This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
tmp_tt95.75 33595.42 33396.76 34389.90 38094.42 35398.86 22297.87 35178.01 37199.30 23599.69 11997.70 21895.89 37599.29 6898.14 35399.95 1
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4599.68 3899.85 2799.95 399.98 399.92 1799.28 4299.98 799.75 13100.00 199.94 2
mvs_tets99.90 299.90 299.90 499.96 499.79 3999.72 2499.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
UA-Net99.78 1399.76 1499.86 1699.72 11099.71 7199.91 399.95 699.96 299.71 10399.91 2099.15 5599.97 1899.50 37100.00 199.90 4
jajsoiax99.89 399.89 399.89 799.96 499.78 4299.70 2999.86 2399.89 1399.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
EU-MVSNet99.39 8399.62 2898.72 29299.88 2596.44 33399.56 7199.85 2799.90 799.90 2299.85 4198.09 19099.83 24699.58 2699.95 5399.90 4
test_djsdf99.84 899.81 999.91 299.94 1099.84 2199.77 1299.80 5099.73 4599.97 699.92 1799.77 799.98 799.43 43100.00 199.90 4
RRT_test8_iter0597.35 30497.25 30197.63 32898.81 34593.13 36099.26 12899.89 1599.51 9399.83 5099.68 13079.03 37899.88 16799.53 3299.72 20499.89 8
CVMVSNet98.61 23098.88 18997.80 32399.58 16293.60 35899.26 12899.64 13699.66 6799.72 9899.67 13693.26 30999.93 7499.30 6599.81 15899.87 9
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
FC-MVSNet-test99.70 1999.65 2599.86 1699.88 2599.86 1399.72 2499.78 6199.90 799.82 5299.83 4798.45 15499.87 18099.51 3599.97 3399.86 11
PS-CasMVS99.66 2799.58 3999.89 799.80 5899.85 1699.66 4699.73 8499.62 7599.84 4599.71 10698.62 12799.96 3699.30 6599.96 4599.86 11
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 2199.85 2799.70 5499.92 1899.93 1499.45 2499.97 1899.36 55100.00 199.85 13
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9699.93 499.95 1099.89 2699.71 999.96 3699.51 3599.97 3399.84 14
CP-MVSNet99.54 4999.43 6599.87 1499.76 8699.82 2999.57 6999.61 14899.54 8999.80 6299.64 14797.79 21599.95 4699.21 7599.94 6699.84 14
Test_1112_low_res98.95 19398.73 20399.63 11799.68 13499.15 20998.09 30199.80 5097.14 31799.46 19299.40 25196.11 27999.89 15299.01 10499.84 13199.84 14
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 51100.00 199.90 7100.00 199.97 1099.61 1799.97 1899.75 13100.00 199.84 14
patch_mono-299.51 5299.46 5999.64 11199.70 12199.11 21299.04 19299.87 2099.71 4999.47 18899.79 6598.24 17699.98 799.38 5199.96 4599.83 18
nrg03099.70 1999.66 2399.82 2399.76 8699.84 2199.61 5999.70 10199.93 499.78 7099.68 13099.10 6199.78 28399.45 4199.96 4599.83 18
FIs99.65 3299.58 3999.84 1999.84 3599.85 1699.66 4699.75 7699.86 2199.74 9299.79 6598.27 17499.85 21899.37 5499.93 7499.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 2199.82 899.82 4099.84 2999.94 1199.91 2099.13 6099.96 3699.83 999.99 1299.83 18
PEN-MVS99.66 2799.59 3599.89 799.83 3999.87 1099.66 4699.73 8499.70 5499.84 4599.73 9398.56 13699.96 3699.29 6899.94 6699.83 18
WR-MVS_H99.61 3899.53 5199.87 1499.80 5899.83 2599.67 4299.75 7699.58 8899.85 4299.69 11998.18 18699.94 6099.28 7099.95 5399.83 18
test_part198.63 22898.26 25199.75 5799.40 24499.49 12999.67 4299.68 11099.86 2199.88 3299.86 3886.73 36199.93 7499.34 5799.97 3399.81 24
Anonymous2023121199.62 3699.57 4299.76 4799.61 15199.60 11099.81 999.73 8499.82 3499.90 2299.90 2297.97 20199.86 20099.42 4899.96 4599.80 25
APDe-MVS99.48 5799.36 7899.85 1899.55 18399.81 3299.50 7699.69 10798.99 17299.75 8399.71 10698.79 10499.93 7498.46 14799.85 12699.80 25
DTE-MVSNet99.68 2499.61 3299.88 1199.80 5899.87 1099.67 4299.71 9699.72 4899.84 4599.78 7298.67 12199.97 1899.30 6599.95 5399.80 25
XXY-MVS99.71 1899.67 2299.81 2699.89 2199.72 6999.59 6699.82 4099.39 11699.82 5299.84 4699.38 3099.91 11699.38 5199.93 7499.80 25
1112_ss99.05 17198.84 19499.67 9299.66 14099.29 17998.52 26599.82 4097.65 29099.43 19899.16 30396.42 26999.91 11699.07 10099.84 13199.80 25
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 899.90 799.97 699.87 3299.81 599.95 4699.54 3099.99 1299.80 25
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bset_n11_16_dypcd98.69 22498.45 23199.42 18899.69 12598.52 26396.06 36696.80 36199.71 4999.73 9699.54 21295.14 28999.96 3699.39 5099.95 5399.79 31
PMMVS299.48 5799.45 6099.57 14499.76 8698.99 22598.09 30199.90 1498.95 17899.78 7099.58 19299.57 2099.93 7499.48 3899.95 5399.79 31
MSC_two_6792asdad99.74 6399.03 32299.53 12499.23 29599.92 9497.77 20599.69 21399.78 33
No_MVS99.74 6399.03 32299.53 12499.23 29599.92 9497.77 20599.69 21399.78 33
CHOSEN 1792x268899.39 8399.30 9199.65 10499.88 2599.25 18998.78 23999.88 1898.66 21199.96 899.79 6597.45 23499.93 7499.34 5799.99 1299.78 33
IU-MVS99.69 12599.77 4599.22 29897.50 29999.69 10997.75 20999.70 21099.77 36
test_0728_THIRD99.18 14699.62 13899.61 17598.58 13399.91 11697.72 21199.80 16399.77 36
test_0728_SECOND99.83 2199.70 12199.79 3999.14 16799.61 14899.92 9497.88 19499.72 20499.77 36
MSP-MVS99.04 17498.79 20199.81 2699.78 7499.73 6599.35 10299.57 17898.54 22599.54 17098.99 32696.81 26099.93 7496.97 26699.53 26699.77 36
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft99.14 15398.92 18399.82 2399.57 17299.77 4598.74 24399.60 16098.55 22299.76 7799.69 11998.23 18099.92 9496.39 29999.75 18399.76 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 5599.37 7599.82 2399.91 1599.84 2198.83 22799.86 2399.68 5999.65 12499.88 2997.67 22399.87 18099.03 10299.86 12299.76 40
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2599.83 699.85 2799.80 3899.93 1499.93 1498.54 13999.93 7499.59 2399.98 2499.76 40
test_241102_TWO99.54 19599.13 15899.76 7799.63 15798.32 17199.92 9497.85 20099.69 21399.75 43
DP-MVS99.48 5799.39 7099.74 6399.57 17299.62 10299.29 12299.61 14899.87 1999.74 9299.76 8298.69 11799.87 18098.20 16799.80 16399.75 43
v1099.69 2199.69 1999.66 9999.81 5399.39 15799.66 4699.75 7699.60 8599.92 1899.87 3298.75 11299.86 20099.90 299.99 1299.73 45
EI-MVSNet-UG-set99.48 5799.50 5399.42 18899.57 17298.65 25799.24 13699.46 23599.68 5999.80 6299.66 14098.99 7799.89 15299.19 8099.90 8899.72 46
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2599.66 8999.69 3599.92 899.67 6399.77 7599.75 8699.61 1799.98 799.35 5699.98 2499.72 46
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 19698.64 21199.73 7399.85 3499.47 13298.07 30499.83 3598.64 21399.89 2699.60 18492.57 315100.00 199.33 6099.97 3399.72 46
EI-MVSNet-Vis-set99.47 6399.49 5499.42 18899.57 17298.66 25499.24 13699.46 23599.67 6399.79 6799.65 14598.97 8099.89 15299.15 8999.89 9899.71 49
v899.68 2499.69 1999.65 10499.80 5899.40 15599.66 4699.76 6999.64 7199.93 1499.85 4198.66 12399.84 23599.88 699.99 1299.71 49
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1699.75 1699.86 2399.70 5499.91 2099.89 2699.60 1999.87 18099.59 2399.74 19199.71 49
test111197.74 28898.16 26296.49 34999.60 15389.86 37899.71 2891.21 37599.89 1399.88 3299.87 3293.73 30599.90 13699.56 2899.99 1299.70 52
VPA-MVSNet99.66 2799.62 2899.79 3499.68 13499.75 5699.62 5499.69 10799.85 2699.80 6299.81 5798.81 9799.91 11699.47 3999.88 10699.70 52
WR-MVS99.11 16198.93 17999.66 9999.30 27799.42 15098.42 27599.37 26499.04 17099.57 15699.20 30096.89 25899.86 20098.66 13999.87 11599.70 52
ACMH98.42 699.59 3999.54 4799.72 7999.86 3199.62 10299.56 7199.79 5698.77 20399.80 6299.85 4199.64 1399.85 21898.70 13599.89 9899.70 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1199.85 2699.94 1199.95 1299.73 899.90 13699.65 1799.97 3399.69 56
HPM-MVS_fast99.43 6999.30 9199.80 2999.83 3999.81 3299.52 7499.70 10198.35 24799.51 18299.50 22499.31 3899.88 16798.18 17199.84 13199.69 56
LPG-MVS_test99.22 13099.05 15099.74 6399.82 4699.63 10099.16 16399.73 8497.56 29399.64 12699.69 11999.37 3299.89 15296.66 28599.87 11599.69 56
LGP-MVS_train99.74 6399.82 4699.63 10099.73 8497.56 29399.64 12699.69 11999.37 3299.89 15296.66 28599.87 11599.69 56
SteuartSystems-ACMMP99.30 10799.14 11999.76 4799.87 2999.66 8999.18 15299.60 16098.55 22299.57 15699.67 13699.03 7499.94 6097.01 26499.80 16399.69 56
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 24498.39 23898.94 26699.15 30397.39 31598.18 29099.21 30298.89 18999.23 24399.63 15797.37 24099.74 29994.22 34999.61 24499.69 56
ACMMP_NAP99.28 11099.11 12999.79 3499.75 9799.81 3298.95 21399.53 20498.27 25699.53 17599.73 9398.75 11299.87 18097.70 21699.83 14199.68 62
HFP-MVS99.25 11799.08 14099.76 4799.73 10699.70 7899.31 11299.59 16798.36 24299.36 21799.37 25898.80 10199.91 11697.43 23799.75 18399.68 62
#test#99.12 15798.90 18799.76 4799.73 10699.70 7899.10 18099.59 16797.60 29299.36 21799.37 25898.80 10199.91 11696.84 27599.75 18399.68 62
EI-MVSNet99.38 8599.44 6299.21 23999.58 16298.09 29099.26 12899.46 23599.62 7599.75 8399.67 13698.54 13999.85 21899.15 8999.92 7899.68 62
TranMVSNet+NR-MVSNet99.54 4999.47 5599.76 4799.58 16299.64 9699.30 11599.63 13899.61 7999.71 10399.56 20398.76 11099.96 3699.14 9599.92 7899.68 62
PVSNet_Blended_VisFu99.40 7999.38 7299.44 18299.90 1998.66 25498.94 21599.91 1197.97 27399.79 6799.73 9399.05 7299.97 1899.15 8999.99 1299.68 62
IterMVS-LS99.41 7699.47 5599.25 23499.81 5398.09 29098.85 22499.76 6999.62 7599.83 5099.64 14798.54 13999.97 1899.15 8999.99 1299.68 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 15398.92 18399.80 2999.83 3999.83 2598.61 25099.63 13896.84 32599.44 19499.58 19298.81 9799.91 11697.70 21699.82 15099.67 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 12199.05 15099.77 4099.76 8699.70 7899.31 11299.59 16798.41 23699.32 22699.36 26398.73 11599.93 7497.29 24499.74 19199.67 69
Regformer-499.45 6699.44 6299.50 16499.52 19698.94 23299.17 15799.53 20499.64 7199.76 7799.60 18498.96 8399.90 13698.91 11899.84 13199.67 69
XVS99.27 11499.11 12999.75 5799.71 11399.71 7199.37 9899.61 14899.29 12798.76 30299.47 23798.47 15099.88 16797.62 22499.73 19899.67 69
v124099.56 4499.58 3999.51 16199.80 5899.00 22499.00 20099.65 13099.15 15699.90 2299.75 8699.09 6399.88 16799.90 299.96 4599.67 69
X-MVStestdata96.09 32894.87 33899.75 5799.71 11399.71 7199.37 9899.61 14899.29 12798.76 30261.30 38198.47 15099.88 16797.62 22499.73 19899.67 69
VPNet99.46 6499.37 7599.71 8399.82 4699.59 11399.48 8099.70 10199.81 3599.69 10999.58 19297.66 22799.86 20099.17 8599.44 27999.67 69
ACMMPR99.23 12199.06 14699.76 4799.74 10399.69 8299.31 11299.59 16798.36 24299.35 21999.38 25798.61 12999.93 7497.43 23799.75 18399.67 69
SixPastTwentyTwo99.42 7299.30 9199.76 4799.92 1499.67 8799.70 2999.14 30899.65 6999.89 2699.90 2296.20 27799.94 6099.42 4899.92 7899.67 69
HPM-MVScopyleft99.25 11799.07 14499.78 3799.81 5399.75 5699.61 5999.67 11597.72 28799.35 21999.25 28999.23 4899.92 9497.21 25599.82 15099.67 69
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 4799.54 4799.58 13999.78 7499.20 20499.11 17999.62 14199.18 14699.89 2699.72 9998.66 12399.87 18099.88 699.97 3399.66 79
v192192099.56 4499.57 4299.55 15199.75 9799.11 21299.05 19099.61 14899.15 15699.88 3299.71 10699.08 6799.87 18099.90 299.97 3399.66 79
v119299.57 4199.57 4299.57 14499.77 8299.22 19899.04 19299.60 16099.18 14699.87 3999.72 9999.08 6799.85 21899.89 599.98 2499.66 79
PGM-MVS99.20 13799.01 16299.77 4099.75 9799.71 7199.16 16399.72 9397.99 27199.42 20099.60 18498.81 9799.93 7496.91 26999.74 19199.66 79
mPP-MVS99.19 14099.00 16599.76 4799.76 8699.68 8599.38 9499.54 19598.34 25199.01 27399.50 22498.53 14399.93 7497.18 25799.78 17499.66 79
CP-MVS99.23 12199.05 15099.75 5799.66 14099.66 8999.38 9499.62 14198.38 24099.06 27199.27 28498.79 10499.94 6097.51 23399.82 15099.66 79
EG-PatchMatch MVS99.57 4199.56 4699.62 12699.77 8299.33 17399.26 12899.76 6999.32 12599.80 6299.78 7299.29 4099.87 18099.15 8999.91 8799.66 79
UGNet99.38 8599.34 8099.49 16798.90 33298.90 24099.70 2999.35 26899.86 2198.57 31699.81 5798.50 14999.93 7499.38 5199.98 2499.66 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250694.73 33994.59 34195.15 35599.59 15785.90 38099.75 1674.01 38199.89 1399.71 10399.86 3879.00 37999.90 13699.52 3499.99 1299.65 87
ECVR-MVScopyleft97.73 28998.04 26896.78 34299.59 15790.81 37499.72 2490.43 37799.89 1399.86 4099.86 3893.60 30799.89 15299.46 4099.99 1299.65 87
h-mvs3398.61 23098.34 24499.44 18299.60 15398.67 25299.27 12699.44 24099.68 5999.32 22699.49 22992.50 318100.00 199.24 7296.51 36899.65 87
TSAR-MVS + MP.99.34 9899.24 10799.63 11799.82 4699.37 16399.26 12899.35 26898.77 20399.57 15699.70 11399.27 4599.88 16797.71 21399.75 18399.65 87
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS99.30 10799.14 11999.80 2999.81 5399.81 3298.73 24599.53 20499.27 13199.42 20099.63 15798.21 18199.95 4697.83 20399.79 16899.65 87
MTAPA99.35 9399.20 11199.80 2999.81 5399.81 3299.33 10599.53 20499.27 13199.42 20099.63 15798.21 18199.95 4697.83 20399.79 16899.65 87
Regformer-399.41 7699.41 6899.40 19899.52 19698.70 25099.17 15799.44 24099.62 7599.75 8399.60 18498.90 9099.85 21898.89 11999.84 13199.65 87
MCST-MVS99.02 17798.81 19899.65 10499.58 16299.49 12998.58 25499.07 31198.40 23899.04 27299.25 28998.51 14899.80 27797.31 24399.51 26999.65 87
UniMVSNet_NR-MVSNet99.37 8899.25 10599.72 7999.47 22399.56 11998.97 21199.61 14899.43 11399.67 11699.28 28297.85 21199.95 4699.17 8599.81 15899.65 87
ZNCC-MVS99.22 13099.04 15699.77 4099.76 8699.73 6599.28 12399.56 18398.19 26199.14 26099.29 28098.84 9699.92 9497.53 23299.80 16399.64 96
v114499.54 4999.53 5199.59 13499.79 6899.28 18199.10 18099.61 14899.20 14499.84 4599.73 9398.67 12199.84 23599.86 899.98 2499.64 96
v2v48299.50 5399.47 5599.58 13999.78 7499.25 18999.14 16799.58 17699.25 13599.81 5999.62 16698.24 17699.84 23599.83 999.97 3399.64 96
K. test v398.87 20498.60 21499.69 8899.93 1399.46 13699.74 1894.97 36899.78 4199.88 3299.88 2993.66 30699.97 1899.61 2199.95 5399.64 96
DeepC-MVS98.90 499.62 3699.61 3299.67 9299.72 11099.44 14399.24 13699.71 9699.27 13199.93 1499.90 2299.70 1199.93 7498.99 10599.99 1299.64 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.56 23898.17 26199.72 7999.45 23199.60 11098.88 21899.50 22096.88 32299.18 25599.48 23297.08 25399.92 9493.69 35699.38 28899.63 101
SMA-MVScopyleft99.19 14099.00 16599.73 7399.46 22899.73 6599.13 17399.52 21297.40 30499.57 15699.64 14798.93 8499.83 24697.61 22699.79 16899.63 101
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 18399.16 11598.51 29999.75 9795.90 34198.07 30499.84 3399.84 2999.89 2699.73 9396.01 28199.99 599.33 60100.00 199.63 101
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2599.76 1499.87 2099.73 4599.89 2699.87 3299.63 1499.87 18099.54 3099.92 7899.63 101
MP-MVScopyleft99.06 16898.83 19699.76 4799.76 8699.71 7199.32 10899.50 22098.35 24798.97 27599.48 23298.37 16499.92 9495.95 31999.75 18399.63 101
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 10299.21 11099.71 8399.43 23599.56 11998.83 22799.53 20499.38 11799.67 11699.36 26397.67 22399.95 4699.17 8599.81 15899.63 101
NR-MVSNet99.40 7999.31 8699.68 8999.43 23599.55 12299.73 2199.50 22099.46 10599.88 3299.36 26397.54 23199.87 18098.97 10999.87 11599.63 101
IterMVS98.97 18799.16 11598.42 30399.74 10395.64 34498.06 30699.83 3599.83 3299.85 4299.74 8996.10 28099.99 599.27 71100.00 199.63 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 14899.00 16599.66 9999.80 5899.43 14799.70 2999.24 29499.48 9699.56 16399.77 7994.89 29199.93 7498.72 13499.89 9899.63 101
ACMMPcopyleft99.25 11799.08 14099.74 6399.79 6899.68 8599.50 7699.65 13098.07 26799.52 17799.69 11998.57 13499.92 9497.18 25799.79 16899.63 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 12199.12 12699.56 14899.28 28299.22 19898.99 20599.40 25499.08 16399.58 15399.64 14798.90 9099.83 24697.44 23699.75 18399.63 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 8599.25 10599.77 4099.03 32299.77 4599.74 1899.61 14899.18 14699.76 7799.61 17599.00 7599.92 9497.72 21199.60 24799.62 112
PC_three_145297.56 29399.68 11199.41 24799.09 6397.09 37496.66 28599.60 24799.62 112
GeoE99.69 2199.66 2399.78 3799.76 8699.76 5299.60 6499.82 4099.46 10599.75 8399.56 20399.63 1499.95 4699.43 4399.88 10699.62 112
test_method91.72 34092.32 34389.91 35793.49 37970.18 38190.28 37099.56 18361.71 37495.39 37199.52 21793.90 30099.94 6098.76 13098.27 34899.62 112
GST-MVS99.16 14998.96 17699.75 5799.73 10699.73 6599.20 14699.55 18998.22 25899.32 22699.35 26898.65 12599.91 11696.86 27299.74 19199.62 112
new-patchmatchnet99.35 9399.57 4298.71 29499.82 4696.62 33198.55 26099.75 7699.50 9499.88 3299.87 3299.31 3899.88 16799.43 43100.00 199.62 112
RRT_MVS98.75 21698.54 22499.41 19698.14 37098.61 25898.98 20999.66 11999.31 12699.84 4599.75 8691.98 32199.98 799.20 7899.95 5399.62 112
CPTT-MVS98.74 21898.44 23399.64 11199.61 15199.38 16099.18 15299.55 18996.49 33099.27 23799.37 25897.11 25299.92 9495.74 32699.67 22599.62 112
MIMVSNet199.66 2799.62 2899.80 2999.94 1099.87 1099.69 3599.77 6499.78 4199.93 1499.89 2697.94 20299.92 9499.65 1799.98 2499.62 112
DeepPCF-MVS98.42 699.18 14499.02 15999.67 9299.22 29199.75 5697.25 35299.47 23198.72 20899.66 12099.70 11399.29 4099.63 34698.07 18099.81 15899.62 112
3Dnovator+98.92 399.35 9399.24 10799.67 9299.35 25699.47 13299.62 5499.50 22099.44 10899.12 26399.78 7298.77 10999.94 6097.87 19799.72 20499.62 112
DVP-MVScopyleft99.32 10499.17 11499.77 4099.69 12599.80 3799.14 16799.31 27799.16 15299.62 13899.61 17598.35 16699.91 11697.88 19499.72 20499.61 123
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 20498.59 21699.71 8399.50 20799.62 10299.01 19899.57 17896.80 32799.54 17099.63 15798.29 17299.91 11695.24 33699.71 20899.61 123
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 20998.57 22099.58 13999.21 29399.31 17698.61 25099.25 29198.65 21298.43 32499.26 28797.86 20999.81 27296.55 29099.27 30599.61 123
TAMVS99.49 5599.45 6099.63 11799.48 21899.42 15099.45 8399.57 17899.66 6799.78 7099.83 4797.85 21199.86 20099.44 4299.96 4599.61 123
Regformer-199.32 10499.27 10199.47 17399.41 24198.95 23198.99 20599.48 22799.48 9699.66 12099.52 21798.78 10699.87 18098.36 15299.74 19199.60 127
Regformer-299.34 9899.27 10199.53 15799.41 24199.10 21798.99 20599.53 20499.47 10199.66 12099.52 21798.80 10199.89 15298.31 15899.74 19199.60 127
HPM-MVS++copyleft98.96 19098.70 20899.74 6399.52 19699.71 7198.86 22299.19 30398.47 23298.59 31499.06 31598.08 19299.91 11696.94 26799.60 24799.60 127
V4299.56 4499.54 4799.63 11799.79 6899.46 13699.39 9299.59 16799.24 13799.86 4099.70 11398.55 13799.82 25699.79 1199.95 5399.60 127
HQP_MVS98.90 19898.68 21099.55 15199.58 16299.24 19498.80 23599.54 19598.94 17999.14 26099.25 28997.24 24499.82 25695.84 32299.78 17499.60 127
plane_prior599.54 19599.82 25695.84 32299.78 17499.60 127
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1699.86 599.92 899.69 5799.78 7099.92 1799.37 3299.88 16798.93 11799.95 5399.60 127
ACMH+98.40 899.50 5399.43 6599.71 8399.86 3199.76 5299.32 10899.77 6499.53 9199.77 7599.76 8299.26 4699.78 28397.77 20599.88 10699.60 127
ACMM98.09 1199.46 6499.38 7299.72 7999.80 5899.69 8299.13 17399.65 13098.99 17299.64 12699.72 9999.39 2699.86 20098.23 16499.81 15899.60 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 18798.82 19799.42 18899.71 11398.81 24499.62 5498.68 32899.81 3599.38 21599.80 5994.25 29899.85 21898.79 12699.32 29899.59 136
casdiffmvs99.63 3399.61 3299.67 9299.79 6899.59 11399.13 17399.85 2799.79 4099.76 7799.72 9999.33 3799.82 25699.21 7599.94 6699.59 136
UniMVSNet (Re)99.37 8899.26 10399.68 8999.51 20199.58 11698.98 20999.60 16099.43 11399.70 10699.36 26397.70 21899.88 16799.20 7899.87 11599.59 136
DSMNet-mixed99.48 5799.65 2598.95 26599.71 11397.27 31799.50 7699.82 4099.59 8799.41 20899.85 4199.62 16100.00 199.53 3299.89 9899.59 136
3Dnovator99.15 299.43 6999.36 7899.65 10499.39 24699.42 15099.70 2999.56 18399.23 13999.35 21999.80 5999.17 5399.95 4698.21 16699.84 13199.59 136
SED-MVS99.40 7999.28 9899.77 4099.69 12599.82 2999.20 14699.54 19599.13 15899.82 5299.63 15798.91 8799.92 9497.85 20099.70 21099.58 141
OPU-MVS99.29 22599.12 30899.44 14399.20 14699.40 25199.00 7598.84 37196.54 29199.60 24799.58 141
abl_699.36 9199.23 10999.75 5799.71 11399.74 6299.33 10599.76 6999.07 16599.65 12499.63 15799.09 6399.92 9497.13 26099.76 18099.58 141
EPNet98.13 27497.77 28999.18 24494.57 37897.99 29499.24 13697.96 34899.74 4497.29 35999.62 16693.13 31199.97 1898.59 14199.83 14199.58 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 17598.85 19299.55 15199.80 5899.25 18999.73 2199.15 30799.37 11899.61 14499.71 10694.73 29499.81 27297.70 21699.88 10699.58 141
ACMP97.51 1499.05 17198.84 19499.67 9299.78 7499.55 12298.88 21899.66 11997.11 31999.47 18899.60 18499.07 6999.89 15296.18 30899.85 12699.58 141
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test117299.23 12199.05 15099.74 6399.52 19699.75 5699.20 14699.61 14898.97 17499.48 18699.58 19298.41 15899.91 11697.15 25999.55 25899.57 147
SR-MVS99.19 14099.00 16599.74 6399.51 20199.72 6999.18 15299.60 16098.85 19299.47 18899.58 19298.38 16399.92 9496.92 26899.54 26499.57 147
lessismore_v099.64 11199.86 3199.38 16090.66 37699.89 2699.83 4794.56 29699.97 1899.56 2899.92 7899.57 147
pmmvs599.19 14099.11 12999.42 18899.76 8698.88 24198.55 26099.73 8498.82 19699.72 9899.62 16696.56 26399.82 25699.32 6299.95 5399.56 150
APD-MVS_3200maxsize99.31 10699.16 11599.74 6399.53 19199.75 5699.27 12699.61 14899.19 14599.57 15699.64 14798.76 11099.90 13697.29 24499.62 23799.56 150
CDPH-MVS98.56 23898.20 25699.61 12999.50 20799.46 13698.32 28199.41 24795.22 34899.21 24999.10 31298.34 16899.82 25695.09 33999.66 22999.56 150
Anonymous2024052199.44 6899.42 6799.49 16799.89 2198.96 23099.62 5499.76 6999.85 2699.82 5299.88 2996.39 27299.97 1899.59 2399.98 2499.55 153
our_test_398.85 20699.09 13898.13 31599.66 14094.90 35197.72 33099.58 17699.07 16599.64 12699.62 16698.19 18499.93 7498.41 14999.95 5399.55 153
YYNet198.95 19398.99 17098.84 28299.64 14497.14 32198.22 28999.32 27398.92 18499.59 14999.66 14097.40 23699.83 24698.27 16199.90 8899.55 153
MDA-MVSNet_test_wron98.95 19398.99 17098.85 28099.64 14497.16 32098.23 28899.33 27198.93 18299.56 16399.66 14097.39 23899.83 24698.29 15999.88 10699.55 153
MVSFormer99.41 7699.44 6299.31 22299.57 17298.40 27199.77 1299.80 5099.73 4599.63 13099.30 27798.02 19699.98 799.43 4399.69 21399.55 153
jason99.16 14999.11 12999.32 21999.75 9798.44 26898.26 28699.39 25798.70 20999.74 9299.30 27798.54 13999.97 1898.48 14699.82 15099.55 153
jason: jason.
CDS-MVSNet99.22 13099.13 12299.50 16499.35 25699.11 21298.96 21299.54 19599.46 10599.61 14499.70 11396.31 27499.83 24699.34 5799.88 10699.55 153
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 6699.37 7599.70 8799.83 3999.70 7899.38 9499.78 6199.53 9199.67 11699.78 7299.19 5199.86 20097.32 24299.87 11599.55 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post99.27 11499.11 12999.73 7399.54 18599.74 6299.26 12899.62 14199.16 15299.52 17799.64 14798.41 15899.91 11697.27 24799.61 24499.54 161
RE-MVS-def99.13 12299.54 18599.74 6299.26 12899.62 14199.16 15299.52 17799.64 14798.57 13497.27 24799.61 24499.54 161
SD-MVS99.01 18199.30 9198.15 31499.50 20799.40 15598.94 21599.61 14899.22 14399.75 8399.82 5499.54 2295.51 37697.48 23499.87 11599.54 161
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 18698.80 20099.56 14899.25 28799.43 14798.54 26399.27 28698.58 21998.80 29799.43 24598.53 14399.70 31097.22 25499.59 25199.54 161
MVS_111021_HR99.12 15799.02 15999.40 19899.50 20799.11 21297.92 32299.71 9698.76 20699.08 26799.47 23799.17 5399.54 35697.85 20099.76 18099.54 161
v14899.40 7999.41 6899.39 20199.76 8698.94 23299.09 18499.59 16799.17 15099.81 5999.61 17598.41 15899.69 31699.32 6299.94 6699.53 166
diffmvs99.34 9899.32 8599.39 20199.67 13998.77 24798.57 25899.81 4999.61 7999.48 18699.41 24798.47 15099.86 20098.97 10999.90 8899.53 166
baseline99.63 3399.62 2899.66 9999.80 5899.62 10299.44 8699.80 5099.71 4999.72 9899.69 11999.15 5599.83 24699.32 6299.94 6699.53 166
HQP4-MVS98.15 33499.70 31099.53 166
GBi-Net99.42 7299.31 8699.73 7399.49 21299.77 4599.68 3899.70 10199.44 10899.62 13899.83 4797.21 24699.90 13698.96 11199.90 8899.53 166
test199.42 7299.31 8699.73 7399.49 21299.77 4599.68 3899.70 10199.44 10899.62 13899.83 4797.21 24699.90 13698.96 11199.90 8899.53 166
FMVSNet199.66 2799.63 2799.73 7399.78 7499.77 4599.68 3899.70 10199.67 6399.82 5299.83 4798.98 7899.90 13699.24 7299.97 3399.53 166
HQP-MVS98.36 26098.02 27099.39 20199.31 27398.94 23297.98 31499.37 26497.45 30198.15 33498.83 34596.67 26199.70 31094.73 34299.67 22599.53 166
QAPM98.40 25897.99 27199.65 10499.39 24699.47 13299.67 4299.52 21291.70 36498.78 30099.80 5998.55 13799.95 4694.71 34499.75 18399.53 166
F-COLMAP98.74 21898.45 23199.62 12699.57 17299.47 13298.84 22599.65 13096.31 33498.93 27999.19 30297.68 22299.87 18096.52 29299.37 29299.53 166
MVSTER98.47 25198.22 25499.24 23699.06 31898.35 27699.08 18799.46 23599.27 13199.75 8399.66 14088.61 35199.85 21899.14 9599.92 7899.52 176
PVSNet_BlendedMVS99.03 17599.01 16299.09 25399.54 18597.99 29498.58 25499.82 4097.62 29199.34 22299.71 10698.52 14699.77 29197.98 18699.97 3399.52 176
OPM-MVS99.26 11699.13 12299.63 11799.70 12199.61 10898.58 25499.48 22798.50 22899.52 17799.63 15799.14 5899.76 29397.89 19399.77 17899.51 178
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior198.33 26597.92 28199.57 14499.35 25699.36 16697.99 31399.39 25794.85 35597.76 35498.98 32998.03 19499.85 21895.49 33099.44 27999.51 178
AllTest99.21 13599.07 14499.63 11799.78 7499.64 9699.12 17799.83 3598.63 21499.63 13099.72 9998.68 11899.75 29796.38 30099.83 14199.51 178
TestCases99.63 11799.78 7499.64 9699.83 3598.63 21499.63 13099.72 9998.68 11899.75 29796.38 30099.83 14199.51 178
BH-RMVSNet98.41 25698.14 26499.21 23999.21 29398.47 26598.60 25298.26 34598.35 24798.93 27999.31 27597.20 24999.66 33694.32 34799.10 31399.51 178
USDC98.96 19098.93 17999.05 25999.54 18597.99 29497.07 35899.80 5098.21 25999.75 8399.77 7998.43 15599.64 34597.90 19299.88 10699.51 178
test9_res95.10 33899.44 27999.50 184
train_agg98.35 26397.95 27599.57 14499.35 25699.35 17098.11 29999.41 24794.90 35297.92 34598.99 32698.02 19699.85 21895.38 33499.44 27999.50 184
agg_prior294.58 34699.46 27899.50 184
VDD-MVS99.20 13799.11 12999.44 18299.43 23598.98 22699.50 7698.32 34499.80 3899.56 16399.69 11996.99 25699.85 21898.99 10599.73 19899.50 184
MDA-MVSNet-bldmvs99.06 16899.05 15099.07 25799.80 5897.83 30198.89 21799.72 9399.29 12799.63 13099.70 11396.47 26799.89 15298.17 17399.82 15099.50 184
KD-MVS_self_test99.63 3399.59 3599.76 4799.84 3599.90 599.37 9899.79 5699.83 3299.88 3299.85 4198.42 15799.90 13699.60 2299.73 19899.49 189
xxxxxxxxxxxxxcwj99.11 16198.96 17699.54 15599.53 19199.25 18998.29 28399.76 6999.07 16599.42 20099.61 17598.86 9399.87 18096.45 29799.68 21899.49 189
SF-MVS99.10 16598.93 17999.62 12699.58 16299.51 12799.13 17399.65 13097.97 27399.42 20099.61 17598.86 9399.87 18096.45 29799.68 21899.49 189
Anonymous2024052999.42 7299.34 8099.65 10499.53 19199.60 11099.63 5399.39 25799.47 10199.76 7799.78 7298.13 18899.86 20098.70 13599.68 21899.49 189
WTY-MVS98.59 23598.37 24099.26 23199.43 23598.40 27198.74 24399.13 31098.10 26499.21 24999.24 29494.82 29299.90 13697.86 19898.77 33099.49 189
ppachtmachnet_test98.89 20199.12 12698.20 31399.66 14095.24 34897.63 33499.68 11099.08 16399.78 7099.62 16698.65 12599.88 16798.02 18199.96 4599.48 194
Anonymous2023120699.35 9399.31 8699.47 17399.74 10399.06 22399.28 12399.74 8199.23 13999.72 9899.53 21597.63 22999.88 16799.11 9799.84 13199.48 194
test_prior398.62 22998.34 24499.46 17699.35 25699.22 19897.95 31899.39 25797.87 28098.05 34099.05 31697.90 20599.69 31695.99 31599.49 27399.48 194
test_prior99.46 17699.35 25699.22 19899.39 25799.69 31699.48 194
test1299.54 15599.29 27999.33 17399.16 30698.43 32497.54 23199.82 25699.47 27699.48 194
VNet99.18 14499.06 14699.56 14899.24 28999.36 16699.33 10599.31 27799.67 6399.47 18899.57 20096.48 26699.84 23599.15 8999.30 30099.47 199
test20.0399.55 4799.54 4799.58 13999.79 6899.37 16399.02 19699.89 1599.60 8599.82 5299.62 16698.81 9799.89 15299.43 4399.86 12299.47 199
114514_t98.49 24998.11 26599.64 11199.73 10699.58 11699.24 13699.76 6989.94 36799.42 20099.56 20397.76 21799.86 20097.74 21099.82 15099.47 199
sss98.90 19898.77 20299.27 22999.48 21898.44 26898.72 24699.32 27397.94 27799.37 21699.35 26896.31 27499.91 11698.85 12199.63 23699.47 199
旧先验199.49 21299.29 17999.26 28899.39 25597.67 22399.36 29399.46 203
112198.56 23898.24 25299.52 15899.49 21299.24 19499.30 11599.22 29895.77 34198.52 31999.29 28097.39 23899.85 21895.79 32499.34 29599.46 203
MVP-Stereo99.16 14999.08 14099.43 18699.48 21899.07 22199.08 18799.55 18998.63 21499.31 23099.68 13098.19 18499.78 28398.18 17199.58 25299.45 205
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 15899.50 20799.22 19899.26 28895.66 34498.60 31399.28 28297.67 22399.89 15295.95 31999.32 29899.45 205
LFMVS98.46 25298.19 25999.26 23199.24 28998.52 26399.62 5496.94 36099.87 1999.31 23099.58 19291.04 33299.81 27298.68 13899.42 28499.45 205
testgi99.29 10999.26 10399.37 20899.75 9798.81 24498.84 22599.89 1598.38 24099.75 8399.04 31999.36 3599.86 20099.08 9999.25 30699.45 205
UnsupCasMVSNet_eth98.83 20798.57 22099.59 13499.68 13499.45 14198.99 20599.67 11599.48 9699.55 16899.36 26394.92 29099.86 20098.95 11596.57 36799.45 205
无先验98.01 30999.23 29595.83 34099.85 21895.79 32499.44 210
testdata99.42 18899.51 20198.93 23699.30 28096.20 33598.87 28999.40 25198.33 17099.89 15296.29 30399.28 30299.44 210
XVG-OURS-SEG-HR99.16 14998.99 17099.66 9999.84 3599.64 9698.25 28799.73 8498.39 23999.63 13099.43 24599.70 1199.90 13697.34 24198.64 33899.44 210
FMVSNet299.35 9399.28 9899.55 15199.49 21299.35 17099.45 8399.57 17899.44 10899.70 10699.74 8997.21 24699.87 18099.03 10299.94 6699.44 210
N_pmnet98.73 22098.53 22699.35 21299.72 11098.67 25298.34 27894.65 36998.35 24799.79 6799.68 13098.03 19499.93 7498.28 16099.92 7899.44 210
RPSCF99.18 14499.02 15999.64 11199.83 3999.85 1699.44 8699.82 4098.33 25299.50 18499.78 7297.90 20599.65 34396.78 27899.83 14199.44 210
原ACMM199.37 20899.47 22398.87 24399.27 28696.74 32898.26 32999.32 27397.93 20399.82 25695.96 31899.38 28899.43 216
test22299.51 20199.08 22097.83 32799.29 28295.21 34998.68 30899.31 27597.28 24399.38 28899.43 216
XVG-OURS99.21 13599.06 14699.65 10499.82 4699.62 10297.87 32599.74 8198.36 24299.66 12099.68 13099.71 999.90 13696.84 27599.88 10699.43 216
CSCG99.37 8899.29 9699.60 13199.71 11399.46 13699.43 8899.85 2798.79 20099.41 20899.60 18498.92 8599.92 9498.02 18199.92 7899.43 216
ETH3D-3000-0.198.77 21398.50 22899.59 13499.47 22399.53 12498.77 24099.60 16097.33 30899.23 24399.50 22497.91 20499.83 24695.02 34099.67 22599.41 220
TinyColmap98.97 18798.93 17999.07 25799.46 22898.19 28297.75 32999.75 7698.79 20099.54 17099.70 11398.97 8099.62 34796.63 28899.83 14199.41 220
ETH3 D test640097.76 28797.19 30499.50 16499.38 24999.26 18598.34 27899.49 22592.99 36198.54 31899.20 30095.92 28399.82 25691.14 36399.66 22999.40 222
Anonymous20240521198.75 21698.46 23099.63 11799.34 26699.66 8999.47 8297.65 35399.28 13099.56 16399.50 22493.15 31099.84 23598.62 14099.58 25299.40 222
XVG-ACMP-BASELINE99.23 12199.10 13799.63 11799.82 4699.58 11698.83 22799.72 9398.36 24299.60 14699.71 10698.92 8599.91 11697.08 26299.84 13199.40 222
MS-PatchMatch99.00 18398.97 17499.09 25399.11 31398.19 28298.76 24299.33 27198.49 23099.44 19499.58 19298.21 18199.69 31698.20 16799.62 23799.39 225
FMVSNet398.80 21198.63 21399.32 21999.13 30698.72 24999.10 18099.48 22799.23 13999.62 13899.64 14792.57 31599.86 20098.96 11199.90 8899.39 225
ambc99.20 24199.35 25698.53 26199.17 15799.46 23599.67 11699.80 5998.46 15399.70 31097.92 19199.70 21099.38 227
FMVSNet597.80 28597.25 30199.42 18898.83 34198.97 22899.38 9499.80 5098.87 19099.25 23999.69 11980.60 37399.91 11698.96 11199.90 8899.38 227
PAPM_NR98.36 26098.04 26899.33 21599.48 21898.93 23698.79 23899.28 28597.54 29698.56 31798.57 35597.12 25199.69 31694.09 35198.90 32599.38 227
EPNet_dtu97.62 29497.79 28897.11 34196.67 37592.31 36498.51 26698.04 34699.24 13795.77 36999.47 23793.78 30499.66 33698.98 10799.62 23799.37 230
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 16198.95 17899.59 13499.13 30699.59 11399.17 15799.65 13097.88 27999.25 23999.46 24098.97 8099.80 27797.26 24999.82 15099.37 230
PLCcopyleft97.35 1698.36 26097.99 27199.48 17199.32 27299.24 19498.50 26799.51 21695.19 35098.58 31598.96 33496.95 25799.83 24695.63 32799.25 30699.37 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 29497.20 30398.90 27899.76 8697.40 31499.48 8094.36 37099.06 16999.70 10699.49 22984.55 36799.94 6098.73 13399.65 23299.36 233
pmmvs-eth3d99.48 5799.47 5599.51 16199.77 8299.41 15498.81 23299.66 11999.42 11599.75 8399.66 14099.20 5099.76 29398.98 10799.99 1299.36 233
PVSNet_095.53 1995.85 33495.31 33697.47 33198.78 34993.48 35995.72 36799.40 25496.18 33697.37 35797.73 37095.73 28499.58 35495.49 33081.40 37499.36 233
lupinMVS98.96 19098.87 19099.24 23699.57 17298.40 27198.12 29799.18 30498.28 25599.63 13099.13 30598.02 19699.97 1898.22 16599.69 21399.35 236
Vis-MVSNet (Re-imp)98.77 21398.58 21999.34 21399.78 7498.88 24199.61 5999.56 18399.11 16299.24 24299.56 20393.00 31399.78 28397.43 23799.89 9899.35 236
GA-MVS97.99 28297.68 29298.93 26999.52 19698.04 29397.19 35499.05 31498.32 25398.81 29598.97 33289.89 34899.41 36698.33 15699.05 31599.34 238
CANet99.11 16199.05 15099.28 22798.83 34198.56 26098.71 24899.41 24799.25 13599.23 24399.22 29697.66 22799.94 6099.19 8099.97 3399.33 239
Patchmtry98.78 21298.54 22499.49 16798.89 33599.19 20599.32 10899.67 11599.65 6999.72 9899.79 6591.87 32499.95 4698.00 18599.97 3399.33 239
PAPR97.56 29797.07 30699.04 26098.80 34698.11 28897.63 33499.25 29194.56 35898.02 34398.25 36597.43 23599.68 32790.90 36498.74 33499.33 239
CHOSEN 280x42098.41 25698.41 23698.40 30499.34 26695.89 34296.94 36099.44 24098.80 19999.25 23999.52 21793.51 30899.98 798.94 11699.98 2499.32 242
baseline197.73 28997.33 29898.96 26499.30 27797.73 30599.40 9098.42 34099.33 12499.46 19299.21 29891.18 33099.82 25698.35 15491.26 37399.32 242
TAPA-MVS97.92 1398.03 27997.55 29599.46 17699.47 22399.44 14398.50 26799.62 14186.79 36899.07 27099.26 28798.26 17599.62 34797.28 24699.73 19899.31 244
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 11099.15 11899.67 9299.33 27199.76 5299.34 10399.97 298.93 18299.91 2099.79 6598.68 11899.93 7496.80 27799.56 25499.30 245
TSAR-MVS + GP.99.12 15799.04 15699.38 20599.34 26699.16 20798.15 29399.29 28298.18 26299.63 13099.62 16699.18 5299.68 32798.20 16799.74 19199.30 245
PVSNet_Blended98.70 22398.59 21699.02 26199.54 18597.99 29497.58 33799.82 4095.70 34399.34 22298.98 32998.52 14699.77 29197.98 18699.83 14199.30 245
MVS_030498.88 20298.71 20599.39 20198.85 33998.91 23999.45 8399.30 28098.56 22097.26 36099.68 13096.18 27899.96 3699.17 8599.94 6699.29 248
MVS_111021_LR99.13 15599.03 15899.42 18899.58 16299.32 17597.91 32499.73 8498.68 21099.31 23099.48 23299.09 6399.66 33697.70 21699.77 17899.29 248
ETH3D cwj APD-0.1698.50 24698.16 26299.51 16199.04 32199.39 15798.47 26999.47 23196.70 32998.78 30099.33 27297.62 23099.86 20094.69 34599.38 28899.28 250
miper_lstm_enhance98.65 22798.60 21498.82 28799.20 29697.33 31697.78 32899.66 11999.01 17199.59 14999.50 22494.62 29599.85 21898.12 17699.90 8899.26 251
MVS95.72 33694.63 34098.99 26298.56 35797.98 29999.30 11598.86 32072.71 37397.30 35899.08 31398.34 16899.74 29989.21 36598.33 34699.26 251
MSLP-MVS++99.05 17199.09 13898.91 27299.21 29398.36 27598.82 23199.47 23198.85 19298.90 28599.56 20398.78 10699.09 36998.57 14299.68 21899.26 251
D2MVS99.22 13099.19 11299.29 22599.69 12598.74 24898.81 23299.41 24798.55 22299.68 11199.69 11998.13 18899.87 18098.82 12499.98 2499.24 254
test_yl98.25 26897.95 27599.13 24999.17 30198.47 26599.00 20098.67 33098.97 17499.22 24799.02 32491.31 32899.69 31697.26 24998.93 32199.24 254
DCV-MVSNet98.25 26897.95 27599.13 24999.17 30198.47 26599.00 20098.67 33098.97 17499.22 24799.02 32491.31 32899.69 31697.26 24998.93 32199.24 254
DPM-MVS98.28 26697.94 27999.32 21999.36 25499.11 21297.31 35098.78 32596.88 32298.84 29299.11 31197.77 21699.61 35194.03 35399.36 29399.23 257
CLD-MVS98.76 21598.57 22099.33 21599.57 17298.97 22897.53 34099.55 18996.41 33199.27 23799.13 30599.07 6999.78 28396.73 28199.89 9899.23 257
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 15599.06 14699.36 21199.57 17299.10 21798.01 30999.25 29198.78 20299.58 15399.44 24498.24 17699.76 29398.74 13299.93 7499.22 259
OMC-MVS98.90 19898.72 20499.44 18299.39 24699.42 15098.58 25499.64 13697.31 30999.44 19499.62 16698.59 13199.69 31696.17 30999.79 16899.22 259
EGC-MVSNET89.05 34185.52 34499.64 11199.89 2199.78 4299.56 7199.52 21224.19 37549.96 37699.83 4799.15 5599.92 9497.71 21399.85 12699.21 261
eth_miper_zixun_eth98.68 22598.71 20598.60 29699.10 31496.84 32897.52 34299.54 19598.94 17999.58 15399.48 23296.25 27699.76 29398.01 18499.93 7499.21 261
c3_l98.72 22198.71 20598.72 29299.12 30897.22 31997.68 33399.56 18398.90 18699.54 17099.48 23296.37 27399.73 30297.88 19499.88 10699.21 261
CMPMVSbinary77.52 2398.50 24698.19 25999.41 19698.33 36399.56 11999.01 19899.59 16795.44 34599.57 15699.80 5995.64 28599.46 36596.47 29699.92 7899.21 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 16898.97 17499.34 21399.31 27398.98 22698.31 28299.91 1198.81 19798.79 29898.94 33699.14 5899.84 23598.79 12698.74 33499.20 265
DELS-MVS99.34 9899.30 9199.48 17199.51 20199.36 16698.12 29799.53 20499.36 12099.41 20899.61 17599.22 4999.87 18099.21 7599.68 21899.20 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DROMVSNet99.69 2199.69 1999.68 8999.71 11399.91 299.76 1499.96 499.86 2199.51 18299.39 25599.57 2099.93 7499.64 2099.86 12299.20 265
CANet_DTU98.91 19698.85 19299.09 25398.79 34798.13 28598.18 29099.31 27799.48 9698.86 29099.51 22196.56 26399.95 4699.05 10199.95 5399.19 268
alignmvs98.28 26697.96 27499.25 23499.12 30898.93 23699.03 19598.42 34099.64 7198.72 30597.85 36990.86 33799.62 34798.88 12099.13 31199.19 268
DIV-MVS_self_test98.54 24298.42 23598.92 27099.03 32297.80 30397.46 34499.59 16798.90 18699.60 14699.46 24093.87 30199.78 28397.97 18899.89 9899.18 270
MSDG99.08 16698.98 17399.37 20899.60 15399.13 21097.54 33899.74 8198.84 19599.53 17599.55 21099.10 6199.79 28097.07 26399.86 12299.18 270
cl____98.54 24298.41 23698.92 27099.03 32297.80 30397.46 34499.59 16798.90 18699.60 14699.46 24093.85 30299.78 28397.97 18899.89 9899.17 272
PM-MVS99.36 9199.29 9699.58 13999.83 3999.66 8998.95 21399.86 2398.85 19299.81 5999.73 9398.40 16299.92 9498.36 15299.83 14199.17 272
thisisatest053097.45 29996.95 31098.94 26699.68 13497.73 30599.09 18494.19 37298.61 21799.56 16399.30 27784.30 36899.93 7498.27 16199.54 26499.16 274
PatchmatchNetpermissive97.65 29397.80 28697.18 33998.82 34492.49 36399.17 15798.39 34298.12 26398.79 29899.58 19290.71 33999.89 15297.23 25399.41 28599.16 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 6999.38 7299.60 13199.87 2999.75 5699.59 6699.78 6199.71 4999.90 2299.69 11998.85 9599.90 13697.25 25299.78 17499.15 276
mvs_anonymous99.28 11099.39 7098.94 26699.19 29897.81 30299.02 19699.55 18999.78 4199.85 4299.80 5998.24 17699.86 20099.57 2799.50 27199.15 276
ab-mvs99.33 10299.28 9899.47 17399.57 17299.39 15799.78 1199.43 24498.87 19099.57 15699.82 5498.06 19399.87 18098.69 13799.73 19899.15 276
MIMVSNet98.43 25498.20 25699.11 25199.53 19198.38 27499.58 6898.61 33298.96 17799.33 22499.76 8290.92 33499.81 27297.38 24099.76 18099.15 276
GSMVS99.14 280
sam_mvs190.81 33899.14 280
SCA98.11 27598.36 24197.36 33499.20 29692.99 36198.17 29298.49 33898.24 25799.10 26699.57 20096.01 28199.94 6096.86 27299.62 23799.14 280
LS3D99.24 12099.11 12999.61 12998.38 36199.79 3999.57 6999.68 11099.61 7999.15 25899.71 10698.70 11699.91 11697.54 23099.68 21899.13 283
Patchmatch-RL test98.60 23298.36 24199.33 21599.77 8299.07 22198.27 28599.87 2098.91 18599.74 9299.72 9990.57 34199.79 28098.55 14399.85 12699.11 284
test_040299.22 13099.14 11999.45 18099.79 6899.43 14799.28 12399.68 11099.54 8999.40 21399.56 20399.07 6999.82 25696.01 31399.96 4599.11 284
MVS_Test99.28 11099.31 8699.19 24299.35 25698.79 24699.36 10199.49 22599.17 15099.21 24999.67 13698.78 10699.66 33699.09 9899.66 22999.10 286
AdaColmapbinary98.60 23298.35 24399.38 20599.12 30899.22 19898.67 24999.42 24697.84 28498.81 29599.27 28497.32 24299.81 27295.14 33799.53 26699.10 286
FPMVS96.32 32495.50 33298.79 28899.60 15398.17 28498.46 27498.80 32497.16 31696.28 36599.63 15782.19 36999.09 36988.45 36798.89 32699.10 286
Patchmatch-test98.10 27697.98 27398.48 30199.27 28496.48 33299.40 9099.07 31198.81 19799.23 24399.57 20090.11 34599.87 18096.69 28299.64 23499.09 289
tpm97.15 30696.95 31097.75 32598.91 33194.24 35499.32 10897.96 34897.71 28898.29 32799.32 27386.72 36299.92 9498.10 17996.24 37099.09 289
PMMVS98.49 24998.29 24999.11 25198.96 32998.42 27097.54 33899.32 27397.53 29798.47 32398.15 36697.88 20899.82 25697.46 23599.24 30899.09 289
cl2297.56 29797.28 29998.40 30498.37 36296.75 32997.24 35399.37 26497.31 30999.41 20899.22 29687.30 35399.37 36797.70 21699.62 23799.08 292
ADS-MVSNet297.78 28697.66 29498.12 31699.14 30495.36 34699.22 14398.75 32696.97 32098.25 33099.64 14790.90 33599.94 6096.51 29399.56 25499.08 292
ADS-MVSNet97.72 29297.67 29397.86 32199.14 30494.65 35299.22 14398.86 32096.97 32098.25 33099.64 14790.90 33599.84 23596.51 29399.56 25499.08 292
pmmvs398.08 27797.80 28698.91 27299.41 24197.69 30797.87 32599.66 11995.87 33999.50 18499.51 22190.35 34399.97 1898.55 14399.47 27699.08 292
PVSNet97.47 1598.42 25598.44 23398.35 30699.46 22896.26 33596.70 36399.34 27097.68 28999.00 27499.13 30597.40 23699.72 30497.59 22899.68 21899.08 292
MVS-HIRNet97.86 28398.22 25496.76 34399.28 28291.53 37098.38 27792.60 37499.13 15899.31 23099.96 1197.18 25099.68 32798.34 15599.83 14199.07 297
PMVScopyleft92.94 2198.82 20998.81 19898.85 28099.84 3597.99 29499.20 14699.47 23199.71 4999.42 20099.82 5498.09 19099.47 36393.88 35599.85 12699.07 297
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 4199.59 3599.49 16799.98 399.71 7199.72 2499.84 3399.81 3599.94 1199.78 7298.91 8799.71 30898.41 14999.95 5399.05 299
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 17799.00 16599.09 25399.10 31498.70 25099.61 5999.66 11999.63 7498.64 31097.65 37199.04 7399.54 35698.79 12698.92 32399.04 300
hse-mvs298.52 24498.30 24899.16 24599.29 27998.60 25998.77 24099.02 31599.68 5999.32 22699.04 31992.50 31899.85 21899.24 7297.87 35999.03 301
CL-MVSNet_self_test98.71 22298.56 22399.15 24799.22 29198.66 25497.14 35599.51 21698.09 26699.54 17099.27 28496.87 25999.74 29998.43 14898.96 32099.03 301
AUN-MVS97.82 28497.38 29799.14 24899.27 28498.53 26198.72 24699.02 31598.10 26497.18 36299.03 32389.26 35099.85 21897.94 19097.91 35799.03 301
MDTV_nov1_ep13_2view91.44 37199.14 16797.37 30699.21 24991.78 32696.75 27999.03 301
ITE_SJBPF99.38 20599.63 14699.44 14399.73 8498.56 22099.33 22499.53 21598.88 9299.68 32796.01 31399.65 23299.02 305
UnsupCasMVSNet_bld98.55 24198.27 25099.40 19899.56 18299.37 16397.97 31799.68 11097.49 30099.08 26799.35 26895.41 28899.82 25697.70 21698.19 35199.01 306
miper_ehance_all_eth98.59 23598.59 21698.59 29798.98 32897.07 32297.49 34399.52 21298.50 22899.52 17799.37 25896.41 27199.71 30897.86 19899.62 23799.00 307
CS-MVS-test99.59 3999.59 3599.60 13199.55 18399.86 1399.60 6499.94 799.90 799.59 14998.89 34199.24 4799.95 4699.66 1699.90 8898.98 308
CS-MVS99.67 2699.70 1799.59 13499.54 18599.86 1399.80 1099.96 499.90 799.59 14999.41 24799.51 2399.95 4699.65 1799.90 8898.97 309
CNLPA98.57 23798.34 24499.28 22799.18 30099.10 21798.34 27899.41 24798.48 23198.52 31998.98 32997.05 25499.78 28395.59 32899.50 27198.96 310
new_pmnet98.88 20298.89 18898.84 28299.70 12197.62 30898.15 29399.50 22097.98 27299.62 13899.54 21298.15 18799.94 6097.55 22999.84 13198.95 311
PCF-MVS96.03 1896.73 31695.86 32799.33 21599.44 23399.16 20796.87 36199.44 24086.58 36998.95 27799.40 25194.38 29799.88 16787.93 36899.80 16398.95 311
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL98.68 22598.47 22999.30 22499.44 23399.28 18198.14 29599.54 19597.12 31899.11 26499.25 28997.80 21499.70 31096.51 29399.30 30098.93 313
Fast-Effi-MVS+99.02 17798.87 19099.46 17699.38 24999.50 12899.04 19299.79 5697.17 31598.62 31198.74 35099.34 3699.95 4698.32 15799.41 28598.92 314
ET-MVSNet_ETH3D96.78 31496.07 32398.91 27299.26 28697.92 30097.70 33296.05 36597.96 27692.37 37498.43 36187.06 35599.90 13698.27 16197.56 36298.91 315
EIA-MVS99.12 15799.01 16299.45 18099.36 25499.62 10299.34 10399.79 5698.41 23698.84 29298.89 34198.75 11299.84 23598.15 17599.51 26998.89 316
CostFormer96.71 31796.79 31696.46 35098.90 33290.71 37599.41 8998.68 32894.69 35798.14 33899.34 27186.32 36499.80 27797.60 22798.07 35598.88 317
DP-MVS Recon98.50 24698.23 25399.31 22299.49 21299.46 13698.56 25999.63 13894.86 35498.85 29199.37 25897.81 21399.59 35396.08 31099.44 27998.88 317
test0.0.03 197.37 30296.91 31398.74 29197.72 37197.57 30997.60 33697.36 35998.00 26999.21 24998.02 36790.04 34699.79 28098.37 15195.89 37198.86 319
BH-untuned98.22 27298.09 26698.58 29899.38 24997.24 31898.55 26098.98 31897.81 28599.20 25498.76 34997.01 25599.65 34394.83 34198.33 34698.86 319
HY-MVS98.23 998.21 27397.95 27598.99 26299.03 32298.24 27899.61 5998.72 32796.81 32698.73 30499.51 22194.06 29999.86 20096.91 26998.20 34998.86 319
miper_enhance_ethall98.03 27997.94 27998.32 30898.27 36496.43 33496.95 35999.41 24796.37 33399.43 19898.96 33494.74 29399.69 31697.71 21399.62 23798.83 322
Effi-MVS+-dtu99.07 16798.92 18399.52 15898.89 33599.78 4299.15 16599.66 11999.34 12198.92 28299.24 29497.69 22099.98 798.11 17799.28 30298.81 323
EPMVS96.53 32096.32 31897.17 34098.18 36792.97 36299.39 9289.95 37898.21 25998.61 31299.59 19086.69 36399.72 30496.99 26599.23 31098.81 323
MVEpermissive92.54 2296.66 31896.11 32298.31 31099.68 13497.55 31097.94 32095.60 36799.37 11890.68 37598.70 35196.56 26398.61 37386.94 37399.55 25898.77 325
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 32396.22 32096.73 34598.88 33891.75 36899.21 14598.51 33693.27 36097.89 34799.21 29884.83 36699.70 31096.04 31298.18 35298.75 326
LF4IMVS99.01 18198.92 18399.27 22999.71 11399.28 18198.59 25399.77 6498.32 25399.39 21499.41 24798.62 12799.84 23596.62 28999.84 13198.69 327
thisisatest051596.98 31096.42 31798.66 29599.42 24097.47 31197.27 35194.30 37197.24 31199.15 25898.86 34485.01 36599.87 18097.10 26199.39 28798.63 328
Fast-Effi-MVS+-dtu99.20 13799.12 12699.43 18699.25 28799.69 8299.05 19099.82 4099.50 9498.97 27599.05 31698.98 7899.98 798.20 16799.24 30898.62 329
PAPM95.61 33794.71 33998.31 31099.12 30896.63 33096.66 36498.46 33990.77 36696.25 36698.68 35293.01 31299.69 31681.60 37497.86 36098.62 329
JIA-IIPM98.06 27897.92 28198.50 30098.59 35697.02 32398.80 23598.51 33699.88 1897.89 34799.87 3291.89 32399.90 13698.16 17497.68 36198.59 331
dp96.86 31297.07 30696.24 35298.68 35590.30 37799.19 15198.38 34397.35 30798.23 33299.59 19087.23 35499.82 25696.27 30498.73 33698.59 331
OpenMVScopyleft98.12 1098.23 27197.89 28599.26 23199.19 29899.26 18599.65 5199.69 10791.33 36598.14 33899.77 7998.28 17399.96 3695.41 33399.55 25898.58 333
baseline296.83 31396.28 31998.46 30299.09 31696.91 32698.83 22793.87 37397.23 31296.23 36898.36 36288.12 35299.90 13696.68 28398.14 35398.57 334
DWT-MVSNet_test96.03 33095.80 32996.71 34798.50 35991.93 36699.25 13597.87 35195.99 33896.81 36497.61 37281.02 37199.66 33697.20 25697.98 35698.54 335
TESTMET0.1,196.24 32695.84 32897.41 33398.24 36593.84 35797.38 34695.84 36698.43 23397.81 35198.56 35679.77 37499.89 15297.77 20598.77 33098.52 336
xiu_mvs_v1_base_debu99.23 12199.34 8098.91 27299.59 15798.23 27998.47 26999.66 11999.61 7999.68 11198.94 33699.39 2699.97 1899.18 8299.55 25898.51 337
xiu_mvs_v1_base99.23 12199.34 8098.91 27299.59 15798.23 27998.47 26999.66 11999.61 7999.68 11198.94 33699.39 2699.97 1899.18 8299.55 25898.51 337
xiu_mvs_v1_base_debi99.23 12199.34 8098.91 27299.59 15798.23 27998.47 26999.66 11999.61 7999.68 11198.94 33699.39 2699.97 1899.18 8299.55 25898.51 337
KD-MVS_2432*160095.89 33195.41 33497.31 33794.96 37693.89 35597.09 35699.22 29897.23 31298.88 28699.04 31979.23 37599.54 35696.24 30696.81 36598.50 340
miper_refine_blended95.89 33195.41 33497.31 33794.96 37693.89 35597.09 35699.22 29897.23 31298.88 28699.04 31979.23 37599.54 35696.24 30696.81 36598.50 340
CR-MVSNet98.35 26398.20 25698.83 28499.05 31998.12 28699.30 11599.67 11597.39 30599.16 25699.79 6591.87 32499.91 11698.78 12998.77 33098.44 342
RPMNet98.60 23298.53 22698.83 28499.05 31998.12 28699.30 11599.62 14199.86 2199.16 25699.74 8992.53 31799.92 9498.75 13198.77 33098.44 342
tpmrst97.73 28998.07 26796.73 34598.71 35392.00 36599.10 18098.86 32098.52 22698.92 28299.54 21291.90 32299.82 25698.02 18199.03 31798.37 344
test-LLR97.15 30696.95 31097.74 32698.18 36795.02 34997.38 34696.10 36298.00 26997.81 35198.58 35390.04 34699.91 11697.69 22298.78 32898.31 345
test-mter96.23 32795.73 33097.74 32698.18 36795.02 34997.38 34696.10 36297.90 27897.81 35198.58 35379.12 37799.91 11697.69 22298.78 32898.31 345
ETV-MVS99.18 14499.18 11399.16 24599.34 26699.28 18199.12 17799.79 5699.48 9698.93 27998.55 35799.40 2599.93 7498.51 14599.52 26898.28 347
PatchT98.45 25398.32 24798.83 28498.94 33098.29 27799.24 13698.82 32399.84 2999.08 26799.76 8291.37 32799.94 6098.82 12499.00 31998.26 348
xiu_mvs_v2_base99.02 17799.11 12998.77 28999.37 25298.09 29098.13 29699.51 21699.47 10199.42 20098.54 35899.38 3099.97 1898.83 12299.33 29798.24 349
IB-MVS95.41 2095.30 33894.46 34297.84 32298.76 35195.33 34797.33 34996.07 36496.02 33795.37 37297.41 37476.17 38099.96 3697.54 23095.44 37298.22 350
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 31496.98 30996.16 35398.85 33990.59 37699.08 18799.32 27392.37 36297.73 35699.46 24091.15 33199.69 31696.07 31198.80 32798.21 351
MAR-MVS98.24 27097.92 28199.19 24298.78 34999.65 9499.17 15799.14 30895.36 34698.04 34298.81 34797.47 23399.72 30495.47 33299.06 31498.21 351
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 18399.08 14098.76 29099.37 25298.10 28998.00 31199.51 21699.47 10199.41 20898.50 36099.28 4299.97 1898.83 12299.34 29598.20 353
cascas96.99 30996.82 31597.48 33097.57 37495.64 34496.43 36599.56 18391.75 36397.13 36397.61 37295.58 28798.63 37296.68 28399.11 31298.18 354
BH-w/o97.20 30597.01 30897.76 32499.08 31795.69 34398.03 30898.52 33595.76 34297.96 34498.02 36795.62 28699.47 36392.82 35897.25 36498.12 355
tpmvs97.39 30197.69 29196.52 34898.41 36091.76 36799.30 11598.94 31997.74 28697.85 35099.55 21092.40 32099.73 30296.25 30598.73 33698.06 356
mvs-test198.83 20798.70 20899.22 23898.89 33599.65 9498.88 21899.66 11999.34 12198.29 32798.94 33697.69 22099.96 3698.11 17798.54 34298.04 357
thres600view796.60 31996.16 32197.93 31999.63 14696.09 33999.18 15297.57 35498.77 20398.72 30597.32 37587.04 35699.72 30488.57 36698.62 33997.98 358
thres40096.40 32195.89 32597.92 32099.58 16296.11 33799.00 20097.54 35798.43 23398.52 31996.98 37886.85 35899.67 33287.62 36998.51 34397.98 358
TR-MVS97.44 30097.15 30598.32 30898.53 35897.46 31298.47 26997.91 35096.85 32498.21 33398.51 35996.42 26999.51 36192.16 35997.29 36397.98 358
131498.00 28197.90 28498.27 31298.90 33297.45 31399.30 11599.06 31394.98 35197.21 36199.12 30998.43 15599.67 33295.58 32998.56 34197.71 361
E-PMN97.14 30897.43 29696.27 35198.79 34791.62 36995.54 36899.01 31799.44 10898.88 28699.12 30992.78 31499.68 32794.30 34899.03 31797.50 362
gg-mvs-nofinetune95.87 33395.17 33797.97 31898.19 36696.95 32499.69 3589.23 37999.89 1396.24 36799.94 1381.19 37099.51 36193.99 35498.20 34997.44 363
DeepMVS_CXcopyleft97.98 31799.69 12596.95 32499.26 28875.51 37295.74 37098.28 36496.47 26799.62 34791.23 36297.89 35897.38 364
OpenMVS_ROBcopyleft97.31 1797.36 30396.84 31498.89 27999.29 27999.45 14198.87 22199.48 22786.54 37099.44 19499.74 8997.34 24199.86 20091.61 36099.28 30297.37 365
EMVS96.96 31197.28 29995.99 35498.76 35191.03 37295.26 36998.61 33299.34 12198.92 28298.88 34393.79 30399.66 33692.87 35799.05 31597.30 366
thres100view90096.39 32296.03 32497.47 33199.63 14695.93 34099.18 15297.57 35498.75 20798.70 30797.31 37687.04 35699.67 33287.62 36998.51 34396.81 367
tfpn200view996.30 32595.89 32597.53 32999.58 16296.11 33799.00 20097.54 35798.43 23398.52 31996.98 37886.85 35899.67 33287.62 36998.51 34396.81 367
API-MVS98.38 25998.39 23898.35 30698.83 34199.26 18599.14 16799.18 30498.59 21898.66 30998.78 34898.61 12999.57 35594.14 35099.56 25496.21 369
thres20096.09 32895.68 33197.33 33699.48 21896.22 33698.53 26497.57 35498.06 26898.37 32696.73 38086.84 36099.61 35186.99 37298.57 34096.16 370
GG-mvs-BLEND97.36 33497.59 37296.87 32799.70 2988.49 38094.64 37397.26 37780.66 37299.12 36891.50 36196.50 36996.08 371
wuyk23d97.58 29699.13 12292.93 35699.69 12599.49 12999.52 7499.77 6497.97 27399.96 899.79 6599.84 399.94 6095.85 32199.82 15079.36 372
test12329.31 34233.05 34718.08 35825.93 38212.24 38297.53 34010.93 38311.78 37624.21 37750.08 38521.04 3818.60 37723.51 37532.43 37633.39 373
testmvs28.94 34333.33 34515.79 35926.03 3819.81 38396.77 36215.67 38211.55 37723.87 37850.74 38419.03 3828.53 37823.21 37633.07 37529.03 374
test_blank8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
cdsmvs_eth3d_5k24.88 34433.17 3460.00 3600.00 3830.00 3840.00 37199.62 1410.00 3780.00 37999.13 30599.82 40.00 3790.00 3770.00 3770.00 375
pcd_1.5k_mvsjas16.61 34522.14 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 199.28 420.00 3790.00 3770.00 3770.00 375
sosnet-low-res8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
sosnet8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
Regformer8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
ab-mvs-re8.26 35311.02 3560.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37999.16 3030.00 3830.00 3790.00 3770.00 3770.00 375
uanet8.33 34611.11 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 379100.00 10.00 3830.00 3790.00 3770.00 3770.00 375
FOURS199.83 3999.89 899.74 1899.71 9699.69 5799.63 130
test_one_060199.63 14699.76 5299.55 18999.23 13999.31 23099.61 17598.59 131
eth-test20.00 383
eth-test0.00 383
ZD-MVS99.43 23599.61 10899.43 24496.38 33299.11 26499.07 31497.86 20999.92 9494.04 35299.49 273
test_241102_ONE99.69 12599.82 2999.54 19599.12 16199.82 5299.49 22998.91 8799.52 360
9.1498.64 21199.45 23198.81 23299.60 16097.52 29899.28 23699.56 20398.53 14399.83 24695.36 33599.64 234
save fliter99.53 19199.25 18998.29 28399.38 26399.07 165
test072699.69 12599.80 3799.24 13699.57 17899.16 15299.73 9699.65 14598.35 166
test_part299.62 15099.67 8799.55 168
sam_mvs90.52 342
MTGPAbinary99.53 204
test_post199.14 16751.63 38389.54 34999.82 25696.86 272
test_post52.41 38290.25 34499.86 200
patchmatchnet-post99.62 16690.58 34099.94 60
MTMP99.09 18498.59 334
gm-plane-assit97.59 37289.02 37993.47 35998.30 36399.84 23596.38 300
TEST999.35 25699.35 17098.11 29999.41 24794.83 35697.92 34598.99 32698.02 19699.85 218
test_899.34 26699.31 17698.08 30399.40 25494.90 35297.87 34998.97 33298.02 19699.84 235
agg_prior99.35 25699.36 16699.39 25797.76 35499.85 218
test_prior499.19 20598.00 311
test_prior297.95 31897.87 28098.05 34099.05 31697.90 20595.99 31599.49 273
旧先验297.94 32095.33 34798.94 27899.88 16796.75 279
新几何298.04 307
原ACMM297.92 322
testdata299.89 15295.99 315
segment_acmp98.37 164
testdata197.72 33097.86 283
plane_prior799.58 16299.38 160
plane_prior699.47 22399.26 18597.24 244
plane_prior499.25 289
plane_prior399.31 17698.36 24299.14 260
plane_prior298.80 23598.94 179
plane_prior199.51 201
plane_prior99.24 19498.42 27597.87 28099.71 208
n20.00 384
nn0.00 384
door-mid99.83 35
test1199.29 282
door99.77 64
HQP5-MVS98.94 232
HQP-NCC99.31 27397.98 31497.45 30198.15 334
ACMP_Plane99.31 27397.98 31497.45 30198.15 334
BP-MVS94.73 342
HQP3-MVS99.37 26499.67 225
HQP2-MVS96.67 261
NP-MVS99.40 24499.13 21098.83 345
MDTV_nov1_ep1397.73 29098.70 35490.83 37399.15 16598.02 34798.51 22798.82 29499.61 17590.98 33399.66 33696.89 27198.92 323
ACMMP++_ref99.94 66
ACMMP++99.79 168
Test By Simon98.41 158