OPU-MVS | | | | | 97.30 2 | 99.19 8 | 92.31 3 | 99.12 6 | | | | 98.54 22 | 92.06 3 | 99.84 12 | 99.11 1 | 99.37 1 | 99.74 1 |
|
PC_three_1452 | | | | | | | | | | 91.12 22 | 98.33 2 | 98.42 28 | 92.51 2 | 99.81 21 | 98.96 2 | 99.37 1 | 99.70 3 |
|
patch_mono-2 | | | 95.14 12 | 96.08 7 | 92.33 116 | 98.44 48 | 77.84 235 | 98.43 27 | 97.21 20 | 92.58 11 | 97.68 8 | 97.65 78 | 86.88 24 | 99.83 16 | 98.25 3 | 97.60 74 | 99.33 17 |
|
SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 22 | 99.03 16 | 85.03 61 | 99.12 6 | 96.78 49 | 88.72 54 | 97.79 4 | 98.91 3 | 88.48 16 | 99.82 18 | 98.15 4 | 98.97 17 | 99.74 1 |
|
IU-MVS | | | | | | 99.03 16 | 85.34 49 | | 96.86 44 | 92.05 16 | 98.74 1 | | | | 98.15 4 | 98.97 17 | 99.42 13 |
|
test_241102_TWO | | | | | | | | | 96.78 49 | 88.72 54 | 97.70 6 | 98.91 3 | 87.86 20 | 99.82 18 | 98.15 4 | 99.00 15 | 99.47 9 |
|
MSC_two_6792asdad | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 45 | | | | | 99.81 21 | 98.08 7 | 98.81 25 | 99.43 11 |
|
No_MVS | | | | | 97.14 3 | 99.05 10 | 92.19 4 | | 96.83 45 | | | | | 99.81 21 | 98.08 7 | 98.81 25 | 99.43 11 |
|
DVP-MVS |  | | 95.58 8 | 95.91 9 | 94.57 29 | 99.05 10 | 85.18 54 | 99.06 9 | 96.46 101 | 88.75 52 | 96.69 13 | 98.76 14 | 87.69 21 | 99.76 25 | 97.90 9 | 98.85 22 | 98.77 35 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 95.14 17 | 99.04 15 | 86.14 33 | 99.06 9 | 96.77 55 | | | | | 99.84 12 | 97.90 9 | 98.85 22 | 99.45 10 |
|
DeepPCF-MVS | | 89.82 1 | 94.61 18 | 96.17 5 | 89.91 193 | 97.09 104 | 70.21 321 | 98.99 14 | 96.69 68 | 95.57 1 | 95.08 32 | 99.23 1 | 86.40 29 | 99.87 8 | 97.84 11 | 98.66 34 | 99.65 6 |
|
DPE-MVS |  | | 95.32 10 | 95.55 10 | 94.64 28 | 98.79 25 | 84.87 66 | 97.77 61 | 96.74 60 | 86.11 103 | 96.54 17 | 98.89 7 | 88.39 18 | 99.74 33 | 97.67 12 | 99.05 12 | 99.31 19 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 14 | 99.31 5 | 87.69 21 | 99.06 9 | 97.12 24 | 94.66 3 | 96.79 12 | 98.78 11 | 86.42 28 | 99.95 3 | 97.59 13 | 99.18 7 | 99.00 28 |
|
DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 21 | 99.05 10 | 85.34 49 | 98.13 39 | 96.77 55 | 88.38 61 | 97.70 6 | 98.77 12 | 92.06 3 | 99.84 12 | 97.47 14 | 99.37 1 | 99.70 3 |
|
test_0728_THIRD | | | | | | | | | | 88.38 61 | 96.69 13 | 98.76 14 | 89.64 12 | 99.76 25 | 97.47 14 | 98.84 24 | 99.38 14 |
|
APDe-MVS | | | 94.56 19 | 94.75 16 | 93.96 48 | 98.84 24 | 83.40 92 | 98.04 47 | 96.41 107 | 85.79 111 | 95.00 35 | 98.28 32 | 84.32 40 | 99.18 92 | 97.35 16 | 98.77 29 | 99.28 20 |
|
MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 15 | 97.10 26 | 95.17 2 | 92.11 73 | 98.46 26 | 87.33 23 | 99.97 2 | 97.21 17 | 99.31 4 | 99.63 7 |
|
ETH3 D test6400 | | | 95.56 9 | 95.41 13 | 96.00 9 | 99.02 19 | 89.42 9 | 98.75 17 | 96.80 48 | 87.28 85 | 95.88 23 | 98.95 2 | 85.92 30 | 99.41 67 | 97.15 18 | 98.95 20 | 99.18 25 |
|
CANet | | | 94.89 14 | 94.64 18 | 95.63 12 | 97.55 88 | 88.12 15 | 99.06 9 | 96.39 113 | 94.07 7 | 95.34 28 | 97.80 69 | 76.83 121 | 99.87 8 | 97.08 19 | 97.64 73 | 98.89 31 |
|
dcpmvs_2 | | | 93.10 46 | 93.46 43 | 92.02 128 | 97.77 78 | 79.73 179 | 94.82 237 | 93.86 254 | 86.91 94 | 91.33 88 | 96.76 118 | 85.20 32 | 98.06 145 | 96.90 20 | 97.60 74 | 98.27 69 |
|
PS-MVSNAJ | | | 94.17 27 | 93.52 41 | 96.10 8 | 95.65 130 | 92.35 2 | 98.21 34 | 95.79 152 | 92.42 13 | 96.24 19 | 98.18 35 | 71.04 202 | 99.17 93 | 96.77 21 | 97.39 82 | 96.79 160 |
|
xiu_mvs_v2_base | | | 93.92 35 | 93.26 45 | 95.91 10 | 95.07 146 | 92.02 6 | 98.19 35 | 95.68 157 | 92.06 15 | 96.01 22 | 98.14 40 | 70.83 205 | 98.96 108 | 96.74 22 | 96.57 102 | 96.76 163 |
|
TSAR-MVS + GP. | | | 94.35 23 | 94.50 20 | 93.89 49 | 97.38 98 | 83.04 101 | 98.10 41 | 95.29 182 | 91.57 17 | 93.81 53 | 97.45 87 | 86.64 25 | 99.43 66 | 96.28 23 | 94.01 130 | 99.20 23 |
|
SD-MVS | | | 94.84 15 | 95.02 15 | 94.29 37 | 97.87 76 | 84.61 70 | 97.76 65 | 96.19 130 | 89.59 41 | 96.66 15 | 98.17 39 | 84.33 37 | 99.60 51 | 96.09 24 | 98.50 41 | 98.66 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ETH3D-3000-0.1 | | | 94.43 21 | 94.42 24 | 94.45 31 | 97.78 77 | 85.78 40 | 97.98 49 | 96.53 93 | 85.29 125 | 95.45 26 | 98.81 8 | 83.36 47 | 99.38 69 | 96.07 25 | 98.53 37 | 98.19 73 |
|
MSP-MVS | | | 95.62 7 | 96.54 1 | 92.86 95 | 98.31 55 | 80.10 170 | 97.42 94 | 96.78 49 | 92.20 14 | 97.11 11 | 98.29 31 | 93.46 1 | 99.10 100 | 96.01 26 | 99.30 5 | 99.38 14 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
test9_res | | | | | | | | | | | | | | | 96.00 27 | 99.03 13 | 98.31 64 |
|
9.14 | | | | 94.26 29 | | 98.10 66 | | 98.14 36 | 96.52 94 | 84.74 137 | 94.83 39 | 98.80 9 | 82.80 56 | 99.37 73 | 95.95 28 | 98.42 46 | |
|
train_agg | | | 94.28 24 | 94.45 22 | 93.74 54 | 98.64 35 | 83.71 85 | 97.82 57 | 96.65 74 | 84.50 146 | 95.16 29 | 98.09 46 | 84.33 37 | 99.36 75 | 95.91 29 | 98.96 19 | 98.16 76 |
|
SMA-MVS |  | | 94.70 17 | 94.68 17 | 94.76 25 | 98.02 70 | 85.94 37 | 97.47 86 | 96.77 55 | 85.32 122 | 97.92 3 | 98.70 18 | 83.09 52 | 99.84 12 | 95.79 30 | 99.08 10 | 98.49 52 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ETV-MVS | | | 92.72 58 | 92.87 52 | 92.28 119 | 94.54 161 | 81.89 124 | 97.98 49 | 95.21 185 | 89.77 40 | 93.11 61 | 96.83 114 | 77.23 117 | 97.50 172 | 95.74 31 | 95.38 115 | 97.44 134 |
|
agg_prior1 | | | 94.10 30 | 94.31 27 | 93.48 70 | 98.59 39 | 83.13 98 | 97.77 61 | 96.56 88 | 84.38 150 | 94.19 48 | 98.13 41 | 84.66 35 | 99.16 94 | 95.74 31 | 98.74 31 | 98.15 78 |
|
NCCC | | | 95.63 6 | 95.94 8 | 94.69 27 | 99.21 7 | 85.15 59 | 99.16 3 | 96.96 35 | 94.11 6 | 95.59 25 | 98.64 21 | 85.07 33 | 99.91 4 | 95.61 33 | 99.10 9 | 99.00 28 |
|
TSAR-MVS + MP. | | | 94.79 16 | 95.17 14 | 93.64 60 | 97.66 82 | 84.10 78 | 95.85 202 | 96.42 106 | 91.26 21 | 97.49 10 | 96.80 117 | 86.50 27 | 98.49 132 | 95.54 34 | 99.03 13 | 98.33 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ZD-MVS | | | | | | 99.09 9 | 83.22 97 | | 96.60 83 | 82.88 189 | 93.61 56 | 98.06 51 | 82.93 53 | 99.14 96 | 95.51 35 | 98.49 42 | |
|
xxxxxxxxxxxxxcwj | | | 94.38 22 | 94.62 19 | 93.68 58 | 98.24 58 | 83.34 93 | 98.61 23 | 92.69 299 | 91.32 19 | 95.07 33 | 98.74 16 | 82.93 53 | 99.38 69 | 95.42 36 | 98.51 38 | 98.32 61 |
|
SF-MVS | | | 94.17 27 | 94.05 32 | 94.55 30 | 97.56 87 | 85.95 35 | 97.73 67 | 96.43 105 | 84.02 160 | 95.07 33 | 98.74 16 | 82.93 53 | 99.38 69 | 95.42 36 | 98.51 38 | 98.32 61 |
|
testtj | | | 94.09 31 | 94.08 31 | 94.09 45 | 99.28 6 | 83.32 95 | 97.59 76 | 96.61 80 | 83.60 175 | 94.77 41 | 98.46 26 | 82.72 57 | 99.64 47 | 95.29 38 | 98.42 46 | 99.32 18 |
|
ETH3D cwj APD-0.16 | | | 93.91 37 | 93.76 35 | 94.36 34 | 96.70 108 | 85.74 41 | 97.22 101 | 96.41 107 | 83.94 163 | 94.13 51 | 98.69 20 | 83.13 51 | 99.37 73 | 95.25 39 | 98.39 51 | 97.97 98 |
|
test_prior3 | | | 94.03 33 | 94.34 26 | 93.09 84 | 98.68 29 | 81.91 122 | 98.37 29 | 96.40 110 | 86.08 105 | 94.57 43 | 98.02 52 | 83.14 49 | 99.06 102 | 95.05 40 | 98.79 27 | 98.29 66 |
|
test_prior2 | | | | | | | | 98.37 29 | | 86.08 105 | 94.57 43 | 98.02 52 | 83.14 49 | | 95.05 40 | 98.79 27 | |
|
SteuartSystems-ACMMP | | | 94.13 29 | 94.44 23 | 93.20 79 | 95.41 135 | 81.35 139 | 99.02 13 | 96.59 84 | 89.50 42 | 94.18 50 | 98.36 30 | 83.68 45 | 99.45 65 | 94.77 42 | 98.45 44 | 98.81 34 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS++ |  | | 95.32 10 | 95.48 12 | 94.85 23 | 98.62 38 | 86.04 34 | 97.81 59 | 96.93 38 | 92.45 12 | 95.69 24 | 98.50 24 | 85.38 31 | 99.85 10 | 94.75 43 | 99.18 7 | 98.65 44 |
|
PHI-MVS | | | 93.59 40 | 93.63 38 | 93.48 70 | 98.05 69 | 81.76 130 | 98.64 21 | 97.13 23 | 82.60 195 | 94.09 52 | 98.49 25 | 80.35 70 | 99.85 10 | 94.74 44 | 98.62 35 | 98.83 33 |
|
APD-MVS |  | | 93.61 39 | 93.59 39 | 93.69 57 | 98.76 26 | 83.26 96 | 97.21 103 | 96.09 135 | 82.41 197 | 94.65 42 | 98.21 34 | 81.96 62 | 98.81 119 | 94.65 45 | 98.36 54 | 99.01 27 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
lupinMVS | | | 93.87 38 | 93.58 40 | 94.75 26 | 93.00 204 | 88.08 16 | 99.15 4 | 95.50 167 | 91.03 24 | 94.90 36 | 97.66 74 | 78.84 89 | 97.56 164 | 94.64 46 | 97.46 77 | 98.62 46 |
|
agg_prior2 | | | | | | | | | | | | | | | 94.30 47 | 99.00 15 | 98.57 47 |
|
PVSNet_BlendedMVS | | | 90.05 113 | 89.96 105 | 90.33 179 | 97.47 89 | 83.86 81 | 98.02 48 | 96.73 61 | 87.98 70 | 89.53 114 | 89.61 240 | 76.42 128 | 99.57 54 | 94.29 48 | 79.59 239 | 87.57 308 |
|
PVSNet_Blended | | | 93.13 44 | 92.98 50 | 93.57 64 | 97.47 89 | 83.86 81 | 99.32 1 | 96.73 61 | 91.02 25 | 89.53 114 | 96.21 127 | 76.42 128 | 99.57 54 | 94.29 48 | 95.81 113 | 97.29 144 |
|
CS-MVS-test | | | 92.98 49 | 93.67 37 | 90.90 161 | 96.52 110 | 76.87 253 | 98.68 18 | 94.73 209 | 90.36 34 | 94.84 38 | 97.89 62 | 77.94 102 | 97.15 194 | 94.28 50 | 97.80 70 | 98.70 42 |
|
MSLP-MVS++ | | | 94.28 24 | 94.39 25 | 93.97 47 | 98.30 56 | 84.06 79 | 98.64 21 | 96.93 38 | 90.71 27 | 93.08 62 | 98.70 18 | 79.98 76 | 99.21 85 | 94.12 51 | 99.07 11 | 98.63 45 |
|
CHOSEN 280x420 | | | 91.71 78 | 91.85 72 | 91.29 150 | 94.94 151 | 82.69 105 | 87.89 325 | 96.17 131 | 85.94 108 | 87.27 140 | 94.31 174 | 90.27 8 | 95.65 260 | 94.04 52 | 95.86 111 | 95.53 193 |
|
CS-MVS | | | 92.73 56 | 93.48 42 | 90.48 174 | 96.27 113 | 75.93 272 | 98.55 25 | 94.93 196 | 89.32 45 | 94.54 45 | 97.67 73 | 78.91 88 | 97.02 198 | 93.80 53 | 97.32 84 | 98.49 52 |
|
DROMVSNet | | | 91.73 75 | 92.11 69 | 90.58 170 | 93.54 187 | 77.77 237 | 98.07 44 | 94.40 230 | 87.44 81 | 92.99 64 | 97.11 105 | 74.59 166 | 96.87 207 | 93.75 54 | 97.08 89 | 97.11 149 |
|
SR-MVS | | | 92.16 69 | 92.27 64 | 91.83 136 | 98.37 52 | 78.41 213 | 96.67 153 | 95.76 153 | 82.19 201 | 91.97 74 | 98.07 50 | 76.44 127 | 98.64 123 | 93.71 55 | 97.27 85 | 98.45 55 |
|
MVS_111021_HR | | | 93.41 42 | 93.39 44 | 93.47 73 | 97.34 99 | 82.83 104 | 97.56 79 | 98.27 6 | 89.16 48 | 89.71 109 | 97.14 102 | 79.77 78 | 99.56 56 | 93.65 56 | 97.94 66 | 98.02 88 |
|
diffmvs | | | 91.17 92 | 90.74 90 | 92.44 112 | 93.11 203 | 82.50 110 | 96.25 181 | 93.62 269 | 87.79 75 | 90.40 102 | 95.93 132 | 73.44 179 | 97.42 176 | 93.62 57 | 92.55 145 | 97.41 136 |
|
Regformer-1 | | | 94.00 34 | 94.04 33 | 93.87 50 | 98.41 49 | 84.29 74 | 97.43 92 | 97.04 28 | 89.50 42 | 92.75 67 | 98.13 41 | 82.60 59 | 99.26 80 | 93.55 58 | 96.99 91 | 98.06 85 |
|
Regformer-2 | | | 93.92 35 | 94.01 34 | 93.67 59 | 98.41 49 | 83.75 84 | 97.43 92 | 97.00 30 | 89.43 44 | 92.69 68 | 98.13 41 | 82.48 60 | 99.22 83 | 93.51 59 | 96.99 91 | 98.04 86 |
|
ACMMP_NAP | | | 93.46 41 | 93.23 46 | 94.17 42 | 97.16 102 | 84.28 75 | 96.82 141 | 96.65 74 | 86.24 101 | 94.27 47 | 97.99 55 | 77.94 102 | 99.83 16 | 93.39 60 | 98.57 36 | 98.39 58 |
|
VNet | | | 92.11 70 | 91.22 82 | 94.79 24 | 96.91 105 | 86.98 26 | 97.91 52 | 97.96 9 | 86.38 100 | 93.65 55 | 95.74 135 | 70.16 210 | 98.95 111 | 93.39 60 | 88.87 172 | 98.43 56 |
|
canonicalmvs | | | 92.27 68 | 91.22 82 | 95.41 15 | 95.80 125 | 88.31 13 | 97.09 120 | 94.64 217 | 88.49 59 | 92.99 64 | 97.31 94 | 72.68 185 | 98.57 128 | 93.38 62 | 88.58 176 | 99.36 16 |
|
jason | | | 92.73 56 | 92.23 66 | 94.21 41 | 90.50 264 | 87.30 25 | 98.65 20 | 95.09 188 | 90.61 28 | 92.76 66 | 97.13 103 | 75.28 155 | 97.30 183 | 93.32 63 | 96.75 101 | 98.02 88 |
jason: jason. |
MP-MVS-pluss | | | 92.58 64 | 92.35 62 | 93.29 75 | 97.30 100 | 82.53 108 | 96.44 167 | 96.04 139 | 84.68 140 | 89.12 119 | 98.37 29 | 77.48 111 | 99.74 33 | 93.31 64 | 98.38 52 | 97.59 126 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
alignmvs | | | 92.97 50 | 92.26 65 | 95.12 18 | 95.54 132 | 87.77 19 | 98.67 19 | 96.38 114 | 88.04 69 | 93.01 63 | 97.45 87 | 79.20 85 | 98.60 126 | 93.25 65 | 88.76 173 | 98.99 30 |
|
test1172 | | | 91.64 79 | 92.00 71 | 90.54 172 | 98.20 62 | 74.48 285 | 96.45 165 | 95.65 158 | 81.97 205 | 91.63 80 | 98.02 52 | 75.76 140 | 98.61 124 | 93.16 66 | 97.17 87 | 98.52 51 |
|
h-mvs33 | | | 89.30 125 | 88.95 123 | 90.36 177 | 95.07 146 | 76.04 266 | 96.96 133 | 97.11 25 | 90.39 32 | 92.22 71 | 95.10 160 | 74.70 162 | 98.86 116 | 93.14 67 | 65.89 329 | 96.16 179 |
|
hse-mvs2 | | | 88.22 154 | 88.21 131 | 88.25 227 | 93.54 187 | 73.41 291 | 95.41 217 | 95.89 146 | 90.39 32 | 92.22 71 | 94.22 177 | 74.70 162 | 96.66 218 | 93.14 67 | 64.37 334 | 94.69 210 |
|
MVS_111021_LR | | | 91.60 82 | 91.64 78 | 91.47 146 | 95.74 126 | 78.79 204 | 96.15 186 | 96.77 55 | 88.49 59 | 88.64 125 | 97.07 107 | 72.33 188 | 99.19 90 | 93.13 69 | 96.48 103 | 96.43 171 |
|
VDD-MVS | | | 88.28 152 | 87.02 162 | 92.06 126 | 95.09 144 | 80.18 169 | 97.55 80 | 94.45 228 | 83.09 182 | 89.10 120 | 95.92 134 | 47.97 326 | 98.49 132 | 93.08 70 | 86.91 189 | 97.52 131 |
|
DELS-MVS | | | 94.98 13 | 94.49 21 | 96.44 6 | 96.42 111 | 90.59 7 | 99.21 2 | 97.02 29 | 94.40 5 | 91.46 82 | 97.08 106 | 83.32 48 | 99.69 41 | 92.83 71 | 98.70 33 | 99.04 26 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
xiu_mvs_v1_base_debu | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 218 | 87.58 22 | 96.99 127 | 94.87 200 | 87.23 87 | 93.27 57 | 97.56 82 | 57.43 287 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 206 |
|
xiu_mvs_v1_base | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 218 | 87.58 22 | 96.99 127 | 94.87 200 | 87.23 87 | 93.27 57 | 97.56 82 | 57.43 287 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 206 |
|
xiu_mvs_v1_base_debi | | | 90.54 104 | 89.54 114 | 93.55 65 | 92.31 218 | 87.58 22 | 96.99 127 | 94.87 200 | 87.23 87 | 93.27 57 | 97.56 82 | 57.43 287 | 98.32 137 | 92.72 72 | 93.46 138 | 94.74 206 |
|
zzz-MVS | | | 92.74 54 | 92.71 54 | 92.86 95 | 97.90 72 | 80.85 150 | 96.47 162 | 96.33 118 | 87.92 71 | 90.20 104 | 98.18 35 | 76.71 124 | 99.76 25 | 92.57 75 | 98.09 60 | 97.96 99 |
|
MTAPA | | | 92.45 66 | 92.31 63 | 92.86 95 | 97.90 72 | 80.85 150 | 92.88 284 | 96.33 118 | 87.92 71 | 90.20 104 | 98.18 35 | 76.71 124 | 99.76 25 | 92.57 75 | 98.09 60 | 97.96 99 |
|
Regformer-3 | | | 93.19 43 | 93.19 47 | 93.19 80 | 98.10 66 | 83.01 102 | 97.08 122 | 96.98 32 | 88.98 49 | 91.35 87 | 97.89 62 | 80.80 66 | 99.23 81 | 92.30 77 | 95.20 117 | 97.32 140 |
|
DeepC-MVS_fast | | 89.06 2 | 94.48 20 | 94.30 28 | 95.02 19 | 98.86 23 | 85.68 44 | 98.06 45 | 96.64 77 | 93.64 8 | 91.74 79 | 98.54 22 | 80.17 75 | 99.90 5 | 92.28 78 | 98.75 30 | 99.49 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-4 | | | 93.06 47 | 93.12 48 | 92.89 94 | 98.10 66 | 82.20 116 | 97.08 122 | 96.92 40 | 88.87 51 | 91.23 90 | 97.89 62 | 80.57 69 | 99.19 90 | 92.21 79 | 95.20 117 | 97.29 144 |
|
MP-MVS |  | | 92.61 63 | 92.67 57 | 92.42 113 | 98.13 65 | 79.73 179 | 97.33 99 | 96.20 128 | 85.63 114 | 90.53 99 | 97.66 74 | 78.14 100 | 99.70 40 | 92.12 80 | 98.30 57 | 97.85 106 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
APD-MVS_3200maxsize | | | 91.23 91 | 91.35 81 | 90.89 162 | 97.89 74 | 76.35 262 | 96.30 178 | 95.52 166 | 79.82 242 | 91.03 94 | 97.88 65 | 74.70 162 | 98.54 129 | 92.11 81 | 96.89 95 | 97.77 112 |
|
SR-MVS-dyc-post | | | 91.29 89 | 91.45 80 | 90.80 164 | 97.76 80 | 76.03 267 | 96.20 184 | 95.44 171 | 80.56 224 | 90.72 97 | 97.84 66 | 75.76 140 | 98.61 124 | 91.99 82 | 96.79 99 | 97.75 113 |
|
RE-MVS-def | | | | 91.18 85 | | 97.76 80 | 76.03 267 | 96.20 184 | 95.44 171 | 80.56 224 | 90.72 97 | 97.84 66 | 73.36 180 | | 91.99 82 | 96.79 99 | 97.75 113 |
|
DeepC-MVS | | 86.58 3 | 91.53 83 | 91.06 86 | 92.94 92 | 94.52 162 | 81.89 124 | 95.95 194 | 95.98 141 | 90.76 26 | 83.76 175 | 96.76 118 | 73.24 181 | 99.71 37 | 91.67 84 | 96.96 93 | 97.22 147 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
#test# | | | 92.99 48 | 92.99 49 | 92.98 89 | 98.71 27 | 81.12 142 | 97.77 61 | 96.70 65 | 85.75 112 | 91.75 77 | 97.97 59 | 78.47 94 | 99.71 37 | 91.36 85 | 98.41 48 | 98.12 81 |
|
EPNet | | | 94.06 32 | 94.15 30 | 93.76 53 | 97.27 101 | 84.35 72 | 98.29 31 | 97.64 13 | 94.57 4 | 95.36 27 | 96.88 112 | 79.96 77 | 99.12 99 | 91.30 86 | 96.11 106 | 97.82 109 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Effi-MVS+ | | | 90.70 100 | 89.90 108 | 93.09 84 | 93.61 184 | 83.48 90 | 95.20 224 | 92.79 297 | 83.22 179 | 91.82 76 | 95.70 137 | 71.82 193 | 97.48 174 | 91.25 87 | 93.67 135 | 98.32 61 |
|
CP-MVS | | | 92.54 65 | 92.60 59 | 92.34 115 | 98.50 45 | 79.90 173 | 98.40 28 | 96.40 110 | 84.75 136 | 90.48 101 | 98.09 46 | 77.40 112 | 99.21 85 | 91.15 88 | 98.23 59 | 97.92 101 |
|
HFP-MVS | | | 92.89 51 | 92.86 53 | 92.98 89 | 98.71 27 | 81.12 142 | 97.58 77 | 96.70 65 | 85.20 128 | 91.75 77 | 97.97 59 | 78.47 94 | 99.71 37 | 90.95 89 | 98.41 48 | 98.12 81 |
|
ACMMPR | | | 92.69 60 | 92.67 57 | 92.75 99 | 98.66 32 | 80.57 157 | 97.58 77 | 96.69 68 | 85.20 128 | 91.57 81 | 97.92 61 | 77.01 118 | 99.67 45 | 90.95 89 | 98.41 48 | 98.00 93 |
|
HPM-MVS |  | | 91.62 81 | 91.53 79 | 91.89 132 | 97.88 75 | 79.22 191 | 96.99 127 | 95.73 155 | 82.07 202 | 89.50 116 | 97.19 101 | 75.59 144 | 98.93 114 | 90.91 91 | 97.94 66 | 97.54 127 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
casdiffmvs | | | 90.95 96 | 90.39 94 | 92.63 106 | 92.82 209 | 82.53 108 | 96.83 140 | 94.47 226 | 87.69 78 | 88.47 126 | 95.56 143 | 74.04 171 | 97.54 169 | 90.90 92 | 92.74 143 | 97.83 108 |
|
region2R | | | 92.72 58 | 92.70 56 | 92.79 98 | 98.68 29 | 80.53 160 | 97.53 81 | 96.51 95 | 85.22 126 | 91.94 75 | 97.98 57 | 77.26 113 | 99.67 45 | 90.83 93 | 98.37 53 | 98.18 74 |
|
EIA-MVS | | | 91.73 75 | 92.05 70 | 90.78 166 | 94.52 162 | 76.40 261 | 98.06 45 | 95.34 179 | 89.19 47 | 88.90 122 | 97.28 98 | 77.56 109 | 97.73 158 | 90.77 94 | 96.86 98 | 98.20 72 |
|
CSCG | | | 92.02 71 | 91.65 77 | 93.12 82 | 98.53 41 | 80.59 156 | 97.47 86 | 97.18 22 | 77.06 285 | 84.64 163 | 97.98 57 | 83.98 42 | 99.52 58 | 90.72 95 | 97.33 83 | 99.23 22 |
|
ET-MVSNet_ETH3D | | | 90.01 114 | 89.03 119 | 92.95 91 | 94.38 168 | 86.77 28 | 98.14 36 | 96.31 121 | 89.30 46 | 63.33 336 | 96.72 121 | 90.09 10 | 93.63 318 | 90.70 96 | 82.29 229 | 98.46 54 |
|
CLD-MVS | | | 87.97 159 | 87.48 149 | 89.44 202 | 92.16 230 | 80.54 159 | 98.14 36 | 94.92 197 | 91.41 18 | 79.43 221 | 95.40 146 | 62.34 251 | 97.27 186 | 90.60 97 | 82.90 223 | 90.50 241 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
ZNCC-MVS | | | 92.75 53 | 92.60 59 | 93.23 78 | 98.24 58 | 81.82 128 | 97.63 72 | 96.50 97 | 85.00 133 | 91.05 93 | 97.74 71 | 78.38 96 | 99.80 24 | 90.48 98 | 98.34 55 | 98.07 84 |
|
XVS | | | 92.69 60 | 92.71 54 | 92.63 106 | 98.52 42 | 80.29 163 | 97.37 97 | 96.44 103 | 87.04 92 | 91.38 83 | 97.83 68 | 77.24 115 | 99.59 52 | 90.46 99 | 98.07 62 | 98.02 88 |
|
X-MVStestdata | | | 86.26 183 | 84.14 199 | 92.63 106 | 98.52 42 | 80.29 163 | 97.37 97 | 96.44 103 | 87.04 92 | 91.38 83 | 20.73 375 | 77.24 115 | 99.59 52 | 90.46 99 | 98.07 62 | 98.02 88 |
|
baseline | | | 90.76 99 | 90.10 102 | 92.74 100 | 92.90 208 | 82.56 107 | 94.60 241 | 94.56 222 | 87.69 78 | 89.06 121 | 95.67 139 | 73.76 174 | 97.51 171 | 90.43 101 | 92.23 151 | 98.16 76 |
|
test_yl | | | 91.46 84 | 90.53 92 | 94.24 39 | 97.41 93 | 85.18 54 | 98.08 42 | 97.72 10 | 80.94 215 | 89.85 106 | 96.14 128 | 75.61 142 | 98.81 119 | 90.42 102 | 88.56 177 | 98.74 36 |
|
DCV-MVSNet | | | 91.46 84 | 90.53 92 | 94.24 39 | 97.41 93 | 85.18 54 | 98.08 42 | 97.72 10 | 80.94 215 | 89.85 106 | 96.14 128 | 75.61 142 | 98.81 119 | 90.42 102 | 88.56 177 | 98.74 36 |
|
EI-MVSNet-Vis-set | | | 91.84 74 | 91.77 75 | 92.04 127 | 97.60 84 | 81.17 141 | 96.61 154 | 96.87 42 | 88.20 66 | 89.19 118 | 97.55 85 | 78.69 93 | 99.14 96 | 90.29 104 | 90.94 159 | 95.80 186 |
|
HY-MVS | | 84.06 6 | 91.63 80 | 90.37 96 | 95.39 16 | 96.12 118 | 88.25 14 | 90.22 308 | 97.58 14 | 88.33 64 | 90.50 100 | 91.96 206 | 79.26 83 | 99.06 102 | 90.29 104 | 89.07 169 | 98.88 32 |
|
PAPM | | | 92.87 52 | 92.40 61 | 94.30 36 | 92.25 225 | 87.85 18 | 96.40 171 | 96.38 114 | 91.07 23 | 88.72 124 | 96.90 110 | 82.11 61 | 97.37 180 | 90.05 106 | 97.70 72 | 97.67 119 |
|
abl_6 | | | 89.80 116 | 89.71 113 | 90.07 185 | 96.53 109 | 75.52 276 | 94.48 242 | 95.04 191 | 81.12 213 | 89.22 117 | 97.00 108 | 68.83 214 | 98.96 108 | 89.86 107 | 95.27 116 | 95.73 188 |
|
mPP-MVS | | | 91.88 73 | 91.82 73 | 92.07 125 | 98.38 51 | 78.63 207 | 97.29 100 | 96.09 135 | 85.12 130 | 88.45 127 | 97.66 74 | 75.53 145 | 99.68 43 | 89.83 108 | 98.02 65 | 97.88 102 |
|
VDDNet | | | 86.44 180 | 84.51 191 | 92.22 121 | 91.56 245 | 81.83 127 | 97.10 119 | 94.64 217 | 69.50 331 | 87.84 134 | 95.19 153 | 48.01 325 | 97.92 153 | 89.82 109 | 86.92 188 | 96.89 157 |
|
GST-MVS | | | 92.43 67 | 92.22 67 | 93.04 87 | 98.17 63 | 81.64 135 | 97.40 96 | 96.38 114 | 84.71 139 | 90.90 95 | 97.40 92 | 77.55 110 | 99.76 25 | 89.75 110 | 97.74 71 | 97.72 115 |
|
MVS | | | 90.60 103 | 88.64 126 | 96.50 5 | 94.25 170 | 90.53 8 | 93.33 271 | 97.21 20 | 77.59 276 | 78.88 225 | 97.31 94 | 71.52 197 | 99.69 41 | 89.60 111 | 98.03 64 | 99.27 21 |
|
WTY-MVS | | | 92.65 62 | 91.68 76 | 95.56 13 | 96.00 121 | 88.90 12 | 98.23 33 | 97.65 12 | 88.57 57 | 89.82 108 | 97.22 100 | 79.29 81 | 99.06 102 | 89.57 112 | 88.73 174 | 98.73 40 |
|
CPTT-MVS | | | 89.72 118 | 89.87 109 | 89.29 205 | 98.33 54 | 73.30 294 | 97.70 69 | 95.35 178 | 75.68 291 | 87.40 137 | 97.44 90 | 70.43 207 | 98.25 140 | 89.56 113 | 96.90 94 | 96.33 176 |
|
LFMVS | | | 89.27 126 | 87.64 142 | 94.16 44 | 97.16 102 | 85.52 47 | 97.18 107 | 94.66 214 | 79.17 256 | 89.63 112 | 96.57 123 | 55.35 304 | 98.22 141 | 89.52 114 | 89.54 165 | 98.74 36 |
|
EI-MVSNet-UG-set | | | 91.35 88 | 91.22 82 | 91.73 137 | 97.39 95 | 80.68 154 | 96.47 162 | 96.83 45 | 87.92 71 | 88.30 131 | 97.36 93 | 77.84 105 | 99.13 98 | 89.43 115 | 89.45 166 | 95.37 196 |
|
DPM-MVS | | | 96.21 2 | 95.53 11 | 98.26 1 | 96.26 114 | 95.09 1 | 99.15 4 | 96.98 32 | 93.39 9 | 96.45 18 | 98.79 10 | 90.17 9 | 99.99 1 | 89.33 116 | 99.25 6 | 99.70 3 |
|
CDPH-MVS | | | 93.12 45 | 92.91 51 | 93.74 54 | 98.65 34 | 83.88 80 | 97.67 71 | 96.26 123 | 83.00 186 | 93.22 60 | 98.24 33 | 81.31 63 | 99.21 85 | 89.12 117 | 98.74 31 | 98.14 79 |
|
CHOSEN 1792x2688 | | | 91.07 93 | 90.21 99 | 93.64 60 | 95.18 142 | 83.53 89 | 96.26 180 | 96.13 132 | 88.92 50 | 84.90 158 | 93.10 196 | 72.86 183 | 99.62 50 | 88.86 118 | 95.67 114 | 97.79 111 |
|
PGM-MVS | | | 91.93 72 | 91.80 74 | 92.32 118 | 98.27 57 | 79.74 178 | 95.28 219 | 97.27 18 | 83.83 168 | 90.89 96 | 97.78 70 | 76.12 134 | 99.56 56 | 88.82 119 | 97.93 68 | 97.66 120 |
|
PVSNet_Blended_VisFu | | | 91.24 90 | 90.77 89 | 92.66 104 | 95.09 144 | 82.40 112 | 97.77 61 | 95.87 149 | 88.26 65 | 86.39 146 | 93.94 185 | 76.77 122 | 99.27 78 | 88.80 120 | 94.00 131 | 96.31 177 |
|
PMMVS | | | 89.46 122 | 89.92 107 | 88.06 231 | 94.64 157 | 69.57 328 | 96.22 182 | 94.95 195 | 87.27 86 | 91.37 86 | 96.54 124 | 65.88 231 | 97.39 178 | 88.54 121 | 93.89 132 | 97.23 146 |
|
MG-MVS | | | 94.25 26 | 93.72 36 | 95.85 11 | 99.38 3 | 89.35 11 | 97.98 49 | 98.09 8 | 89.99 37 | 92.34 70 | 96.97 109 | 81.30 64 | 98.99 106 | 88.54 121 | 98.88 21 | 99.20 23 |
|
GG-mvs-BLEND | | | | | 93.49 69 | 94.94 151 | 86.26 31 | 81.62 347 | 97.00 30 | | 88.32 130 | 94.30 175 | 91.23 5 | 96.21 232 | 88.49 123 | 97.43 80 | 98.00 93 |
|
nrg030 | | | 86.79 176 | 85.43 176 | 90.87 163 | 88.76 287 | 85.34 49 | 97.06 124 | 94.33 232 | 84.31 152 | 80.45 211 | 91.98 205 | 72.36 187 | 96.36 225 | 88.48 124 | 71.13 282 | 90.93 237 |
|
旧先验2 | | | | | | | | 96.97 132 | | 74.06 304 | 96.10 20 | | | 97.76 157 | 88.38 125 | | |
|
ACMMP |  | | 90.39 108 | 89.97 104 | 91.64 140 | 97.58 86 | 78.21 222 | 96.78 144 | 96.72 63 | 84.73 138 | 84.72 161 | 97.23 99 | 71.22 199 | 99.63 49 | 88.37 126 | 92.41 148 | 97.08 151 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CostFormer | | | 89.08 128 | 88.39 130 | 91.15 154 | 93.13 201 | 79.15 194 | 88.61 319 | 96.11 134 | 83.14 181 | 89.58 113 | 86.93 277 | 83.83 44 | 96.87 207 | 88.22 127 | 85.92 199 | 97.42 135 |
|
PAPR | | | 92.74 54 | 92.17 68 | 94.45 31 | 98.89 22 | 84.87 66 | 97.20 105 | 96.20 128 | 87.73 77 | 88.40 128 | 98.12 44 | 78.71 92 | 99.76 25 | 87.99 128 | 96.28 104 | 98.74 36 |
|
sss | | | 90.87 98 | 89.96 105 | 93.60 63 | 94.15 172 | 83.84 83 | 97.14 113 | 98.13 7 | 85.93 109 | 89.68 110 | 96.09 130 | 71.67 194 | 99.30 77 | 87.69 129 | 89.16 168 | 97.66 120 |
|
BP-MVS | | | | | | | | | | | | | | | 87.67 130 | | |
|
HQP-MVS | | | 87.91 161 | 87.55 147 | 88.98 210 | 92.08 232 | 78.48 209 | 97.63 72 | 94.80 205 | 90.52 29 | 82.30 189 | 94.56 170 | 65.40 235 | 97.32 181 | 87.67 130 | 83.01 220 | 91.13 233 |
|
EPP-MVSNet | | | 89.76 117 | 89.72 112 | 89.87 194 | 93.78 180 | 76.02 269 | 97.22 101 | 96.51 95 | 79.35 250 | 85.11 155 | 95.01 163 | 84.82 34 | 97.10 196 | 87.46 132 | 88.21 181 | 96.50 169 |
|
baseline2 | | | 90.39 108 | 90.21 99 | 90.93 159 | 90.86 258 | 80.99 146 | 95.20 224 | 97.41 15 | 86.03 107 | 80.07 218 | 94.61 169 | 90.58 6 | 97.47 175 | 87.29 133 | 89.86 164 | 94.35 212 |
|
HQP_MVS | | | 87.50 164 | 87.09 160 | 88.74 216 | 91.86 242 | 77.96 229 | 97.18 107 | 94.69 210 | 89.89 38 | 81.33 201 | 94.15 180 | 64.77 240 | 97.30 183 | 87.08 134 | 82.82 224 | 90.96 235 |
|
plane_prior5 | | | | | | | | | 94.69 210 | | | | | 97.30 183 | 87.08 134 | 82.82 224 | 90.96 235 |
|
HyFIR lowres test | | | 89.36 123 | 88.60 127 | 91.63 142 | 94.91 153 | 80.76 153 | 95.60 210 | 95.53 164 | 82.56 196 | 84.03 168 | 91.24 216 | 78.03 101 | 96.81 211 | 87.07 136 | 88.41 179 | 97.32 140 |
|
HPM-MVS_fast | | | 90.38 110 | 90.17 101 | 91.03 157 | 97.61 83 | 77.35 246 | 97.15 112 | 95.48 168 | 79.51 248 | 88.79 123 | 96.90 110 | 71.64 196 | 98.81 119 | 87.01 137 | 97.44 79 | 96.94 153 |
|
cascas | | | 86.50 179 | 84.48 193 | 92.55 109 | 92.64 214 | 85.95 35 | 97.04 126 | 95.07 190 | 75.32 293 | 80.50 209 | 91.02 219 | 54.33 311 | 97.98 147 | 86.79 138 | 87.62 184 | 93.71 222 |
|
bset_n11_16_dypcd | | | 84.35 212 | 82.83 218 | 88.91 211 | 82.54 343 | 82.07 118 | 94.12 256 | 93.47 274 | 85.39 121 | 78.55 228 | 88.98 247 | 62.23 252 | 95.11 287 | 86.75 139 | 73.42 271 | 89.55 260 |
|
PVSNet_0 | | 77.72 15 | 81.70 252 | 78.95 266 | 89.94 192 | 90.77 261 | 76.72 257 | 95.96 193 | 96.95 36 | 85.01 132 | 70.24 307 | 88.53 255 | 52.32 313 | 98.20 142 | 86.68 140 | 44.08 365 | 94.89 202 |
|
gg-mvs-nofinetune | | | 85.48 195 | 82.90 215 | 93.24 77 | 94.51 165 | 85.82 39 | 79.22 351 | 96.97 34 | 61.19 352 | 87.33 139 | 53.01 365 | 90.58 6 | 96.07 234 | 86.07 141 | 97.23 86 | 97.81 110 |
|
gm-plane-assit | | | | | | 92.27 222 | 79.64 182 | | | 84.47 148 | | 95.15 156 | | 97.93 148 | 85.81 142 | | |
|
DP-MVS Recon | | | 91.72 77 | 90.85 87 | 94.34 35 | 99.50 1 | 85.00 63 | 98.51 26 | 95.96 142 | 80.57 223 | 88.08 133 | 97.63 80 | 76.84 120 | 99.89 7 | 85.67 143 | 94.88 121 | 98.13 80 |
|
XVG-OURS-SEG-HR | | | 85.74 191 | 85.16 183 | 87.49 245 | 90.22 268 | 71.45 314 | 91.29 302 | 94.09 244 | 81.37 210 | 83.90 173 | 95.22 150 | 60.30 266 | 97.53 170 | 85.58 144 | 84.42 211 | 93.50 224 |
|
ab-mvs | | | 87.08 168 | 84.94 187 | 93.48 70 | 93.34 195 | 83.67 87 | 88.82 316 | 95.70 156 | 81.18 212 | 84.55 164 | 90.14 236 | 62.72 249 | 98.94 113 | 85.49 145 | 82.54 228 | 97.85 106 |
|
MVSTER | | | 89.25 127 | 88.92 124 | 90.24 181 | 95.98 122 | 84.66 69 | 96.79 143 | 95.36 176 | 87.19 90 | 80.33 213 | 90.61 226 | 90.02 11 | 95.97 238 | 85.38 146 | 78.64 248 | 90.09 251 |
|
RRT_test8_iter05 | | | 87.14 167 | 86.41 168 | 89.32 204 | 94.41 167 | 81.10 144 | 97.06 124 | 95.33 180 | 84.67 141 | 76.27 255 | 90.48 227 | 83.60 46 | 96.33 226 | 85.10 147 | 70.78 285 | 90.53 240 |
|
OMC-MVS | | | 88.80 137 | 88.16 133 | 90.72 167 | 95.30 138 | 77.92 232 | 94.81 238 | 94.51 223 | 86.80 96 | 84.97 157 | 96.85 113 | 67.53 220 | 98.60 126 | 85.08 148 | 87.62 184 | 95.63 190 |
|
mvs_anonymous | | | 88.68 139 | 87.62 144 | 91.86 133 | 94.80 155 | 81.69 134 | 93.53 267 | 94.92 197 | 82.03 203 | 78.87 226 | 90.43 230 | 75.77 139 | 95.34 274 | 85.04 149 | 93.16 141 | 98.55 50 |
|
VPA-MVSNet | | | 85.32 196 | 83.83 201 | 89.77 199 | 90.25 267 | 82.63 106 | 96.36 173 | 97.07 27 | 83.03 185 | 81.21 203 | 89.02 246 | 61.58 261 | 96.31 228 | 85.02 150 | 70.95 284 | 90.36 242 |
|
LCM-MVSNet-Re | | | 83.75 220 | 83.54 208 | 84.39 296 | 93.54 187 | 64.14 344 | 92.51 287 | 84.03 360 | 83.90 166 | 66.14 325 | 86.59 282 | 67.36 222 | 92.68 325 | 84.89 151 | 92.87 142 | 96.35 173 |
|
ECVR-MVS |  | | 88.35 150 | 87.25 154 | 91.65 139 | 93.54 187 | 79.40 186 | 96.56 158 | 90.78 326 | 86.78 97 | 85.57 152 | 95.25 148 | 57.25 291 | 97.56 164 | 84.73 152 | 94.80 122 | 97.98 95 |
|
IB-MVS | | 85.34 4 | 88.67 140 | 87.14 159 | 93.26 76 | 93.12 202 | 84.32 73 | 98.76 16 | 97.27 18 | 87.19 90 | 79.36 222 | 90.45 229 | 83.92 43 | 98.53 130 | 84.41 153 | 69.79 296 | 96.93 154 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CANet_DTU | | | 90.98 94 | 90.04 103 | 93.83 51 | 94.76 156 | 86.23 32 | 96.32 177 | 93.12 292 | 93.11 10 | 93.71 54 | 96.82 116 | 63.08 248 | 99.48 63 | 84.29 154 | 95.12 120 | 95.77 187 |
|
AdaColmap |  | | 88.81 136 | 87.61 145 | 92.39 114 | 99.33 4 | 79.95 171 | 96.70 152 | 95.58 162 | 77.51 277 | 83.05 183 | 96.69 122 | 61.90 260 | 99.72 36 | 84.29 154 | 93.47 137 | 97.50 132 |
|
test2506 | | | 90.96 95 | 90.39 94 | 92.65 105 | 93.54 187 | 82.46 111 | 96.37 172 | 97.35 16 | 86.78 97 | 87.55 136 | 95.25 148 | 77.83 106 | 97.50 172 | 84.07 156 | 94.80 122 | 97.98 95 |
|
ACMP | | 81.66 11 | 84.00 216 | 83.22 212 | 86.33 263 | 91.53 248 | 72.95 299 | 95.91 198 | 93.79 260 | 83.70 172 | 73.79 279 | 92.22 202 | 54.31 312 | 96.89 205 | 83.98 157 | 79.74 238 | 89.16 270 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test1111 | | | 88.11 155 | 87.04 161 | 91.35 147 | 93.15 199 | 78.79 204 | 96.57 156 | 90.78 326 | 86.88 95 | 85.04 156 | 95.20 152 | 57.23 292 | 97.39 178 | 83.88 158 | 94.59 124 | 97.87 104 |
|
OPM-MVS | | | 85.84 188 | 85.10 185 | 88.06 231 | 88.34 293 | 77.83 236 | 95.72 205 | 94.20 236 | 87.89 74 | 80.45 211 | 94.05 182 | 58.57 278 | 97.26 187 | 83.88 158 | 82.76 226 | 89.09 272 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
tpmrst | | | 88.36 149 | 87.38 152 | 91.31 148 | 94.36 169 | 79.92 172 | 87.32 329 | 95.26 184 | 85.32 122 | 88.34 129 | 86.13 293 | 80.60 68 | 96.70 215 | 83.78 160 | 85.34 207 | 97.30 143 |
|
MVSFormer | | | 91.36 87 | 90.57 91 | 93.73 56 | 93.00 204 | 88.08 16 | 94.80 239 | 94.48 224 | 80.74 219 | 94.90 36 | 97.13 103 | 78.84 89 | 95.10 289 | 83.77 161 | 97.46 77 | 98.02 88 |
|
test_djsdf | | | 83.00 235 | 82.45 224 | 84.64 289 | 84.07 338 | 69.78 325 | 94.80 239 | 94.48 224 | 80.74 219 | 75.41 270 | 87.70 265 | 61.32 263 | 95.10 289 | 83.77 161 | 79.76 236 | 89.04 275 |
|
LPG-MVS_test | | | 84.20 215 | 83.49 209 | 86.33 263 | 90.88 256 | 73.06 297 | 95.28 219 | 94.13 240 | 82.20 199 | 76.31 252 | 93.20 193 | 54.83 309 | 96.95 201 | 83.72 163 | 80.83 232 | 88.98 278 |
|
LGP-MVS_train | | | | | 86.33 263 | 90.88 256 | 73.06 297 | | 94.13 240 | 82.20 199 | 76.31 252 | 93.20 193 | 54.83 309 | 96.95 201 | 83.72 163 | 80.83 232 | 88.98 278 |
|
XVG-OURS | | | 85.18 198 | 84.38 195 | 87.59 240 | 90.42 266 | 71.73 311 | 91.06 305 | 94.07 245 | 82.00 204 | 83.29 179 | 95.08 161 | 56.42 298 | 97.55 166 | 83.70 165 | 83.42 216 | 93.49 225 |
|
MAR-MVS | | | 90.63 102 | 90.22 98 | 91.86 133 | 98.47 47 | 78.20 223 | 97.18 107 | 96.61 80 | 83.87 167 | 88.18 132 | 98.18 35 | 68.71 215 | 99.75 31 | 83.66 166 | 97.15 88 | 97.63 123 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Effi-MVS+-dtu | | | 84.61 207 | 84.90 189 | 83.72 303 | 91.96 238 | 63.14 348 | 94.95 234 | 93.34 283 | 85.57 115 | 79.79 219 | 87.12 274 | 61.99 257 | 95.61 264 | 83.55 167 | 85.83 201 | 92.41 229 |
|
mvs-test1 | | | 86.83 174 | 87.17 156 | 85.81 272 | 91.96 238 | 65.24 341 | 97.90 54 | 93.34 283 | 85.57 115 | 84.51 165 | 95.14 157 | 61.99 257 | 97.19 190 | 83.55 167 | 90.55 161 | 95.00 201 |
|
AUN-MVS | | | 86.25 184 | 85.57 174 | 88.26 226 | 93.57 186 | 73.38 292 | 95.45 215 | 95.88 147 | 83.94 163 | 85.47 153 | 94.21 178 | 73.70 177 | 96.67 217 | 83.54 169 | 64.41 333 | 94.73 209 |
|
testdata | | | | | 90.13 184 | 95.92 123 | 74.17 288 | | 96.49 100 | 73.49 309 | 94.82 40 | 97.99 55 | 78.80 91 | 97.93 148 | 83.53 170 | 97.52 76 | 98.29 66 |
|
1314 | | | 88.94 131 | 87.20 155 | 94.17 42 | 93.21 196 | 85.73 42 | 93.33 271 | 96.64 77 | 82.89 188 | 75.98 260 | 96.36 125 | 66.83 227 | 99.39 68 | 83.52 171 | 96.02 109 | 97.39 138 |
|
CDS-MVSNet | | | 89.50 121 | 88.96 122 | 91.14 155 | 91.94 241 | 80.93 148 | 97.09 120 | 95.81 151 | 84.26 155 | 84.72 161 | 94.20 179 | 80.31 71 | 95.64 261 | 83.37 172 | 88.96 171 | 96.85 159 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RRT_MVS | | | 86.89 171 | 85.96 171 | 89.68 201 | 95.01 150 | 84.13 77 | 96.33 176 | 94.98 194 | 84.20 157 | 80.10 217 | 92.07 204 | 70.52 206 | 95.01 293 | 83.30 173 | 77.14 257 | 89.91 255 |
|
PAPM_NR | | | 91.46 84 | 90.82 88 | 93.37 74 | 98.50 45 | 81.81 129 | 95.03 233 | 96.13 132 | 84.65 142 | 86.10 150 | 97.65 78 | 79.24 84 | 99.75 31 | 83.20 174 | 96.88 96 | 98.56 48 |
|
PS-MVSNAJss | | | 84.91 202 | 84.30 196 | 86.74 257 | 85.89 319 | 74.40 287 | 94.95 234 | 94.16 239 | 83.93 165 | 76.45 250 | 90.11 237 | 71.04 202 | 95.77 251 | 83.16 175 | 79.02 245 | 90.06 253 |
|
MVS_Test | | | 90.29 111 | 89.18 118 | 93.62 62 | 95.23 139 | 84.93 64 | 94.41 245 | 94.66 214 | 84.31 152 | 90.37 103 | 91.02 219 | 75.13 157 | 97.82 155 | 83.11 176 | 94.42 126 | 98.12 81 |
|
VPNet | | | 84.69 206 | 82.92 214 | 90.01 187 | 89.01 286 | 83.45 91 | 96.71 150 | 95.46 169 | 85.71 113 | 79.65 220 | 92.18 203 | 56.66 296 | 96.01 237 | 83.05 177 | 67.84 316 | 90.56 239 |
|
3Dnovator+ | | 82.88 8 | 89.63 120 | 87.85 137 | 94.99 20 | 94.49 166 | 86.76 29 | 97.84 56 | 95.74 154 | 86.10 104 | 75.47 269 | 96.02 131 | 65.00 239 | 99.51 61 | 82.91 178 | 97.07 90 | 98.72 41 |
|
TAMVS | | | 88.48 145 | 87.79 139 | 90.56 171 | 91.09 253 | 79.18 192 | 96.45 165 | 95.88 147 | 83.64 173 | 83.12 181 | 93.33 192 | 75.94 137 | 95.74 256 | 82.40 179 | 88.27 180 | 96.75 164 |
|
baseline1 | | | 88.85 135 | 87.49 148 | 92.93 93 | 95.21 141 | 86.85 27 | 95.47 214 | 94.61 219 | 87.29 84 | 83.11 182 | 94.99 164 | 80.70 67 | 96.89 205 | 82.28 180 | 73.72 269 | 95.05 200 |
|
jajsoiax | | | 82.12 248 | 81.15 241 | 85.03 283 | 84.19 336 | 70.70 317 | 94.22 254 | 93.95 248 | 83.07 183 | 73.48 281 | 89.75 238 | 49.66 321 | 95.37 273 | 82.24 181 | 79.76 236 | 89.02 276 |
|
mvs_tets | | | 81.74 251 | 80.71 246 | 84.84 284 | 84.22 335 | 70.29 320 | 93.91 259 | 93.78 261 | 82.77 191 | 73.37 282 | 89.46 242 | 47.36 330 | 95.31 277 | 81.99 182 | 79.55 241 | 88.92 282 |
|
3Dnovator | | 82.32 10 | 89.33 124 | 87.64 142 | 94.42 33 | 93.73 183 | 85.70 43 | 97.73 67 | 96.75 59 | 86.73 99 | 76.21 257 | 95.93 132 | 62.17 253 | 99.68 43 | 81.67 183 | 97.81 69 | 97.88 102 |
|
TESTMET0.1,1 | | | 89.83 115 | 89.34 117 | 91.31 148 | 92.54 216 | 80.19 168 | 97.11 116 | 96.57 86 | 86.15 102 | 86.85 145 | 91.83 210 | 79.32 80 | 96.95 201 | 81.30 184 | 92.35 149 | 96.77 162 |
|
API-MVS | | | 90.18 112 | 88.97 121 | 93.80 52 | 98.66 32 | 82.95 103 | 97.50 85 | 95.63 161 | 75.16 295 | 86.31 147 | 97.69 72 | 72.49 186 | 99.90 5 | 81.26 185 | 96.07 107 | 98.56 48 |
|
test-LLR | | | 88.48 145 | 87.98 135 | 89.98 189 | 92.26 223 | 77.23 248 | 97.11 116 | 95.96 142 | 83.76 170 | 86.30 148 | 91.38 213 | 72.30 189 | 96.78 213 | 80.82 186 | 91.92 153 | 95.94 183 |
|
test-mter | | | 88.95 130 | 88.60 127 | 89.98 189 | 92.26 223 | 77.23 248 | 97.11 116 | 95.96 142 | 85.32 122 | 86.30 148 | 91.38 213 | 76.37 130 | 96.78 213 | 80.82 186 | 91.92 153 | 95.94 183 |
|
miper_enhance_ethall | | | 85.95 187 | 85.20 180 | 88.19 230 | 94.85 154 | 79.76 175 | 96.00 191 | 94.06 246 | 82.98 187 | 77.74 235 | 88.76 250 | 79.42 79 | 95.46 270 | 80.58 188 | 72.42 277 | 89.36 266 |
|
thisisatest0515 | | | 90.95 96 | 90.26 97 | 93.01 88 | 94.03 178 | 84.27 76 | 97.91 52 | 96.67 70 | 83.18 180 | 86.87 144 | 95.51 144 | 88.66 15 | 97.85 154 | 80.46 189 | 89.01 170 | 96.92 156 |
|
114514_t | | | 88.79 138 | 87.57 146 | 92.45 111 | 98.21 61 | 81.74 131 | 96.99 127 | 95.45 170 | 75.16 295 | 82.48 186 | 95.69 138 | 68.59 216 | 98.50 131 | 80.33 190 | 95.18 119 | 97.10 150 |
|
PVSNet | | 82.34 9 | 89.02 129 | 87.79 139 | 92.71 102 | 95.49 133 | 81.50 137 | 97.70 69 | 97.29 17 | 87.76 76 | 85.47 153 | 95.12 159 | 56.90 293 | 98.90 115 | 80.33 190 | 94.02 129 | 97.71 117 |
|
tpm2 | | | 87.35 166 | 86.26 169 | 90.62 169 | 92.93 207 | 78.67 206 | 88.06 324 | 95.99 140 | 79.33 251 | 87.40 137 | 86.43 288 | 80.28 72 | 96.40 223 | 80.23 192 | 85.73 203 | 96.79 160 |
|
BH-w/o | | | 88.24 153 | 87.47 150 | 90.54 172 | 95.03 149 | 78.54 208 | 97.41 95 | 93.82 256 | 84.08 158 | 78.23 232 | 94.51 172 | 69.34 213 | 97.21 188 | 80.21 193 | 94.58 125 | 95.87 185 |
|
UGNet | | | 87.73 162 | 86.55 167 | 91.27 151 | 95.16 143 | 79.11 195 | 96.35 174 | 96.23 125 | 88.14 67 | 87.83 135 | 90.48 227 | 50.65 316 | 99.09 101 | 80.13 194 | 94.03 128 | 95.60 191 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
æ— å…ˆéªŒ | | | | | | | | 96.87 138 | 96.78 49 | 77.39 278 | | | | 99.52 58 | 79.95 195 | | 98.43 56 |
|
1121 | | | 90.66 101 | 89.82 110 | 93.16 81 | 97.39 95 | 81.71 133 | 93.33 271 | 96.66 73 | 74.45 301 | 91.38 83 | 97.55 85 | 79.27 82 | 99.52 58 | 79.95 195 | 98.43 45 | 98.26 70 |
|
cl22 | | | 85.11 199 | 84.17 198 | 87.92 233 | 95.06 148 | 78.82 201 | 95.51 212 | 94.22 235 | 79.74 244 | 76.77 245 | 87.92 263 | 75.96 136 | 95.68 257 | 79.93 197 | 72.42 277 | 89.27 267 |
|
原ACMM1 | | | | | 91.22 153 | 97.77 78 | 78.10 225 | | 96.61 80 | 81.05 214 | 91.28 89 | 97.42 91 | 77.92 104 | 98.98 107 | 79.85 198 | 98.51 38 | 96.59 167 |
|
FIs | | | 86.73 178 | 86.10 170 | 88.61 218 | 90.05 272 | 80.21 167 | 96.14 187 | 96.95 36 | 85.56 118 | 78.37 231 | 92.30 201 | 76.73 123 | 95.28 278 | 79.51 199 | 79.27 242 | 90.35 243 |
|
Anonymous202405211 | | | 84.41 211 | 81.93 230 | 91.85 135 | 96.78 107 | 78.41 213 | 97.44 88 | 91.34 316 | 70.29 327 | 84.06 167 | 94.26 176 | 41.09 348 | 98.96 108 | 79.46 200 | 82.65 227 | 98.17 75 |
|
test_part1 | | | 84.72 204 | 82.85 216 | 90.34 178 | 95.73 128 | 84.79 68 | 96.75 147 | 94.10 243 | 79.05 262 | 75.97 261 | 89.51 241 | 67.69 217 | 95.94 242 | 79.34 201 | 67.50 319 | 90.30 246 |
|
anonymousdsp | | | 80.98 262 | 79.97 258 | 84.01 297 | 81.73 345 | 70.44 319 | 92.49 288 | 93.58 272 | 77.10 284 | 72.98 288 | 86.31 290 | 57.58 286 | 94.90 294 | 79.32 202 | 78.63 250 | 86.69 320 |
|
ACMM | | 80.70 13 | 83.72 221 | 82.85 216 | 86.31 266 | 91.19 251 | 72.12 304 | 95.88 199 | 94.29 233 | 80.44 227 | 77.02 242 | 91.96 206 | 55.24 305 | 97.14 195 | 79.30 203 | 80.38 234 | 89.67 258 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240529 | | | 83.15 230 | 80.60 248 | 90.80 164 | 95.74 126 | 78.27 217 | 96.81 142 | 94.92 197 | 60.10 357 | 81.89 198 | 92.54 200 | 45.82 333 | 98.82 118 | 79.25 204 | 78.32 253 | 95.31 198 |
|
UniMVSNet_NR-MVSNet | | | 85.49 194 | 84.59 190 | 88.21 229 | 89.44 283 | 79.36 187 | 96.71 150 | 96.41 107 | 85.22 126 | 78.11 233 | 90.98 221 | 76.97 119 | 95.14 285 | 79.14 205 | 68.30 310 | 90.12 249 |
|
DU-MVS | | | 84.57 208 | 83.33 211 | 88.28 225 | 88.76 287 | 79.36 187 | 96.43 169 | 95.41 175 | 85.42 119 | 78.11 233 | 90.82 222 | 67.61 218 | 95.14 285 | 79.14 205 | 68.30 310 | 90.33 244 |
|
XXY-MVS | | | 83.84 218 | 82.00 229 | 89.35 203 | 87.13 304 | 81.38 138 | 95.72 205 | 94.26 234 | 80.15 236 | 75.92 263 | 90.63 225 | 61.96 259 | 96.52 220 | 78.98 207 | 73.28 275 | 90.14 248 |
|
Vis-MVSNet (Re-imp) | | | 88.88 134 | 88.87 125 | 88.91 211 | 93.89 179 | 74.43 286 | 96.93 136 | 94.19 237 | 84.39 149 | 83.22 180 | 95.67 139 | 78.24 98 | 94.70 299 | 78.88 208 | 94.40 127 | 97.61 125 |
|
miper_ehance_all_eth | | | 84.57 208 | 83.60 207 | 87.50 244 | 92.64 214 | 78.25 218 | 95.40 218 | 93.47 274 | 79.28 254 | 76.41 251 | 87.64 266 | 76.53 126 | 95.24 280 | 78.58 209 | 72.42 277 | 89.01 277 |
|
UniMVSNet (Re) | | | 85.31 197 | 84.23 197 | 88.55 219 | 89.75 275 | 80.55 158 | 96.72 148 | 96.89 41 | 85.42 119 | 78.40 230 | 88.93 248 | 75.38 151 | 95.52 268 | 78.58 209 | 68.02 313 | 89.57 259 |
|
IS-MVSNet | | | 88.67 140 | 88.16 133 | 90.20 183 | 93.61 184 | 76.86 254 | 96.77 146 | 93.07 293 | 84.02 160 | 83.62 176 | 95.60 142 | 74.69 165 | 96.24 231 | 78.43 211 | 93.66 136 | 97.49 133 |
|
thisisatest0530 | | | 89.65 119 | 89.02 120 | 91.53 144 | 93.46 193 | 80.78 152 | 96.52 159 | 96.67 70 | 81.69 208 | 83.79 174 | 94.90 165 | 88.85 14 | 97.68 159 | 77.80 212 | 87.49 187 | 96.14 180 |
|
v2v482 | | | 83.46 224 | 81.86 231 | 88.25 227 | 86.19 313 | 79.65 181 | 96.34 175 | 94.02 247 | 81.56 209 | 77.32 238 | 88.23 258 | 65.62 232 | 96.03 235 | 77.77 213 | 69.72 298 | 89.09 272 |
|
V42 | | | 83.04 233 | 81.53 236 | 87.57 242 | 86.27 312 | 79.09 197 | 95.87 200 | 94.11 242 | 80.35 231 | 77.22 240 | 86.79 280 | 65.32 237 | 96.02 236 | 77.74 214 | 70.14 290 | 87.61 307 |
|
GA-MVS | | | 85.79 190 | 84.04 200 | 91.02 158 | 89.47 282 | 80.27 165 | 96.90 137 | 94.84 203 | 85.57 115 | 80.88 205 | 89.08 244 | 56.56 297 | 96.47 222 | 77.72 215 | 85.35 206 | 96.34 174 |
|
PLC |  | 83.97 7 | 88.00 158 | 87.38 152 | 89.83 196 | 98.02 70 | 76.46 259 | 97.16 111 | 94.43 229 | 79.26 255 | 81.98 196 | 96.28 126 | 69.36 212 | 99.27 78 | 77.71 216 | 92.25 150 | 93.77 221 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
1112_ss | | | 88.60 143 | 87.47 150 | 92.00 129 | 93.21 196 | 80.97 147 | 96.47 162 | 92.46 301 | 83.64 173 | 80.86 206 | 97.30 96 | 80.24 73 | 97.62 161 | 77.60 217 | 85.49 204 | 97.40 137 |
|
Vis-MVSNet |  | | 88.67 140 | 87.82 138 | 91.24 152 | 92.68 210 | 78.82 201 | 96.95 134 | 93.85 255 | 87.55 80 | 87.07 142 | 95.13 158 | 63.43 246 | 97.21 188 | 77.58 218 | 96.15 105 | 97.70 118 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
c3_l | | | 83.80 219 | 82.65 221 | 87.25 251 | 92.10 231 | 77.74 239 | 95.25 222 | 93.04 294 | 78.58 266 | 76.01 259 | 87.21 273 | 75.25 156 | 95.11 287 | 77.54 219 | 68.89 304 | 88.91 283 |
|
Test_1112_low_res | | | 88.03 157 | 86.73 165 | 91.94 131 | 93.15 199 | 80.88 149 | 96.44 167 | 92.41 302 | 83.59 176 | 80.74 208 | 91.16 217 | 80.18 74 | 97.59 162 | 77.48 220 | 85.40 205 | 97.36 139 |
|
æ–°å‡ ä½•1 | | | | | 93.12 82 | 97.44 91 | 81.60 136 | | 96.71 64 | 74.54 300 | 91.22 91 | 97.57 81 | 79.13 86 | 99.51 61 | 77.40 221 | 98.46 43 | 98.26 70 |
|
FC-MVSNet-test | | | 85.96 186 | 85.39 177 | 87.66 238 | 89.38 284 | 78.02 226 | 95.65 209 | 96.87 42 | 85.12 130 | 77.34 237 | 91.94 208 | 76.28 132 | 94.74 298 | 77.09 222 | 78.82 246 | 90.21 247 |
|
Patchmatch-RL test | | | 76.65 296 | 74.01 303 | 84.55 291 | 77.37 359 | 64.23 343 | 78.49 355 | 82.84 364 | 78.48 267 | 64.63 331 | 73.40 355 | 76.05 135 | 91.70 338 | 76.99 223 | 57.84 346 | 97.72 115 |
|
IterMVS-LS | | | 83.93 217 | 82.80 219 | 87.31 249 | 91.46 249 | 77.39 245 | 95.66 208 | 93.43 277 | 80.44 227 | 75.51 268 | 87.26 271 | 73.72 175 | 95.16 284 | 76.99 223 | 70.72 287 | 89.39 261 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 85.80 189 | 85.20 180 | 87.59 240 | 91.55 246 | 77.41 244 | 95.13 227 | 95.36 176 | 80.43 229 | 80.33 213 | 94.71 167 | 73.72 175 | 95.97 238 | 76.96 225 | 78.64 248 | 89.39 261 |
|
eth_miper_zixun_eth | | | 83.12 231 | 82.01 228 | 86.47 262 | 91.85 244 | 74.80 281 | 94.33 248 | 93.18 289 | 79.11 257 | 75.74 267 | 87.25 272 | 72.71 184 | 95.32 276 | 76.78 226 | 67.13 323 | 89.27 267 |
|
Fast-Effi-MVS+ | | | 87.93 160 | 86.94 164 | 90.92 160 | 94.04 176 | 79.16 193 | 98.26 32 | 93.72 265 | 81.29 211 | 83.94 172 | 92.90 197 | 69.83 211 | 96.68 216 | 76.70 227 | 91.74 155 | 96.93 154 |
|
CMPMVS |  | 54.94 21 | 75.71 302 | 74.56 297 | 79.17 331 | 79.69 351 | 55.98 362 | 89.59 310 | 93.30 285 | 60.28 355 | 53.85 359 | 89.07 245 | 47.68 329 | 96.33 226 | 76.55 228 | 81.02 231 | 85.22 335 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MDTV_nov1_ep13_2view | | | | | | | 81.74 131 | 86.80 332 | | 80.65 221 | 85.65 151 | | 74.26 168 | | 76.52 229 | | 96.98 152 |
|
testdata2 | | | | | | | | | | | | | | 99.48 63 | 76.45 230 | | |
|
D2MVS | | | 82.67 239 | 81.55 235 | 86.04 270 | 87.77 299 | 76.47 258 | 95.21 223 | 96.58 85 | 82.66 194 | 70.26 306 | 85.46 302 | 60.39 265 | 95.80 250 | 76.40 231 | 79.18 243 | 85.83 332 |
|
UniMVSNet_ETH3D | | | 80.86 263 | 78.75 267 | 87.22 252 | 86.31 310 | 72.02 305 | 91.95 293 | 93.76 264 | 73.51 307 | 75.06 273 | 90.16 235 | 43.04 342 | 95.66 258 | 76.37 232 | 78.55 251 | 93.98 218 |
|
DWT-MVSNet_test | | | 90.52 107 | 89.80 111 | 92.70 103 | 95.73 128 | 82.20 116 | 93.69 262 | 96.55 90 | 88.34 63 | 87.04 143 | 95.34 147 | 86.53 26 | 97.55 166 | 76.32 233 | 88.66 175 | 98.34 59 |
|
tpm | | | 85.55 193 | 84.47 194 | 88.80 215 | 90.19 269 | 75.39 278 | 88.79 317 | 94.69 210 | 84.83 135 | 83.96 171 | 85.21 305 | 78.22 99 | 94.68 300 | 76.32 233 | 78.02 255 | 96.34 174 |
|
BH-untuned | | | 86.95 170 | 85.94 172 | 89.99 188 | 94.52 162 | 77.46 243 | 96.78 144 | 93.37 282 | 81.80 206 | 76.62 248 | 93.81 189 | 66.64 228 | 97.02 198 | 76.06 235 | 93.88 133 | 95.48 194 |
|
tttt0517 | | | 88.57 144 | 88.19 132 | 89.71 200 | 93.00 204 | 75.99 270 | 95.67 207 | 96.67 70 | 80.78 218 | 81.82 199 | 94.40 173 | 88.97 13 | 97.58 163 | 76.05 236 | 86.31 193 | 95.57 192 |
|
XVG-ACMP-BASELINE | | | 79.38 275 | 77.90 272 | 83.81 299 | 84.98 330 | 67.14 338 | 89.03 315 | 93.18 289 | 80.26 235 | 72.87 289 | 88.15 260 | 38.55 351 | 96.26 229 | 76.05 236 | 78.05 254 | 88.02 298 |
|
UA-Net | | | 88.92 132 | 88.48 129 | 90.24 181 | 94.06 175 | 77.18 250 | 93.04 280 | 94.66 214 | 87.39 83 | 91.09 92 | 93.89 186 | 74.92 160 | 98.18 144 | 75.83 238 | 91.43 156 | 95.35 197 |
|
WR-MVS | | | 84.32 213 | 82.96 213 | 88.41 221 | 89.38 284 | 80.32 162 | 96.59 155 | 96.25 124 | 83.97 162 | 76.63 247 | 90.36 231 | 67.53 220 | 94.86 296 | 75.82 239 | 70.09 294 | 90.06 253 |
|
Baseline_NR-MVSNet | | | 81.22 259 | 80.07 256 | 84.68 287 | 85.32 327 | 75.12 280 | 96.48 161 | 88.80 341 | 76.24 289 | 77.28 239 | 86.40 289 | 67.61 218 | 94.39 305 | 75.73 240 | 66.73 327 | 84.54 339 |
|
v148 | | | 82.41 245 | 80.89 242 | 86.99 255 | 86.18 314 | 76.81 255 | 96.27 179 | 93.82 256 | 80.49 226 | 75.28 271 | 86.11 294 | 67.32 223 | 95.75 253 | 75.48 241 | 67.03 325 | 88.42 291 |
|
pmmvs4 | | | 82.54 241 | 80.79 243 | 87.79 235 | 86.11 315 | 80.49 161 | 93.55 266 | 93.18 289 | 77.29 280 | 73.35 283 | 89.40 243 | 65.26 238 | 95.05 292 | 75.32 242 | 73.61 270 | 87.83 301 |
|
v1144 | | | 82.90 236 | 81.27 240 | 87.78 236 | 86.29 311 | 79.07 198 | 96.14 187 | 93.93 249 | 80.05 238 | 77.38 236 | 86.80 279 | 65.50 233 | 95.93 244 | 75.21 243 | 70.13 291 | 88.33 293 |
|
Fast-Effi-MVS+-dtu | | | 83.33 226 | 82.60 222 | 85.50 278 | 89.55 280 | 69.38 329 | 96.09 190 | 91.38 313 | 82.30 198 | 75.96 262 | 91.41 212 | 56.71 294 | 95.58 266 | 75.13 244 | 84.90 209 | 91.54 231 |
|
TR-MVS | | | 86.30 182 | 84.93 188 | 90.42 175 | 94.63 158 | 77.58 241 | 96.57 156 | 93.82 256 | 80.30 232 | 82.42 188 | 95.16 155 | 58.74 277 | 97.55 166 | 74.88 245 | 87.82 183 | 96.13 181 |
|
NR-MVSNet | | | 83.35 225 | 81.52 237 | 88.84 213 | 88.76 287 | 81.31 140 | 94.45 244 | 95.16 186 | 84.65 142 | 67.81 315 | 90.82 222 | 70.36 208 | 94.87 295 | 74.75 246 | 66.89 326 | 90.33 244 |
|
CNLPA | | | 86.96 169 | 85.37 178 | 91.72 138 | 97.59 85 | 79.34 189 | 97.21 103 | 91.05 321 | 74.22 302 | 78.90 224 | 96.75 120 | 67.21 224 | 98.95 111 | 74.68 247 | 90.77 160 | 96.88 158 |
|
cl____ | | | 83.27 227 | 82.12 226 | 86.74 257 | 92.20 226 | 75.95 271 | 95.11 229 | 93.27 286 | 78.44 269 | 74.82 274 | 87.02 276 | 74.19 169 | 95.19 282 | 74.67 248 | 69.32 300 | 89.09 272 |
|
DIV-MVS_self_test | | | 83.27 227 | 82.12 226 | 86.74 257 | 92.19 227 | 75.92 273 | 95.11 229 | 93.26 287 | 78.44 269 | 74.81 275 | 87.08 275 | 74.19 169 | 95.19 282 | 74.66 249 | 69.30 301 | 89.11 271 |
|
TranMVSNet+NR-MVSNet | | | 83.24 229 | 81.71 233 | 87.83 234 | 87.71 300 | 78.81 203 | 96.13 189 | 94.82 204 | 84.52 145 | 76.18 258 | 90.78 224 | 64.07 243 | 94.60 301 | 74.60 250 | 66.59 328 | 90.09 251 |
|
Anonymous20231211 | | | 79.72 271 | 77.19 277 | 87.33 247 | 95.59 131 | 77.16 251 | 95.18 226 | 94.18 238 | 59.31 359 | 72.57 292 | 86.20 292 | 47.89 327 | 95.66 258 | 74.53 251 | 69.24 302 | 89.18 269 |
|
CVMVSNet | | | 84.83 203 | 85.57 174 | 82.63 314 | 91.55 246 | 60.38 355 | 95.13 227 | 95.03 192 | 80.60 222 | 82.10 195 | 94.71 167 | 66.40 230 | 90.19 350 | 74.30 252 | 90.32 162 | 97.31 142 |
|
v144192 | | | 82.43 242 | 80.73 245 | 87.54 243 | 85.81 320 | 78.22 219 | 95.98 192 | 93.78 261 | 79.09 258 | 77.11 241 | 86.49 284 | 64.66 242 | 95.91 245 | 74.20 253 | 69.42 299 | 88.49 287 |
|
pmmvs5 | | | 81.34 257 | 79.54 261 | 86.73 260 | 85.02 329 | 76.91 252 | 96.22 182 | 91.65 311 | 77.65 275 | 73.55 280 | 88.61 252 | 55.70 302 | 94.43 304 | 74.12 254 | 73.35 274 | 88.86 284 |
|
test_post1 | | | | | | | | 85.88 339 | | | | 30.24 374 | 73.77 173 | 95.07 291 | 73.89 255 | | |
|
SCA | | | 85.63 192 | 83.64 205 | 91.60 143 | 92.30 221 | 81.86 126 | 92.88 284 | 95.56 163 | 84.85 134 | 82.52 185 | 85.12 309 | 58.04 282 | 95.39 271 | 73.89 255 | 87.58 186 | 97.54 127 |
|
v8 | | | 81.88 250 | 80.06 257 | 87.32 248 | 86.63 307 | 79.04 199 | 94.41 245 | 93.65 268 | 78.77 264 | 73.19 286 | 85.57 299 | 66.87 226 | 95.81 249 | 73.84 257 | 67.61 318 | 87.11 315 |
|
miper_lstm_enhance | | | 81.66 254 | 80.66 247 | 84.67 288 | 91.19 251 | 71.97 307 | 91.94 294 | 93.19 288 | 77.86 273 | 72.27 294 | 85.26 303 | 73.46 178 | 93.42 320 | 73.71 258 | 67.05 324 | 88.61 285 |
|
GeoE | | | 86.36 181 | 85.20 180 | 89.83 196 | 93.17 198 | 76.13 264 | 97.53 81 | 92.11 304 | 79.58 247 | 80.99 204 | 94.01 183 | 66.60 229 | 96.17 233 | 73.48 259 | 89.30 167 | 97.20 148 |
|
v1192 | | | 82.31 246 | 80.55 249 | 87.60 239 | 85.94 317 | 78.47 212 | 95.85 202 | 93.80 259 | 79.33 251 | 76.97 243 | 86.51 283 | 63.33 247 | 95.87 246 | 73.11 260 | 70.13 291 | 88.46 289 |
|
PCF-MVS | | 84.09 5 | 86.77 177 | 85.00 186 | 92.08 124 | 92.06 235 | 83.07 100 | 92.14 292 | 94.47 226 | 79.63 246 | 76.90 244 | 94.78 166 | 71.15 200 | 99.20 89 | 72.87 261 | 91.05 158 | 93.98 218 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
v1921920 | | | 82.02 249 | 80.23 253 | 87.41 246 | 85.62 321 | 77.92 232 | 95.79 204 | 93.69 266 | 78.86 263 | 76.67 246 | 86.44 286 | 62.50 250 | 95.83 248 | 72.69 262 | 69.77 297 | 88.47 288 |
|
F-COLMAP | | | 84.50 210 | 83.44 210 | 87.67 237 | 95.22 140 | 72.22 301 | 95.95 194 | 93.78 261 | 75.74 290 | 76.30 254 | 95.18 154 | 59.50 271 | 98.45 134 | 72.67 263 | 86.59 192 | 92.35 230 |
|
IterMVS | | | 80.67 264 | 79.16 264 | 85.20 281 | 89.79 274 | 76.08 265 | 92.97 282 | 91.86 307 | 80.28 233 | 71.20 299 | 85.14 308 | 57.93 285 | 91.34 340 | 72.52 264 | 70.74 286 | 88.18 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 80.51 266 | 79.10 265 | 84.73 286 | 89.63 279 | 74.66 282 | 92.98 281 | 91.81 309 | 80.05 238 | 71.06 301 | 85.18 306 | 58.04 282 | 91.40 339 | 72.48 265 | 70.70 288 | 88.12 297 |
|
v10 | | | 81.43 256 | 79.53 262 | 87.11 253 | 86.38 308 | 78.87 200 | 94.31 249 | 93.43 277 | 77.88 272 | 73.24 285 | 85.26 303 | 65.44 234 | 95.75 253 | 72.14 266 | 67.71 317 | 86.72 319 |
|
MVP-Stereo | | | 82.65 240 | 81.67 234 | 85.59 277 | 86.10 316 | 78.29 216 | 93.33 271 | 92.82 296 | 77.75 274 | 69.17 313 | 87.98 262 | 59.28 274 | 95.76 252 | 71.77 267 | 96.88 96 | 82.73 350 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
OurMVSNet-221017-0 | | | 77.18 293 | 76.06 285 | 80.55 325 | 83.78 340 | 60.00 357 | 90.35 307 | 91.05 321 | 77.01 286 | 66.62 323 | 87.92 263 | 47.73 328 | 94.03 310 | 71.63 268 | 68.44 308 | 87.62 306 |
|
v1240 | | | 81.70 252 | 79.83 260 | 87.30 250 | 85.50 322 | 77.70 240 | 95.48 213 | 93.44 276 | 78.46 268 | 76.53 249 | 86.44 286 | 60.85 264 | 95.84 247 | 71.59 269 | 70.17 289 | 88.35 292 |
|
OpenMVS |  | 79.58 14 | 86.09 185 | 83.62 206 | 93.50 68 | 90.95 255 | 86.71 30 | 97.44 88 | 95.83 150 | 75.35 292 | 72.64 291 | 95.72 136 | 57.42 290 | 99.64 47 | 71.41 270 | 95.85 112 | 94.13 216 |
|
pm-mvs1 | | | 80.05 268 | 78.02 271 | 86.15 268 | 85.42 323 | 75.81 274 | 95.11 229 | 92.69 299 | 77.13 282 | 70.36 305 | 87.43 268 | 58.44 280 | 95.27 279 | 71.36 271 | 64.25 335 | 87.36 313 |
|
GBi-Net | | | 82.42 243 | 80.43 251 | 88.39 222 | 92.66 211 | 81.95 119 | 94.30 250 | 93.38 279 | 79.06 259 | 75.82 264 | 85.66 295 | 56.38 299 | 93.84 313 | 71.23 272 | 75.38 263 | 89.38 263 |
|
test1 | | | 82.42 243 | 80.43 251 | 88.39 222 | 92.66 211 | 81.95 119 | 94.30 250 | 93.38 279 | 79.06 259 | 75.82 264 | 85.66 295 | 56.38 299 | 93.84 313 | 71.23 272 | 75.38 263 | 89.38 263 |
|
FMVSNet3 | | | 84.71 205 | 82.71 220 | 90.70 168 | 94.55 160 | 87.71 20 | 95.92 196 | 94.67 213 | 81.73 207 | 75.82 264 | 88.08 261 | 66.99 225 | 94.47 303 | 71.23 272 | 75.38 263 | 89.91 255 |
|
EPMVS | | | 87.47 165 | 85.90 173 | 92.18 122 | 95.41 135 | 82.26 115 | 87.00 331 | 96.28 122 | 85.88 110 | 84.23 166 | 85.57 299 | 75.07 159 | 96.26 229 | 71.14 275 | 92.50 146 | 98.03 87 |
|
QAPM | | | 86.88 172 | 84.51 191 | 93.98 46 | 94.04 176 | 85.89 38 | 97.19 106 | 96.05 138 | 73.62 306 | 75.12 272 | 95.62 141 | 62.02 256 | 99.74 33 | 70.88 276 | 96.06 108 | 96.30 178 |
|
thres200 | | | 88.92 132 | 87.65 141 | 92.73 101 | 96.30 112 | 85.62 45 | 97.85 55 | 98.86 1 | 84.38 150 | 84.82 159 | 93.99 184 | 75.12 158 | 98.01 146 | 70.86 277 | 86.67 190 | 94.56 211 |
|
PM-MVS | | | 69.32 323 | 66.93 325 | 76.49 337 | 73.60 367 | 55.84 363 | 85.91 338 | 79.32 369 | 74.72 299 | 61.09 345 | 78.18 346 | 21.76 368 | 91.10 343 | 70.86 277 | 56.90 348 | 82.51 351 |
|
MS-PatchMatch | | | 83.05 232 | 81.82 232 | 86.72 261 | 89.64 278 | 79.10 196 | 94.88 236 | 94.59 221 | 79.70 245 | 70.67 303 | 89.65 239 | 50.43 318 | 96.82 210 | 70.82 279 | 95.99 110 | 84.25 342 |
|
PatchMatch-RL | | | 85.00 201 | 83.66 204 | 89.02 209 | 95.86 124 | 74.55 284 | 92.49 288 | 93.60 270 | 79.30 253 | 79.29 223 | 91.47 211 | 58.53 279 | 98.45 134 | 70.22 280 | 92.17 152 | 94.07 217 |
|
BH-RMVSNet | | | 86.84 173 | 85.28 179 | 91.49 145 | 95.35 137 | 80.26 166 | 96.95 134 | 92.21 303 | 82.86 190 | 81.77 200 | 95.46 145 | 59.34 273 | 97.64 160 | 69.79 281 | 93.81 134 | 96.57 168 |
|
FMVSNet2 | | | 82.79 237 | 80.44 250 | 89.83 196 | 92.66 211 | 85.43 48 | 95.42 216 | 94.35 231 | 79.06 259 | 74.46 276 | 87.28 269 | 56.38 299 | 94.31 306 | 69.72 282 | 74.68 266 | 89.76 257 |
|
thres100view900 | | | 88.30 151 | 86.95 163 | 92.33 116 | 96.10 119 | 84.90 65 | 97.14 113 | 98.85 2 | 82.69 193 | 83.41 177 | 93.66 190 | 75.43 149 | 97.93 148 | 69.04 283 | 86.24 196 | 94.17 213 |
|
tfpn200view9 | | | 88.48 145 | 87.15 157 | 92.47 110 | 96.21 115 | 85.30 52 | 97.44 88 | 98.85 2 | 83.37 177 | 83.99 169 | 93.82 187 | 75.36 152 | 97.93 148 | 69.04 283 | 86.24 196 | 94.17 213 |
|
thres400 | | | 88.42 148 | 87.15 157 | 92.23 120 | 96.21 115 | 85.30 52 | 97.44 88 | 98.85 2 | 83.37 177 | 83.99 169 | 93.82 187 | 75.36 152 | 97.93 148 | 69.04 283 | 86.24 196 | 93.45 226 |
|
MVS_0304 | | | 78.43 280 | 76.70 281 | 83.60 305 | 88.22 295 | 69.81 324 | 92.91 283 | 95.10 187 | 72.32 319 | 78.71 227 | 80.29 340 | 33.78 359 | 93.37 322 | 68.77 286 | 80.23 235 | 87.63 305 |
|
PatchmatchNet |  | | 86.83 174 | 85.12 184 | 91.95 130 | 94.12 173 | 82.27 114 | 86.55 335 | 95.64 160 | 84.59 144 | 82.98 184 | 84.99 311 | 77.26 113 | 95.96 241 | 68.61 287 | 91.34 157 | 97.64 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CP-MVSNet | | | 81.01 261 | 80.08 255 | 83.79 300 | 87.91 298 | 70.51 318 | 94.29 253 | 95.65 158 | 80.83 217 | 72.54 293 | 88.84 249 | 63.71 244 | 92.32 329 | 68.58 288 | 68.36 309 | 88.55 286 |
|
v7n | | | 79.32 276 | 77.34 275 | 85.28 280 | 84.05 339 | 72.89 300 | 93.38 269 | 93.87 253 | 75.02 297 | 70.68 302 | 84.37 315 | 59.58 270 | 95.62 263 | 67.60 289 | 67.50 319 | 87.32 314 |
|
PS-CasMVS | | | 80.27 267 | 79.18 263 | 83.52 307 | 87.56 302 | 69.88 323 | 94.08 257 | 95.29 182 | 80.27 234 | 72.08 295 | 88.51 256 | 59.22 275 | 92.23 331 | 67.49 290 | 68.15 312 | 88.45 290 |
|
RPSCF | | | 77.73 287 | 76.63 282 | 81.06 322 | 88.66 291 | 55.76 364 | 87.77 326 | 87.88 346 | 64.82 343 | 74.14 278 | 92.79 198 | 49.22 322 | 96.81 211 | 67.47 291 | 76.88 258 | 90.62 238 |
|
thres600view7 | | | 88.06 156 | 86.70 166 | 92.15 123 | 96.10 119 | 85.17 58 | 97.14 113 | 98.85 2 | 82.70 192 | 83.41 177 | 93.66 190 | 75.43 149 | 97.82 155 | 67.13 292 | 85.88 200 | 93.45 226 |
|
tpm cat1 | | | 83.63 222 | 81.38 238 | 90.39 176 | 93.53 192 | 78.19 224 | 85.56 341 | 95.09 188 | 70.78 325 | 78.51 229 | 83.28 324 | 74.80 161 | 97.03 197 | 66.77 293 | 84.05 212 | 95.95 182 |
|
pmmvs6 | | | 74.65 306 | 71.67 310 | 83.60 305 | 79.13 353 | 69.94 322 | 93.31 275 | 90.88 325 | 61.05 354 | 65.83 326 | 84.15 318 | 43.43 338 | 94.83 297 | 66.62 294 | 60.63 343 | 86.02 329 |
|
EPNet_dtu | | | 87.65 163 | 87.89 136 | 86.93 256 | 94.57 159 | 71.37 315 | 96.72 148 | 96.50 97 | 88.56 58 | 87.12 141 | 95.02 162 | 75.91 138 | 94.01 311 | 66.62 294 | 90.00 163 | 95.42 195 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
USDC | | | 78.65 279 | 76.25 284 | 85.85 271 | 87.58 301 | 74.60 283 | 89.58 311 | 90.58 329 | 84.05 159 | 63.13 337 | 88.23 258 | 40.69 350 | 96.86 209 | 66.57 296 | 75.81 261 | 86.09 328 |
|
JIA-IIPM | | | 79.00 278 | 77.20 276 | 84.40 295 | 89.74 277 | 64.06 345 | 75.30 360 | 95.44 171 | 62.15 347 | 81.90 197 | 59.08 363 | 78.92 87 | 95.59 265 | 66.51 297 | 85.78 202 | 93.54 223 |
|
pmmvs-eth3d | | | 73.59 308 | 70.66 314 | 82.38 315 | 76.40 363 | 73.38 292 | 89.39 314 | 89.43 335 | 72.69 316 | 60.34 348 | 77.79 347 | 46.43 332 | 91.26 342 | 66.42 298 | 57.06 347 | 82.51 351 |
|
MIMVSNet | | | 79.18 277 | 75.99 286 | 88.72 217 | 87.37 303 | 80.66 155 | 79.96 348 | 91.82 308 | 77.38 279 | 74.33 277 | 81.87 330 | 41.78 345 | 90.74 346 | 66.36 299 | 83.10 219 | 94.76 205 |
|
K. test v3 | | | 73.62 307 | 71.59 311 | 79.69 328 | 82.98 342 | 59.85 358 | 90.85 306 | 88.83 340 | 77.13 282 | 58.90 349 | 82.11 328 | 43.62 337 | 91.72 337 | 65.83 300 | 54.10 351 | 87.50 311 |
|
FMVSNet1 | | | 79.50 273 | 76.54 283 | 88.39 222 | 88.47 292 | 81.95 119 | 94.30 250 | 93.38 279 | 73.14 311 | 72.04 296 | 85.66 295 | 43.86 336 | 93.84 313 | 65.48 301 | 72.53 276 | 89.38 263 |
|
LF4IMVS | | | 72.36 316 | 70.82 313 | 76.95 335 | 79.18 352 | 56.33 361 | 86.12 337 | 86.11 353 | 69.30 332 | 63.06 338 | 86.66 281 | 33.03 361 | 92.25 330 | 65.33 302 | 68.64 306 | 82.28 354 |
|
UnsupCasMVSNet_eth | | | 73.25 311 | 70.57 315 | 81.30 320 | 77.53 357 | 66.33 339 | 87.24 330 | 93.89 252 | 80.38 230 | 57.90 354 | 81.59 331 | 42.91 343 | 90.56 347 | 65.18 303 | 48.51 359 | 87.01 317 |
|
EU-MVSNet | | | 76.92 295 | 76.95 279 | 76.83 336 | 84.10 337 | 54.73 366 | 91.77 297 | 92.71 298 | 72.74 315 | 69.57 310 | 88.69 251 | 58.03 284 | 87.43 358 | 64.91 304 | 70.00 295 | 88.33 293 |
|
PEN-MVS | | | 79.47 274 | 78.26 270 | 83.08 310 | 86.36 309 | 68.58 331 | 93.85 260 | 94.77 208 | 79.76 243 | 71.37 297 | 88.55 253 | 59.79 267 | 92.46 327 | 64.50 305 | 65.40 330 | 88.19 295 |
|
WR-MVS_H | | | 81.02 260 | 80.09 254 | 83.79 300 | 88.08 297 | 71.26 316 | 94.46 243 | 96.54 91 | 80.08 237 | 72.81 290 | 86.82 278 | 70.36 208 | 92.65 326 | 64.18 306 | 67.50 319 | 87.46 312 |
|
test0.0.03 1 | | | 82.79 237 | 82.48 223 | 83.74 302 | 86.81 306 | 72.22 301 | 96.52 159 | 95.03 192 | 83.76 170 | 73.00 287 | 93.20 193 | 72.30 189 | 88.88 353 | 64.15 307 | 77.52 256 | 90.12 249 |
|
MDTV_nov1_ep13 | | | | 83.69 202 | | 94.09 174 | 81.01 145 | 86.78 333 | 96.09 135 | 83.81 169 | 84.75 160 | 84.32 316 | 74.44 167 | 96.54 219 | 63.88 308 | 85.07 208 | |
|
dp | | | 84.30 214 | 82.31 225 | 90.28 180 | 94.24 171 | 77.97 228 | 86.57 334 | 95.53 164 | 79.94 241 | 80.75 207 | 85.16 307 | 71.49 198 | 96.39 224 | 63.73 309 | 83.36 217 | 96.48 170 |
|
tmp_tt | | | 41.54 337 | 41.93 339 | 40.38 355 | 20.10 381 | 26.84 378 | 61.93 367 | 59.09 377 | 14.81 374 | 28.51 369 | 80.58 336 | 35.53 356 | 48.33 376 | 63.70 310 | 13.11 373 | 45.96 369 |
|
SixPastTwentyTwo | | | 76.04 298 | 74.32 299 | 81.22 321 | 84.54 332 | 61.43 354 | 91.16 303 | 89.30 337 | 77.89 271 | 64.04 332 | 86.31 290 | 48.23 323 | 94.29 307 | 63.54 311 | 63.84 337 | 87.93 300 |
|
CR-MVSNet | | | 83.53 223 | 81.36 239 | 90.06 186 | 90.16 270 | 79.75 176 | 79.02 353 | 91.12 318 | 84.24 156 | 82.27 193 | 80.35 338 | 75.45 147 | 93.67 317 | 63.37 312 | 86.25 194 | 96.75 164 |
|
lessismore_v0 | | | | | 79.98 327 | 80.59 348 | 58.34 360 | | 80.87 366 | | 58.49 351 | 83.46 323 | 43.10 341 | 93.89 312 | 63.11 313 | 48.68 358 | 87.72 302 |
|
ITE_SJBPF | | | | | 82.38 315 | 87.00 305 | 65.59 340 | | 89.55 334 | 79.99 240 | 69.37 311 | 91.30 215 | 41.60 347 | 95.33 275 | 62.86 314 | 74.63 267 | 86.24 325 |
|
ACMH+ | | 76.62 16 | 77.47 290 | 74.94 292 | 85.05 282 | 91.07 254 | 71.58 313 | 93.26 276 | 90.01 331 | 71.80 321 | 64.76 330 | 88.55 253 | 41.62 346 | 96.48 221 | 62.35 315 | 71.00 283 | 87.09 316 |
|
KD-MVS_2432*1600 | | | 77.63 288 | 74.92 293 | 85.77 273 | 90.86 258 | 79.44 184 | 88.08 322 | 93.92 250 | 76.26 287 | 67.05 319 | 82.78 326 | 72.15 191 | 91.92 334 | 61.53 316 | 41.62 366 | 85.94 330 |
|
miper_refine_blended | | | 77.63 288 | 74.92 293 | 85.77 273 | 90.86 258 | 79.44 184 | 88.08 322 | 93.92 250 | 76.26 287 | 67.05 319 | 82.78 326 | 72.15 191 | 91.92 334 | 61.53 316 | 41.62 366 | 85.94 330 |
|
ambc | | | | | 76.02 339 | 68.11 369 | 51.43 367 | 64.97 366 | 89.59 333 | | 60.49 347 | 74.49 352 | 17.17 371 | 92.46 327 | 61.50 318 | 52.85 355 | 84.17 343 |
|
DTE-MVSNet | | | 78.37 281 | 77.06 278 | 82.32 317 | 85.22 328 | 67.17 337 | 93.40 268 | 93.66 267 | 78.71 265 | 70.53 304 | 88.29 257 | 59.06 276 | 92.23 331 | 61.38 319 | 63.28 339 | 87.56 309 |
|
KD-MVS_self_test | | | 70.97 321 | 69.31 321 | 75.95 341 | 76.24 365 | 55.39 365 | 87.45 327 | 90.94 324 | 70.20 328 | 62.96 339 | 77.48 348 | 44.01 335 | 88.09 355 | 61.25 320 | 53.26 353 | 84.37 341 |
|
FMVSNet5 | | | 76.46 297 | 74.16 301 | 83.35 309 | 90.05 272 | 76.17 263 | 89.58 311 | 89.85 332 | 71.39 324 | 65.29 329 | 80.42 337 | 50.61 317 | 87.70 357 | 61.05 321 | 69.24 302 | 86.18 326 |
|
UnsupCasMVSNet_bld | | | 68.60 326 | 64.50 329 | 80.92 323 | 74.63 366 | 67.80 333 | 83.97 343 | 92.94 295 | 65.12 342 | 54.63 358 | 68.23 361 | 35.97 355 | 92.17 333 | 60.13 322 | 44.83 363 | 82.78 349 |
|
tpmvs | | | 83.04 233 | 80.77 244 | 89.84 195 | 95.43 134 | 77.96 229 | 85.59 340 | 95.32 181 | 75.31 294 | 76.27 255 | 83.70 321 | 73.89 172 | 97.41 177 | 59.53 323 | 81.93 230 | 94.14 215 |
|
ADS-MVSNet2 | | | 79.57 272 | 77.53 274 | 85.71 275 | 93.78 180 | 72.13 303 | 79.48 349 | 86.11 353 | 73.09 312 | 80.14 215 | 79.99 341 | 62.15 254 | 90.14 351 | 59.49 324 | 83.52 214 | 94.85 203 |
|
ADS-MVSNet | | | 81.26 258 | 78.36 268 | 89.96 191 | 93.78 180 | 79.78 174 | 79.48 349 | 93.60 270 | 73.09 312 | 80.14 215 | 79.99 341 | 62.15 254 | 95.24 280 | 59.49 324 | 83.52 214 | 94.85 203 |
|
MSDG | | | 80.62 265 | 77.77 273 | 89.14 206 | 93.43 194 | 77.24 247 | 91.89 295 | 90.18 330 | 69.86 330 | 68.02 314 | 91.94 208 | 52.21 314 | 98.84 117 | 59.32 326 | 83.12 218 | 91.35 232 |
|
TransMVSNet (Re) | | | 76.94 294 | 74.38 298 | 84.62 290 | 85.92 318 | 75.25 279 | 95.28 219 | 89.18 338 | 73.88 305 | 67.22 316 | 86.46 285 | 59.64 268 | 94.10 309 | 59.24 327 | 52.57 356 | 84.50 340 |
|
ACMH | | 75.40 17 | 77.99 284 | 74.96 291 | 87.10 254 | 90.67 262 | 76.41 260 | 93.19 279 | 91.64 312 | 72.47 318 | 63.44 335 | 87.61 267 | 43.34 339 | 97.16 191 | 58.34 328 | 73.94 268 | 87.72 302 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Patchmtry | | | 77.36 291 | 74.59 296 | 85.67 276 | 89.75 275 | 75.75 275 | 77.85 356 | 91.12 318 | 60.28 355 | 71.23 298 | 80.35 338 | 75.45 147 | 93.56 319 | 57.94 329 | 67.34 322 | 87.68 304 |
|
our_test_3 | | | 77.90 286 | 75.37 290 | 85.48 279 | 85.39 324 | 76.74 256 | 93.63 263 | 91.67 310 | 73.39 310 | 65.72 327 | 84.65 314 | 58.20 281 | 93.13 324 | 57.82 330 | 67.87 314 | 86.57 321 |
|
Anonymous20240521 | | | 72.06 318 | 69.91 318 | 78.50 332 | 77.11 360 | 61.67 353 | 91.62 301 | 90.97 323 | 65.52 341 | 62.37 340 | 79.05 344 | 36.32 354 | 90.96 344 | 57.75 331 | 68.52 307 | 82.87 347 |
|
CL-MVSNet_self_test | | | 75.81 300 | 74.14 302 | 80.83 324 | 78.33 355 | 67.79 334 | 94.22 254 | 93.52 273 | 77.28 281 | 69.82 308 | 81.54 332 | 61.47 262 | 89.22 352 | 57.59 332 | 53.51 352 | 85.48 334 |
|
test_method | | | 56.77 330 | 54.53 333 | 63.49 349 | 76.49 361 | 40.70 374 | 75.68 359 | 74.24 371 | 19.47 372 | 48.73 361 | 71.89 359 | 19.31 369 | 65.80 372 | 57.46 333 | 47.51 362 | 83.97 344 |
|
AllTest | | | 75.92 299 | 73.06 306 | 84.47 292 | 92.18 228 | 67.29 335 | 91.07 304 | 84.43 358 | 67.63 334 | 63.48 333 | 90.18 233 | 38.20 352 | 97.16 191 | 57.04 334 | 73.37 272 | 88.97 280 |
|
TestCases | | | | | 84.47 292 | 92.18 228 | 67.29 335 | | 84.43 358 | 67.63 334 | 63.48 333 | 90.18 233 | 38.20 352 | 97.16 191 | 57.04 334 | 73.37 272 | 88.97 280 |
|
EG-PatchMatch MVS | | | 74.92 304 | 72.02 309 | 83.62 304 | 83.76 341 | 73.28 295 | 93.62 264 | 92.04 306 | 68.57 333 | 58.88 350 | 83.80 320 | 31.87 363 | 95.57 267 | 56.97 336 | 78.67 247 | 82.00 356 |
|
testgi | | | 74.88 305 | 73.40 305 | 79.32 330 | 80.13 350 | 61.75 351 | 93.21 277 | 86.64 351 | 79.49 249 | 66.56 324 | 91.06 218 | 35.51 357 | 88.67 354 | 56.79 337 | 71.25 281 | 87.56 309 |
|
LTVRE_ROB | | 73.68 18 | 77.99 284 | 75.74 288 | 84.74 285 | 90.45 265 | 72.02 305 | 86.41 336 | 91.12 318 | 72.57 317 | 66.63 322 | 87.27 270 | 54.95 308 | 96.98 200 | 56.29 338 | 75.98 259 | 85.21 336 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
YYNet1 | | | 73.53 310 | 70.43 316 | 82.85 312 | 84.52 333 | 71.73 311 | 91.69 299 | 91.37 314 | 67.63 334 | 46.79 362 | 81.21 334 | 55.04 307 | 90.43 348 | 55.93 339 | 59.70 345 | 86.38 323 |
|
MDA-MVSNet_test_wron | | | 73.54 309 | 70.43 316 | 82.86 311 | 84.55 331 | 71.85 308 | 91.74 298 | 91.32 317 | 67.63 334 | 46.73 363 | 81.09 335 | 55.11 306 | 90.42 349 | 55.91 340 | 59.76 344 | 86.31 324 |
|
TDRefinement | | | 69.20 324 | 65.78 328 | 79.48 329 | 66.04 371 | 62.21 350 | 88.21 321 | 86.12 352 | 62.92 345 | 61.03 346 | 85.61 298 | 33.23 360 | 94.16 308 | 55.82 341 | 53.02 354 | 82.08 355 |
|
pmmvs3 | | | 65.75 328 | 62.18 331 | 76.45 338 | 67.12 370 | 64.54 342 | 88.68 318 | 85.05 356 | 54.77 363 | 57.54 356 | 73.79 353 | 29.40 366 | 86.21 361 | 55.49 342 | 47.77 361 | 78.62 359 |
|
DSMNet-mixed | | | 73.13 312 | 72.45 308 | 75.19 342 | 77.51 358 | 46.82 369 | 85.09 342 | 82.01 365 | 67.61 338 | 69.27 312 | 81.33 333 | 50.89 315 | 86.28 360 | 54.54 343 | 83.80 213 | 92.46 228 |
|
LS3D | | | 82.22 247 | 79.94 259 | 89.06 207 | 97.43 92 | 74.06 290 | 93.20 278 | 92.05 305 | 61.90 348 | 73.33 284 | 95.21 151 | 59.35 272 | 99.21 85 | 54.54 343 | 92.48 147 | 93.90 220 |
|
MVS-HIRNet | | | 71.36 320 | 67.00 324 | 84.46 294 | 90.58 263 | 69.74 326 | 79.15 352 | 87.74 347 | 46.09 364 | 61.96 343 | 50.50 366 | 45.14 334 | 95.64 261 | 53.74 345 | 88.11 182 | 88.00 299 |
|
Anonymous20231206 | | | 75.29 303 | 73.64 304 | 80.22 326 | 80.75 346 | 63.38 347 | 93.36 270 | 90.71 328 | 73.09 312 | 67.12 317 | 83.70 321 | 50.33 319 | 90.85 345 | 53.63 346 | 70.10 293 | 86.44 322 |
|
DP-MVS | | | 81.47 255 | 78.28 269 | 91.04 156 | 98.14 64 | 78.48 209 | 95.09 232 | 86.97 348 | 61.14 353 | 71.12 300 | 92.78 199 | 59.59 269 | 99.38 69 | 53.11 347 | 86.61 191 | 95.27 199 |
|
ppachtmachnet_test | | | 77.19 292 | 74.22 300 | 86.13 269 | 85.39 324 | 78.22 219 | 93.98 258 | 91.36 315 | 71.74 322 | 67.11 318 | 84.87 312 | 56.67 295 | 93.37 322 | 52.21 348 | 64.59 332 | 86.80 318 |
|
TinyColmap | | | 72.41 315 | 68.99 322 | 82.68 313 | 88.11 296 | 69.59 327 | 88.41 320 | 85.20 355 | 65.55 340 | 57.91 353 | 84.82 313 | 30.80 365 | 95.94 242 | 51.38 349 | 68.70 305 | 82.49 353 |
|
PatchT | | | 79.75 270 | 76.85 280 | 88.42 220 | 89.55 280 | 75.49 277 | 77.37 357 | 94.61 219 | 63.07 344 | 82.46 187 | 73.32 356 | 75.52 146 | 93.41 321 | 51.36 350 | 84.43 210 | 96.36 172 |
|
new-patchmatchnet | | | 68.85 325 | 65.93 327 | 77.61 334 | 73.57 368 | 63.94 346 | 90.11 309 | 88.73 343 | 71.62 323 | 55.08 357 | 73.60 354 | 40.84 349 | 87.22 359 | 51.35 351 | 48.49 360 | 81.67 357 |
|
COLMAP_ROB |  | 73.24 19 | 75.74 301 | 73.00 307 | 83.94 298 | 92.38 217 | 69.08 330 | 91.85 296 | 86.93 349 | 61.48 351 | 65.32 328 | 90.27 232 | 42.27 344 | 96.93 204 | 50.91 352 | 75.63 262 | 85.80 333 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
test20.03 | | | 72.36 316 | 71.15 312 | 75.98 340 | 77.79 356 | 59.16 359 | 92.40 290 | 89.35 336 | 74.09 303 | 61.50 344 | 84.32 316 | 48.09 324 | 85.54 363 | 50.63 353 | 62.15 341 | 83.24 346 |
|
new_pmnet | | | 66.18 327 | 63.18 330 | 75.18 343 | 76.27 364 | 61.74 352 | 83.79 344 | 84.66 357 | 56.64 362 | 51.57 360 | 71.85 360 | 31.29 364 | 87.93 356 | 49.98 354 | 62.55 340 | 75.86 361 |
|
TAPA-MVS | | 81.61 12 | 85.02 200 | 83.67 203 | 89.06 207 | 96.79 106 | 73.27 296 | 95.92 196 | 94.79 207 | 74.81 298 | 80.47 210 | 96.83 114 | 71.07 201 | 98.19 143 | 49.82 355 | 92.57 144 | 95.71 189 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LCM-MVSNet | | | 52.52 332 | 48.24 335 | 65.35 345 | 47.63 377 | 41.45 373 | 72.55 364 | 83.62 362 | 31.75 367 | 37.66 366 | 57.92 364 | 9.19 378 | 76.76 367 | 49.26 356 | 44.60 364 | 77.84 360 |
|
Patchmatch-test | | | 78.25 282 | 74.72 295 | 88.83 214 | 91.20 250 | 74.10 289 | 73.91 363 | 88.70 344 | 59.89 358 | 66.82 321 | 85.12 309 | 78.38 96 | 94.54 302 | 48.84 357 | 79.58 240 | 97.86 105 |
|
MDA-MVSNet-bldmvs | | | 71.45 319 | 67.94 323 | 81.98 319 | 85.33 326 | 68.50 332 | 92.35 291 | 88.76 342 | 70.40 326 | 42.99 364 | 81.96 329 | 46.57 331 | 91.31 341 | 48.75 358 | 54.39 350 | 86.11 327 |
|
tfpnnormal | | | 78.14 283 | 75.42 289 | 86.31 266 | 88.33 294 | 79.24 190 | 94.41 245 | 96.22 126 | 73.51 307 | 69.81 309 | 85.52 301 | 55.43 303 | 95.75 253 | 47.65 359 | 67.86 315 | 83.95 345 |
|
MIMVSNet1 | | | 69.44 322 | 66.65 326 | 77.84 333 | 76.48 362 | 62.84 349 | 87.42 328 | 88.97 339 | 66.96 339 | 57.75 355 | 79.72 343 | 32.77 362 | 85.83 362 | 46.32 360 | 63.42 338 | 84.85 338 |
|
RPMNet | | | 79.85 269 | 75.92 287 | 91.64 140 | 90.16 270 | 79.75 176 | 79.02 353 | 95.44 171 | 58.43 361 | 82.27 193 | 72.55 357 | 73.03 182 | 98.41 136 | 46.10 361 | 86.25 194 | 96.75 164 |
|
OpenMVS_ROB |  | 68.52 20 | 73.02 313 | 69.57 319 | 83.37 308 | 80.54 349 | 71.82 309 | 93.60 265 | 88.22 345 | 62.37 346 | 61.98 342 | 83.15 325 | 35.31 358 | 95.47 269 | 45.08 362 | 75.88 260 | 82.82 348 |
|
DeepMVS_CX |  | | | | 64.06 348 | 78.53 354 | 43.26 372 | | 68.11 375 | 69.94 329 | 38.55 365 | 76.14 350 | 18.53 370 | 79.34 365 | 43.72 363 | 41.62 366 | 69.57 364 |
|
N_pmnet | | | 61.30 329 | 60.20 332 | 64.60 347 | 84.32 334 | 17.00 382 | 91.67 300 | 10.98 381 | 61.77 349 | 58.45 352 | 78.55 345 | 49.89 320 | 91.83 336 | 42.27 364 | 63.94 336 | 84.97 337 |
|
PMMVS2 | | | 50.90 334 | 46.31 337 | 64.67 346 | 55.53 373 | 46.67 370 | 77.30 358 | 71.02 373 | 40.89 365 | 34.16 368 | 59.32 362 | 9.83 377 | 76.14 369 | 40.09 365 | 28.63 369 | 71.21 362 |
|
test_0402 | | | 72.68 314 | 69.54 320 | 82.09 318 | 88.67 290 | 71.81 310 | 92.72 286 | 86.77 350 | 61.52 350 | 62.21 341 | 83.91 319 | 43.22 340 | 93.76 316 | 34.60 366 | 72.23 280 | 80.72 358 |
|
FPMVS | | | 55.09 331 | 52.93 334 | 61.57 350 | 55.98 372 | 40.51 375 | 83.11 345 | 83.41 363 | 37.61 366 | 34.95 367 | 71.95 358 | 14.40 372 | 76.95 366 | 29.81 367 | 65.16 331 | 67.25 365 |
|
EGC-MVSNET | | | 52.46 333 | 47.56 336 | 67.15 344 | 81.98 344 | 60.11 356 | 82.54 346 | 72.44 372 | 0.11 378 | 0.70 379 | 74.59 351 | 25.11 367 | 83.26 364 | 29.04 368 | 61.51 342 | 58.09 366 |
|
ANet_high | | | 46.22 335 | 41.28 340 | 61.04 351 | 39.91 379 | 46.25 371 | 70.59 365 | 76.18 370 | 58.87 360 | 23.09 371 | 48.00 368 | 12.58 374 | 66.54 371 | 28.65 369 | 13.62 372 | 70.35 363 |
|
Gipuma |  | | 45.11 336 | 42.05 338 | 54.30 352 | 80.69 347 | 51.30 368 | 35.80 370 | 83.81 361 | 28.13 368 | 27.94 370 | 34.53 370 | 11.41 376 | 76.70 368 | 21.45 370 | 54.65 349 | 34.90 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE |  | 35.65 22 | 33.85 339 | 29.49 344 | 46.92 354 | 41.86 378 | 36.28 376 | 50.45 369 | 56.52 378 | 18.75 373 | 18.28 372 | 37.84 369 | 2.41 380 | 58.41 373 | 18.71 371 | 20.62 370 | 46.06 368 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PMVS |  | 34.80 23 | 39.19 338 | 35.53 341 | 50.18 353 | 29.72 380 | 30.30 377 | 59.60 368 | 66.20 376 | 26.06 369 | 17.91 373 | 49.53 367 | 3.12 379 | 74.09 370 | 18.19 372 | 49.40 357 | 46.14 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 32.70 340 | 32.39 342 | 33.65 356 | 53.35 375 | 25.70 379 | 74.07 362 | 53.33 379 | 21.08 370 | 17.17 374 | 33.63 372 | 11.85 375 | 54.84 374 | 12.98 373 | 14.04 371 | 20.42 371 |
|
EMVS | | | 31.70 341 | 31.45 343 | 32.48 357 | 50.72 376 | 23.95 380 | 74.78 361 | 52.30 380 | 20.36 371 | 16.08 375 | 31.48 373 | 12.80 373 | 53.60 375 | 11.39 374 | 13.10 374 | 19.88 372 |
|
wuyk23d | | | 14.10 343 | 13.89 346 | 14.72 358 | 55.23 374 | 22.91 381 | 33.83 371 | 3.56 382 | 4.94 375 | 4.11 376 | 2.28 378 | 2.06 381 | 19.66 377 | 10.23 375 | 8.74 375 | 1.59 375 |
|
testmvs | | | 9.92 344 | 12.94 347 | 0.84 360 | 0.65 382 | 0.29 384 | 93.78 261 | 0.39 383 | 0.42 376 | 2.85 377 | 15.84 376 | 0.17 383 | 0.30 379 | 2.18 376 | 0.21 376 | 1.91 374 |
|
test123 | | | 9.07 345 | 11.73 348 | 1.11 359 | 0.50 383 | 0.77 383 | 89.44 313 | 0.20 384 | 0.34 377 | 2.15 378 | 10.72 377 | 0.34 382 | 0.32 378 | 1.79 377 | 0.08 377 | 2.23 373 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 21.43 342 | 28.57 345 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 95.93 145 | 0.00 379 | 0.00 380 | 97.66 74 | 63.57 245 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 5.92 347 | 7.89 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 71.04 202 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 8.11 346 | 10.81 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 97.30 96 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
FOURS1 | | | | | | 98.51 44 | 78.01 227 | 98.13 39 | 96.21 127 | 83.04 184 | 94.39 46 | | | | | | |
|
test_one_0601 | | | | | | 98.91 20 | 84.56 71 | | 96.70 65 | 88.06 68 | 96.57 16 | 98.77 12 | 88.04 19 | | | | |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.03 16 | 85.03 61 | | 96.78 49 | 88.72 54 | 97.79 4 | 98.90 6 | 88.48 16 | 99.82 18 | | | |
|
save fliter | | | | | | 98.24 58 | 83.34 93 | 98.61 23 | 96.57 86 | 91.32 19 | | | | | | | |
|
test0726 | | | | | | 99.05 10 | 85.18 54 | 99.11 8 | 96.78 49 | 88.75 52 | 97.65 9 | 98.91 3 | 87.69 21 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 97.54 127 |
|
test_part2 | | | | | | 98.90 21 | 85.14 60 | | | | 96.07 21 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.59 108 | | | | 97.54 127 |
|
sam_mvs | | | | | | | | | | | | | 75.35 154 | | | | |
|
MTGPA |  | | | | | | | | 96.33 118 | | | | | | | | |
|
test_post | | | | | | | | | | | | 33.80 371 | 76.17 133 | 95.97 238 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 77.09 349 | 77.78 107 | 95.39 271 | | | |
|
MTMP | | | | | | | | 97.53 81 | 68.16 374 | | | | | | | | |
|
TEST9 | | | | | | 98.64 35 | 83.71 85 | 97.82 57 | 96.65 74 | 84.29 154 | 95.16 29 | 98.09 46 | 84.39 36 | 99.36 75 | | | |
|
test_8 | | | | | | 98.63 37 | 83.64 88 | 97.81 59 | 96.63 79 | 84.50 146 | 95.10 31 | 98.11 45 | 84.33 37 | 99.23 81 | | | |
|
agg_prior | | | | | | 98.59 39 | 83.13 98 | | 96.56 88 | | 94.19 48 | | | 99.16 94 | | | |
|
test_prior4 | | | | | | | 82.34 113 | 97.75 66 | | | | | | | | | |
|
test_prior | | | | | 93.09 84 | 98.68 29 | 81.91 122 | | 96.40 110 | | | | | 99.06 102 | | | 98.29 66 |
|
æ–°å‡ ä½•2 | | | | | | | | 96.42 170 | | | | | | | | | |
|
旧先验1 | | | | | | 97.39 95 | 79.58 183 | | 96.54 91 | | | 98.08 49 | 84.00 41 | | | 97.42 81 | 97.62 124 |
|
原ACMM2 | | | | | | | | 96.84 139 | | | | | | | | | |
|
test222 | | | | | | 96.15 117 | 78.41 213 | 95.87 200 | 96.46 101 | 71.97 320 | 89.66 111 | 97.45 87 | 76.33 131 | | | 98.24 58 | 98.30 65 |
|
segment_acmp | | | | | | | | | | | | | 82.69 58 | | | | |
|
testdata1 | | | | | | | | 95.57 211 | | 87.44 81 | | | | | | | |
|
test12 | | | | | 94.25 38 | 98.34 53 | 85.55 46 | | 96.35 117 | | 92.36 69 | | 80.84 65 | 99.22 83 | | 98.31 56 | 97.98 95 |
|
plane_prior7 | | | | | | 91.86 242 | 77.55 242 | | | | | | | | | | |
|
plane_prior6 | | | | | | 91.98 237 | 77.92 232 | | | | | | 64.77 240 | | | | |
|
plane_prior4 | | | | | | | | | | | | 94.15 180 | | | | | |
|
plane_prior3 | | | | | | | 77.75 238 | | | 90.17 36 | 81.33 201 | | | | | | |
|
plane_prior2 | | | | | | | | 97.18 107 | | 89.89 38 | | | | | | | |
|
plane_prior1 | | | | | | 91.95 240 | | | | | | | | | | | |
|
plane_prior | | | | | | | 77.96 229 | 97.52 84 | | 90.36 34 | | | | | | 82.96 222 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 79.75 368 | | | | | | | | |
|
test11 | | | | | | | | | 96.50 97 | | | | | | | | |
|
door | | | | | | | | | 80.13 367 | | | | | | | | |
|
HQP5-MVS | | | | | | | 78.48 209 | | | | | | | | | | |
|
HQP-NCC | | | | | | 92.08 232 | | 97.63 72 | | 90.52 29 | 82.30 189 | | | | | | |
|
ACMP_Plane | | | | | | 92.08 232 | | 97.63 72 | | 90.52 29 | 82.30 189 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 82.30 189 | | | 97.32 181 | | | 91.13 233 |
|
HQP3-MVS | | | | | | | | | 94.80 205 | | | | | | | 83.01 220 | |
|
HQP2-MVS | | | | | | | | | | | | | 65.40 235 | | | | |
|
NP-MVS | | | | | | 92.04 236 | 78.22 219 | | | | | 94.56 170 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 252 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 79.05 244 | |
|
Test By Simon | | | | | | | | | | | | | 71.65 195 | | | | |
|