LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
XVG-OURS-SEG-HR | | | 95.38 68 | 95.00 84 | 96.51 45 | 98.10 74 | 94.07 15 | 92.46 160 | 98.13 41 | 90.69 126 | 93.75 175 | 96.25 141 | 98.03 2 | 97.02 269 | 92.08 86 | 95.55 265 | 98.45 111 |
|
pmmvs6 | | | 96.80 12 | 97.36 9 | 95.15 91 | 99.12 7 | 87.82 118 | 96.68 22 | 97.86 74 | 96.10 25 | 98.14 22 | 99.28 3 | 97.94 3 | 98.21 198 | 91.38 109 | 99.69 14 | 99.42 18 |
|
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 80 | 99.51 2 | 87.38 122 | 97.70 6 | 97.54 101 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 87 | 90.73 115 | 99.73 13 | 99.59 12 |
|
ACMH | | 88.36 12 | 96.59 25 | 97.43 5 | 94.07 131 | 98.56 36 | 85.33 165 | 96.33 37 | 98.30 20 | 94.66 35 | 98.72 8 | 98.30 29 | 97.51 5 | 98.00 215 | 94.87 14 | 99.59 25 | 98.86 72 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 20 | 99.12 7 | 93.92 24 | 97.16 10 | 98.17 35 | 93.11 62 | 96.48 72 | 97.36 69 | 96.92 6 | 99.34 54 | 94.31 23 | 99.38 53 | 98.92 66 |
|
ACMH+ | | 88.43 11 | 96.48 28 | 96.82 16 | 95.47 78 | 98.54 41 | 89.06 89 | 95.65 62 | 98.61 6 | 96.10 25 | 98.16 21 | 97.52 57 | 96.90 7 | 98.62 161 | 90.30 127 | 99.60 23 | 98.72 88 |
|
HPM-MVS | | | 96.81 11 | 96.62 22 | 97.36 22 | 98.89 18 | 93.53 34 | 97.51 7 | 98.44 9 | 92.35 74 | 95.95 100 | 96.41 125 | 96.71 8 | 99.42 27 | 93.99 31 | 99.36 54 | 99.13 38 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 41 | 95.32 7 | 96.61 24 | 98.35 16 | 95.81 30 | 97.55 34 | 97.44 62 | 96.51 9 | 99.40 36 | 94.06 30 | 99.23 73 | 98.85 75 |
|
mvs_tets | | | 96.83 8 | 96.71 19 | 97.17 25 | 98.83 21 | 92.51 45 | 96.58 26 | 97.61 96 | 87.57 188 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 12 | 96.15 7 | 99.47 37 | 99.40 20 |
|
SED-MVS | | | 96.00 50 | 96.41 29 | 94.76 103 | 98.51 45 | 86.97 131 | 95.21 75 | 98.10 42 | 91.95 84 | 97.63 30 | 97.25 75 | 96.48 11 | 99.35 50 | 93.29 55 | 99.29 62 | 97.95 147 |
|
test_241102_ONE | | | | | | 98.51 45 | 86.97 131 | | 98.10 42 | 91.85 90 | 97.63 30 | 97.03 88 | 96.48 11 | 98.95 109 | | | |
|
LPG-MVS_test | | | 96.38 38 | 96.23 35 | 96.84 38 | 98.36 60 | 92.13 49 | 95.33 71 | 98.25 24 | 91.78 97 | 97.07 50 | 97.22 78 | 96.38 13 | 99.28 65 | 92.07 87 | 99.59 25 | 99.11 40 |
|
LGP-MVS_train | | | | | 96.84 38 | 98.36 60 | 92.13 49 | | 98.25 24 | 91.78 97 | 97.07 50 | 97.22 78 | 96.38 13 | 99.28 65 | 92.07 87 | 99.59 25 | 99.11 40 |
|
ACMM | | 88.83 9 | 96.30 41 | 96.07 46 | 96.97 33 | 98.39 56 | 92.95 41 | 94.74 93 | 98.03 56 | 90.82 123 | 97.15 48 | 96.85 97 | 96.25 15 | 99.00 101 | 93.10 64 | 99.33 57 | 98.95 60 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
wuyk23d | | | 87.83 254 | 90.79 195 | 78.96 329 | 90.46 316 | 88.63 98 | 92.72 149 | 90.67 291 | 91.65 105 | 98.68 11 | 97.64 51 | 96.06 16 | 77.53 348 | 59.84 342 | 99.41 50 | 70.73 345 |
|
ACMP | | 88.15 13 | 95.71 58 | 95.43 70 | 96.54 44 | 98.17 70 | 91.73 57 | 94.24 111 | 98.08 45 | 89.46 149 | 96.61 69 | 96.47 120 | 95.85 17 | 99.12 83 | 90.45 119 | 99.56 31 | 98.77 83 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
TransMVSNet (Re) | | | 95.27 76 | 96.04 48 | 92.97 168 | 98.37 59 | 81.92 203 | 95.07 83 | 96.76 160 | 93.97 48 | 97.77 26 | 98.57 19 | 95.72 18 | 97.90 220 | 88.89 162 | 99.23 73 | 99.08 44 |
|
ZNCC-MVS | | | 96.42 34 | 96.20 37 | 97.07 28 | 98.80 25 | 92.79 43 | 96.08 47 | 98.16 38 | 91.74 101 | 95.34 124 | 96.36 133 | 95.68 19 | 99.44 23 | 94.41 21 | 99.28 67 | 98.97 58 |
|
ACMMP_NAP | | | 96.21 43 | 96.12 43 | 96.49 47 | 98.90 17 | 91.42 59 | 94.57 101 | 98.03 56 | 90.42 134 | 96.37 75 | 97.35 70 | 95.68 19 | 99.25 69 | 94.44 20 | 99.34 55 | 98.80 79 |
|
APD-MVS_3200maxsize | | | 96.82 9 | 96.65 20 | 97.32 23 | 97.95 85 | 93.82 29 | 96.31 39 | 98.25 24 | 95.51 31 | 96.99 56 | 97.05 87 | 95.63 21 | 99.39 41 | 93.31 54 | 98.88 110 | 98.75 84 |
|
MSP-MVS | | | 95.82 55 | 96.18 38 | 94.72 105 | 98.51 45 | 86.69 138 | 95.20 77 | 97.00 139 | 91.85 90 | 97.40 43 | 97.35 70 | 95.58 22 | 99.34 54 | 93.44 49 | 99.31 59 | 98.13 132 |
|
test0726 | | | | | | 98.51 45 | 86.69 138 | 95.34 70 | 98.18 32 | 91.85 90 | 97.63 30 | 97.37 66 | 95.58 22 | | | | |
|
MP-MVS-pluss | | | 96.08 47 | 95.92 53 | 96.57 43 | 99.06 9 | 91.21 61 | 93.25 136 | 98.32 17 | 87.89 179 | 96.86 58 | 97.38 65 | 95.55 24 | 99.39 41 | 95.47 10 | 99.47 37 | 99.11 40 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
COLMAP_ROB | | 91.06 5 | 96.75 14 | 96.62 22 | 97.13 26 | 98.38 57 | 94.31 12 | 96.79 20 | 98.32 17 | 96.69 16 | 96.86 58 | 97.56 54 | 95.48 25 | 98.77 141 | 90.11 135 | 99.44 43 | 98.31 119 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SD-MVS | | | 95.19 77 | 95.73 62 | 93.55 149 | 96.62 148 | 88.88 95 | 94.67 95 | 98.05 51 | 91.26 113 | 97.25 47 | 96.40 126 | 95.42 26 | 94.36 321 | 92.72 76 | 99.19 76 | 97.40 190 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_241102_TWO | | | | | | | | | 98.10 42 | 91.95 84 | 97.54 35 | 97.25 75 | 95.37 27 | 99.35 50 | 93.29 55 | 99.25 70 | 98.49 107 |
|
HFP-MVS | | | 96.39 37 | 96.17 40 | 97.04 29 | 98.51 45 | 93.37 35 | 96.30 41 | 97.98 63 | 92.35 74 | 95.63 112 | 96.47 120 | 95.37 27 | 99.27 67 | 93.78 35 | 99.14 81 | 98.48 108 |
|
#test# | | | 95.89 51 | 95.51 66 | 97.04 29 | 98.51 45 | 93.37 35 | 95.14 80 | 97.98 63 | 89.34 151 | 95.63 112 | 96.47 120 | 95.37 27 | 99.27 67 | 91.99 89 | 99.14 81 | 98.48 108 |
|
jajsoiax | | | 96.59 25 | 96.42 26 | 97.12 27 | 98.76 26 | 92.49 46 | 96.44 33 | 97.42 108 | 86.96 197 | 98.71 10 | 98.72 17 | 95.36 30 | 99.56 16 | 95.92 8 | 99.45 41 | 99.32 25 |
|
TranMVSNet+NR-MVSNet | | | 96.07 48 | 96.26 34 | 95.50 77 | 98.26 65 | 87.69 119 | 93.75 124 | 97.86 74 | 95.96 29 | 97.48 38 | 97.14 82 | 95.33 31 | 99.44 23 | 90.79 114 | 99.76 10 | 99.38 21 |
|
PMVS | | 87.21 14 | 94.97 82 | 95.33 73 | 93.91 138 | 98.97 14 | 97.16 2 | 95.54 66 | 95.85 199 | 96.47 20 | 93.40 185 | 97.46 61 | 95.31 32 | 95.47 305 | 86.18 208 | 98.78 124 | 89.11 332 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
pm-mvs1 | | | 95.43 66 | 95.94 51 | 93.93 137 | 98.38 57 | 85.08 167 | 95.46 68 | 97.12 134 | 91.84 93 | 97.28 45 | 98.46 25 | 95.30 33 | 97.71 240 | 90.17 133 | 99.42 45 | 98.99 52 |
|
PGM-MVS | | | 96.32 39 | 95.94 51 | 97.43 17 | 98.59 35 | 93.84 28 | 95.33 71 | 98.30 20 | 91.40 110 | 95.76 106 | 96.87 96 | 95.26 34 | 99.45 22 | 92.77 72 | 99.21 75 | 99.00 50 |
|
PS-CasMVS | | | 96.69 18 | 97.43 5 | 94.49 119 | 99.13 5 | 84.09 180 | 96.61 24 | 97.97 66 | 97.91 5 | 98.64 13 | 98.13 31 | 95.24 35 | 99.65 3 | 93.39 52 | 99.84 3 | 99.72 2 |
|
GST-MVS | | | 96.24 42 | 95.99 50 | 97.00 32 | 98.65 28 | 92.71 44 | 95.69 61 | 98.01 60 | 92.08 82 | 95.74 108 | 96.28 138 | 95.22 36 | 99.42 27 | 93.17 61 | 99.06 87 | 98.88 70 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 24 | 98.81 23 | 93.86 27 | 99.07 2 | 98.98 3 | 97.01 12 | 98.92 4 | 98.78 14 | 95.22 36 | 98.61 162 | 96.85 2 | 99.77 9 | 99.31 26 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
DPE-MVS | | | 95.89 51 | 95.88 54 | 95.92 60 | 97.93 86 | 89.83 77 | 93.46 132 | 98.30 20 | 92.37 72 | 97.75 27 | 96.95 89 | 95.14 38 | 99.51 18 | 91.74 97 | 99.28 67 | 98.41 114 |
|
nrg030 | | | 96.32 39 | 96.55 24 | 95.62 73 | 97.83 89 | 88.55 102 | 95.77 58 | 98.29 23 | 92.68 65 | 98.03 24 | 97.91 42 | 95.13 39 | 98.95 109 | 93.85 33 | 99.49 36 | 99.36 23 |
|
APDe-MVS | | | 96.46 30 | 96.64 21 | 95.93 58 | 97.68 100 | 89.38 86 | 96.90 17 | 98.41 13 | 92.52 69 | 97.43 40 | 97.92 40 | 95.11 40 | 99.50 19 | 94.45 19 | 99.30 61 | 98.92 66 |
|
ACMMP | | | 96.61 22 | 96.34 31 | 97.43 17 | 98.61 32 | 93.88 25 | 96.95 16 | 98.18 32 | 92.26 77 | 96.33 78 | 96.84 99 | 95.10 41 | 99.40 36 | 93.47 46 | 99.33 57 | 99.02 49 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS | | | 96.70 17 | 96.42 26 | 97.54 9 | 98.05 76 | 94.69 8 | 96.13 45 | 98.07 48 | 95.17 32 | 96.82 60 | 96.73 107 | 95.09 42 | 99.43 26 | 92.99 69 | 98.71 129 | 98.50 106 |
|
OPM-MVS | | | 95.61 61 | 95.45 68 | 96.08 51 | 98.49 53 | 91.00 64 | 92.65 153 | 97.33 118 | 90.05 139 | 96.77 63 | 96.85 97 | 95.04 43 | 98.56 170 | 92.77 72 | 99.06 87 | 98.70 89 |
|
DTE-MVSNet | | | 96.74 15 | 97.43 5 | 94.67 106 | 99.13 5 | 84.68 170 | 96.51 28 | 97.94 72 | 98.14 3 | 98.67 12 | 98.32 28 | 95.04 43 | 99.69 2 | 93.27 57 | 99.82 7 | 99.62 10 |
|
region2R | | | 96.41 35 | 96.09 44 | 97.38 21 | 98.62 30 | 93.81 31 | 96.32 38 | 97.96 67 | 92.26 77 | 95.28 128 | 96.57 117 | 95.02 45 | 99.41 32 | 93.63 39 | 99.11 85 | 98.94 61 |
|
PEN-MVS | | | 96.69 18 | 97.39 8 | 94.61 108 | 99.16 3 | 84.50 171 | 96.54 27 | 98.05 51 | 98.06 4 | 98.64 13 | 98.25 30 | 95.01 46 | 99.65 3 | 92.95 70 | 99.83 5 | 99.68 4 |
|
SteuartSystems-ACMMP | | | 96.40 36 | 96.30 32 | 96.71 40 | 98.63 29 | 91.96 52 | 95.70 59 | 98.01 60 | 93.34 60 | 96.64 67 | 96.57 117 | 94.99 47 | 99.36 49 | 93.48 45 | 99.34 55 | 98.82 77 |
Skip Steuart: Steuart Systems R&D Blog. |
canonicalmvs | | | 94.59 99 | 94.69 94 | 94.30 126 | 95.60 216 | 87.03 130 | 95.59 63 | 98.24 27 | 91.56 107 | 95.21 133 | 92.04 278 | 94.95 48 | 98.66 158 | 91.45 107 | 97.57 219 | 97.20 199 |
|
ACMMPR | | | 96.46 30 | 96.14 41 | 97.41 19 | 98.60 33 | 93.82 29 | 96.30 41 | 97.96 67 | 92.35 74 | 95.57 115 | 96.61 115 | 94.93 49 | 99.41 32 | 93.78 35 | 99.15 80 | 99.00 50 |
|
CP-MVS | | | 96.44 33 | 96.08 45 | 97.54 9 | 98.29 62 | 94.62 10 | 96.80 19 | 98.08 45 | 92.67 67 | 95.08 138 | 96.39 130 | 94.77 50 | 99.42 27 | 93.17 61 | 99.44 43 | 98.58 103 |
|
test_0728_THIRD | | | | | | | | | | 93.26 61 | 97.40 43 | 97.35 70 | 94.69 51 | 99.34 54 | 93.88 32 | 99.42 45 | 98.89 68 |
|
9.14 | | | | 94.81 89 | | 97.49 110 | | 94.11 114 | 98.37 14 | 87.56 189 | 95.38 122 | 96.03 149 | 94.66 52 | 99.08 87 | 90.70 116 | 98.97 103 | |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 11 | 95.95 5 | 98.61 3 | 98.81 4 | 97.41 9 | 97.28 45 | 98.46 25 | 94.62 53 | 98.84 124 | 94.64 17 | 99.53 33 | 98.99 52 |
|
XVS | | | 96.49 27 | 96.18 38 | 97.44 15 | 98.56 36 | 93.99 22 | 96.50 29 | 97.95 69 | 94.58 36 | 94.38 160 | 96.49 119 | 94.56 54 | 99.39 41 | 93.57 40 | 99.05 90 | 98.93 62 |
|
X-MVStestdata | | | 90.70 197 | 88.45 234 | 97.44 15 | 98.56 36 | 93.99 22 | 96.50 29 | 97.95 69 | 94.58 36 | 94.38 160 | 26.89 348 | 94.56 54 | 99.39 41 | 93.57 40 | 99.05 90 | 98.93 62 |
|
mPP-MVS | | | 96.46 30 | 96.05 47 | 97.69 5 | 98.62 30 | 94.65 9 | 96.45 31 | 97.74 87 | 92.59 68 | 95.47 118 | 96.68 110 | 94.50 56 | 99.42 27 | 93.10 64 | 99.26 69 | 98.99 52 |
|
DeepC-MVS | | 91.39 4 | 95.43 66 | 95.33 73 | 95.71 71 | 97.67 101 | 90.17 71 | 93.86 122 | 98.02 58 | 87.35 190 | 96.22 88 | 97.99 37 | 94.48 57 | 99.05 92 | 92.73 75 | 99.68 17 | 97.93 149 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SMA-MVS | | | 95.77 56 | 95.54 65 | 96.47 48 | 98.27 64 | 91.19 62 | 95.09 81 | 97.79 85 | 86.48 201 | 97.42 42 | 97.51 59 | 94.47 58 | 99.29 63 | 93.55 42 | 99.29 62 | 98.93 62 |
|
xxxxxxxxxxxxxcwj | | | 95.03 79 | 94.93 85 | 95.33 82 | 97.46 113 | 88.05 112 | 92.04 180 | 98.42 12 | 87.63 186 | 96.36 76 | 96.68 110 | 94.37 59 | 99.32 60 | 92.41 81 | 99.05 90 | 98.64 94 |
|
SF-MVS | | | 95.88 53 | 95.88 54 | 95.87 62 | 98.12 72 | 89.65 80 | 95.58 64 | 98.56 7 | 91.84 93 | 96.36 76 | 96.68 110 | 94.37 59 | 99.32 60 | 92.41 81 | 99.05 90 | 98.64 94 |
|
MP-MVS | | | 96.14 45 | 95.68 63 | 97.51 11 | 98.81 23 | 94.06 16 | 96.10 46 | 97.78 86 | 92.73 64 | 93.48 182 | 96.72 108 | 94.23 61 | 99.42 27 | 91.99 89 | 99.29 62 | 99.05 47 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
anonymousdsp | | | 96.74 15 | 96.42 26 | 97.68 7 | 98.00 81 | 94.03 21 | 96.97 15 | 97.61 96 | 87.68 185 | 98.45 18 | 98.77 15 | 94.20 62 | 99.50 19 | 96.70 3 | 99.40 51 | 99.53 14 |
|
test_0402 | | | 95.73 57 | 96.22 36 | 94.26 127 | 98.19 69 | 85.77 160 | 93.24 137 | 97.24 126 | 96.88 15 | 97.69 28 | 97.77 47 | 94.12 63 | 99.13 81 | 91.54 106 | 99.29 62 | 97.88 155 |
|
Effi-MVS+ | | | 92.79 151 | 92.74 149 | 92.94 171 | 95.10 228 | 83.30 189 | 94.00 118 | 97.53 102 | 91.36 111 | 89.35 272 | 90.65 300 | 94.01 64 | 98.66 158 | 87.40 189 | 95.30 273 | 96.88 209 |
|
OMC-MVS | | | 94.22 114 | 93.69 125 | 95.81 63 | 97.25 120 | 91.27 60 | 92.27 171 | 97.40 109 | 87.10 196 | 94.56 155 | 95.42 180 | 93.74 65 | 98.11 207 | 86.62 199 | 98.85 114 | 98.06 135 |
|
LCM-MVSNet-Re | | | 94.20 115 | 94.58 99 | 93.04 164 | 95.91 197 | 83.13 193 | 93.79 123 | 99.19 2 | 92.00 83 | 98.84 5 | 98.04 34 | 93.64 66 | 99.02 98 | 81.28 256 | 98.54 142 | 96.96 205 |
|
zzz-MVS | | | 96.47 29 | 96.14 41 | 97.47 13 | 98.95 15 | 94.05 18 | 93.69 126 | 97.62 93 | 94.46 40 | 96.29 82 | 96.94 90 | 93.56 67 | 99.37 47 | 94.29 24 | 99.42 45 | 98.99 52 |
|
MTAPA | | | 96.65 20 | 96.38 30 | 97.47 13 | 98.95 15 | 94.05 18 | 95.88 55 | 97.62 93 | 94.46 40 | 96.29 82 | 96.94 90 | 93.56 67 | 99.37 47 | 94.29 24 | 99.42 45 | 98.99 52 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 67 | 93.87 26 | 98.42 4 | 98.19 31 | 96.95 13 | 95.46 120 | 99.23 4 | 93.45 69 | 99.57 13 | 95.34 12 | 99.89 2 | 99.63 9 |
|
MVS_111021_HR | | | 93.63 126 | 93.42 134 | 94.26 127 | 96.65 145 | 86.96 133 | 89.30 265 | 96.23 185 | 88.36 171 | 93.57 181 | 94.60 213 | 93.45 69 | 97.77 235 | 90.23 131 | 98.38 155 | 98.03 139 |
|
cdsmvs_eth3d_5k | | | 23.35 321 | 31.13 323 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 95.58 210 | 0.00 352 | 0.00 353 | 91.15 289 | 93.43 71 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
APD-MVS | | | 95.00 81 | 94.69 94 | 95.93 58 | 97.38 116 | 90.88 67 | 94.59 98 | 97.81 81 | 89.22 154 | 95.46 120 | 96.17 145 | 93.42 72 | 99.34 54 | 89.30 151 | 98.87 113 | 97.56 181 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ANet_high | | | 94.83 91 | 96.28 33 | 90.47 245 | 96.65 145 | 73.16 309 | 94.33 109 | 98.74 5 | 96.39 22 | 98.09 23 | 98.93 8 | 93.37 73 | 98.70 154 | 90.38 122 | 99.68 17 | 99.53 14 |
|
casdiffmvs | | | 94.32 109 | 94.80 90 | 92.85 175 | 96.05 186 | 81.44 210 | 92.35 167 | 98.05 51 | 91.53 108 | 95.75 107 | 96.80 100 | 93.35 74 | 98.49 176 | 91.01 112 | 98.32 164 | 98.64 94 |
|
test_djsdf | | | 96.62 21 | 96.49 25 | 97.01 31 | 98.55 39 | 91.77 56 | 97.15 11 | 97.37 110 | 88.98 156 | 98.26 20 | 98.86 10 | 93.35 74 | 99.60 8 | 96.41 4 | 99.45 41 | 99.66 6 |
|
VPA-MVSNet | | | 95.14 78 | 95.67 64 | 93.58 148 | 97.76 91 | 83.15 192 | 94.58 100 | 97.58 98 | 93.39 59 | 97.05 54 | 98.04 34 | 93.25 76 | 98.51 175 | 89.75 145 | 99.59 25 | 99.08 44 |
|
Anonymous20240529 | | | 95.50 64 | 95.83 58 | 94.50 117 | 97.33 119 | 85.93 157 | 95.19 79 | 96.77 159 | 96.64 18 | 97.61 33 | 98.05 33 | 93.23 77 | 98.79 133 | 88.60 168 | 99.04 95 | 98.78 81 |
|
baseline | | | 94.26 112 | 94.80 90 | 92.64 181 | 96.08 184 | 80.99 216 | 93.69 126 | 98.04 55 | 90.80 124 | 94.89 146 | 96.32 135 | 93.19 78 | 98.48 180 | 91.68 101 | 98.51 146 | 98.43 112 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 115 | 93.56 130 | 96.14 49 | 95.96 193 | 92.96 40 | 89.48 259 | 97.46 106 | 85.14 224 | 96.23 87 | 95.42 180 | 93.19 78 | 98.08 208 | 90.37 123 | 98.76 126 | 97.38 193 |
|
Anonymous20231211 | | | 96.60 23 | 97.13 12 | 95.00 95 | 97.46 113 | 86.35 149 | 97.11 14 | 98.24 27 | 97.58 7 | 98.72 8 | 98.97 7 | 93.15 80 | 99.15 78 | 93.18 60 | 99.74 12 | 99.50 16 |
|
OPU-MVS | | | | | 95.15 91 | 96.84 137 | 89.43 83 | 95.21 75 | | | | 95.66 166 | 93.12 81 | 98.06 209 | 86.28 207 | 98.61 136 | 97.95 147 |
|
LS3D | | | 96.11 46 | 95.83 58 | 96.95 35 | 94.75 238 | 94.20 14 | 97.34 9 | 97.98 63 | 97.31 10 | 95.32 125 | 96.77 101 | 93.08 82 | 99.20 74 | 91.79 95 | 98.16 183 | 97.44 186 |
|
DP-MVS | | | 95.62 60 | 95.84 57 | 94.97 96 | 97.16 124 | 88.62 99 | 94.54 105 | 97.64 92 | 96.94 14 | 96.58 70 | 97.32 73 | 93.07 83 | 98.72 147 | 90.45 119 | 98.84 115 | 97.57 179 |
|
EG-PatchMatch MVS | | | 94.54 102 | 94.67 96 | 94.14 129 | 97.87 88 | 86.50 141 | 92.00 183 | 96.74 161 | 88.16 174 | 96.93 57 | 97.61 52 | 93.04 84 | 97.90 220 | 91.60 103 | 98.12 188 | 98.03 139 |
|
Fast-Effi-MVS+ | | | 91.28 189 | 90.86 192 | 92.53 188 | 95.45 220 | 82.53 198 | 89.25 268 | 96.52 173 | 85.00 228 | 89.91 261 | 88.55 318 | 92.94 85 | 98.84 124 | 84.72 226 | 95.44 269 | 96.22 232 |
|
v7n | | | 96.82 9 | 97.31 10 | 95.33 82 | 98.54 41 | 86.81 135 | 96.83 18 | 98.07 48 | 96.59 19 | 98.46 17 | 98.43 27 | 92.91 86 | 99.52 17 | 96.25 6 | 99.76 10 | 99.65 8 |
|
XVG-ACMP-BASELINE | | | 95.68 59 | 95.34 72 | 96.69 41 | 98.40 55 | 93.04 38 | 94.54 105 | 98.05 51 | 90.45 133 | 96.31 80 | 96.76 103 | 92.91 86 | 98.72 147 | 91.19 110 | 99.42 45 | 98.32 117 |
|
testgi | | | 90.38 206 | 91.34 183 | 87.50 295 | 97.49 110 | 71.54 318 | 89.43 260 | 95.16 220 | 88.38 170 | 94.54 156 | 94.68 212 | 92.88 88 | 93.09 331 | 71.60 322 | 97.85 206 | 97.88 155 |
|
MVS_111021_LR | | | 93.66 125 | 93.28 138 | 94.80 101 | 96.25 174 | 90.95 65 | 90.21 237 | 95.43 214 | 87.91 177 | 93.74 177 | 94.40 218 | 92.88 88 | 96.38 290 | 90.39 121 | 98.28 168 | 97.07 200 |
|
CNVR-MVS | | | 94.58 100 | 94.29 109 | 95.46 79 | 96.94 132 | 89.35 87 | 91.81 198 | 96.80 156 | 89.66 146 | 93.90 173 | 95.44 179 | 92.80 90 | 98.72 147 | 92.74 74 | 98.52 144 | 98.32 117 |
|
XXY-MVS | | | 92.58 159 | 93.16 141 | 90.84 239 | 97.75 92 | 79.84 233 | 91.87 192 | 96.22 187 | 85.94 211 | 95.53 117 | 97.68 49 | 92.69 91 | 94.48 317 | 83.21 237 | 97.51 220 | 98.21 126 |
|
CDPH-MVS | | | 92.67 156 | 91.83 169 | 95.18 90 | 96.94 132 | 88.46 105 | 90.70 223 | 97.07 136 | 77.38 287 | 92.34 221 | 95.08 193 | 92.67 92 | 98.88 116 | 85.74 210 | 98.57 138 | 98.20 127 |
|
ETH3D-3000-0.1 | | | 94.86 88 | 94.55 100 | 95.81 63 | 97.61 103 | 89.72 78 | 94.05 116 | 98.37 14 | 88.09 175 | 95.06 139 | 95.85 155 | 92.58 93 | 99.10 86 | 90.33 126 | 98.99 98 | 98.62 98 |
|
Fast-Effi-MVS+-dtu | | | 92.77 153 | 92.16 161 | 94.58 115 | 94.66 245 | 88.25 107 | 92.05 179 | 96.65 165 | 89.62 147 | 90.08 257 | 91.23 288 | 92.56 94 | 98.60 164 | 86.30 206 | 96.27 254 | 96.90 207 |
|
AllTest | | | 94.88 87 | 94.51 102 | 96.00 53 | 98.02 79 | 92.17 47 | 95.26 74 | 98.43 10 | 90.48 131 | 95.04 140 | 96.74 105 | 92.54 95 | 97.86 226 | 85.11 219 | 98.98 99 | 97.98 143 |
|
TestCases | | | | | 96.00 53 | 98.02 79 | 92.17 47 | | 98.43 10 | 90.48 131 | 95.04 140 | 96.74 105 | 92.54 95 | 97.86 226 | 85.11 219 | 98.98 99 | 97.98 143 |
|
TinyColmap | | | 92.00 173 | 92.76 148 | 89.71 262 | 95.62 215 | 77.02 275 | 90.72 222 | 96.17 190 | 87.70 184 | 95.26 129 | 96.29 137 | 92.54 95 | 96.45 287 | 81.77 251 | 98.77 125 | 95.66 256 |
|
Regformer-2 | | | 94.86 88 | 94.55 100 | 95.77 67 | 92.83 280 | 89.98 73 | 91.87 192 | 96.40 177 | 94.38 42 | 96.19 92 | 95.04 195 | 92.47 98 | 99.04 95 | 93.49 44 | 98.31 165 | 98.28 121 |
|
ETV-MVS | | | 92.99 146 | 92.74 149 | 93.72 144 | 95.86 200 | 86.30 150 | 92.33 168 | 97.84 78 | 91.70 104 | 92.81 204 | 86.17 333 | 92.22 99 | 99.19 75 | 88.03 177 | 97.73 209 | 95.66 256 |
|
CLD-MVS | | | 91.82 175 | 91.41 181 | 93.04 164 | 96.37 159 | 83.65 186 | 86.82 305 | 97.29 122 | 84.65 234 | 92.27 223 | 89.67 310 | 92.20 100 | 97.85 228 | 83.95 231 | 99.47 37 | 97.62 177 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
segment_acmp | | | | | | | | | | | | | 92.14 101 | | | | |
|
Regformer-4 | | | 94.90 85 | 94.67 96 | 95.59 74 | 92.78 282 | 89.02 90 | 92.39 164 | 95.91 196 | 94.50 38 | 96.41 73 | 95.56 173 | 92.10 102 | 99.01 100 | 94.23 26 | 98.14 185 | 98.74 85 |
|
Vis-MVSNet | | | 95.50 64 | 95.48 67 | 95.56 76 | 98.11 73 | 89.40 85 | 95.35 69 | 98.22 29 | 92.36 73 | 94.11 164 | 98.07 32 | 92.02 103 | 99.44 23 | 93.38 53 | 97.67 215 | 97.85 159 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 92.54 162 | 92.31 159 | 93.23 161 | 95.89 199 | 84.07 181 | 93.58 129 | 98.48 8 | 88.60 166 | 90.41 253 | 86.23 332 | 92.00 104 | 99.35 50 | 87.54 185 | 98.06 193 | 96.26 230 |
|
Regformer-1 | | | 94.55 101 | 94.33 108 | 95.19 89 | 92.83 280 | 88.54 103 | 91.87 192 | 95.84 200 | 93.99 46 | 95.95 100 | 95.04 195 | 92.00 104 | 98.79 133 | 93.14 63 | 98.31 165 | 98.23 124 |
|
ITE_SJBPF | | | | | 95.95 55 | 97.34 118 | 93.36 37 | | 96.55 172 | 91.93 86 | 94.82 148 | 95.39 183 | 91.99 106 | 97.08 267 | 85.53 212 | 97.96 200 | 97.41 187 |
|
CP-MVSNet | | | 96.19 44 | 96.80 17 | 94.38 125 | 98.99 13 | 83.82 184 | 96.31 39 | 97.53 102 | 97.60 6 | 98.34 19 | 97.52 57 | 91.98 107 | 99.63 6 | 93.08 66 | 99.81 8 | 99.70 3 |
|
CSCG | | | 94.69 96 | 94.75 92 | 94.52 116 | 97.55 107 | 87.87 116 | 95.01 86 | 97.57 99 | 92.68 65 | 96.20 90 | 93.44 248 | 91.92 108 | 98.78 137 | 89.11 159 | 99.24 72 | 96.92 206 |
|
TSAR-MVS + MP. | | | 94.96 83 | 94.75 92 | 95.57 75 | 98.86 20 | 88.69 96 | 96.37 36 | 96.81 155 | 85.23 221 | 94.75 150 | 97.12 83 | 91.85 109 | 99.40 36 | 93.45 47 | 98.33 162 | 98.62 98 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
Gipuma | | | 95.31 73 | 95.80 60 | 93.81 143 | 97.99 84 | 90.91 66 | 96.42 34 | 97.95 69 | 96.69 16 | 91.78 232 | 98.85 12 | 91.77 110 | 95.49 304 | 91.72 98 | 99.08 86 | 95.02 270 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
WR-MVS_H | | | 96.60 23 | 97.05 14 | 95.24 87 | 99.02 11 | 86.44 145 | 96.78 21 | 98.08 45 | 97.42 8 | 98.48 16 | 97.86 44 | 91.76 111 | 99.63 6 | 94.23 26 | 99.84 3 | 99.66 6 |
|
testtj | | | 94.81 92 | 94.42 103 | 96.01 52 | 97.23 121 | 90.51 70 | 94.77 92 | 97.85 77 | 91.29 112 | 94.92 145 | 95.66 166 | 91.71 112 | 99.40 36 | 88.07 176 | 98.25 173 | 98.11 134 |
|
ETH3D cwj APD-0.16 | | | 93.99 120 | 93.38 135 | 95.80 65 | 96.82 138 | 89.92 74 | 92.72 149 | 98.02 58 | 84.73 233 | 93.65 179 | 95.54 175 | 91.68 113 | 99.22 72 | 88.78 164 | 98.49 149 | 98.26 123 |
|
AdaColmap | | | 91.63 179 | 91.36 182 | 92.47 190 | 95.56 217 | 86.36 148 | 92.24 174 | 96.27 182 | 88.88 160 | 89.90 262 | 92.69 264 | 91.65 114 | 98.32 189 | 77.38 292 | 97.64 216 | 92.72 315 |
|
PHI-MVS | | | 94.34 108 | 93.80 120 | 95.95 55 | 95.65 212 | 91.67 58 | 94.82 90 | 97.86 74 | 87.86 180 | 93.04 199 | 94.16 227 | 91.58 115 | 98.78 137 | 90.27 129 | 98.96 105 | 97.41 187 |
|
xiu_mvs_v1_base_debu | | | 91.47 183 | 91.52 176 | 91.33 219 | 95.69 209 | 81.56 207 | 89.92 248 | 96.05 193 | 83.22 241 | 91.26 238 | 90.74 295 | 91.55 116 | 98.82 126 | 89.29 152 | 95.91 258 | 93.62 303 |
|
xiu_mvs_v1_base | | | 91.47 183 | 91.52 176 | 91.33 219 | 95.69 209 | 81.56 207 | 89.92 248 | 96.05 193 | 83.22 241 | 91.26 238 | 90.74 295 | 91.55 116 | 98.82 126 | 89.29 152 | 95.91 258 | 93.62 303 |
|
xiu_mvs_v1_base_debi | | | 91.47 183 | 91.52 176 | 91.33 219 | 95.69 209 | 81.56 207 | 89.92 248 | 96.05 193 | 83.22 241 | 91.26 238 | 90.74 295 | 91.55 116 | 98.82 126 | 89.29 152 | 95.91 258 | 93.62 303 |
|
tfpnnormal | | | 94.27 111 | 94.87 88 | 92.48 189 | 97.71 96 | 80.88 218 | 94.55 104 | 95.41 215 | 93.70 53 | 96.67 66 | 97.72 48 | 91.40 119 | 98.18 202 | 87.45 187 | 99.18 78 | 98.36 115 |
|
Regformer-3 | | | 94.28 110 | 94.23 114 | 94.46 121 | 92.78 282 | 86.28 151 | 92.39 164 | 94.70 234 | 93.69 56 | 95.97 98 | 95.56 173 | 91.34 120 | 98.48 180 | 93.45 47 | 98.14 185 | 98.62 98 |
|
3Dnovator+ | | 92.74 2 | 95.86 54 | 95.77 61 | 96.13 50 | 96.81 140 | 90.79 69 | 96.30 41 | 97.82 80 | 96.13 24 | 94.74 151 | 97.23 77 | 91.33 121 | 99.16 77 | 93.25 58 | 98.30 167 | 98.46 110 |
|
TEST9 | | | | | | 96.45 157 | 89.46 81 | 90.60 225 | 96.92 147 | 79.09 276 | 90.49 250 | 94.39 219 | 91.31 122 | 98.88 116 | | | |
|
agg_prior1 | | | 92.60 158 | 91.76 172 | 95.10 93 | 96.20 176 | 88.89 93 | 90.37 232 | 96.88 151 | 79.67 268 | 90.21 254 | 94.41 217 | 91.30 123 | 98.78 137 | 88.46 169 | 98.37 160 | 97.64 176 |
|
DeepC-MVS_fast | | 89.96 7 | 93.73 124 | 93.44 133 | 94.60 112 | 96.14 181 | 87.90 115 | 93.36 135 | 97.14 131 | 85.53 218 | 93.90 173 | 95.45 178 | 91.30 123 | 98.59 166 | 89.51 148 | 98.62 135 | 97.31 196 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
EI-MVSNet-Vis-set | | | 94.36 106 | 94.28 110 | 94.61 108 | 92.55 284 | 85.98 156 | 92.44 161 | 94.69 235 | 93.70 53 | 96.12 95 | 95.81 159 | 91.24 125 | 98.86 121 | 93.76 38 | 98.22 178 | 98.98 57 |
|
MCST-MVS | | | 92.91 148 | 92.51 155 | 94.10 130 | 97.52 108 | 85.72 161 | 91.36 209 | 97.13 133 | 80.33 262 | 92.91 203 | 94.24 223 | 91.23 126 | 98.72 147 | 89.99 139 | 97.93 202 | 97.86 157 |
|
RPSCF | | | 95.58 62 | 94.89 87 | 97.62 8 | 97.58 105 | 96.30 4 | 95.97 51 | 97.53 102 | 92.42 70 | 93.41 183 | 97.78 45 | 91.21 127 | 97.77 235 | 91.06 111 | 97.06 232 | 98.80 79 |
|
train_agg | | | 92.71 155 | 91.83 169 | 95.35 80 | 96.45 157 | 89.46 81 | 90.60 225 | 96.92 147 | 79.37 271 | 90.49 250 | 94.39 219 | 91.20 128 | 98.88 116 | 88.66 167 | 98.43 151 | 97.72 170 |
|
test_8 | | | | | | 96.37 159 | 89.14 88 | 90.51 228 | 96.89 150 | 79.37 271 | 90.42 252 | 94.36 221 | 91.20 128 | 98.82 126 | | | |
|
EI-MVSNet-UG-set | | | 94.35 107 | 94.27 112 | 94.59 113 | 92.46 285 | 85.87 158 | 92.42 163 | 94.69 235 | 93.67 57 | 96.13 94 | 95.84 158 | 91.20 128 | 98.86 121 | 93.78 35 | 98.23 176 | 99.03 48 |
|
testing_2 | | | 94.03 118 | 94.38 105 | 93.00 166 | 96.79 142 | 81.41 211 | 92.87 146 | 96.96 142 | 85.88 213 | 97.06 53 | 97.92 40 | 91.18 131 | 98.71 153 | 91.72 98 | 99.04 95 | 98.87 71 |
|
EIA-MVS | | | 92.35 166 | 92.03 164 | 93.30 159 | 95.81 203 | 83.97 182 | 92.80 148 | 98.17 35 | 87.71 183 | 89.79 266 | 87.56 322 | 91.17 132 | 99.18 76 | 87.97 178 | 97.27 227 | 96.77 212 |
|
xiu_mvs_v2_base | | | 89.00 234 | 89.19 219 | 88.46 284 | 94.86 233 | 74.63 297 | 86.97 299 | 95.60 205 | 80.88 258 | 87.83 294 | 88.62 317 | 91.04 133 | 98.81 131 | 82.51 245 | 94.38 290 | 91.93 321 |
|
HPM-MVS++ | | | 95.02 80 | 94.39 104 | 96.91 36 | 97.88 87 | 93.58 33 | 94.09 115 | 96.99 141 | 91.05 118 | 92.40 216 | 95.22 187 | 91.03 134 | 99.25 69 | 92.11 84 | 98.69 132 | 97.90 153 |
|
TAPA-MVS | | 88.58 10 | 92.49 163 | 91.75 173 | 94.73 104 | 96.50 154 | 89.69 79 | 92.91 144 | 97.68 90 | 78.02 285 | 92.79 205 | 94.10 228 | 90.85 135 | 97.96 219 | 84.76 225 | 98.16 183 | 96.54 215 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
pcd_1.5k_mvsjas | | | 7.56 324 | 10.09 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 90.77 136 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
PS-MVSNAJss | | | 96.01 49 | 96.04 48 | 95.89 61 | 98.82 22 | 88.51 104 | 95.57 65 | 97.88 73 | 88.72 162 | 98.81 6 | 98.86 10 | 90.77 136 | 99.60 8 | 95.43 11 | 99.53 33 | 99.57 13 |
|
PS-MVSNAJ | | | 88.86 238 | 88.99 225 | 88.48 283 | 94.88 231 | 74.71 295 | 86.69 308 | 95.60 205 | 80.88 258 | 87.83 294 | 87.37 325 | 90.77 136 | 98.82 126 | 82.52 244 | 94.37 291 | 91.93 321 |
|
MVS_Test | | | 92.57 161 | 93.29 136 | 90.40 247 | 93.53 267 | 75.85 290 | 92.52 156 | 96.96 142 | 88.73 161 | 92.35 219 | 96.70 109 | 90.77 136 | 98.37 188 | 92.53 79 | 95.49 267 | 96.99 204 |
|
MIMVSNet1 | | | 95.52 63 | 95.45 68 | 95.72 70 | 99.14 4 | 89.02 90 | 96.23 44 | 96.87 153 | 93.73 52 | 97.87 25 | 98.49 24 | 90.73 140 | 99.05 92 | 86.43 204 | 99.60 23 | 99.10 43 |
|
ab-mvs | | | 92.40 164 | 92.62 153 | 91.74 208 | 97.02 129 | 81.65 206 | 95.84 56 | 95.50 213 | 86.95 198 | 92.95 202 | 97.56 54 | 90.70 141 | 97.50 249 | 79.63 273 | 97.43 223 | 96.06 238 |
|
Test By Simon | | | | | | | | | | | | | 90.61 142 | | | | |
|
3Dnovator | | 92.54 3 | 94.80 93 | 94.90 86 | 94.47 120 | 95.47 219 | 87.06 128 | 96.63 23 | 97.28 124 | 91.82 96 | 94.34 162 | 97.41 63 | 90.60 143 | 98.65 160 | 92.47 80 | 98.11 189 | 97.70 171 |
|
NCCC | | | 94.08 117 | 93.54 131 | 95.70 72 | 96.49 155 | 89.90 76 | 92.39 164 | 96.91 149 | 90.64 128 | 92.33 222 | 94.60 213 | 90.58 144 | 98.96 107 | 90.21 132 | 97.70 213 | 98.23 124 |
|
UniMVSNet_NR-MVSNet | | | 95.35 69 | 95.21 78 | 95.76 68 | 97.69 99 | 88.59 100 | 92.26 172 | 97.84 78 | 94.91 33 | 96.80 61 | 95.78 162 | 90.42 145 | 99.41 32 | 91.60 103 | 99.58 29 | 99.29 27 |
|
test_prior3 | | | 93.29 133 | 92.85 145 | 94.61 108 | 95.95 194 | 87.23 124 | 90.21 237 | 97.36 115 | 89.33 152 | 90.77 245 | 94.81 205 | 90.41 146 | 98.68 156 | 88.21 170 | 98.55 139 | 97.93 149 |
|
test_prior2 | | | | | | | | 90.21 237 | | 89.33 152 | 90.77 245 | 94.81 205 | 90.41 146 | | 88.21 170 | 98.55 139 | |
|
MSLP-MVS++ | | | 93.25 138 | 93.88 118 | 91.37 218 | 96.34 165 | 82.81 196 | 93.11 138 | 97.74 87 | 89.37 150 | 94.08 166 | 95.29 186 | 90.40 148 | 96.35 292 | 90.35 124 | 98.25 173 | 94.96 271 |
|
UniMVSNet (Re) | | | 95.32 71 | 95.15 80 | 95.80 65 | 97.79 90 | 88.91 92 | 92.91 144 | 98.07 48 | 93.46 58 | 96.31 80 | 95.97 152 | 90.14 149 | 99.34 54 | 92.11 84 | 99.64 21 | 99.16 35 |
|
Effi-MVS+-dtu | | | 93.90 122 | 92.60 154 | 97.77 4 | 94.74 239 | 96.67 3 | 94.00 118 | 95.41 215 | 89.94 140 | 91.93 230 | 92.13 276 | 90.12 150 | 98.97 106 | 87.68 183 | 97.48 221 | 97.67 174 |
|
mvs-test1 | | | 93.07 144 | 91.80 171 | 96.89 37 | 94.74 239 | 95.83 6 | 92.17 175 | 95.41 215 | 89.94 140 | 89.85 263 | 90.59 301 | 90.12 150 | 98.88 116 | 87.68 183 | 95.66 263 | 95.97 241 |
|
FMVSNet1 | | | 94.84 90 | 95.13 81 | 93.97 134 | 97.60 104 | 84.29 173 | 95.99 48 | 96.56 169 | 92.38 71 | 97.03 55 | 98.53 21 | 90.12 150 | 98.98 102 | 88.78 164 | 99.16 79 | 98.65 90 |
|
DU-MVS | | | 95.28 74 | 95.12 82 | 95.75 69 | 97.75 92 | 88.59 100 | 92.58 154 | 97.81 81 | 93.99 46 | 96.80 61 | 95.90 153 | 90.10 153 | 99.41 32 | 91.60 103 | 99.58 29 | 99.26 28 |
|
NR-MVSNet | | | 95.28 74 | 95.28 76 | 95.26 86 | 97.75 92 | 87.21 126 | 95.08 82 | 97.37 110 | 93.92 50 | 97.65 29 | 95.90 153 | 90.10 153 | 99.33 59 | 90.11 135 | 99.66 19 | 99.26 28 |
|
Baseline_NR-MVSNet | | | 94.47 104 | 95.09 83 | 92.60 185 | 98.50 52 | 80.82 219 | 92.08 178 | 96.68 163 | 93.82 51 | 96.29 82 | 98.56 20 | 90.10 153 | 97.75 238 | 90.10 137 | 99.66 19 | 99.24 30 |
|
API-MVS | | | 91.52 182 | 91.61 174 | 91.26 222 | 94.16 254 | 86.26 152 | 94.66 96 | 94.82 229 | 91.17 116 | 92.13 226 | 91.08 291 | 90.03 156 | 97.06 268 | 79.09 280 | 97.35 226 | 90.45 330 |
|
test12 | | | | | 94.43 123 | 95.95 194 | 86.75 136 | | 96.24 184 | | 89.76 267 | | 89.79 157 | 98.79 133 | | 97.95 201 | 97.75 169 |
|
旧先验1 | | | | | | 96.20 176 | 84.17 178 | | 94.82 229 | | | 95.57 172 | 89.57 158 | | | 97.89 204 | 96.32 227 |
|
DELS-MVS | | | 92.05 172 | 92.16 161 | 91.72 209 | 94.44 249 | 80.13 225 | 87.62 286 | 97.25 125 | 87.34 191 | 92.22 224 | 93.18 255 | 89.54 159 | 98.73 146 | 89.67 146 | 98.20 181 | 96.30 228 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
VPNet | | | 93.08 142 | 93.76 122 | 91.03 230 | 98.60 33 | 75.83 292 | 91.51 204 | 95.62 204 | 91.84 93 | 95.74 108 | 97.10 84 | 89.31 160 | 98.32 189 | 85.07 221 | 99.06 87 | 98.93 62 |
|
QAPM | | | 92.88 149 | 92.77 147 | 93.22 162 | 95.82 201 | 83.31 188 | 96.45 31 | 97.35 117 | 83.91 237 | 93.75 175 | 96.77 101 | 89.25 161 | 98.88 116 | 84.56 227 | 97.02 234 | 97.49 183 |
|
MSDG | | | 90.82 193 | 90.67 198 | 91.26 222 | 94.16 254 | 83.08 194 | 86.63 310 | 96.19 188 | 90.60 130 | 91.94 229 | 91.89 279 | 89.16 162 | 95.75 299 | 80.96 262 | 94.51 289 | 94.95 272 |
|
CPTT-MVS | | | 94.74 94 | 94.12 115 | 96.60 42 | 98.15 71 | 93.01 39 | 95.84 56 | 97.66 91 | 89.21 155 | 93.28 189 | 95.46 177 | 88.89 163 | 98.98 102 | 89.80 142 | 98.82 119 | 97.80 164 |
|
ETH3 D test6400 | | | 91.91 174 | 91.25 185 | 93.89 139 | 96.59 149 | 84.41 172 | 92.10 177 | 97.72 89 | 78.52 281 | 91.82 231 | 93.78 241 | 88.70 164 | 99.13 81 | 83.61 233 | 98.39 153 | 98.14 130 |
|
DP-MVS Recon | | | 92.31 167 | 91.88 168 | 93.60 147 | 97.18 123 | 86.87 134 | 91.10 214 | 97.37 110 | 84.92 230 | 92.08 227 | 94.08 229 | 88.59 165 | 98.20 199 | 83.50 234 | 98.14 185 | 95.73 252 |
|
FC-MVSNet-test | | | 95.32 71 | 95.88 54 | 93.62 146 | 98.49 53 | 81.77 204 | 95.90 54 | 98.32 17 | 93.93 49 | 97.53 36 | 97.56 54 | 88.48 166 | 99.40 36 | 92.91 71 | 99.83 5 | 99.68 4 |
|
OpenMVS | | 89.45 8 | 92.27 169 | 92.13 163 | 92.68 180 | 94.53 248 | 84.10 179 | 95.70 59 | 97.03 137 | 82.44 251 | 91.14 242 | 96.42 124 | 88.47 167 | 98.38 185 | 85.95 209 | 97.47 222 | 95.55 260 |
|
F-COLMAP | | | 92.28 168 | 91.06 189 | 95.95 55 | 97.52 108 | 91.90 53 | 93.53 130 | 97.18 129 | 83.98 236 | 88.70 284 | 94.04 230 | 88.41 168 | 98.55 172 | 80.17 267 | 95.99 257 | 97.39 191 |
|
ambc | | | | | 92.98 167 | 96.88 135 | 83.01 195 | 95.92 53 | 96.38 179 | | 96.41 73 | 97.48 60 | 88.26 169 | 97.80 231 | 89.96 140 | 98.93 107 | 98.12 133 |
|
v10 | | | 94.68 97 | 95.27 77 | 92.90 173 | 96.57 151 | 80.15 223 | 94.65 97 | 97.57 99 | 90.68 127 | 97.43 40 | 98.00 36 | 88.18 170 | 99.15 78 | 94.84 15 | 99.55 32 | 99.41 19 |
|
v8 | | | 94.65 98 | 95.29 75 | 92.74 178 | 96.65 145 | 79.77 237 | 94.59 98 | 97.17 130 | 91.86 89 | 97.47 39 | 97.93 39 | 88.16 171 | 99.08 87 | 94.32 22 | 99.47 37 | 99.38 21 |
|
TSAR-MVS + GP. | | | 93.07 144 | 92.41 158 | 95.06 94 | 95.82 201 | 90.87 68 | 90.97 216 | 92.61 272 | 88.04 176 | 94.61 154 | 93.79 240 | 88.08 172 | 97.81 230 | 89.41 150 | 98.39 153 | 96.50 220 |
|
OurMVSNet-221017-0 | | | 96.80 12 | 96.75 18 | 96.96 34 | 99.03 10 | 91.85 54 | 97.98 5 | 98.01 60 | 94.15 44 | 98.93 3 | 99.07 5 | 88.07 173 | 99.57 13 | 95.86 9 | 99.69 14 | 99.46 17 |
|
diffmvs | | | 91.74 176 | 91.93 167 | 91.15 228 | 93.06 275 | 78.17 261 | 88.77 276 | 97.51 105 | 86.28 205 | 92.42 215 | 93.96 235 | 88.04 174 | 97.46 252 | 90.69 117 | 96.67 247 | 97.82 162 |
|
原ACMM1 | | | | | 92.87 174 | 96.91 134 | 84.22 176 | | 97.01 138 | 76.84 292 | 89.64 269 | 94.46 216 | 88.00 175 | 98.70 154 | 81.53 254 | 98.01 198 | 95.70 254 |
|
VDD-MVS | | | 94.37 105 | 94.37 106 | 94.40 124 | 97.49 110 | 86.07 155 | 93.97 120 | 93.28 258 | 94.49 39 | 96.24 86 | 97.78 45 | 87.99 176 | 98.79 133 | 88.92 161 | 99.14 81 | 98.34 116 |
|
XVG-OURS | | | 94.72 95 | 94.12 115 | 96.50 46 | 98.00 81 | 94.23 13 | 91.48 205 | 98.17 35 | 90.72 125 | 95.30 126 | 96.47 120 | 87.94 177 | 96.98 270 | 91.41 108 | 97.61 218 | 98.30 120 |
|
CANet | | | 92.38 165 | 91.99 166 | 93.52 153 | 93.82 265 | 83.46 187 | 91.14 212 | 97.00 139 | 89.81 144 | 86.47 304 | 94.04 230 | 87.90 178 | 99.21 73 | 89.50 149 | 98.27 169 | 97.90 153 |
|
BH-untuned | | | 90.68 198 | 90.90 190 | 90.05 259 | 95.98 192 | 79.57 241 | 90.04 244 | 94.94 225 | 87.91 177 | 94.07 167 | 93.00 257 | 87.76 179 | 97.78 234 | 79.19 279 | 95.17 276 | 92.80 313 |
|
FIs | | | 94.90 85 | 95.35 71 | 93.55 149 | 98.28 63 | 81.76 205 | 95.33 71 | 98.14 39 | 93.05 63 | 97.07 50 | 97.18 80 | 87.65 180 | 99.29 63 | 91.72 98 | 99.69 14 | 99.61 11 |
|
v1144 | | | 93.50 127 | 93.81 119 | 92.57 186 | 96.28 170 | 79.61 240 | 91.86 196 | 96.96 142 | 86.95 198 | 95.91 103 | 96.32 135 | 87.65 180 | 98.96 107 | 93.51 43 | 98.88 110 | 99.13 38 |
|
mvs_anonymous | | | 90.37 207 | 91.30 184 | 87.58 294 | 92.17 291 | 68.00 329 | 89.84 252 | 94.73 233 | 83.82 238 | 93.22 193 | 97.40 64 | 87.54 182 | 97.40 257 | 87.94 179 | 95.05 278 | 97.34 194 |
|
PCF-MVS | | 84.52 17 | 89.12 231 | 87.71 249 | 93.34 156 | 96.06 185 | 85.84 159 | 86.58 312 | 97.31 119 | 68.46 329 | 93.61 180 | 93.89 237 | 87.51 183 | 98.52 174 | 67.85 333 | 98.11 189 | 95.66 256 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
VNet | | | 92.67 156 | 92.96 142 | 91.79 206 | 96.27 171 | 80.15 223 | 91.95 184 | 94.98 223 | 92.19 80 | 94.52 157 | 96.07 147 | 87.43 184 | 97.39 258 | 84.83 223 | 98.38 155 | 97.83 160 |
|
v148 | | | 92.87 150 | 93.29 136 | 91.62 212 | 96.25 174 | 77.72 267 | 91.28 210 | 95.05 221 | 89.69 145 | 95.93 102 | 96.04 148 | 87.34 185 | 98.38 185 | 90.05 138 | 97.99 199 | 98.78 81 |
|
V42 | | | 93.43 130 | 93.58 129 | 92.97 168 | 95.34 225 | 81.22 213 | 92.67 152 | 96.49 174 | 87.25 192 | 96.20 90 | 96.37 132 | 87.32 186 | 98.85 123 | 92.39 83 | 98.21 179 | 98.85 75 |
|
v1192 | | | 93.49 128 | 93.78 121 | 92.62 184 | 96.16 180 | 79.62 239 | 91.83 197 | 97.22 128 | 86.07 209 | 96.10 96 | 96.38 131 | 87.22 187 | 99.02 98 | 94.14 29 | 98.88 110 | 99.22 31 |
|
WR-MVS | | | 93.49 128 | 93.72 123 | 92.80 177 | 97.57 106 | 80.03 229 | 90.14 241 | 95.68 203 | 93.70 53 | 96.62 68 | 95.39 183 | 87.21 188 | 99.04 95 | 87.50 186 | 99.64 21 | 99.33 24 |
|
IterMVS-LS | | | 93.78 123 | 94.28 110 | 92.27 192 | 96.27 171 | 79.21 248 | 91.87 192 | 96.78 157 | 91.77 99 | 96.57 71 | 97.07 85 | 87.15 189 | 98.74 145 | 91.99 89 | 99.03 97 | 98.86 72 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 92.99 146 | 93.26 140 | 92.19 195 | 92.12 292 | 79.21 248 | 92.32 169 | 94.67 237 | 91.77 99 | 95.24 131 | 95.85 155 | 87.14 190 | 98.49 176 | 91.99 89 | 98.26 170 | 98.86 72 |
|
v144192 | | | 93.20 141 | 93.54 131 | 92.16 198 | 96.05 186 | 78.26 260 | 91.95 184 | 97.14 131 | 84.98 229 | 95.96 99 | 96.11 146 | 87.08 191 | 99.04 95 | 93.79 34 | 98.84 115 | 99.17 34 |
|
114514_t | | | 90.51 201 | 89.80 212 | 92.63 183 | 98.00 81 | 82.24 200 | 93.40 134 | 97.29 122 | 65.84 336 | 89.40 271 | 94.80 208 | 86.99 192 | 98.75 142 | 83.88 232 | 98.61 136 | 96.89 208 |
|
新几何1 | | | | | 93.17 163 | 97.16 124 | 87.29 123 | | 94.43 239 | 67.95 330 | 91.29 237 | 94.94 200 | 86.97 193 | 98.23 197 | 81.06 261 | 97.75 208 | 93.98 294 |
|
HQP_MVS | | | 94.26 112 | 93.93 117 | 95.23 88 | 97.71 96 | 88.12 110 | 94.56 102 | 97.81 81 | 91.74 101 | 93.31 186 | 95.59 168 | 86.93 194 | 98.95 109 | 89.26 155 | 98.51 146 | 98.60 101 |
|
plane_prior6 | | | | | | 97.21 122 | 88.23 108 | | | | | | 86.93 194 | | | | |
|
1121 | | | 90.26 211 | 89.23 218 | 93.34 156 | 97.15 126 | 87.40 121 | 91.94 186 | 94.39 240 | 67.88 331 | 91.02 243 | 94.91 201 | 86.91 196 | 98.59 166 | 81.17 259 | 97.71 212 | 94.02 293 |
|
UGNet | | | 93.08 142 | 92.50 156 | 94.79 102 | 93.87 263 | 87.99 114 | 95.07 83 | 94.26 244 | 90.64 128 | 87.33 300 | 97.67 50 | 86.89 197 | 98.49 176 | 88.10 175 | 98.71 129 | 97.91 152 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LF4IMVS | | | 92.72 154 | 92.02 165 | 94.84 100 | 95.65 212 | 91.99 51 | 92.92 143 | 96.60 167 | 85.08 227 | 92.44 214 | 93.62 243 | 86.80 198 | 96.35 292 | 86.81 194 | 98.25 173 | 96.18 234 |
|
v1921920 | | | 93.26 136 | 93.61 128 | 92.19 195 | 96.04 190 | 78.31 259 | 91.88 191 | 97.24 126 | 85.17 223 | 96.19 92 | 96.19 143 | 86.76 199 | 99.05 92 | 94.18 28 | 98.84 115 | 99.22 31 |
|
v1240 | | | 93.29 133 | 93.71 124 | 92.06 201 | 96.01 191 | 77.89 265 | 91.81 198 | 97.37 110 | 85.12 225 | 96.69 65 | 96.40 126 | 86.67 200 | 99.07 91 | 94.51 18 | 98.76 126 | 99.22 31 |
|
MAR-MVS | | | 90.32 210 | 88.87 229 | 94.66 107 | 94.82 234 | 91.85 54 | 94.22 112 | 94.75 232 | 80.91 257 | 87.52 298 | 88.07 321 | 86.63 201 | 97.87 225 | 76.67 296 | 96.21 255 | 94.25 287 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
DVP-MVS | | | 95.34 70 | 94.63 98 | 97.48 12 | 98.67 27 | 94.05 18 | 96.41 35 | 98.18 32 | 91.26 113 | 95.12 134 | 95.15 188 | 86.60 202 | 99.50 19 | 93.43 51 | 96.81 242 | 98.89 68 |
|
BH-RMVSNet | | | 90.47 203 | 90.44 202 | 90.56 244 | 95.21 227 | 78.65 257 | 89.15 269 | 93.94 251 | 88.21 172 | 92.74 206 | 94.22 224 | 86.38 203 | 97.88 222 | 78.67 282 | 95.39 271 | 95.14 267 |
|
CNLPA | | | 91.72 177 | 91.20 186 | 93.26 160 | 96.17 179 | 91.02 63 | 91.14 212 | 95.55 211 | 90.16 138 | 90.87 244 | 93.56 246 | 86.31 204 | 94.40 320 | 79.92 272 | 97.12 231 | 94.37 284 |
|
PVSNet_BlendedMVS | | | 90.35 208 | 89.96 210 | 91.54 215 | 94.81 235 | 78.80 255 | 90.14 241 | 96.93 145 | 79.43 270 | 88.68 285 | 95.06 194 | 86.27 205 | 98.15 205 | 80.27 264 | 98.04 196 | 97.68 173 |
|
PVSNet_Blended | | | 88.74 241 | 88.16 244 | 90.46 246 | 94.81 235 | 78.80 255 | 86.64 309 | 96.93 145 | 74.67 299 | 88.68 285 | 89.18 314 | 86.27 205 | 98.15 205 | 80.27 264 | 96.00 256 | 94.44 283 |
|
PAPR | | | 87.65 259 | 86.77 266 | 90.27 250 | 92.85 279 | 77.38 271 | 88.56 281 | 96.23 185 | 76.82 293 | 84.98 312 | 89.75 309 | 86.08 207 | 97.16 265 | 72.33 317 | 93.35 303 | 96.26 230 |
|
v2v482 | | | 93.29 133 | 93.63 127 | 92.29 191 | 96.35 164 | 78.82 253 | 91.77 200 | 96.28 181 | 88.45 168 | 95.70 111 | 96.26 140 | 86.02 208 | 98.90 113 | 93.02 67 | 98.81 121 | 99.14 37 |
|
test20.03 | | | 90.80 194 | 90.85 193 | 90.63 242 | 95.63 214 | 79.24 246 | 89.81 253 | 92.87 264 | 89.90 142 | 94.39 159 | 96.40 126 | 85.77 209 | 95.27 312 | 73.86 309 | 99.05 90 | 97.39 191 |
|
PLC | | 85.34 15 | 90.40 205 | 88.92 226 | 94.85 99 | 96.53 153 | 90.02 72 | 91.58 203 | 96.48 175 | 80.16 263 | 86.14 306 | 92.18 274 | 85.73 210 | 98.25 196 | 76.87 295 | 94.61 288 | 96.30 228 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS | | | 84.98 286 | 84.30 285 | 87.01 298 | 91.03 307 | 77.69 268 | 91.94 186 | 94.16 245 | 59.36 344 | 84.23 318 | 87.50 324 | 85.66 211 | 96.80 277 | 71.79 319 | 93.05 310 | 86.54 337 |
|
testdata | | | | | 91.03 230 | 96.87 136 | 82.01 201 | | 94.28 243 | 71.55 315 | 92.46 213 | 95.42 180 | 85.65 212 | 97.38 260 | 82.64 242 | 97.27 227 | 93.70 301 |
|
PM-MVS | | | 93.33 132 | 92.67 152 | 95.33 82 | 96.58 150 | 94.06 16 | 92.26 172 | 92.18 278 | 85.92 212 | 96.22 88 | 96.61 115 | 85.64 213 | 95.99 297 | 90.35 124 | 98.23 176 | 95.93 243 |
|
MDA-MVSNet-bldmvs | | | 91.04 190 | 90.88 191 | 91.55 214 | 94.68 244 | 80.16 222 | 85.49 316 | 92.14 281 | 90.41 135 | 94.93 144 | 95.79 160 | 85.10 214 | 96.93 273 | 85.15 216 | 94.19 296 | 97.57 179 |
|
PAPM_NR | | | 91.03 191 | 90.81 194 | 91.68 211 | 96.73 143 | 81.10 215 | 93.72 125 | 96.35 180 | 88.19 173 | 88.77 282 | 92.12 277 | 85.09 215 | 97.25 262 | 82.40 246 | 93.90 297 | 96.68 214 |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 216 | | | | |
|
HQP-MVS | | | 92.09 171 | 91.49 179 | 93.88 140 | 96.36 161 | 84.89 168 | 91.37 206 | 97.31 119 | 87.16 193 | 88.81 278 | 93.40 249 | 84.76 216 | 98.60 164 | 86.55 201 | 97.73 209 | 98.14 130 |
|
test222 | | | | | | 96.95 131 | 85.27 166 | 88.83 274 | 93.61 252 | 65.09 338 | 90.74 247 | 94.85 204 | 84.62 218 | | | 97.36 225 | 93.91 295 |
|
VDDNet | | | 94.03 118 | 94.27 112 | 93.31 158 | 98.87 19 | 82.36 199 | 95.51 67 | 91.78 285 | 97.19 11 | 96.32 79 | 98.60 18 | 84.24 219 | 98.75 142 | 87.09 192 | 98.83 118 | 98.81 78 |
|
PVSNet_Blended_VisFu | | | 91.63 179 | 91.20 186 | 92.94 171 | 97.73 95 | 83.95 183 | 92.14 176 | 97.46 106 | 78.85 280 | 92.35 219 | 94.98 198 | 84.16 220 | 99.08 87 | 86.36 205 | 96.77 244 | 95.79 250 |
|
BH-w/o | | | 87.21 269 | 87.02 262 | 87.79 293 | 94.77 237 | 77.27 273 | 87.90 284 | 93.21 261 | 81.74 255 | 89.99 260 | 88.39 320 | 83.47 221 | 96.93 273 | 71.29 323 | 92.43 315 | 89.15 331 |
|
PatchMatch-RL | | | 89.18 229 | 88.02 246 | 92.64 181 | 95.90 198 | 92.87 42 | 88.67 280 | 91.06 289 | 80.34 261 | 90.03 259 | 91.67 283 | 83.34 222 | 94.42 319 | 76.35 299 | 94.84 282 | 90.64 329 |
|
DPM-MVS | | | 89.35 226 | 88.40 235 | 92.18 197 | 96.13 183 | 84.20 177 | 86.96 300 | 96.15 191 | 75.40 298 | 87.36 299 | 91.55 286 | 83.30 223 | 98.01 214 | 82.17 249 | 96.62 248 | 94.32 286 |
|
OpenMVS_ROB | | 85.12 16 | 89.52 225 | 89.05 222 | 90.92 235 | 94.58 247 | 81.21 214 | 91.10 214 | 93.41 257 | 77.03 291 | 93.41 183 | 93.99 234 | 83.23 224 | 97.80 231 | 79.93 271 | 94.80 283 | 93.74 300 |
|
new-patchmatchnet | | | 88.97 235 | 90.79 195 | 83.50 320 | 94.28 253 | 55.83 350 | 85.34 317 | 93.56 254 | 86.18 207 | 95.47 118 | 95.73 163 | 83.10 225 | 96.51 285 | 85.40 213 | 98.06 193 | 98.16 128 |
|
1314 | | | 86.46 278 | 86.33 274 | 86.87 300 | 91.65 300 | 74.54 298 | 91.94 186 | 94.10 246 | 74.28 301 | 84.78 314 | 87.33 326 | 83.03 226 | 95.00 314 | 78.72 281 | 91.16 324 | 91.06 327 |
|
IS-MVSNet | | | 94.49 103 | 94.35 107 | 94.92 97 | 98.25 66 | 86.46 144 | 97.13 13 | 94.31 242 | 96.24 23 | 96.28 85 | 96.36 133 | 82.88 227 | 99.35 50 | 88.19 172 | 99.52 35 | 98.96 59 |
|
MG-MVS | | | 89.54 224 | 89.80 212 | 88.76 277 | 94.88 231 | 72.47 315 | 89.60 256 | 92.44 275 | 85.82 214 | 89.48 270 | 95.98 151 | 82.85 228 | 97.74 239 | 81.87 250 | 95.27 274 | 96.08 237 |
|
TR-MVS | | | 87.70 256 | 87.17 258 | 89.27 270 | 94.11 256 | 79.26 245 | 88.69 278 | 91.86 284 | 81.94 254 | 90.69 248 | 89.79 307 | 82.82 229 | 97.42 255 | 72.65 316 | 91.98 319 | 91.14 326 |
|
cl_fuxian | | | 91.32 188 | 91.42 180 | 91.00 233 | 92.29 287 | 76.79 281 | 87.52 292 | 96.42 176 | 85.76 216 | 94.72 153 | 93.89 237 | 82.73 230 | 98.16 204 | 90.93 113 | 98.55 139 | 98.04 138 |
|
YYNet1 | | | 88.17 249 | 88.24 239 | 87.93 290 | 92.21 289 | 73.62 306 | 80.75 337 | 88.77 296 | 82.51 250 | 94.99 142 | 95.11 191 | 82.70 231 | 93.70 326 | 83.33 235 | 93.83 298 | 96.48 221 |
|
MDA-MVSNet_test_wron | | | 88.16 250 | 88.23 240 | 87.93 290 | 92.22 288 | 73.71 305 | 80.71 338 | 88.84 295 | 82.52 249 | 94.88 147 | 95.14 189 | 82.70 231 | 93.61 327 | 83.28 236 | 93.80 299 | 96.46 222 |
|
pmmvs-eth3d | | | 91.54 181 | 90.73 197 | 93.99 132 | 95.76 206 | 87.86 117 | 90.83 219 | 93.98 250 | 78.23 284 | 94.02 171 | 96.22 142 | 82.62 233 | 96.83 276 | 86.57 200 | 98.33 162 | 97.29 197 |
|
MVS_0304 | | | 90.96 192 | 90.15 208 | 93.37 155 | 93.17 272 | 87.06 128 | 93.62 128 | 92.43 276 | 89.60 148 | 82.25 329 | 95.50 176 | 82.56 234 | 97.83 229 | 84.41 229 | 97.83 207 | 95.22 264 |
|
Anonymous20231206 | | | 88.77 240 | 88.29 237 | 90.20 255 | 96.31 168 | 78.81 254 | 89.56 258 | 93.49 256 | 74.26 302 | 92.38 217 | 95.58 171 | 82.21 235 | 95.43 307 | 72.07 318 | 98.75 128 | 96.34 226 |
|
miper_ehance_all_eth | | | 90.48 202 | 90.42 203 | 90.69 240 | 91.62 301 | 76.57 283 | 86.83 304 | 96.18 189 | 83.38 239 | 94.06 168 | 92.66 266 | 82.20 236 | 98.04 210 | 89.79 143 | 97.02 234 | 97.45 185 |
|
USDC | | | 89.02 232 | 89.08 221 | 88.84 276 | 95.07 229 | 74.50 300 | 88.97 271 | 96.39 178 | 73.21 308 | 93.27 190 | 96.28 138 | 82.16 237 | 96.39 289 | 77.55 289 | 98.80 122 | 95.62 259 |
|
EPP-MVSNet | | | 93.91 121 | 93.68 126 | 94.59 113 | 98.08 75 | 85.55 163 | 97.44 8 | 94.03 247 | 94.22 43 | 94.94 143 | 96.19 143 | 82.07 238 | 99.57 13 | 87.28 191 | 98.89 108 | 98.65 90 |
|
UnsupCasMVSNet_eth | | | 90.33 209 | 90.34 204 | 90.28 249 | 94.64 246 | 80.24 221 | 89.69 255 | 95.88 197 | 85.77 215 | 93.94 172 | 95.69 164 | 81.99 239 | 92.98 332 | 84.21 230 | 91.30 322 | 97.62 177 |
|
alignmvs | | | 93.26 136 | 92.85 145 | 94.50 117 | 95.70 208 | 87.45 120 | 93.45 133 | 95.76 201 | 91.58 106 | 95.25 130 | 92.42 272 | 81.96 240 | 98.72 147 | 91.61 102 | 97.87 205 | 97.33 195 |
|
TAMVS | | | 90.16 213 | 89.05 222 | 93.49 154 | 96.49 155 | 86.37 147 | 90.34 234 | 92.55 273 | 80.84 260 | 92.99 200 | 94.57 215 | 81.94 241 | 98.20 199 | 73.51 310 | 98.21 179 | 95.90 246 |
|
Anonymous202405211 | | | 92.58 159 | 92.50 156 | 92.83 176 | 96.55 152 | 83.22 190 | 92.43 162 | 91.64 286 | 94.10 45 | 95.59 114 | 96.64 113 | 81.88 242 | 97.50 249 | 85.12 218 | 98.52 144 | 97.77 166 |
|
SixPastTwentyTwo | | | 94.91 84 | 95.21 78 | 93.98 133 | 98.52 44 | 83.19 191 | 95.93 52 | 94.84 228 | 94.86 34 | 98.49 15 | 98.74 16 | 81.45 243 | 99.60 8 | 94.69 16 | 99.39 52 | 99.15 36 |
|
cascas | | | 87.02 275 | 86.28 275 | 89.25 271 | 91.56 303 | 76.45 284 | 84.33 327 | 96.78 157 | 71.01 319 | 86.89 303 | 85.91 334 | 81.35 244 | 96.94 271 | 83.09 238 | 95.60 264 | 94.35 285 |
|
GBi-Net | | | 93.21 139 | 92.96 142 | 93.97 134 | 95.40 221 | 84.29 173 | 95.99 48 | 96.56 169 | 88.63 163 | 95.10 135 | 98.53 21 | 81.31 245 | 98.98 102 | 86.74 195 | 98.38 155 | 98.65 90 |
|
test1 | | | 93.21 139 | 92.96 142 | 93.97 134 | 95.40 221 | 84.29 173 | 95.99 48 | 96.56 169 | 88.63 163 | 95.10 135 | 98.53 21 | 81.31 245 | 98.98 102 | 86.74 195 | 98.38 155 | 98.65 90 |
|
FMVSNet2 | | | 92.78 152 | 92.73 151 | 92.95 170 | 95.40 221 | 81.98 202 | 94.18 113 | 95.53 212 | 88.63 163 | 96.05 97 | 97.37 66 | 81.31 245 | 98.81 131 | 87.38 190 | 98.67 133 | 98.06 135 |
|
MVE | | 59.87 23 | 73.86 319 | 72.65 321 | 77.47 330 | 87.00 343 | 74.35 301 | 61.37 347 | 60.93 352 | 67.27 332 | 69.69 348 | 86.49 330 | 81.24 248 | 72.33 349 | 56.45 345 | 83.45 339 | 85.74 338 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MVP-Stereo | | | 90.07 217 | 88.92 226 | 93.54 151 | 96.31 168 | 86.49 142 | 90.93 217 | 95.59 208 | 79.80 264 | 91.48 234 | 95.59 168 | 80.79 249 | 97.39 258 | 78.57 283 | 91.19 323 | 96.76 213 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
UnsupCasMVSNet_bld | | | 88.50 244 | 88.03 245 | 89.90 260 | 95.52 218 | 78.88 252 | 87.39 293 | 94.02 249 | 79.32 274 | 93.06 197 | 94.02 232 | 80.72 250 | 94.27 322 | 75.16 305 | 93.08 309 | 96.54 215 |
|
MS-PatchMatch | | | 88.05 251 | 87.75 248 | 88.95 273 | 93.28 269 | 77.93 263 | 87.88 285 | 92.49 274 | 75.42 297 | 92.57 211 | 93.59 245 | 80.44 251 | 94.24 324 | 81.28 256 | 92.75 312 | 94.69 279 |
|
CANet_DTU | | | 89.85 220 | 89.17 220 | 91.87 204 | 92.20 290 | 80.02 230 | 90.79 220 | 95.87 198 | 86.02 210 | 82.53 328 | 91.77 281 | 80.01 252 | 98.57 169 | 85.66 211 | 97.70 213 | 97.01 203 |
|
PMMVS | | | 83.00 296 | 81.11 303 | 88.66 280 | 83.81 351 | 86.44 145 | 82.24 336 | 85.65 322 | 61.75 343 | 82.07 331 | 85.64 335 | 79.75 253 | 91.59 337 | 75.99 301 | 93.09 308 | 87.94 336 |
|
ppachtmachnet_test | | | 88.61 243 | 88.64 231 | 88.50 282 | 91.76 298 | 70.99 321 | 84.59 324 | 92.98 262 | 79.30 275 | 92.38 217 | 93.53 247 | 79.57 254 | 97.45 253 | 86.50 203 | 97.17 230 | 97.07 200 |
|
eth_miper_zixun_eth | | | 90.72 196 | 90.61 199 | 91.05 229 | 92.04 294 | 76.84 280 | 86.91 301 | 96.67 164 | 85.21 222 | 94.41 158 | 93.92 236 | 79.53 255 | 98.26 195 | 89.76 144 | 97.02 234 | 98.06 135 |
|
N_pmnet | | | 88.90 237 | 87.25 256 | 93.83 142 | 94.40 251 | 93.81 31 | 84.73 321 | 87.09 310 | 79.36 273 | 93.26 191 | 92.43 271 | 79.29 256 | 91.68 336 | 77.50 291 | 97.22 229 | 96.00 240 |
|
miper_enhance_ethall | | | 88.42 245 | 87.87 247 | 90.07 257 | 88.67 334 | 75.52 293 | 85.10 318 | 95.59 208 | 75.68 294 | 92.49 212 | 89.45 313 | 78.96 257 | 97.88 222 | 87.86 181 | 97.02 234 | 96.81 211 |
|
EPNet | | | 89.80 222 | 88.25 238 | 94.45 122 | 83.91 350 | 86.18 153 | 93.87 121 | 87.07 311 | 91.16 117 | 80.64 338 | 94.72 210 | 78.83 258 | 98.89 115 | 85.17 214 | 98.89 108 | 98.28 121 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
sss | | | 87.23 268 | 86.82 264 | 88.46 284 | 93.96 260 | 77.94 262 | 86.84 303 | 92.78 268 | 77.59 286 | 87.61 297 | 91.83 280 | 78.75 259 | 91.92 335 | 77.84 286 | 94.20 295 | 95.52 261 |
|
IterMVS-SCA-FT | | | 91.65 178 | 91.55 175 | 91.94 203 | 93.89 262 | 79.22 247 | 87.56 289 | 93.51 255 | 91.53 108 | 95.37 123 | 96.62 114 | 78.65 260 | 98.90 113 | 91.89 94 | 94.95 279 | 97.70 171 |
|
SCA | | | 87.43 264 | 87.21 257 | 88.10 289 | 92.01 295 | 71.98 317 | 89.43 260 | 88.11 304 | 82.26 253 | 88.71 283 | 92.83 259 | 78.65 260 | 97.59 245 | 79.61 274 | 93.30 304 | 94.75 276 |
|
our_test_3 | | | 87.55 261 | 87.59 251 | 87.44 296 | 91.76 298 | 70.48 322 | 83.83 330 | 90.55 292 | 79.79 265 | 92.06 228 | 92.17 275 | 78.63 262 | 95.63 300 | 84.77 224 | 94.73 284 | 96.22 232 |
|
jason | | | 89.17 230 | 88.32 236 | 91.70 210 | 95.73 207 | 80.07 226 | 88.10 283 | 93.22 259 | 71.98 314 | 90.09 256 | 92.79 261 | 78.53 263 | 98.56 170 | 87.43 188 | 97.06 232 | 96.46 222 |
jason: jason. |
IterMVS | | | 90.18 212 | 90.16 206 | 90.21 254 | 93.15 273 | 75.98 289 | 87.56 289 | 92.97 263 | 86.43 203 | 94.09 165 | 96.40 126 | 78.32 264 | 97.43 254 | 87.87 180 | 94.69 286 | 97.23 198 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CHOSEN 1792x2688 | | | 87.19 271 | 85.92 278 | 91.00 233 | 97.13 127 | 79.41 242 | 84.51 325 | 95.60 205 | 64.14 339 | 90.07 258 | 94.81 205 | 78.26 265 | 97.14 266 | 73.34 311 | 95.38 272 | 96.46 222 |
|
WTY-MVS | | | 86.93 276 | 86.50 273 | 88.24 287 | 94.96 230 | 74.64 296 | 87.19 296 | 92.07 283 | 78.29 283 | 88.32 288 | 91.59 285 | 78.06 266 | 94.27 322 | 74.88 306 | 93.15 307 | 95.80 249 |
|
pmmvs4 | | | 88.95 236 | 87.70 250 | 92.70 179 | 94.30 252 | 85.60 162 | 87.22 295 | 92.16 280 | 74.62 300 | 89.75 268 | 94.19 225 | 77.97 267 | 96.41 288 | 82.71 241 | 96.36 253 | 96.09 236 |
|
DSMNet-mixed | | | 82.21 301 | 81.56 299 | 84.16 317 | 89.57 325 | 70.00 325 | 90.65 224 | 77.66 348 | 54.99 347 | 83.30 324 | 97.57 53 | 77.89 268 | 90.50 340 | 66.86 336 | 95.54 266 | 91.97 320 |
|
lessismore_v0 | | | | | 93.87 141 | 98.05 76 | 83.77 185 | | 80.32 345 | | 97.13 49 | 97.91 42 | 77.49 269 | 99.11 84 | 92.62 78 | 98.08 192 | 98.74 85 |
|
HY-MVS | | 82.50 18 | 86.81 277 | 85.93 277 | 89.47 264 | 93.63 266 | 77.93 263 | 94.02 117 | 91.58 287 | 75.68 294 | 83.64 321 | 93.64 242 | 77.40 270 | 97.42 255 | 71.70 321 | 92.07 318 | 93.05 310 |
|
1112_ss | | | 88.42 245 | 87.41 253 | 91.45 216 | 96.69 144 | 80.99 216 | 89.72 254 | 96.72 162 | 73.37 307 | 87.00 302 | 90.69 298 | 77.38 271 | 98.20 199 | 81.38 255 | 93.72 300 | 95.15 266 |
|
cl-mvsnet1 | | | 90.65 199 | 90.56 200 | 90.91 237 | 91.85 296 | 76.99 277 | 86.75 306 | 95.36 218 | 85.52 220 | 94.06 168 | 94.89 202 | 77.37 272 | 97.99 217 | 90.28 128 | 98.97 103 | 97.76 167 |
|
cl-mvsnet_ | | | 90.65 199 | 90.56 200 | 90.91 237 | 91.85 296 | 76.98 278 | 86.75 306 | 95.36 218 | 85.53 218 | 94.06 168 | 94.89 202 | 77.36 273 | 97.98 218 | 90.27 129 | 98.98 99 | 97.76 167 |
|
CDS-MVSNet | | | 89.55 223 | 88.22 241 | 93.53 152 | 95.37 224 | 86.49 142 | 89.26 266 | 93.59 253 | 79.76 266 | 91.15 241 | 92.31 273 | 77.12 274 | 98.38 185 | 77.51 290 | 97.92 203 | 95.71 253 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSFormer | | | 92.18 170 | 92.23 160 | 92.04 202 | 94.74 239 | 80.06 227 | 97.15 11 | 97.37 110 | 88.98 156 | 88.83 276 | 92.79 261 | 77.02 275 | 99.60 8 | 96.41 4 | 96.75 245 | 96.46 222 |
|
lupinMVS | | | 88.34 247 | 87.31 254 | 91.45 216 | 94.74 239 | 80.06 227 | 87.23 294 | 92.27 277 | 71.10 318 | 88.83 276 | 91.15 289 | 77.02 275 | 98.53 173 | 86.67 198 | 96.75 245 | 95.76 251 |
|
PMMVS2 | | | 81.31 305 | 83.44 290 | 74.92 331 | 90.52 314 | 46.49 352 | 69.19 345 | 85.23 330 | 84.30 235 | 87.95 293 | 94.71 211 | 76.95 277 | 84.36 347 | 64.07 339 | 98.09 191 | 93.89 296 |
|
pmmvs5 | | | 87.87 253 | 87.14 259 | 90.07 257 | 93.26 271 | 76.97 279 | 88.89 273 | 92.18 278 | 73.71 306 | 88.36 287 | 93.89 237 | 76.86 278 | 96.73 279 | 80.32 263 | 96.81 242 | 96.51 217 |
|
K. test v3 | | | 93.37 131 | 93.27 139 | 93.66 145 | 98.05 76 | 82.62 197 | 94.35 108 | 86.62 313 | 96.05 27 | 97.51 37 | 98.85 12 | 76.59 279 | 99.65 3 | 93.21 59 | 98.20 181 | 98.73 87 |
|
miper_lstm_enhance | | | 89.90 219 | 89.80 212 | 90.19 256 | 91.37 305 | 77.50 269 | 83.82 331 | 95.00 222 | 84.84 231 | 93.05 198 | 94.96 199 | 76.53 280 | 95.20 313 | 89.96 140 | 98.67 133 | 97.86 157 |
|
Test_1112_low_res | | | 87.50 263 | 86.58 268 | 90.25 251 | 96.80 141 | 77.75 266 | 87.53 291 | 96.25 183 | 69.73 325 | 86.47 304 | 93.61 244 | 75.67 281 | 97.88 222 | 79.95 269 | 93.20 305 | 95.11 268 |
|
Vis-MVSNet (Re-imp) | | | 90.42 204 | 90.16 206 | 91.20 226 | 97.66 102 | 77.32 272 | 94.33 109 | 87.66 307 | 91.20 115 | 92.99 200 | 95.13 190 | 75.40 282 | 98.28 191 | 77.86 285 | 99.19 76 | 97.99 142 |
|
D2MVS | | | 89.93 218 | 89.60 217 | 90.92 235 | 94.03 259 | 78.40 258 | 88.69 278 | 94.85 227 | 78.96 278 | 93.08 196 | 95.09 192 | 74.57 283 | 96.94 271 | 88.19 172 | 98.96 105 | 97.41 187 |
|
PVSNet | | 76.22 20 | 82.89 297 | 82.37 296 | 84.48 315 | 93.96 260 | 64.38 343 | 78.60 340 | 88.61 297 | 71.50 316 | 84.43 317 | 86.36 331 | 74.27 284 | 94.60 316 | 69.87 330 | 93.69 301 | 94.46 282 |
|
test_yl | | | 90.11 214 | 89.73 215 | 91.26 222 | 94.09 257 | 79.82 234 | 90.44 229 | 92.65 270 | 90.90 119 | 93.19 194 | 93.30 251 | 73.90 285 | 98.03 211 | 82.23 247 | 96.87 240 | 95.93 243 |
|
DCV-MVSNet | | | 90.11 214 | 89.73 215 | 91.26 222 | 94.09 257 | 79.82 234 | 90.44 229 | 92.65 270 | 90.90 119 | 93.19 194 | 93.30 251 | 73.90 285 | 98.03 211 | 82.23 247 | 96.87 240 | 95.93 243 |
|
CMPMVS | | 68.83 22 | 87.28 267 | 85.67 279 | 92.09 200 | 88.77 333 | 85.42 164 | 90.31 235 | 94.38 241 | 70.02 324 | 88.00 292 | 93.30 251 | 73.78 287 | 94.03 325 | 75.96 302 | 96.54 249 | 96.83 210 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
baseline1 | | | 87.62 260 | 87.31 254 | 88.54 281 | 94.71 243 | 74.27 303 | 93.10 139 | 88.20 302 | 86.20 206 | 92.18 225 | 93.04 256 | 73.21 288 | 95.52 302 | 79.32 277 | 85.82 335 | 95.83 248 |
|
PVSNet_0 | | 70.34 21 | 74.58 318 | 72.96 320 | 79.47 328 | 90.63 312 | 66.24 336 | 73.26 341 | 83.40 338 | 63.67 341 | 78.02 342 | 78.35 344 | 72.53 289 | 89.59 342 | 56.68 344 | 60.05 348 | 82.57 343 |
|
MIMVSNet | | | 87.13 273 | 86.54 270 | 88.89 275 | 96.05 186 | 76.11 287 | 94.39 107 | 88.51 298 | 81.37 256 | 88.27 289 | 96.75 104 | 72.38 290 | 95.52 302 | 65.71 338 | 95.47 268 | 95.03 269 |
|
PAPM | | | 81.91 303 | 80.11 312 | 87.31 297 | 93.87 263 | 72.32 316 | 84.02 329 | 93.22 259 | 69.47 326 | 76.13 345 | 89.84 304 | 72.15 291 | 97.23 263 | 53.27 346 | 89.02 329 | 92.37 318 |
|
cl-mvsnet2 | | | 89.02 232 | 88.50 233 | 90.59 243 | 89.76 321 | 76.45 284 | 86.62 311 | 94.03 247 | 82.98 247 | 92.65 208 | 92.49 267 | 72.05 292 | 97.53 247 | 88.93 160 | 97.02 234 | 97.78 165 |
|
LFMVS | | | 91.33 187 | 91.16 188 | 91.82 205 | 96.27 171 | 79.36 243 | 95.01 86 | 85.61 324 | 96.04 28 | 94.82 148 | 97.06 86 | 72.03 293 | 98.46 182 | 84.96 222 | 98.70 131 | 97.65 175 |
|
MVS-HIRNet | | | 78.83 317 | 80.60 308 | 73.51 332 | 93.07 274 | 47.37 351 | 87.10 298 | 78.00 347 | 68.94 327 | 77.53 343 | 97.26 74 | 71.45 294 | 94.62 315 | 63.28 341 | 88.74 330 | 78.55 344 |
|
EPNet_dtu | | | 85.63 282 | 84.37 284 | 89.40 267 | 86.30 344 | 74.33 302 | 91.64 202 | 88.26 300 | 84.84 231 | 72.96 347 | 89.85 303 | 71.27 295 | 97.69 241 | 76.60 297 | 97.62 217 | 96.18 234 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HyFIR lowres test | | | 87.19 271 | 85.51 280 | 92.24 193 | 97.12 128 | 80.51 220 | 85.03 319 | 96.06 192 | 66.11 335 | 91.66 233 | 92.98 258 | 70.12 296 | 99.14 80 | 75.29 304 | 95.23 275 | 97.07 200 |
|
FMVSNet3 | | | 90.78 195 | 90.32 205 | 92.16 198 | 93.03 277 | 79.92 232 | 92.54 155 | 94.95 224 | 86.17 208 | 95.10 135 | 96.01 150 | 69.97 297 | 98.75 142 | 86.74 195 | 98.38 155 | 97.82 162 |
|
RPMNet | | | 89.30 228 | 89.00 224 | 90.22 252 | 91.01 308 | 78.93 250 | 92.52 156 | 87.85 306 | 91.91 87 | 89.10 273 | 96.89 95 | 68.84 298 | 97.64 243 | 90.17 133 | 92.70 313 | 94.08 288 |
|
ADS-MVSNet2 | | | 84.01 291 | 82.20 298 | 89.41 266 | 89.04 330 | 76.37 286 | 87.57 287 | 90.98 290 | 72.71 312 | 84.46 315 | 92.45 268 | 68.08 299 | 96.48 286 | 70.58 328 | 83.97 337 | 95.38 262 |
|
ADS-MVSNet | | | 82.25 300 | 81.55 300 | 84.34 316 | 89.04 330 | 65.30 337 | 87.57 287 | 85.13 331 | 72.71 312 | 84.46 315 | 92.45 268 | 68.08 299 | 92.33 334 | 70.58 328 | 83.97 337 | 95.38 262 |
|
CVMVSNet | | | 85.16 284 | 84.72 282 | 86.48 301 | 92.12 292 | 70.19 323 | 92.32 169 | 88.17 303 | 56.15 346 | 90.64 249 | 95.85 155 | 67.97 301 | 96.69 280 | 88.78 164 | 90.52 326 | 92.56 316 |
|
new_pmnet | | | 81.22 306 | 81.01 306 | 81.86 324 | 90.92 310 | 70.15 324 | 84.03 328 | 80.25 346 | 70.83 320 | 85.97 307 | 89.78 308 | 67.93 302 | 84.65 346 | 67.44 334 | 91.90 320 | 90.78 328 |
|
CR-MVSNet | | | 87.89 252 | 87.12 260 | 90.22 252 | 91.01 308 | 78.93 250 | 92.52 156 | 92.81 265 | 73.08 309 | 89.10 273 | 96.93 92 | 67.11 303 | 97.64 243 | 88.80 163 | 92.70 313 | 94.08 288 |
|
Patchmtry | | | 90.11 214 | 89.92 211 | 90.66 241 | 90.35 317 | 77.00 276 | 92.96 142 | 92.81 265 | 90.25 137 | 94.74 151 | 96.93 92 | 67.11 303 | 97.52 248 | 85.17 214 | 98.98 99 | 97.46 184 |
|
PatchmatchNet | | | 85.22 283 | 84.64 283 | 86.98 299 | 89.51 326 | 69.83 326 | 90.52 227 | 87.34 309 | 78.87 279 | 87.22 301 | 92.74 263 | 66.91 305 | 96.53 283 | 81.77 251 | 86.88 334 | 94.58 280 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
GA-MVS | | | 87.70 256 | 86.82 264 | 90.31 248 | 93.27 270 | 77.22 274 | 84.72 323 | 92.79 267 | 85.11 226 | 89.82 264 | 90.07 302 | 66.80 306 | 97.76 237 | 84.56 227 | 94.27 294 | 95.96 242 |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 353 | 88.45 282 | | 67.22 333 | 83.56 322 | | 66.80 306 | | 72.86 315 | | 94.06 290 |
|
tpmrst | | | 82.85 298 | 82.93 295 | 82.64 322 | 87.65 335 | 58.99 348 | 90.14 241 | 87.90 305 | 75.54 296 | 83.93 319 | 91.63 284 | 66.79 308 | 95.36 308 | 81.21 258 | 81.54 343 | 93.57 306 |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 309 | | | | 94.75 276 |
|
sam_mvs | | | | | | | | | | | | | 66.41 310 | | | | |
|
Patchmatch-RL test | | | 88.81 239 | 88.52 232 | 89.69 263 | 95.33 226 | 79.94 231 | 86.22 313 | 92.71 269 | 78.46 282 | 95.80 105 | 94.18 226 | 66.25 311 | 95.33 310 | 89.22 157 | 98.53 143 | 93.78 298 |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 282 | 66.22 312 | 97.59 245 | | | |
|
test_post | | | | | | | | | | | | 6.07 351 | 65.74 313 | 95.84 298 | | | |
|
test_post1 | | | | | | | | 90.21 237 | | | | 5.85 352 | 65.36 314 | 96.00 296 | 79.61 274 | | |
|
MDTV_nov1_ep13 | | | | 83.88 289 | | 89.42 327 | 61.52 346 | 88.74 277 | 87.41 308 | 73.99 304 | 84.96 313 | 94.01 233 | 65.25 315 | 95.53 301 | 78.02 284 | 93.16 306 | |
|
Patchmatch-test | | | 86.10 280 | 86.01 276 | 86.38 303 | 90.63 312 | 74.22 304 | 89.57 257 | 86.69 312 | 85.73 217 | 89.81 265 | 92.83 259 | 65.24 316 | 91.04 338 | 77.82 288 | 95.78 262 | 93.88 297 |
|
tpmvs | | | 84.22 290 | 83.97 288 | 84.94 311 | 87.09 341 | 65.18 338 | 91.21 211 | 88.35 299 | 82.87 248 | 85.21 309 | 90.96 293 | 65.24 316 | 96.75 278 | 79.60 276 | 85.25 336 | 92.90 312 |
|
EU-MVSNet | | | 87.39 265 | 86.71 267 | 89.44 265 | 93.40 268 | 76.11 287 | 94.93 89 | 90.00 293 | 57.17 345 | 95.71 110 | 97.37 66 | 64.77 318 | 97.68 242 | 92.67 77 | 94.37 291 | 94.52 281 |
|
thres200 | | | 85.85 281 | 85.18 281 | 87.88 292 | 94.44 249 | 72.52 314 | 89.08 270 | 86.21 315 | 88.57 167 | 91.44 235 | 88.40 319 | 64.22 319 | 98.00 215 | 68.35 332 | 95.88 261 | 93.12 309 |
|
PatchT | | | 87.51 262 | 88.17 242 | 85.55 306 | 90.64 311 | 66.91 331 | 92.02 182 | 86.09 317 | 92.20 79 | 89.05 275 | 97.16 81 | 64.15 320 | 96.37 291 | 89.21 158 | 92.98 311 | 93.37 307 |
|
tfpn200view9 | | | 87.05 274 | 86.52 271 | 88.67 279 | 95.77 204 | 72.94 311 | 91.89 189 | 86.00 319 | 90.84 121 | 92.61 209 | 89.80 305 | 63.93 321 | 98.28 191 | 71.27 324 | 96.54 249 | 94.79 274 |
|
thres400 | | | 87.20 270 | 86.52 271 | 89.24 272 | 95.77 204 | 72.94 311 | 91.89 189 | 86.00 319 | 90.84 121 | 92.61 209 | 89.80 305 | 63.93 321 | 98.28 191 | 71.27 324 | 96.54 249 | 96.51 217 |
|
FPMVS | | | 84.50 288 | 83.28 291 | 88.16 288 | 96.32 167 | 94.49 11 | 85.76 314 | 85.47 325 | 83.09 244 | 85.20 310 | 94.26 222 | 63.79 323 | 86.58 345 | 63.72 340 | 91.88 321 | 83.40 340 |
|
thres100view900 | | | 87.35 266 | 86.89 263 | 88.72 278 | 96.14 181 | 73.09 310 | 93.00 141 | 85.31 327 | 92.13 81 | 93.26 191 | 90.96 293 | 63.42 324 | 98.28 191 | 71.27 324 | 96.54 249 | 94.79 274 |
|
thres600view7 | | | 87.66 258 | 87.10 261 | 89.36 268 | 96.05 186 | 73.17 308 | 92.72 149 | 85.31 327 | 91.89 88 | 93.29 188 | 90.97 292 | 63.42 324 | 98.39 183 | 73.23 312 | 96.99 239 | 96.51 217 |
|
EMVS | | | 80.35 313 | 80.28 311 | 80.54 326 | 84.73 349 | 69.07 327 | 72.54 344 | 80.73 343 | 87.80 181 | 81.66 335 | 81.73 342 | 62.89 326 | 89.84 341 | 75.79 303 | 94.65 287 | 82.71 342 |
|
test-LLR | | | 83.58 292 | 83.17 292 | 84.79 313 | 89.68 323 | 66.86 333 | 83.08 332 | 84.52 332 | 83.07 245 | 82.85 326 | 84.78 337 | 62.86 327 | 93.49 328 | 82.85 239 | 94.86 280 | 94.03 291 |
|
test0.0.03 1 | | | 82.48 299 | 81.47 302 | 85.48 307 | 89.70 322 | 73.57 307 | 84.73 321 | 81.64 341 | 83.07 245 | 88.13 291 | 86.61 328 | 62.86 327 | 89.10 344 | 66.24 337 | 90.29 327 | 93.77 299 |
|
tpm cat1 | | | 80.61 312 | 79.46 314 | 84.07 318 | 88.78 332 | 65.06 341 | 89.26 266 | 88.23 301 | 62.27 342 | 81.90 334 | 89.66 311 | 62.70 329 | 95.29 311 | 71.72 320 | 80.60 344 | 91.86 323 |
|
E-PMN | | | 80.72 311 | 80.86 307 | 80.29 327 | 85.11 347 | 68.77 328 | 72.96 342 | 81.97 340 | 87.76 182 | 83.25 325 | 83.01 341 | 62.22 330 | 89.17 343 | 77.15 294 | 94.31 293 | 82.93 341 |
|
RRT_MVS | | | 91.36 186 | 90.05 209 | 95.29 85 | 89.21 329 | 88.15 109 | 92.51 159 | 94.89 226 | 86.73 200 | 95.54 116 | 95.68 165 | 61.82 331 | 99.30 62 | 94.91 13 | 99.13 84 | 98.43 112 |
|
baseline2 | | | 83.38 293 | 81.54 301 | 88.90 274 | 91.38 304 | 72.84 313 | 88.78 275 | 81.22 342 | 78.97 277 | 79.82 340 | 87.56 322 | 61.73 332 | 97.80 231 | 74.30 307 | 90.05 328 | 96.05 239 |
|
CostFormer | | | 83.09 295 | 82.21 297 | 85.73 305 | 89.27 328 | 67.01 330 | 90.35 233 | 86.47 314 | 70.42 322 | 83.52 323 | 93.23 254 | 61.18 333 | 96.85 275 | 77.21 293 | 88.26 332 | 93.34 308 |
|
MVSTER | | | 89.32 227 | 88.75 230 | 91.03 230 | 90.10 319 | 76.62 282 | 90.85 218 | 94.67 237 | 82.27 252 | 95.24 131 | 95.79 160 | 61.09 334 | 98.49 176 | 90.49 118 | 98.26 170 | 97.97 146 |
|
tpm | | | 84.38 289 | 84.08 287 | 85.30 310 | 90.47 315 | 63.43 345 | 89.34 263 | 85.63 323 | 77.24 290 | 87.62 296 | 95.03 197 | 61.00 335 | 97.30 261 | 79.26 278 | 91.09 325 | 95.16 265 |
|
EPMVS | | | 81.17 308 | 80.37 309 | 83.58 319 | 85.58 346 | 65.08 340 | 90.31 235 | 71.34 349 | 77.31 289 | 85.80 308 | 91.30 287 | 59.38 336 | 92.70 333 | 79.99 268 | 82.34 342 | 92.96 311 |
|
tmp_tt | | | 37.97 320 | 44.33 322 | 18.88 334 | 11.80 353 | 21.54 354 | 63.51 346 | 45.66 355 | 4.23 349 | 51.34 350 | 50.48 347 | 59.08 337 | 22.11 351 | 44.50 347 | 68.35 347 | 13.00 347 |
|
tpm2 | | | 81.46 304 | 80.35 310 | 84.80 312 | 89.90 320 | 65.14 339 | 90.44 229 | 85.36 326 | 65.82 337 | 82.05 332 | 92.44 270 | 57.94 338 | 96.69 280 | 70.71 327 | 88.49 331 | 92.56 316 |
|
ET-MVSNet_ETH3D | | | 86.15 279 | 84.27 286 | 91.79 206 | 93.04 276 | 81.28 212 | 87.17 297 | 86.14 316 | 79.57 269 | 83.65 320 | 88.66 316 | 57.10 339 | 98.18 202 | 87.74 182 | 95.40 270 | 95.90 246 |
|
CHOSEN 280x420 | | | 80.04 314 | 77.97 319 | 86.23 304 | 90.13 318 | 74.53 299 | 72.87 343 | 89.59 294 | 66.38 334 | 76.29 344 | 85.32 336 | 56.96 340 | 95.36 308 | 69.49 331 | 94.72 285 | 88.79 334 |
|
JIA-IIPM | | | 85.08 285 | 83.04 293 | 91.19 227 | 87.56 336 | 86.14 154 | 89.40 262 | 84.44 334 | 88.98 156 | 82.20 330 | 97.95 38 | 56.82 341 | 96.15 294 | 76.55 298 | 83.45 339 | 91.30 325 |
|
DeepMVS_CX | | | | | 53.83 333 | 70.38 352 | 64.56 342 | | 48.52 354 | 33.01 348 | 65.50 349 | 74.21 346 | 56.19 342 | 46.64 350 | 38.45 348 | 70.07 346 | 50.30 346 |
|
dp | | | 79.28 315 | 78.62 317 | 81.24 325 | 85.97 345 | 56.45 349 | 86.91 301 | 85.26 329 | 72.97 310 | 81.45 336 | 89.17 315 | 56.01 343 | 95.45 306 | 73.19 313 | 76.68 345 | 91.82 324 |
|
thisisatest0515 | | | 84.72 287 | 82.99 294 | 89.90 260 | 92.96 278 | 75.33 294 | 84.36 326 | 83.42 337 | 77.37 288 | 88.27 289 | 86.65 327 | 53.94 344 | 98.72 147 | 82.56 243 | 97.40 224 | 95.67 255 |
|
tttt0517 | | | 89.81 221 | 88.90 228 | 92.55 187 | 97.00 130 | 79.73 238 | 95.03 85 | 83.65 336 | 89.88 143 | 95.30 126 | 94.79 209 | 53.64 345 | 99.39 41 | 91.99 89 | 98.79 123 | 98.54 104 |
|
thisisatest0530 | | | 88.69 242 | 87.52 252 | 92.20 194 | 96.33 166 | 79.36 243 | 92.81 147 | 84.01 335 | 86.44 202 | 93.67 178 | 92.68 265 | 53.62 346 | 99.25 69 | 89.65 147 | 98.45 150 | 98.00 141 |
|
FMVSNet5 | | | 87.82 255 | 86.56 269 | 91.62 212 | 92.31 286 | 79.81 236 | 93.49 131 | 94.81 231 | 83.26 240 | 91.36 236 | 96.93 92 | 52.77 347 | 97.49 251 | 76.07 300 | 98.03 197 | 97.55 182 |
|
pmmvs3 | | | 80.83 309 | 78.96 316 | 86.45 302 | 87.23 340 | 77.48 270 | 84.87 320 | 82.31 339 | 63.83 340 | 85.03 311 | 89.50 312 | 49.66 348 | 93.10 330 | 73.12 314 | 95.10 277 | 88.78 335 |
|
DWT-MVSNet_test | | | 80.74 310 | 79.18 315 | 85.43 308 | 87.51 338 | 66.87 332 | 89.87 251 | 86.01 318 | 74.20 303 | 80.86 337 | 80.62 343 | 48.84 349 | 96.68 282 | 81.54 253 | 83.14 341 | 92.75 314 |
|
IB-MVS | | 77.21 19 | 83.11 294 | 81.05 304 | 89.29 269 | 91.15 306 | 75.85 290 | 85.66 315 | 86.00 319 | 79.70 267 | 82.02 333 | 86.61 328 | 48.26 350 | 98.39 183 | 77.84 286 | 92.22 316 | 93.63 302 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
RRT_test8_iter05 | | | 88.21 248 | 88.17 242 | 88.33 286 | 91.62 301 | 66.82 335 | 91.73 201 | 96.60 167 | 86.34 204 | 94.14 163 | 95.38 185 | 47.72 351 | 99.11 84 | 91.78 96 | 98.26 170 | 99.06 46 |
|
gg-mvs-nofinetune | | | 82.10 302 | 81.02 305 | 85.34 309 | 87.46 339 | 71.04 319 | 94.74 93 | 67.56 350 | 96.44 21 | 79.43 341 | 98.99 6 | 45.24 352 | 96.15 294 | 67.18 335 | 92.17 317 | 88.85 333 |
|
GG-mvs-BLEND | | | | | 83.24 321 | 85.06 348 | 71.03 320 | 94.99 88 | 65.55 351 | | 74.09 346 | 75.51 345 | 44.57 353 | 94.46 318 | 59.57 343 | 87.54 333 | 84.24 339 |
|
TESTMET0.1,1 | | | 79.09 316 | 78.04 318 | 82.25 323 | 87.52 337 | 64.03 344 | 83.08 332 | 80.62 344 | 70.28 323 | 80.16 339 | 83.22 340 | 44.13 354 | 90.56 339 | 79.95 269 | 93.36 302 | 92.15 319 |
|
test-mter | | | 81.21 307 | 80.01 313 | 84.79 313 | 89.68 323 | 66.86 333 | 83.08 332 | 84.52 332 | 73.85 305 | 82.85 326 | 84.78 337 | 43.66 355 | 93.49 328 | 82.85 239 | 94.86 280 | 94.03 291 |
|
test123 | | | 9.49 322 | 12.01 324 | 1.91 335 | 2.87 354 | 1.30 355 | 82.38 335 | 1.34 357 | 1.36 350 | 2.84 351 | 6.56 350 | 2.45 356 | 0.97 352 | 2.73 349 | 5.56 349 | 3.47 348 |
|
testmvs | | | 9.02 323 | 11.42 325 | 1.81 336 | 2.77 355 | 1.13 356 | 79.44 339 | 1.90 356 | 1.18 351 | 2.65 352 | 6.80 349 | 1.95 357 | 0.87 353 | 2.62 350 | 3.45 350 | 3.44 349 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 98.14 39 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
ab-mvs-re | | | 7.56 324 | 10.08 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 90.69 298 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 98.51 45 | 86.66 140 | | 96.83 154 | 72.74 311 | 95.83 104 | | | | 93.00 68 | 99.29 62 | 98.64 94 |
|
save fliter | | | | | | 97.46 113 | 88.05 112 | 92.04 180 | 97.08 135 | 87.63 186 | | | | | | | |
|
test_0728_SECOND | | | | | 94.88 98 | 98.55 39 | 86.72 137 | 95.20 77 | 98.22 29 | | | | | 99.38 46 | 93.44 49 | 99.31 59 | 98.53 105 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 276 |
|
test_part2 | | | | | | 98.21 68 | 89.41 84 | | | | 96.72 64 | | | | | | |
|
MTGPA | | | | | | | | | 97.62 93 | | | | | | | | |
|
MTMP | | | | | | | | 94.82 90 | 54.62 353 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 342 | 59.33 347 | | | 71.22 317 | | 83.58 339 | | 97.20 264 | 73.95 308 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 174 | 98.40 152 | 97.83 160 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 193 | 98.36 161 | 97.98 143 |
|
agg_prior | | | | | | 96.20 176 | 88.89 93 | | 96.88 151 | | 90.21 254 | | | 98.78 137 | | | |
|
test_prior4 | | | | | | | 89.91 75 | 90.74 221 | | | | | | | | | |
|
test_prior | | | | | 94.61 108 | 95.95 194 | 87.23 124 | | 97.36 115 | | | | | 98.68 156 | | | 97.93 149 |
|
旧先验2 | | | | | | | | 90.00 246 | | 68.65 328 | 92.71 207 | | | 96.52 284 | 85.15 216 | | |
|
新几何2 | | | | | | | | 90.02 245 | | | | | | | | | |
|
无先验 | | | | | | | | 89.94 247 | 95.75 202 | 70.81 321 | | | | 98.59 166 | 81.17 259 | | 94.81 273 |
|
原ACMM2 | | | | | | | | 89.34 263 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 211 | 80.24 266 | | |
|
testdata1 | | | | | | | | 88.96 272 | | 88.44 169 | | | | | | | |
|
plane_prior7 | | | | | | 97.71 96 | 88.68 97 | | | | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.81 81 | | | | | 98.95 109 | 89.26 155 | 98.51 146 | 98.60 101 |
|
plane_prior4 | | | | | | | | | | | | 95.59 168 | | | | | |
|
plane_prior3 | | | | | | | 88.43 106 | | | 90.35 136 | 93.31 186 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 102 | | 91.74 101 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 116 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 110 | 93.01 140 | | 88.98 156 | | | | | | 98.06 193 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 282 | | | | | | | | |
|
test11 | | | | | | | | | 96.65 165 | | | | | | | | |
|
door | | | | | | | | | 91.26 288 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 168 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 161 | | 91.37 206 | | 87.16 193 | 88.81 278 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 161 | | 91.37 206 | | 87.16 193 | 88.81 278 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 201 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 278 | | | 98.61 162 | | | 98.15 129 |
|
HQP3-MVS | | | | | | | | | 97.31 119 | | | | | | | 97.73 209 | |
|
NP-MVS | | | | | | 96.82 138 | 87.10 127 | | | | | 93.40 249 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 119 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 70 | |
|