.50 20496.88 29999.18 23499.48 21597.08 24199.92 8493.69 33099.38 26999.63 92
DPM-MVS98.28 25397.94 26399.32 20499.36 23699.11 19897.31 33298.78 30296.88 29998.84 26899.11 29097.77 20499.61 32994.03 32799.36 27499.23 240
TR-MVS97.44 28497.15 28898.32 29198.53 33497.46 29198.47 25197.91 32896.85 30198.21 30998.51 33296.42 25699.51 33792.16 33397.29 34097.98 333
MP-MVS-pluss99.14 14498.92 17499.80 2999.83 3699.83 2098.61 23299.63 13096.84 30299.44 17699.58 18098.81 9299.91 10097.70 19799.82 13999.67 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 26097.95 25998.99 24599.03 30198.24 25799.61 5098.72 30596.81 30398.73 28099.51 20594.06 28499.86 18096.91 24798.20 32898.86 295
APD-MVScopyleft98.87 19698.59 20799.71 7599.50 19099.62 9099.01 18299.57 16596.80 30499.54 15899.63 14798.29 16299.91 10095.24 31199.71 19699.61 111
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 19399.47 20698.87 22799.27 26996.74 30598.26 30599.32 25397.93 19299.82 23495.96 29399.38 26999.43 199
ETH3D cwj APD-0.1698.50 23398.16 24899.51 14999.04 30099.39 14398.47 25199.47 21596.70 30698.78 27699.33 25297.62 21899.86 18094.69 32099.38 26999.28 233
CPTT-MVS98.74 21098.44 22199.64 10299.61 14399.38 14699.18 13699.55 17596.49 30799.27 21699.37 23897.11 24099.92 8495.74 30199.67 21199.62 104
CLD-MVS98.76 20798.57 21199.33 20099.57 16098.97 21397.53 32299.55 17596.41 30899.27 21699.13 28499.07 6599.78 26296.73 25999.89 9099.23 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_enhance_ethall98.03 26697.94 26398.32 29198.27 34096.43 31396.95 33899.41 23096.37 30999.43 18098.96 30894.74 27899.69 29497.71 19599.62 22398.83 298
F-COLMAP98.74 21098.45 22099.62 11599.57 16099.47 11798.84 20999.65 12296.31 31098.93 25799.19 28197.68 21099.87 16096.52 26999.37 27399.53 150
testdata99.42 17499.51 18498.93 22099.30 26396.20 31198.87 26599.40 23298.33 16099.89 13296.29 28099.28 28399.44 193
PVSNet_095.53 1995.85 31695.31 31797.47 31498.78 32593.48 33695.72 34599.40 23796.18 31297.37 33497.73 34495.73 27099.58 33295.49 30581.40 34899.36 216
IB-MVS95.41 2095.30 32094.46 32297.84 30598.76 32795.33 32697.33 33196.07 34196.02 31395.37 34797.41 34876.17 35599.96 3397.54 21195.44 34698.22 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test96.03 31495.80 31296.71 32798.50 33591.93 34399.25 12097.87 32995.99 31496.81 34097.61 34681.02 34999.66 31497.20 23597.98 33598.54 311
pmmvs398.08 26497.80 27098.91 25599.41 22497.69 28697.87 30799.66 11195.87 31599.50 16899.51 20590.35 32399.97 1698.55 12999.47 25699.08 273
无先验98.01 29199.23 27895.83 31699.85 19895.79 29999.44 193
112198.56 22598.24 23899.52 14699.49 19599.24 18099.30 10399.22 27995.77 31798.52 29599.29 26097.39 22699.85 19895.79 29999.34 27699.46 186
BH-w/o97.20 28997.01 29197.76 30799.08 29695.69 32298.03 29098.52 31395.76 31897.96 32198.02 34195.62 27299.47 33992.82 33297.25 34198.12 330
PVSNet_Blended98.70 21498.59 20799.02 24499.54 17297.99 27397.58 31999.82 3695.70 31999.34 20498.98 30398.52 13999.77 27097.98 17299.83 13099.30 228
新几何199.52 14699.50 19099.22 18499.26 27195.66 32098.60 28999.28 26297.67 21199.89 13295.95 29499.32 27999.45 188
CMPMVSbinary77.52 2398.50 23398.19 24599.41 18198.33 33999.56 10699.01 18299.59 15495.44 32199.57 14499.80 5195.64 27199.46 34196.47 27399.92 7299.21 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 25797.92 26599.19 22898.78 32599.65 8299.17 14199.14 28795.36 32298.04 31898.81 32097.47 22199.72 28295.47 30799.06 29598.21 326
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 30295.33 32398.94 25699.88 14796.75 257
CDPH-MVS98.56 22598.20 24299.61 11999.50 19099.46 12198.32 26399.41 23095.22 32499.21 22899.10 29198.34 15899.82 23495.09 31499.66 21599.56 137
test22299.51 18499.08 20597.83 30999.29 26595.21 32598.68 28499.31 25597.28 23199.38 26999.43 199
PLCcopyleft97.35 1698.36 24797.99 25599.48 15899.32 25499.24 18098.50 24999.51 20195.19 32698.58 29198.96 30896.95 24599.83 22495.63 30299.25 28799.37 213
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 26897.90 26898.27 29598.90 30897.45 29299.30 10399.06 29294.98 32797.21 33899.12 28898.43 14899.67 31095.58 30498.56 32197.71 336
train_agg98.35 25097.95 25999.57 13299.35 23899.35 15698.11 28199.41 23094.90 32897.92 32298.99 30098.02 18599.85 19895.38 30999.44 25999.50 168
test_899.34 24899.31 16298.08 28599.40 23794.90 32897.87 32698.97 30698.02 18599.84 213
DP-MVS Recon98.50 23398.23 23999.31 20799.49 19599.46 12198.56 24199.63 13094.86 33098.85 26799.37 23897.81 20199.59 33196.08 28599.44 25998.88 293
agg_prior198.33 25297.92 26599.57 13299.35 23899.36 15297.99 29599.39 24094.85 33197.76 33198.98 30398.03 18399.85 19895.49 30599.44 25999.51 162
TEST999.35 23899.35 15698.11 28199.41 23094.83 33297.92 32298.99 30098.02 18599.85 198
CostFormer96.71 30196.79 29996.46 32998.90 30890.71 35199.41 7798.68 30694.69 33398.14 31499.34 25186.32 34299.80 25597.60 20898.07 33498.88 293
PAPR97.56 28197.07 28999.04 24398.80 32298.11 26797.63 31699.25 27494.56 33498.02 32098.25 33997.43 22399.68 30590.90 33898.74 31499.33 222
gm-plane-assit97.59 34889.02 35493.47 33598.30 33799.84 21396.38 277
tpm296.35 30796.22 30396.73 32598.88 31491.75 34599.21 13098.51 31493.27 33697.89 32499.21 27784.83 34499.70 28896.04 28798.18 33198.75 302
ETH3 D test640097.76 27397.19 28799.50 15299.38 23199.26 17198.34 26099.49 20992.99 33798.54 29499.20 27995.92 26999.82 23491.14 33799.66 21599.40 205
tpm cat196.78 29896.98 29296.16 33298.85 31590.59 35299.08 17299.32 25692.37 33897.73 33399.46 22391.15 31199.69 29496.07 28698.80 30798.21 326
cascas96.99 29396.82 29897.48 31397.57 35095.64 32396.43 34499.56 17091.75 33997.13 33997.61 34695.58 27398.63 34896.68 26199.11 29398.18 329
QAPM98.40 24597.99 25599.65 9599.39 22899.47 11799.67 3599.52 19891.70 34098.78 27699.80 5198.55 13099.95 4294.71 31999.75 17299.53 150
OpenMVScopyleft98.12 1098.23 25897.89 26999.26 21699.19 27799.26 17199.65 4399.69 10091.33 34198.14 31499.77 7198.28 16399.96 3395.41 30899.55 24098.58 309
PAPM95.61 31994.71 32098.31 29399.12 28796.63 30996.66 34398.46 31790.77 34296.25 34298.68 32593.01 29499.69 29481.60 34897.86 33798.62 305
114514_t98.49 23698.11 25099.64 10299.73 10299.58 10399.24 12199.76 6489.94 34399.42 18299.56 19097.76 20599.86 18097.74 19399.82 13999.47 182
TAPA-MVS97.92 1398.03 26697.55 27999.46 16399.47 20699.44 12898.50 24999.62 13386.79 34499.07 24899.26 26698.26 16599.62 32597.28 22799.73 18799.31 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 30095.86 31099.33 20099.44 21799.16 19396.87 34099.44 22486.58 34598.95 25599.40 23294.38 28299.88 14787.93 34299.80 15298.95 287
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 28796.84 29798.89 26299.29 26199.45 12698.87 20599.48 21186.54 34699.44 17699.74 8197.34 22999.86 18091.61 33499.28 28397.37 340
tmp_tt95.75 31795.42 31696.76 32389.90 35394.42 33298.86 20697.87 32978.01 34799.30 21499.69 11197.70 20695.89 35099.29 5798.14 33299.95 1
DeepMVS_CXcopyleft97.98 30099.69 11996.95 30399.26 27175.51 34895.74 34698.28 33896.47 25499.62 32591.23 33697.89 33697.38 339
MVS95.72 31894.63 32198.99 24598.56 33397.98 27899.30 10398.86 29772.71 34997.30 33599.08 29298.34 15899.74 27889.21 33998.33 32699.26 234
test12329.31 32133.05 32518.08 33525.93 35512.24 35597.53 32210.93 35711.78 35024.21 35150.08 35921.04 3568.60 35223.51 34932.43 35033.39 348
testmvs28.94 32233.33 32315.79 33626.03 3549.81 35696.77 34115.67 35611.55 35123.87 35250.74 35819.03 3578.53 35323.21 35033.07 34929.03 349
uanet_test8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.88 32333.17 3240.00 3370.00 3560.00 3570.00 34899.62 1330.00 3520.00 35399.13 28499.82 40.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas16.61 32422.14 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 199.28 400.00 3540.00 3510.00 3510.00 350
sosnet-low-res8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
sosnet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
Regformer8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.26 33111.02 3330.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35399.16 2820.00 3580.00 3540.00 3510.00 3510.00 350
uanet8.33 32511.11 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 353100.00 10.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.29 21099.12 28799.44 12899.20 13199.40 23299.00 7198.84 34796.54 26899.60 23199.58 129
test_0728_SECOND99.83 2199.70 11699.79 3499.14 15199.61 13799.92 8497.88 17999.72 19299.77 31
GSMVS99.14 261
test_part299.62 14299.67 7599.55 156
test_part10.00 3370.00 3570.00 34899.53 1890.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs190.81 31899.14 261
sam_mvs90.52 322
ambc99.20 22799.35 23898.53 24299.17 14199.46 21999.67 10799.80 5198.46 14699.70 28897.92 17699.70 19899.38 210
MTGPAbinary99.53 189
test_post199.14 15151.63 35789.54 32999.82 23496.86 250
test_post52.41 35690.25 32499.86 180
patchmatchnet-post99.62 15690.58 32099.94 53
GG-mvs-BLEND97.36 31797.59 34896.87 30699.70 2288.49 35594.64 34897.26 35180.66 35099.12 34491.50 33596.50 34396.08 346
MTMP99.09 16998.59 312
test9_res95.10 31399.44 25999.50 168
agg_prior294.58 32199.46 25899.50 168
agg_prior99.35 23899.36 15299.39 24097.76 33199.85 198
test_prior499.19 19198.00 293
test_prior99.46 16399.35 23899.22 18499.39 24099.69 29499.48 177
新几何298.04 289
旧先验199.49 19599.29 16599.26 27199.39 23697.67 21199.36 27499.46 186
原ACMM297.92 304
testdata299.89 13295.99 290
segment_acmp98.37 154
test1299.54 14399.29 26199.33 15999.16 28598.43 30097.54 21999.82 23499.47 25699.48 177
plane_prior799.58 15099.38 146
plane_prior699.47 20699.26 17197.24 232
plane_prior599.54 18099.82 23495.84 29799.78 16399.60 115
plane_prior499.25 268
plane_prior199.51 184
n20.00 358
nn0.00 358
door-mid99.83 31
lessismore_v099.64 10299.86 2999.38 14690.66 35299.89 2699.83 4094.56 28199.97 1699.56 2399.92 7299.57 135
test1199.29 265
door99.77 59
HQP5-MVS98.94 216
BP-MVS94.73 317
HQP4-MVS98.15 31099.70 28899.53 150
HQP3-MVS99.37 24799.67 211
HQP2-MVS96.67 248
NP-MVS99.40 22799.13 19698.83 318
ACMMP++_ref99.94 60
ACMMP++99.79 157
Test By Simon98.41 150