This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PS-CasMVS96.69 2097.43 594.49 13199.13 684.09 19796.61 2897.97 7697.91 598.64 1398.13 3495.24 3699.65 393.39 6199.84 399.72 2
CP-MVSNet96.19 4696.80 1794.38 13798.99 1483.82 20096.31 4697.53 11397.60 798.34 1997.52 6391.98 11799.63 693.08 7699.81 999.70 3
FC-MVSNet-test95.32 7695.88 5893.62 16098.49 5581.77 22195.90 6398.32 2193.93 5797.53 4097.56 6088.48 17999.40 4592.91 8199.83 699.68 4
PEN-MVS96.69 2097.39 894.61 12099.16 484.50 18896.54 3198.05 6198.06 498.64 1398.25 3195.01 4899.65 392.95 8099.83 699.68 4
WR-MVS_H96.60 2597.05 1495.24 9799.02 1286.44 16196.78 2498.08 5497.42 998.48 1697.86 4991.76 12299.63 694.23 2699.84 399.66 6
test_djsdf96.62 2396.49 2897.01 3398.55 4191.77 6197.15 1397.37 12188.98 17498.26 2298.86 1093.35 8199.60 896.41 499.45 4399.66 6
v7n96.82 1097.31 1095.33 9198.54 4386.81 15096.83 2098.07 5796.59 2098.46 1798.43 2792.91 9599.52 1796.25 699.76 1199.65 8
UA-Net97.35 497.24 1197.69 598.22 7093.87 3198.42 698.19 3696.95 1495.46 13199.23 493.45 7699.57 1395.34 1299.89 299.63 9
DTE-MVSNet96.74 1797.43 594.67 11899.13 684.68 18796.51 3297.94 8298.14 398.67 1298.32 2995.04 4599.69 293.27 6799.82 899.62 10
FIs94.90 9195.35 7793.55 16398.28 6581.76 22295.33 8398.14 4593.05 7397.07 5497.18 8887.65 19399.29 7391.72 11199.69 1599.61 11
UniMVSNet_ETH3D97.13 697.72 395.35 8999.51 287.38 13697.70 897.54 11198.16 298.94 299.33 297.84 499.08 10090.73 13099.73 1499.59 12
PS-MVSNAJss96.01 5196.04 5295.89 6898.82 2488.51 11795.57 7697.88 8388.72 18098.81 698.86 1090.77 14799.60 895.43 1199.53 3599.57 13
anonymousdsp96.74 1796.42 2997.68 798.00 8894.03 2696.97 1797.61 10687.68 20398.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
ANet_high94.83 9796.28 3790.47 26396.65 16173.16 33194.33 12398.74 1096.39 2398.09 2598.93 893.37 8098.70 16890.38 13899.68 1899.53 14
Anonymous2023121196.60 2597.13 1295.00 10597.46 12486.35 16597.11 1698.24 3197.58 898.72 898.97 793.15 8799.15 8993.18 7099.74 1399.50 16
test_part194.39 11294.55 11093.92 15196.14 20382.86 21295.54 7798.09 5395.36 3698.27 2098.36 2875.91 29899.44 2693.41 6099.84 399.47 17
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7094.15 5298.93 399.07 588.07 18699.57 1395.86 999.69 1599.46 18
pmmvs696.80 1397.36 995.15 10199.12 887.82 13196.68 2697.86 8496.10 2698.14 2499.28 397.94 398.21 21791.38 12199.69 1599.42 19
v1094.68 10395.27 8392.90 18596.57 16880.15 24094.65 11097.57 10990.68 13797.43 4498.00 4188.18 18399.15 8994.84 1599.55 3499.41 20
mvs_tets96.83 996.71 1997.17 2798.83 2392.51 5096.58 3097.61 10687.57 20698.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
v894.65 10495.29 8192.74 19096.65 16179.77 25494.59 11197.17 14291.86 9997.47 4397.93 4488.16 18499.08 10094.32 2299.47 3999.38 22
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8598.26 6787.69 13293.75 14197.86 8495.96 3097.48 4297.14 9095.33 3299.44 2690.79 12999.76 1199.38 22
nrg03096.32 4196.55 2695.62 8097.83 9688.55 11595.77 6798.29 2792.68 7598.03 2697.91 4695.13 4098.95 12393.85 3699.49 3899.36 24
WR-MVS93.49 13793.72 13392.80 18997.57 11780.03 24690.14 25995.68 21993.70 6296.62 7695.39 20087.21 20199.04 10887.50 20799.64 2399.33 25
jajsoiax96.59 2796.42 2997.12 2998.76 2892.49 5196.44 3897.42 11986.96 21598.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2593.86 3299.07 298.98 597.01 1398.92 498.78 1495.22 3798.61 18096.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet95.35 7495.21 8495.76 7597.69 10888.59 11392.26 19097.84 8894.91 3896.80 6995.78 17790.42 15699.41 3891.60 11599.58 3199.29 28
DU-MVS95.28 7995.12 8895.75 7697.75 10188.59 11392.58 17097.81 9193.99 5496.80 6995.90 16790.10 16599.41 3891.60 11599.58 3199.26 29
NR-MVSNet95.28 7995.28 8295.26 9697.75 10187.21 14095.08 9497.37 12193.92 5997.65 3295.90 16790.10 16599.33 6990.11 15299.66 2199.26 29
Baseline_NR-MVSNet94.47 11195.09 8992.60 19798.50 5480.82 23692.08 19696.68 17893.82 6096.29 9098.56 2090.10 16597.75 25990.10 15499.66 2199.24 31
v192192093.26 14593.61 13892.19 20896.04 21478.31 27891.88 20997.24 13885.17 24196.19 10096.19 15686.76 21299.05 10594.18 2898.84 12799.22 32
v119293.49 13793.78 13192.62 19696.16 20179.62 25691.83 21597.22 14086.07 22796.10 10496.38 14487.22 20099.02 11194.14 2998.88 12299.22 32
v124093.29 14293.71 13492.06 21596.01 21577.89 28491.81 21697.37 12185.12 24496.69 7396.40 13986.67 21399.07 10494.51 1898.76 14199.22 32
dcpmvs_293.96 12995.01 9090.82 25597.60 11474.04 32693.68 14598.85 689.80 15597.82 2897.01 9991.14 14399.21 8390.56 13398.59 15599.19 35
v14419293.20 15093.54 14292.16 21296.05 21078.26 27991.95 20297.14 14484.98 24895.96 10796.11 16087.08 20499.04 10893.79 3798.84 12799.17 36
UniMVSNet (Re)95.32 7695.15 8695.80 7297.79 9988.91 10592.91 16198.07 5793.46 6796.31 8895.97 16690.14 16199.34 6492.11 9699.64 2399.16 37
SixPastTwentyTwo94.91 9095.21 8493.98 14698.52 4683.19 20795.93 6194.84 24594.86 3998.49 1598.74 1681.45 25799.60 894.69 1699.39 5499.15 38
v2v48293.29 14293.63 13792.29 20496.35 18578.82 27291.77 21896.28 19788.45 18695.70 12296.26 15386.02 22198.90 12793.02 7798.81 13599.14 39
v114493.50 13693.81 12992.57 19896.28 19179.61 25791.86 21496.96 15686.95 21695.91 11296.32 14887.65 19398.96 12193.51 4798.88 12299.13 40
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8495.95 10896.41 13896.71 899.42 3193.99 3399.36 5699.13 40
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
patch_mono-292.46 17492.72 16391.71 22496.65 16178.91 27088.85 29297.17 14283.89 25892.45 23496.76 11589.86 16997.09 28790.24 14798.59 15599.12 42
MP-MVS-pluss96.08 4995.92 5796.57 4699.06 1091.21 6693.25 15398.32 2187.89 19796.86 6697.38 7195.55 2499.39 5095.47 1099.47 3999.11 43
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6292.13 5495.33 8398.25 2891.78 10797.07 5497.22 8696.38 1399.28 7592.07 9999.59 2799.11 43
LGP-MVS_train96.84 4098.36 6292.13 5498.25 2891.78 10797.07 5497.22 8696.38 1399.28 7592.07 9999.59 2799.11 43
MIMVSNet195.52 6795.45 7495.72 7799.14 589.02 10396.23 5196.87 16693.73 6197.87 2798.49 2490.73 15199.05 10586.43 22799.60 2599.10 46
VPA-MVSNet95.14 8495.67 6893.58 16297.76 10083.15 20894.58 11397.58 10893.39 6897.05 5798.04 3993.25 8398.51 19389.75 16299.59 2799.08 47
TransMVSNet (Re)95.27 8196.04 5292.97 18098.37 6181.92 22095.07 9596.76 17593.97 5697.77 2998.57 1995.72 1897.90 24188.89 18199.23 7999.08 47
RRT_test8_iter0588.21 26588.17 26088.33 30691.62 32666.82 36191.73 21996.60 18286.34 22294.14 17795.38 20247.72 37499.11 9791.78 10998.26 19199.06 49
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2594.06 2196.10 5497.78 9692.73 7493.48 20096.72 12194.23 6699.42 3191.99 10199.29 6899.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set94.35 11594.27 12294.59 12592.46 31085.87 17492.42 18094.69 25293.67 6696.13 10295.84 17291.20 13998.86 13593.78 3898.23 19799.03 51
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3493.88 3096.95 1898.18 3792.26 8796.33 8696.84 11195.10 4399.40 4593.47 5399.33 6099.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3296.14 4597.41 2198.60 3593.82 3496.30 4897.96 7792.35 8495.57 12696.61 12894.93 5199.41 3893.78 3899.15 9199.00 53
PGM-MVS96.32 4195.94 5597.43 1998.59 3793.84 3395.33 8398.30 2491.40 12095.76 11796.87 10795.26 3599.45 2592.77 8299.21 8299.00 53
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2393.69 14397.62 10394.46 4596.29 9096.94 10193.56 7499.37 5894.29 2499.42 4798.99 55
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6497.62 10394.46 4596.29 9096.94 10193.56 7499.37 5894.29 2499.42 4798.99 55
pm-mvs195.43 7195.94 5593.93 15098.38 5985.08 18495.46 8097.12 14791.84 10397.28 4998.46 2595.30 3497.71 26190.17 15099.42 4798.99 55
mPP-MVS96.46 3296.05 5197.69 598.62 3294.65 1396.45 3697.74 9792.59 7895.47 12996.68 12394.50 6199.42 3193.10 7499.26 7598.99 55
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 4998.46 2594.62 5898.84 13894.64 1799.53 3598.99 55
EI-MVSNet-Vis-set94.36 11494.28 12094.61 12092.55 30985.98 17292.44 17894.69 25293.70 6296.12 10395.81 17391.24 13698.86 13593.76 4198.22 19998.98 60
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2792.79 4896.08 5598.16 4491.74 11195.34 13696.36 14695.68 1999.44 2694.41 2199.28 7398.97 61
IS-MVSNet94.49 11094.35 11794.92 10798.25 6986.46 16097.13 1594.31 25996.24 2496.28 9396.36 14682.88 24199.35 6188.19 19399.52 3798.96 62
ACMM88.83 996.30 4396.07 5096.97 3598.39 5892.95 4694.74 10698.03 6690.82 13397.15 5296.85 10896.25 1599.00 11593.10 7499.33 6098.95 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3796.09 4897.38 2398.62 3293.81 3696.32 4597.96 7792.26 8795.28 14096.57 13095.02 4799.41 3893.63 4299.11 9698.94 64
SMA-MVScopyleft95.77 5995.54 7196.47 5198.27 6691.19 6795.09 9397.79 9586.48 21997.42 4697.51 6594.47 6399.29 7393.55 4699.29 6898.93 65
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS96.49 2996.18 4297.44 1798.56 3893.99 2796.50 3397.95 7994.58 4194.38 17496.49 13294.56 5999.39 5093.57 4499.05 10398.93 65
X-MVStestdata90.70 20988.45 25197.44 1798.56 3893.99 2796.50 3397.95 7994.58 4194.38 17426.89 37494.56 5999.39 5093.57 4499.05 10398.93 65
VPNet93.08 15193.76 13291.03 24598.60 3575.83 31291.51 22295.62 22091.84 10395.74 11997.10 9289.31 17398.32 20885.07 24499.06 9898.93 65
APDe-MVS96.46 3296.64 2295.93 6397.68 10989.38 9996.90 1998.41 1792.52 7997.43 4497.92 4595.11 4299.50 1994.45 1999.30 6598.92 69
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1298.17 4193.11 7296.48 8097.36 7596.92 699.34 6494.31 2399.38 5598.92 69
test111190.39 21890.61 21289.74 28198.04 8471.50 34295.59 7379.72 37189.41 16295.94 11098.14 3370.79 31598.81 14588.52 18999.32 6298.90 71
test_0728_THIRD93.26 7097.40 4797.35 7894.69 5599.34 6493.88 3499.42 4798.89 72
MSP-MVS95.34 7594.63 10897.48 1498.67 2994.05 2396.41 4098.18 3791.26 12395.12 14795.15 20586.60 21599.50 1993.43 5996.81 26398.89 72
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4495.99 5497.00 3498.65 3092.71 4995.69 7198.01 7092.08 9295.74 11996.28 15195.22 3799.42 3193.17 7199.06 9898.88 74
EI-MVSNet92.99 15593.26 15192.19 20892.12 31779.21 26692.32 18794.67 25491.77 10995.24 14495.85 16987.14 20398.49 19491.99 10198.26 19198.86 75
IterMVS-LS93.78 13294.28 12092.27 20596.27 19279.21 26691.87 21096.78 17291.77 10996.57 7997.07 9387.15 20298.74 16091.99 10199.03 10998.86 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH88.36 1296.59 2797.43 594.07 14498.56 3885.33 18196.33 4498.30 2494.66 4098.72 898.30 3097.51 598.00 23594.87 1499.59 2798.86 75
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4293.43 13993.58 13992.97 18095.34 24881.22 23092.67 16896.49 19087.25 21096.20 9896.37 14587.32 19998.85 13792.39 9598.21 20098.85 78
abl_697.31 597.12 1397.86 398.54 4395.32 796.61 2898.35 2095.81 3197.55 3797.44 6896.51 999.40 4594.06 3099.23 7998.85 78
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3191.96 5795.70 6998.01 7093.34 6996.64 7596.57 13094.99 4999.36 6093.48 5199.34 5898.82 80
Skip Steuart: Steuart Systems R&D Blog.
VDDNet94.03 12794.27 12293.31 17298.87 2082.36 21695.51 7991.78 30697.19 1296.32 8798.60 1884.24 23298.75 15787.09 21598.83 13298.81 81
ACMMP_NAP96.21 4596.12 4796.49 5098.90 1891.42 6494.57 11498.03 6690.42 14496.37 8397.35 7895.68 1999.25 7994.44 2099.34 5898.80 82
RPSCF95.58 6694.89 9497.62 897.58 11696.30 495.97 6097.53 11392.42 8093.41 20197.78 5091.21 13897.77 25691.06 12397.06 25398.80 82
Anonymous2024052995.50 6895.83 6294.50 12997.33 13085.93 17395.19 9196.77 17496.64 1997.61 3698.05 3893.23 8498.79 14888.60 18899.04 10898.78 84
v14892.87 16093.29 14791.62 22796.25 19577.72 28791.28 22895.05 23889.69 15695.93 11196.04 16287.34 19898.38 20390.05 15597.99 22098.78 84
ACMP88.15 1395.71 6295.43 7696.54 4798.17 7391.73 6294.24 12598.08 5489.46 16196.61 7796.47 13395.85 1799.12 9590.45 13599.56 3398.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052192.86 16193.57 14090.74 25796.57 16875.50 31494.15 12895.60 22189.38 16395.90 11397.90 4880.39 26697.96 23992.60 8999.68 1898.75 87
KD-MVS_self_test94.10 12594.73 10292.19 20897.66 11179.49 25994.86 10297.12 14789.59 16096.87 6597.65 5690.40 15998.34 20789.08 17799.35 5798.75 87
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9293.82 3496.31 4698.25 2895.51 3596.99 6197.05 9595.63 2199.39 5093.31 6498.88 12298.75 87
Regformer-494.90 9194.67 10695.59 8192.78 30789.02 10392.39 18295.91 21294.50 4396.41 8195.56 18992.10 11399.01 11394.23 2698.14 20698.74 90
lessismore_v093.87 15598.05 8183.77 20180.32 36997.13 5397.91 4677.49 28499.11 9792.62 8898.08 21398.74 90
K. test v393.37 14093.27 15093.66 15998.05 8182.62 21494.35 12286.62 33796.05 2897.51 4198.85 1276.59 29699.65 393.21 6998.20 20298.73 92
MSC_two_6792asdad95.90 6696.54 17189.57 9296.87 16699.41 3894.06 3099.30 6598.72 93
No_MVS95.90 6696.54 17189.57 9296.87 16699.41 3894.06 3099.30 6598.72 93
ACMH+88.43 1196.48 3096.82 1695.47 8698.54 4389.06 10295.65 7298.61 1196.10 2698.16 2397.52 6396.90 798.62 17990.30 14399.60 2598.72 93
OPM-MVS95.61 6595.45 7496.08 5698.49 5591.00 7192.65 16997.33 13090.05 14996.77 7196.85 10895.04 4598.56 18892.77 8299.06 9898.70 96
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250685.42 30084.57 30287.96 31097.81 9766.53 36296.14 5256.35 37989.04 17293.55 19998.10 3542.88 38198.68 17288.09 19799.18 8798.67 97
ECVR-MVScopyleft90.12 22890.16 22090.00 27897.81 9772.68 33695.76 6878.54 37289.04 17295.36 13598.10 3570.51 31698.64 17887.10 21499.18 8798.67 97
GBi-Net93.21 14892.96 15393.97 14795.40 24484.29 19095.99 5796.56 18588.63 18295.10 14898.53 2181.31 25998.98 11686.74 21898.38 17698.65 99
test193.21 14892.96 15393.97 14795.40 24484.29 19095.99 5796.56 18588.63 18295.10 14898.53 2181.31 25998.98 11686.74 21898.38 17698.65 99
FMVSNet194.84 9695.13 8793.97 14797.60 11484.29 19095.99 5796.56 18592.38 8197.03 5898.53 2190.12 16298.98 11688.78 18399.16 9098.65 99
EPP-MVSNet93.91 13093.68 13694.59 12598.08 7885.55 17997.44 1094.03 26494.22 5094.94 15696.19 15682.07 25299.57 1387.28 21298.89 12098.65 99
IU-MVS98.51 4786.66 15596.83 16972.74 33695.83 11593.00 7899.29 6898.64 103
xxxxxxxxxxxxxcwj95.03 8594.93 9295.33 9197.46 12488.05 12592.04 19898.42 1687.63 20496.36 8496.68 12394.37 6499.32 7092.41 9399.05 10398.64 103
SF-MVS95.88 5695.88 5895.87 6998.12 7589.65 9195.58 7598.56 1291.84 10396.36 8496.68 12394.37 6499.32 7092.41 9399.05 10398.64 103
casdiffmvs94.32 11794.80 9892.85 18796.05 21081.44 22792.35 18598.05 6191.53 11895.75 11896.80 11293.35 8198.49 19491.01 12698.32 18598.64 103
ETH3D-3000-0.194.86 9494.55 11095.81 7097.61 11389.72 8994.05 13298.37 1888.09 19395.06 15295.85 16992.58 10399.10 9990.33 14298.99 11098.62 107
TSAR-MVS + MP.94.96 8994.75 10095.57 8398.86 2188.69 10996.37 4196.81 17085.23 23994.75 16497.12 9191.85 11999.40 4593.45 5498.33 18398.62 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-394.28 11894.23 12494.46 13392.78 30786.28 16792.39 18294.70 25193.69 6595.97 10695.56 18991.34 13198.48 19893.45 5498.14 20698.62 107
HQP_MVS94.26 12093.93 12795.23 9897.71 10588.12 12394.56 11597.81 9191.74 11193.31 20495.59 18486.93 20798.95 12389.26 17298.51 16598.60 110
plane_prior597.81 9198.95 12389.26 17298.51 16598.60 110
CP-MVS96.44 3596.08 4997.54 1198.29 6494.62 1496.80 2298.08 5492.67 7795.08 15196.39 14394.77 5499.42 3193.17 7199.44 4598.58 112
tttt051789.81 23988.90 24592.55 19997.00 14379.73 25595.03 9783.65 36089.88 15395.30 13894.79 22653.64 36899.39 5091.99 10198.79 13898.54 113
test117296.79 1596.52 2797.60 998.03 8594.87 1096.07 5698.06 6095.76 3296.89 6496.85 10894.85 5299.42 3193.35 6398.81 13598.53 114
test_0728_SECOND94.88 10998.55 4186.72 15295.20 8998.22 3399.38 5693.44 5799.31 6398.53 114
SR-MVS96.70 1996.42 2997.54 1198.05 8194.69 1196.13 5398.07 5795.17 3796.82 6896.73 12095.09 4499.43 3092.99 7998.71 14498.50 116
test_241102_TWO98.10 5091.95 9497.54 3897.25 8395.37 2899.35 6193.29 6599.25 7698.49 117
HFP-MVS96.39 3996.17 4497.04 3198.51 4793.37 4096.30 4897.98 7392.35 8495.63 12396.47 13395.37 2899.27 7793.78 3899.14 9298.48 118
#test#95.89 5495.51 7297.04 3198.51 4793.37 4095.14 9297.98 7389.34 16595.63 12396.47 13395.37 2899.27 7791.99 10199.14 9298.48 118
3Dnovator+92.74 295.86 5795.77 6596.13 5596.81 15790.79 7696.30 4897.82 9096.13 2594.74 16597.23 8591.33 13299.16 8893.25 6898.30 18898.46 120
XVG-OURS-SEG-HR95.38 7395.00 9196.51 4898.10 7794.07 2092.46 17798.13 4690.69 13693.75 19296.25 15498.03 297.02 29092.08 9895.55 28998.45 121
RRT_MVS91.36 19890.05 22595.29 9589.21 35488.15 12292.51 17694.89 24386.73 21895.54 12795.68 18161.82 35399.30 7294.91 1399.13 9598.43 122
baseline94.26 12094.80 9892.64 19396.08 20880.99 23393.69 14398.04 6590.80 13494.89 15996.32 14893.19 8598.48 19891.68 11398.51 16598.43 122
DPE-MVScopyleft95.89 5495.88 5895.92 6597.93 9389.83 8893.46 14998.30 2492.37 8297.75 3096.95 10095.14 3999.51 1891.74 11099.28 7398.41 124
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpnnormal94.27 11994.87 9592.48 20297.71 10580.88 23594.55 11795.41 23293.70 6296.67 7497.72 5391.40 13098.18 22187.45 20899.18 8798.36 125
VDD-MVS94.37 11394.37 11694.40 13697.49 12186.07 17193.97 13693.28 27694.49 4496.24 9497.78 5087.99 18998.79 14888.92 17999.14 9298.34 126
XVG-ACMP-BASELINE95.68 6395.34 7896.69 4398.40 5793.04 4394.54 11998.05 6190.45 14396.31 8896.76 11592.91 9598.72 16291.19 12299.42 4798.32 127
CNVR-MVS94.58 10694.29 11995.46 8796.94 14689.35 10091.81 21696.80 17189.66 15793.90 18995.44 19692.80 9998.72 16292.74 8498.52 16398.32 127
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5994.31 1796.79 2398.32 2196.69 1796.86 6697.56 6095.48 2598.77 15690.11 15299.44 4598.31 129
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10194.12 12596.50 4998.00 8894.23 1891.48 22398.17 4190.72 13595.30 13896.47 13387.94 19096.98 29191.41 12097.61 23998.30 130
Regformer-294.86 9494.55 11095.77 7492.83 30589.98 8491.87 21096.40 19394.38 4796.19 10095.04 21292.47 10899.04 10893.49 4898.31 18698.28 131
EPNet89.80 24088.25 25694.45 13483.91 37586.18 16993.87 13887.07 33591.16 12780.64 36394.72 22878.83 27398.89 12985.17 23798.89 12098.28 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1693.99 12893.38 14695.80 7296.82 15589.92 8592.72 16598.02 6884.73 25293.65 19695.54 19191.68 12499.22 8288.78 18398.49 16898.26 133
GeoE94.55 10794.68 10594.15 14197.23 13285.11 18394.14 12997.34 12988.71 18195.26 14195.50 19294.65 5799.12 9590.94 12798.40 17198.23 134
Regformer-194.55 10794.33 11895.19 9992.83 30588.54 11691.87 21095.84 21693.99 5495.95 10895.04 21292.00 11598.79 14893.14 7398.31 18698.23 134
NCCC94.08 12693.54 14295.70 7996.49 17689.90 8792.39 18296.91 16290.64 13892.33 24594.60 23190.58 15598.96 12190.21 14997.70 23498.23 134
XXY-MVS92.58 17093.16 15290.84 25497.75 10179.84 25091.87 21096.22 20385.94 22995.53 12897.68 5492.69 10194.48 34283.21 26097.51 24198.21 137
CDPH-MVS92.67 16791.83 18195.18 10096.94 14688.46 11890.70 24197.07 15077.38 31192.34 24495.08 21092.67 10298.88 13085.74 23398.57 15798.20 138
new-patchmatchnet88.97 25290.79 20883.50 34394.28 27855.83 37785.34 33793.56 27286.18 22595.47 12995.73 17983.10 23996.51 30685.40 23698.06 21498.16 139
HQP4-MVS88.81 30298.61 18098.15 140
ETH3 D test640091.91 18691.25 19793.89 15396.59 16684.41 18992.10 19597.72 9978.52 30591.82 25493.78 26188.70 17799.13 9383.61 25698.39 17498.14 141
HQP-MVS92.09 18391.49 19193.88 15496.36 18284.89 18591.37 22497.31 13187.16 21188.81 30293.40 26984.76 22998.60 18286.55 22497.73 23098.14 141
DVP-MVScopyleft95.82 5896.18 4294.72 11698.51 4786.69 15395.20 8997.00 15391.85 10097.40 4797.35 7895.58 2299.34 6493.44 5799.31 6398.13 143
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ambc92.98 17996.88 15183.01 21195.92 6296.38 19596.41 8197.48 6688.26 18297.80 25289.96 15798.93 11998.12 144
testtj94.81 9894.42 11496.01 5797.23 13290.51 8094.77 10597.85 8791.29 12294.92 15895.66 18291.71 12399.40 4588.07 19898.25 19498.11 145
eth_miper_zixun_eth90.72 20890.61 21291.05 24492.04 31976.84 30086.91 32096.67 17985.21 24094.41 17293.92 25579.53 27098.26 21489.76 16197.02 25598.06 146
FMVSNet292.78 16392.73 16292.95 18295.40 24481.98 21994.18 12795.53 22988.63 18296.05 10597.37 7281.31 25998.81 14587.38 21198.67 15098.06 146
OMC-MVS94.22 12293.69 13595.81 7097.25 13191.27 6592.27 18997.40 12087.10 21494.56 16995.42 19793.74 7198.11 22686.62 22298.85 12698.06 146
DVP-MVS++95.93 5396.34 3494.70 11796.54 17186.66 15598.45 498.22 3393.26 7097.54 3897.36 7593.12 8899.38 5693.88 3498.68 14898.04 149
PC_three_145275.31 32395.87 11495.75 17892.93 9496.34 31587.18 21398.68 14898.04 149
c3_l91.32 20091.42 19291.00 24892.29 31276.79 30187.52 31196.42 19285.76 23394.72 16793.89 25782.73 24498.16 22390.93 12898.55 15898.04 149
EG-PatchMatch MVS94.54 10994.67 10694.14 14297.87 9586.50 15792.00 20196.74 17688.16 19296.93 6397.61 5893.04 9297.90 24191.60 11598.12 20998.03 152
MVS_111021_HR93.63 13593.42 14594.26 13996.65 16186.96 14889.30 28396.23 20188.36 18993.57 19894.60 23193.45 7697.77 25690.23 14898.38 17698.03 152
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7995.27 896.37 4198.12 4795.66 3397.00 5997.03 9694.85 5299.42 3193.49 4898.84 12798.00 154
RE-MVS-def96.66 2098.07 7995.27 896.37 4198.12 4795.66 3397.00 5997.03 9695.40 2793.49 4898.84 12798.00 154
thisisatest053088.69 25987.52 27092.20 20796.33 18779.36 26192.81 16384.01 35986.44 22093.67 19592.68 28753.62 36999.25 7989.65 16498.45 16998.00 154
Vis-MVSNet (Re-imp)90.42 21690.16 22091.20 24197.66 11177.32 29294.33 12387.66 33091.20 12592.99 21995.13 20775.40 30098.28 21077.86 30999.19 8597.99 157
agg_prior287.06 21698.36 18297.98 158
AllTest94.88 9394.51 11396.00 5898.02 8692.17 5295.26 8698.43 1490.48 14195.04 15396.74 11892.54 10597.86 24785.11 24298.98 11197.98 158
TestCases96.00 5898.02 8692.17 5298.43 1490.48 14195.04 15396.74 11892.54 10597.86 24785.11 24298.98 11197.98 158
MVSTER89.32 24588.75 24791.03 24590.10 34476.62 30290.85 23694.67 25482.27 27595.24 14495.79 17461.09 35698.49 19490.49 13498.26 19197.97 161
SED-MVS96.00 5296.41 3294.76 11498.51 4786.97 14695.21 8798.10 5091.95 9497.63 3397.25 8396.48 1199.35 6193.29 6599.29 6897.95 162
OPU-MVS95.15 10196.84 15489.43 9695.21 8795.66 18293.12 8898.06 22886.28 23098.61 15397.95 162
CS-MVS-test95.15 8394.81 9696.19 5296.89 15091.14 6894.55 11798.85 694.31 4892.43 23691.91 30291.79 12099.49 2293.48 5199.06 9897.93 164
test_prior393.29 14292.85 15694.61 12095.95 21887.23 13890.21 25597.36 12689.33 16690.77 26894.81 22290.41 15798.68 17288.21 19198.55 15897.93 164
test_prior94.61 12095.95 21887.23 13897.36 12698.68 17297.93 164
DeepC-MVS91.39 495.43 7195.33 7995.71 7897.67 11090.17 8293.86 13998.02 6887.35 20896.22 9697.99 4294.48 6299.05 10592.73 8599.68 1897.93 164
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS95.72 6195.58 7096.15 5396.86 15391.06 6996.74 2599.07 494.22 5092.42 23794.79 22693.58 7399.48 2493.45 5499.06 9897.91 168
UGNet93.08 15192.50 16894.79 11393.87 28887.99 12795.07 9594.26 26190.64 13887.33 32597.67 5586.89 21098.49 19488.10 19698.71 14497.91 168
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet92.38 17691.99 17793.52 16793.82 29083.46 20391.14 23097.00 15389.81 15486.47 32994.04 24987.90 19199.21 8389.50 16698.27 19097.90 170
HPM-MVS++copyleft95.02 8694.39 11596.91 3897.88 9493.58 3894.09 13196.99 15591.05 12892.40 23995.22 20491.03 14599.25 7992.11 9698.69 14797.90 170
testgi90.38 21991.34 19587.50 31697.49 12171.54 34189.43 27895.16 23788.38 18894.54 17094.68 23092.88 9793.09 35671.60 34897.85 22797.88 172
test_040295.73 6096.22 4094.26 13998.19 7285.77 17693.24 15497.24 13896.88 1697.69 3197.77 5294.12 6899.13 9391.54 11899.29 6897.88 172
miper_lstm_enhance89.90 23789.80 22990.19 27491.37 33077.50 28983.82 35295.00 23984.84 25093.05 21794.96 21676.53 29795.20 33889.96 15798.67 15097.86 174
MCST-MVS92.91 15792.51 16794.10 14397.52 11985.72 17791.36 22797.13 14680.33 28692.91 22294.24 24291.23 13798.72 16289.99 15697.93 22397.86 174
Vis-MVSNetpermissive95.50 6895.48 7395.56 8498.11 7689.40 9895.35 8198.22 3392.36 8394.11 17898.07 3792.02 11499.44 2693.38 6297.67 23697.85 176
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test9_res88.16 19598.40 17197.83 177
VNet92.67 16792.96 15391.79 22096.27 19280.15 24091.95 20294.98 24092.19 9094.52 17196.07 16187.43 19797.39 27884.83 24698.38 17697.83 177
diffmvs91.74 18891.93 17991.15 24393.06 30078.17 28088.77 29597.51 11686.28 22392.42 23793.96 25488.04 18797.46 27290.69 13296.67 26897.82 179
FMVSNet390.78 20790.32 21992.16 21293.03 30279.92 24992.54 17194.95 24186.17 22695.10 14896.01 16469.97 31898.75 15786.74 21898.38 17697.82 179
CPTT-MVS94.74 10094.12 12596.60 4598.15 7493.01 4495.84 6597.66 10189.21 17193.28 20795.46 19488.89 17698.98 11689.80 15998.82 13397.80 181
cl2289.02 24988.50 25090.59 26189.76 34676.45 30486.62 33094.03 26482.98 26892.65 22892.49 28972.05 31197.53 26788.93 17897.02 25597.78 182
Anonymous20240521192.58 17092.50 16892.83 18896.55 17083.22 20692.43 17991.64 30794.10 5395.59 12596.64 12681.88 25697.50 26985.12 24198.52 16397.77 183
cl____90.65 21190.56 21490.91 25291.85 32176.98 29886.75 32595.36 23585.53 23694.06 18294.89 21977.36 28897.98 23890.27 14598.98 11197.76 184
DIV-MVS_self_test90.65 21190.56 21490.91 25291.85 32176.99 29786.75 32595.36 23585.52 23894.06 18294.89 21977.37 28797.99 23790.28 14498.97 11597.76 184
test1294.43 13595.95 21886.75 15196.24 20089.76 29189.79 17098.79 14897.95 22297.75 186
train_agg92.71 16691.83 18195.35 8996.45 17889.46 9490.60 24396.92 16079.37 29590.49 27394.39 23891.20 13998.88 13088.66 18798.43 17097.72 187
IterMVS-SCA-FT91.65 19091.55 18791.94 21793.89 28779.22 26587.56 30893.51 27391.53 11895.37 13496.62 12778.65 27598.90 12791.89 10694.95 30397.70 188
3Dnovator92.54 394.80 9994.90 9394.47 13295.47 24287.06 14396.63 2797.28 13691.82 10694.34 17697.41 6990.60 15498.65 17792.47 9198.11 21097.70 188
PVSNet_BlendedMVS90.35 22189.96 22691.54 23094.81 25978.80 27490.14 25996.93 15879.43 29488.68 30995.06 21186.27 21898.15 22480.27 28798.04 21697.68 190
Effi-MVS+-dtu93.90 13192.60 16697.77 494.74 26496.67 394.00 13495.41 23289.94 15091.93 25392.13 29990.12 16298.97 12087.68 20597.48 24297.67 191
LFMVS91.33 19991.16 20191.82 21996.27 19279.36 26195.01 9885.61 34896.04 2994.82 16197.06 9472.03 31298.46 20084.96 24598.70 14697.65 192
agg_prior192.60 16991.76 18495.10 10396.20 19788.89 10690.37 25096.88 16479.67 29290.21 27894.41 23691.30 13498.78 15288.46 19098.37 18197.64 193
UnsupCasMVSNet_eth90.33 22290.34 21890.28 26894.64 27180.24 23889.69 27395.88 21385.77 23293.94 18895.69 18081.99 25392.98 35784.21 25391.30 34897.62 194
CLD-MVS91.82 18791.41 19393.04 17796.37 18083.65 20286.82 32497.29 13484.65 25392.27 24689.67 33492.20 11197.85 24983.95 25499.47 3997.62 194
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDA-MVSNet-bldmvs91.04 20290.88 20491.55 22994.68 26980.16 23985.49 33692.14 30090.41 14594.93 15795.79 17485.10 22796.93 29485.15 23994.19 32097.57 196
DP-MVS95.62 6495.84 6194.97 10697.16 13788.62 11294.54 11997.64 10296.94 1596.58 7897.32 8193.07 9198.72 16290.45 13598.84 12797.57 196
APD-MVScopyleft95.00 8794.69 10395.93 6397.38 12790.88 7494.59 11197.81 9189.22 17095.46 13196.17 15993.42 7999.34 6489.30 16898.87 12597.56 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet587.82 27286.56 28791.62 22792.31 31179.81 25393.49 14894.81 24883.26 26191.36 25996.93 10352.77 37097.49 27176.07 32498.03 21797.55 199
CL-MVSNet_self_test90.04 23489.90 22890.47 26395.24 25077.81 28586.60 33192.62 29085.64 23593.25 21193.92 25583.84 23496.06 32079.93 29498.03 21797.53 200
DROMVSNet95.44 7095.62 6994.89 10896.93 14887.69 13296.48 3599.14 393.93 5792.77 22594.52 23493.95 7099.49 2293.62 4399.22 8197.51 201
QAPM92.88 15992.77 15893.22 17595.82 22483.31 20496.45 3697.35 12883.91 25793.75 19296.77 11389.25 17498.88 13084.56 25097.02 25597.49 202
Patchmtry90.11 22989.92 22790.66 25990.35 34277.00 29692.96 15992.81 28390.25 14794.74 16596.93 10367.11 32497.52 26885.17 23798.98 11197.46 203
EGC-MVSNET80.97 32975.73 34196.67 4498.85 2294.55 1596.83 2096.60 1822.44 3765.32 37798.25 3192.24 10998.02 23391.85 10799.21 8297.45 204
miper_ehance_all_eth90.48 21490.42 21790.69 25891.62 32676.57 30386.83 32396.18 20583.38 26094.06 18292.66 28882.20 25098.04 22989.79 16097.02 25597.45 204
LS3D96.11 4895.83 6296.95 3794.75 26294.20 1997.34 1197.98 7397.31 1195.32 13796.77 11393.08 9099.20 8591.79 10898.16 20497.44 206
D2MVS89.93 23689.60 23490.92 25094.03 28478.40 27788.69 29794.85 24478.96 30293.08 21595.09 20974.57 30196.94 29288.19 19398.96 11797.41 207
PHI-MVS94.34 11693.80 13095.95 6095.65 23591.67 6394.82 10397.86 8487.86 19893.04 21894.16 24691.58 12698.78 15290.27 14598.96 11797.41 207
ITE_SJBPF95.95 6097.34 12993.36 4296.55 18891.93 9694.82 16195.39 20091.99 11697.08 28885.53 23597.96 22197.41 207
SD-MVS95.19 8295.73 6693.55 16396.62 16588.88 10894.67 10898.05 6191.26 12397.25 5196.40 13995.42 2694.36 34692.72 8699.19 8597.40 210
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 20690.85 20690.63 26095.63 23779.24 26489.81 27192.87 28289.90 15294.39 17396.40 13985.77 22295.27 33773.86 33599.05 10397.39 211
F-COLMAP92.28 17991.06 20295.95 6097.52 11991.90 5893.53 14797.18 14183.98 25688.70 30894.04 24988.41 18198.55 19080.17 29095.99 28097.39 211
DeepPCF-MVS90.46 694.20 12393.56 14196.14 5495.96 21792.96 4589.48 27797.46 11785.14 24296.23 9595.42 19793.19 8598.08 22790.37 13998.76 14197.38 213
mvs_anonymous90.37 22091.30 19687.58 31592.17 31668.00 35589.84 27094.73 25083.82 25993.22 21297.40 7087.54 19597.40 27787.94 20195.05 30297.34 214
alignmvs93.26 14592.85 15694.50 12995.70 23187.45 13493.45 15095.76 21791.58 11695.25 14392.42 29581.96 25498.72 16291.61 11497.87 22697.33 215
DeepC-MVS_fast89.96 793.73 13393.44 14494.60 12496.14 20387.90 12893.36 15297.14 14485.53 23693.90 18995.45 19591.30 13498.59 18489.51 16598.62 15297.31 216
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d91.54 19390.73 21093.99 14595.76 22987.86 13090.83 23793.98 26878.23 30894.02 18596.22 15582.62 24796.83 29786.57 22398.33 18397.29 217
bset_n11_16_dypcd89.99 23589.15 23892.53 20094.75 26281.34 22884.19 34887.56 33185.13 24393.77 19192.46 29072.82 30799.01 11392.46 9299.21 8297.23 218
IterMVS90.18 22690.16 22090.21 27293.15 29875.98 30987.56 30892.97 28186.43 22194.09 17996.40 13978.32 27997.43 27487.87 20294.69 31097.23 218
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs94.59 10594.69 10394.30 13895.60 23987.03 14595.59 7398.24 3191.56 11795.21 14692.04 30194.95 5098.66 17591.45 11997.57 24097.20 220
ppachtmachnet_test88.61 26088.64 24888.50 30291.76 32370.99 34584.59 34492.98 28079.30 29992.38 24093.53 26779.57 26997.45 27386.50 22697.17 25197.07 221
MVS_111021_LR93.66 13493.28 14994.80 11296.25 19590.95 7290.21 25595.43 23187.91 19593.74 19494.40 23792.88 9796.38 31190.39 13798.28 18997.07 221
HyFIR lowres test87.19 28885.51 29892.24 20697.12 14180.51 23785.03 33996.06 20866.11 36091.66 25692.98 27970.12 31799.14 9175.29 32895.23 29997.07 221
h-mvs3392.89 15891.99 17795.58 8296.97 14490.55 7893.94 13794.01 26789.23 16893.95 18696.19 15676.88 29399.14 9191.02 12495.71 28697.04 224
CANet_DTU89.85 23889.17 23791.87 21892.20 31580.02 24790.79 23895.87 21486.02 22882.53 35391.77 30580.01 26798.57 18785.66 23497.70 23497.01 225
MVS_Test92.57 17293.29 14790.40 26693.53 29275.85 31092.52 17296.96 15688.73 17992.35 24296.70 12290.77 14798.37 20692.53 9095.49 29196.99 226
LCM-MVSNet-Re94.20 12394.58 10993.04 17795.91 22183.13 20993.79 14099.19 292.00 9398.84 598.04 3993.64 7299.02 11181.28 27998.54 16196.96 227
CSCG94.69 10294.75 10094.52 12897.55 11887.87 12995.01 9897.57 10992.68 7596.20 9893.44 26891.92 11898.78 15289.11 17699.24 7896.92 228
Fast-Effi-MVS+-dtu92.77 16492.16 17294.58 12794.66 27088.25 12092.05 19796.65 18089.62 15890.08 28191.23 31292.56 10498.60 18286.30 22996.27 27596.90 229
114514_t90.51 21389.80 22992.63 19598.00 8882.24 21793.40 15197.29 13465.84 36189.40 29594.80 22586.99 20598.75 15783.88 25598.61 15396.89 230
Effi-MVS+92.79 16292.74 16092.94 18395.10 25283.30 20594.00 13497.53 11391.36 12189.35 29690.65 32494.01 6998.66 17587.40 21095.30 29796.88 231
CMPMVSbinary68.83 2287.28 28485.67 29792.09 21488.77 35885.42 18090.31 25394.38 25870.02 34988.00 31793.30 27173.78 30594.03 35075.96 32696.54 27096.83 232
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
hse-mvs292.24 18191.20 19895.38 8896.16 20190.65 7792.52 17292.01 30489.23 16893.95 18692.99 27876.88 29398.69 17091.02 12496.03 27896.81 233
miper_enhance_ethall88.42 26287.87 26590.07 27588.67 35975.52 31385.10 33895.59 22575.68 31892.49 23289.45 33778.96 27297.88 24387.86 20397.02 25596.81 233
EIA-MVS92.35 17792.03 17593.30 17395.81 22683.97 19892.80 16498.17 4187.71 20189.79 29087.56 34891.17 14299.18 8787.97 20097.27 24896.77 235
MVP-Stereo90.07 23288.92 24393.54 16596.31 18986.49 15890.93 23595.59 22579.80 28891.48 25795.59 18480.79 26397.39 27878.57 30791.19 34996.76 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 23388.30 25495.32 9496.09 20790.52 7992.42 18092.05 30382.08 27788.45 31192.86 28065.76 33498.69 17088.91 18096.07 27796.75 237
PAPM_NR91.03 20390.81 20791.68 22696.73 15981.10 23293.72 14296.35 19688.19 19188.77 30692.12 30085.09 22897.25 28282.40 26993.90 32196.68 238
UnsupCasMVSNet_bld88.50 26188.03 26389.90 27995.52 24178.88 27187.39 31294.02 26679.32 29893.06 21694.02 25180.72 26494.27 34775.16 32993.08 33396.54 239
TAPA-MVS88.58 1092.49 17391.75 18594.73 11596.50 17589.69 9092.91 16197.68 10078.02 30992.79 22494.10 24790.85 14697.96 23984.76 24898.16 20496.54 239
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs587.87 27087.14 27790.07 27593.26 29676.97 29988.89 29192.18 29773.71 33188.36 31293.89 25776.86 29596.73 30080.32 28696.81 26396.51 241
thres600view787.66 27587.10 27989.36 28896.05 21073.17 33092.72 16585.31 35191.89 9893.29 20690.97 31663.42 34698.39 20173.23 33896.99 26096.51 241
thres40087.20 28786.52 28989.24 29295.77 22772.94 33391.89 20786.00 34390.84 13192.61 22989.80 32963.93 34398.28 21071.27 35096.54 27096.51 241
TSAR-MVS + GP.93.07 15392.41 17095.06 10495.82 22490.87 7590.97 23492.61 29188.04 19494.61 16893.79 26088.08 18597.81 25189.41 16798.39 17496.50 244
YYNet188.17 26688.24 25787.93 31192.21 31473.62 32880.75 36088.77 32082.51 27394.99 15595.11 20882.70 24593.70 35183.33 25893.83 32296.48 245
MDA-MVSNet_test_wron88.16 26788.23 25887.93 31192.22 31373.71 32780.71 36188.84 31982.52 27294.88 16095.14 20682.70 24593.61 35283.28 25993.80 32396.46 246
MVSFormer92.18 18292.23 17192.04 21694.74 26480.06 24497.15 1397.37 12188.98 17488.83 30092.79 28377.02 29099.60 896.41 496.75 26696.46 246
jason89.17 24788.32 25391.70 22595.73 23080.07 24388.10 30293.22 27771.98 33990.09 28092.79 28378.53 27898.56 18887.43 20997.06 25396.46 246
jason: jason.
CHOSEN 1792x268887.19 28885.92 29691.00 24897.13 14079.41 26084.51 34595.60 22164.14 36490.07 28294.81 22278.26 28097.14 28673.34 33795.38 29696.46 246
Anonymous2023120688.77 25788.29 25590.20 27396.31 18978.81 27389.56 27693.49 27474.26 32792.38 24095.58 18782.21 24995.43 33272.07 34498.75 14396.34 250
旧先验196.20 19784.17 19594.82 24695.57 18889.57 17197.89 22596.32 251
DELS-MVS92.05 18492.16 17291.72 22394.44 27480.13 24287.62 30597.25 13787.34 20992.22 24793.18 27589.54 17298.73 16189.67 16398.20 20296.30 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft85.34 1590.40 21788.92 24394.85 11096.53 17490.02 8391.58 22196.48 19180.16 28786.14 33192.18 29785.73 22398.25 21576.87 31994.61 31296.30 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR87.65 27686.77 28490.27 26992.85 30477.38 29188.56 30096.23 20176.82 31784.98 33789.75 33386.08 22097.16 28572.33 34393.35 32796.26 254
our_test_387.55 27887.59 26987.44 31791.76 32370.48 34683.83 35190.55 31579.79 28992.06 25192.17 29878.63 27795.63 32584.77 24794.73 30896.22 255
Fast-Effi-MVS+91.28 20190.86 20592.53 20095.45 24382.53 21589.25 28696.52 18985.00 24789.91 28588.55 34492.94 9398.84 13884.72 24995.44 29396.22 255
EPNet_dtu85.63 29984.37 30389.40 28786.30 36974.33 32391.64 22088.26 32484.84 25072.96 37289.85 32771.27 31497.69 26276.60 32197.62 23896.18 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS92.72 16592.02 17694.84 11195.65 23591.99 5692.92 16096.60 18285.08 24692.44 23593.62 26386.80 21196.35 31386.81 21798.25 19496.18 257
pmmvs488.95 25387.70 26892.70 19194.30 27785.60 17887.22 31492.16 29974.62 32589.75 29294.19 24477.97 28296.41 30982.71 26496.36 27496.09 259
MG-MVS89.54 24289.80 22988.76 29794.88 25572.47 33889.60 27492.44 29485.82 23189.48 29495.98 16582.85 24297.74 26081.87 27395.27 29896.08 260
ab-mvs92.40 17592.62 16591.74 22297.02 14281.65 22395.84 6595.50 23086.95 21692.95 22197.56 6090.70 15297.50 26979.63 29797.43 24496.06 261
baseline283.38 31181.54 32088.90 29491.38 32972.84 33588.78 29481.22 36678.97 30179.82 36587.56 34861.73 35497.80 25274.30 33390.05 35496.05 262
N_pmnet88.90 25487.25 27493.83 15694.40 27693.81 3684.73 34187.09 33479.36 29793.26 20992.43 29479.29 27191.68 36177.50 31597.22 25096.00 263
mvs-test193.07 15391.80 18396.89 3994.74 26495.83 692.17 19395.41 23289.94 15089.85 28790.59 32590.12 16298.88 13087.68 20595.66 28795.97 264
GA-MVS87.70 27386.82 28290.31 26793.27 29577.22 29484.72 34392.79 28585.11 24589.82 28890.07 32666.80 32797.76 25884.56 25094.27 31895.96 265
test_yl90.11 22989.73 23291.26 23794.09 28279.82 25190.44 24792.65 28890.90 12993.19 21393.30 27173.90 30398.03 23082.23 27096.87 26195.93 266
DCV-MVSNet90.11 22989.73 23291.26 23794.09 28279.82 25190.44 24792.65 28890.90 12993.19 21393.30 27173.90 30398.03 23082.23 27096.87 26195.93 266
PM-MVS93.33 14192.67 16495.33 9196.58 16794.06 2192.26 19092.18 29785.92 23096.22 9696.61 12885.64 22695.99 32290.35 14098.23 19795.93 266
ET-MVSNet_ETH3D86.15 29684.27 30591.79 22093.04 30181.28 22987.17 31686.14 34079.57 29383.65 34588.66 34257.10 36198.18 22187.74 20495.40 29495.90 269
TAMVS90.16 22789.05 24093.49 16896.49 17686.37 16390.34 25292.55 29280.84 28492.99 21994.57 23381.94 25598.20 21873.51 33698.21 20095.90 269
baseline187.62 27787.31 27288.54 30194.71 26874.27 32493.10 15688.20 32686.20 22492.18 24893.04 27673.21 30695.52 32779.32 30185.82 36195.83 271
WTY-MVS86.93 29386.50 29188.24 30794.96 25474.64 31787.19 31592.07 30278.29 30788.32 31391.59 30978.06 28194.27 34774.88 33093.15 33195.80 272
PVSNet_Blended_VisFu91.63 19191.20 19892.94 18397.73 10483.95 19992.14 19497.46 11778.85 30492.35 24294.98 21584.16 23399.08 10086.36 22896.77 26595.79 273
lupinMVS88.34 26487.31 27291.45 23194.74 26480.06 24487.23 31392.27 29671.10 34388.83 30091.15 31377.02 29098.53 19186.67 22196.75 26695.76 274
DP-MVS Recon92.31 17891.88 18093.60 16197.18 13686.87 14991.10 23297.37 12184.92 24992.08 25094.08 24888.59 17898.20 21883.50 25798.14 20695.73 275
CDS-MVSNet89.55 24188.22 25993.53 16695.37 24786.49 15889.26 28493.59 27179.76 29091.15 26492.31 29677.12 28998.38 20377.51 31497.92 22495.71 276
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
原ACMM192.87 18696.91 14984.22 19397.01 15276.84 31689.64 29394.46 23588.00 18898.70 16881.53 27798.01 21995.70 277
thisisatest051584.72 30582.99 31389.90 27992.96 30375.33 31584.36 34683.42 36177.37 31288.27 31486.65 35353.94 36798.72 16282.56 26697.40 24595.67 278
ETV-MVS92.99 15592.74 16093.72 15895.86 22386.30 16692.33 18697.84 8891.70 11492.81 22386.17 35892.22 11099.19 8688.03 19997.73 23095.66 279
TinyColmap92.00 18592.76 15989.71 28295.62 23877.02 29590.72 24096.17 20687.70 20295.26 14196.29 15092.54 10596.45 30881.77 27498.77 14095.66 279
PCF-MVS84.52 1789.12 24887.71 26793.34 17096.06 20985.84 17586.58 33297.31 13168.46 35493.61 19793.89 25787.51 19698.52 19267.85 35998.11 21095.66 279
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC89.02 24989.08 23988.84 29695.07 25374.50 32188.97 28996.39 19473.21 33393.27 20896.28 15182.16 25196.39 31077.55 31398.80 13795.62 282
OpenMVScopyleft89.45 892.27 18092.13 17492.68 19294.53 27384.10 19695.70 6997.03 15182.44 27491.14 26596.42 13788.47 18098.38 20385.95 23297.47 24395.55 283
sss87.23 28586.82 28288.46 30493.96 28577.94 28186.84 32292.78 28677.59 31087.61 32291.83 30478.75 27491.92 36077.84 31094.20 31995.52 284
ADS-MVSNet284.01 30982.20 31789.41 28689.04 35576.37 30687.57 30690.98 31172.71 33784.46 34092.45 29168.08 32096.48 30770.58 35483.97 36395.38 285
ADS-MVSNet82.25 31881.55 31984.34 33989.04 35565.30 36487.57 30685.13 35572.71 33784.46 34092.45 29168.08 32092.33 35970.58 35483.97 36395.38 285
MVS_030490.96 20490.15 22393.37 16993.17 29787.06 14393.62 14692.43 29589.60 15982.25 35495.50 19282.56 24897.83 25084.41 25297.83 22895.22 287
tpm84.38 30784.08 30685.30 33390.47 34063.43 37289.34 28185.63 34777.24 31487.62 32195.03 21461.00 35797.30 28179.26 30291.09 35195.16 288
1112_ss88.42 26287.41 27191.45 23196.69 16080.99 23389.72 27296.72 17773.37 33287.00 32790.69 32277.38 28698.20 21881.38 27893.72 32495.15 289
BH-RMVSNet90.47 21590.44 21690.56 26295.21 25178.65 27689.15 28793.94 26988.21 19092.74 22694.22 24386.38 21697.88 24378.67 30695.39 29595.14 290
Test_1112_low_res87.50 28086.58 28690.25 27096.80 15877.75 28687.53 31096.25 19969.73 35086.47 32993.61 26475.67 29997.88 24379.95 29293.20 32995.11 291
MIMVSNet87.13 29086.54 28888.89 29596.05 21076.11 30794.39 12188.51 32281.37 28088.27 31496.75 11772.38 30995.52 32765.71 36495.47 29295.03 292
Gipumacopyleft95.31 7895.80 6493.81 15797.99 9190.91 7396.42 3997.95 7996.69 1791.78 25598.85 1291.77 12195.49 32991.72 11199.08 9795.02 293
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++93.25 14793.88 12891.37 23396.34 18682.81 21393.11 15597.74 9789.37 16494.08 18095.29 20390.40 15996.35 31390.35 14098.25 19494.96 294
MSDG90.82 20590.67 21191.26 23794.16 27983.08 21086.63 32996.19 20490.60 14091.94 25291.89 30389.16 17595.75 32480.96 28594.51 31394.95 295
无先验89.94 26595.75 21870.81 34698.59 18481.17 28294.81 296
thres100view90087.35 28386.89 28188.72 29896.14 20373.09 33293.00 15885.31 35192.13 9193.26 20990.96 31763.42 34698.28 21071.27 35096.54 27094.79 297
tfpn200view987.05 29186.52 28988.67 29995.77 22772.94 33391.89 20786.00 34390.84 13192.61 22989.80 32963.93 34398.28 21071.27 35096.54 27094.79 297
GSMVS94.75 299
sam_mvs166.64 33094.75 299
SCA87.43 28187.21 27588.10 30992.01 32071.98 34089.43 27888.11 32882.26 27688.71 30792.83 28178.65 27597.59 26579.61 29893.30 32894.75 299
MS-PatchMatch88.05 26887.75 26688.95 29393.28 29477.93 28287.88 30492.49 29375.42 32192.57 23193.59 26580.44 26594.24 34981.28 27992.75 33694.69 302
PatchmatchNetpermissive85.22 30184.64 30186.98 32089.51 35169.83 35290.52 24587.34 33378.87 30387.22 32692.74 28566.91 32696.53 30481.77 27486.88 36094.58 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet87.39 28286.71 28589.44 28593.40 29376.11 30794.93 10190.00 31757.17 37095.71 12197.37 7264.77 34097.68 26392.67 8794.37 31594.52 304
PVSNet76.22 2082.89 31582.37 31584.48 33893.96 28564.38 37078.60 36388.61 32171.50 34184.43 34286.36 35774.27 30294.60 34169.87 35693.69 32594.46 305
PVSNet_Blended88.74 25888.16 26290.46 26594.81 25978.80 27486.64 32896.93 15874.67 32488.68 30989.18 34086.27 21898.15 22480.27 28796.00 27994.44 306
CNLPA91.72 18991.20 19893.26 17496.17 20091.02 7091.14 23095.55 22890.16 14890.87 26793.56 26686.31 21794.40 34579.92 29697.12 25294.37 307
cascas87.02 29286.28 29389.25 29191.56 32876.45 30484.33 34796.78 17271.01 34486.89 32885.91 35981.35 25896.94 29283.09 26195.60 28894.35 308
DPM-MVS89.35 24488.40 25292.18 21196.13 20684.20 19486.96 31996.15 20775.40 32287.36 32491.55 31083.30 23798.01 23482.17 27296.62 26994.32 309
MAR-MVS90.32 22388.87 24694.66 11994.82 25891.85 5994.22 12694.75 24980.91 28187.52 32388.07 34786.63 21497.87 24676.67 32096.21 27694.25 310
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet87.89 26987.12 27890.22 27191.01 33378.93 26892.52 17292.81 28373.08 33489.10 29796.93 10367.11 32497.64 26488.80 18292.70 33794.08 311
RPMNet90.31 22490.14 22490.81 25691.01 33378.93 26892.52 17298.12 4791.91 9789.10 29796.89 10668.84 31999.41 3890.17 15092.70 33794.08 311
MDTV_nov1_ep13_2view42.48 38088.45 30167.22 35883.56 34766.80 32772.86 34194.06 313
test-LLR83.58 31083.17 31184.79 33689.68 34866.86 35983.08 35384.52 35683.07 26682.85 35184.78 36262.86 34993.49 35382.85 26294.86 30494.03 314
test-mter81.21 32780.01 33484.79 33689.68 34866.86 35983.08 35384.52 35673.85 33082.85 35184.78 36243.66 37893.49 35382.85 26294.86 30494.03 314
112190.26 22589.23 23593.34 17097.15 13987.40 13591.94 20494.39 25767.88 35691.02 26694.91 21886.91 20998.59 18481.17 28297.71 23394.02 316
新几何193.17 17697.16 13787.29 13794.43 25667.95 35591.29 26094.94 21786.97 20698.23 21681.06 28497.75 22993.98 317
test22296.95 14585.27 18288.83 29393.61 27065.09 36390.74 27094.85 22184.62 23197.36 24693.91 318
PMMVS281.31 32583.44 30974.92 35490.52 33946.49 37969.19 36885.23 35484.30 25587.95 31894.71 22976.95 29284.36 37264.07 36598.09 21293.89 319
Patchmatch-test86.10 29786.01 29486.38 32690.63 33774.22 32589.57 27586.69 33685.73 23489.81 28992.83 28165.24 33891.04 36377.82 31295.78 28593.88 320
Patchmatch-RL test88.81 25688.52 24989.69 28395.33 24979.94 24886.22 33392.71 28778.46 30695.80 11694.18 24566.25 33295.33 33589.22 17498.53 16293.78 321
test0.0.03 182.48 31781.47 32185.48 33089.70 34773.57 32984.73 34181.64 36583.07 26688.13 31686.61 35462.86 34989.10 36966.24 36390.29 35393.77 322
OpenMVS_ROBcopyleft85.12 1689.52 24389.05 24090.92 25094.58 27281.21 23191.10 23293.41 27577.03 31593.41 20193.99 25383.23 23897.80 25279.93 29494.80 30793.74 323
testdata91.03 24596.87 15282.01 21894.28 26071.55 34092.46 23395.42 19785.65 22597.38 28082.64 26597.27 24893.70 324
IB-MVS77.21 1983.11 31281.05 32389.29 28991.15 33175.85 31085.66 33586.00 34379.70 29182.02 35886.61 35448.26 37398.39 20177.84 31092.22 34293.63 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu91.47 19591.52 18891.33 23495.69 23281.56 22489.92 26696.05 20983.22 26291.26 26190.74 31991.55 12798.82 14089.29 16995.91 28193.62 326
xiu_mvs_v1_base91.47 19591.52 18891.33 23495.69 23281.56 22489.92 26696.05 20983.22 26291.26 26190.74 31991.55 12798.82 14089.29 16995.91 28193.62 326
xiu_mvs_v1_base_debi91.47 19591.52 18891.33 23495.69 23281.56 22489.92 26696.05 20983.22 26291.26 26190.74 31991.55 12798.82 14089.29 16995.91 28193.62 326
tpmrst82.85 31682.93 31482.64 34587.65 36058.99 37590.14 25987.90 32975.54 32083.93 34491.63 30866.79 32995.36 33381.21 28181.54 36993.57 329
PatchT87.51 27988.17 26085.55 32990.64 33666.91 35792.02 20086.09 34192.20 8989.05 29997.16 8964.15 34296.37 31289.21 17592.98 33593.37 330
CostFormer83.09 31382.21 31685.73 32889.27 35367.01 35690.35 25186.47 33870.42 34783.52 34893.23 27461.18 35596.85 29677.21 31788.26 35893.34 331
thres20085.85 29885.18 29987.88 31394.44 27472.52 33789.08 28886.21 33988.57 18591.44 25888.40 34564.22 34198.00 23568.35 35895.88 28493.12 332
KD-MVS_2432*160082.17 32080.75 32786.42 32482.04 37770.09 34981.75 35890.80 31282.56 27090.37 27689.30 33842.90 37996.11 31874.47 33192.55 33993.06 333
miper_refine_blended82.17 32080.75 32786.42 32482.04 37770.09 34981.75 35890.80 31282.56 27090.37 27689.30 33842.90 37996.11 31874.47 33192.55 33993.06 333
HY-MVS82.50 1886.81 29485.93 29589.47 28493.63 29177.93 28294.02 13391.58 30875.68 31883.64 34693.64 26277.40 28597.42 27571.70 34792.07 34493.05 335
EPMVS81.17 32880.37 33083.58 34285.58 37165.08 36790.31 25371.34 37577.31 31385.80 33391.30 31159.38 35892.70 35879.99 29182.34 36892.96 336
tpmvs84.22 30883.97 30784.94 33487.09 36665.18 36591.21 22988.35 32382.87 26985.21 33490.96 31765.24 33896.75 29979.60 30085.25 36292.90 337
BH-untuned90.68 21090.90 20390.05 27795.98 21679.57 25890.04 26294.94 24287.91 19594.07 18193.00 27787.76 19297.78 25579.19 30395.17 30092.80 338
DWT-MVSNet_test80.74 33179.18 33685.43 33187.51 36366.87 35889.87 26986.01 34274.20 32880.86 36280.62 36848.84 37296.68 30381.54 27683.14 36792.75 339
AdaColmapbinary91.63 19191.36 19492.47 20395.56 24086.36 16492.24 19296.27 19888.88 17889.90 28692.69 28691.65 12598.32 20877.38 31697.64 23792.72 340
CVMVSNet85.16 30284.72 30086.48 32292.12 31770.19 34792.32 18788.17 32756.15 37190.64 27295.85 16967.97 32296.69 30188.78 18390.52 35292.56 341
tpm281.46 32480.35 33184.80 33589.90 34565.14 36690.44 24785.36 35065.82 36282.05 35792.44 29357.94 36096.69 30170.71 35388.49 35792.56 341
PAPM81.91 32380.11 33387.31 31893.87 28872.32 33984.02 35093.22 27769.47 35176.13 37089.84 32872.15 31097.23 28353.27 37289.02 35592.37 343
TESTMET0.1,179.09 33778.04 33982.25 34687.52 36264.03 37183.08 35380.62 36870.28 34880.16 36483.22 36544.13 37790.56 36479.95 29293.36 32692.15 344
DSMNet-mixed82.21 31981.56 31884.16 34089.57 35070.00 35190.65 24277.66 37454.99 37283.30 34997.57 5977.89 28390.50 36566.86 36295.54 29091.97 345
xiu_mvs_v2_base89.00 25189.19 23688.46 30494.86 25774.63 31886.97 31895.60 22180.88 28287.83 31988.62 34391.04 14498.81 14582.51 26894.38 31491.93 346
PS-MVSNAJ88.86 25588.99 24288.48 30394.88 25574.71 31686.69 32795.60 22180.88 28287.83 31987.37 35190.77 14798.82 14082.52 26794.37 31591.93 346
tpm cat180.61 33379.46 33584.07 34188.78 35765.06 36889.26 28488.23 32562.27 36781.90 35989.66 33562.70 35195.29 33671.72 34680.60 37091.86 348
dp79.28 33678.62 33881.24 34885.97 37056.45 37686.91 32085.26 35372.97 33581.45 36189.17 34156.01 36595.45 33173.19 33976.68 37191.82 349
JIA-IIPM85.08 30383.04 31291.19 24287.56 36186.14 17089.40 28084.44 35888.98 17482.20 35597.95 4356.82 36396.15 31676.55 32283.45 36591.30 350
TR-MVS87.70 27387.17 27689.27 29094.11 28179.26 26388.69 29791.86 30581.94 27890.69 27189.79 33182.82 24397.42 27572.65 34291.98 34591.14 351
131486.46 29586.33 29286.87 32191.65 32574.54 31991.94 20494.10 26374.28 32684.78 33987.33 35283.03 24095.00 33978.72 30591.16 35091.06 352
new_pmnet81.22 32681.01 32581.86 34790.92 33570.15 34884.03 34980.25 37070.83 34585.97 33289.78 33267.93 32384.65 37167.44 36091.90 34690.78 353
PatchMatch-RL89.18 24688.02 26492.64 19395.90 22292.87 4788.67 29991.06 31080.34 28590.03 28391.67 30783.34 23694.42 34476.35 32394.84 30690.64 354
API-MVS91.52 19491.61 18691.26 23794.16 27986.26 16894.66 10994.82 24691.17 12692.13 24991.08 31590.03 16897.06 28979.09 30497.35 24790.45 355
BH-w/o87.21 28687.02 28087.79 31494.77 26177.27 29387.90 30393.21 27981.74 27989.99 28488.39 34683.47 23596.93 29471.29 34992.43 34189.15 356
PMVScopyleft87.21 1494.97 8895.33 7993.91 15298.97 1597.16 295.54 7795.85 21596.47 2193.40 20397.46 6795.31 3395.47 33086.18 23198.78 13989.11 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 32281.02 32485.34 33287.46 36471.04 34394.74 10667.56 37696.44 2279.43 36698.99 645.24 37596.15 31667.18 36192.17 34388.85 358
CHOSEN 280x42080.04 33577.97 34086.23 32790.13 34374.53 32072.87 36689.59 31866.38 35976.29 36985.32 36156.96 36295.36 33369.49 35794.72 30988.79 359
pmmvs380.83 33078.96 33786.45 32387.23 36577.48 29084.87 34082.31 36363.83 36585.03 33689.50 33649.66 37193.10 35573.12 34095.10 30188.78 360
PMMVS83.00 31481.11 32288.66 30083.81 37686.44 16182.24 35785.65 34661.75 36882.07 35685.64 36079.75 26891.59 36275.99 32593.09 33287.94 361
MVS84.98 30484.30 30487.01 31991.03 33277.69 28891.94 20494.16 26259.36 36984.23 34387.50 35085.66 22496.80 29871.79 34593.05 33486.54 362
MVEpermissive59.87 2373.86 34072.65 34377.47 35387.00 36874.35 32261.37 37060.93 37867.27 35769.69 37386.49 35681.24 26272.33 37456.45 37183.45 36585.74 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND83.24 34485.06 37371.03 34494.99 10065.55 37774.09 37175.51 37144.57 37694.46 34359.57 36987.54 35984.24 364
FPMVS84.50 30683.28 31088.16 30896.32 18894.49 1685.76 33485.47 34983.09 26585.20 33594.26 24163.79 34586.58 37063.72 36691.88 34783.40 365
E-PMN80.72 33280.86 32680.29 35085.11 37268.77 35472.96 36581.97 36487.76 20083.25 35083.01 36662.22 35289.17 36877.15 31894.31 31782.93 366
EMVS80.35 33480.28 33280.54 34984.73 37469.07 35372.54 36780.73 36787.80 19981.66 36081.73 36762.89 34889.84 36675.79 32794.65 31182.71 367
PVSNet_070.34 2174.58 33972.96 34279.47 35190.63 33766.24 36373.26 36483.40 36263.67 36678.02 36778.35 37072.53 30889.59 36756.68 37060.05 37482.57 368
test_method50.44 34148.94 34454.93 35639.68 38012.38 38228.59 37190.09 3166.82 37441.10 37678.41 36954.41 36670.69 37550.12 37351.26 37581.72 369
MVS-HIRNet78.83 33880.60 32973.51 35593.07 29947.37 37887.10 31778.00 37368.94 35277.53 36897.26 8271.45 31394.62 34063.28 36788.74 35678.55 370
wuyk23d87.83 27190.79 20878.96 35290.46 34188.63 11192.72 16590.67 31491.65 11598.68 1197.64 5796.06 1677.53 37359.84 36899.41 5270.73 371
DeepMVS_CXcopyleft53.83 35770.38 37964.56 36948.52 38133.01 37365.50 37474.21 37256.19 36446.64 37638.45 37570.07 37250.30 372
tmp_tt37.97 34244.33 34518.88 35811.80 38121.54 38163.51 36945.66 3824.23 37551.34 37550.48 37359.08 35922.11 37744.50 37468.35 37313.00 373
test1239.49 34412.01 3471.91 3592.87 3821.30 38382.38 3561.34 3841.36 3772.84 3786.56 3762.45 3820.97 3782.73 3765.56 3763.47 374
testmvs9.02 34511.42 3481.81 3602.77 3831.13 38479.44 3621.90 3831.18 3782.65 3796.80 3751.95 3830.87 3792.62 3773.45 3773.44 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k23.35 34331.13 3460.00 3610.00 3840.00 3850.00 37295.58 2270.00 3790.00 38091.15 31393.43 780.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.56 34610.09 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37990.77 1470.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.56 34610.08 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38090.69 3220.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 6787.14 14198.18 3794.25 4996.99 6197.36 7595.13 40
eth-test20.00 384
eth-test0.00 384
ZD-MVS97.23 13290.32 8197.54 11184.40 25494.78 16395.79 17492.76 10099.39 5088.72 18698.40 171
test_241102_ONE98.51 4786.97 14698.10 5091.85 10097.63 3397.03 9696.48 1198.95 123
9.1494.81 9697.49 12194.11 13098.37 1887.56 20795.38 13396.03 16394.66 5699.08 10090.70 13198.97 115
save fliter97.46 12488.05 12592.04 19897.08 14987.63 204
test072698.51 4786.69 15395.34 8298.18 3791.85 10097.63 3397.37 7295.58 22
test_part298.21 7189.41 9796.72 72
sam_mvs66.41 331
MTGPAbinary97.62 103
test_post190.21 2555.85 37865.36 33696.00 32179.61 298
test_post6.07 37765.74 33595.84 323
patchmatchnet-post91.71 30666.22 33397.59 265
MTMP94.82 10354.62 380
gm-plane-assit87.08 36759.33 37471.22 34283.58 36497.20 28473.95 334
TEST996.45 17889.46 9490.60 24396.92 16079.09 30090.49 27394.39 23891.31 13398.88 130
test_896.37 18089.14 10190.51 24696.89 16379.37 29590.42 27594.36 24091.20 13998.82 140
agg_prior96.20 19788.89 10696.88 16490.21 27898.78 152
test_prior489.91 8690.74 239
test_prior290.21 25589.33 16690.77 26894.81 22290.41 15788.21 19198.55 158
旧先验290.00 26468.65 35392.71 22796.52 30585.15 239
新几何290.02 263
原ACMM289.34 281
testdata298.03 23080.24 289
segment_acmp92.14 112
testdata188.96 29088.44 187
plane_prior797.71 10588.68 110
plane_prior697.21 13588.23 12186.93 207
plane_prior495.59 184
plane_prior388.43 11990.35 14693.31 204
plane_prior294.56 11591.74 111
plane_prior197.38 127
plane_prior88.12 12393.01 15788.98 17498.06 214
n20.00 385
nn0.00 385
door-mid92.13 301
test1196.65 180
door91.26 309
HQP5-MVS84.89 185
HQP-NCC96.36 18291.37 22487.16 21188.81 302
ACMP_Plane96.36 18291.37 22487.16 21188.81 302
BP-MVS86.55 224
HQP3-MVS97.31 13197.73 230
HQP2-MVS84.76 229
NP-MVS96.82 15587.10 14293.40 269
MDTV_nov1_ep1383.88 30889.42 35261.52 37388.74 29687.41 33273.99 32984.96 33894.01 25265.25 33795.53 32678.02 30893.16 330
ACMMP++_ref98.82 133
ACMMP++99.25 76
Test By Simon90.61 153