This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3193.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15192.42 1296.24 1898.18 3571.04 20099.17 9296.77 1997.39 8096.79 158
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
No_MVS97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15692.06 1496.01 2198.14 4070.83 20398.96 10796.74 2096.57 9996.76 161
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2894.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS90.60 10188.64 12496.50 594.25 16690.53 893.33 26997.21 2077.59 27478.88 22397.31 9271.52 19599.69 4089.60 10998.03 6499.27 20
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4787.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2595.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 17298.73 39
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21588.49 5792.99 6297.31 9272.68 18398.57 12793.38 5988.58 17499.36 16
HY-MVS84.06 691.63 7890.37 9495.39 1696.12 11488.25 1490.22 30697.58 1488.33 6290.50 9891.96 20479.26 8199.06 10190.29 10289.07 16798.88 31
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11294.07 795.34 2797.80 6876.83 11999.87 897.08 1897.64 7398.89 30
MVSFormer91.36 8590.57 8993.73 5693.00 20288.08 1694.80 23794.48 22280.74 21794.90 3597.13 10178.84 8795.10 28783.77 15997.46 7598.02 84
lupinMVS93.87 3793.58 3894.75 2693.00 20288.08 1699.15 495.50 16691.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
PAPM92.87 5092.40 5894.30 3692.25 22387.85 1896.40 17096.38 11391.07 2288.72 12296.90 10982.11 5997.37 17890.05 10497.70 7297.67 116
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11388.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 17198.99 29
FMVSNet384.71 20382.71 21890.70 16794.55 15687.71 2095.92 19594.67 21181.73 20575.82 26288.08 25966.99 22394.47 30171.23 27075.38 26189.91 253
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2394.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
xiu_mvs_v1_base_debu90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base_debi90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
jason92.73 5492.23 6394.21 4190.50 26287.30 2598.65 2095.09 18790.61 2792.76 6597.13 10175.28 15397.30 18193.32 6096.75 9898.02 84
jason: jason.
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9893.65 5395.74 13370.16 20898.95 11093.39 5788.87 17098.43 53
baseline188.85 13387.49 14692.93 9395.21 13786.85 2795.47 21394.61 21787.29 8283.11 18094.99 16280.70 6596.89 20382.28 17873.72 26795.05 198
ET-MVSNet_ETH3D90.01 11289.03 11792.95 9194.38 16486.77 2898.14 3596.31 12089.30 4363.33 33496.72 11990.09 1093.63 31690.70 9482.29 22798.46 51
3Dnovator+82.88 889.63 11887.85 13594.99 2094.49 16286.76 2997.84 5595.74 15386.10 10275.47 26796.02 12965.00 23799.51 6082.91 17697.07 8798.72 40
OpenMVScopyleft79.58 1486.09 18383.62 20493.50 6890.95 25386.71 3097.44 8795.83 14975.35 29072.64 28995.72 13457.42 28899.64 4671.41 26895.85 11094.13 214
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34597.00 2988.32 12894.30 17391.23 596.21 23088.49 12197.43 7898.00 89
CANet_DTU90.98 9290.04 10193.83 5194.76 15286.23 3296.32 17693.12 29093.11 1093.71 5296.82 11563.08 24699.48 6284.29 15295.12 11895.77 185
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5499.84 1297.90 898.85 2299.45 10
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3792.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10484.02 15895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
cascas86.50 17784.48 19192.55 11092.64 21285.95 3597.04 12595.07 18975.32 29180.50 20791.02 21754.33 30997.98 14586.79 13687.62 18293.71 220
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5485.32 12097.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
QAPM86.88 17084.51 18993.98 4694.04 17285.89 3897.19 10596.05 13773.62 30475.12 27095.62 13962.02 25499.74 3270.88 27496.06 10696.30 176
gg-mvs-nofinetune85.48 19382.90 21393.24 7794.51 16185.82 3979.22 34996.97 3361.19 35087.33 13753.01 36390.58 696.07 23286.07 13997.23 8397.81 106
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9285.29 12395.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10683.94 16194.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 94
131488.94 12987.20 15394.17 4293.21 19485.73 4293.33 26996.64 7682.89 18675.98 25896.36 12366.83 22599.39 6783.52 16996.02 10797.39 136
3Dnovator82.32 1089.33 12287.64 14094.42 3393.73 18185.70 4397.73 6696.75 5886.73 9776.21 25595.93 13062.17 25199.68 4281.67 18197.81 6997.88 98
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7693.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20088.92 13087.65 13992.73 10196.30 10985.62 4597.85 5498.86 184.38 14884.82 15793.99 18275.12 15698.01 14470.86 27586.67 18894.56 209
test1294.25 3898.34 5285.55 4696.35 11692.36 6880.84 6399.22 8298.31 5697.98 91
LFMVS89.27 12487.64 14094.16 4497.16 10085.52 4797.18 10694.66 21279.17 25489.63 11096.57 12155.35 30298.22 14089.52 11289.54 16398.74 35
FMVSNet282.79 23580.44 24889.83 19492.66 20985.43 4895.42 21594.35 23079.06 25774.46 27487.28 26756.38 29794.31 30469.72 28074.68 26489.76 255
DVP-MVS++96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5488.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
IU-MVS99.03 1685.34 4996.86 4392.05 1598.74 198.15 398.97 1799.42 13
nrg03086.79 17485.43 17490.87 16288.76 28585.34 4997.06 12394.33 23184.31 15080.45 20991.98 20372.36 18596.36 22388.48 12271.13 28090.93 235
tfpn200view988.48 14387.15 15592.47 11196.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19494.17 211
thres40088.42 14687.15 15592.23 12096.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19493.45 224
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 10088.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.05 1085.18 5499.11 896.78 4888.75 4997.65 898.91 387.69 21
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
thres600view788.06 15486.70 16492.15 12396.10 11585.17 5897.14 11298.85 282.70 19083.41 17593.66 18875.43 14797.82 15367.13 29085.88 19893.45 224
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3494.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
test_part298.90 2185.14 6096.07 20
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4888.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
test_241102_ONE99.03 1685.03 6196.78 4888.72 5197.79 498.90 688.48 1699.82 17
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14180.57 22188.08 13197.63 7776.84 11899.89 785.67 14194.88 11998.13 76
MVS_Test90.29 10989.18 11693.62 6295.23 13584.93 6494.41 24394.66 21284.31 15090.37 10191.02 21775.13 15597.82 15383.11 17494.42 12498.12 77
thres100view90088.30 14986.95 16192.33 11796.10 11584.90 6597.14 11298.85 282.69 19183.41 17593.66 18875.43 14797.93 14669.04 28186.24 19494.17 211
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5986.11 10196.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12787.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
test_part184.72 20282.85 21490.34 17695.73 12484.79 6896.75 14694.10 24279.05 26075.97 25989.51 23967.69 21595.94 24079.34 19967.50 31790.30 244
MVSTER89.25 12588.92 12290.24 17995.98 11884.66 6996.79 14295.36 17587.19 8880.33 21190.61 22490.02 1195.97 23685.38 14478.64 24690.09 249
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12989.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.91 2084.56 7196.70 6488.06 6696.57 1598.77 1288.04 19
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IB-MVS85.34 488.67 13887.14 15793.26 7693.12 20084.32 7398.76 1797.27 1887.19 8879.36 22090.45 22783.92 4198.53 12984.41 15169.79 29496.93 152
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2789.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7386.24 9994.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
thisisatest051590.95 9490.26 9593.01 8894.03 17484.27 7697.91 5196.67 6983.18 17886.87 14295.51 14288.66 1597.85 15280.46 18789.01 16896.92 154
RRT_MVS86.89 16985.96 16989.68 19995.01 14684.13 7796.33 17594.98 19384.20 15580.10 21592.07 20270.52 20495.01 29183.30 17177.14 25589.91 253
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 20196.42 10591.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3790.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12283.00 18493.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
PVSNet_BlendedMVS90.05 11189.96 10390.33 17797.47 8783.86 8198.02 4796.73 6087.98 6889.53 11289.61 23876.42 12699.57 5394.29 4779.59 23787.57 306
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 6091.02 2489.53 11296.21 12576.42 12699.57 5394.29 4795.81 11197.29 142
sss90.87 9689.96 10393.60 6394.15 16883.84 8397.14 11298.13 785.93 10789.68 10896.09 12871.67 19299.30 7687.69 12789.16 16697.66 117
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2989.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
TEST998.64 3583.71 8597.82 5696.65 7384.29 15295.16 2898.09 4684.39 3499.36 74
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7384.50 14495.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
ab-mvs87.08 16684.94 18593.48 7093.34 19383.67 8788.82 31495.70 15581.18 21084.55 16290.14 23462.72 24798.94 11285.49 14382.54 22697.85 102
test_898.63 3783.64 8897.81 5896.63 7884.50 14495.10 3098.11 4584.33 3599.23 80
CHOSEN 1792x268891.07 9190.21 9793.64 6095.18 13883.53 8996.26 17996.13 13188.92 4784.90 15693.10 19472.86 18199.62 4988.86 11695.67 11297.79 107
Effi-MVS+90.70 9889.90 10693.09 8493.61 18283.48 9095.20 22392.79 29583.22 17791.82 7595.70 13571.82 19197.48 17291.25 8593.67 13398.32 58
VPNet84.69 20482.92 21290.01 18589.01 28483.45 9196.71 14995.46 16885.71 11179.65 21892.18 20156.66 29496.01 23583.05 17567.84 31490.56 237
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10685.79 10995.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29791.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
save fliter98.24 5783.34 9398.61 2396.57 8591.32 18
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7983.60 17394.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13482.41 19594.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS99.09 983.22 9796.60 8282.88 18793.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8784.38 14894.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
agg_prior98.59 3983.13 9896.56 8794.19 4599.16 93
CS-MVS93.12 4493.27 4192.64 10693.86 17783.12 10098.85 1694.85 20188.61 5494.19 4597.42 8879.02 8597.02 19594.89 4097.77 7097.78 108
PCF-MVS84.09 586.77 17585.00 18492.08 12492.06 23383.07 10192.14 29094.47 22479.63 24476.90 24294.78 16471.15 19899.20 8872.87 25991.05 15693.98 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18191.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12899.20 22
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3188.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 138
API-MVS90.18 11088.97 11993.80 5298.66 3282.95 10497.50 8495.63 16075.16 29386.31 14597.69 7172.49 18499.90 581.26 18396.07 10598.56 46
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
CHOSEN 280x42091.71 7691.85 7091.29 15094.94 14782.69 10687.89 32396.17 13085.94 10687.27 13894.31 17290.27 895.65 25894.04 5095.86 10995.53 191
VPA-MVSNet85.32 19483.83 19989.77 19790.25 26582.63 10796.36 17297.07 2683.03 18381.21 20189.02 24461.58 25996.31 22685.02 14870.95 28290.36 240
baseline90.76 9790.10 10092.74 10092.90 20682.56 10894.60 23994.56 22087.69 7689.06 11995.67 13773.76 17297.51 16990.43 9992.23 14998.16 72
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16696.04 13884.68 13889.12 11798.37 2977.48 10899.74 3293.31 6198.38 5297.59 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
casdiffmvs90.95 9490.39 9292.63 10792.82 20782.53 10996.83 13994.47 22487.69 7688.47 12495.56 14174.04 16997.54 16790.90 9092.74 14197.83 104
diffmvs91.17 9090.74 8892.44 11393.11 20182.50 11196.25 18093.62 26787.79 7390.40 10095.93 13073.44 17797.42 17493.62 5492.55 14397.41 134
test250690.96 9390.39 9292.65 10593.54 18582.46 11296.37 17197.35 1686.78 9587.55 13495.25 14677.83 10397.50 17084.07 15494.80 12097.98 91
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11397.77 6095.87 14888.26 6386.39 14493.94 18376.77 12099.27 7788.80 11894.00 12996.31 175
test_prior482.34 11497.75 65
PatchmatchNetpermissive86.83 17285.12 18291.95 12994.12 16982.27 11586.55 33395.64 15984.59 14282.98 18284.99 30977.26 11095.96 23968.61 28591.34 15597.64 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS87.47 16385.90 17192.18 12295.41 13182.26 11687.00 32996.28 12185.88 10884.23 16485.57 29775.07 15796.26 22771.14 27392.50 14498.03 83
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11797.08 12196.92 3988.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 142
DWT-MVSNet_test90.52 10589.80 10992.70 10395.73 12482.20 11793.69 26096.55 8988.34 6187.04 14195.34 14586.53 2597.55 16476.32 23188.66 17398.34 56
bset_n11_16_dypcd84.35 21082.83 21688.91 20982.54 34182.07 11994.12 25493.47 27285.39 11978.55 22688.98 24562.23 25095.11 28586.75 13773.42 26989.55 258
GBi-Net82.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
test182.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
FMVSNet179.50 27176.54 28188.39 22088.47 29081.95 12094.30 24893.38 27773.14 30972.04 29485.66 29343.86 33493.84 31165.48 29972.53 27489.38 261
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12398.37 2896.40 10986.08 10394.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
test_prior93.09 8498.68 2981.91 12396.40 10999.06 10198.29 63
ETV-MVS92.72 5592.87 4992.28 11994.54 15781.89 12597.98 4895.21 18489.77 3893.11 5996.83 11377.23 11497.50 17095.74 2995.38 11397.44 132
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12595.95 19395.98 14090.76 2583.76 17396.76 11773.24 17999.71 3691.67 8196.96 9097.22 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SCA85.63 19083.64 20391.60 14292.30 21981.86 12792.88 28295.56 16284.85 13282.52 18385.12 30758.04 28095.39 26973.89 25387.58 18497.54 124
VDDNet86.44 17884.51 18992.22 12191.56 24381.83 12897.10 11894.64 21569.50 32987.84 13295.19 15148.01 32397.92 15189.82 10786.92 18696.89 155
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12997.63 7196.50 9685.00 13191.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 13095.03 23296.13 13184.65 14086.10 14897.65 7679.24 8299.75 3083.20 17296.88 9398.56 46
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13198.64 2197.13 2282.60 19394.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
114514_t88.79 13687.57 14492.45 11298.21 6081.74 13296.99 12695.45 16975.16 29382.48 18495.69 13668.59 21498.50 13080.33 18895.18 11797.10 148
MDTV_nov1_ep13_2view81.74 13286.80 33080.65 21985.65 14974.26 16676.52 22796.98 150
112190.66 9989.82 10893.16 8197.39 9381.71 13493.33 26996.66 7274.45 29991.38 8297.55 8279.27 8099.52 5779.95 19398.43 4598.26 66
mvs_anonymous88.68 13787.62 14291.86 13294.80 15181.69 13593.53 26594.92 19582.03 20178.87 22490.43 22875.77 13795.34 27285.04 14793.16 13998.55 48
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13697.40 9596.38 11384.71 13790.90 9397.40 9077.55 10799.76 2489.75 10897.74 7197.72 112
新几何193.12 8297.44 8981.60 13796.71 6374.54 29891.22 8997.57 7879.13 8499.51 6077.40 21998.46 4398.26 66
PVSNet82.34 989.02 12787.79 13792.71 10295.49 12981.50 13897.70 6897.29 1787.76 7485.47 15195.12 15756.90 29198.90 11480.33 18894.02 12797.71 114
XXY-MVS83.84 21682.00 22789.35 20187.13 30281.38 13995.72 20494.26 23380.15 23475.92 26190.63 22361.96 25796.52 21878.98 20573.28 27390.14 246
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 14099.02 1396.59 8389.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
NR-MVSNet83.35 22381.52 23588.84 21188.76 28581.31 14194.45 24295.16 18584.65 14067.81 31390.82 22070.36 20694.87 29374.75 24466.89 32490.33 242
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12797.60 8281.17 14296.61 15396.87 4188.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15795.80 184
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14397.58 7696.70 6485.20 12691.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
#test#92.99 4792.99 4692.98 8998.71 2781.12 14397.77 6096.70 6485.75 11091.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
RRT_test8_iter0587.14 16586.41 16689.32 20294.41 16381.10 14597.06 12395.33 17984.67 13976.27 25390.48 22583.60 4496.33 22485.10 14570.78 28390.53 238
MDTV_nov1_ep1383.69 20094.09 17081.01 14686.78 33196.09 13483.81 16784.75 15884.32 31474.44 16596.54 21763.88 30685.07 206
baseline290.39 10690.21 9790.93 15990.86 25680.99 14795.20 22397.41 1586.03 10580.07 21694.61 16790.58 697.47 17387.29 13189.86 16294.35 210
1112_ss88.60 14187.47 14892.00 12893.21 19480.97 14896.47 16192.46 29983.64 17180.86 20497.30 9480.24 7197.62 15977.60 21585.49 20297.40 135
CDS-MVSNet89.50 11988.96 12091.14 15591.94 23980.93 14997.09 11995.81 15084.26 15384.72 15994.20 17780.31 6995.64 25983.37 17088.96 16996.85 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Test_1112_low_res88.03 15586.73 16391.94 13093.15 19780.88 15096.44 16692.41 30083.59 17480.74 20691.16 21580.18 7297.59 16077.48 21885.40 20397.36 137
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15196.47 16196.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15192.88 28296.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
thisisatest053089.65 11789.02 11891.53 14393.46 19180.78 15396.52 15896.67 6981.69 20683.79 17294.90 16388.85 1497.68 15777.80 21087.49 18596.14 178
HyFIR lowres test89.36 12188.60 12591.63 14194.91 14980.76 15495.60 20995.53 16382.56 19484.03 16691.24 21478.03 9996.81 20987.07 13488.41 17797.32 138
EI-MVSNet-UG-set91.35 8691.22 8091.73 13697.39 9380.68 15596.47 16196.83 4487.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16495.37 194
MIMVSNet79.18 27575.99 28488.72 21587.37 30180.66 15679.96 34691.82 30677.38 27774.33 27581.87 32841.78 34390.74 34466.36 29783.10 21794.76 203
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15797.47 8597.18 2177.06 28384.64 16197.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15897.58 7696.69 6785.20 12691.57 8097.92 6177.01 11699.67 4490.95 8798.41 4898.00 89
UniMVSNet (Re)85.31 19584.23 19588.55 21789.75 27380.55 15996.72 14796.89 4085.42 11778.40 22888.93 24675.38 14995.52 26678.58 20768.02 31189.57 257
CLD-MVS87.97 15787.48 14789.44 20092.16 22880.54 16098.14 3594.92 19591.41 1779.43 21995.40 14462.34 24997.27 18490.60 9582.90 22190.50 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
region2R92.72 5592.70 5392.79 9898.68 2980.53 16197.53 8096.51 9485.22 12491.94 7497.98 5777.26 11099.67 4490.83 9198.37 5398.18 70
pmmvs482.54 23980.79 24187.79 23386.11 31380.49 16293.55 26493.18 28777.29 27873.35 28189.40 24165.26 23695.05 29075.32 24073.61 26887.83 299
WR-MVS84.32 21182.96 21188.41 21989.38 28280.32 16396.59 15496.25 12383.97 16076.63 24590.36 22967.53 21894.86 29475.82 23770.09 29290.06 251
XVS92.69 5792.71 5192.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8297.83 6777.24 11299.59 5190.46 9798.07 6298.02 84
X-MVStestdata86.26 18184.14 19792.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8220.73 37377.24 11299.59 5190.46 9798.07 6298.02 84
GA-MVS85.79 18884.04 19891.02 15889.47 28080.27 16696.90 13694.84 20285.57 11380.88 20389.08 24256.56 29596.47 22077.72 21385.35 20496.34 172
BH-RMVSNet86.84 17185.28 17791.49 14495.35 13380.26 16796.95 13392.21 30182.86 18881.77 19895.46 14359.34 27197.64 15869.79 27993.81 13296.57 166
FIs86.73 17686.10 16888.61 21690.05 27080.21 16896.14 18696.95 3585.56 11678.37 22992.30 19976.73 12195.28 27679.51 19779.27 24090.35 241
TESTMET0.1,189.83 11389.34 11591.31 14892.54 21480.19 16997.11 11596.57 8586.15 10086.85 14391.83 20879.32 7896.95 19981.30 18292.35 14796.77 160
VDD-MVS88.28 15087.02 16092.06 12695.09 14080.18 17097.55 7994.45 22683.09 18089.10 11895.92 13247.97 32498.49 13193.08 6786.91 18797.52 128
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17197.42 9396.78 4892.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary88.81 13487.61 14392.39 11599.33 479.95 17296.70 15195.58 16177.51 27583.05 18196.69 12061.90 25899.72 3584.29 15293.47 13597.50 129
tpmrst88.36 14787.38 15091.31 14894.36 16579.92 17387.32 32795.26 18385.32 12088.34 12786.13 29180.60 6696.70 21383.78 15885.34 20597.30 141
CP-MVS92.54 6292.60 5692.34 11698.50 4579.90 17498.40 2696.40 10984.75 13490.48 9998.09 4677.40 10999.21 8491.15 8698.23 5997.92 97
ADS-MVSNet81.26 25678.36 26689.96 18993.78 17879.78 17579.48 34793.60 26873.09 31080.14 21379.99 33962.15 25295.24 27859.49 32283.52 21294.85 201
miper_enhance_ethall85.95 18585.20 17888.19 22894.85 15079.76 17696.00 19094.06 24582.98 18577.74 23388.76 24879.42 7795.46 26880.58 18672.42 27589.36 264
CR-MVSNet83.53 22181.36 23790.06 18490.16 26879.75 17779.02 35191.12 31684.24 15482.27 19180.35 33675.45 14593.67 31563.37 31086.25 19296.75 162
RPMNet79.85 26775.92 28591.64 13990.16 26879.75 17779.02 35195.44 17058.43 35982.27 19172.55 35573.03 18098.41 13546.10 35986.25 19296.75 162
PGM-MVS91.93 6991.80 7292.32 11898.27 5679.74 17995.28 21897.27 1883.83 16690.89 9497.78 6976.12 13299.56 5588.82 11797.93 6897.66 117
MP-MVScopyleft92.61 6092.67 5492.42 11498.13 6479.73 18097.33 9896.20 12785.63 11290.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test91.92 7092.11 6691.37 14694.00 17579.66 18198.39 2794.38 22987.14 9092.87 6497.05 10677.17 11596.97 19891.44 8296.55 10097.47 131
v2v48283.46 22281.86 22988.25 22586.19 31179.65 18296.34 17494.02 24681.56 20777.32 23688.23 25665.62 23096.03 23377.77 21169.72 29689.09 270
gm-plane-assit92.27 22079.64 18384.47 14695.15 15497.93 14685.81 140
旧先验197.39 9379.58 18496.54 9098.08 4984.00 3997.42 7997.62 121
KD-MVS_2432*160077.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
miper_refine_blended77.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
ECVR-MVScopyleft88.35 14887.25 15291.65 13893.54 18579.40 18796.56 15790.78 32486.78 9585.57 15095.25 14657.25 28997.56 16284.73 15094.80 12097.98 91
UniMVSNet_NR-MVSNet85.49 19284.59 18888.21 22789.44 28179.36 18896.71 14996.41 10685.22 12478.11 23190.98 21976.97 11795.14 28379.14 20368.30 30890.12 247
DU-MVS84.57 20683.33 20988.28 22388.76 28579.36 18896.43 16895.41 17485.42 11778.11 23190.82 22067.61 21695.14 28379.14 20368.30 30890.33 242
CNLPA86.96 16785.37 17691.72 13797.59 8379.34 19097.21 10291.05 31974.22 30078.90 22296.75 11867.21 22298.95 11074.68 24590.77 15896.88 156
tfpnnormal78.14 28175.42 28786.31 26488.33 29279.24 19194.41 24396.22 12573.51 30569.81 30785.52 29955.43 30195.75 25147.65 35767.86 31383.95 343
HPM-MVScopyleft91.62 7991.53 7791.89 13197.88 7479.22 19296.99 12695.73 15482.07 20089.50 11497.19 9975.59 14298.93 11390.91 8997.94 6697.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
TAMVS88.48 14387.79 13790.56 17091.09 25179.18 19396.45 16495.88 14683.64 17183.12 17993.33 19075.94 13595.74 25482.40 17788.27 17896.75 162
Fast-Effi-MVS+87.93 15886.94 16290.92 16094.04 17279.16 19498.26 3193.72 26381.29 20983.94 17092.90 19569.83 20996.68 21476.70 22591.74 15396.93 152
CostFormer89.08 12688.39 12891.15 15493.13 19979.15 19588.61 31796.11 13383.14 17989.58 11186.93 27583.83 4296.87 20588.22 12585.92 19797.42 133
UGNet87.73 16086.55 16591.27 15195.16 13979.11 19696.35 17396.23 12488.14 6587.83 13390.48 22550.65 31499.09 10080.13 19294.03 12695.60 189
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MS-PatchMatch83.05 23081.82 23086.72 25989.64 27679.10 19794.88 23594.59 21979.70 24370.67 30189.65 23750.43 31696.82 20870.82 27795.99 10884.25 340
V4283.04 23181.53 23487.57 24086.27 31079.09 19895.87 19994.11 24180.35 22977.22 23886.79 27865.32 23596.02 23477.74 21270.14 28887.61 305
v114482.90 23481.27 23887.78 23486.29 30979.07 19996.14 18693.93 24880.05 23677.38 23486.80 27765.50 23195.93 24275.21 24170.13 28988.33 291
v881.88 24880.06 25587.32 24686.63 30579.04 20094.41 24393.65 26678.77 26273.19 28485.57 29766.87 22495.81 24773.84 25567.61 31687.11 313
v1081.43 25479.53 26087.11 25186.38 30678.87 20194.31 24793.43 27577.88 27073.24 28385.26 30165.44 23295.75 25172.14 26467.71 31586.72 317
cl2285.11 19784.17 19687.92 23195.06 14478.82 20295.51 21194.22 23479.74 24276.77 24387.92 26175.96 13495.68 25579.93 19572.42 27589.27 265
Vis-MVSNetpermissive88.67 13887.82 13691.24 15292.68 20878.82 20296.95 13393.85 25387.55 7887.07 14095.13 15663.43 24497.21 18677.58 21696.15 10397.70 115
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet83.24 22781.71 23187.83 23287.71 29878.81 20496.13 18894.82 20384.52 14376.18 25690.78 22264.07 24194.60 29974.60 24866.59 32690.09 249
test111188.11 15387.04 15991.35 14793.15 19778.79 20596.57 15590.78 32486.88 9385.04 15495.20 15057.23 29097.39 17683.88 15694.59 12297.87 100
MVS_111021_LR91.60 8091.64 7691.47 14595.74 12278.79 20596.15 18596.77 5488.49 5788.64 12397.07 10572.33 18699.19 8993.13 6696.48 10196.43 169
tpm287.35 16486.26 16790.62 16892.93 20578.67 20788.06 32295.99 13979.33 24987.40 13586.43 28680.28 7096.40 22180.23 19085.73 20196.79 158
mPP-MVS91.88 7191.82 7192.07 12598.38 5078.63 20897.29 9996.09 13485.12 12888.45 12597.66 7275.53 14399.68 4289.83 10698.02 6597.88 98
BH-w/o88.24 15187.47 14890.54 17195.03 14578.54 20997.41 9493.82 25484.08 15678.23 23094.51 17069.34 21197.21 18680.21 19194.58 12395.87 183
HQP5-MVS78.48 210
DP-MVS81.47 25378.28 26791.04 15698.14 6378.48 21095.09 23186.97 34661.14 35171.12 29892.78 19759.59 26799.38 6853.11 34586.61 18995.27 197
HQP-MVS87.91 15987.55 14588.98 20892.08 23078.48 21097.63 7194.80 20490.52 2882.30 18794.56 16865.40 23397.32 17987.67 12883.01 21891.13 231
v119282.31 24480.55 24787.60 23785.94 31578.47 21395.85 20193.80 25779.33 24976.97 24186.51 28163.33 24595.87 24473.11 25870.13 28988.46 287
SR-MVS92.16 6692.27 6191.83 13598.37 5178.41 21496.67 15295.76 15282.19 19991.97 7398.07 5076.44 12598.64 12293.71 5297.27 8298.45 52
Anonymous20240521184.41 20981.93 22891.85 13496.78 10578.41 21497.44 8791.34 31470.29 32584.06 16594.26 17441.09 34698.96 10779.46 19882.65 22598.17 71
test22296.15 11378.41 21495.87 19996.46 10071.97 31889.66 10997.45 8476.33 12998.24 5898.30 62
MVP-Stereo82.65 23881.67 23285.59 27586.10 31478.29 21793.33 26992.82 29477.75 27269.17 31187.98 26059.28 27295.76 25071.77 26596.88 9382.73 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Anonymous2024052983.15 22880.60 24690.80 16395.74 12278.27 21896.81 14194.92 19560.10 35581.89 19692.54 19845.82 33198.82 11779.25 20278.32 25195.31 196
miper_ehance_all_eth84.57 20683.60 20587.50 24292.64 21278.25 21995.40 21793.47 27279.28 25276.41 24987.64 26476.53 12495.24 27878.58 20772.42 27589.01 275
ppachtmachnet_test77.19 29074.22 29886.13 26785.39 32278.22 22093.98 25691.36 31371.74 32067.11 31684.87 31056.67 29393.37 32052.21 34664.59 33086.80 316
v14419282.43 24080.73 24387.54 24185.81 31878.22 22095.98 19193.78 25979.09 25677.11 23986.49 28264.66 24095.91 24374.20 25169.42 29788.49 285
NP-MVS92.04 23478.22 22094.56 168
ACMMPcopyleft90.39 10689.97 10291.64 13997.58 8478.21 22396.78 14396.72 6284.73 13684.72 15997.23 9771.22 19799.63 4888.37 12492.41 14697.08 149
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS90.63 10090.22 9691.86 13298.47 4778.20 22497.18 10696.61 7983.87 16588.18 13098.18 3568.71 21399.75 3083.66 16497.15 8597.63 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpm cat183.63 22081.38 23690.39 17493.53 19078.19 22585.56 33995.09 18770.78 32378.51 22783.28 32274.80 15997.03 19466.77 29184.05 21095.95 180
原ACMM191.22 15397.77 7778.10 22696.61 7981.05 21291.28 8797.42 8877.92 10198.98 10679.85 19698.51 3896.59 165
FC-MVSNet-test85.96 18485.39 17587.66 23689.38 28278.02 22795.65 20896.87 4185.12 12877.34 23591.94 20676.28 13094.74 29677.09 22078.82 24490.21 245
FOURS198.51 4478.01 22898.13 3896.21 12683.04 18294.39 43
dp84.30 21282.31 22390.28 17894.24 16777.97 22986.57 33295.53 16379.94 23980.75 20585.16 30571.49 19696.39 22263.73 30783.36 21596.48 168
tpmvs83.04 23180.77 24289.84 19395.43 13077.96 23085.59 33895.32 18075.31 29276.27 25383.70 31973.89 17097.41 17559.53 32181.93 22894.14 213
HQP_MVS87.50 16287.09 15888.74 21491.86 24077.96 23097.18 10694.69 20889.89 3681.33 19994.15 17864.77 23897.30 18187.08 13282.82 22290.96 233
plane_prior77.96 23097.52 8390.36 3382.96 220
v192192082.02 24780.23 25187.41 24485.62 31977.92 23395.79 20393.69 26478.86 26176.67 24486.44 28462.50 24895.83 24672.69 26069.77 29588.47 286
plane_prior691.98 23577.92 23364.77 238
OMC-MVS88.80 13588.16 13190.72 16695.30 13477.92 23394.81 23694.51 22186.80 9484.97 15596.85 11267.53 21898.60 12585.08 14687.62 18295.63 188
OPM-MVS85.84 18685.10 18388.06 22988.34 29177.83 23695.72 20494.20 23587.89 7280.45 20994.05 18058.57 27697.26 18583.88 15682.76 22489.09 270
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DROMVSNet91.73 7392.11 6690.58 16993.54 18577.77 23798.07 4394.40 22887.44 7992.99 6297.11 10374.59 16496.87 20593.75 5197.08 8697.11 147
plane_prior377.75 23890.17 3481.33 199
c3_l83.80 21782.65 21987.25 24992.10 22977.74 23995.25 22193.04 29278.58 26476.01 25787.21 27175.25 15495.11 28577.54 21768.89 30288.91 281
v124081.70 25079.83 25887.30 24885.50 32077.70 24095.48 21293.44 27478.46 26676.53 24786.44 28460.85 26295.84 24571.59 26770.17 28788.35 290
TR-MVS86.30 18084.93 18690.42 17394.63 15477.58 24196.57 15593.82 25480.30 23082.42 18695.16 15358.74 27597.55 16474.88 24387.82 18196.13 179
plane_prior791.86 24077.55 242
BH-untuned86.95 16885.94 17089.99 18694.52 15877.46 24396.78 14393.37 28081.80 20476.62 24693.81 18766.64 22697.02 19576.06 23393.88 13195.48 192
EI-MVSNet85.80 18785.20 17887.59 23891.55 24477.41 24495.13 22695.36 17580.43 22780.33 21194.71 16573.72 17395.97 23676.96 22378.64 24689.39 259
IterMVS-LS83.93 21582.80 21787.31 24791.46 24777.39 24595.66 20793.43 27580.44 22575.51 26687.26 26973.72 17395.16 28276.99 22170.72 28589.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HPM-MVS_fast90.38 10890.17 9991.03 15797.61 8177.35 24697.15 11195.48 16779.51 24688.79 12196.90 10971.64 19498.81 11887.01 13597.44 7796.94 151
MSDG80.62 26377.77 27189.14 20493.43 19277.24 24791.89 29390.18 32869.86 32868.02 31291.94 20652.21 31298.84 11659.32 32483.12 21691.35 230
test-LLR88.48 14387.98 13389.98 18792.26 22177.23 24897.11 11595.96 14183.76 16886.30 14691.38 21172.30 18796.78 21180.82 18491.92 15195.94 181
test-mter88.95 12888.60 12589.98 18792.26 22177.23 24897.11 11595.96 14185.32 12086.30 14691.38 21176.37 12896.78 21180.82 18491.92 15195.94 181
UA-Net88.92 13088.48 12790.24 17994.06 17177.18 25093.04 27894.66 21287.39 8191.09 9093.89 18474.92 15898.18 14375.83 23691.43 15495.35 195
Anonymous2023121179.72 26977.19 27587.33 24595.59 12777.16 25195.18 22594.18 23759.31 35772.57 29086.20 29047.89 32595.66 25674.53 24969.24 30089.18 267
pmmvs581.34 25579.54 25986.73 25885.02 32776.91 25296.22 18191.65 30977.65 27373.55 27888.61 25055.70 30094.43 30274.12 25273.35 27288.86 282
IS-MVSNet88.67 13888.16 13190.20 18193.61 18276.86 25396.77 14593.07 29184.02 15883.62 17495.60 14074.69 16396.24 22978.43 20993.66 13497.49 130
v14882.41 24380.89 24086.99 25386.18 31276.81 25496.27 17893.82 25480.49 22475.28 26986.11 29267.32 22195.75 25175.48 23967.03 32388.42 289
our_test_377.90 28475.37 28885.48 27785.39 32276.74 25593.63 26191.67 30873.39 30865.72 32584.65 31258.20 27993.13 32257.82 32867.87 31286.57 319
PVSNet_077.72 1581.70 25078.95 26489.94 19090.77 25976.72 25695.96 19296.95 3585.01 13070.24 30588.53 25352.32 31198.20 14186.68 13844.08 36394.89 200
D2MVS82.67 23781.55 23386.04 26887.77 29776.47 25795.21 22296.58 8482.66 19270.26 30485.46 30060.39 26395.80 24876.40 22979.18 24185.83 330
PLCcopyleft83.97 788.00 15687.38 15089.83 19498.02 6976.46 25897.16 11094.43 22779.26 25381.98 19496.28 12469.36 21099.27 7777.71 21492.25 14893.77 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH75.40 1777.99 28274.96 28987.10 25290.67 26076.41 25993.19 27791.64 31072.47 31663.44 33387.61 26543.34 33797.16 18958.34 32673.94 26687.72 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS91.73 7392.05 6890.78 16594.52 15876.40 26098.06 4495.34 17889.19 4488.90 12097.28 9677.56 10697.73 15690.77 9296.86 9598.20 68
APD-MVS_3200maxsize91.23 8991.35 7990.89 16197.89 7376.35 26196.30 17795.52 16579.82 24091.03 9297.88 6474.70 16098.54 12892.11 7896.89 9297.77 109
FMVSNet576.46 29574.16 29983.35 30790.05 27076.17 26289.58 30989.85 33071.39 32265.29 32780.42 33550.61 31587.70 35561.05 31969.24 30086.18 324
GeoE86.36 17985.20 17889.83 19493.17 19676.13 26397.53 8092.11 30279.58 24580.99 20294.01 18166.60 22796.17 23173.48 25789.30 16597.20 146
IterMVS80.67 26279.16 26285.20 27989.79 27276.08 26492.97 28091.86 30580.28 23171.20 29785.14 30657.93 28391.34 33872.52 26270.74 28488.18 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
h-mvs3389.30 12388.95 12190.36 17595.07 14276.04 26596.96 13297.11 2490.39 3192.22 7095.10 15874.70 16098.86 11593.14 6465.89 32796.16 177
SR-MVS-dyc-post91.29 8791.45 7890.80 16397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6575.76 13898.61 12391.99 7996.79 9697.75 110
RE-MVS-def91.18 8397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6573.36 17891.99 7996.79 9697.75 110
EPP-MVSNet89.76 11589.72 11089.87 19293.78 17876.02 26897.22 10096.51 9479.35 24885.11 15395.01 16184.82 3297.10 19387.46 13088.21 17996.50 167
tttt051788.57 14288.19 13089.71 19893.00 20275.99 26995.67 20696.67 6980.78 21681.82 19794.40 17188.97 1397.58 16176.05 23486.31 19195.57 190
cl____83.27 22582.12 22486.74 25592.20 22475.95 27095.11 22893.27 28478.44 26774.82 27287.02 27474.19 16795.19 28074.67 24669.32 29889.09 270
DIV-MVS_self_test83.27 22582.12 22486.74 25592.19 22575.92 27195.11 22893.26 28578.44 26774.81 27387.08 27374.19 16795.19 28074.66 24769.30 29989.11 269
pm-mvs180.05 26678.02 26986.15 26685.42 32175.81 27295.11 22892.69 29777.13 28070.36 30387.43 26658.44 27895.27 27771.36 26964.25 33387.36 311
Patchmtry77.36 28974.59 29485.67 27489.75 27375.75 27377.85 35491.12 31660.28 35371.23 29680.35 33675.45 14593.56 31757.94 32767.34 32087.68 302
abl_689.80 11489.71 11190.07 18396.53 10775.52 27494.48 24095.04 19081.12 21189.22 11597.00 10768.83 21298.96 10789.86 10595.27 11495.73 186
PatchT79.75 26876.85 27888.42 21889.55 27875.49 27577.37 35594.61 21763.07 34282.46 18573.32 35475.52 14493.41 31951.36 34884.43 20896.36 170
tpm85.55 19184.47 19288.80 21390.19 26775.39 27688.79 31594.69 20884.83 13383.96 16985.21 30378.22 9794.68 29876.32 23178.02 25396.34 172
TransMVSNet (Re)76.94 29274.38 29684.62 28885.92 31675.25 27795.28 21889.18 33673.88 30367.22 31486.46 28359.64 26694.10 30759.24 32552.57 35484.50 338
Baseline_NR-MVSNet81.22 25780.07 25484.68 28585.32 32575.12 27896.48 16088.80 33976.24 28777.28 23786.40 28767.61 21694.39 30375.73 23866.73 32584.54 337
eth_miper_zixun_eth83.12 22982.01 22686.47 26091.85 24274.80 27994.33 24693.18 28779.11 25575.74 26587.25 27072.71 18295.32 27476.78 22467.13 32189.27 265
IterMVS-SCA-FT80.51 26479.10 26384.73 28489.63 27774.66 28092.98 27991.81 30780.05 23671.06 29985.18 30458.04 28091.40 33772.48 26370.70 28688.12 295
USDC78.65 27776.25 28285.85 26987.58 29974.60 28189.58 30990.58 32784.05 15763.13 33588.23 25640.69 34896.86 20766.57 29475.81 25986.09 326
PatchMatch-RL85.00 19983.66 20289.02 20795.86 12074.55 28292.49 28693.60 26879.30 25179.29 22191.47 20958.53 27798.45 13370.22 27892.17 15094.07 215
test117291.64 7792.00 6990.54 17198.20 6174.48 28396.45 16495.65 15781.97 20391.63 7998.02 5275.76 13898.61 12393.16 6397.17 8498.52 49
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 20993.89 17674.43 28496.93 13594.19 23684.39 14783.22 17895.67 13778.24 9694.70 29778.88 20694.40 12597.61 122
PS-MVSNAJss84.91 20084.30 19486.74 25585.89 31774.40 28594.95 23394.16 23883.93 16376.45 24890.11 23571.04 20095.77 24983.16 17379.02 24390.06 251
testdata90.13 18295.92 11974.17 28696.49 9973.49 30794.82 3897.99 5578.80 8997.93 14683.53 16897.52 7498.29 63
Patchmatch-test78.25 28074.72 29388.83 21291.20 24874.10 28773.91 36188.70 34259.89 35666.82 31985.12 30778.38 9494.54 30048.84 35579.58 23897.86 101
LS3D82.22 24579.94 25789.06 20597.43 9074.06 28893.20 27692.05 30361.90 34673.33 28295.21 14959.35 27099.21 8454.54 34192.48 14593.90 218
hse-mvs288.22 15288.21 12988.25 22593.54 18573.41 28995.41 21695.89 14590.39 3192.22 7094.22 17574.70 16096.66 21693.14 6464.37 33294.69 208
AUN-MVS86.25 18285.57 17288.26 22493.57 18473.38 29095.45 21495.88 14683.94 16185.47 15194.21 17673.70 17596.67 21583.54 16764.41 33194.73 207
pmmvs-eth3d73.59 30670.66 31282.38 31376.40 36173.38 29089.39 31289.43 33372.69 31460.34 34677.79 34546.43 33091.26 34066.42 29657.06 34582.51 349
CPTT-MVS89.72 11689.87 10789.29 20398.33 5373.30 29297.70 6895.35 17775.68 28987.40 13597.44 8770.43 20598.25 13989.56 11196.90 9196.33 174
EG-PatchMatch MVS74.92 30272.02 30783.62 30283.76 33973.28 29393.62 26292.04 30468.57 33158.88 34883.80 31831.87 36195.57 26556.97 33478.67 24582.00 354
TAPA-MVS81.61 1285.02 19883.67 20189.06 20596.79 10473.27 29495.92 19594.79 20674.81 29680.47 20896.83 11371.07 19998.19 14249.82 35392.57 14295.71 187
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test84.20 21383.49 20786.33 26190.88 25473.06 29595.28 21894.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
LGP-MVS_train86.33 26190.88 25473.06 29594.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
ACMP81.66 1184.00 21483.22 21086.33 26191.53 24672.95 29795.91 19793.79 25883.70 17073.79 27792.22 20054.31 31096.89 20383.98 15579.74 23689.16 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n79.32 27477.34 27385.28 27884.05 33772.89 29893.38 26793.87 25275.02 29570.68 30084.37 31359.58 26895.62 26167.60 28767.50 31787.32 312
test0.0.03 182.79 23582.48 22183.74 30086.81 30472.22 29996.52 15895.03 19183.76 16873.00 28593.20 19172.30 18788.88 35164.15 30577.52 25490.12 247
F-COLMAP84.50 20883.44 20887.67 23595.22 13672.22 29995.95 19393.78 25975.74 28876.30 25295.18 15259.50 26998.45 13372.67 26186.59 19092.35 228
ADS-MVSNet279.57 27077.53 27285.71 27393.78 17872.13 30179.48 34786.11 35173.09 31080.14 21379.99 33962.15 25290.14 34959.49 32283.52 21294.85 201
ACMM80.70 1383.72 21982.85 21486.31 26491.19 24972.12 30295.88 19894.29 23280.44 22577.02 24091.96 20455.24 30397.14 19279.30 20180.38 23289.67 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D80.86 26178.75 26587.22 25086.31 30872.02 30391.95 29193.76 26273.51 30575.06 27190.16 23343.04 34095.66 25676.37 23078.55 24993.98 216
LTVRE_ROB73.68 1877.99 28275.74 28684.74 28390.45 26372.02 30386.41 33491.12 31672.57 31566.63 32087.27 26854.95 30696.98 19756.29 33675.98 25785.21 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance81.66 25280.66 24584.67 28691.19 24971.97 30591.94 29293.19 28677.86 27172.27 29285.26 30173.46 17693.42 31873.71 25667.05 32288.61 283
MDA-MVSNet_test_wron73.54 30770.43 31482.86 30984.55 32971.85 30691.74 29691.32 31567.63 33246.73 36181.09 33355.11 30490.42 34755.91 33859.76 34286.31 322
OpenMVS_ROBcopyleft68.52 2073.02 31169.57 31783.37 30680.54 34771.82 30793.60 26388.22 34362.37 34461.98 34083.15 32335.31 35695.47 26745.08 36075.88 25882.82 346
test_040272.68 31269.54 31882.09 31688.67 28871.81 30892.72 28486.77 34861.52 34862.21 33983.91 31743.22 33893.76 31434.60 36472.23 27880.72 356
YYNet173.53 30870.43 31482.85 31084.52 33171.73 30991.69 29791.37 31267.63 33246.79 36081.21 33255.04 30590.43 34655.93 33759.70 34386.38 321
XVG-OURS85.18 19684.38 19387.59 23890.42 26471.73 30991.06 30394.07 24482.00 20283.29 17795.08 15956.42 29697.55 16483.70 16383.42 21493.49 223
ACMH+76.62 1677.47 28874.94 29085.05 28091.07 25271.58 31193.26 27490.01 32971.80 31964.76 32888.55 25141.62 34496.48 21962.35 31371.00 28187.09 314
XVG-OURS-SEG-HR85.74 18985.16 18187.49 24390.22 26671.45 31291.29 30094.09 24381.37 20883.90 17195.22 14860.30 26497.53 16885.58 14284.42 20993.50 222
EPNet_dtu87.65 16187.89 13486.93 25494.57 15571.37 31396.72 14796.50 9688.56 5687.12 13995.02 16075.91 13694.01 30966.62 29290.00 16195.42 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WR-MVS_H81.02 25880.09 25283.79 29888.08 29571.26 31494.46 24196.54 9080.08 23572.81 28886.82 27670.36 20692.65 32464.18 30467.50 31787.46 310
jajsoiax82.12 24681.15 23985.03 28184.19 33470.70 31594.22 25293.95 24783.07 18173.48 27989.75 23649.66 31995.37 27182.24 17979.76 23489.02 274
CP-MVSNet81.01 25980.08 25383.79 29887.91 29670.51 31694.29 25195.65 15780.83 21572.54 29188.84 24763.71 24292.32 32768.58 28668.36 30788.55 284
anonymousdsp80.98 26079.97 25684.01 29581.73 34370.44 31792.49 28693.58 27077.10 28272.98 28686.31 28857.58 28494.90 29279.32 20078.63 24886.69 318
mvs_tets81.74 24980.71 24484.84 28284.22 33370.29 31893.91 25793.78 25982.77 18973.37 28089.46 24047.36 32895.31 27581.99 18079.55 23988.92 280
DeepPCF-MVS89.82 194.61 1796.17 589.91 19197.09 10270.21 31998.99 1496.69 6795.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
pmmvs674.65 30471.67 30883.60 30379.13 35169.94 32093.31 27390.88 32361.05 35265.83 32484.15 31643.43 33694.83 29566.62 29260.63 34186.02 327
PS-CasMVS80.27 26579.18 26183.52 30587.56 30069.88 32194.08 25595.29 18180.27 23272.08 29388.51 25459.22 27392.23 32967.49 28868.15 31088.45 288
MVS_030478.43 27876.70 27983.60 30388.22 29369.81 32292.91 28195.10 18672.32 31778.71 22580.29 33833.78 35793.37 32068.77 28480.23 23387.63 303
test_djsdf83.00 23382.45 22284.64 28784.07 33669.78 32394.80 23794.48 22280.74 21775.41 26887.70 26361.32 26195.10 28783.77 15979.76 23489.04 273
MVS-HIRNet71.36 31867.00 32284.46 29290.58 26169.74 32479.15 35087.74 34546.09 36261.96 34150.50 36445.14 33295.64 25953.74 34388.11 18088.00 297
TinyColmap72.41 31368.99 32082.68 31188.11 29469.59 32588.41 31885.20 35365.55 33857.91 35184.82 31130.80 36395.94 24051.38 34768.70 30382.49 351
PMMVS89.46 12089.92 10588.06 22994.64 15369.57 32696.22 18194.95 19487.27 8491.37 8596.54 12265.88 22997.39 17688.54 11993.89 13097.23 144
Fast-Effi-MVS+-dtu83.33 22482.60 22085.50 27689.55 27869.38 32796.09 18991.38 31182.30 19675.96 26091.41 21056.71 29295.58 26475.13 24284.90 20791.54 229
COLMAP_ROBcopyleft73.24 1975.74 29973.00 30583.94 29692.38 21569.08 32891.85 29486.93 34761.48 34965.32 32690.27 23042.27 34296.93 20250.91 35075.63 26085.80 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS79.47 27278.26 26883.08 30886.36 30768.58 32993.85 25894.77 20779.76 24171.37 29588.55 25159.79 26592.46 32564.50 30365.40 32888.19 293
MDA-MVSNet-bldmvs71.45 31767.94 32181.98 31785.33 32468.50 33092.35 28988.76 34070.40 32442.99 36281.96 32746.57 32991.31 33948.75 35654.39 34886.11 325
UnsupCasMVSNet_bld68.60 32464.50 32780.92 32174.63 36467.80 33183.97 34192.94 29365.12 34054.63 35668.23 35935.97 35392.17 33160.13 32044.83 36182.78 347
CL-MVSNet_self_test75.81 29874.14 30080.83 32278.33 35367.79 33294.22 25293.52 27177.28 27969.82 30681.54 33061.47 26089.22 35057.59 33053.51 35085.48 332
AllTest75.92 29773.06 30484.47 29092.18 22667.29 33391.07 30284.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
TestCases84.47 29092.18 22667.29 33384.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
DTE-MVSNet78.37 27977.06 27682.32 31585.22 32667.17 33593.40 26693.66 26578.71 26370.53 30288.29 25559.06 27492.23 32961.38 31763.28 33787.56 307
XVG-ACMP-BASELINE79.38 27377.90 27083.81 29784.98 32867.14 33689.03 31393.18 28780.26 23372.87 28788.15 25838.55 34996.26 22776.05 23478.05 25288.02 296
UnsupCasMVSNet_eth73.25 30970.57 31381.30 31877.53 35566.33 33787.24 32893.89 25180.38 22857.90 35281.59 32942.91 34190.56 34565.18 30148.51 35787.01 315
ITE_SJBPF82.38 31387.00 30365.59 33889.55 33279.99 23869.37 30991.30 21341.60 34595.33 27362.86 31274.63 26586.24 323
mvs-test186.83 17287.17 15485.81 27091.96 23665.24 33997.90 5393.34 28185.57 11384.51 16395.14 15561.99 25597.19 18883.55 16590.55 15995.00 199
pmmvs365.75 32662.18 32976.45 33667.12 36864.54 34088.68 31685.05 35454.77 36157.54 35473.79 35129.40 36486.21 35955.49 34047.77 35978.62 357
Patchmatch-RL test76.65 29474.01 30184.55 28977.37 35764.23 34178.49 35382.84 36278.48 26564.63 32973.40 35376.05 13391.70 33676.99 22157.84 34497.72 112
LCM-MVSNet-Re83.75 21883.54 20684.39 29493.54 18564.14 34292.51 28584.03 35883.90 16466.14 32386.59 28067.36 22092.68 32384.89 14992.87 14096.35 171
JIA-IIPM79.00 27677.20 27484.40 29389.74 27564.06 34375.30 35895.44 17062.15 34581.90 19559.08 36178.92 8695.59 26366.51 29585.78 20093.54 221
new-patchmatchnet68.85 32365.93 32577.61 33273.57 36663.94 34490.11 30788.73 34171.62 32155.08 35573.60 35240.84 34787.22 35751.35 34948.49 35881.67 355
Anonymous2023120675.29 30173.64 30280.22 32480.75 34463.38 34593.36 26890.71 32673.09 31067.12 31583.70 31950.33 31790.85 34353.63 34470.10 29186.44 320
Effi-MVS+-dtu84.61 20584.90 18783.72 30191.96 23663.14 34694.95 23393.34 28185.57 11379.79 21787.12 27261.99 25595.61 26283.55 16585.83 19992.41 227
MIMVSNet169.44 32066.65 32477.84 33176.48 36062.84 34787.42 32688.97 33766.96 33757.75 35379.72 34132.77 36085.83 36046.32 35863.42 33684.85 336
TDRefinement69.20 32265.78 32679.48 32766.04 36962.21 34888.21 31986.12 35062.92 34361.03 34485.61 29633.23 35894.16 30655.82 33953.02 35282.08 353
testgi74.88 30373.40 30379.32 32880.13 34861.75 34993.21 27586.64 34979.49 24766.56 32291.06 21635.51 35588.67 35256.79 33571.25 27987.56 307
new_pmnet66.18 32563.18 32875.18 34176.27 36261.74 35083.79 34284.66 35556.64 36051.57 35871.85 35831.29 36287.93 35449.98 35262.55 33875.86 359
Anonymous2024052172.06 31669.91 31678.50 33077.11 35861.67 35191.62 29990.97 32165.52 33962.37 33879.05 34236.32 35290.96 34257.75 32968.52 30582.87 345
SixPastTwentyTwo76.04 29674.32 29781.22 31984.54 33061.43 35291.16 30189.30 33577.89 26964.04 33086.31 28848.23 32194.29 30563.54 30963.84 33587.93 298
CVMVSNet84.83 20185.57 17282.63 31291.55 24460.38 35395.13 22695.03 19180.60 22082.10 19394.71 16566.40 22890.19 34874.30 25090.32 16097.31 140
EGC-MVSNET52.46 33147.56 33467.15 34281.98 34260.11 35482.54 34472.44 3700.11 3760.70 37774.59 34925.11 36583.26 36229.04 36661.51 34058.09 364
OurMVSNet-221017-077.18 29176.06 28380.55 32383.78 33860.00 35590.35 30591.05 31977.01 28466.62 32187.92 26147.73 32694.03 30871.63 26668.44 30687.62 304
K. test v373.62 30571.59 30979.69 32682.98 34059.85 35690.85 30488.83 33877.13 28058.90 34782.11 32643.62 33591.72 33565.83 29854.10 34987.50 309
test20.0372.36 31471.15 31075.98 33877.79 35459.16 35792.40 28889.35 33474.09 30161.50 34284.32 31448.09 32285.54 36150.63 35162.15 33983.24 344
lessismore_v079.98 32580.59 34658.34 35880.87 36458.49 34983.46 32143.10 33993.89 31063.11 31148.68 35687.72 300
LF4IMVS72.36 31470.82 31176.95 33379.18 35056.33 35986.12 33586.11 35169.30 33063.06 33686.66 27933.03 35992.25 32865.33 30068.64 30482.28 352
CMPMVSbinary54.94 2175.71 30074.56 29579.17 32979.69 34955.98 36089.59 30893.30 28360.28 35353.85 35789.07 24347.68 32796.33 22476.55 22681.02 22985.22 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PM-MVS69.32 32166.93 32376.49 33573.60 36555.84 36185.91 33679.32 36774.72 29761.09 34378.18 34421.76 36691.10 34170.86 27556.90 34682.51 349
RPSCF77.73 28576.63 28081.06 32088.66 28955.76 36287.77 32487.88 34464.82 34174.14 27692.79 19649.22 32096.81 20967.47 28976.88 25690.62 236
KD-MVS_self_test70.97 31969.31 31975.95 33976.24 36355.39 36387.45 32590.94 32270.20 32662.96 33777.48 34644.01 33388.09 35361.25 31853.26 35184.37 339
EU-MVSNet76.92 29376.95 27776.83 33484.10 33554.73 36491.77 29592.71 29672.74 31369.57 30888.69 24958.03 28287.43 35664.91 30270.00 29388.33 291
ambc76.02 33768.11 36751.43 36564.97 36489.59 33160.49 34574.49 35017.17 36992.46 32561.50 31652.85 35384.17 341
Gipumacopyleft45.11 33442.05 33654.30 35080.69 34551.30 36635.80 36883.81 35928.13 36627.94 36834.53 36811.41 37476.70 36621.45 36854.65 34734.90 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DSMNet-mixed73.13 31072.45 30675.19 34077.51 35646.82 36785.09 34082.01 36367.61 33669.27 31081.33 33150.89 31386.28 35854.54 34183.80 21192.46 226
PMMVS250.90 33246.31 33564.67 34455.53 37146.67 36877.30 35671.02 37140.89 36334.16 36659.32 3609.83 37576.14 36740.09 36328.63 36771.21 360
ANet_high46.22 33341.28 33861.04 34939.91 37746.25 36970.59 36376.18 36858.87 35823.09 36948.00 36612.58 37266.54 36928.65 36713.62 37070.35 361
DeepMVS_CXcopyleft64.06 34678.53 35243.26 37068.11 37369.94 32738.55 36376.14 34818.53 36879.34 36343.72 36141.62 36469.57 362
LCM-MVSNet52.52 33048.24 33365.35 34347.63 37541.45 37172.55 36283.62 36031.75 36537.66 36457.92 3629.19 37676.76 36549.26 35444.60 36277.84 358
test_method56.77 32854.53 33163.49 34776.49 35940.70 37275.68 35774.24 36919.47 37048.73 35971.89 35719.31 36765.80 37057.46 33147.51 36083.97 342
FPMVS55.09 32952.93 33261.57 34855.98 37040.51 37383.11 34383.41 36137.61 36434.95 36571.95 35614.40 37076.95 36429.81 36565.16 32967.25 363
MVEpermissive35.65 2233.85 33729.49 34246.92 35241.86 37636.28 37450.45 36756.52 37618.75 37118.28 37037.84 3672.41 37858.41 37118.71 36920.62 36846.06 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 33635.53 33950.18 35129.72 37830.30 37559.60 36666.20 37426.06 36717.91 37149.53 3653.12 37774.09 36818.19 37049.40 35546.14 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt41.54 33541.93 33740.38 35320.10 37926.84 37661.93 36559.09 37514.81 37228.51 36780.58 33435.53 35448.33 37463.70 30813.11 37145.96 367
E-PMN32.70 33832.39 34033.65 35453.35 37325.70 37774.07 36053.33 37721.08 36817.17 37233.63 37011.85 37354.84 37212.98 37114.04 36920.42 369
EMVS31.70 33931.45 34132.48 35550.72 37423.95 37874.78 35952.30 37820.36 36916.08 37331.48 37112.80 37153.60 37311.39 37213.10 37219.88 370
wuyk23d14.10 34113.89 34414.72 35655.23 37222.91 37933.83 3693.56 3804.94 3734.11 3742.28 3762.06 37919.66 37510.23 3738.74 3731.59 373
N_pmnet61.30 32760.20 33064.60 34584.32 33217.00 38091.67 29810.98 37961.77 34758.45 35078.55 34349.89 31891.83 33442.27 36263.94 33484.97 335
test1239.07 34311.73 3461.11 3570.50 3810.77 38189.44 3110.20 3820.34 3752.15 37610.72 3750.34 3800.32 3761.79 3750.08 3752.23 371
testmvs9.92 34212.94 3450.84 3580.65 3800.29 38293.78 2590.39 3810.42 3742.85 37515.84 3740.17 3810.30 3772.18 3740.21 3741.91 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k21.43 34028.57 3430.00 3590.00 3820.00 3830.00 37095.93 1440.00 3770.00 37897.66 7263.57 2430.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.92 3457.89 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37771.04 2000.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.11 34410.81 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.30 940.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
eth-test20.00 382
eth-test0.00 382
test_241102_TWO96.78 4888.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
9.1494.26 2898.10 6598.14 3596.52 9384.74 13594.83 3798.80 982.80 5499.37 7295.95 2698.42 46
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
GSMVS97.54 124
sam_mvs177.59 10597.54 124
sam_mvs75.35 152
MTGPAbinary96.33 117
test_post185.88 33730.24 37273.77 17195.07 28973.89 253
test_post33.80 36976.17 13195.97 236
patchmatchnet-post77.09 34777.78 10495.39 269
MTMP97.53 8068.16 372
test9_res96.00 2599.03 1398.31 61
agg_prior294.30 4699.00 1598.57 45
test_prior298.37 2886.08 10394.57 4198.02 5283.14 4795.05 3898.79 27
旧先验296.97 13174.06 30296.10 1997.76 15588.38 123
新几何296.42 169
无先验96.87 13796.78 4877.39 27699.52 5779.95 19398.43 53
原ACMM296.84 138
testdata299.48 6276.45 228
segment_acmp82.69 56
testdata195.57 21087.44 79
plane_prior594.69 20897.30 18187.08 13282.82 22290.96 233
plane_prior494.15 178
plane_prior297.18 10689.89 36
plane_prior191.95 238
n20.00 383
nn0.00 383
door-mid79.75 366
test1196.50 96
door80.13 365
HQP-NCC92.08 23097.63 7190.52 2882.30 187
ACMP_Plane92.08 23097.63 7190.52 2882.30 187
BP-MVS87.67 128
HQP4-MVS82.30 18797.32 17991.13 231
HQP3-MVS94.80 20483.01 218
HQP2-MVS65.40 233
ACMMP++_ref78.45 250
ACMMP++79.05 242
Test By Simon71.65 193