This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 299.85 1
test_part198.39 298.94 296.75 4299.23 390.73 7398.63 399.28 299.01 299.60 299.55 298.75 299.68 396.41 499.97 199.84 2
PS-CasMVS96.69 2197.43 694.49 12299.13 684.09 18596.61 2597.97 7097.91 698.64 1498.13 3295.24 3799.65 493.39 5599.84 499.72 3
CP-MVSNet96.19 4796.80 1894.38 12898.99 1483.82 18996.31 4297.53 10797.60 798.34 2097.52 5891.98 11299.63 793.08 7099.81 999.70 4
FC-MVSNet-test95.32 7495.88 5893.62 14998.49 5481.77 20995.90 5898.32 1893.93 5397.53 3797.56 5588.48 17199.40 4092.91 7599.83 699.68 5
PEN-MVS96.69 2197.39 994.61 11199.16 484.50 17696.54 2898.05 5598.06 598.64 1498.25 3195.01 4899.65 492.95 7499.83 699.68 5
WR-MVS_H96.60 2697.05 1595.24 9099.02 1286.44 15096.78 2298.08 4897.42 998.48 1797.86 4591.76 11699.63 794.23 2799.84 499.66 7
test_djsdf96.62 2496.49 2997.01 3398.55 4091.77 5997.15 1297.37 11588.98 16098.26 2198.86 1193.35 7899.60 996.41 499.45 4299.66 7
v7n96.82 1197.31 1195.33 8598.54 4286.81 14096.83 1998.07 5196.59 2098.46 1898.43 2892.91 9099.52 1896.25 799.76 1199.65 9
UA-Net97.35 597.24 1297.69 598.22 6893.87 2998.42 598.19 3296.95 1495.46 12499.23 593.45 7399.57 1495.34 1399.89 399.63 10
DTE-MVSNet96.74 1897.43 694.67 10999.13 684.68 17596.51 2997.94 7698.14 498.67 1398.32 2995.04 4599.69 293.27 6199.82 899.62 11
FIs94.90 8895.35 7593.55 15298.28 6481.76 21095.33 7598.14 4093.05 6797.07 5197.18 8187.65 18599.29 6891.72 10299.69 1599.61 12
UniMVSNet_ETH3D97.13 797.72 495.35 8399.51 287.38 12797.70 797.54 10598.16 398.94 399.33 397.84 599.08 9290.73 11999.73 1499.59 13
PS-MVSNAJss96.01 5296.04 5295.89 6498.82 2388.51 10995.57 6997.88 7788.72 16698.81 798.86 1190.77 14199.60 995.43 1299.53 3499.57 14
anonymousdsp96.74 1896.42 3097.68 798.00 8594.03 2496.97 1697.61 10087.68 18998.45 1998.77 1694.20 6699.50 2096.70 399.40 5299.53 15
ANet_high94.83 9496.28 3790.47 24996.65 15073.16 31494.33 11398.74 696.39 2398.09 2498.93 993.37 7798.70 15990.38 12699.68 1899.53 15
Anonymous2023121196.60 2697.13 1395.00 9897.46 11786.35 15497.11 1598.24 2897.58 898.72 998.97 893.15 8499.15 8393.18 6499.74 1399.50 17
OurMVSNet-221017-096.80 1496.75 1996.96 3699.03 1191.85 5797.98 698.01 6494.15 4898.93 499.07 688.07 17899.57 1495.86 1099.69 1599.46 18
pmmvs696.80 1497.36 1095.15 9499.12 887.82 12396.68 2397.86 7896.10 2698.14 2399.28 497.94 498.21 20391.38 11399.69 1599.42 19
v1094.68 10095.27 8192.90 17696.57 15680.15 22894.65 10197.57 10390.68 13197.43 4198.00 3788.18 17599.15 8394.84 1699.55 3399.41 20
mvs_tets96.83 1096.71 2097.17 2798.83 2292.51 4896.58 2797.61 10087.57 19298.80 898.90 1096.50 1199.59 1396.15 899.47 3899.40 21
v894.65 10195.29 7992.74 18196.65 15079.77 24294.59 10297.17 13591.86 9397.47 4097.93 4088.16 17699.08 9294.32 2399.47 3899.38 22
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8098.26 6687.69 12493.75 12897.86 7895.96 3097.48 3997.14 8395.33 3399.44 2490.79 11899.76 1199.38 22
nrg03096.32 4296.55 2795.62 7697.83 9388.55 10795.77 6298.29 2492.68 6998.03 2597.91 4395.13 4198.95 11493.85 3499.49 3799.36 24
WR-MVS93.49 13193.72 12792.80 18097.57 11080.03 23490.14 24595.68 20893.70 5796.62 7295.39 18887.21 19399.04 10087.50 19199.64 2299.33 25
jajsoiax96.59 2896.42 3097.12 2998.76 2792.49 4996.44 3497.42 11386.96 20198.71 1198.72 1895.36 3299.56 1795.92 999.45 4299.32 26
LTVRE_ROB93.87 197.93 398.16 397.26 2698.81 2493.86 3099.07 298.98 497.01 1398.92 598.78 1595.22 3898.61 16796.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet95.35 7295.21 8295.76 7197.69 10388.59 10592.26 17697.84 8294.91 3796.80 6595.78 16790.42 15099.41 3591.60 10799.58 3099.29 28
DU-MVS95.28 7795.12 8695.75 7297.75 9688.59 10592.58 15897.81 8593.99 5096.80 6595.90 15790.10 15899.41 3591.60 10799.58 3099.26 29
NR-MVSNet95.28 7795.28 8095.26 8997.75 9687.21 13195.08 8697.37 11593.92 5497.65 3095.90 15790.10 15899.33 6490.11 13999.66 2099.26 29
Baseline_NR-MVSNet94.47 10795.09 8792.60 18898.50 5380.82 22492.08 18296.68 16893.82 5596.29 8698.56 2190.10 15897.75 24390.10 14199.66 2099.24 31
v192192093.26 13993.61 13292.19 19896.04 19578.31 26491.88 19597.24 13185.17 22796.19 9696.19 14786.76 20499.05 9794.18 2998.84 11699.22 32
v119293.49 13193.78 12592.62 18796.16 18579.62 24491.83 20197.22 13386.07 21396.10 10096.38 13587.22 19299.02 10394.14 3098.88 11199.22 32
v124093.29 13693.71 12892.06 20496.01 19677.89 27091.81 20297.37 11585.12 22996.69 6996.40 13086.67 20599.07 9694.51 1998.76 13099.22 32
v14419293.20 14493.54 13592.16 20196.05 19178.26 26591.95 18897.14 13684.98 23395.96 10396.11 15087.08 19699.04 10093.79 3598.84 11699.17 35
UniMVSNet (Re)95.32 7495.15 8495.80 6897.79 9488.91 9792.91 14898.07 5193.46 6296.31 8495.97 15690.14 15499.34 5992.11 8899.64 2299.16 36
SixPastTwentyTwo94.91 8795.21 8293.98 13698.52 4583.19 19695.93 5694.84 23394.86 3898.49 1698.74 1781.45 24899.60 994.69 1799.39 5399.15 37
v2v48293.29 13693.63 13192.29 19496.35 16978.82 25891.77 20496.28 18688.45 17295.70 11596.26 14486.02 21398.90 11893.02 7198.81 12499.14 38
v114493.50 13093.81 12392.57 18996.28 17579.61 24591.86 20096.96 14786.95 20295.91 10796.32 13987.65 18598.96 11293.51 4498.88 11199.13 39
HPM-MVScopyleft96.81 1396.62 2497.36 2498.89 1993.53 3797.51 898.44 1092.35 7895.95 10496.41 12996.71 999.42 2893.99 3299.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVS-pluss96.08 5095.92 5796.57 4699.06 1091.21 6493.25 14098.32 1887.89 18396.86 6297.38 6695.55 2599.39 4595.47 1199.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test96.38 4196.23 3996.84 4098.36 6192.13 5295.33 7598.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
LGP-MVS_train96.84 4098.36 6192.13 5298.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
MIMVSNet195.52 6695.45 7295.72 7399.14 589.02 9596.23 4796.87 15893.73 5697.87 2698.49 2590.73 14599.05 9786.43 20999.60 2499.10 44
VPA-MVSNet95.14 8195.67 6893.58 15197.76 9583.15 19794.58 10497.58 10293.39 6397.05 5598.04 3593.25 8098.51 18089.75 14999.59 2699.08 45
TransMVSNet (Re)95.27 7996.04 5292.97 17198.37 6081.92 20895.07 8796.76 16593.97 5297.77 2798.57 2095.72 1997.90 22588.89 16699.23 7499.08 45
RRT_test8_iter0588.21 25188.17 24688.33 28991.62 30666.82 34091.73 20596.60 17286.34 20894.14 16895.38 19047.72 35699.11 8991.78 10098.26 17599.06 47
MP-MVScopyleft96.14 4895.68 6797.51 1398.81 2494.06 1996.10 4997.78 9092.73 6893.48 18796.72 11294.23 6599.42 2891.99 9399.29 6399.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set94.35 11094.27 11694.59 11692.46 29085.87 16392.42 16794.69 24093.67 6196.13 9895.84 16291.20 13398.86 12693.78 3698.23 18199.03 49
ACMMPcopyleft96.61 2596.34 3597.43 1998.61 3393.88 2896.95 1798.18 3392.26 8196.33 8296.84 10395.10 4399.40 4093.47 4999.33 5899.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3396.14 4597.41 2198.60 3493.82 3296.30 4497.96 7192.35 7895.57 11996.61 11994.93 5199.41 3593.78 3699.15 8199.00 51
PGM-MVS96.32 4295.94 5597.43 1998.59 3693.84 3195.33 7598.30 2191.40 11495.76 11096.87 9995.26 3699.45 2392.77 7699.21 7699.00 51
zzz-MVS96.47 3296.14 4597.47 1598.95 1694.05 2193.69 13097.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
MTAPA96.65 2396.38 3497.47 1598.95 1694.05 2195.88 5997.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
pm-mvs195.43 6995.94 5593.93 14098.38 5885.08 17295.46 7297.12 13991.84 9797.28 4698.46 2695.30 3597.71 24590.17 13799.42 4698.99 53
mPP-MVS96.46 3396.05 5197.69 598.62 3194.65 1296.45 3297.74 9192.59 7295.47 12296.68 11494.50 6099.42 2893.10 6899.26 7098.99 53
TDRefinement97.68 497.60 597.93 299.02 1295.95 598.61 498.81 597.41 1097.28 4698.46 2694.62 5798.84 12994.64 1899.53 3498.99 53
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11192.55 28985.98 16192.44 16594.69 24093.70 5796.12 9995.81 16391.24 13098.86 12693.76 3998.22 18398.98 58
ZNCC-MVS96.42 3796.20 4197.07 3098.80 2692.79 4696.08 5098.16 3991.74 10595.34 12896.36 13795.68 2099.44 2494.41 2299.28 6898.97 59
IS-MVSNet94.49 10694.35 11194.92 10098.25 6786.46 14997.13 1494.31 24796.24 2496.28 8996.36 13782.88 23299.35 5588.19 17799.52 3698.96 60
ACMM88.83 996.30 4496.07 5096.97 3598.39 5792.95 4494.74 9798.03 6090.82 12797.15 4996.85 10096.25 1699.00 10693.10 6899.33 5898.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3896.09 4897.38 2398.62 3193.81 3496.32 4197.96 7192.26 8195.28 13296.57 12195.02 4799.41 3593.63 4099.11 8698.94 62
SMA-MVScopyleft95.77 5995.54 6996.47 5198.27 6591.19 6595.09 8597.79 8986.48 20597.42 4397.51 6094.47 6299.29 6893.55 4399.29 6398.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS96.49 3096.18 4297.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16596.49 12394.56 5899.39 4593.57 4199.05 9198.93 63
X-MVStestdata90.70 20088.45 23897.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16526.89 35394.56 5899.39 4593.57 4199.05 9198.93 63
VPNet93.08 14593.76 12691.03 23398.60 3475.83 29791.51 20895.62 20991.84 9795.74 11297.10 8589.31 16598.32 19485.07 22699.06 8898.93 63
APDe-MVS96.46 3396.64 2395.93 6197.68 10489.38 9196.90 1898.41 1492.52 7397.43 4197.92 4195.11 4299.50 2094.45 2099.30 6298.92 67
HPM-MVS_fast97.01 896.89 1697.39 2299.12 893.92 2797.16 1198.17 3693.11 6696.48 7697.36 7096.92 799.34 5994.31 2499.38 5498.92 67
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5599.34 5993.88 3399.42 4698.89 69
MSP-MVS95.34 7394.63 10297.48 1498.67 2894.05 2196.41 3698.18 3391.26 11795.12 13895.15 19386.60 20799.50 2093.43 5496.81 24798.89 69
GST-MVS96.24 4595.99 5497.00 3498.65 2992.71 4795.69 6598.01 6492.08 8695.74 11296.28 14295.22 3899.42 2893.17 6599.06 8898.88 71
testing_294.03 12194.38 10993.00 16996.79 14781.41 21692.87 15096.96 14785.88 21797.06 5497.92 4191.18 13698.71 15891.72 10299.04 9698.87 72
EI-MVSNet92.99 14993.26 14492.19 19892.12 29779.21 25392.32 17394.67 24291.77 10395.24 13595.85 15987.14 19598.49 18191.99 9398.26 17598.86 73
IterMVS-LS93.78 12694.28 11492.27 19596.27 17679.21 25391.87 19696.78 16291.77 10396.57 7597.07 8687.15 19498.74 15091.99 9399.03 9898.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH88.36 1296.59 2897.43 694.07 13498.56 3785.33 17096.33 4098.30 2194.66 3998.72 998.30 3097.51 698.00 22094.87 1599.59 2698.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4293.43 13393.58 13392.97 17195.34 23081.22 21892.67 15696.49 17987.25 19696.20 9496.37 13687.32 19198.85 12892.39 8798.21 18498.85 76
abl_697.31 697.12 1497.86 398.54 4295.32 796.61 2598.35 1795.81 3197.55 3597.44 6396.51 1099.40 4094.06 3199.23 7498.85 76
SteuartSystems-ACMMP96.40 3996.30 3696.71 4398.63 3091.96 5595.70 6398.01 6493.34 6496.64 7196.57 12194.99 4999.36 5493.48 4899.34 5698.82 78
Skip Steuart: Steuart Systems R&D Blog.
VDDNet94.03 12194.27 11693.31 16198.87 2082.36 20495.51 7191.78 29097.19 1296.32 8398.60 1984.24 22498.75 14787.09 19798.83 12198.81 79
ACMMP_NAP96.21 4696.12 4796.49 5098.90 1891.42 6294.57 10598.03 6090.42 13896.37 7997.35 7195.68 2099.25 7494.44 2199.34 5698.80 80
RPSCF95.58 6594.89 9197.62 897.58 10996.30 495.97 5597.53 10792.42 7493.41 18897.78 4691.21 13297.77 24091.06 11597.06 23798.80 80
Anonymous2024052995.50 6795.83 6294.50 12097.33 12385.93 16295.19 8396.77 16496.64 1997.61 3498.05 3493.23 8198.79 13888.60 17399.04 9698.78 82
v14892.87 15393.29 14091.62 21596.25 17977.72 27291.28 21495.05 22689.69 14995.93 10696.04 15287.34 19098.38 19090.05 14297.99 20498.78 82
ACMP88.15 1395.71 6195.43 7496.54 4798.17 7191.73 6094.24 11598.08 4889.46 15396.61 7396.47 12495.85 1899.12 8890.45 12399.56 3298.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD-MVS_3200maxsize96.82 1196.65 2297.32 2597.95 8993.82 3296.31 4298.25 2595.51 3596.99 5997.05 8895.63 2299.39 4593.31 5898.88 11198.75 85
Regformer-494.90 8894.67 10095.59 7792.78 28789.02 9592.39 16895.91 20194.50 4296.41 7795.56 17892.10 10799.01 10594.23 2798.14 19098.74 86
lessismore_v093.87 14498.05 7983.77 19080.32 34997.13 5097.91 4377.49 27499.11 8992.62 8298.08 19798.74 86
K. test v393.37 13493.27 14393.66 14898.05 7982.62 20294.35 11286.62 31796.05 2897.51 3898.85 1376.59 28499.65 493.21 6398.20 18698.73 88
ACMH+88.43 1196.48 3196.82 1795.47 8198.54 4289.06 9495.65 6698.61 796.10 2698.16 2297.52 5896.90 898.62 16690.30 13199.60 2498.72 89
OPM-MVS95.61 6495.45 7296.08 5498.49 5491.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4598.56 17592.77 7699.06 8898.70 90
GBi-Net93.21 14292.96 14693.97 13795.40 22684.29 17895.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20098.38 16098.65 91
test193.21 14292.96 14693.97 13795.40 22684.29 17895.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20098.38 16098.65 91
FMVSNet194.84 9395.13 8593.97 13797.60 10884.29 17895.99 5296.56 17492.38 7597.03 5698.53 2290.12 15598.98 10788.78 16899.16 8098.65 91
EPP-MVSNet93.91 12493.68 13094.59 11698.08 7685.55 16897.44 994.03 25294.22 4794.94 14796.19 14782.07 24399.57 1487.28 19698.89 10998.65 91
IU-MVS98.51 4686.66 14596.83 15972.74 31695.83 10893.00 7299.29 6398.64 95
xxxxxxxxxxxxxcwj95.03 8294.93 8995.33 8597.46 11788.05 11792.04 18498.42 1387.63 19096.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
SF-MVS95.88 5695.88 5895.87 6598.12 7389.65 8595.58 6898.56 891.84 9796.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
casdiffmvs94.32 11294.80 9492.85 17896.05 19181.44 21592.35 17198.05 5591.53 11295.75 11196.80 10493.35 7898.49 18191.01 11698.32 16998.64 95
ETH3D-3000-0.194.86 9194.55 10495.81 6697.61 10789.72 8394.05 12098.37 1588.09 17995.06 14395.85 15992.58 9899.10 9190.33 13098.99 9998.62 99
TSAR-MVS + MP.94.96 8694.75 9695.57 7898.86 2188.69 10196.37 3796.81 16085.23 22594.75 15597.12 8491.85 11499.40 4093.45 5098.33 16798.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-394.28 11394.23 11894.46 12492.78 28786.28 15692.39 16894.70 23993.69 6095.97 10295.56 17891.34 12598.48 18593.45 5098.14 19098.62 99
HQP_MVS94.26 11593.93 12195.23 9197.71 10088.12 11594.56 10697.81 8591.74 10593.31 19195.59 17386.93 19998.95 11489.26 15998.51 15098.60 102
plane_prior597.81 8598.95 11489.26 15998.51 15098.60 102
CP-MVS96.44 3696.08 4997.54 1198.29 6394.62 1396.80 2098.08 4892.67 7195.08 14296.39 13494.77 5499.42 2893.17 6599.44 4498.58 104
tttt051789.81 22588.90 23292.55 19097.00 13579.73 24395.03 8983.65 34089.88 14795.30 13094.79 21453.64 35099.39 4591.99 9398.79 12798.54 105
test117296.79 1696.52 2897.60 998.03 8294.87 1096.07 5198.06 5495.76 3296.89 6196.85 10094.85 5299.42 2893.35 5798.81 12498.53 106
test_0728_SECOND94.88 10198.55 4086.72 14295.20 8198.22 3099.38 5193.44 5299.31 6098.53 106
SR-MVS96.70 2096.42 3097.54 1198.05 7994.69 1196.13 4898.07 5195.17 3696.82 6496.73 11195.09 4499.43 2792.99 7398.71 13398.50 108
test_241102_TWO98.10 4591.95 8897.54 3697.25 7695.37 2999.35 5593.29 5999.25 7198.49 109
HFP-MVS96.39 4096.17 4497.04 3198.51 4693.37 3896.30 4497.98 6792.35 7895.63 11696.47 12495.37 2999.27 7293.78 3699.14 8298.48 110
#test#95.89 5495.51 7097.04 3198.51 4693.37 3895.14 8497.98 6789.34 15595.63 11696.47 12495.37 2999.27 7291.99 9399.14 8298.48 110
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 14590.79 7296.30 4497.82 8496.13 2594.74 15697.23 7891.33 12699.16 8293.25 6298.30 17298.46 112
XVG-OURS-SEG-HR95.38 7195.00 8896.51 4898.10 7594.07 1892.46 16498.13 4190.69 13093.75 18096.25 14598.03 397.02 27392.08 9095.55 27098.45 113
RRT_MVS91.36 18990.05 21495.29 8889.21 33488.15 11492.51 16394.89 23186.73 20495.54 12095.68 17061.82 33699.30 6794.91 1499.13 8598.43 114
baseline94.26 11594.80 9492.64 18496.08 18980.99 22193.69 13098.04 5990.80 12894.89 15096.32 13993.19 8298.48 18591.68 10598.51 15098.43 114
DPE-MVS95.89 5495.88 5895.92 6397.93 9089.83 8293.46 13698.30 2192.37 7697.75 2896.95 9295.14 4099.51 1991.74 10199.28 6898.41 116
tfpnnormal94.27 11494.87 9292.48 19297.71 10080.88 22394.55 10895.41 22093.70 5796.67 7097.72 4991.40 12498.18 20787.45 19299.18 7998.36 117
VDD-MVS94.37 10894.37 11094.40 12797.49 11486.07 16093.97 12493.28 26394.49 4396.24 9097.78 4687.99 18198.79 13888.92 16599.14 8298.34 118
XVG-ACMP-BASELINE95.68 6295.34 7696.69 4498.40 5693.04 4194.54 10998.05 5590.45 13796.31 8496.76 10792.91 9098.72 15291.19 11499.42 4698.32 119
CNVR-MVS94.58 10394.29 11395.46 8296.94 13789.35 9291.81 20296.80 16189.66 15093.90 17895.44 18492.80 9498.72 15292.74 7898.52 14898.32 119
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2898.38 5894.31 1596.79 2198.32 1896.69 1796.86 6297.56 5595.48 2698.77 14690.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 9894.12 11996.50 4998.00 8594.23 1691.48 20998.17 3690.72 12995.30 13096.47 12487.94 18296.98 27491.41 11297.61 22398.30 122
Regformer-294.86 9194.55 10495.77 7092.83 28589.98 7891.87 19696.40 18294.38 4696.19 9695.04 20092.47 10399.04 10093.49 4598.31 17098.28 123
EPNet89.80 22688.25 24294.45 12583.91 35586.18 15893.87 12587.07 31591.16 12180.64 34394.72 21578.83 26398.89 12085.17 21998.89 10998.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6896.82 14389.92 7992.72 15398.02 6284.73 23793.65 18495.54 18091.68 11899.22 7788.78 16898.49 15398.26 125
Regformer-194.55 10494.33 11295.19 9292.83 28588.54 10891.87 19695.84 20593.99 5095.95 10495.04 20092.00 10998.79 13893.14 6798.31 17098.23 126
NCCC94.08 12093.54 13595.70 7596.49 16089.90 8192.39 16896.91 15490.64 13292.33 22794.60 21890.58 14998.96 11290.21 13697.70 21898.23 126
XXY-MVS92.58 16293.16 14590.84 24297.75 9679.84 23891.87 19696.22 19285.94 21595.53 12197.68 5092.69 9694.48 32183.21 24297.51 22598.21 128
CDPH-MVS92.67 15991.83 17395.18 9396.94 13788.46 11090.70 22797.07 14177.38 29292.34 22695.08 19892.67 9798.88 12185.74 21598.57 14298.20 129
new-patchmatchnet88.97 23890.79 19983.50 32394.28 25855.83 35585.34 32193.56 25986.18 21195.47 12295.73 16883.10 23096.51 28985.40 21898.06 19898.16 130
HQP4-MVS88.81 28398.61 16798.15 131
ETH3 D test640091.91 17791.25 18993.89 14296.59 15484.41 17792.10 18197.72 9378.52 28691.82 23693.78 24688.70 16999.13 8683.61 23898.39 15898.14 132
HQP-MVS92.09 17491.49 18393.88 14396.36 16684.89 17391.37 21097.31 12487.16 19788.81 28393.40 25484.76 22198.60 16986.55 20697.73 21498.14 132
DVP-MVS95.82 5896.18 4294.72 10898.51 4686.69 14395.20 8197.00 14491.85 9497.40 4497.35 7195.58 2399.34 5993.44 5299.31 6098.13 134
ambc92.98 17096.88 14083.01 20095.92 5796.38 18496.41 7797.48 6188.26 17497.80 23689.96 14498.93 10898.12 135
testtj94.81 9594.42 10796.01 5597.23 12590.51 7494.77 9697.85 8191.29 11694.92 14995.66 17191.71 11799.40 4088.07 18198.25 17898.11 136
eth_miper_zixun_eth90.72 19990.61 20391.05 23292.04 29976.84 28586.91 30596.67 16985.21 22694.41 16393.92 24179.53 26098.26 20089.76 14897.02 23998.06 137
FMVSNet292.78 15592.73 15592.95 17395.40 22681.98 20794.18 11795.53 21788.63 16796.05 10197.37 6781.31 25098.81 13687.38 19598.67 13798.06 137
OMC-MVS94.22 11793.69 12995.81 6697.25 12491.27 6392.27 17597.40 11487.10 20094.56 16095.42 18593.74 6998.11 21286.62 20498.85 11598.06 137
cl_fuxian91.32 19191.42 18491.00 23692.29 29276.79 28687.52 29696.42 18185.76 22094.72 15893.89 24282.73 23598.16 20990.93 11798.55 14398.04 140
EG-PatchMatch MVS94.54 10594.67 10094.14 13297.87 9286.50 14692.00 18796.74 16688.16 17896.93 6097.61 5393.04 8897.90 22591.60 10798.12 19398.03 141
MVS_111021_HR93.63 12993.42 13894.26 13096.65 15086.96 13889.30 26996.23 19088.36 17593.57 18694.60 21893.45 7397.77 24090.23 13598.38 16098.03 141
SR-MVS-dyc-post96.84 996.60 2697.56 1098.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8994.85 5299.42 2893.49 4598.84 11698.00 143
RE-MVS-def96.66 2198.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8995.40 2893.49 4598.84 11698.00 143
thisisatest053088.69 24587.52 25692.20 19796.33 17179.36 24892.81 15184.01 33986.44 20693.67 18392.68 27053.62 35199.25 7489.65 15198.45 15498.00 143
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 22997.66 10677.32 27794.33 11387.66 31191.20 11992.99 20595.13 19575.40 28798.28 19677.86 29099.19 7797.99 146
agg_prior287.06 19898.36 16697.98 147
AllTest94.88 9094.51 10696.00 5698.02 8392.17 5095.26 7898.43 1190.48 13595.04 14496.74 10992.54 10097.86 23185.11 22498.98 10097.98 147
TestCases96.00 5698.02 8392.17 5098.43 1190.48 13595.04 14496.74 10992.54 10097.86 23185.11 22498.98 10097.98 147
MVSTER89.32 23188.75 23491.03 23390.10 32476.62 28790.85 22294.67 24282.27 25795.24 13595.79 16461.09 33998.49 18190.49 12298.26 17597.97 150
SED-MVS96.00 5396.41 3394.76 10698.51 4686.97 13695.21 7998.10 4591.95 8897.63 3197.25 7696.48 1299.35 5593.29 5999.29 6397.95 151
OPU-MVS95.15 9496.84 14289.43 8895.21 7995.66 17193.12 8598.06 21486.28 21298.61 14097.95 151
test_prior393.29 13692.85 14994.61 11195.95 19987.23 12990.21 24197.36 12089.33 15690.77 25094.81 21090.41 15198.68 16188.21 17598.55 14397.93 153
test_prior94.61 11195.95 19987.23 12997.36 12098.68 16197.93 153
DeepC-MVS91.39 495.43 6995.33 7795.71 7497.67 10590.17 7693.86 12698.02 6287.35 19496.22 9297.99 3894.48 6199.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet93.08 14592.50 16094.79 10593.87 26887.99 11995.07 8794.26 24990.64 13287.33 30597.67 5186.89 20298.49 18188.10 18098.71 13397.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet92.38 16891.99 17093.52 15693.82 27083.46 19291.14 21697.00 14489.81 14886.47 30994.04 23587.90 18399.21 7889.50 15398.27 17497.90 157
HPM-MVS++copyleft95.02 8394.39 10896.91 3897.88 9193.58 3694.09 11996.99 14691.05 12292.40 22195.22 19291.03 13999.25 7492.11 8898.69 13697.90 157
testgi90.38 20991.34 18787.50 29897.49 11471.54 32389.43 26495.16 22588.38 17494.54 16194.68 21792.88 9293.09 33571.60 32797.85 21197.88 159
test_040295.73 6096.22 4094.26 13098.19 7085.77 16593.24 14197.24 13196.88 1697.69 2997.77 4894.12 6799.13 8691.54 11099.29 6397.88 159
miper_lstm_enhance89.90 22389.80 21790.19 25991.37 31077.50 27483.82 33595.00 22784.84 23593.05 20394.96 20476.53 28595.20 31789.96 14498.67 13797.86 161
MCST-MVS92.91 15192.51 15994.10 13397.52 11285.72 16691.36 21397.13 13880.33 26792.91 20894.24 22891.23 13198.72 15289.99 14397.93 20797.86 161
Vis-MVSNetpermissive95.50 6795.48 7195.56 7998.11 7489.40 9095.35 7398.22 3092.36 7794.11 16998.07 3392.02 10899.44 2493.38 5697.67 22097.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test9_res88.16 17998.40 15697.83 164
VNet92.67 15992.96 14691.79 20996.27 17680.15 22891.95 18894.98 22892.19 8494.52 16296.07 15187.43 18997.39 26284.83 22898.38 16097.83 164
diffmvs91.74 17991.93 17191.15 23193.06 28078.17 26688.77 28097.51 11086.28 20992.42 22093.96 24088.04 17997.46 25690.69 12196.67 25297.82 166
FMVSNet390.78 19890.32 20992.16 20193.03 28279.92 23792.54 15994.95 22986.17 21295.10 13996.01 15469.97 30298.75 14786.74 20098.38 16097.82 166
CPTT-MVS94.74 9794.12 11996.60 4598.15 7293.01 4295.84 6097.66 9589.21 15993.28 19495.46 18288.89 16898.98 10789.80 14698.82 12297.80 168
cl-mvsnet289.02 23588.50 23790.59 24789.76 32676.45 28986.62 31594.03 25282.98 25292.65 21392.49 27272.05 29797.53 25188.93 16497.02 23997.78 169
Anonymous20240521192.58 16292.50 16092.83 17996.55 15783.22 19592.43 16691.64 29194.10 4995.59 11896.64 11781.88 24797.50 25385.12 22398.52 14897.77 170
cl-mvsnet_90.65 20290.56 20490.91 24091.85 30176.98 28386.75 31095.36 22385.53 22294.06 17394.89 20777.36 27897.98 22390.27 13398.98 10097.76 171
cl-mvsnet190.65 20290.56 20490.91 24091.85 30176.99 28286.75 31095.36 22385.52 22494.06 17394.89 20777.37 27797.99 22290.28 13298.97 10497.76 171
test1294.43 12695.95 19986.75 14196.24 18989.76 27289.79 16298.79 13897.95 20697.75 173
train_agg92.71 15891.83 17395.35 8396.45 16289.46 8690.60 22996.92 15279.37 27690.49 25594.39 22491.20 13398.88 12188.66 17298.43 15597.72 174
IterMVS-SCA-FT91.65 18191.55 17991.94 20693.89 26779.22 25287.56 29393.51 26091.53 11295.37 12796.62 11878.65 26598.90 11891.89 9894.95 28497.70 175
3Dnovator92.54 394.80 9694.90 9094.47 12395.47 22487.06 13396.63 2497.28 12991.82 10094.34 16797.41 6490.60 14898.65 16592.47 8498.11 19497.70 175
PVSNet_BlendedMVS90.35 21189.96 21591.54 21894.81 24078.80 26090.14 24596.93 15079.43 27588.68 29095.06 19986.27 21098.15 21080.27 26998.04 20197.68 177
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24496.67 394.00 12295.41 22089.94 14491.93 23592.13 28190.12 15598.97 11187.68 18897.48 22697.67 178
LFMVS91.33 19091.16 19291.82 20896.27 17679.36 24895.01 9085.61 32896.04 2994.82 15297.06 8772.03 29898.46 18784.96 22798.70 13597.65 179
agg_prior192.60 16191.76 17695.10 9696.20 18188.89 9890.37 23696.88 15679.67 27390.21 25994.41 22291.30 12898.78 14288.46 17498.37 16597.64 180
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25394.64 25180.24 22689.69 25995.88 20285.77 21993.94 17795.69 16981.99 24492.98 33684.21 23591.30 32797.62 181
CLD-MVS91.82 17891.41 18593.04 16796.37 16483.65 19186.82 30997.29 12784.65 23892.27 22889.67 31592.20 10597.85 23383.95 23699.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21794.68 24980.16 22785.49 32092.14 28690.41 13994.93 14895.79 16485.10 21996.93 27785.15 22194.19 30197.57 183
DP-MVS95.62 6395.84 6194.97 9997.16 12988.62 10494.54 10997.64 9696.94 1596.58 7497.32 7493.07 8798.72 15290.45 12398.84 11697.57 183
APD-MVScopyleft95.00 8494.69 9895.93 6197.38 12090.88 7094.59 10297.81 8589.22 15895.46 12496.17 14993.42 7699.34 5989.30 15598.87 11497.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet587.82 25886.56 27391.62 21592.31 29179.81 24193.49 13594.81 23683.26 24591.36 24196.93 9552.77 35297.49 25576.07 30598.03 20297.55 186
QAPM92.88 15292.77 15193.22 16595.82 20683.31 19396.45 3297.35 12283.91 24293.75 18096.77 10589.25 16698.88 12184.56 23297.02 23997.49 187
Patchmtry90.11 21889.92 21690.66 24590.35 32277.00 28192.96 14692.81 27090.25 14194.74 15696.93 9567.11 30897.52 25285.17 21998.98 10097.46 188
miper_ehance_all_eth90.48 20590.42 20790.69 24491.62 30676.57 28886.83 30896.18 19483.38 24494.06 17392.66 27182.20 24198.04 21589.79 14797.02 23997.45 189
LS3D96.11 4995.83 6296.95 3794.75 24394.20 1797.34 1097.98 6797.31 1195.32 12996.77 10593.08 8699.20 7991.79 9998.16 18897.44 190
D2MVS89.93 22289.60 22290.92 23894.03 26478.40 26388.69 28294.85 23278.96 28393.08 20195.09 19774.57 28896.94 27588.19 17798.96 10697.41 191
PHI-MVS94.34 11193.80 12495.95 5895.65 21791.67 6194.82 9497.86 7887.86 18493.04 20494.16 23291.58 12098.78 14290.27 13398.96 10697.41 191
ITE_SJBPF95.95 5897.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11197.08 27185.53 21797.96 20597.41 191
SD-MVS95.19 8095.73 6693.55 15296.62 15388.88 10094.67 9998.05 5591.26 11797.25 4896.40 13095.42 2794.36 32592.72 8099.19 7797.40 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 19790.85 19790.63 24695.63 21979.24 25189.81 25792.87 26989.90 14694.39 16496.40 13085.77 21495.27 31673.86 31499.05 9197.39 195
F-COLMAP92.28 17191.06 19395.95 5897.52 11291.90 5693.53 13497.18 13483.98 24188.70 28994.04 23588.41 17398.55 17780.17 27295.99 26297.39 195
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5295.96 19892.96 4389.48 26397.46 11185.14 22896.23 9195.42 18593.19 8298.08 21390.37 12798.76 13097.38 197
mvs_anonymous90.37 21091.30 18887.58 29792.17 29668.00 33489.84 25694.73 23883.82 24393.22 19897.40 6587.54 18797.40 26187.94 18495.05 28397.34 198
alignmvs93.26 13992.85 14994.50 12095.70 21387.45 12593.45 13795.76 20691.58 11095.25 13492.42 27781.96 24598.72 15291.61 10697.87 21097.33 199
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11596.14 18687.90 12093.36 13997.14 13685.53 22293.90 17895.45 18391.30 12898.59 17189.51 15298.62 13997.31 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d91.54 18490.73 20193.99 13595.76 21187.86 12290.83 22393.98 25578.23 28994.02 17696.22 14682.62 23896.83 28086.57 20598.33 16797.29 201
IterMVS90.18 21690.16 21090.21 25793.15 27875.98 29487.56 29392.97 26886.43 20794.09 17096.40 13078.32 26997.43 25887.87 18594.69 29197.23 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs94.59 10294.69 9894.30 12995.60 22187.03 13595.59 6798.24 2891.56 11195.21 13792.04 28394.95 5098.66 16391.45 11197.57 22497.20 203
ppachtmachnet_test88.61 24688.64 23588.50 28591.76 30370.99 32684.59 32892.98 26779.30 28092.38 22293.53 25279.57 25997.45 25786.50 20897.17 23597.07 204
MVS_111021_LR93.66 12893.28 14294.80 10496.25 17990.95 6890.21 24195.43 21987.91 18193.74 18294.40 22392.88 9296.38 29490.39 12598.28 17397.07 204
HyFIR lowres test87.19 27485.51 28492.24 19697.12 13380.51 22585.03 32396.06 19766.11 34091.66 23892.98 26370.12 30199.14 8575.29 30995.23 28097.07 204
CANet_DTU89.85 22489.17 22591.87 20792.20 29580.02 23590.79 22495.87 20386.02 21482.53 33391.77 28680.01 25798.57 17485.66 21697.70 21897.01 207
MVS_Test92.57 16493.29 14090.40 25193.53 27275.85 29592.52 16096.96 14788.73 16592.35 22496.70 11390.77 14198.37 19392.53 8395.49 27296.99 208
LCM-MVSNet-Re94.20 11894.58 10393.04 16795.91 20283.13 19893.79 12799.19 392.00 8798.84 698.04 3593.64 7099.02 10381.28 26198.54 14696.96 209
CSCG94.69 9994.75 9694.52 11997.55 11187.87 12195.01 9097.57 10392.68 6996.20 9493.44 25391.92 11398.78 14289.11 16399.24 7396.92 210
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11894.66 25088.25 11292.05 18396.65 17089.62 15190.08 26291.23 29392.56 9998.60 16986.30 21196.27 25996.90 211
114514_t90.51 20489.80 21792.63 18698.00 8582.24 20593.40 13897.29 12765.84 34189.40 27694.80 21386.99 19798.75 14783.88 23798.61 14096.89 212
Effi-MVS+92.79 15492.74 15392.94 17495.10 23383.30 19494.00 12297.53 10791.36 11589.35 27790.65 30594.01 6898.66 16387.40 19495.30 27896.88 213
CMPMVSbinary68.83 2287.28 27085.67 28392.09 20388.77 33885.42 16990.31 23994.38 24670.02 32988.00 29793.30 25673.78 29294.03 32975.96 30796.54 25496.83 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 24887.87 25190.07 26088.67 33975.52 29885.10 32295.59 21375.68 29992.49 21789.45 31878.96 26297.88 22787.86 18697.02 23996.81 215
EIA-MVS92.35 16992.03 16893.30 16295.81 20883.97 18792.80 15298.17 3687.71 18789.79 27187.56 32791.17 13799.18 8187.97 18397.27 23296.77 216
MVP-Stereo90.07 22188.92 23093.54 15496.31 17386.49 14790.93 22195.59 21379.80 26991.48 23995.59 17380.79 25497.39 26278.57 28891.19 32896.76 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM_NR91.03 19490.81 19891.68 21496.73 14881.10 22093.72 12996.35 18588.19 17788.77 28792.12 28285.09 22097.25 26682.40 25193.90 30296.68 218
UnsupCasMVSNet_bld88.50 24788.03 24989.90 26395.52 22378.88 25787.39 29794.02 25479.32 27993.06 20294.02 23780.72 25594.27 32675.16 31093.08 31496.54 219
TAPA-MVS88.58 1092.49 16691.75 17794.73 10796.50 15989.69 8492.91 14897.68 9478.02 29092.79 21094.10 23390.85 14097.96 22484.76 23098.16 18896.54 219
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs587.87 25687.14 26390.07 26093.26 27676.97 28488.89 27792.18 28373.71 31188.36 29293.89 24276.86 28396.73 28380.32 26896.81 24796.51 221
thres600view787.66 26187.10 26589.36 27196.05 19173.17 31392.72 15385.31 33191.89 9293.29 19390.97 29763.42 32998.39 18873.23 31796.99 24496.51 221
thres40087.20 27386.52 27589.24 27595.77 20972.94 31691.89 19386.00 32390.84 12592.61 21489.80 31063.93 32698.28 19671.27 32996.54 25496.51 221
TSAR-MVS + GP.93.07 14792.41 16295.06 9795.82 20690.87 7190.97 22092.61 27788.04 18094.61 15993.79 24588.08 17797.81 23589.41 15498.39 15896.50 224
YYNet188.17 25288.24 24387.93 29392.21 29473.62 31180.75 34188.77 30182.51 25594.99 14695.11 19682.70 23693.70 33083.33 24093.83 30396.48 225
MDA-MVSNet_test_wron88.16 25388.23 24487.93 29392.22 29373.71 31080.71 34288.84 30082.52 25494.88 15195.14 19482.70 23693.61 33183.28 24193.80 30496.46 226
MVSFormer92.18 17392.23 16492.04 20594.74 24480.06 23297.15 1297.37 11588.98 16088.83 28192.79 26677.02 28099.60 996.41 496.75 25096.46 226
jason89.17 23388.32 24091.70 21395.73 21280.07 23188.10 28793.22 26471.98 31990.09 26192.79 26678.53 26898.56 17587.43 19397.06 23796.46 226
jason: jason.
CHOSEN 1792x268887.19 27485.92 28291.00 23697.13 13279.41 24784.51 32995.60 21064.14 34490.07 26394.81 21078.26 27097.14 27073.34 31695.38 27796.46 226
Anonymous2023120688.77 24388.29 24190.20 25896.31 17378.81 25989.56 26293.49 26174.26 30792.38 22295.58 17682.21 24095.43 31172.07 32398.75 13296.34 230
旧先验196.20 18184.17 18394.82 23495.57 17789.57 16397.89 20996.32 231
DELS-MVS92.05 17592.16 16591.72 21294.44 25480.13 23087.62 29097.25 13087.34 19592.22 22993.18 26089.54 16498.73 15189.67 15098.20 18696.30 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft85.34 1590.40 20888.92 23094.85 10296.53 15890.02 7791.58 20796.48 18080.16 26886.14 31192.18 27985.73 21598.25 20176.87 30094.61 29396.30 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS92.54 16592.31 16393.23 16495.89 20484.07 18693.58 13398.48 988.60 17090.41 25886.23 33792.00 10999.35 5587.54 19098.06 19896.26 234
PAPR87.65 26286.77 27090.27 25492.85 28477.38 27688.56 28596.23 19076.82 29884.98 31789.75 31486.08 21297.16 26972.33 32293.35 30896.26 234
our_test_387.55 26487.59 25587.44 29991.76 30370.48 32783.83 33490.55 29779.79 27092.06 23392.17 28078.63 26795.63 30484.77 22994.73 28996.22 236
Fast-Effi-MVS+91.28 19290.86 19692.53 19195.45 22582.53 20389.25 27296.52 17885.00 23289.91 26688.55 32392.94 8998.84 12984.72 23195.44 27496.22 236
EPNet_dtu85.63 28584.37 28889.40 27086.30 34974.33 30791.64 20688.26 30584.84 23572.96 35289.85 30871.27 30097.69 24676.60 30297.62 22296.18 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS92.72 15792.02 16994.84 10395.65 21791.99 5492.92 14796.60 17285.08 23192.44 21993.62 24886.80 20396.35 29686.81 19998.25 17896.18 238
pmmvs488.95 23987.70 25492.70 18294.30 25785.60 16787.22 29992.16 28574.62 30589.75 27394.19 23077.97 27296.41 29282.71 24696.36 25896.09 240
MG-MVS89.54 22889.80 21788.76 28094.88 23672.47 32089.60 26092.44 28085.82 21889.48 27595.98 15582.85 23397.74 24481.87 25595.27 27996.08 241
ab-mvs92.40 16792.62 15791.74 21197.02 13481.65 21195.84 6095.50 21886.95 20292.95 20797.56 5590.70 14697.50 25379.63 27897.43 22896.06 242
baseline283.38 29681.54 30588.90 27791.38 30972.84 31888.78 27981.22 34678.97 28279.82 34587.56 32761.73 33797.80 23674.30 31290.05 33396.05 243
N_pmnet88.90 24087.25 26093.83 14594.40 25693.81 3484.73 32587.09 31479.36 27893.26 19692.43 27679.29 26191.68 34077.50 29697.22 23496.00 244
mvs-test193.07 14791.80 17596.89 3994.74 24495.83 692.17 17995.41 22089.94 14489.85 26890.59 30690.12 15598.88 12187.68 18895.66 26895.97 245
GA-MVS87.70 25986.82 26890.31 25293.27 27577.22 27984.72 32792.79 27285.11 23089.82 26990.07 30766.80 31197.76 24284.56 23294.27 29995.96 246
test_yl90.11 21889.73 22091.26 22594.09 26279.82 23990.44 23392.65 27590.90 12393.19 19993.30 25673.90 29098.03 21682.23 25296.87 24595.93 247
DCV-MVSNet90.11 21889.73 22091.26 22594.09 26279.82 23990.44 23392.65 27590.90 12393.19 19993.30 25673.90 29098.03 21682.23 25296.87 24595.93 247
PM-MVS93.33 13592.67 15695.33 8596.58 15594.06 1992.26 17692.18 28385.92 21696.22 9296.61 11985.64 21895.99 30190.35 12898.23 18195.93 247
ET-MVSNet_ETH3D86.15 28284.27 29091.79 20993.04 28181.28 21787.17 30186.14 32079.57 27483.65 32588.66 32157.10 34498.18 20787.74 18795.40 27595.90 250
TAMVS90.16 21789.05 22793.49 15796.49 16086.37 15290.34 23892.55 27880.84 26592.99 20594.57 22081.94 24698.20 20473.51 31598.21 18495.90 250
baseline187.62 26387.31 25888.54 28494.71 24874.27 30893.10 14388.20 30786.20 21092.18 23093.04 26173.21 29395.52 30679.32 28285.82 34095.83 252
WTY-MVS86.93 27986.50 27788.24 29094.96 23574.64 30187.19 30092.07 28878.29 28888.32 29391.59 29078.06 27194.27 32674.88 31193.15 31295.80 253
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17497.73 9983.95 18892.14 18097.46 11178.85 28592.35 22494.98 20384.16 22599.08 9286.36 21096.77 24995.79 254
lupinMVS88.34 25087.31 25891.45 21994.74 24480.06 23287.23 29892.27 28271.10 32388.83 28191.15 29477.02 28098.53 17886.67 20396.75 25095.76 255
DP-MVS Recon92.31 17091.88 17293.60 15097.18 12886.87 13991.10 21897.37 11584.92 23492.08 23294.08 23488.59 17098.20 20483.50 23998.14 19095.73 256
CDS-MVSNet89.55 22788.22 24593.53 15595.37 22986.49 14789.26 27093.59 25879.76 27191.15 24692.31 27877.12 27998.38 19077.51 29597.92 20895.71 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
原ACMM192.87 17796.91 13984.22 18197.01 14376.84 29789.64 27494.46 22188.00 18098.70 15981.53 25998.01 20395.70 258
thisisatest051584.72 29082.99 29889.90 26392.96 28375.33 29984.36 33083.42 34177.37 29388.27 29486.65 33253.94 34998.72 15282.56 24897.40 22995.67 259
ETV-MVS92.99 14992.74 15393.72 14795.86 20586.30 15592.33 17297.84 8291.70 10892.81 20986.17 33892.22 10499.19 8088.03 18297.73 21495.66 260
TinyColmap92.00 17692.76 15289.71 26595.62 22077.02 28090.72 22696.17 19587.70 18895.26 13396.29 14192.54 10096.45 29181.77 25698.77 12995.66 260
PCF-MVS84.52 1789.12 23487.71 25393.34 15996.06 19085.84 16486.58 31697.31 12468.46 33493.61 18593.89 24287.51 18898.52 17967.85 33898.11 19495.66 260
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC89.02 23589.08 22688.84 27995.07 23474.50 30588.97 27596.39 18373.21 31393.27 19596.28 14282.16 24296.39 29377.55 29498.80 12695.62 263
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18394.53 25384.10 18495.70 6397.03 14282.44 25691.14 24796.42 12888.47 17298.38 19085.95 21497.47 22795.55 264
sss87.23 27186.82 26888.46 28793.96 26577.94 26786.84 30792.78 27377.59 29187.61 30291.83 28578.75 26491.92 33977.84 29194.20 30095.52 265
ADS-MVSNet284.01 29482.20 30289.41 26989.04 33576.37 29187.57 29190.98 29572.71 31784.46 32092.45 27368.08 30496.48 29070.58 33383.97 34295.38 266
ADS-MVSNet82.25 30381.55 30484.34 31989.04 33565.30 34287.57 29185.13 33572.71 31784.46 32092.45 27368.08 30492.33 33870.58 33383.97 34295.38 266
MVS_030490.96 19590.15 21293.37 15893.17 27787.06 13393.62 13292.43 28189.60 15282.25 33495.50 18182.56 23997.83 23484.41 23497.83 21295.22 268
tpm84.38 29284.08 29185.30 31390.47 32063.43 35089.34 26785.63 32777.24 29587.62 30195.03 20261.00 34097.30 26579.26 28391.09 33095.16 269
1112_ss88.42 24887.41 25791.45 21996.69 14980.99 22189.72 25896.72 16773.37 31287.00 30790.69 30377.38 27698.20 20481.38 26093.72 30595.15 270
BH-RMVSNet90.47 20690.44 20690.56 24895.21 23278.65 26289.15 27393.94 25688.21 17692.74 21194.22 22986.38 20897.88 22778.67 28795.39 27695.14 271
Test_1112_low_res87.50 26686.58 27290.25 25596.80 14677.75 27187.53 29596.25 18869.73 33086.47 30993.61 24975.67 28697.88 22779.95 27493.20 31095.11 272
MIMVSNet87.13 27686.54 27488.89 27896.05 19176.11 29294.39 11188.51 30381.37 26188.27 29496.75 10872.38 29595.52 30665.71 34395.47 27395.03 273
Gipumacopyleft95.31 7695.80 6493.81 14697.99 8890.91 6996.42 3597.95 7396.69 1791.78 23798.85 1391.77 11595.49 30891.72 10299.08 8795.02 274
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++93.25 14193.88 12291.37 22196.34 17082.81 20193.11 14297.74 9189.37 15494.08 17195.29 19190.40 15396.35 29690.35 12898.25 17894.96 275
MSDG90.82 19690.67 20291.26 22594.16 25983.08 19986.63 31496.19 19390.60 13491.94 23491.89 28489.16 16795.75 30380.96 26794.51 29494.95 276
无先验89.94 25195.75 20770.81 32698.59 17181.17 26494.81 277
thres100view90087.35 26986.89 26788.72 28196.14 18673.09 31593.00 14585.31 33192.13 8593.26 19690.96 29863.42 32998.28 19671.27 32996.54 25494.79 278
tfpn200view987.05 27786.52 27588.67 28295.77 20972.94 31691.89 19386.00 32390.84 12592.61 21489.80 31063.93 32698.28 19671.27 32996.54 25494.79 278
GSMVS94.75 280
sam_mvs166.64 31494.75 280
SCA87.43 26787.21 26188.10 29292.01 30071.98 32289.43 26488.11 30982.26 25888.71 28892.83 26478.65 26597.59 24979.61 27993.30 30994.75 280
MS-PatchMatch88.05 25487.75 25288.95 27693.28 27477.93 26887.88 28992.49 27975.42 30292.57 21693.59 25080.44 25694.24 32881.28 26192.75 31794.69 283
PatchmatchNetpermissive85.22 28684.64 28786.98 30289.51 33169.83 33190.52 23187.34 31378.87 28487.22 30692.74 26866.91 31096.53 28781.77 25686.88 33994.58 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet87.39 26886.71 27189.44 26893.40 27376.11 29294.93 9390.00 29857.17 35095.71 11497.37 6764.77 32397.68 24792.67 8194.37 29694.52 285
PVSNet76.22 2082.89 30082.37 30084.48 31893.96 26564.38 34878.60 34488.61 30271.50 32184.43 32286.36 33674.27 28994.60 32069.87 33593.69 30694.46 286
PVSNet_Blended88.74 24488.16 24890.46 25094.81 24078.80 26086.64 31396.93 15074.67 30488.68 29089.18 31986.27 21098.15 21080.27 26996.00 26194.44 287
CNLPA91.72 18091.20 19093.26 16396.17 18491.02 6691.14 21695.55 21690.16 14290.87 24993.56 25186.31 20994.40 32479.92 27797.12 23694.37 288
cascas87.02 27886.28 27989.25 27491.56 30876.45 28984.33 33196.78 16271.01 32486.89 30885.91 33981.35 24996.94 27583.09 24395.60 26994.35 289
DPM-MVS89.35 23088.40 23992.18 20096.13 18884.20 18286.96 30496.15 19675.40 30387.36 30491.55 29183.30 22898.01 21982.17 25496.62 25394.32 290
MAR-MVS90.32 21388.87 23394.66 11094.82 23991.85 5794.22 11694.75 23780.91 26287.52 30388.07 32686.63 20697.87 23076.67 30196.21 26094.25 291
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet87.89 25587.12 26490.22 25691.01 31378.93 25592.52 16092.81 27073.08 31489.10 27896.93 9567.11 30897.64 24888.80 16792.70 31894.08 292
RPMNet90.31 21490.14 21390.81 24391.01 31378.93 25592.52 16098.12 4291.91 9189.10 27896.89 9868.84 30399.41 3590.17 13792.70 31894.08 292
MDTV_nov1_ep13_2view42.48 35888.45 28667.22 33883.56 32766.80 31172.86 32094.06 294
test-LLR83.58 29583.17 29684.79 31689.68 32866.86 33883.08 33684.52 33683.07 25082.85 33184.78 34262.86 33293.49 33282.85 24494.86 28594.03 295
test-mter81.21 31080.01 31784.79 31689.68 32866.86 33883.08 33684.52 33673.85 31082.85 33184.78 34243.66 36093.49 33282.85 24494.86 28594.03 295
112190.26 21589.23 22393.34 15997.15 13187.40 12691.94 19094.39 24567.88 33691.02 24894.91 20686.91 20198.59 17181.17 26497.71 21794.02 297
新几何193.17 16697.16 12987.29 12894.43 24467.95 33591.29 24294.94 20586.97 19898.23 20281.06 26697.75 21393.98 298
test22296.95 13685.27 17188.83 27893.61 25765.09 34390.74 25294.85 20984.62 22397.36 23093.91 299
PMMVS281.31 30883.44 29474.92 33490.52 31946.49 35769.19 34985.23 33484.30 24087.95 29894.71 21676.95 28284.36 35164.07 34498.09 19693.89 300
Patchmatch-test86.10 28386.01 28086.38 30690.63 31774.22 30989.57 26186.69 31685.73 22189.81 27092.83 26465.24 32191.04 34277.82 29395.78 26793.88 301
Patchmatch-RL test88.81 24288.52 23689.69 26695.33 23179.94 23686.22 31792.71 27478.46 28795.80 10994.18 23166.25 31695.33 31489.22 16198.53 14793.78 302
test0.0.03 182.48 30281.47 30685.48 31089.70 32773.57 31284.73 32581.64 34583.07 25088.13 29686.61 33362.86 33289.10 34866.24 34290.29 33293.77 303
OpenMVS_ROBcopyleft85.12 1689.52 22989.05 22790.92 23894.58 25281.21 21991.10 21893.41 26277.03 29693.41 18893.99 23983.23 22997.80 23679.93 27694.80 28893.74 304
testdata91.03 23396.87 14182.01 20694.28 24871.55 32092.46 21895.42 18585.65 21797.38 26482.64 24797.27 23293.70 305
IB-MVS77.21 1983.11 29781.05 30889.29 27291.15 31175.85 29585.66 31986.00 32379.70 27282.02 33886.61 33348.26 35598.39 18877.84 29192.22 32193.63 306
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
xiu_mvs_v1_base91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
tpmrst82.85 30182.93 29982.64 32587.65 34058.99 35390.14 24587.90 31075.54 30183.93 32491.63 28966.79 31395.36 31281.21 26381.54 34893.57 310
PatchT87.51 26588.17 24685.55 30990.64 31666.91 33692.02 18686.09 32192.20 8389.05 28097.16 8264.15 32596.37 29589.21 16292.98 31693.37 311
CostFormer83.09 29882.21 30185.73 30889.27 33367.01 33590.35 23786.47 31870.42 32783.52 32893.23 25961.18 33896.85 27977.21 29888.26 33793.34 312
thres20085.85 28485.18 28587.88 29594.44 25472.52 31989.08 27486.21 31988.57 17191.44 24088.40 32464.22 32498.00 22068.35 33795.88 26693.12 313
HY-MVS82.50 1886.81 28085.93 28189.47 26793.63 27177.93 26894.02 12191.58 29275.68 29983.64 32693.64 24777.40 27597.42 25971.70 32692.07 32393.05 314
EPMVS81.17 31180.37 31383.58 32285.58 35165.08 34590.31 23971.34 35377.31 29485.80 31391.30 29259.38 34192.70 33779.99 27382.34 34792.96 315
tpmvs84.22 29383.97 29284.94 31487.09 34665.18 34391.21 21588.35 30482.87 25385.21 31490.96 29865.24 32196.75 28279.60 28185.25 34192.90 316
BH-untuned90.68 20190.90 19490.05 26295.98 19779.57 24690.04 24894.94 23087.91 18194.07 17293.00 26287.76 18497.78 23979.19 28495.17 28192.80 317
DWT-MVSNet_test80.74 31379.18 31985.43 31187.51 34366.87 33789.87 25586.01 32274.20 30880.86 34280.62 34848.84 35496.68 28681.54 25883.14 34692.75 318
AdaColmapbinary91.63 18291.36 18692.47 19395.56 22286.36 15392.24 17896.27 18788.88 16489.90 26792.69 26991.65 11998.32 19477.38 29797.64 22192.72 319
CVMVSNet85.16 28784.72 28686.48 30492.12 29770.19 32892.32 17388.17 30856.15 35190.64 25495.85 15967.97 30696.69 28488.78 16890.52 33192.56 320
tpm281.46 30780.35 31484.80 31589.90 32565.14 34490.44 23385.36 33065.82 34282.05 33792.44 27557.94 34396.69 28470.71 33288.49 33692.56 320
PAPM81.91 30680.11 31687.31 30093.87 26872.32 32184.02 33393.22 26469.47 33176.13 35089.84 30972.15 29697.23 26753.27 35189.02 33492.37 322
TESTMET0.1,179.09 31978.04 32282.25 32687.52 34264.03 34983.08 33680.62 34870.28 32880.16 34483.22 34544.13 35990.56 34379.95 27493.36 30792.15 323
DSMNet-mixed82.21 30481.56 30384.16 32089.57 33070.00 33090.65 22877.66 35254.99 35283.30 32997.57 5477.89 27390.50 34466.86 34195.54 27191.97 324
xiu_mvs_v2_base89.00 23789.19 22488.46 28794.86 23874.63 30286.97 30395.60 21080.88 26387.83 29988.62 32291.04 13898.81 13682.51 25094.38 29591.93 325
PS-MVSNAJ88.86 24188.99 22988.48 28694.88 23674.71 30086.69 31295.60 21080.88 26387.83 29987.37 33090.77 14198.82 13182.52 24994.37 29691.93 325
tpm cat180.61 31579.46 31884.07 32188.78 33765.06 34689.26 27088.23 30662.27 34781.90 33989.66 31662.70 33495.29 31571.72 32580.60 34991.86 327
dp79.28 31878.62 32181.24 32885.97 35056.45 35486.91 30585.26 33372.97 31581.45 34189.17 32056.01 34895.45 31073.19 31876.68 35091.82 328
JIA-IIPM85.08 28883.04 29791.19 23087.56 34186.14 15989.40 26684.44 33888.98 16082.20 33597.95 3956.82 34696.15 29876.55 30383.45 34491.30 329
TR-MVS87.70 25987.17 26289.27 27394.11 26179.26 25088.69 28291.86 28981.94 25990.69 25389.79 31282.82 23497.42 25972.65 32191.98 32491.14 330
131486.46 28186.33 27886.87 30391.65 30574.54 30391.94 19094.10 25174.28 30684.78 31987.33 33183.03 23195.00 31878.72 28691.16 32991.06 331
new_pmnet81.22 30981.01 31081.86 32790.92 31570.15 32984.03 33280.25 35070.83 32585.97 31289.78 31367.93 30784.65 35067.44 33991.90 32590.78 332
PatchMatch-RL89.18 23288.02 25092.64 18495.90 20392.87 4588.67 28491.06 29480.34 26690.03 26491.67 28883.34 22794.42 32376.35 30494.84 28790.64 333
API-MVS91.52 18591.61 17891.26 22594.16 25986.26 15794.66 10094.82 23491.17 12092.13 23191.08 29690.03 16197.06 27279.09 28597.35 23190.45 334
BH-w/o87.21 27287.02 26687.79 29694.77 24277.27 27887.90 28893.21 26681.74 26089.99 26588.39 32583.47 22696.93 27771.29 32892.43 32089.15 335
PMVScopyleft87.21 1494.97 8595.33 7793.91 14198.97 1597.16 295.54 7095.85 20496.47 2193.40 19097.46 6295.31 3495.47 30986.18 21398.78 12889.11 336
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 30581.02 30985.34 31287.46 34471.04 32494.74 9767.56 35496.44 2279.43 34698.99 745.24 35796.15 29867.18 34092.17 32288.85 337
CHOSEN 280x42080.04 31777.97 32386.23 30790.13 32374.53 30472.87 34789.59 29966.38 33976.29 34985.32 34156.96 34595.36 31269.49 33694.72 29088.79 338
pmmvs380.83 31278.96 32086.45 30587.23 34577.48 27584.87 32482.31 34363.83 34585.03 31689.50 31749.66 35393.10 33473.12 31995.10 28288.78 339
PMMVS83.00 29981.11 30788.66 28383.81 35686.44 15082.24 34085.65 32661.75 34882.07 33685.64 34079.75 25891.59 34175.99 30693.09 31387.94 340
MVS84.98 28984.30 28987.01 30191.03 31277.69 27391.94 19094.16 25059.36 34984.23 32387.50 32985.66 21696.80 28171.79 32493.05 31586.54 341
MVEpermissive59.87 2373.86 32272.65 32577.47 33387.00 34874.35 30661.37 35160.93 35667.27 33769.69 35386.49 33581.24 25372.33 35356.45 35083.45 34485.74 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND83.24 32485.06 35371.03 32594.99 9265.55 35574.09 35175.51 35044.57 35894.46 32259.57 34887.54 33884.24 343
FPMVS84.50 29183.28 29588.16 29196.32 17294.49 1485.76 31885.47 32983.09 24985.20 31594.26 22763.79 32886.58 34963.72 34591.88 32683.40 344
E-PMN80.72 31480.86 31180.29 33085.11 35268.77 33372.96 34681.97 34487.76 18683.25 33083.01 34662.22 33589.17 34777.15 29994.31 29882.93 345
EMVS80.35 31680.28 31580.54 32984.73 35469.07 33272.54 34880.73 34787.80 18581.66 34081.73 34762.89 33189.84 34575.79 30894.65 29282.71 346
PVSNet_070.34 2174.58 32172.96 32479.47 33190.63 31766.24 34173.26 34583.40 34263.67 34678.02 34778.35 34972.53 29489.59 34656.68 34960.05 35382.57 347
MVS-HIRNet78.83 32080.60 31273.51 33593.07 27947.37 35687.10 30278.00 35168.94 33277.53 34897.26 7571.45 29994.62 31963.28 34688.74 33578.55 348
wuyk23d87.83 25790.79 19978.96 33290.46 32188.63 10392.72 15390.67 29691.65 10998.68 1297.64 5296.06 1777.53 35259.84 34799.41 5170.73 349
DeepMVS_CXcopyleft53.83 33670.38 35764.56 34748.52 35833.01 35365.50 35474.21 35156.19 34746.64 35438.45 35370.07 35150.30 350
tmp_tt37.97 32344.33 32618.88 33711.80 35821.54 35963.51 35045.66 3594.23 35451.34 35550.48 35259.08 34222.11 35544.50 35268.35 35213.00 351
test1239.49 32512.01 3281.91 3382.87 3591.30 36082.38 3391.34 3611.36 3552.84 3566.56 3552.45 3610.97 3562.73 3545.56 3543.47 352
testmvs9.02 32611.42 3291.81 3392.77 3601.13 36179.44 3431.90 3601.18 3562.65 3576.80 3541.95 3620.87 3572.62 3553.45 3553.44 353
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k23.35 32431.13 3270.00 3400.00 3610.00 3620.00 35295.58 2150.00 3570.00 35891.15 29493.43 750.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.56 32710.09 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35890.77 1410.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.56 32710.08 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35890.69 3030.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS97.23 12590.32 7597.54 10584.40 23994.78 15495.79 16492.76 9599.39 4588.72 17198.40 156
test_241102_ONE98.51 4686.97 13698.10 4591.85 9497.63 3197.03 8996.48 1298.95 114
9.1494.81 9397.49 11494.11 11898.37 1587.56 19395.38 12696.03 15394.66 5699.08 9290.70 12098.97 104
save fliter97.46 11788.05 11792.04 18497.08 14087.63 190
test072698.51 4686.69 14395.34 7498.18 3391.85 9497.63 3197.37 6795.58 23
test_part298.21 6989.41 8996.72 68
sam_mvs66.41 315
MTGPAbinary97.62 97
test_post190.21 2415.85 35765.36 31996.00 30079.61 279
test_post6.07 35665.74 31895.84 302
patchmatchnet-post91.71 28766.22 31797.59 249
MTMP94.82 9454.62 357
gm-plane-assit87.08 34759.33 35271.22 32283.58 34497.20 26873.95 313
TEST996.45 16289.46 8690.60 22996.92 15279.09 28190.49 25594.39 22491.31 12798.88 121
test_896.37 16489.14 9390.51 23296.89 15579.37 27690.42 25794.36 22691.20 13398.82 131
agg_prior96.20 18188.89 9896.88 15690.21 25998.78 142
test_prior489.91 8090.74 225
test_prior290.21 24189.33 15690.77 25094.81 21090.41 15188.21 17598.55 143
旧先验290.00 25068.65 33392.71 21296.52 28885.15 221
新几何290.02 249
原ACMM289.34 267
testdata298.03 21680.24 271
segment_acmp92.14 106
testdata188.96 27688.44 173
plane_prior797.71 10088.68 102
plane_prior697.21 12788.23 11386.93 199
plane_prior495.59 173
plane_prior388.43 11190.35 14093.31 191
plane_prior294.56 10691.74 105
plane_prior197.38 120
plane_prior88.12 11593.01 14488.98 16098.06 198
n20.00 362
nn0.00 362
door-mid92.13 287
test1196.65 170
door91.26 293
HQP5-MVS84.89 173
HQP-NCC96.36 16691.37 21087.16 19788.81 283
ACMP_Plane96.36 16691.37 21087.16 19788.81 283
BP-MVS86.55 206
HQP3-MVS97.31 12497.73 214
HQP2-MVS84.76 221
NP-MVS96.82 14387.10 13293.40 254
MDTV_nov1_ep1383.88 29389.42 33261.52 35188.74 28187.41 31273.99 30984.96 31894.01 23865.25 32095.53 30578.02 28993.16 311
ACMMP++_ref98.82 122
ACMMP++99.25 71
Test By Simon90.61 147