This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
tmp_tt95.75 32595.42 32396.76 33189.90 36394.42 34098.86 21097.87 33778.01 35799.30 22099.69 11297.70 21095.89 35999.29 5998.14 33999.95 1
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4099.68 3199.85 2399.95 399.98 399.92 1699.28 4099.98 699.75 13100.00 199.94 2
mvs_tets99.90 299.90 299.90 499.96 499.79 3599.72 1999.88 1599.92 699.98 399.93 1399.94 199.98 699.77 12100.00 199.92 3
UA-Net99.78 1399.76 1499.86 1699.72 10699.71 6399.91 399.95 499.96 299.71 9899.91 1999.15 5299.97 1699.50 31100.00 199.90 4
jajsoiax99.89 399.89 399.89 799.96 499.78 3899.70 2299.86 1999.89 1199.98 399.90 2199.94 199.98 699.75 13100.00 199.90 4
EU-MVSNet99.39 7799.62 2598.72 28199.88 2396.44 32099.56 6199.85 2399.90 799.90 2299.85 3698.09 18299.83 23199.58 2299.95 4899.90 4
test_djsdf99.84 899.81 999.91 299.94 1099.84 1799.77 1199.80 4699.73 3899.97 699.92 1699.77 799.98 699.43 36100.00 199.90 4
RRT_test8_iter0597.35 29497.25 29197.63 31798.81 32993.13 34799.26 11799.89 1299.51 8299.83 4899.68 12379.03 36499.88 15399.53 2799.72 19499.89 8
CVMVSNet98.61 22498.88 18397.80 31299.58 15193.60 34599.26 11799.64 13099.66 5699.72 9399.67 12993.26 29799.93 6799.30 5699.81 14899.87 9
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
FC-MVSNet-test99.70 1999.65 2299.86 1699.88 2399.86 1199.72 1999.78 5799.90 799.82 5099.83 4298.45 14799.87 16699.51 2999.97 2999.86 11
PS-CasMVS99.66 2499.58 3599.89 799.80 5599.85 1299.66 3999.73 7999.62 6499.84 4399.71 9998.62 12199.96 3399.30 5699.96 4199.86 11
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2399.70 4699.92 1899.93 1399.45 2199.97 1699.36 46100.00 199.85 13
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9199.93 499.95 1099.89 2599.71 999.96 3399.51 2999.97 2999.84 14
CP-MVSNet99.54 4599.43 6099.87 1499.76 8399.82 2599.57 5999.61 14299.54 7899.80 5999.64 14097.79 20799.95 4399.21 6499.94 6199.84 14
Test_1112_low_res98.95 18798.73 19799.63 11099.68 12899.15 20098.09 28899.80 4697.14 30399.46 18099.40 23796.11 27099.89 13899.01 9399.84 12199.84 14
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1699.97 1699.75 13100.00 199.84 14
nrg03099.70 1999.66 2199.82 2399.76 8399.84 1799.61 5199.70 9599.93 499.78 6799.68 12399.10 5799.78 26899.45 3499.96 4199.83 18
FIs99.65 2999.58 3599.84 1999.84 3399.85 1299.66 3999.75 7199.86 1699.74 8799.79 5998.27 16799.85 20499.37 4599.93 6999.83 18
v7n99.82 1099.80 1099.88 1199.96 499.84 1799.82 899.82 3699.84 2299.94 1199.91 1999.13 5699.96 3399.83 999.99 1299.83 18
PEN-MVS99.66 2499.59 3299.89 799.83 3799.87 899.66 3999.73 7999.70 4699.84 4399.73 8698.56 12999.96 3399.29 5999.94 6199.83 18
WR-MVS_H99.61 3599.53 4799.87 1499.80 5599.83 2199.67 3599.75 7199.58 7799.85 4099.69 11298.18 17899.94 5499.28 6199.95 4899.83 18
test_part198.63 22298.26 24399.75 5599.40 23299.49 11999.67 3599.68 10499.86 1699.88 3299.86 3586.73 34799.93 6799.34 4899.97 2999.81 23
Anonymous2023121199.62 3399.57 3899.76 4599.61 14499.60 10299.81 999.73 7999.82 2799.90 2299.90 2197.97 19399.86 18699.42 4099.96 4199.80 24
APDe-MVS99.48 5299.36 7299.85 1899.55 17299.81 2899.50 6599.69 10198.99 15999.75 7999.71 9998.79 9899.93 6798.46 13599.85 11799.80 24
DTE-MVSNet99.68 2299.61 2999.88 1199.80 5599.87 899.67 3599.71 9199.72 4199.84 4399.78 6598.67 11599.97 1699.30 5699.95 4899.80 24
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6199.59 5699.82 3699.39 10499.82 5099.84 4199.38 2799.91 10499.38 4399.93 6999.80 24
1112_ss99.05 16598.84 18899.67 8799.66 13499.29 17098.52 25299.82 3697.65 27799.43 18699.16 28896.42 26199.91 10499.07 8999.84 12199.80 24
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 599.90 799.97 699.87 3099.81 599.95 4399.54 2599.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bset_n11_16_dypcd98.69 21898.45 22599.42 17799.69 11998.52 25096.06 35396.80 34799.71 4299.73 9199.54 20295.14 28099.96 3399.39 4299.95 4899.79 30
PMMVS299.48 5299.45 5599.57 13599.76 8398.99 21598.09 28899.90 1198.95 16599.78 6799.58 18399.57 1999.93 6799.48 3299.95 4899.79 30
CHOSEN 1792x268899.39 7799.30 8599.65 9999.88 2399.25 18098.78 22799.88 1598.66 19899.96 899.79 5997.45 22699.93 6799.34 4899.99 1299.78 32
IU-MVS99.69 11999.77 4099.22 28597.50 28599.69 10397.75 19699.70 20099.77 33
test_0728_THIRD99.18 13399.62 13099.61 16898.58 12699.91 10497.72 19899.80 15399.77 33
test_0728_SECOND99.83 2199.70 11699.79 3599.14 15699.61 14299.92 8697.88 18399.72 19499.77 33
MSP-MVS99.04 16898.79 19599.81 2699.78 7199.73 5799.35 9299.57 17198.54 21299.54 16098.99 31096.81 25299.93 6796.97 25199.53 25299.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVS99.14 14698.92 17799.82 2399.57 16199.77 4098.74 23099.60 15398.55 20999.76 7499.69 11298.23 17299.92 8696.39 28399.75 17399.76 37
Baseline_NR-MVSNet99.49 5099.37 6999.82 2399.91 1599.84 1798.83 21599.86 1999.68 5099.65 11799.88 2897.67 21599.87 16699.03 9199.86 11499.76 37
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2199.83 699.85 2399.80 3199.93 1499.93 1398.54 13299.93 6799.59 2099.98 2199.76 37
test_241102_TWO99.54 18699.13 14499.76 7499.63 15098.32 16499.92 8697.85 18999.69 20399.75 40
DP-MVS99.48 5299.39 6499.74 6199.57 16199.62 9499.29 11299.61 14299.87 1499.74 8799.76 7598.69 11199.87 16698.20 15699.80 15399.75 40
v1099.69 2199.69 1899.66 9499.81 5099.39 14899.66 3999.75 7199.60 7499.92 1899.87 3098.75 10699.86 18699.90 299.99 1299.73 42
EI-MVSNet-UG-set99.48 5299.50 4999.42 17799.57 16198.65 24599.24 12599.46 22599.68 5099.80 5999.66 13398.99 7199.89 13899.19 6999.90 8399.72 43
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2399.66 8199.69 2899.92 599.67 5299.77 7299.75 7999.61 1699.98 699.35 4799.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 19098.64 20599.73 6999.85 3299.47 12398.07 29199.83 3198.64 20099.89 2699.60 17592.57 303100.00 199.33 5199.97 2999.72 43
EI-MVSNet-Vis-set99.47 5899.49 5099.42 17799.57 16198.66 24299.24 12599.46 22599.67 5299.79 6499.65 13898.97 7499.89 13899.15 7899.89 9199.71 46
v899.68 2299.69 1899.65 9999.80 5599.40 14699.66 3999.76 6599.64 6099.93 1499.85 3698.66 11799.84 22099.88 699.99 1299.71 46
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 1999.70 4699.91 2099.89 2599.60 1899.87 16699.59 2099.74 18199.71 46
VPA-MVSNet99.66 2499.62 2599.79 3499.68 12899.75 4899.62 4799.69 10199.85 2099.80 5999.81 5198.81 9199.91 10499.47 3399.88 9999.70 49
WR-MVS99.11 15498.93 17399.66 9499.30 26599.42 14198.42 26299.37 25399.04 15799.57 14699.20 28596.89 25099.86 18698.66 12799.87 10799.70 49
ACMH98.42 699.59 3699.54 4399.72 7599.86 2999.62 9499.56 6199.79 5298.77 19099.80 5999.85 3699.64 1399.85 20498.70 12399.89 9199.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 899.85 2099.94 1199.95 1199.73 899.90 12499.65 1699.97 2999.69 52
HPM-MVS_fast99.43 6399.30 8599.80 2999.83 3799.81 2899.52 6399.70 9598.35 23499.51 17299.50 21399.31 3599.88 15398.18 16099.84 12199.69 52
LPG-MVS_test99.22 12399.05 14399.74 6199.82 4399.63 9299.16 15299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
LGP-MVS_train99.74 6199.82 4399.63 9299.73 7997.56 28099.64 11999.69 11299.37 2999.89 13896.66 27099.87 10799.69 52
SteuartSystems-ACMMP99.30 10099.14 11299.76 4599.87 2799.66 8199.18 14199.60 15398.55 20999.57 14699.67 12999.03 6999.94 5497.01 24999.80 15399.69 52
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 23798.39 23298.94 25599.15 29097.39 30298.18 27799.21 28998.89 17699.23 22899.63 15097.37 23299.74 28494.22 33399.61 23299.69 52
ACMMP_NAP99.28 10399.11 12299.79 3499.75 9399.81 2898.95 20199.53 19598.27 24399.53 16599.73 8698.75 10699.87 16697.70 20199.83 13199.68 58
HFP-MVS99.25 11099.08 13399.76 4599.73 10299.70 7099.31 10299.59 16098.36 22999.36 20599.37 24398.80 9599.91 10497.43 22299.75 17399.68 58
#test#99.12 15098.90 18199.76 4599.73 10299.70 7099.10 16999.59 16097.60 27999.36 20599.37 24398.80 9599.91 10496.84 26099.75 17399.68 58
EI-MVSNet99.38 7999.44 5799.21 22999.58 15198.09 27799.26 11799.46 22599.62 6499.75 7999.67 12998.54 13299.85 20499.15 7899.92 7399.68 58
TranMVSNet+NR-MVSNet99.54 4599.47 5199.76 4599.58 15199.64 8899.30 10599.63 13299.61 6899.71 9899.56 19498.76 10499.96 3399.14 8499.92 7399.68 58
PVSNet_Blended_VisFu99.40 7399.38 6699.44 17299.90 1998.66 24298.94 20399.91 897.97 26099.79 6499.73 8699.05 6799.97 1699.15 7899.99 1299.68 58
IterMVS-LS99.41 7099.47 5199.25 22399.81 5098.09 27798.85 21299.76 6599.62 6499.83 4899.64 14098.54 13299.97 1699.15 7899.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 14698.92 17799.80 2999.83 3799.83 2198.61 23799.63 13296.84 31199.44 18299.58 18398.81 9199.91 10497.70 20199.82 14099.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 11499.05 14399.77 3999.76 8399.70 7099.31 10299.59 16098.41 22399.32 21499.36 24898.73 10999.93 6797.29 22999.74 18199.67 65
Regformer-499.45 6199.44 5799.50 15599.52 18398.94 22199.17 14699.53 19599.64 6099.76 7499.60 17598.96 7799.90 12498.91 10799.84 12199.67 65
XVS99.27 10799.11 12299.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28799.47 22598.47 14399.88 15397.62 20999.73 18899.67 65
v124099.56 4099.58 3599.51 15299.80 5599.00 21499.00 18899.65 12499.15 14299.90 2299.75 7999.09 5999.88 15399.90 299.96 4199.67 65
X-MVStestdata96.09 31894.87 32899.75 5599.71 10999.71 6399.37 8899.61 14299.29 11598.76 28761.30 36598.47 14399.88 15397.62 20999.73 18899.67 65
VPNet99.46 5999.37 6999.71 7999.82 4399.59 10599.48 6999.70 9599.81 2899.69 10399.58 18397.66 21999.86 18699.17 7499.44 26599.67 65
ACMMPR99.23 11499.06 13999.76 4599.74 9999.69 7499.31 10299.59 16098.36 22999.35 20799.38 24298.61 12399.93 6797.43 22299.75 17399.67 65
SixPastTwentyTwo99.42 6699.30 8599.76 4599.92 1499.67 7999.70 2299.14 29599.65 5899.89 2699.90 2196.20 26899.94 5499.42 4099.92 7399.67 65
HPM-MVScopyleft99.25 11099.07 13799.78 3799.81 5099.75 4899.61 5199.67 10997.72 27499.35 20799.25 27499.23 4599.92 8697.21 24099.82 14099.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 4399.54 4399.58 13099.78 7199.20 19599.11 16899.62 13599.18 13399.89 2699.72 9298.66 11799.87 16699.88 699.97 2999.66 75
v192192099.56 4099.57 3899.55 14299.75 9399.11 20399.05 17999.61 14299.15 14299.88 3299.71 9999.08 6299.87 16699.90 299.97 2999.66 75
v119299.57 3799.57 3899.57 13599.77 7999.22 18999.04 18199.60 15399.18 13399.87 3899.72 9299.08 6299.85 20499.89 599.98 2199.66 75
PGM-MVS99.20 13099.01 15699.77 3999.75 9399.71 6399.16 15299.72 8897.99 25899.42 18899.60 17598.81 9199.93 6796.91 25499.74 18199.66 75
mPP-MVS99.19 13399.00 15999.76 4599.76 8399.68 7799.38 8499.54 18698.34 23899.01 25899.50 21398.53 13699.93 6797.18 24299.78 16499.66 75
CP-MVS99.23 11499.05 14399.75 5599.66 13499.66 8199.38 8499.62 13598.38 22799.06 25699.27 26998.79 9899.94 5497.51 21899.82 14099.66 75
EG-PatchMatch MVS99.57 3799.56 4299.62 11999.77 7999.33 16499.26 11799.76 6599.32 11399.80 5999.78 6599.29 3899.87 16699.15 7899.91 8299.66 75
UGNet99.38 7999.34 7499.49 15898.90 31698.90 22999.70 2299.35 25799.86 1698.57 30199.81 5198.50 14299.93 6799.38 4399.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + MP.99.34 9199.24 10099.63 11099.82 4399.37 15499.26 11799.35 25798.77 19099.57 14699.70 10699.27 4399.88 15397.71 19999.75 17399.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
zzz-MVS99.30 10099.14 11299.80 2999.81 5099.81 2898.73 23299.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
MTAPA99.35 8699.20 10499.80 2999.81 5099.81 2899.33 9599.53 19599.27 11999.42 18899.63 15098.21 17399.95 4397.83 19299.79 15899.65 83
Regformer-399.41 7099.41 6299.40 18799.52 18398.70 23999.17 14699.44 23099.62 6499.75 7999.60 17598.90 8499.85 20498.89 10899.84 12199.65 83
MCST-MVS99.02 17198.81 19299.65 9999.58 15199.49 11998.58 24199.07 29898.40 22599.04 25799.25 27498.51 14199.80 26297.31 22899.51 25599.65 83
UniMVSNet_NR-MVSNet99.37 8199.25 9999.72 7599.47 21099.56 11198.97 19999.61 14299.43 10199.67 10999.28 26797.85 20399.95 4399.17 7499.81 14899.65 83
ZNCC-MVS99.22 12399.04 14999.77 3999.76 8399.73 5799.28 11399.56 17698.19 24899.14 24599.29 26598.84 9099.92 8697.53 21799.80 15399.64 89
v114499.54 4599.53 4799.59 12699.79 6599.28 17299.10 16999.61 14299.20 13199.84 4399.73 8698.67 11599.84 22099.86 899.98 2199.64 89
v2v48299.50 4899.47 5199.58 13099.78 7199.25 18099.14 15699.58 16999.25 12399.81 5699.62 15998.24 16999.84 22099.83 999.97 2999.64 89
K. test v398.87 19898.60 20899.69 8499.93 1399.46 12799.74 1594.97 35499.78 3499.88 3299.88 2893.66 29599.97 1699.61 1899.95 4899.64 89
DeepC-MVS98.90 499.62 3399.61 2999.67 8799.72 10699.44 13499.24 12599.71 9199.27 11999.93 1499.90 2199.70 1199.93 6798.99 9499.99 1299.64 89
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj98.56 23198.17 25399.72 7599.45 21899.60 10298.88 20699.50 21096.88 30899.18 24099.48 22097.08 24599.92 8693.69 34099.38 27599.63 94
SMA-MVScopyleft99.19 13399.00 15999.73 6999.46 21599.73 5799.13 16299.52 20397.40 29099.57 14699.64 14098.93 7899.83 23197.61 21199.79 15899.63 94
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 17799.16 10898.51 28899.75 9395.90 32898.07 29199.84 2999.84 2299.89 2699.73 8696.01 27299.99 499.33 51100.00 199.63 94
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2199.76 1399.87 1799.73 3899.89 2699.87 3099.63 1499.87 16699.54 2599.92 7399.63 94
MP-MVScopyleft99.06 16298.83 19099.76 4599.76 8399.71 6399.32 9899.50 21098.35 23498.97 26099.48 22098.37 15799.92 8695.95 30399.75 17399.63 94
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 9599.21 10399.71 7999.43 22399.56 11198.83 21599.53 19599.38 10599.67 10999.36 24897.67 21599.95 4399.17 7499.81 14899.63 94
NR-MVSNet99.40 7399.31 8099.68 8599.43 22399.55 11499.73 1699.50 21099.46 9499.88 3299.36 24897.54 22399.87 16698.97 9899.87 10799.63 94
IterMVS98.97 18199.16 10898.42 29299.74 9995.64 33198.06 29399.83 3199.83 2599.85 4099.74 8296.10 27199.99 499.27 62100.00 199.63 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 14199.00 15999.66 9499.80 5599.43 13899.70 2299.24 28399.48 8599.56 15399.77 7294.89 28299.93 6798.72 12299.89 9199.63 94
ACMMPcopyleft99.25 11099.08 13399.74 6199.79 6599.68 7799.50 6599.65 12498.07 25499.52 16799.69 11298.57 12799.92 8697.18 24299.79 15899.63 94
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 11499.12 11999.56 13999.28 26999.22 18998.99 19399.40 24399.08 15099.58 14399.64 14098.90 8499.83 23197.44 22199.75 17399.63 94
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS99.16 14298.96 17099.75 5599.73 10299.73 5799.20 13599.55 18198.22 24599.32 21499.35 25398.65 11999.91 10496.86 25799.74 18199.62 105
new-patchmatchnet99.35 8699.57 3898.71 28399.82 4396.62 31898.55 24799.75 7199.50 8399.88 3299.87 3099.31 3599.88 15399.43 36100.00 199.62 105
RRT_MVS98.75 21098.54 21899.41 18598.14 35498.61 24698.98 19799.66 11399.31 11499.84 4399.75 7991.98 30799.98 699.20 6799.95 4899.62 105
CPTT-MVS98.74 21298.44 22799.64 10699.61 14499.38 15199.18 14199.55 18196.49 31699.27 22299.37 24397.11 24499.92 8695.74 31099.67 21399.62 105
MIMVSNet199.66 2499.62 2599.80 2999.94 1099.87 899.69 2899.77 6099.78 3499.93 1499.89 2597.94 19499.92 8699.65 1699.98 2199.62 105
DeepPCF-MVS98.42 699.18 13799.02 15399.67 8799.22 27899.75 4897.25 33999.47 22198.72 19599.66 11399.70 10699.29 3899.63 33198.07 16999.81 14899.62 105
3Dnovator+98.92 399.35 8699.24 10099.67 8799.35 24499.47 12399.62 4799.50 21099.44 9699.12 24899.78 6598.77 10399.94 5497.87 18699.72 19499.62 105
DVP-MVS99.32 9799.17 10799.77 3999.69 11999.80 3399.14 15699.31 26699.16 13899.62 13099.61 16898.35 15999.91 10497.88 18399.72 19499.61 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 19898.59 21099.71 7999.50 19499.62 9499.01 18699.57 17196.80 31399.54 16099.63 15098.29 16599.91 10495.24 32099.71 19899.61 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 20398.57 21499.58 13099.21 28099.31 16798.61 23799.25 28098.65 19998.43 30999.26 27297.86 20199.81 25796.55 27499.27 29299.61 112
TAMVS99.49 5099.45 5599.63 11099.48 20599.42 14199.45 7299.57 17199.66 5699.78 6799.83 4297.85 20399.86 18699.44 3599.96 4199.61 112
Regformer-199.32 9799.27 9599.47 16399.41 22998.95 22098.99 19399.48 21799.48 8599.66 11399.52 20798.78 10099.87 16698.36 14099.74 18199.60 116
Regformer-299.34 9199.27 9599.53 14899.41 22999.10 20798.99 19399.53 19599.47 9099.66 11399.52 20798.80 9599.89 13898.31 14699.74 18199.60 116
HPM-MVS++copyleft98.96 18498.70 20299.74 6199.52 18399.71 6398.86 21099.19 29098.47 21998.59 29999.06 30098.08 18499.91 10496.94 25299.60 23599.60 116
V4299.56 4099.54 4399.63 11099.79 6599.46 12799.39 8299.59 16099.24 12599.86 3999.70 10698.55 13099.82 24199.79 1199.95 4899.60 116
HQP_MVS98.90 19298.68 20499.55 14299.58 15199.24 18598.80 22399.54 18698.94 16699.14 24599.25 27497.24 23699.82 24195.84 30699.78 16499.60 116
plane_prior599.54 18699.82 24195.84 30699.78 16499.60 116
TDRefinement99.72 1799.70 1799.77 3999.90 1999.85 1299.86 599.92 599.69 4999.78 6799.92 1699.37 2999.88 15398.93 10699.95 4899.60 116
ACMH+98.40 899.50 4899.43 6099.71 7999.86 2999.76 4699.32 9899.77 6099.53 8099.77 7299.76 7599.26 4499.78 26897.77 19499.88 9999.60 116
ACMM98.09 1199.46 5999.38 6699.72 7599.80 5599.69 7499.13 16299.65 12498.99 15999.64 11999.72 9299.39 2399.86 18698.23 15399.81 14899.60 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 18198.82 19199.42 17799.71 10998.81 23399.62 4798.68 31499.81 2899.38 20399.80 5394.25 28999.85 20498.79 11599.32 28599.59 125
casdiffmvs99.63 3099.61 2999.67 8799.79 6599.59 10599.13 16299.85 2399.79 3399.76 7499.72 9299.33 3499.82 24199.21 6499.94 6199.59 125
UniMVSNet (Re)99.37 8199.26 9799.68 8599.51 18899.58 10898.98 19799.60 15399.43 10199.70 10099.36 24897.70 21099.88 15399.20 6799.87 10799.59 125
DSMNet-mixed99.48 5299.65 2298.95 25499.71 10997.27 30499.50 6599.82 3699.59 7699.41 19699.85 3699.62 15100.00 199.53 2799.89 9199.59 125
3Dnovator99.15 299.43 6399.36 7299.65 9999.39 23499.42 14199.70 2299.56 17699.23 12799.35 20799.80 5399.17 5099.95 4398.21 15599.84 12199.59 125
SED-MVS99.40 7399.28 9299.77 3999.69 11999.82 2599.20 13599.54 18699.13 14499.82 5099.63 15098.91 8199.92 8697.85 18999.70 20099.58 130
OPU-MVS99.29 21499.12 29599.44 13499.20 13599.40 23799.00 7098.84 35696.54 27599.60 23599.58 130
abl_699.36 8499.23 10299.75 5599.71 10999.74 5499.33 9599.76 6599.07 15299.65 11799.63 15099.09 5999.92 8697.13 24599.76 17099.58 130
EPNet98.13 26697.77 27999.18 23494.57 36297.99 28199.24 12597.96 33499.74 3797.29 34599.62 15993.13 29999.97 1698.59 12999.83 13199.58 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 16998.85 18699.55 14299.80 5599.25 18099.73 1699.15 29499.37 10699.61 13699.71 9994.73 28599.81 25797.70 20199.88 9999.58 130
ACMP97.51 1499.05 16598.84 18899.67 8799.78 7199.55 11498.88 20699.66 11397.11 30599.47 17799.60 17599.07 6499.89 13896.18 29299.85 11799.58 130
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test117299.23 11499.05 14399.74 6199.52 18399.75 4899.20 13599.61 14298.97 16199.48 17599.58 18398.41 15199.91 10497.15 24499.55 24499.57 136
SR-MVS99.19 13399.00 15999.74 6199.51 18899.72 6199.18 14199.60 15398.85 17999.47 17799.58 18398.38 15699.92 8696.92 25399.54 25099.57 136
lessismore_v099.64 10699.86 2999.38 15190.66 36199.89 2699.83 4294.56 28799.97 1699.56 2499.92 7399.57 136
pmmvs599.19 13399.11 12299.42 17799.76 8398.88 23098.55 24799.73 7998.82 18399.72 9399.62 15996.56 25599.82 24199.32 5399.95 4899.56 139
APD-MVS_3200maxsize99.31 9999.16 10899.74 6199.53 17899.75 4899.27 11699.61 14299.19 13299.57 14699.64 14098.76 10499.90 12497.29 22999.62 22599.56 139
CDPH-MVS98.56 23198.20 24899.61 12299.50 19499.46 12798.32 26899.41 23695.22 33499.21 23499.10 29798.34 16199.82 24195.09 32399.66 21799.56 139
our_test_398.85 20099.09 13198.13 30499.66 13494.90 33897.72 31799.58 16999.07 15299.64 11999.62 15998.19 17699.93 6798.41 13799.95 4899.55 142
YYNet198.95 18798.99 16498.84 27199.64 13897.14 30898.22 27699.32 26298.92 17199.59 14199.66 13397.40 22899.83 23198.27 15099.90 8399.55 142
MDA-MVSNet_test_wron98.95 18798.99 16498.85 26999.64 13897.16 30798.23 27599.33 26098.93 16999.56 15399.66 13397.39 23099.83 23198.29 14899.88 9999.55 142
MVSFormer99.41 7099.44 5799.31 21199.57 16198.40 25899.77 1199.80 4699.73 3899.63 12399.30 26298.02 18899.98 699.43 3699.69 20399.55 142
jason99.16 14299.11 12299.32 20899.75 9398.44 25598.26 27399.39 24698.70 19699.74 8799.30 26298.54 13299.97 1698.48 13499.82 14099.55 142
jason: jason.
CDS-MVSNet99.22 12399.13 11599.50 15599.35 24499.11 20398.96 20099.54 18699.46 9499.61 13699.70 10696.31 26599.83 23199.34 4899.88 9999.55 142
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 6199.37 6999.70 8399.83 3799.70 7099.38 8499.78 5799.53 8099.67 10999.78 6599.19 4899.86 18697.32 22799.87 10799.55 142
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post99.27 10799.11 12299.73 6999.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.41 15199.91 10497.27 23299.61 23299.54 149
RE-MVS-def99.13 11599.54 17399.74 5499.26 11799.62 13599.16 13899.52 16799.64 14098.57 12797.27 23299.61 23299.54 149
SD-MVS99.01 17599.30 8598.15 30399.50 19499.40 14698.94 20399.61 14299.22 13099.75 7999.82 4899.54 2095.51 36097.48 21999.87 10799.54 149
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 18098.80 19499.56 13999.25 27499.43 13898.54 25099.27 27598.58 20698.80 28299.43 23398.53 13699.70 29597.22 23999.59 23799.54 149
MVS_111021_HR99.12 15099.02 15399.40 18799.50 19499.11 20397.92 30999.71 9198.76 19399.08 25299.47 22599.17 5099.54 34197.85 18999.76 17099.54 149
v14899.40 7399.41 6299.39 19099.76 8398.94 22199.09 17399.59 16099.17 13699.81 5699.61 16898.41 15199.69 30199.32 5399.94 6199.53 154
diffmvs99.34 9199.32 7999.39 19099.67 13398.77 23698.57 24599.81 4599.61 6899.48 17599.41 23598.47 14399.86 18698.97 9899.90 8399.53 154
baseline99.63 3099.62 2599.66 9499.80 5599.62 9499.44 7599.80 4699.71 4299.72 9399.69 11299.15 5299.83 23199.32 5399.94 6199.53 154
HQP4-MVS98.15 31999.70 29599.53 154
GBi-Net99.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
test199.42 6699.31 8099.73 6999.49 19999.77 4099.68 3199.70 9599.44 9699.62 13099.83 4297.21 23899.90 12498.96 10099.90 8399.53 154
FMVSNet199.66 2499.63 2499.73 6999.78 7199.77 4099.68 3199.70 9599.67 5299.82 5099.83 4298.98 7299.90 12499.24 6399.97 2999.53 154
HQP-MVS98.36 25298.02 26099.39 19099.31 26198.94 22197.98 30199.37 25397.45 28798.15 31998.83 32896.67 25399.70 29594.73 32699.67 21399.53 154
QAPM98.40 25097.99 26199.65 9999.39 23499.47 12399.67 3599.52 20391.70 35098.78 28599.80 5398.55 13099.95 4394.71 32899.75 17399.53 154
F-COLMAP98.74 21298.45 22599.62 11999.57 16199.47 12398.84 21399.65 12496.31 32098.93 26499.19 28797.68 21499.87 16696.52 27699.37 27999.53 154
MVSTER98.47 24398.22 24699.24 22699.06 30598.35 26399.08 17699.46 22599.27 11999.75 7999.66 13388.61 33799.85 20499.14 8499.92 7399.52 164
PVSNet_BlendedMVS99.03 16999.01 15699.09 24299.54 17397.99 28198.58 24199.82 3697.62 27899.34 21099.71 9998.52 13999.77 27697.98 17599.97 2999.52 164
OPM-MVS99.26 10999.13 11599.63 11099.70 11699.61 10098.58 24199.48 21798.50 21599.52 16799.63 15099.14 5499.76 27897.89 18299.77 16899.51 166
agg_prior198.33 25797.92 27199.57 13599.35 24499.36 15797.99 30099.39 24694.85 34197.76 34098.98 31398.03 18699.85 20495.49 31499.44 26599.51 166
AllTest99.21 12899.07 13799.63 11099.78 7199.64 8899.12 16699.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
TestCases99.63 11099.78 7199.64 8899.83 3198.63 20199.63 12399.72 9298.68 11299.75 28296.38 28499.83 13199.51 166
BH-RMVSNet98.41 24898.14 25599.21 22999.21 28098.47 25298.60 23998.26 33198.35 23498.93 26499.31 26097.20 24199.66 32194.32 33199.10 30099.51 166
USDC98.96 18498.93 17399.05 24899.54 17397.99 28197.07 34599.80 4698.21 24699.75 7999.77 7298.43 14899.64 33097.90 18199.88 9999.51 166
test9_res95.10 32299.44 26599.50 172
train_agg98.35 25597.95 26599.57 13599.35 24499.35 16198.11 28699.41 23694.90 33897.92 33198.99 31098.02 18899.85 20495.38 31899.44 26599.50 172
agg_prior294.58 33099.46 26499.50 172
VDD-MVS99.20 13099.11 12299.44 17299.43 22398.98 21699.50 6598.32 33099.80 3199.56 15399.69 11296.99 24899.85 20498.99 9499.73 18899.50 172
MDA-MVSNet-bldmvs99.06 16299.05 14399.07 24699.80 5597.83 28898.89 20599.72 8899.29 11599.63 12399.70 10696.47 25999.89 13898.17 16299.82 14099.50 172
DIV-MVS_2432*160099.63 3099.59 3299.76 4599.84 3399.90 499.37 8899.79 5299.83 2599.88 3299.85 3698.42 15099.90 12499.60 1999.73 18899.49 177
xxxxxxxxxxxxxcwj99.11 15498.96 17099.54 14699.53 17899.25 18098.29 27099.76 6599.07 15299.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
SF-MVS99.10 15898.93 17399.62 11999.58 15199.51 11799.13 16299.65 12497.97 26099.42 18899.61 16898.86 8799.87 16696.45 28199.68 20699.49 177
Anonymous2024052999.42 6699.34 7499.65 9999.53 17899.60 10299.63 4699.39 24699.47 9099.76 7499.78 6598.13 18099.86 18698.70 12399.68 20699.49 177
WTY-MVS98.59 22898.37 23499.26 22099.43 22398.40 25898.74 23099.13 29798.10 25199.21 23499.24 27994.82 28399.90 12497.86 18798.77 31799.49 177
ppachtmachnet_test98.89 19599.12 11998.20 30299.66 13495.24 33597.63 32199.68 10499.08 15099.78 6799.62 15998.65 11999.88 15398.02 17099.96 4199.48 182
Anonymous2023120699.35 8699.31 8099.47 16399.74 9999.06 21399.28 11399.74 7699.23 12799.72 9399.53 20597.63 22199.88 15399.11 8699.84 12199.48 182
test_prior398.62 22398.34 23899.46 16699.35 24499.22 18997.95 30599.39 24697.87 26798.05 32599.05 30197.90 19799.69 30195.99 29999.49 25999.48 182
test_prior99.46 16699.35 24499.22 18999.39 24699.69 30199.48 182
test1299.54 14699.29 26799.33 16499.16 29398.43 30997.54 22399.82 24199.47 26299.48 182
VNet99.18 13799.06 13999.56 13999.24 27699.36 15799.33 9599.31 26699.67 5299.47 17799.57 19196.48 25899.84 22099.15 7899.30 28799.47 187
test20.0399.55 4399.54 4399.58 13099.79 6599.37 15499.02 18499.89 1299.60 7499.82 5099.62 15998.81 9199.89 13899.43 3699.86 11499.47 187
114514_t98.49 24198.11 25699.64 10699.73 10299.58 10899.24 12599.76 6589.94 35399.42 18899.56 19497.76 20999.86 18697.74 19799.82 14099.47 187
sss98.90 19298.77 19699.27 21899.48 20598.44 25598.72 23399.32 26297.94 26499.37 20499.35 25396.31 26599.91 10498.85 11099.63 22499.47 187
旧先验199.49 19999.29 17099.26 27799.39 24197.67 21599.36 28099.46 191
112198.56 23198.24 24499.52 14999.49 19999.24 18599.30 10599.22 28595.77 32798.52 30499.29 26597.39 23099.85 20495.79 30899.34 28299.46 191
MVP-Stereo99.16 14299.08 13399.43 17599.48 20599.07 21199.08 17699.55 18198.63 20199.31 21699.68 12398.19 17699.78 26898.18 16099.58 23899.45 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 14999.50 19499.22 18999.26 27795.66 33098.60 29899.28 26797.67 21599.89 13895.95 30399.32 28599.45 193
LFMVS98.46 24498.19 25199.26 22099.24 27698.52 25099.62 4796.94 34699.87 1499.31 21699.58 18391.04 31899.81 25798.68 12699.42 27099.45 193
testgi99.29 10299.26 9799.37 19799.75 9398.81 23398.84 21399.89 1298.38 22799.75 7999.04 30499.36 3299.86 18699.08 8899.25 29399.45 193
UnsupCasMVSNet_eth98.83 20198.57 21499.59 12699.68 12899.45 13298.99 19399.67 10999.48 8599.55 15899.36 24894.92 28199.86 18698.95 10496.57 35299.45 193
无先验98.01 29699.23 28495.83 32699.85 20495.79 30899.44 198
testdata99.42 17799.51 18898.93 22599.30 26996.20 32198.87 27499.40 23798.33 16399.89 13896.29 28799.28 28999.44 198
XVG-OURS-SEG-HR99.16 14298.99 16499.66 9499.84 3399.64 8898.25 27499.73 7998.39 22699.63 12399.43 23399.70 1199.90 12497.34 22698.64 32599.44 198
FMVSNet299.35 8699.28 9299.55 14299.49 19999.35 16199.45 7299.57 17199.44 9699.70 10099.74 8297.21 23899.87 16699.03 9199.94 6199.44 198
N_pmnet98.73 21498.53 22099.35 20199.72 10698.67 24198.34 26594.65 35598.35 23499.79 6499.68 12398.03 18699.93 6798.28 14999.92 7399.44 198
RPSCF99.18 13799.02 15399.64 10699.83 3799.85 1299.44 7599.82 3698.33 23999.50 17399.78 6597.90 19799.65 32896.78 26399.83 13199.44 198
原ACMM199.37 19799.47 21098.87 23299.27 27596.74 31498.26 31499.32 25897.93 19599.82 24195.96 30299.38 27599.43 204
test22299.51 18899.08 21097.83 31499.29 27195.21 33598.68 29399.31 26097.28 23599.38 27599.43 204
XVG-OURS99.21 12899.06 13999.65 9999.82 4399.62 9497.87 31299.74 7698.36 22999.66 11399.68 12399.71 999.90 12496.84 26099.88 9999.43 204
CSCG99.37 8199.29 9099.60 12499.71 10999.46 12799.43 7799.85 2398.79 18799.41 19699.60 17598.92 7999.92 8698.02 17099.92 7399.43 204
ETH3D-3000-0.198.77 20798.50 22299.59 12699.47 21099.53 11698.77 22899.60 15397.33 29499.23 22899.50 21397.91 19699.83 23195.02 32499.67 21399.41 208
TinyColmap98.97 18198.93 17399.07 24699.46 21598.19 26997.75 31699.75 7198.79 18799.54 16099.70 10698.97 7499.62 33296.63 27299.83 13199.41 208
ETH3 D test640097.76 27997.19 29499.50 15599.38 23799.26 17698.34 26599.49 21592.99 34798.54 30399.20 28595.92 27499.82 24191.14 34799.66 21799.40 210
Anonymous20240521198.75 21098.46 22499.63 11099.34 25499.66 8199.47 7197.65 33999.28 11899.56 15399.50 21393.15 29899.84 22098.62 12899.58 23899.40 210
XVG-ACMP-BASELINE99.23 11499.10 13099.63 11099.82 4399.58 10898.83 21599.72 8898.36 22999.60 13899.71 9998.92 7999.91 10497.08 24799.84 12199.40 210
MS-PatchMatch99.00 17798.97 16899.09 24299.11 30098.19 26998.76 22999.33 26098.49 21799.44 18299.58 18398.21 17399.69 30198.20 15699.62 22599.39 213
FMVSNet398.80 20598.63 20799.32 20899.13 29398.72 23899.10 16999.48 21799.23 12799.62 13099.64 14092.57 30399.86 18698.96 10099.90 8399.39 213
ambc99.20 23199.35 24498.53 24899.17 14699.46 22599.67 10999.80 5398.46 14699.70 29597.92 18099.70 20099.38 215
FMVSNet597.80 27797.25 29199.42 17798.83 32598.97 21899.38 8499.80 4698.87 17799.25 22499.69 11280.60 35999.91 10498.96 10099.90 8399.38 215
PAPM_NR98.36 25298.04 25999.33 20499.48 20598.93 22598.79 22699.28 27497.54 28298.56 30298.57 33897.12 24399.69 30194.09 33598.90 31299.38 215
EPNet_dtu97.62 28497.79 27897.11 33096.67 35992.31 35198.51 25398.04 33299.24 12595.77 35599.47 22593.78 29499.66 32198.98 9699.62 22599.37 218
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 15498.95 17299.59 12699.13 29399.59 10599.17 14699.65 12497.88 26699.25 22499.46 22898.97 7499.80 26297.26 23499.82 14099.37 218
PLCcopyleft97.35 1698.36 25297.99 26199.48 16199.32 26099.24 18598.50 25499.51 20695.19 33698.58 30098.96 31896.95 24999.83 23195.63 31199.25 29399.37 218
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 28497.20 29398.90 26799.76 8397.40 30199.48 6994.36 35699.06 15699.70 10099.49 21884.55 35399.94 5498.73 12199.65 22099.36 221
pmmvs-eth3d99.48 5299.47 5199.51 15299.77 7999.41 14598.81 22099.66 11399.42 10399.75 7999.66 13399.20 4799.76 27898.98 9699.99 1299.36 221
PVSNet_095.53 1995.85 32495.31 32697.47 32098.78 33393.48 34695.72 35499.40 24396.18 32297.37 34397.73 35495.73 27599.58 33995.49 31481.40 35899.36 221
lupinMVS98.96 18498.87 18499.24 22699.57 16198.40 25898.12 28499.18 29198.28 24299.63 12399.13 29098.02 18899.97 1698.22 15499.69 20399.35 224
Vis-MVSNet (Re-imp)98.77 20798.58 21399.34 20299.78 7198.88 23099.61 5199.56 17699.11 14899.24 22799.56 19493.00 30199.78 26897.43 22299.89 9199.35 224
GA-MVS97.99 27497.68 28298.93 25899.52 18398.04 28097.19 34199.05 30198.32 24098.81 28098.97 31689.89 33499.41 35198.33 14499.05 30299.34 226
CANet99.11 15499.05 14399.28 21698.83 32598.56 24798.71 23599.41 23699.25 12399.23 22899.22 28197.66 21999.94 5499.19 6999.97 2999.33 227
Patchmtry98.78 20698.54 21899.49 15898.89 31999.19 19699.32 9899.67 10999.65 5899.72 9399.79 5991.87 31099.95 4398.00 17499.97 2999.33 227
PAPR97.56 28797.07 29699.04 24998.80 33098.11 27597.63 32199.25 28094.56 34498.02 32998.25 34997.43 22799.68 31290.90 34898.74 32199.33 227
CHOSEN 280x42098.41 24898.41 23098.40 29399.34 25495.89 32996.94 34799.44 23098.80 18699.25 22499.52 20793.51 29699.98 698.94 10599.98 2199.32 230
baseline197.73 28097.33 28898.96 25399.30 26597.73 29299.40 8098.42 32699.33 11299.46 18099.21 28391.18 31699.82 24198.35 14291.26 35799.32 230
TAPA-MVS97.92 1398.03 27197.55 28599.46 16699.47 21099.44 13498.50 25499.62 13586.79 35499.07 25599.26 27298.26 16899.62 33297.28 23199.73 18899.31 232
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 10399.15 11199.67 8799.33 25999.76 4699.34 9399.97 298.93 16999.91 2099.79 5998.68 11299.93 6796.80 26299.56 24099.30 233
TSAR-MVS + GP.99.12 15099.04 14999.38 19499.34 25499.16 19898.15 28099.29 27198.18 24999.63 12399.62 15999.18 4999.68 31298.20 15699.74 18199.30 233
PVSNet_Blended98.70 21798.59 21099.02 25099.54 17397.99 28197.58 32499.82 3695.70 32999.34 21098.98 31398.52 13999.77 27697.98 17599.83 13199.30 233
MVS_030498.88 19698.71 19999.39 19098.85 32398.91 22899.45 7299.30 26998.56 20797.26 34699.68 12396.18 26999.96 3399.17 7499.94 6199.29 236
MVS_111021_LR99.13 14899.03 15199.42 17799.58 15199.32 16697.91 31199.73 7998.68 19799.31 21699.48 22099.09 5999.66 32197.70 20199.77 16899.29 236
ETH3D cwj APD-0.1698.50 23898.16 25499.51 15299.04 30899.39 14898.47 25699.47 22196.70 31598.78 28599.33 25797.62 22299.86 18694.69 32999.38 27599.28 238
miper_lstm_enhance98.65 22198.60 20898.82 27699.20 28397.33 30397.78 31599.66 11399.01 15899.59 14199.50 21394.62 28699.85 20498.12 16599.90 8399.26 239
MVS95.72 32694.63 33098.99 25198.56 34197.98 28699.30 10598.86 30672.71 35997.30 34499.08 29898.34 16199.74 28489.21 34998.33 33399.26 239
MSLP-MVS++99.05 16599.09 13198.91 26199.21 28098.36 26298.82 21999.47 22198.85 17998.90 27099.56 19498.78 10099.09 35498.57 13099.68 20699.26 239
D2MVS99.22 12399.19 10599.29 21499.69 11998.74 23798.81 22099.41 23698.55 20999.68 10599.69 11298.13 18099.87 16698.82 11399.98 2199.24 242
test_yl98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
DCV-MVSNet98.25 26097.95 26599.13 23899.17 28898.47 25299.00 18898.67 31698.97 16199.22 23299.02 30891.31 31499.69 30197.26 23498.93 30899.24 242
DPM-MVS98.28 25897.94 26999.32 20899.36 24299.11 20397.31 33798.78 31196.88 30898.84 27799.11 29697.77 20899.61 33694.03 33799.36 28099.23 245
CLD-MVS98.76 20998.57 21499.33 20499.57 16198.97 21897.53 32799.55 18196.41 31799.27 22299.13 29099.07 6499.78 26896.73 26699.89 9199.23 245
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 14899.06 13999.36 20099.57 16199.10 20798.01 29699.25 28098.78 18999.58 14399.44 23298.24 16999.76 27898.74 12099.93 6999.22 247
OMC-MVS98.90 19298.72 19899.44 17299.39 23499.42 14198.58 24199.64 13097.31 29599.44 18299.62 15998.59 12599.69 30196.17 29399.79 15899.22 247
eth_miper_zixun_eth98.68 21998.71 19998.60 28599.10 30196.84 31597.52 32999.54 18698.94 16699.58 14399.48 22096.25 26799.76 27898.01 17399.93 6999.21 249
cl_fuxian98.72 21598.71 19998.72 28199.12 29597.22 30697.68 32099.56 17698.90 17399.54 16099.48 22096.37 26499.73 28797.88 18399.88 9999.21 249
CMPMVSbinary77.52 2398.50 23898.19 25199.41 18598.33 34799.56 11199.01 18699.59 16095.44 33199.57 14699.80 5395.64 27699.46 35096.47 28099.92 7399.21 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 16298.97 16899.34 20299.31 26198.98 21698.31 26999.91 898.81 18498.79 28398.94 32099.14 5499.84 22098.79 11598.74 32199.20 252
DELS-MVS99.34 9199.30 8599.48 16199.51 18899.36 15798.12 28499.53 19599.36 10899.41 19699.61 16899.22 4699.87 16699.21 6499.68 20699.20 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU98.91 19098.85 18699.09 24298.79 33198.13 27298.18 27799.31 26699.48 8598.86 27599.51 21096.56 25599.95 4399.05 9099.95 4899.19 254
alignmvs98.28 25897.96 26499.25 22399.12 29598.93 22599.03 18398.42 32699.64 6098.72 29097.85 35390.86 32399.62 33298.88 10999.13 29899.19 254
cl-mvsnet198.54 23598.42 22998.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.87 29199.78 26897.97 17799.89 9199.18 256
MSDG99.08 16098.98 16799.37 19799.60 14699.13 20197.54 32599.74 7698.84 18299.53 16599.55 20099.10 5799.79 26597.07 24899.86 11499.18 256
cl-mvsnet_98.54 23598.41 23098.92 25999.03 30997.80 29097.46 33199.59 16098.90 17399.60 13899.46 22893.85 29299.78 26897.97 17799.89 9199.17 258
PM-MVS99.36 8499.29 9099.58 13099.83 3799.66 8198.95 20199.86 1998.85 17999.81 5699.73 8698.40 15599.92 8698.36 14099.83 13199.17 258
thisisatest053097.45 28996.95 30098.94 25599.68 12897.73 29299.09 17394.19 35898.61 20499.56 15399.30 26284.30 35499.93 6798.27 15099.54 25099.16 260
PatchmatchNetpermissive97.65 28397.80 27697.18 32898.82 32892.49 35099.17 14698.39 32898.12 25098.79 28399.58 18390.71 32599.89 13897.23 23899.41 27199.16 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 6399.38 6699.60 12499.87 2799.75 4899.59 5699.78 5799.71 4299.90 2299.69 11298.85 8999.90 12497.25 23799.78 16499.15 262
mvs_anonymous99.28 10399.39 6498.94 25599.19 28597.81 28999.02 18499.55 18199.78 3499.85 4099.80 5398.24 16999.86 18699.57 2399.50 25799.15 262
ab-mvs99.33 9599.28 9299.47 16399.57 16199.39 14899.78 1099.43 23398.87 17799.57 14699.82 4898.06 18599.87 16698.69 12599.73 18899.15 262
MIMVSNet98.43 24698.20 24899.11 24099.53 17898.38 26199.58 5898.61 31898.96 16499.33 21299.76 7590.92 32099.81 25797.38 22599.76 17099.15 262
GSMVS99.14 266
sam_mvs190.81 32499.14 266
SCA98.11 26798.36 23597.36 32399.20 28392.99 34898.17 27998.49 32498.24 24499.10 25199.57 19196.01 27299.94 5496.86 25799.62 22599.14 266
LS3D99.24 11399.11 12299.61 12298.38 34599.79 3599.57 5999.68 10499.61 6899.15 24399.71 9998.70 11099.91 10497.54 21599.68 20699.13 269
Patchmatch-RL test98.60 22598.36 23599.33 20499.77 7999.07 21198.27 27299.87 1798.91 17299.74 8799.72 9290.57 32799.79 26598.55 13199.85 11799.11 270
test_040299.22 12399.14 11299.45 17099.79 6599.43 13899.28 11399.68 10499.54 7899.40 20199.56 19499.07 6499.82 24196.01 29799.96 4199.11 270
MVS_Test99.28 10399.31 8099.19 23299.35 24498.79 23599.36 9199.49 21599.17 13699.21 23499.67 12998.78 10099.66 32199.09 8799.66 21799.10 272
AdaColmapbinary98.60 22598.35 23799.38 19499.12 29599.22 18998.67 23699.42 23597.84 27198.81 28099.27 26997.32 23499.81 25795.14 32199.53 25299.10 272
FPMVS96.32 31495.50 32298.79 27799.60 14698.17 27198.46 26198.80 31097.16 30296.28 35199.63 15082.19 35599.09 35488.45 35198.89 31399.10 272
Patchmatch-test98.10 26897.98 26398.48 29099.27 27196.48 31999.40 8099.07 29898.81 18499.23 22899.57 19190.11 33199.87 16696.69 26799.64 22299.09 275
tpm97.15 29696.95 30097.75 31498.91 31594.24 34199.32 9897.96 33497.71 27598.29 31299.32 25886.72 34899.92 8698.10 16896.24 35499.09 275
PMMVS98.49 24198.29 24199.11 24098.96 31398.42 25797.54 32599.32 26297.53 28398.47 30898.15 35097.88 20099.82 24197.46 22099.24 29599.09 275
cl-mvsnet297.56 28797.28 28998.40 29398.37 34696.75 31697.24 34099.37 25397.31 29599.41 19699.22 28187.30 33999.37 35297.70 20199.62 22599.08 278
ADS-MVSNet297.78 27897.66 28498.12 30599.14 29195.36 33399.22 13298.75 31296.97 30698.25 31599.64 14090.90 32199.94 5496.51 27799.56 24099.08 278
ADS-MVSNet97.72 28297.67 28397.86 31099.14 29194.65 33999.22 13298.86 30696.97 30698.25 31599.64 14090.90 32199.84 22096.51 27799.56 24099.08 278
pmmvs398.08 26997.80 27698.91 26199.41 22997.69 29497.87 31299.66 11395.87 32599.50 17399.51 21090.35 32999.97 1698.55 13199.47 26299.08 278
PVSNet97.47 1598.42 24798.44 22798.35 29599.46 21596.26 32296.70 35099.34 25997.68 27699.00 25999.13 29097.40 22899.72 28997.59 21399.68 20699.08 278
MVS-HIRNet97.86 27598.22 24696.76 33199.28 26991.53 35798.38 26492.60 36099.13 14499.31 21699.96 1097.18 24299.68 31298.34 14399.83 13199.07 283
PMVScopyleft92.94 2198.82 20398.81 19298.85 26999.84 3397.99 28199.20 13599.47 22199.71 4299.42 18899.82 4898.09 18299.47 34893.88 33999.85 11799.07 283
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 3799.59 3299.49 15899.98 399.71 6399.72 1999.84 2999.81 2899.94 1199.78 6598.91 8199.71 29398.41 13799.95 4899.05 285
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 17199.00 15999.09 24299.10 30198.70 23999.61 5199.66 11399.63 6398.64 29597.65 35599.04 6899.54 34198.79 11598.92 31099.04 286
CL-MVSNet_2432*160098.71 21698.56 21799.15 23699.22 27898.66 24297.14 34299.51 20698.09 25399.54 16099.27 26996.87 25199.74 28498.43 13698.96 30799.03 287
AUN-MVS97.82 27697.38 28799.14 23799.27 27198.53 24898.72 23399.02 30298.10 25197.18 34899.03 30789.26 33699.85 20497.94 17997.91 34399.03 287
MDTV_nov1_ep13_2view91.44 35899.14 15697.37 29299.21 23491.78 31296.75 26499.03 287
ITE_SJBPF99.38 19499.63 14099.44 13499.73 7998.56 20799.33 21299.53 20598.88 8699.68 31296.01 29799.65 22099.02 290
UnsupCasMVSNet_bld98.55 23498.27 24299.40 18799.56 17199.37 15497.97 30499.68 10497.49 28699.08 25299.35 25395.41 27999.82 24197.70 20198.19 33799.01 291
miper_ehance_all_eth98.59 22898.59 21098.59 28698.98 31297.07 30997.49 33099.52 20398.50 21599.52 16799.37 24396.41 26399.71 29397.86 18799.62 22599.00 292
CNLPA98.57 23098.34 23899.28 21699.18 28799.10 20798.34 26599.41 23698.48 21898.52 30498.98 31397.05 24699.78 26895.59 31299.50 25798.96 293
new_pmnet98.88 19698.89 18298.84 27199.70 11697.62 29598.15 28099.50 21097.98 25999.62 13099.54 20298.15 17999.94 5497.55 21499.84 12198.95 294
PCF-MVS96.03 1896.73 30695.86 31799.33 20499.44 22199.16 19896.87 34899.44 23086.58 35598.95 26299.40 23794.38 28899.88 15387.93 35299.80 15398.95 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL98.68 21998.47 22399.30 21399.44 22199.28 17298.14 28299.54 18697.12 30499.11 24999.25 27497.80 20699.70 29596.51 27799.30 28798.93 296
Fast-Effi-MVS+99.02 17198.87 18499.46 16699.38 23799.50 11899.04 18199.79 5297.17 30198.62 29698.74 33399.34 3399.95 4398.32 14599.41 27198.92 297
ET-MVSNet_ETH3D96.78 30496.07 31398.91 26199.26 27397.92 28797.70 31996.05 35197.96 26392.37 35998.43 34587.06 34199.90 12498.27 15097.56 34798.91 298
EIA-MVS99.12 15099.01 15699.45 17099.36 24299.62 9499.34 9399.79 5298.41 22398.84 27798.89 32598.75 10699.84 22098.15 16499.51 25598.89 299
CostFormer96.71 30796.79 30696.46 33798.90 31690.71 36199.41 7898.68 31494.69 34398.14 32399.34 25686.32 35099.80 26297.60 21298.07 34198.88 300
DP-MVS Recon98.50 23898.23 24599.31 21199.49 19999.46 12798.56 24699.63 13294.86 34098.85 27699.37 24397.81 20599.59 33896.08 29499.44 26598.88 300
test0.0.03 197.37 29296.91 30398.74 28097.72 35597.57 29697.60 32397.36 34598.00 25699.21 23498.02 35190.04 33299.79 26598.37 13995.89 35598.86 302
BH-untuned98.22 26498.09 25798.58 28799.38 23797.24 30598.55 24798.98 30497.81 27299.20 23998.76 33297.01 24799.65 32894.83 32598.33 33398.86 302
HY-MVS98.23 998.21 26597.95 26598.99 25199.03 30998.24 26599.61 5198.72 31396.81 31298.73 28999.51 21094.06 29099.86 18696.91 25498.20 33598.86 302
miper_enhance_ethall98.03 27197.94 26998.32 29798.27 34896.43 32196.95 34699.41 23696.37 31999.43 18698.96 31894.74 28499.69 30197.71 19999.62 22598.83 305
Effi-MVS+-dtu99.07 16198.92 17799.52 14998.89 31999.78 3899.15 15499.66 11399.34 10998.92 26799.24 27997.69 21299.98 698.11 16699.28 28998.81 306
EPMVS96.53 31096.32 30897.17 32998.18 35192.97 34999.39 8289.95 36298.21 24698.61 29799.59 18186.69 34999.72 28996.99 25099.23 29798.81 306
MVEpermissive92.54 2296.66 30896.11 31298.31 29999.68 12897.55 29797.94 30795.60 35399.37 10690.68 36098.70 33496.56 25598.61 35886.94 35799.55 24498.77 308
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 31396.22 31096.73 33398.88 32291.75 35599.21 13498.51 32293.27 34697.89 33399.21 28384.83 35299.70 29596.04 29698.18 33898.75 309
LF4IMVS99.01 17598.92 17799.27 21899.71 10999.28 17298.59 24099.77 6098.32 24099.39 20299.41 23598.62 12199.84 22096.62 27399.84 12198.69 310
thisisatest051596.98 30096.42 30798.66 28499.42 22897.47 29897.27 33894.30 35797.24 29799.15 24398.86 32785.01 35199.87 16697.10 24699.39 27498.63 311
Fast-Effi-MVS+-dtu99.20 13099.12 11999.43 17599.25 27499.69 7499.05 17999.82 3699.50 8398.97 26099.05 30198.98 7299.98 698.20 15699.24 29598.62 312
PAPM95.61 32794.71 32998.31 29999.12 29596.63 31796.66 35198.46 32590.77 35296.25 35298.68 33593.01 30099.69 30181.60 35897.86 34598.62 312
JIA-IIPM98.06 27097.92 27198.50 28998.59 34097.02 31098.80 22398.51 32299.88 1397.89 33399.87 3091.89 30999.90 12498.16 16397.68 34698.59 314
dp96.86 30297.07 29696.24 33998.68 33990.30 36399.19 14098.38 32997.35 29398.23 31799.59 18187.23 34099.82 24196.27 28898.73 32398.59 314
OpenMVScopyleft98.12 1098.23 26397.89 27599.26 22099.19 28599.26 17699.65 4499.69 10191.33 35198.14 32399.77 7298.28 16699.96 3395.41 31799.55 24498.58 316
baseline296.83 30396.28 30998.46 29199.09 30396.91 31398.83 21593.87 35997.23 29896.23 35498.36 34688.12 33899.90 12496.68 26898.14 33998.57 317
DWT-MVSNet_test96.03 32095.80 31996.71 33598.50 34391.93 35399.25 12497.87 33795.99 32496.81 35097.61 35681.02 35799.66 32197.20 24197.98 34298.54 318
TESTMET0.1,196.24 31695.84 31897.41 32298.24 34993.84 34497.38 33395.84 35298.43 22097.81 33798.56 33979.77 36099.89 13897.77 19498.77 31798.52 319
xiu_mvs_v1_base_debu99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
xiu_mvs_v1_base_debi99.23 11499.34 7498.91 26199.59 14898.23 26698.47 25699.66 11399.61 6899.68 10598.94 32099.39 2399.97 1699.18 7199.55 24498.51 320
KD-MVS_2432*160095.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
miper_refine_blended95.89 32195.41 32497.31 32694.96 36093.89 34297.09 34399.22 28597.23 29898.88 27199.04 30479.23 36199.54 34196.24 29096.81 35098.50 323
CR-MVSNet98.35 25598.20 24898.83 27399.05 30698.12 27399.30 10599.67 10997.39 29199.16 24199.79 5991.87 31099.91 10498.78 11898.77 31798.44 325
RPMNet98.60 22598.53 22098.83 27399.05 30698.12 27399.30 10599.62 13599.86 1699.16 24199.74 8292.53 30599.92 8698.75 11998.77 31798.44 325
tpmrst97.73 28098.07 25896.73 33398.71 33792.00 35299.10 16998.86 30698.52 21398.92 26799.54 20291.90 30899.82 24198.02 17099.03 30498.37 327
CS-MVS99.09 15999.03 15199.25 22399.45 21899.49 11999.41 7899.82 3699.10 14998.03 32898.48 34499.30 3799.89 13898.30 14799.41 27198.35 328
test-LLR97.15 29696.95 30097.74 31598.18 35195.02 33697.38 33396.10 34898.00 25697.81 33798.58 33690.04 33299.91 10497.69 20798.78 31598.31 329
test-mter96.23 31795.73 32097.74 31598.18 35195.02 33697.38 33396.10 34897.90 26597.81 33798.58 33679.12 36399.91 10497.69 20798.78 31598.31 329
ETV-MVS99.18 13799.18 10699.16 23599.34 25499.28 17299.12 16699.79 5299.48 8598.93 26498.55 34099.40 2299.93 6798.51 13399.52 25498.28 331
PatchT98.45 24598.32 24098.83 27398.94 31498.29 26499.24 12598.82 30999.84 2299.08 25299.76 7591.37 31399.94 5498.82 11399.00 30698.26 332
xiu_mvs_v2_base99.02 17199.11 12298.77 27899.37 24098.09 27798.13 28399.51 20699.47 9099.42 18898.54 34199.38 2799.97 1698.83 11199.33 28498.24 333
IB-MVS95.41 2095.30 32894.46 33197.84 31198.76 33595.33 33497.33 33696.07 35096.02 32395.37 35797.41 35876.17 36599.96 3397.54 21595.44 35698.22 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 30496.98 29996.16 34098.85 32390.59 36299.08 17699.32 26292.37 34897.73 34299.46 22891.15 31799.69 30196.07 29598.80 31498.21 335
MAR-MVS98.24 26297.92 27199.19 23298.78 33399.65 8699.17 14699.14 29595.36 33298.04 32798.81 33097.47 22599.72 28995.47 31699.06 30198.21 335
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 17799.08 13398.76 27999.37 24098.10 27698.00 29899.51 20699.47 9099.41 19698.50 34399.28 4099.97 1698.83 11199.34 28298.20 337
cascas96.99 29996.82 30597.48 31997.57 35895.64 33196.43 35299.56 17691.75 34997.13 34997.61 35695.58 27898.63 35796.68 26899.11 29998.18 338
BH-w/o97.20 29597.01 29897.76 31399.08 30495.69 33098.03 29598.52 32195.76 32897.96 33098.02 35195.62 27799.47 34892.82 34297.25 34998.12 339
tpmvs97.39 29197.69 28196.52 33698.41 34491.76 35499.30 10598.94 30597.74 27397.85 33699.55 20092.40 30699.73 28796.25 28998.73 32398.06 340
mvs-test198.83 20198.70 20299.22 22898.89 31999.65 8698.88 20699.66 11399.34 10998.29 31298.94 32097.69 21299.96 3398.11 16698.54 32998.04 341
thres600view796.60 30996.16 31197.93 30899.63 14096.09 32699.18 14197.57 34098.77 19098.72 29097.32 35987.04 34299.72 28988.57 35098.62 32697.98 342
thres40096.40 31195.89 31597.92 30999.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33097.98 342
TR-MVS97.44 29097.15 29598.32 29798.53 34297.46 29998.47 25697.91 33696.85 31098.21 31898.51 34296.42 26199.51 34692.16 34397.29 34897.98 342
131498.00 27397.90 27498.27 30198.90 31697.45 30099.30 10599.06 30094.98 33797.21 34799.12 29498.43 14899.67 31795.58 31398.56 32897.71 345
E-PMN97.14 29897.43 28696.27 33898.79 33191.62 35695.54 35599.01 30399.44 9698.88 27199.12 29492.78 30299.68 31294.30 33299.03 30497.50 346
gg-mvs-nofinetune95.87 32395.17 32797.97 30798.19 35096.95 31199.69 2889.23 36399.89 1196.24 35399.94 1281.19 35699.51 34693.99 33898.20 33597.44 347
DeepMVS_CXcopyleft97.98 30699.69 11996.95 31199.26 27775.51 35895.74 35698.28 34896.47 25999.62 33291.23 34697.89 34497.38 348
OpenMVS_ROBcopyleft97.31 1797.36 29396.84 30498.89 26899.29 26799.45 13298.87 20999.48 21786.54 35699.44 18299.74 8297.34 23399.86 18691.61 34499.28 28997.37 349
EMVS96.96 30197.28 28995.99 34198.76 33591.03 35995.26 35698.61 31899.34 10998.92 26798.88 32693.79 29399.66 32192.87 34199.05 30297.30 350
thres100view90096.39 31296.03 31497.47 32099.63 14095.93 32799.18 14197.57 34098.75 19498.70 29297.31 36087.04 34299.67 31787.62 35398.51 33096.81 351
tfpn200view996.30 31595.89 31597.53 31899.58 15196.11 32499.00 18897.54 34398.43 22098.52 30496.98 36286.85 34499.67 31787.62 35398.51 33096.81 351
API-MVS98.38 25198.39 23298.35 29598.83 32599.26 17699.14 15699.18 29198.59 20598.66 29498.78 33198.61 12399.57 34094.14 33499.56 24096.21 353
thres20096.09 31895.68 32197.33 32599.48 20596.22 32398.53 25197.57 34098.06 25598.37 31196.73 36486.84 34699.61 33686.99 35698.57 32796.16 354
GG-mvs-BLEND97.36 32397.59 35696.87 31499.70 2288.49 36494.64 35897.26 36180.66 35899.12 35391.50 34596.50 35396.08 355
wuyk23d97.58 28699.13 11592.93 34299.69 11999.49 11999.52 6399.77 6097.97 26099.96 899.79 5999.84 399.94 5495.85 30599.82 14079.36 356
test12329.31 32933.05 33418.08 34325.93 36512.24 36597.53 32710.93 36611.78 36024.21 36150.08 36921.04 3668.60 36123.51 35932.43 36033.39 357
testmvs28.94 33033.33 33215.79 34426.03 3649.81 36696.77 34915.67 36511.55 36123.87 36250.74 36819.03 3678.53 36223.21 36033.07 35929.03 358
uanet_test8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.88 33133.17 3330.00 3450.00 3660.00 3670.00 35799.62 1350.00 3620.00 36399.13 29099.82 40.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas16.61 33222.14 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 199.28 400.00 3630.00 3610.00 3610.00 359
sosnet-low-res8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
sosnet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
Regformer8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.26 33911.02 3420.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36399.16 2880.00 3680.00 3630.00 3610.00 3610.00 359
uanet8.33 33311.11 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 363100.00 10.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.43 22399.61 10099.43 23396.38 31899.11 24999.07 29997.86 20199.92 8694.04 33699.49 259
test_241102_ONE99.69 11999.82 2599.54 18699.12 14799.82 5099.49 21898.91 8199.52 345
9.1498.64 20599.45 21898.81 22099.60 15397.52 28499.28 22199.56 19498.53 13699.83 23195.36 31999.64 222
save fliter99.53 17899.25 18098.29 27099.38 25299.07 152
test072699.69 11999.80 3399.24 12599.57 17199.16 13899.73 9199.65 13898.35 159
test_part299.62 14399.67 7999.55 158
sam_mvs90.52 328
MTGPAbinary99.53 195
test_post199.14 15651.63 36789.54 33599.82 24196.86 257
test_post52.41 36690.25 33099.86 186
patchmatchnet-post99.62 15990.58 32699.94 54
MTMP99.09 17398.59 320
gm-plane-assit97.59 35689.02 36493.47 34598.30 34799.84 22096.38 284
TEST999.35 24499.35 16198.11 28699.41 23694.83 34297.92 33198.99 31098.02 18899.85 204
test_899.34 25499.31 16798.08 29099.40 24394.90 33897.87 33598.97 31698.02 18899.84 220
agg_prior99.35 24499.36 15799.39 24697.76 34099.85 204
test_prior499.19 19698.00 298
test_prior297.95 30597.87 26798.05 32599.05 30197.90 19795.99 29999.49 259
旧先验297.94 30795.33 33398.94 26399.88 15396.75 264
新几何298.04 294
原ACMM297.92 309
testdata299.89 13895.99 299
segment_acmp98.37 157
testdata197.72 31797.86 270
plane_prior799.58 15199.38 151
plane_prior699.47 21099.26 17697.24 236
plane_prior499.25 274
plane_prior399.31 16798.36 22999.14 245
plane_prior298.80 22398.94 166
plane_prior199.51 188
plane_prior99.24 18598.42 26297.87 26799.71 198
n20.00 367
nn0.00 367
door-mid99.83 31
test1199.29 271
door99.77 60
HQP5-MVS98.94 221
HQP-NCC99.31 26197.98 30197.45 28798.15 319
ACMP_Plane99.31 26197.98 30197.45 28798.15 319
BP-MVS94.73 326
HQP3-MVS99.37 25399.67 213
HQP2-MVS96.67 253
NP-MVS99.40 23299.13 20198.83 328
MDTV_nov1_ep1397.73 28098.70 33890.83 36099.15 15498.02 33398.51 21498.82 27999.61 16890.98 31999.66 32196.89 25698.92 310
ACMMP++_ref99.94 61
ACMMP++99.79 158
Test By Simon98.41 151