This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 497.01 1298.92 498.78 1495.22 3798.61 17396.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10287.68 19598.45 1898.77 1594.20 6699.50 1996.70 399.40 5399.53 14
MVSFormer92.18 17792.23 16792.04 21094.74 25180.06 23697.15 1197.37 11788.98 16588.83 29092.79 27377.02 28499.60 896.41 496.75 25696.46 234
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11788.98 16598.26 2198.86 1093.35 7899.60 896.41 499.45 4399.66 6
v7n96.82 1097.31 1095.33 8698.54 4186.81 14296.83 1898.07 5396.59 1998.46 1798.43 2792.91 9199.52 1796.25 699.76 1199.65 8
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10287.57 19898.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11586.96 20798.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6694.15 4898.93 399.07 588.07 18099.57 1395.86 999.69 1599.46 18
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14498.32 1987.89 18896.86 6297.38 6795.55 2499.39 4695.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11195.57 6897.88 7988.72 17198.81 698.86 1090.77 14099.60 895.43 1199.53 3599.57 13
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3396.95 1395.46 12599.23 493.45 7399.57 1395.34 1299.89 299.63 9
RRT_MVS91.36 19490.05 22095.29 9089.21 34388.15 11692.51 16794.89 23586.73 21095.54 12195.68 17261.82 34599.30 6794.91 1399.13 8898.43 115
ACMH88.36 1296.59 2797.43 594.07 13798.56 3685.33 17296.33 3998.30 2294.66 3998.72 898.30 3097.51 598.00 22794.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1094.68 9995.27 8092.90 17996.57 15780.15 23294.65 10397.57 10590.68 13297.43 4198.00 3788.18 17799.15 8394.84 1599.55 3499.41 20
SixPastTwentyTwo94.91 8695.21 8193.98 13998.52 4483.19 19995.93 5594.84 23794.86 3898.49 1598.74 1681.45 25199.60 894.69 1699.39 5499.15 37
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 597.41 997.28 4698.46 2594.62 5798.84 13494.64 1799.53 3598.99 53
v124093.29 13893.71 13092.06 20996.01 20277.89 27791.81 20897.37 11785.12 23796.69 6996.40 13186.67 20799.07 9994.51 1898.76 13399.22 32
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9396.90 1798.41 1492.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10798.03 6290.42 13996.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 4091.74 10695.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
v894.65 10095.29 7892.74 18496.65 15179.77 24794.59 10497.17 13891.86 9497.47 4097.93 4088.16 17899.08 9594.32 2299.47 3999.38 22
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3793.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13597.62 9994.46 4496.29 8696.94 9493.56 7199.37 5394.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9994.46 4496.29 8696.94 9493.56 7199.37 5394.29 2499.42 4798.99 53
Regformer-494.90 8794.67 10295.59 7692.78 29689.02 9792.39 17395.91 20494.50 4296.41 7795.56 18092.10 10899.01 10994.23 2698.14 19598.74 87
WR-MVS_H96.60 2597.05 1495.24 9299.02 1186.44 15296.78 2198.08 5097.42 898.48 1697.86 4591.76 11699.63 694.23 2699.84 399.66 6
v192192093.26 14193.61 13492.19 20296.04 20178.31 27091.88 20197.24 13485.17 23496.19 9696.19 14886.76 20699.05 10194.18 2898.84 11999.22 32
v119293.49 13393.78 12792.62 19096.16 18879.62 24991.83 20797.22 13686.07 22096.10 10096.38 13687.22 19499.02 10794.14 2998.88 11499.22 32
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1895.81 3097.55 3597.44 6496.51 999.40 4194.06 3099.23 7698.85 75
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 1092.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10995.77 6198.29 2592.68 6998.03 2597.91 4295.13 4098.95 11993.85 3399.49 3899.36 24
v14419293.20 14693.54 13892.16 20696.05 19778.26 27191.95 19497.14 13984.98 24195.96 10396.11 15287.08 19899.04 10493.79 3498.84 11999.17 35
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6992.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
EI-MVSNet-UG-set94.35 11294.27 11894.59 11892.46 29985.87 16592.42 17194.69 24493.67 6196.13 9895.84 16491.20 13398.86 13193.78 3598.23 18699.03 49
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7392.35 7895.57 12096.61 12094.93 5099.41 3693.78 3599.15 8499.00 51
EI-MVSNet-Vis-set94.36 11194.28 11694.61 11392.55 29885.98 16392.44 16994.69 24493.70 5796.12 9995.81 16591.24 13098.86 13193.76 3898.22 18898.98 58
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7392.26 8195.28 13396.57 12295.02 4699.41 3693.63 3999.11 8998.94 62
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7594.58 4094.38 16796.49 12494.56 5899.39 4693.57 4099.05 9598.93 63
X-MVStestdata90.70 20688.45 24697.44 1798.56 3693.99 2596.50 2997.95 7594.58 4094.38 16726.89 36594.56 5899.39 4693.57 4099.05 9598.93 63
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8697.79 9186.48 21197.42 4397.51 6194.47 6299.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114493.50 13293.81 12592.57 19296.28 17879.61 25091.86 20696.96 15186.95 20895.91 10796.32 14087.65 18798.96 11793.51 4398.88 11499.13 39
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4395.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11998.00 145
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4395.66 3297.00 5697.03 9095.40 2793.49 4498.84 11998.00 145
Regformer-294.86 9094.55 10695.77 6992.83 29489.98 8091.87 20296.40 18594.38 4696.19 9695.04 20392.47 10499.04 10493.49 4498.31 17598.28 124
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6693.34 6496.64 7196.57 12294.99 4899.36 5593.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3492.26 8196.33 8296.84 10495.10 4299.40 4193.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.94.96 8594.75 9695.57 7898.86 2088.69 10396.37 3696.81 16385.23 23294.75 15797.12 8591.85 11499.40 4193.45 4998.33 17298.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-394.28 11594.23 12094.46 12692.78 29686.28 15892.39 17394.70 24393.69 6095.97 10295.56 18091.34 12598.48 19193.45 4998.14 19598.62 100
DVP-MVS95.82 5796.18 4194.72 11098.51 4586.69 14595.20 8297.00 14891.85 9597.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10398.55 3986.72 14495.20 8298.22 3199.38 5293.44 5199.31 6298.53 107
MSP-MVS95.34 7294.63 10497.48 1498.67 2794.05 2196.41 3598.18 3491.26 11895.12 14095.15 19686.60 20999.50 1993.43 5396.81 25398.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_part194.39 10994.55 10693.92 14496.14 19082.86 20495.54 7098.09 4995.36 3598.27 2098.36 2875.91 29299.44 2393.41 5499.84 399.47 17
PS-CasMVS96.69 2097.43 594.49 12499.13 584.09 18996.61 2497.97 7297.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9295.35 7498.22 3192.36 7794.11 17198.07 3392.02 10999.44 2393.38 5697.67 22697.85 165
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5695.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12798.53 107
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2695.51 3496.99 5897.05 8995.63 2199.39 4693.31 5898.88 11498.75 84
SED-MVS96.00 5296.41 3294.76 10898.51 4586.97 13895.21 8098.10 4691.95 8897.63 3197.25 7796.48 1199.35 5693.29 5999.29 6597.95 153
test_241102_TWO98.10 4691.95 8897.54 3697.25 7795.37 2899.35 5693.29 5999.25 7398.49 110
DTE-MVSNet96.74 1797.43 594.67 11199.13 584.68 17996.51 2897.94 7898.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14790.79 7296.30 4397.82 8696.13 2494.74 15897.23 7991.33 12699.16 8293.25 6298.30 17798.46 113
K. test v393.37 13693.27 14693.66 15398.05 7882.62 20694.35 11486.62 32996.05 2797.51 3898.85 1276.59 29099.65 393.21 6398.20 19198.73 89
Anonymous2023121196.60 2597.13 1295.00 10097.46 11786.35 15697.11 1498.24 2997.58 798.72 898.97 793.15 8599.15 8393.18 6499.74 1399.50 16
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6692.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9298.88 71
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 5092.67 7195.08 14496.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
Regformer-194.55 10494.33 11495.19 9492.83 29488.54 11091.87 20295.84 20893.99 5095.95 10495.04 20392.00 11098.79 14393.14 6798.31 17598.23 127
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9392.59 7295.47 12396.68 11594.50 6099.42 2893.10 6899.26 7298.99 53
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9998.03 6290.82 12897.15 4996.85 10196.25 1599.00 11193.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet96.19 4696.80 1794.38 13098.99 1383.82 19296.31 4197.53 10997.60 698.34 1997.52 5991.98 11299.63 693.08 7099.81 999.70 3
v2v48293.29 13893.63 13392.29 19896.35 17278.82 26491.77 21096.28 18988.45 17795.70 11696.26 14586.02 21598.90 12393.02 7198.81 12799.14 38
IU-MVS98.51 4586.66 14796.83 16272.74 32795.83 10993.00 7299.29 6598.64 96
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5395.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13698.50 109
PEN-MVS96.69 2097.39 894.61 11399.16 384.50 18096.54 2798.05 5798.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
FC-MVSNet-test95.32 7395.88 5793.62 15498.49 5381.77 21395.90 5798.32 1993.93 5397.53 3797.56 5688.48 17399.40 4192.91 7599.83 699.68 4
DROMVSNet94.58 10294.82 9293.86 14996.36 16885.20 17495.56 6999.01 391.91 9191.67 24493.78 25093.18 8499.42 2892.78 7699.11 8996.97 214
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 16097.33 12690.05 14496.77 6796.85 10195.04 4498.56 18192.77 7799.06 9298.70 91
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7698.30 2291.40 11595.76 11196.87 10095.26 3599.45 2292.77 7799.21 7899.00 51
CNVR-MVS94.58 10294.29 11595.46 8296.94 13989.35 9491.81 20896.80 16489.66 15193.90 18295.44 18792.80 9598.72 15792.74 7998.52 15298.32 120
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7893.86 13198.02 6487.35 20096.22 9297.99 3894.48 6199.05 10192.73 8099.68 1897.93 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS95.19 7995.73 6593.55 15796.62 15488.88 10294.67 10198.05 5791.26 11897.25 4896.40 13195.42 2694.36 33692.72 8199.19 8097.40 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet87.39 27786.71 28089.44 27793.40 28276.11 30094.93 9490.00 30957.17 36195.71 11597.37 6864.77 33297.68 25592.67 8294.37 30594.52 293
lessismore_v093.87 14898.05 7883.77 19380.32 36197.13 5097.91 4277.49 27899.11 9192.62 8398.08 20398.74 87
Anonymous2024052192.86 15793.57 13690.74 24996.57 15775.50 30794.15 12095.60 21389.38 15695.90 10897.90 4480.39 26097.96 23192.60 8499.68 1898.75 84
MVS_Test92.57 16893.29 14390.40 26093.53 28175.85 30392.52 16396.96 15188.73 17092.35 23096.70 11490.77 14098.37 19992.53 8595.49 28196.99 213
3Dnovator92.54 394.80 9594.90 8994.47 12595.47 22987.06 13596.63 2397.28 13291.82 10194.34 16997.41 6590.60 14798.65 17192.47 8698.11 19997.70 177
bset_n11_16_dypcd89.99 23089.15 23392.53 19494.75 24981.34 22084.19 34087.56 32385.13 23693.77 18492.46 28072.82 30199.01 10992.46 8799.21 7897.23 205
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8697.46 11788.05 11992.04 18998.42 1387.63 19696.36 8096.68 11594.37 6399.32 6592.41 8899.05 9598.64 96
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8795.58 6798.56 991.84 9896.36 8096.68 11594.37 6399.32 6592.41 8899.05 9598.64 96
V4293.43 13593.58 13592.97 17495.34 23581.22 22292.67 15996.49 18287.25 20296.20 9496.37 13787.32 19398.85 13392.39 9098.21 18998.85 75
HPM-MVS++copyleft95.02 8294.39 11196.91 3897.88 9093.58 3694.09 12396.99 15091.05 12392.40 22795.22 19591.03 13899.25 7492.11 9198.69 13997.90 159
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9992.91 15298.07 5393.46 6296.31 8495.97 15890.14 15499.34 5992.11 9199.64 2399.16 36
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16898.13 4290.69 13193.75 18596.25 14698.03 297.02 28192.08 9395.55 27998.45 114
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7698.25 2691.78 10297.07 5197.22 8096.38 1399.28 7092.07 9499.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2691.78 10297.07 5197.22 8096.38 1399.28 7092.07 9499.59 2799.11 41
tttt051789.81 23488.90 24092.55 19397.00 13679.73 24895.03 9083.65 35289.88 14895.30 13194.79 21753.64 36099.39 4691.99 9698.79 13098.54 106
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8597.98 6989.34 15895.63 11796.47 12595.37 2899.27 7291.99 9699.14 8598.48 111
EI-MVSNet92.99 15193.26 14792.19 20292.12 30679.21 25992.32 17894.67 24691.77 10495.24 13795.85 16187.14 19798.49 18791.99 9698.26 18098.86 72
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9292.73 6893.48 19296.72 11394.23 6599.42 2891.99 9699.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IterMVS-LS93.78 12894.28 11692.27 19996.27 17979.21 25991.87 20296.78 16591.77 10496.57 7597.07 8787.15 19698.74 15591.99 9699.03 10198.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT91.65 18691.55 18391.94 21193.89 27679.22 25887.56 30093.51 26591.53 11395.37 12896.62 11978.65 26998.90 12391.89 10194.95 29397.70 177
LS3D96.11 4895.83 6196.95 3794.75 24994.20 1797.34 997.98 6997.31 1095.32 13096.77 10693.08 8799.20 7991.79 10298.16 19397.44 193
RRT_test8_iter0588.21 26088.17 25588.33 29891.62 31566.82 35191.73 21196.60 17586.34 21494.14 17095.38 19347.72 36699.11 9191.78 10398.26 18099.06 47
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8493.46 14098.30 2292.37 7697.75 2896.95 9395.14 3999.51 1891.74 10499.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FIs94.90 8795.35 7493.55 15798.28 6381.76 21495.33 7698.14 4193.05 6797.07 5197.18 8287.65 18799.29 6891.72 10599.69 1599.61 11
Gipumacopyleft95.31 7595.80 6393.81 15197.99 8790.91 6996.42 3497.95 7596.69 1691.78 24398.85 1291.77 11595.49 31991.72 10599.08 9195.02 281
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
baseline94.26 11794.80 9492.64 18796.08 19580.99 22593.69 13598.04 6190.80 12994.89 15296.32 14093.19 8298.48 19191.68 10798.51 15498.43 115
alignmvs93.26 14192.85 15294.50 12295.70 21887.45 12793.45 14195.76 20991.58 11195.25 13692.42 28581.96 24898.72 15791.61 10897.87 21697.33 202
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10792.26 18197.84 8494.91 3796.80 6595.78 16990.42 14999.41 3691.60 10999.58 3199.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10792.58 16197.81 8793.99 5096.80 6595.90 15990.10 15899.41 3691.60 10999.58 3199.26 29
EG-PatchMatch MVS94.54 10694.67 10294.14 13597.87 9186.50 14892.00 19296.74 16988.16 18396.93 5997.61 5493.04 8997.90 23391.60 10998.12 19898.03 143
test_040295.73 5996.22 3994.26 13298.19 6985.77 16793.24 14597.24 13496.88 1597.69 2997.77 4894.12 6799.13 8791.54 11299.29 6597.88 161
canonicalmvs94.59 10194.69 9994.30 13195.60 22687.03 13795.59 6698.24 2991.56 11295.21 13992.04 29194.95 4998.66 16991.45 11397.57 23097.20 207
XVG-OURS94.72 9794.12 12196.50 4898.00 8494.23 1691.48 21598.17 3790.72 13095.30 13196.47 12587.94 18496.98 28291.41 11497.61 22998.30 123
pmmvs696.80 1397.36 995.15 9699.12 787.82 12596.68 2297.86 8096.10 2598.14 2399.28 397.94 398.21 21091.38 11599.69 1599.42 19
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11198.05 5790.45 13896.31 8496.76 10892.91 9198.72 15791.19 11699.42 4798.32 120
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10992.42 7493.41 19397.78 4691.21 13297.77 24891.06 11797.06 24398.80 79
hse-mvs392.89 15491.99 17395.58 7796.97 13790.55 7493.94 12994.01 25989.23 16193.95 17996.19 14876.88 28799.14 8591.02 11895.71 27697.04 211
hse-mvs292.24 17691.20 19595.38 8396.16 18890.65 7392.52 16392.01 29689.23 16193.95 17992.99 26876.88 28798.69 16591.02 11896.03 26896.81 221
casdiffmvs94.32 11494.80 9492.85 18196.05 19781.44 21992.35 17698.05 5791.53 11395.75 11296.80 10593.35 7898.49 18791.01 12098.32 17498.64 96
GeoE94.55 10494.68 10194.15 13497.23 12585.11 17594.14 12197.34 12588.71 17295.26 13495.50 18394.65 5699.12 8990.94 12198.40 16098.23 127
cl_fuxian91.32 19691.42 18891.00 24192.29 30176.79 29487.52 30396.42 18485.76 22694.72 16093.89 24682.73 23898.16 21690.93 12298.55 14798.04 142
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12693.75 13397.86 8095.96 2997.48 3997.14 8495.33 3299.44 2390.79 12399.76 1199.38 22
UniMVSNet_ETH3D97.13 697.72 395.35 8499.51 287.38 12997.70 697.54 10798.16 298.94 299.33 297.84 499.08 9590.73 12499.73 1499.59 12
9.1494.81 9397.49 11494.11 12298.37 1687.56 19995.38 12796.03 15594.66 5599.08 9590.70 12598.97 107
diffmvs91.74 18491.93 17591.15 23693.06 28978.17 27288.77 28797.51 11286.28 21692.42 22693.96 24388.04 18197.46 26490.69 12696.67 25897.82 168
MVSTER89.32 24088.75 24291.03 23890.10 33376.62 29590.85 22994.67 24682.27 26795.24 13795.79 16661.09 34898.49 18790.49 12798.26 18097.97 152
DP-MVS95.62 6295.84 6094.97 10197.16 13088.62 10694.54 11197.64 9896.94 1496.58 7497.32 7593.07 8898.72 15790.45 12898.84 11997.57 185
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11798.08 5089.46 15596.61 7396.47 12595.85 1799.12 8990.45 12899.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_LR93.66 13093.28 14594.80 10696.25 18290.95 6890.21 24895.43 22387.91 18693.74 18794.40 22692.88 9396.38 30290.39 13098.28 17897.07 208
ANet_high94.83 9396.28 3690.47 25796.65 15173.16 32394.33 11598.74 696.39 2298.09 2498.93 893.37 7798.70 16390.38 13199.68 1899.53 14
DeepPCF-MVS90.46 694.20 12093.56 13796.14 5195.96 20492.96 4389.48 27097.46 11385.14 23596.23 9195.42 18893.19 8298.08 22090.37 13298.76 13397.38 200
CS-MVS92.12 17892.62 16090.60 25494.57 26078.12 27392.00 19298.58 887.75 19290.08 27091.88 29389.79 16299.10 9390.35 13398.60 14594.58 291
MSLP-MVS++93.25 14393.88 12491.37 22696.34 17382.81 20593.11 14697.74 9389.37 15794.08 17395.29 19490.40 15296.35 30490.35 13398.25 18394.96 282
PM-MVS93.33 13792.67 15995.33 8696.58 15694.06 1992.26 18192.18 28985.92 22396.22 9296.61 12085.64 22095.99 31290.35 13398.23 18695.93 254
ETH3D-3000-0.194.86 9094.55 10695.81 6597.61 10789.72 8594.05 12498.37 1688.09 18495.06 14595.85 16192.58 9999.10 9390.33 13698.99 10298.62 100
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9695.65 6598.61 796.10 2598.16 2297.52 5996.90 798.62 17290.30 13799.60 2598.72 90
cl-mvsnet190.65 20890.56 21090.91 24591.85 31076.99 29086.75 31795.36 22785.52 23194.06 17594.89 21077.37 28197.99 22990.28 13898.97 10797.76 173
cl-mvsnet____90.65 20890.56 21090.91 24591.85 31076.98 29186.75 31795.36 22785.53 22994.06 17594.89 21077.36 28297.98 23090.27 13998.98 10397.76 173
PHI-MVS94.34 11393.80 12695.95 5795.65 22291.67 6194.82 9697.86 8087.86 18993.04 21094.16 23591.58 12098.78 14790.27 13998.96 10997.41 194
MVS_111021_HR93.63 13193.42 14194.26 13296.65 15186.96 14089.30 27696.23 19388.36 18093.57 19194.60 22193.45 7397.77 24890.23 14198.38 16598.03 143
NCCC94.08 12393.54 13895.70 7496.49 16289.90 8392.39 17396.91 15790.64 13392.33 23394.60 22190.58 14898.96 11790.21 14297.70 22498.23 127
pm-mvs195.43 6895.94 5493.93 14398.38 5785.08 17695.46 7397.12 14291.84 9897.28 4698.46 2595.30 3497.71 25390.17 14399.42 4798.99 53
RPMNet90.31 22090.14 21990.81 24891.01 32278.93 26192.52 16398.12 4391.91 9189.10 28796.89 9968.84 31199.41 3690.17 14392.70 32794.08 300
NR-MVSNet95.28 7695.28 7995.26 9197.75 9587.21 13395.08 8797.37 11793.92 5497.65 3095.90 15990.10 15899.33 6490.11 14599.66 2199.26 29
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1996.69 1696.86 6297.56 5695.48 2598.77 15190.11 14599.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet94.47 10895.09 8692.60 19198.50 5280.82 22892.08 18796.68 17193.82 5596.29 8698.56 2090.10 15897.75 25190.10 14799.66 2199.24 31
v14892.87 15693.29 14391.62 22096.25 18277.72 28091.28 22195.05 23089.69 15095.93 10696.04 15487.34 19298.38 19690.05 14897.99 21098.78 81
MCST-MVS92.91 15392.51 16394.10 13697.52 11285.72 16891.36 22097.13 14180.33 27892.91 21494.24 23191.23 13198.72 15789.99 14997.93 21397.86 163
miper_lstm_enhance89.90 23289.80 22490.19 26891.37 31977.50 28283.82 34495.00 23184.84 24393.05 20994.96 20776.53 29195.20 32889.96 15098.67 14097.86 163
ambc92.98 17396.88 14283.01 20395.92 5696.38 18796.41 7797.48 6288.26 17697.80 24489.96 15098.93 11198.12 137
CPTT-MVS94.74 9694.12 12196.60 4498.15 7193.01 4295.84 5997.66 9789.21 16493.28 19995.46 18588.89 16998.98 11289.80 15298.82 12597.80 170
miper_ehance_all_eth90.48 21190.42 21390.69 25191.62 31576.57 29686.83 31596.18 19783.38 25294.06 17592.66 27882.20 24498.04 22289.79 15397.02 24597.45 192
eth_miper_zixun_eth90.72 20590.61 20991.05 23792.04 30876.84 29386.91 31296.67 17285.21 23394.41 16593.92 24479.53 26498.26 20789.76 15497.02 24598.06 139
VPA-MVSNet95.14 8095.67 6793.58 15697.76 9483.15 20094.58 10697.58 10493.39 6397.05 5498.04 3593.25 8098.51 18689.75 15599.59 2799.08 45
DELS-MVS92.05 18092.16 16891.72 21794.44 26280.13 23487.62 29797.25 13387.34 20192.22 23593.18 26589.54 16598.73 15689.67 15698.20 19196.30 240
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest053088.69 25487.52 26592.20 20196.33 17479.36 25492.81 15484.01 35186.44 21293.67 18892.68 27753.62 36199.25 7489.65 15798.45 15898.00 145
DeepC-MVS_fast89.96 793.73 12993.44 14094.60 11796.14 19087.90 12293.36 14397.14 13985.53 22993.90 18295.45 18691.30 12898.59 17789.51 15898.62 14297.31 203
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet92.38 17191.99 17393.52 16193.82 27983.46 19591.14 22397.00 14889.81 14986.47 32094.04 23887.90 18599.21 7889.50 15998.27 17997.90 159
TSAR-MVS + GP.93.07 14992.41 16695.06 9995.82 21190.87 7190.97 22792.61 28388.04 18594.61 16193.79 24988.08 17997.81 24389.41 16098.39 16396.50 232
APD-MVScopyleft95.00 8394.69 9995.93 6097.38 12090.88 7094.59 10497.81 8789.22 16395.46 12596.17 15193.42 7699.34 5989.30 16198.87 11797.56 187
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xiu_mvs_v1_base_debu91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
xiu_mvs_v1_base91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
xiu_mvs_v1_base_debi91.47 19191.52 18491.33 22795.69 21981.56 21689.92 25996.05 20183.22 25491.26 25090.74 30991.55 12198.82 13689.29 16295.91 27193.62 315
HQP_MVS94.26 11793.93 12395.23 9397.71 9988.12 11794.56 10897.81 8791.74 10693.31 19695.59 17586.93 20198.95 11989.26 16598.51 15498.60 103
plane_prior597.81 8798.95 11989.26 16598.51 15498.60 103
Patchmatch-RL test88.81 25188.52 24489.69 27595.33 23679.94 24186.22 32592.71 27978.46 29895.80 11094.18 23466.25 32495.33 32589.22 16798.53 15193.78 310
PatchT87.51 27488.17 25585.55 32090.64 32566.91 34792.02 19186.09 33392.20 8389.05 28997.16 8364.15 33496.37 30389.21 16892.98 32593.37 319
CSCG94.69 9894.75 9694.52 12197.55 11187.87 12395.01 9197.57 10592.68 6996.20 9493.44 25891.92 11398.78 14789.11 16999.24 7596.92 216
DIV-MVS_2432*160094.10 12294.73 9892.19 20297.66 10579.49 25294.86 9597.12 14289.59 15496.87 6197.65 5290.40 15298.34 20089.08 17099.35 5798.75 84
cl-mvsnet289.02 24488.50 24590.59 25589.76 33576.45 29786.62 32294.03 25682.98 26092.65 21992.49 27972.05 30597.53 25988.93 17197.02 24597.78 171
VDD-MVS94.37 11094.37 11294.40 12997.49 11486.07 16293.97 12893.28 26894.49 4396.24 9097.78 4687.99 18398.79 14388.92 17299.14 8598.34 119
AUN-MVS90.05 22888.30 24995.32 8996.09 19490.52 7592.42 17192.05 29582.08 26988.45 30192.86 27065.76 32698.69 16588.91 17396.07 26796.75 225
TransMVSNet (Re)95.27 7896.04 5192.97 17498.37 5981.92 21295.07 8896.76 16893.97 5297.77 2798.57 1995.72 1897.90 23388.89 17499.23 7699.08 45
CR-MVSNet87.89 26487.12 27390.22 26591.01 32278.93 26192.52 16392.81 27573.08 32589.10 28796.93 9667.11 31697.64 25688.80 17592.70 32794.08 300
ETH3D cwj APD-0.1693.99 12593.38 14295.80 6796.82 14589.92 8192.72 15698.02 6484.73 24593.65 18995.54 18291.68 11899.22 7788.78 17698.49 15798.26 126
CVMVSNet85.16 29684.72 29586.48 31392.12 30670.19 33792.32 17888.17 31956.15 36290.64 26195.85 16167.97 31496.69 29288.78 17690.52 34292.56 331
FMVSNet194.84 9295.13 8493.97 14097.60 10884.29 18295.99 5196.56 17792.38 7597.03 5598.53 2190.12 15598.98 11288.78 17699.16 8398.65 92
ZD-MVS97.23 12590.32 7797.54 10784.40 24794.78 15695.79 16692.76 9699.39 4688.72 17998.40 160
train_agg92.71 16291.83 17795.35 8496.45 16489.46 8890.60 23696.92 15579.37 28790.49 26294.39 22791.20 13398.88 12688.66 18098.43 15997.72 176
Anonymous2024052995.50 6695.83 6194.50 12297.33 12385.93 16495.19 8496.77 16796.64 1897.61 3498.05 3493.23 8198.79 14388.60 18199.04 10098.78 81
agg_prior192.60 16591.76 18095.10 9896.20 18488.89 10090.37 24396.88 15979.67 28490.21 26794.41 22591.30 12898.78 14788.46 18298.37 17097.64 182
test_prior393.29 13892.85 15294.61 11395.95 20587.23 13190.21 24897.36 12289.33 15990.77 25794.81 21390.41 15098.68 16788.21 18398.55 14797.93 155
test_prior290.21 24889.33 15990.77 25794.81 21390.41 15088.21 18398.55 147
CS-MVS-test91.17 19891.31 19290.74 24994.24 26779.99 24091.46 21698.39 1586.29 21587.43 31489.06 33288.63 17199.07 9988.20 18598.09 20193.17 321
D2MVS89.93 23189.60 22990.92 24394.03 27378.40 26988.69 28994.85 23678.96 29493.08 20795.09 20074.57 29596.94 28388.19 18698.96 10997.41 194
IS-MVSNet94.49 10794.35 11394.92 10298.25 6686.46 15197.13 1394.31 25196.24 2396.28 8996.36 13882.88 23599.35 5688.19 18699.52 3798.96 60
test9_res88.16 18898.40 16097.83 166
UGNet93.08 14792.50 16494.79 10793.87 27787.99 12195.07 8894.26 25390.64 13387.33 31697.67 5186.89 20498.49 18788.10 18998.71 13697.91 158
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testtj94.81 9494.42 11096.01 5497.23 12590.51 7694.77 9897.85 8391.29 11794.92 15195.66 17391.71 11799.40 4188.07 19098.25 18398.11 138
ETV-MVS92.99 15192.74 15693.72 15295.86 21086.30 15792.33 17797.84 8491.70 10992.81 21586.17 34992.22 10599.19 8088.03 19197.73 22095.66 267
EIA-MVS92.35 17292.03 17193.30 16795.81 21383.97 19092.80 15598.17 3787.71 19389.79 28087.56 33991.17 13699.18 8187.97 19297.27 23896.77 223
mvs_anonymous90.37 21691.30 19387.58 30692.17 30568.00 34589.84 26394.73 24283.82 25193.22 20497.40 6687.54 18997.40 26987.94 19395.05 29297.34 201
IterMVS90.18 22290.16 21690.21 26693.15 28775.98 30287.56 30092.97 27386.43 21394.09 17296.40 13178.32 27397.43 26687.87 19494.69 30097.23 205
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall88.42 25787.87 26090.07 26988.67 34875.52 30685.10 33095.59 21775.68 31092.49 22389.45 32778.96 26697.88 23587.86 19597.02 24596.81 221
ET-MVSNet_ETH3D86.15 29184.27 29991.79 21493.04 29081.28 22187.17 30886.14 33279.57 28583.65 33688.66 33357.10 35398.18 21487.74 19695.40 28495.90 257
Effi-MVS+-dtu93.90 12792.60 16297.77 494.74 25196.67 394.00 12695.41 22489.94 14591.93 24192.13 28990.12 15598.97 11687.68 19797.48 23297.67 180
mvs-test193.07 14991.80 17996.89 3994.74 25195.83 692.17 18495.41 22489.94 14589.85 27790.59 31590.12 15598.88 12687.68 19795.66 27795.97 252
WR-MVS93.49 13393.72 12992.80 18397.57 11080.03 23890.14 25295.68 21193.70 5796.62 7295.39 19187.21 19599.04 10487.50 19999.64 2399.33 25
tfpnnormal94.27 11694.87 9192.48 19697.71 9980.88 22794.55 11095.41 22493.70 5796.67 7097.72 4991.40 12498.18 21487.45 20099.18 8298.36 118
jason89.17 24288.32 24891.70 21895.73 21780.07 23588.10 29493.22 26971.98 33090.09 26992.79 27378.53 27298.56 18187.43 20197.06 24396.46 234
jason: jason.
Effi-MVS+92.79 15892.74 15692.94 17795.10 23983.30 19794.00 12697.53 10991.36 11689.35 28690.65 31494.01 6898.66 16987.40 20295.30 28796.88 219
FMVSNet292.78 15992.73 15892.95 17695.40 23181.98 21194.18 11995.53 22188.63 17396.05 10197.37 6881.31 25398.81 14187.38 20398.67 14098.06 139
EPP-MVSNet93.91 12693.68 13294.59 11898.08 7585.55 17097.44 894.03 25694.22 4794.94 14996.19 14882.07 24699.57 1387.28 20498.89 11298.65 92
VDDNet94.03 12494.27 11893.31 16698.87 1982.36 20895.51 7291.78 29897.19 1196.32 8398.60 1884.24 22698.75 15287.09 20598.83 12498.81 78
agg_prior287.06 20698.36 17197.98 149
LF4IMVS92.72 16192.02 17294.84 10595.65 22291.99 5492.92 15196.60 17585.08 23992.44 22593.62 25386.80 20596.35 30486.81 20798.25 18396.18 245
GBi-Net93.21 14492.96 14993.97 14095.40 23184.29 18295.99 5196.56 17788.63 17395.10 14198.53 2181.31 25398.98 11286.74 20898.38 16598.65 92
test193.21 14492.96 14993.97 14095.40 23184.29 18295.99 5196.56 17788.63 17395.10 14198.53 2181.31 25398.98 11286.74 20898.38 16598.65 92
FMVSNet390.78 20490.32 21592.16 20693.03 29179.92 24292.54 16294.95 23386.17 21995.10 14196.01 15669.97 31098.75 15286.74 20898.38 16597.82 168
lupinMVS88.34 25987.31 26791.45 22494.74 25180.06 23687.23 30592.27 28871.10 33488.83 29091.15 30377.02 28498.53 18486.67 21196.75 25695.76 262
OMC-MVS94.22 11993.69 13195.81 6597.25 12491.27 6392.27 18097.40 11687.10 20694.56 16295.42 18893.74 6998.11 21986.62 21298.85 11898.06 139
pmmvs-eth3d91.54 18990.73 20793.99 13895.76 21687.86 12490.83 23093.98 26078.23 30094.02 17896.22 14782.62 24196.83 28886.57 21398.33 17297.29 204
BP-MVS86.55 214
HQP-MVS92.09 17991.49 18793.88 14796.36 16884.89 17791.37 21797.31 12787.16 20388.81 29293.40 25984.76 22398.60 17586.55 21497.73 22098.14 134
ppachtmachnet_test88.61 25588.64 24388.50 29491.76 31270.99 33584.59 33692.98 27279.30 29192.38 22893.53 25779.57 26397.45 26586.50 21697.17 24197.07 208
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9796.23 4696.87 16193.73 5697.87 2698.49 2490.73 14499.05 10186.43 21799.60 2599.10 44
PVSNet_Blended_VisFu91.63 18791.20 19592.94 17797.73 9883.95 19192.14 18597.46 11378.85 29692.35 23094.98 20684.16 22799.08 9586.36 21896.77 25595.79 261
Fast-Effi-MVS+-dtu92.77 16092.16 16894.58 12094.66 25788.25 11492.05 18896.65 17389.62 15290.08 27091.23 30292.56 10098.60 17586.30 21996.27 26596.90 217
OPU-MVS95.15 9696.84 14489.43 9095.21 8095.66 17393.12 8698.06 22186.28 22098.61 14397.95 153
PMVScopyleft87.21 1494.97 8495.33 7693.91 14598.97 1497.16 295.54 7095.85 20796.47 2093.40 19597.46 6395.31 3395.47 32086.18 22198.78 13189.11 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft89.45 892.27 17592.13 17092.68 18694.53 26184.10 18895.70 6297.03 14682.44 26691.14 25496.42 12988.47 17498.38 19685.95 22297.47 23395.55 271
CDPH-MVS92.67 16391.83 17795.18 9596.94 13988.46 11290.70 23497.07 14577.38 30392.34 23295.08 20192.67 9898.88 12685.74 22398.57 14698.20 131
CANet_DTU89.85 23389.17 23291.87 21292.20 30480.02 23990.79 23195.87 20686.02 22182.53 34491.77 29580.01 26198.57 18085.66 22497.70 22497.01 212
ITE_SJBPF95.95 5797.34 12293.36 4096.55 18091.93 9094.82 15495.39 19191.99 11197.08 27985.53 22597.96 21197.41 194
new-patchmatchnet88.97 24790.79 20583.50 33494.28 26655.83 36685.34 32993.56 26486.18 21895.47 12395.73 17083.10 23396.51 29785.40 22698.06 20498.16 132
EPNet89.80 23588.25 25194.45 12783.91 36486.18 16093.87 13087.07 32791.16 12280.64 35494.72 21878.83 26798.89 12585.17 22798.89 11298.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry90.11 22489.92 22290.66 25290.35 33177.00 28992.96 15092.81 27590.25 14294.74 15896.93 9667.11 31697.52 26085.17 22798.98 10397.46 191
旧先验290.00 25768.65 34492.71 21896.52 29685.15 229
MDA-MVSNet-bldmvs91.04 19990.88 20191.55 22294.68 25680.16 23185.49 32892.14 29290.41 14094.93 15095.79 16685.10 22196.93 28585.15 22994.19 31097.57 185
Anonymous20240521192.58 16692.50 16492.83 18296.55 15983.22 19892.43 17091.64 29994.10 4995.59 11996.64 11881.88 25097.50 26185.12 23198.52 15297.77 172
AllTest94.88 8994.51 10996.00 5598.02 8292.17 5095.26 7998.43 1190.48 13695.04 14696.74 11092.54 10197.86 23985.11 23298.98 10397.98 149
TestCases96.00 5598.02 8292.17 5098.43 1190.48 13695.04 14696.74 11092.54 10197.86 23985.11 23298.98 10397.98 149
VPNet93.08 14793.76 12891.03 23898.60 3375.83 30591.51 21495.62 21291.84 9895.74 11397.10 8689.31 16698.32 20185.07 23499.06 9298.93 63
LFMVS91.33 19591.16 19891.82 21396.27 17979.36 25495.01 9185.61 34096.04 2894.82 15497.06 8872.03 30698.46 19384.96 23598.70 13897.65 181
VNet92.67 16392.96 14991.79 21496.27 17980.15 23291.95 19494.98 23292.19 8494.52 16496.07 15387.43 19197.39 27084.83 23698.38 16597.83 166
our_test_387.55 27387.59 26487.44 30891.76 31270.48 33683.83 34390.55 30779.79 28192.06 23992.17 28878.63 27195.63 31584.77 23794.73 29896.22 243
TAPA-MVS88.58 1092.49 16991.75 18194.73 10996.50 16189.69 8692.91 15297.68 9678.02 30192.79 21694.10 23690.85 13997.96 23184.76 23898.16 19396.54 227
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+91.28 19790.86 20292.53 19495.45 23082.53 20789.25 27996.52 18185.00 24089.91 27588.55 33592.94 9098.84 13484.72 23995.44 28396.22 243
GA-MVS87.70 26886.82 27790.31 26193.27 28477.22 28784.72 33592.79 27785.11 23889.82 27890.07 31666.80 31997.76 25084.56 24094.27 30895.96 253
QAPM92.88 15592.77 15493.22 16995.82 21183.31 19696.45 3197.35 12483.91 25093.75 18596.77 10689.25 16798.88 12684.56 24097.02 24597.49 190
MVS_030490.96 20190.15 21893.37 16393.17 28687.06 13593.62 13792.43 28789.60 15382.25 34595.50 18382.56 24297.83 24284.41 24297.83 21895.22 275
UnsupCasMVSNet_eth90.33 21890.34 21490.28 26294.64 25880.24 23089.69 26695.88 20585.77 22593.94 18195.69 17181.99 24792.98 34784.21 24391.30 33897.62 183
CLD-MVS91.82 18391.41 18993.04 17196.37 16683.65 19486.82 31697.29 13084.65 24692.27 23489.67 32492.20 10697.85 24183.95 24499.47 3997.62 183
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t90.51 21089.80 22492.63 18998.00 8482.24 20993.40 14297.29 13065.84 35289.40 28594.80 21686.99 19998.75 15283.88 24598.61 14396.89 218
ETH3 D test640091.91 18291.25 19493.89 14696.59 15584.41 18192.10 18697.72 9578.52 29791.82 24293.78 25088.70 17099.13 8783.61 24698.39 16398.14 134
DP-MVS Recon92.31 17391.88 17693.60 15597.18 12986.87 14191.10 22597.37 11784.92 24292.08 23894.08 23788.59 17298.20 21183.50 24798.14 19595.73 263
YYNet188.17 26188.24 25287.93 30292.21 30373.62 32080.75 35288.77 31282.51 26594.99 14895.11 19982.70 23993.70 34183.33 24893.83 31296.48 233
MDA-MVSNet_test_wron88.16 26288.23 25387.93 30292.22 30273.71 31980.71 35388.84 31182.52 26494.88 15395.14 19782.70 23993.61 34283.28 24993.80 31396.46 234
XXY-MVS92.58 16693.16 14890.84 24797.75 9579.84 24391.87 20296.22 19585.94 22295.53 12297.68 5092.69 9794.48 33283.21 25097.51 23198.21 130
cascas87.02 28786.28 28889.25 28391.56 31776.45 29784.33 33996.78 16571.01 33586.89 31985.91 35081.35 25296.94 28383.09 25195.60 27894.35 297
test-LLR83.58 30483.17 30584.79 32789.68 33766.86 34983.08 34584.52 34883.07 25882.85 34284.78 35362.86 34193.49 34382.85 25294.86 29494.03 303
test-mter81.21 32180.01 32884.79 32789.68 33766.86 34983.08 34584.52 34873.85 32182.85 34284.78 35343.66 37093.49 34382.85 25294.86 29494.03 303
pmmvs488.95 24887.70 26392.70 18594.30 26585.60 16987.22 30692.16 29174.62 31689.75 28294.19 23377.97 27696.41 30082.71 25496.36 26496.09 247
testdata91.03 23896.87 14382.01 21094.28 25271.55 33192.46 22495.42 18885.65 21997.38 27282.64 25597.27 23893.70 313
thisisatest051584.72 29982.99 30789.90 27292.96 29275.33 30884.36 33883.42 35377.37 30488.27 30486.65 34453.94 35998.72 15782.56 25697.40 23595.67 266
PS-MVSNAJ88.86 25088.99 23788.48 29594.88 24274.71 30986.69 31995.60 21380.88 27487.83 30987.37 34290.77 14098.82 13682.52 25794.37 30591.93 336
xiu_mvs_v2_base89.00 24689.19 23188.46 29694.86 24474.63 31186.97 31095.60 21380.88 27487.83 30988.62 33491.04 13798.81 14182.51 25894.38 30491.93 336
PAPM_NR91.03 20090.81 20491.68 21996.73 14981.10 22493.72 13496.35 18888.19 18288.77 29692.12 29085.09 22297.25 27482.40 25993.90 31196.68 226
test_yl90.11 22489.73 22791.26 23094.09 27179.82 24490.44 24092.65 28090.90 12493.19 20593.30 26173.90 29798.03 22382.23 26096.87 25195.93 254
DCV-MVSNet90.11 22489.73 22791.26 23094.09 27179.82 24490.44 24092.65 28090.90 12493.19 20593.30 26173.90 29798.03 22382.23 26096.87 25195.93 254
DPM-MVS89.35 23988.40 24792.18 20596.13 19384.20 18686.96 31196.15 19975.40 31487.36 31591.55 30083.30 23198.01 22682.17 26296.62 25994.32 298
MG-MVS89.54 23789.80 22488.76 28994.88 24272.47 32989.60 26792.44 28685.82 22489.48 28495.98 15782.85 23697.74 25281.87 26395.27 28896.08 248
PatchmatchNetpermissive85.22 29584.64 29686.98 31189.51 34069.83 34290.52 23887.34 32578.87 29587.22 31792.74 27566.91 31896.53 29581.77 26486.88 35094.58 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap92.00 18192.76 15589.71 27495.62 22577.02 28890.72 23396.17 19887.70 19495.26 13496.29 14292.54 10196.45 29981.77 26498.77 13295.66 267
DWT-MVSNet_test80.74 32479.18 33085.43 32287.51 35266.87 34889.87 26286.01 33474.20 31980.86 35380.62 35948.84 36496.68 29481.54 26683.14 35792.75 329
原ACMM192.87 18096.91 14184.22 18597.01 14776.84 30889.64 28394.46 22488.00 18298.70 16381.53 26798.01 20995.70 265
1112_ss88.42 25787.41 26691.45 22496.69 15080.99 22589.72 26596.72 17073.37 32387.00 31890.69 31277.38 28098.20 21181.38 26893.72 31495.15 277
MS-PatchMatch88.05 26387.75 26188.95 28593.28 28377.93 27587.88 29692.49 28575.42 31392.57 22293.59 25580.44 25994.24 33981.28 26992.75 32694.69 290
LCM-MVSNet-Re94.20 12094.58 10593.04 17195.91 20883.13 20193.79 13299.19 292.00 8798.84 598.04 3593.64 7099.02 10781.28 26998.54 15096.96 215
tpmrst82.85 31082.93 30882.64 33687.65 34958.99 36490.14 25287.90 32175.54 31283.93 33591.63 29866.79 32195.36 32381.21 27181.54 35993.57 318
无先验89.94 25895.75 21070.81 33798.59 17781.17 27294.81 284
112190.26 22189.23 23093.34 16497.15 13287.40 12891.94 19694.39 24967.88 34791.02 25594.91 20986.91 20398.59 17781.17 27297.71 22394.02 305
新几何193.17 17097.16 13087.29 13094.43 24867.95 34691.29 24994.94 20886.97 20098.23 20981.06 27497.75 21993.98 306
MSDG90.82 20290.67 20891.26 23094.16 26883.08 20286.63 32196.19 19690.60 13591.94 24091.89 29289.16 16895.75 31480.96 27594.51 30394.95 283
pmmvs587.87 26587.14 27290.07 26993.26 28576.97 29288.89 28492.18 28973.71 32288.36 30293.89 24676.86 28996.73 29180.32 27696.81 25396.51 229
PVSNet_BlendedMVS90.35 21789.96 22191.54 22394.81 24678.80 26690.14 25296.93 15379.43 28688.68 29995.06 20286.27 21298.15 21780.27 27798.04 20697.68 179
PVSNet_Blended88.74 25388.16 25790.46 25994.81 24678.80 26686.64 32096.93 15374.67 31588.68 29989.18 33086.27 21298.15 21780.27 27796.00 26994.44 295
testdata298.03 22380.24 279
F-COLMAP92.28 17491.06 19995.95 5797.52 11291.90 5693.53 13897.18 13783.98 24988.70 29894.04 23888.41 17598.55 18380.17 28095.99 27097.39 198
EPMVS81.17 32280.37 32483.58 33385.58 36065.08 35690.31 24671.34 36577.31 30585.80 32491.30 30159.38 35092.70 34879.99 28182.34 35892.96 326
TESTMET0.1,179.09 33078.04 33382.25 33787.52 35164.03 36083.08 34580.62 36070.28 33980.16 35583.22 35644.13 36990.56 35479.95 28293.36 31692.15 334
Test_1112_low_res87.50 27586.58 28190.25 26496.80 14877.75 27987.53 30296.25 19169.73 34186.47 32093.61 25475.67 29397.88 23579.95 28293.20 31995.11 279
CL-MVSNet_2432*160090.04 22989.90 22390.47 25795.24 23777.81 27886.60 32392.62 28285.64 22893.25 20393.92 24483.84 22896.06 31079.93 28498.03 20797.53 189
OpenMVS_ROBcopyleft85.12 1689.52 23889.05 23590.92 24394.58 25981.21 22391.10 22593.41 26777.03 30793.41 19393.99 24283.23 23297.80 24479.93 28494.80 29793.74 312
CNLPA91.72 18591.20 19593.26 16896.17 18791.02 6691.14 22395.55 22090.16 14390.87 25693.56 25686.31 21194.40 33579.92 28697.12 24294.37 296
ab-mvs92.40 17092.62 16091.74 21697.02 13581.65 21595.84 5995.50 22286.95 20892.95 21397.56 5690.70 14597.50 26179.63 28797.43 23496.06 249
test_post190.21 2485.85 36965.36 32896.00 31179.61 288
SCA87.43 27687.21 27088.10 30192.01 30971.98 33189.43 27188.11 32082.26 26888.71 29792.83 27178.65 26997.59 25779.61 28893.30 31894.75 287
tpmvs84.22 30283.97 30184.94 32587.09 35565.18 35491.21 22288.35 31582.87 26185.21 32590.96 30765.24 33096.75 29079.60 29085.25 35292.90 327
baseline187.62 27287.31 26788.54 29394.71 25574.27 31793.10 14788.20 31886.20 21792.18 23693.04 26673.21 30095.52 31779.32 29185.82 35195.83 259
tpm84.38 30184.08 30085.30 32490.47 32963.43 36189.34 27485.63 33977.24 30687.62 31195.03 20561.00 34997.30 27379.26 29291.09 34195.16 276
BH-untuned90.68 20790.90 20090.05 27195.98 20379.57 25190.04 25594.94 23487.91 18694.07 17493.00 26787.76 18697.78 24779.19 29395.17 29092.80 328
API-MVS91.52 19091.61 18291.26 23094.16 26886.26 15994.66 10294.82 23891.17 12192.13 23791.08 30590.03 16197.06 28079.09 29497.35 23790.45 345
131486.46 29086.33 28786.87 31291.65 31474.54 31291.94 19694.10 25574.28 31784.78 33087.33 34383.03 23495.00 32978.72 29591.16 34091.06 342
BH-RMVSNet90.47 21290.44 21290.56 25695.21 23878.65 26889.15 28093.94 26188.21 18192.74 21794.22 23286.38 21097.88 23578.67 29695.39 28595.14 278
MVP-Stereo90.07 22788.92 23893.54 15996.31 17686.49 14990.93 22895.59 21779.80 28091.48 24695.59 17580.79 25797.39 27078.57 29791.19 33996.76 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDTV_nov1_ep1383.88 30289.42 34161.52 36288.74 28887.41 32473.99 32084.96 32994.01 24165.25 32995.53 31678.02 29893.16 320
Vis-MVSNet (Re-imp)90.42 21390.16 21691.20 23497.66 10577.32 28594.33 11587.66 32291.20 12092.99 21195.13 19875.40 29498.28 20377.86 29999.19 8097.99 148
sss87.23 28086.82 27788.46 29693.96 27477.94 27486.84 31492.78 27877.59 30287.61 31291.83 29478.75 26891.92 35077.84 30094.20 30995.52 272
IB-MVS77.21 1983.11 30681.05 31789.29 28191.15 32075.85 30385.66 32786.00 33579.70 28382.02 34986.61 34548.26 36598.39 19477.84 30092.22 33293.63 314
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-test86.10 29286.01 28986.38 31790.63 32674.22 31889.57 26886.69 32885.73 22789.81 27992.83 27165.24 33091.04 35377.82 30295.78 27593.88 309
USDC89.02 24489.08 23488.84 28895.07 24074.50 31488.97 28296.39 18673.21 32493.27 20096.28 14382.16 24596.39 30177.55 30398.80 12995.62 270
CDS-MVSNet89.55 23688.22 25493.53 16095.37 23486.49 14989.26 27793.59 26379.76 28291.15 25392.31 28677.12 28398.38 19677.51 30497.92 21495.71 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
N_pmnet88.90 24987.25 26993.83 15094.40 26493.81 3484.73 33387.09 32679.36 28993.26 20192.43 28479.29 26591.68 35177.50 30597.22 24096.00 251
AdaColmapbinary91.63 18791.36 19092.47 19795.56 22786.36 15592.24 18396.27 19088.88 16989.90 27692.69 27691.65 11998.32 20177.38 30697.64 22792.72 330
CostFormer83.09 30782.21 31085.73 31989.27 34267.01 34690.35 24486.47 33070.42 33883.52 33993.23 26461.18 34796.85 28777.21 30788.26 34893.34 320
E-PMN80.72 32580.86 32080.29 34185.11 36168.77 34472.96 35781.97 35687.76 19183.25 34183.01 35762.22 34489.17 35877.15 30894.31 30782.93 356
PLCcopyleft85.34 1590.40 21488.92 23894.85 10496.53 16090.02 7991.58 21396.48 18380.16 27986.14 32292.18 28785.73 21798.25 20876.87 30994.61 30296.30 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS90.32 21988.87 24194.66 11294.82 24591.85 5794.22 11894.75 24180.91 27387.52 31388.07 33886.63 20897.87 23876.67 31096.21 26694.25 299
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet_dtu85.63 29484.37 29789.40 27986.30 35874.33 31691.64 21288.26 31684.84 24372.96 36389.85 31771.27 30897.69 25476.60 31197.62 22896.18 245
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM85.08 29783.04 30691.19 23587.56 35086.14 16189.40 27384.44 35088.98 16582.20 34697.95 3956.82 35596.15 30676.55 31283.45 35591.30 340
PatchMatch-RL89.18 24188.02 25992.64 18795.90 20992.87 4588.67 29191.06 30280.34 27790.03 27391.67 29783.34 23094.42 33476.35 31394.84 29690.64 344
FMVSNet587.82 26786.56 28291.62 22092.31 30079.81 24693.49 13994.81 24083.26 25391.36 24896.93 9652.77 36297.49 26376.07 31498.03 20797.55 188
PMMVS83.00 30881.11 31688.66 29283.81 36586.44 15282.24 34985.65 33861.75 35982.07 34785.64 35179.75 26291.59 35275.99 31593.09 32287.94 351
CMPMVSbinary68.83 2287.28 27985.67 29292.09 20888.77 34785.42 17190.31 24694.38 25070.02 34088.00 30793.30 26173.78 29994.03 34075.96 31696.54 26096.83 220
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS80.35 32780.28 32680.54 34084.73 36369.07 34372.54 35980.73 35987.80 19081.66 35181.73 35862.89 34089.84 35675.79 31794.65 30182.71 357
HyFIR lowres test87.19 28385.51 29392.24 20097.12 13480.51 22985.03 33196.06 20066.11 35191.66 24592.98 26970.12 30999.14 8575.29 31895.23 28997.07 208
UnsupCasMVSNet_bld88.50 25688.03 25889.90 27295.52 22878.88 26387.39 30494.02 25879.32 29093.06 20894.02 24080.72 25894.27 33775.16 31993.08 32396.54 227
WTY-MVS86.93 28886.50 28688.24 29994.96 24174.64 31087.19 30792.07 29478.29 29988.32 30391.59 29978.06 27594.27 33774.88 32093.15 32195.80 260
KD-MVS_2432*160082.17 31480.75 32186.42 31582.04 36670.09 33981.75 35090.80 30482.56 26290.37 26589.30 32842.90 37196.11 30874.47 32192.55 32993.06 323
miper_refine_blended82.17 31480.75 32186.42 31582.04 36670.09 33981.75 35090.80 30482.56 26290.37 26589.30 32842.90 37196.11 30874.47 32192.55 32993.06 323
baseline283.38 30581.54 31488.90 28691.38 31872.84 32788.78 28681.22 35878.97 29379.82 35687.56 33961.73 34697.80 24474.30 32390.05 34496.05 250
gm-plane-assit87.08 35659.33 36371.22 33383.58 35597.20 27673.95 324
test20.0390.80 20390.85 20390.63 25395.63 22479.24 25789.81 26492.87 27489.90 14794.39 16696.40 13185.77 21695.27 32773.86 32599.05 9597.39 198
TAMVS90.16 22389.05 23593.49 16296.49 16286.37 15490.34 24592.55 28480.84 27692.99 21194.57 22381.94 24998.20 21173.51 32698.21 18995.90 257
CHOSEN 1792x268887.19 28385.92 29191.00 24197.13 13379.41 25384.51 33795.60 21364.14 35590.07 27294.81 21378.26 27497.14 27873.34 32795.38 28696.46 234
thres600view787.66 27087.10 27489.36 28096.05 19773.17 32292.72 15685.31 34391.89 9393.29 19890.97 30663.42 33898.39 19473.23 32896.99 25096.51 229
dp79.28 32978.62 33281.24 33985.97 35956.45 36586.91 31285.26 34572.97 32681.45 35289.17 33156.01 35795.45 32173.19 32976.68 36191.82 339
pmmvs380.83 32378.96 33186.45 31487.23 35477.48 28384.87 33282.31 35563.83 35685.03 32789.50 32649.66 36393.10 34573.12 33095.10 29188.78 350
MDTV_nov1_ep13_2view42.48 36988.45 29367.22 34983.56 33866.80 31972.86 33194.06 302
TR-MVS87.70 26887.17 27189.27 28294.11 27079.26 25688.69 28991.86 29781.94 27090.69 26089.79 32182.82 23797.42 26772.65 33291.98 33591.14 341
PAPR87.65 27186.77 27990.27 26392.85 29377.38 28488.56 29296.23 19376.82 30984.98 32889.75 32386.08 21497.16 27772.33 33393.35 31796.26 242
Anonymous2023120688.77 25288.29 25090.20 26796.31 17678.81 26589.56 26993.49 26674.26 31892.38 22895.58 17882.21 24395.43 32272.07 33498.75 13596.34 238
MVS84.98 29884.30 29887.01 31091.03 32177.69 28191.94 19694.16 25459.36 36084.23 33487.50 34185.66 21896.80 28971.79 33593.05 32486.54 352
tpm cat180.61 32679.46 32984.07 33288.78 34665.06 35789.26 27788.23 31762.27 35881.90 35089.66 32562.70 34395.29 32671.72 33680.60 36091.86 338
HY-MVS82.50 1886.81 28985.93 29089.47 27693.63 28077.93 27594.02 12591.58 30075.68 31083.64 33793.64 25277.40 27997.42 26771.70 33792.07 33493.05 325
testgi90.38 21591.34 19187.50 30797.49 11471.54 33289.43 27195.16 22988.38 17994.54 16394.68 22092.88 9393.09 34671.60 33897.85 21797.88 161
BH-w/o87.21 28187.02 27587.79 30594.77 24877.27 28687.90 29593.21 27181.74 27189.99 27488.39 33783.47 22996.93 28571.29 33992.43 33189.15 346
thres100view90087.35 27886.89 27688.72 29096.14 19073.09 32493.00 14985.31 34392.13 8593.26 20190.96 30763.42 33898.28 20371.27 34096.54 26094.79 285
tfpn200view987.05 28686.52 28488.67 29195.77 21472.94 32591.89 19986.00 33590.84 12692.61 22089.80 31963.93 33598.28 20371.27 34096.54 26094.79 285
thres40087.20 28286.52 28489.24 28495.77 21472.94 32591.89 19986.00 33590.84 12692.61 22089.80 31963.93 33598.28 20371.27 34096.54 26096.51 229
tpm281.46 31880.35 32584.80 32689.90 33465.14 35590.44 24085.36 34265.82 35382.05 34892.44 28357.94 35296.69 29270.71 34388.49 34792.56 331
ADS-MVSNet284.01 30382.20 31189.41 27889.04 34476.37 29987.57 29890.98 30372.71 32884.46 33192.45 28168.08 31296.48 29870.58 34483.97 35395.38 273
ADS-MVSNet82.25 31281.55 31384.34 33089.04 34465.30 35387.57 29885.13 34772.71 32884.46 33192.45 28168.08 31292.33 34970.58 34483.97 35395.38 273
PVSNet76.22 2082.89 30982.37 30984.48 32993.96 27464.38 35978.60 35588.61 31371.50 33284.43 33386.36 34874.27 29694.60 33169.87 34693.69 31594.46 294
CHOSEN 280x42080.04 32877.97 33486.23 31890.13 33274.53 31372.87 35889.59 31066.38 35076.29 36085.32 35256.96 35495.36 32369.49 34794.72 29988.79 349
thres20085.85 29385.18 29487.88 30494.44 26272.52 32889.08 28186.21 33188.57 17691.44 24788.40 33664.22 33398.00 22768.35 34895.88 27493.12 322
PCF-MVS84.52 1789.12 24387.71 26293.34 16496.06 19685.84 16686.58 32497.31 12768.46 34593.61 19093.89 24687.51 19098.52 18567.85 34998.11 19995.66 267
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet81.22 32081.01 31981.86 33890.92 32470.15 33884.03 34180.25 36270.83 33685.97 32389.78 32267.93 31584.65 36167.44 35091.90 33690.78 343
gg-mvs-nofinetune82.10 31681.02 31885.34 32387.46 35371.04 33394.74 9967.56 36696.44 2179.43 35798.99 645.24 36796.15 30667.18 35192.17 33388.85 348
DSMNet-mixed82.21 31381.56 31284.16 33189.57 33970.00 34190.65 23577.66 36454.99 36383.30 34097.57 5577.89 27790.50 35566.86 35295.54 28091.97 335
test0.0.03 182.48 31181.47 31585.48 32189.70 33673.57 32184.73 33381.64 35783.07 25888.13 30686.61 34562.86 34189.10 35966.24 35390.29 34393.77 311
MIMVSNet87.13 28586.54 28388.89 28796.05 19776.11 30094.39 11388.51 31481.37 27288.27 30496.75 10972.38 30395.52 31765.71 35495.47 28295.03 280
PMMVS281.31 31983.44 30374.92 34590.52 32846.49 36869.19 36085.23 34684.30 24887.95 30894.71 21976.95 28684.36 36264.07 35598.09 20193.89 308
FPMVS84.50 30083.28 30488.16 30096.32 17594.49 1485.76 32685.47 34183.09 25785.20 32694.26 23063.79 33786.58 36063.72 35691.88 33783.40 355
MVS-HIRNet78.83 33180.60 32373.51 34693.07 28847.37 36787.10 30978.00 36368.94 34377.53 35997.26 7671.45 30794.62 33063.28 35788.74 34678.55 360
wuyk23d87.83 26690.79 20578.96 34390.46 33088.63 10592.72 15690.67 30691.65 11098.68 1197.64 5396.06 1677.53 36359.84 35899.41 5270.73 361
GG-mvs-BLEND83.24 33585.06 36271.03 33494.99 9365.55 36774.09 36275.51 36244.57 36894.46 33359.57 35987.54 34984.24 354
PVSNet_070.34 2174.58 33272.96 33579.47 34290.63 32666.24 35273.26 35683.40 35463.67 35778.02 35878.35 36172.53 30289.59 35756.68 36060.05 36482.57 358
MVEpermissive59.87 2373.86 33372.65 33677.47 34487.00 35774.35 31561.37 36260.93 36867.27 34869.69 36486.49 34781.24 25672.33 36456.45 36183.45 35585.74 353
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM81.91 31780.11 32787.31 30993.87 27772.32 33084.02 34293.22 26969.47 34276.13 36189.84 31872.15 30497.23 27553.27 36289.02 34592.37 333
test_method50.44 33448.94 33754.93 34739.68 36912.38 37128.59 36390.09 3086.82 36541.10 36778.41 36054.41 35870.69 36550.12 36351.26 36581.72 359
tmp_tt37.97 33544.33 33818.88 34911.80 37021.54 37063.51 36145.66 3714.23 36651.34 36650.48 36459.08 35122.11 36744.50 36468.35 36313.00 363
DeepMVS_CXcopyleft53.83 34870.38 36864.56 35848.52 37033.01 36465.50 36574.21 36356.19 35646.64 36638.45 36570.07 36250.30 362
test1239.49 33712.01 3401.91 3502.87 3711.30 37282.38 3481.34 3731.36 3672.84 3686.56 3672.45 3730.97 3682.73 3665.56 3663.47 364
testmvs9.02 33811.42 3411.81 3512.77 3721.13 37379.44 3541.90 3721.18 3682.65 3696.80 3661.95 3740.87 3692.62 3673.45 3673.44 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.35 33631.13 3390.00 3520.00 3730.00 3740.00 36495.58 2190.00 3690.00 37091.15 30393.43 750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.56 33910.09 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37090.77 1400.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re7.56 33910.08 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37090.69 3120.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
test_241102_ONE98.51 4586.97 13898.10 4691.85 9597.63 3197.03 9096.48 1198.95 119
save fliter97.46 11788.05 11992.04 18997.08 14487.63 196
test072698.51 4586.69 14595.34 7598.18 3491.85 9597.63 3197.37 6895.58 22
GSMVS94.75 287
test_part298.21 6889.41 9196.72 68
sam_mvs166.64 32294.75 287
sam_mvs66.41 323
MTGPAbinary97.62 99
test_post6.07 36865.74 32795.84 313
patchmatchnet-post91.71 29666.22 32597.59 257
MTMP94.82 9654.62 369
TEST996.45 16489.46 8890.60 23696.92 15579.09 29290.49 26294.39 22791.31 12798.88 126
test_896.37 16689.14 9590.51 23996.89 15879.37 28790.42 26494.36 22991.20 13398.82 136
agg_prior96.20 18488.89 10096.88 15990.21 26798.78 147
test_prior489.91 8290.74 232
test_prior94.61 11395.95 20587.23 13197.36 12298.68 16797.93 155
新几何290.02 256
旧先验196.20 18484.17 18794.82 23895.57 17989.57 16497.89 21596.32 239
原ACMM289.34 274
test22296.95 13885.27 17388.83 28593.61 26265.09 35490.74 25994.85 21284.62 22597.36 23693.91 307
segment_acmp92.14 107
testdata188.96 28388.44 178
test1294.43 12895.95 20586.75 14396.24 19289.76 28189.79 16298.79 14397.95 21297.75 175
plane_prior797.71 9988.68 104
plane_prior697.21 12888.23 11586.93 201
plane_prior495.59 175
plane_prior388.43 11390.35 14193.31 196
plane_prior294.56 10891.74 106
plane_prior197.38 120
plane_prior88.12 11793.01 14888.98 16598.06 204
n20.00 374
nn0.00 374
door-mid92.13 293
test1196.65 173
door91.26 301
HQP5-MVS84.89 177
HQP-NCC96.36 16891.37 21787.16 20388.81 292
ACMP_Plane96.36 16891.37 21787.16 20388.81 292
HQP4-MVS88.81 29298.61 17398.15 133
HQP3-MVS97.31 12797.73 220
HQP2-MVS84.76 223
NP-MVS96.82 14587.10 13493.40 259
ACMMP++_ref98.82 125
ACMMP++99.25 73
Test By Simon90.61 146