This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2298.46 3299.97 199.33 11299.92 199.96 2598.44 11297.96 799.55 4999.94 497.18 20100.00 193.81 19999.94 6199.98 55
MSC_two_6792asdad99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 136100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6598.47 299.13 8399.92 1396.38 30100.00 199.74 29100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5798.20 399.93 199.98 296.82 22100.00 199.75 27100.00 199.99 24
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 120100.00 199.99 5100.00 1100.00 1
HY-MVS92.50 797.79 8297.17 9799.63 1598.98 12699.32 897.49 31899.52 1495.69 7098.32 12097.41 22093.32 11199.77 12098.08 10895.75 19899.81 103
DVP-MVS++99.26 699.09 999.77 899.91 4499.31 999.95 4398.43 12096.48 4399.80 1799.93 1197.44 13100.00 199.92 1399.98 35100.00 1
IU-MVS99.93 2799.31 998.41 13697.71 899.84 9100.00 1100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13696.63 4099.75 2899.93 1197.49 9
SED-MVS99.28 599.11 799.77 899.93 2799.30 1199.96 2598.43 12097.27 2199.80 1799.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 12097.26 2399.80 1799.88 2496.71 23100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 16097.28 1999.83 1199.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 13297.28 1999.86 599.94 497.22 18
WTY-MVS98.10 6997.60 8099.60 2098.92 13399.28 1699.89 8799.52 1495.58 7398.24 12599.39 12493.33 11099.74 13097.98 11495.58 20199.78 108
test_part299.89 5099.25 1799.49 56
DPE-MVScopyleft99.26 699.10 899.74 1099.89 5099.24 1899.87 9398.44 11297.48 1699.64 4099.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 12895.56 14799.72 1296.85 24299.22 1998.31 29798.94 3791.57 21690.90 23199.61 10686.66 21199.96 5897.36 13199.88 8099.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6998.02 699.90 299.95 397.33 16100.00 199.54 38100.00 1100.00 1
CANet98.27 6097.82 7399.63 1599.72 8899.10 2199.98 1098.51 9997.00 2998.52 11099.71 9187.80 19999.95 6599.75 2799.38 11899.83 101
MG-MVS98.91 1898.65 2299.68 1499.94 1499.07 2299.64 16699.44 1997.33 1899.00 9099.72 8994.03 9499.98 4698.73 79100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4799.02 2399.95 4398.56 7997.56 1499.44 5999.85 3595.38 49100.00 199.31 4899.99 2299.87 98
PAPM98.60 3498.42 3399.14 6696.05 25998.96 2499.90 7999.35 2496.68 3998.35 11999.66 10296.45 2998.51 19399.45 4299.89 7899.96 74
canonicalmvs97.09 10996.32 12199.39 4698.93 13198.95 2599.72 15197.35 26194.45 10897.88 13499.42 12086.71 21099.52 14798.48 9193.97 21899.72 115
ETH3 D test640098.81 2398.54 2899.59 2199.93 2798.93 2699.93 6798.46 10794.56 10599.84 999.92 1394.32 8499.86 9599.96 999.98 35100.00 1
TEST999.92 3698.92 2799.96 2598.43 12093.90 13899.71 3499.86 3195.88 3899.85 99
train_agg98.88 2098.65 2299.59 2199.92 3698.92 2799.96 2598.43 12094.35 11599.71 3499.86 3195.94 3599.85 9999.69 3699.98 3599.99 24
PS-MVSNAJ98.44 4898.20 5299.16 6298.80 14398.92 2799.54 18198.17 18397.34 1799.85 799.85 3591.20 15799.89 8499.41 4599.67 10098.69 211
test_899.92 3698.88 3099.96 2598.43 12094.35 11599.69 3699.85 3595.94 3599.85 99
SMA-MVScopyleft98.76 2798.48 3199.62 1899.87 5798.87 3199.86 10498.38 14793.19 15999.77 2699.94 495.54 44100.00 199.74 2999.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1399.03 1098.95 8699.38 11098.87 3198.46 29099.42 2197.03 2899.02 8799.09 14499.35 198.21 22599.73 3299.78 9399.77 109
DeepC-MVS_fast96.59 198.81 2398.54 2899.62 1899.90 4798.85 3399.24 22298.47 10598.14 499.08 8499.91 1593.09 120100.00 199.04 5999.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 11196.21 12399.22 5398.97 12798.84 3499.85 10799.71 693.17 16096.26 17298.88 17089.87 17799.51 14894.26 19094.91 20899.31 180
tfpn200view996.79 11895.99 12899.19 5698.94 12998.82 3599.78 12999.71 692.86 16596.02 17598.87 17289.33 18399.50 15093.84 19694.57 20999.27 183
thres40096.78 11995.99 12899.16 6298.94 12998.82 3599.78 12999.71 692.86 16596.02 17598.87 17289.33 18399.50 15093.84 19694.57 20999.16 190
xxxxxxxxxxxxxcwj98.98 1598.79 1799.54 2699.82 7098.79 3799.96 2597.52 24397.66 1099.81 1399.89 2194.70 6999.86 9599.84 1899.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 14097.66 10
thres600view796.69 12595.87 14199.14 6698.90 13698.78 3999.74 14399.71 692.59 18395.84 17898.86 17489.25 18599.50 15093.44 20994.50 21299.16 190
thres100view90096.74 12295.92 13899.18 5798.90 13698.77 4099.74 14399.71 692.59 18395.84 17898.86 17489.25 18599.50 15093.84 19694.57 20999.27 183
agg_prior198.88 2098.66 2199.54 2699.93 2798.77 4099.96 2598.43 12094.63 10399.63 4199.85 3595.79 4199.85 9999.72 3399.99 2299.99 24
agg_prior99.93 2798.77 4098.43 12099.63 4199.85 99
PAPR98.52 4298.16 5599.58 2399.97 398.77 4099.95 4398.43 12095.35 7898.03 12999.75 8194.03 9499.98 4698.11 10599.83 8599.99 24
APDe-MVS99.06 1198.91 1499.51 3199.94 1498.76 4499.91 7598.39 14397.20 2599.46 5799.85 3595.53 4699.79 11499.86 17100.00 199.99 24
SD-MVS98.92 1798.70 1999.56 2499.70 9098.73 4599.94 6198.34 15796.38 4899.81 1399.76 7594.59 7199.98 4699.84 1899.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 3298.36 4499.49 3499.94 1498.73 4599.87 9398.33 15893.97 13399.76 2799.87 2894.99 6299.75 12698.55 89100.00 199.98 55
DP-MVS Recon98.41 5098.02 6399.56 2499.97 398.70 4799.92 7198.44 11292.06 20398.40 11799.84 4895.68 42100.00 198.19 10099.71 9899.97 67
SF-MVS98.67 3198.40 3799.50 3299.77 7898.67 4899.90 7998.21 17793.53 15099.81 1399.89 2194.70 6999.86 9599.84 1899.93 6799.96 74
TSAR-MVS + MP.98.93 1698.77 1899.41 4299.74 8298.67 4899.77 13298.38 14796.73 3799.88 499.74 8694.89 6699.59 14599.80 2399.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 6597.97 6699.02 8098.69 14798.66 5099.52 18398.08 19497.05 2799.86 599.86 3190.65 16899.71 13499.39 4698.63 13598.69 211
alignmvs97.81 8097.33 9099.25 5298.77 14598.66 5099.99 498.44 11294.40 11498.41 11599.47 11693.65 10499.42 15698.57 8894.26 21499.67 121
DELS-MVS98.54 4098.22 5099.50 3299.15 11798.65 52100.00 198.58 7597.70 998.21 12699.24 13892.58 13399.94 7398.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 13895.24 15499.52 2996.88 24198.64 5399.72 15198.24 17395.27 8188.42 28098.98 15582.76 24199.94 7397.10 13899.83 8599.96 74
ACMMP_NAP98.49 4498.14 5699.54 2699.66 9398.62 5499.85 10798.37 15094.68 10099.53 5199.83 5192.87 125100.00 198.66 8599.84 8499.99 24
ZD-MVS99.92 3698.57 5598.52 9292.34 19499.31 7199.83 5195.06 5699.80 11199.70 3599.97 48
ETH3D-3000-0.198.68 3098.42 3399.47 3799.83 6898.57 5599.90 7998.37 15093.81 14199.81 1399.90 1994.34 8099.86 9599.84 1899.98 3599.97 67
testtj98.89 1998.69 2099.52 2999.94 1498.56 5799.90 7998.55 8595.14 8399.72 3399.84 4895.46 47100.00 199.65 3799.99 2299.99 24
test1299.43 3899.74 8298.56 5798.40 14099.65 3994.76 6799.75 12699.98 3599.99 24
131496.84 11695.96 13599.48 3696.74 24998.52 5998.31 29798.86 4795.82 6289.91 24398.98 15587.49 20299.96 5897.80 11899.73 9699.96 74
APD-MVScopyleft98.62 3398.35 4599.41 4299.90 4798.51 6099.87 9398.36 15294.08 12699.74 2999.73 8894.08 9299.74 13099.42 4499.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior398.99 1498.84 1699.43 3899.94 1498.49 6199.95 4398.65 6295.78 6499.73 3099.76 7596.00 3399.80 11199.78 25100.00 199.99 24
test_prior99.43 3899.94 1498.49 6198.65 6299.80 11199.99 24
MSLP-MVS++99.13 899.01 1199.49 3499.94 1498.46 6399.98 1098.86 4797.10 2699.80 1799.94 495.92 37100.00 199.51 39100.00 1100.00 1
ETH3D cwj APD-0.1698.40 5298.07 6199.40 4499.59 9698.41 6499.86 10498.24 17392.18 19899.73 3099.87 2893.47 10799.85 9999.74 2999.95 5599.93 85
MP-MVS-pluss98.07 7097.64 7799.38 4799.74 8298.41 6499.74 14398.18 18293.35 15496.45 16699.85 3592.64 13299.97 5698.91 6799.89 7899.77 109
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-198.79 2598.60 2599.36 4899.85 6098.34 6699.87 9398.52 9296.05 5799.41 6299.79 6494.93 6499.76 12399.07 5499.90 7699.99 24
RRT_MVS95.23 16394.77 16796.61 19098.28 16598.32 6799.81 12097.41 25692.59 18391.28 22897.76 21495.02 5897.23 26993.65 20687.14 26294.28 261
Regformer-298.78 2698.59 2699.36 4899.85 6098.32 6799.87 9398.52 9296.04 5899.41 6299.79 6494.92 6599.76 12399.05 5599.90 7699.98 55
新几何199.42 4199.75 8198.27 6998.63 6892.69 17699.55 4999.82 5594.40 75100.00 191.21 23399.94 6199.99 24
112198.03 7197.57 8299.40 4499.74 8298.21 7098.31 29798.62 6992.78 17199.53 5199.83 5195.08 54100.00 194.36 18699.92 7199.99 24
xiu_mvs_v1_base_debu97.43 9397.06 9898.55 11097.74 19998.14 7199.31 21397.86 21496.43 4599.62 4499.69 9685.56 22099.68 13899.05 5598.31 14297.83 220
xiu_mvs_v1_base97.43 9397.06 9898.55 11097.74 19998.14 7199.31 21397.86 21496.43 4599.62 4499.69 9685.56 22099.68 13899.05 5598.31 14297.83 220
xiu_mvs_v1_base_debi97.43 9397.06 9898.55 11097.74 19998.14 7199.31 21397.86 21496.43 4599.62 4499.69 9685.56 22099.68 13899.05 5598.31 14297.83 220
baseline195.78 15094.86 16498.54 11398.47 15898.07 7499.06 23897.99 19992.68 17794.13 20298.62 18693.28 11498.69 18593.79 20185.76 26998.84 205
test_prior498.05 7599.94 61
sss97.57 8997.03 10299.18 5798.37 16098.04 7699.73 14899.38 2293.46 15298.76 10099.06 14691.21 15699.89 8496.33 14997.01 17499.62 132
GG-mvs-BLEND98.54 11398.21 17198.01 7793.87 35098.52 9297.92 13297.92 21299.02 297.94 24198.17 10199.58 10899.67 121
ET-MVSNet_ETH3D94.37 18893.28 20397.64 15398.30 16297.99 7899.99 497.61 23194.35 11571.57 35999.45 11996.23 3195.34 33496.91 14585.14 27699.59 138
test_yl97.83 7897.37 8799.21 5499.18 11497.98 7999.64 16699.27 2691.43 22297.88 13498.99 15395.84 3999.84 10898.82 7295.32 20599.79 105
DCV-MVSNet97.83 7897.37 8799.21 5499.18 11497.98 7999.64 16699.27 2691.43 22297.88 13498.99 15395.84 3999.84 10898.82 7295.32 20599.79 105
gg-mvs-nofinetune93.51 20691.86 23098.47 11897.72 20397.96 8192.62 35498.51 9974.70 35797.33 14469.59 36898.91 397.79 24497.77 12399.56 10999.67 121
zzz-MVS98.33 5698.00 6499.30 5099.85 6097.93 8299.80 12598.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6999.30 5099.85 6097.93 8299.39 20398.28 16795.76 6697.18 14799.88 2492.74 129100.00 198.67 8299.88 8099.99 24
114514_t97.41 9796.83 10699.14 6699.51 10497.83 8499.89 8798.27 17088.48 27499.06 8599.66 10290.30 17299.64 14496.32 15099.97 4899.96 74
VNet97.21 10596.57 11599.13 7198.97 12797.82 8599.03 24499.21 2894.31 11899.18 8298.88 17086.26 21599.89 8498.93 6494.32 21399.69 118
MVSTER95.53 15895.22 15596.45 19498.56 15197.72 8699.91 7597.67 22492.38 19391.39 22697.14 22797.24 1797.30 26394.80 17387.85 25594.34 258
SteuartSystems-ACMMP99.02 1298.97 1399.18 5798.72 14697.71 8799.98 1098.44 11296.85 3199.80 1799.91 1597.57 699.85 9999.44 4399.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 16194.17 17799.10 7296.92 23697.71 8799.40 19998.68 5889.31 25588.94 26998.89 16882.48 24299.96 5893.12 21699.83 8599.62 132
MVSFormer96.94 11296.60 11397.95 14097.28 22597.70 8999.55 17997.27 26991.17 22699.43 6099.54 11290.92 16496.89 29094.67 18099.62 10399.25 185
lupinMVS97.85 7797.60 8098.62 10397.28 22597.70 8999.99 497.55 23795.50 7699.43 6099.67 10090.92 16498.71 18398.40 9399.62 10399.45 164
FOURS199.92 3697.66 9199.95 4398.36 15295.58 7399.52 54
ZNCC-MVS98.31 5798.03 6299.17 6099.88 5497.59 9299.94 6198.44 11294.31 11898.50 11299.82 5593.06 12299.99 4098.30 9999.99 2299.93 85
GST-MVS98.27 6097.97 6699.17 6099.92 3697.57 9399.93 6798.39 14394.04 13198.80 9699.74 8692.98 123100.00 198.16 10299.76 9499.93 85
Regformer-398.58 3798.41 3599.10 7299.84 6597.57 9399.66 15998.52 9295.79 6399.01 8899.77 7194.40 7599.75 12698.82 7299.83 8599.98 55
CANet_DTU96.76 12096.15 12498.60 10598.78 14497.53 9599.84 11197.63 22697.25 2499.20 7899.64 10481.36 25399.98 4692.77 21998.89 12998.28 214
thisisatest051597.41 9797.02 10398.59 10797.71 20597.52 9699.97 1898.54 8991.83 20897.45 14299.04 14797.50 899.10 16594.75 17696.37 18599.16 190
Regformer-498.56 3898.39 3999.08 7499.84 6597.52 9699.66 15998.52 9295.76 6699.01 8899.77 7194.33 8399.75 12698.80 7599.83 8599.98 55
旧先验199.76 7997.52 9698.64 6599.85 3595.63 4399.94 6199.99 24
XVS98.70 2998.55 2799.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6299.78 6994.34 8099.96 5898.92 6599.95 5599.99 24
X-MVStestdata93.83 19692.06 22599.15 6499.94 1497.50 9999.94 6198.42 13296.22 5399.41 6241.37 37694.34 8099.96 5898.92 6599.95 5599.99 24
OpenMVScopyleft90.15 1594.77 17493.59 19198.33 12796.07 25897.48 10199.56 17798.57 7790.46 24086.51 30498.95 16378.57 27999.94 7393.86 19599.74 9597.57 227
3Dnovator91.47 1296.28 14195.34 15299.08 7496.82 24497.47 10299.45 19598.81 5095.52 7589.39 25799.00 15281.97 24599.95 6597.27 13399.83 8599.84 100
test_part192.15 23690.72 24696.44 19698.87 13997.46 10398.99 24798.26 17185.89 30686.34 30996.34 25781.71 24797.48 25491.06 23778.99 32194.37 253
HFP-MVS98.56 3898.37 4299.14 6699.96 897.43 10499.95 4398.61 7194.77 9699.31 7199.85 3594.22 87100.00 198.70 8099.98 3599.98 55
#test#98.59 3698.41 3599.14 6699.96 897.43 10499.95 4398.61 7195.00 8799.31 7199.85 3594.22 87100.00 198.78 7699.98 3599.98 55
FMVSNet392.69 22491.58 23395.99 20698.29 16397.42 10699.26 22197.62 22889.80 25289.68 24995.32 29381.62 25196.27 31687.01 29085.65 27094.29 260
test22299.55 10097.41 10799.34 20998.55 8591.86 20799.27 7699.83 5193.84 10099.95 5599.99 24
jason97.24 10396.86 10598.38 12695.73 27197.32 10899.97 1897.40 25895.34 7998.60 10999.54 11287.70 20098.56 19097.94 11599.47 11499.25 185
jason: jason.
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13297.50 1599.52 5499.88 2497.43 1599.71 13499.50 4099.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 13295.74 14398.61 10498.18 17397.23 11099.31 21397.15 27991.07 23098.84 9497.05 23388.17 19898.97 16994.39 18597.50 16199.61 135
nrg03093.51 20692.53 21696.45 19494.36 29597.20 11199.81 12097.16 27891.60 21589.86 24597.46 21886.37 21497.68 24795.88 15680.31 31594.46 244
region2R98.54 4098.37 4299.05 7699.96 897.18 11299.96 2598.55 8594.87 9499.45 5899.85 3594.07 93100.00 198.67 82100.00 199.98 55
ACMMPR98.50 4398.32 4699.05 7699.96 897.18 11299.95 4398.60 7394.77 9699.31 7199.84 4893.73 102100.00 198.70 8099.98 3599.98 55
MVS_111021_HR98.72 2898.62 2499.01 8199.36 11197.18 11299.93 6799.90 196.81 3598.67 10499.77 7193.92 9699.89 8499.27 5099.94 6199.96 74
MP-MVScopyleft98.23 6597.97 6699.03 7899.94 1497.17 11599.95 4398.39 14394.70 9998.26 12499.81 5991.84 150100.00 198.85 7199.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 5098.21 5199.03 7899.86 5997.10 11699.98 1098.80 5290.78 23799.62 4499.78 6995.30 50100.00 199.80 2399.93 6799.99 24
SR-MVS98.46 4698.30 4898.93 8799.88 5497.04 11799.84 11198.35 15594.92 9199.32 7099.80 6093.35 10999.78 11699.30 4999.95 5599.96 74
PGM-MVS98.34 5598.13 5798.99 8299.92 3697.00 11899.75 14099.50 1793.90 13899.37 6899.76 7593.24 117100.00 197.75 12599.96 5299.98 55
原ACMM198.96 8599.73 8696.99 11998.51 9994.06 12999.62 4499.85 3594.97 6399.96 5895.11 16399.95 5599.92 91
PVSNet_BlendedMVS96.05 14495.82 14296.72 18699.59 9696.99 11999.95 4399.10 2994.06 12998.27 12295.80 26889.00 19099.95 6599.12 5287.53 26093.24 323
PVSNet_Blended97.94 7397.64 7798.83 9199.59 9696.99 119100.00 199.10 2995.38 7798.27 12299.08 14589.00 19099.95 6599.12 5299.25 12199.57 145
mPP-MVS98.39 5398.20 5298.97 8499.97 396.92 12299.95 4398.38 14795.04 8698.61 10899.80 6093.39 108100.00 198.64 86100.00 199.98 55
test250697.53 9097.19 9498.58 10898.66 14996.90 12398.81 26999.77 594.93 8997.95 13198.96 15992.51 13599.20 16094.93 16798.15 14699.64 127
CNLPA97.76 8397.38 8698.92 8899.53 10196.84 12499.87 9398.14 18993.78 14396.55 16499.69 9692.28 14199.98 4697.13 13699.44 11699.93 85
FIs94.10 19393.43 19696.11 20494.70 29196.82 12599.58 17398.93 4192.54 18789.34 25997.31 22387.62 20197.10 27794.22 19286.58 26594.40 251
EPNet98.49 4498.40 3798.77 9399.62 9596.80 12699.90 7999.51 1697.60 1299.20 7899.36 12793.71 10399.91 7997.99 11298.71 13499.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 10796.72 11098.22 13197.60 20896.70 12799.92 7198.54 8991.11 22997.07 15098.97 15797.47 1199.03 16693.73 20496.09 18898.92 200
PVSNet_Blended_VisFu97.27 10296.81 10798.66 10098.81 14296.67 12899.92 7198.64 6594.51 10796.38 17098.49 19389.05 18999.88 9097.10 13898.34 14099.43 167
TSAR-MVS + GP.98.60 3498.51 3098.86 9099.73 8696.63 12999.97 1897.92 20898.07 598.76 10099.55 11095.00 6199.94 7399.91 1697.68 15899.99 24
CP-MVS98.45 4798.32 4698.87 8999.96 896.62 13099.97 1898.39 14394.43 11098.90 9399.87 2894.30 85100.00 199.04 5999.99 2299.99 24
APD-MVS_3200maxsize98.25 6398.08 6098.78 9299.81 7396.60 13199.82 11898.30 16593.95 13599.37 6899.77 7192.84 12699.76 12398.95 6299.92 7199.97 67
EI-MVSNet-Vis-set98.27 6098.11 5998.75 9599.83 6896.59 13299.40 19998.51 9995.29 8098.51 11199.76 7593.60 10699.71 13498.53 9099.52 11199.95 82
test117298.38 5498.25 4998.77 9399.88 5496.56 13399.80 12598.36 15294.68 10099.20 7899.80 6093.28 11499.78 11699.34 4799.92 7199.98 55
ETV-MVS97.92 7597.80 7498.25 13098.14 17696.48 13499.98 1097.63 22695.61 7299.29 7599.46 11892.55 13498.82 17399.02 6198.54 13699.46 162
TESTMET0.1,196.74 12296.26 12298.16 13297.36 21896.48 13499.96 2598.29 16691.93 20595.77 18198.07 20695.54 4498.29 21790.55 24898.89 12999.70 116
HPM-MVS_fast97.80 8197.50 8398.68 9899.79 7596.42 13699.88 9098.16 18691.75 21298.94 9299.54 11291.82 15199.65 14397.62 12799.99 2299.99 24
Test_1112_low_res95.72 15194.83 16598.42 12397.79 19596.41 13799.65 16296.65 32392.70 17592.86 21896.13 26392.15 14499.30 15791.88 22793.64 22099.55 147
1112_ss96.01 14695.20 15698.42 12397.80 19496.41 13799.65 16296.66 32292.71 17492.88 21799.40 12292.16 14399.30 15791.92 22693.66 21999.55 147
HPM-MVScopyleft97.96 7297.72 7598.68 9899.84 6596.39 13999.90 7998.17 18392.61 18198.62 10799.57 10991.87 14999.67 14198.87 7099.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 5798.17 5498.71 9699.79 7596.37 14099.76 13798.31 16294.43 11099.40 6699.75 8193.28 11499.78 11698.90 6899.92 7199.97 67
RE-MVS-def98.13 5799.79 7596.37 14099.76 13798.31 16294.43 11099.40 6699.75 8192.95 12498.90 6899.92 7199.97 67
EI-MVSNet-UG-set98.14 6797.99 6598.60 10599.80 7496.27 14299.36 20898.50 10395.21 8298.30 12199.75 8193.29 11399.73 13398.37 9499.30 12099.81 103
Effi-MVS+96.30 13995.69 14498.16 13297.85 19196.26 14397.41 31997.21 27290.37 24298.65 10698.58 18986.61 21298.70 18497.11 13797.37 16699.52 156
cascas94.64 17993.61 18897.74 15197.82 19396.26 14399.96 2597.78 22085.76 30994.00 20397.54 21776.95 28799.21 15997.23 13495.43 20397.76 224
ab-mvs94.69 17693.42 19798.51 11698.07 17896.26 14396.49 33398.68 5890.31 24494.54 19497.00 23576.30 29499.71 13495.98 15493.38 22399.56 146
MDTV_nov1_ep13_2view96.26 14396.11 33991.89 20698.06 12894.40 7594.30 18999.67 121
UniMVSNet (Re)93.07 21592.13 22295.88 20994.84 28896.24 14799.88 9098.98 3592.49 19189.25 26195.40 28787.09 20797.14 27393.13 21578.16 32794.26 262
FC-MVSNet-test93.81 19893.15 20595.80 21294.30 29796.20 14899.42 19898.89 4392.33 19589.03 26897.27 22587.39 20496.83 29493.20 21186.48 26694.36 254
VPA-MVSNet92.70 22391.55 23596.16 20395.09 28496.20 14898.88 25999.00 3491.02 23291.82 22395.29 29776.05 29897.96 23895.62 15981.19 30394.30 259
diffmvs97.00 11096.64 11298.09 13697.64 20696.17 15099.81 12097.19 27394.67 10298.95 9199.28 12986.43 21398.76 17998.37 9497.42 16499.33 178
PAPM_NR98.12 6897.93 7098.70 9799.94 1496.13 15199.82 11898.43 12094.56 10597.52 14099.70 9394.40 7599.98 4697.00 14099.98 3599.99 24
ACMMPcopyleft97.74 8497.44 8598.66 10099.92 3696.13 15199.18 22699.45 1894.84 9596.41 16999.71 9191.40 15399.99 4097.99 11298.03 15499.87 98
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 13096.01 12798.09 13698.43 15996.12 15396.36 33499.43 2093.53 15097.64 13895.04 30394.41 7498.38 20991.13 23598.11 14999.75 111
abl_697.67 8797.34 8998.66 10099.68 9196.11 15499.68 15698.14 18993.80 14299.27 7699.70 9388.65 19599.98 4697.46 12999.72 9799.89 94
RRT_test8_iter0594.58 18194.11 17895.98 20797.88 18796.11 15499.89 8797.45 24991.66 21488.28 28196.71 24596.53 2897.40 25694.73 17883.85 28994.45 249
PCF-MVS94.20 595.18 16494.10 17998.43 12298.55 15395.99 15697.91 31397.31 26690.35 24389.48 25699.22 13985.19 22599.89 8490.40 25398.47 13899.41 169
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 12496.49 11797.37 16595.63 27895.96 15799.74 14398.88 4592.94 16491.61 22498.97 15797.72 598.62 18894.83 17298.08 15397.53 228
DeepC-MVS94.51 496.92 11496.40 12098.45 12099.16 11695.90 15899.66 15998.06 19596.37 5194.37 19899.49 11583.29 23999.90 8097.63 12699.61 10699.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11596.49 11797.92 14297.48 21495.89 15999.85 10798.54 8990.72 23896.63 16098.93 16797.47 1199.02 16793.03 21795.76 19798.85 204
PVSNet91.05 1397.13 10696.69 11198.45 12099.52 10295.81 16099.95 4399.65 1194.73 9899.04 8699.21 14084.48 23099.95 6594.92 16898.74 13399.58 144
MVS_111021_LR98.42 4998.38 4098.53 11599.39 10995.79 16199.87 9399.86 296.70 3898.78 9799.79 6492.03 14699.90 8099.17 5199.86 8399.88 96
CPTT-MVS97.64 8897.32 9198.58 10899.97 395.77 16299.96 2598.35 15589.90 25098.36 11899.79 6491.18 16099.99 4098.37 9499.99 2299.99 24
NR-MVSNet91.56 24990.22 25795.60 21394.05 30095.76 16398.25 30098.70 5691.16 22880.78 33996.64 24983.23 24096.57 30591.41 23177.73 33194.46 244
mvs_anonymous95.65 15695.03 16197.53 15698.19 17295.74 16499.33 21097.49 24790.87 23490.47 23697.10 22988.23 19797.16 27195.92 15597.66 15999.68 119
FMVSNet291.02 25689.56 26895.41 21997.53 21095.74 16498.98 24897.41 25687.05 29188.43 27895.00 30671.34 32196.24 31885.12 30285.21 27594.25 264
UA-Net96.54 12995.96 13598.27 12998.23 17095.71 16698.00 31198.45 10993.72 14698.41 11599.27 13288.71 19499.66 14291.19 23497.69 15799.44 166
LFMVS94.75 17593.56 19398.30 12899.03 12295.70 16798.74 27497.98 20187.81 28398.47 11399.39 12467.43 33799.53 14698.01 11095.20 20799.67 121
IB-MVS92.85 694.99 16993.94 18398.16 13297.72 20395.69 16899.99 498.81 5094.28 12092.70 21996.90 23795.08 5499.17 16396.07 15273.88 34699.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DROMVSNet97.38 9997.24 9297.80 14497.41 21595.64 16999.99 497.06 28894.59 10499.63 4199.32 12889.20 18898.14 22798.76 7899.23 12299.62 132
AdaColmapbinary97.23 10496.80 10898.51 11699.99 195.60 17099.09 23198.84 4993.32 15596.74 15899.72 8986.04 216100.00 198.01 11099.43 11799.94 84
VPNet91.81 24190.46 25095.85 21194.74 29095.54 17198.98 24898.59 7492.14 19990.77 23397.44 21968.73 33197.54 25294.89 17177.89 32994.46 244
test-LLR96.47 13196.04 12697.78 14697.02 23395.44 17299.96 2598.21 17794.07 12795.55 18396.38 25493.90 9898.27 22190.42 25198.83 13199.64 127
test-mter96.39 13595.93 13797.78 14697.02 23395.44 17299.96 2598.21 17791.81 21095.55 18396.38 25495.17 5198.27 22190.42 25198.83 13199.64 127
API-MVS97.86 7697.66 7698.47 11899.52 10295.41 17499.47 19298.87 4691.68 21398.84 9499.85 3592.34 14099.99 4098.44 9299.96 52100.00 1
XXY-MVS91.82 24090.46 25095.88 20993.91 30395.40 17598.87 26297.69 22388.63 27287.87 28697.08 23074.38 31197.89 24291.66 22984.07 28694.35 257
testdata98.42 12399.47 10695.33 17698.56 7993.78 14399.79 2499.85 3593.64 10599.94 7394.97 16699.94 61100.00 1
WR-MVS92.31 23291.25 24095.48 21894.45 29495.29 17799.60 17198.68 5890.10 24688.07 28496.89 23880.68 26196.80 29693.14 21479.67 31994.36 254
UniMVSNet_NR-MVSNet92.95 21892.11 22395.49 21594.61 29395.28 17899.83 11799.08 3191.49 21889.21 26396.86 24087.14 20696.73 29893.20 21177.52 33294.46 244
DU-MVS92.46 22991.45 23895.49 21594.05 30095.28 17899.81 12098.74 5492.25 19789.21 26396.64 24981.66 24996.73 29893.20 21177.52 33294.46 244
miper_enhance_ethall94.36 19093.98 18295.49 21598.68 14895.24 18099.73 14897.29 26793.28 15789.86 24595.97 26694.37 7997.05 28092.20 22384.45 28194.19 268
BH-RMVSNet95.18 16494.31 17597.80 14498.17 17495.23 18199.76 13797.53 24192.52 18894.27 20099.25 13676.84 28898.80 17490.89 24499.54 11099.35 176
PatchMatch-RL96.04 14595.40 14997.95 14099.59 9695.22 18299.52 18399.07 3293.96 13496.49 16598.35 20082.28 24399.82 11090.15 25699.22 12398.81 207
baseline96.43 13395.98 13097.76 14997.34 21995.17 18399.51 18597.17 27693.92 13796.90 15399.28 12985.37 22398.64 18797.50 12896.86 17899.46 162
LS3D95.84 14995.11 15998.02 13999.85 6095.10 18498.74 27498.50 10387.22 29093.66 20799.86 3187.45 20399.95 6590.94 24299.81 9299.02 198
bset_n11_16_dypcd93.05 21692.30 22095.31 22290.23 35195.05 18599.44 19797.28 26892.51 18990.65 23496.68 24685.30 22496.71 30094.49 18484.14 28494.16 274
casdiffmvs96.42 13495.97 13397.77 14897.30 22394.98 18699.84 11197.09 28593.75 14596.58 16299.26 13585.07 22698.78 17697.77 12397.04 17399.54 151
pmmvs492.10 23791.07 24395.18 22692.82 32594.96 18799.48 19196.83 31287.45 28688.66 27496.56 25283.78 23596.83 29489.29 26284.77 27993.75 308
CDS-MVSNet96.34 13696.07 12597.13 17497.37 21794.96 18799.53 18297.91 20991.55 21795.37 18798.32 20195.05 5797.13 27493.80 20095.75 19899.30 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 16294.57 17097.62 15598.55 15394.85 18998.67 28199.32 2595.75 6996.80 15796.27 25972.18 31899.96 5894.58 18299.05 12898.04 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 9097.46 8497.76 14998.04 18094.84 19099.98 1097.61 23194.41 11397.90 13399.59 10792.40 13898.87 17198.04 10999.13 12599.59 138
Vis-MVSNet (Re-imp)96.32 13795.98 13097.35 16897.93 18594.82 19199.47 19298.15 18891.83 20895.09 19099.11 14391.37 15497.47 25593.47 20897.43 16299.74 112
IS-MVSNet96.29 14095.90 13997.45 16098.13 17794.80 19299.08 23397.61 23192.02 20495.54 18598.96 15990.64 16998.08 23093.73 20497.41 16599.47 161
MAR-MVS97.43 9397.19 9498.15 13599.47 10694.79 19399.05 24298.76 5392.65 17998.66 10599.82 5588.52 19699.98 4698.12 10499.63 10299.67 121
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 7497.89 7298.05 13899.82 7094.77 19499.92 7198.46 10793.93 13697.20 14699.27 13295.44 4899.97 5697.41 13099.51 11399.41 169
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DWT-MVSNet_test97.31 10097.19 9497.66 15298.24 16994.67 19598.86 26398.20 18193.60 14998.09 12798.89 16897.51 798.78 17694.04 19397.28 16799.55 147
Fast-Effi-MVS+95.02 16894.19 17697.52 15797.88 18794.55 19699.97 1897.08 28688.85 26794.47 19797.96 21184.59 22998.41 20189.84 25997.10 17199.59 138
SCA94.69 17693.81 18797.33 16997.10 22894.44 19798.86 26398.32 16093.30 15696.17 17495.59 27776.48 29297.95 23991.06 23797.43 16299.59 138
cl2293.77 20093.25 20495.33 22199.49 10594.43 19899.61 17098.09 19290.38 24189.16 26695.61 27590.56 17097.34 26091.93 22584.45 28194.21 267
PatchmatchNetpermissive95.94 14795.45 14897.39 16497.83 19294.41 19996.05 34098.40 14092.86 16597.09 14995.28 29894.21 9098.07 23289.26 26398.11 14999.70 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS94.54 18293.56 19397.49 15997.96 18394.34 20098.71 27797.51 24590.30 24594.51 19698.69 18175.56 29998.77 17892.82 21895.99 19099.35 176
Vis-MVSNetpermissive95.72 15195.15 15897.45 16097.62 20794.28 20199.28 21998.24 17394.27 12196.84 15598.94 16579.39 27298.76 17993.25 21098.49 13799.30 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep1395.69 14497.90 18694.15 20295.98 34198.44 11293.12 16197.98 13095.74 27095.10 5398.58 18990.02 25796.92 176
tfpnnormal89.29 29187.61 29894.34 25994.35 29694.13 20398.95 25298.94 3783.94 32684.47 32195.51 28274.84 30797.39 25777.05 34380.41 31391.48 345
KD-MVS_2432*160088.00 30086.10 30493.70 28296.91 23794.04 20497.17 32497.12 28284.93 32081.96 33192.41 34192.48 13694.51 34479.23 33152.68 36692.56 332
miper_refine_blended88.00 30086.10 30493.70 28296.91 23794.04 20497.17 32497.12 28284.93 32081.96 33192.41 34192.48 13694.51 34479.23 33152.68 36692.56 332
DP-MVS94.54 18293.42 19797.91 14399.46 10894.04 20498.93 25497.48 24881.15 34090.04 24099.55 11087.02 20899.95 6588.97 26598.11 14999.73 113
TranMVSNet+NR-MVSNet91.68 24890.61 24994.87 23593.69 30793.98 20799.69 15498.65 6291.03 23188.44 27696.83 24480.05 26996.18 31990.26 25576.89 34094.45 249
MSDG94.37 18893.36 20197.40 16398.88 13893.95 20899.37 20697.38 25985.75 31190.80 23299.17 14184.11 23499.88 9086.35 29498.43 13998.36 213
HyFIR lowres test96.66 12796.43 11997.36 16799.05 12193.91 20999.70 15399.80 390.54 23996.26 17298.08 20592.15 14498.23 22496.84 14695.46 20299.93 85
v2v48291.30 25090.07 26295.01 23093.13 31593.79 21099.77 13297.02 29388.05 27989.25 26195.37 29180.73 26097.15 27287.28 28580.04 31894.09 282
ADS-MVSNet94.79 17294.02 18197.11 17697.87 18993.79 21094.24 34698.16 18690.07 24796.43 16794.48 32190.29 17398.19 22687.44 28197.23 16899.36 174
gm-plane-assit96.97 23593.76 21291.47 22098.96 15998.79 17594.92 168
ECVR-MVScopyleft95.66 15595.05 16097.51 15898.66 14993.71 21398.85 26698.45 10994.93 8996.86 15498.96 15975.22 30499.20 16095.34 16098.15 14699.64 127
CS-MVS97.73 8597.92 7197.18 17299.09 11993.69 21499.99 497.14 28195.06 8599.67 3799.75 8193.09 12098.31 21498.32 9799.12 12699.54 151
CS-MVS-test97.53 9097.64 7797.18 17299.09 11993.69 214100.00 197.04 29295.07 8499.67 3799.25 13691.22 15598.31 21498.32 9799.12 12699.54 151
v114491.09 25589.83 26394.87 23593.25 31493.69 21499.62 16996.98 29886.83 29789.64 25394.99 30780.94 25797.05 28085.08 30381.16 30493.87 301
GA-MVS93.83 19692.84 20796.80 18295.73 27193.57 21799.88 9097.24 27192.57 18692.92 21596.66 24778.73 27897.67 24887.75 27994.06 21799.17 189
miper_ehance_all_eth93.16 21292.60 21294.82 23897.57 20993.56 21899.50 18797.07 28788.75 26888.85 27095.52 28190.97 16396.74 29790.77 24684.45 28194.17 269
GeoE94.36 19093.48 19596.99 17797.29 22493.54 21999.96 2596.72 32088.35 27793.43 20898.94 16582.05 24498.05 23388.12 27696.48 18399.37 173
TAMVS95.85 14895.58 14696.65 18997.07 22993.50 22099.17 22797.82 21891.39 22595.02 19198.01 20792.20 14297.30 26393.75 20395.83 19599.14 193
V4291.28 25290.12 26194.74 23993.42 31293.46 22199.68 15697.02 29387.36 28789.85 24795.05 30281.31 25497.34 26087.34 28480.07 31793.40 318
v1090.25 27688.82 28394.57 24793.53 30993.43 22299.08 23396.87 31085.00 31987.34 29694.51 31980.93 25897.02 28682.85 31679.23 32093.26 322
EPNet_dtu95.71 15395.39 15096.66 18898.92 13393.41 22399.57 17598.90 4296.19 5597.52 14098.56 19192.65 13197.36 25877.89 33898.33 14199.20 188
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 26889.17 27694.66 24293.43 31193.40 22499.20 22496.94 30485.76 30987.56 29094.51 31981.96 24697.19 27084.94 30478.25 32693.38 320
test111195.57 15794.98 16297.37 16598.56 15193.37 22598.86 26398.45 10994.95 8896.63 16098.95 16375.21 30599.11 16495.02 16598.14 14899.64 127
OMC-MVS97.28 10197.23 9397.41 16299.76 7993.36 22699.65 16297.95 20496.03 5997.41 14399.70 9389.61 17999.51 14896.73 14798.25 14599.38 171
tpmrst96.27 14295.98 13097.13 17497.96 18393.15 22796.34 33598.17 18392.07 20198.71 10395.12 30193.91 9798.73 18194.91 17096.62 17999.50 159
v119290.62 26789.25 27594.72 24193.13 31593.07 22899.50 18797.02 29386.33 30289.56 25595.01 30479.22 27397.09 27982.34 31981.16 30494.01 288
CHOSEN 1792x268896.81 11796.53 11697.64 15398.91 13593.07 22899.65 16299.80 395.64 7195.39 18698.86 17484.35 23299.90 8096.98 14199.16 12499.95 82
EPP-MVSNet96.69 12596.60 11396.96 17897.74 19993.05 23099.37 20698.56 7988.75 26895.83 18099.01 15096.01 3298.56 19096.92 14497.20 17099.25 185
c3_l92.53 22791.87 22994.52 24997.40 21692.99 23199.40 19996.93 30587.86 28188.69 27395.44 28589.95 17696.44 30990.45 25080.69 31294.14 279
anonymousdsp91.79 24690.92 24494.41 25890.76 34692.93 23298.93 25497.17 27689.08 25787.46 29395.30 29478.43 28296.92 28992.38 22188.73 24493.39 319
cl____92.31 23291.58 23394.52 24997.33 22192.77 23399.57 17596.78 31786.97 29587.56 29095.51 28289.43 18196.62 30388.60 26782.44 29494.16 274
v14419290.79 26289.52 27094.59 24593.11 31892.77 23399.56 17796.99 29686.38 30189.82 24894.95 30980.50 26597.10 27783.98 30980.41 31393.90 298
DIV-MVS_self_test92.32 23191.60 23294.47 25397.31 22292.74 23599.58 17396.75 31886.99 29487.64 28895.54 27989.55 18096.50 30788.58 26882.44 29494.17 269
IterMVS-LS92.69 22492.11 22394.43 25796.80 24592.74 23599.45 19596.89 30888.98 26189.65 25295.38 29088.77 19296.34 31390.98 24182.04 29794.22 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 16794.43 17296.91 17997.99 18292.73 23796.29 33697.98 20189.70 25395.93 17794.67 31693.83 10198.45 19886.91 29396.53 18199.54 151
EI-MVSNet93.73 20293.40 20094.74 23996.80 24592.69 23899.06 23897.67 22488.96 26391.39 22699.02 14888.75 19397.30 26391.07 23687.85 25594.22 265
CR-MVSNet93.45 20992.62 21195.94 20896.29 25492.66 23992.01 35796.23 33192.62 18096.94 15193.31 33491.04 16196.03 32579.23 33195.96 19199.13 194
RPMNet89.76 28587.28 30097.19 17196.29 25492.66 23992.01 35798.31 16270.19 36296.94 15185.87 36187.25 20599.78 11662.69 36495.96 19199.13 194
VDDNet93.12 21391.91 22896.76 18496.67 25292.65 24198.69 27998.21 17782.81 33497.75 13799.28 12961.57 35399.48 15498.09 10794.09 21698.15 216
WR-MVS_H91.30 25090.35 25394.15 26394.17 29992.62 24299.17 22798.94 3788.87 26686.48 30694.46 32384.36 23196.61 30488.19 27378.51 32593.21 324
CostFormer96.10 14395.88 14096.78 18397.03 23292.55 24397.08 32697.83 21790.04 24998.72 10294.89 31095.01 6098.29 21796.54 14895.77 19699.50 159
v192192090.46 26989.12 27794.50 25192.96 32292.46 24499.49 18996.98 29886.10 30489.61 25495.30 29478.55 28097.03 28482.17 32080.89 31194.01 288
test_djsdf92.83 22092.29 22194.47 25391.90 33592.46 24499.55 17997.27 26991.17 22689.96 24196.07 26581.10 25596.89 29094.67 18088.91 23994.05 285
CP-MVSNet91.23 25390.22 25794.26 26093.96 30292.39 24699.09 23198.57 7788.95 26486.42 30796.57 25179.19 27496.37 31190.29 25478.95 32294.02 286
BH-w/o95.71 15395.38 15196.68 18798.49 15792.28 24799.84 11197.50 24692.12 20092.06 22298.79 17884.69 22898.67 18695.29 16299.66 10199.09 196
v124090.20 27788.79 28494.44 25593.05 32092.27 24899.38 20496.92 30685.89 30689.36 25894.87 31177.89 28397.03 28480.66 32781.08 30794.01 288
PS-MVSNAJss93.64 20593.31 20294.61 24492.11 33292.19 24999.12 22997.38 25992.51 18988.45 27596.99 23691.20 15797.29 26694.36 18687.71 25794.36 254
test0.0.03 193.86 19593.61 18894.64 24395.02 28792.18 25099.93 6798.58 7594.07 12787.96 28598.50 19293.90 9894.96 33981.33 32493.17 22496.78 230
PMMVS96.76 12096.76 10996.76 18498.28 16592.10 25199.91 7597.98 20194.12 12499.53 5199.39 12486.93 20998.73 18196.95 14397.73 15699.45 164
GBi-Net90.88 25989.82 26494.08 26697.53 21091.97 25298.43 29296.95 30187.05 29189.68 24994.72 31271.34 32196.11 32087.01 29085.65 27094.17 269
test190.88 25989.82 26494.08 26697.53 21091.97 25298.43 29296.95 30187.05 29189.68 24994.72 31271.34 32196.11 32087.01 29085.65 27094.17 269
FMVSNet188.50 29686.64 30294.08 26695.62 27991.97 25298.43 29296.95 30183.00 33286.08 31394.72 31259.09 35796.11 32081.82 32384.07 28694.17 269
pm-mvs189.36 29087.81 29794.01 27093.40 31391.93 25598.62 28496.48 32886.25 30383.86 32496.14 26273.68 31497.04 28286.16 29675.73 34493.04 327
CSCG97.10 10797.04 10197.27 17099.89 5091.92 25699.90 7999.07 3288.67 27095.26 18999.82 5593.17 11999.98 4698.15 10399.47 11499.90 93
HQP5-MVS91.85 257
HQP-MVS94.61 18094.50 17194.92 23495.78 26591.85 25799.87 9397.89 21096.82 3293.37 20998.65 18380.65 26298.39 20597.92 11689.60 23094.53 239
NP-MVS95.77 26891.79 25998.65 183
TAPA-MVS92.12 894.42 18693.60 19096.90 18099.33 11291.78 26099.78 12998.00 19889.89 25194.52 19599.47 11691.97 14799.18 16269.90 35499.52 11199.73 113
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 18594.36 17394.87 23595.71 27491.74 26199.84 11197.87 21296.38 4893.01 21398.59 18780.47 26698.37 21097.79 12189.55 23394.52 241
plane_prior91.74 26199.86 10496.76 3689.59 232
F-COLMAP96.93 11396.95 10496.87 18199.71 8991.74 26199.85 10797.95 20493.11 16295.72 18299.16 14292.35 13999.94 7395.32 16199.35 11998.92 200
plane_prior695.76 26991.72 26480.47 266
PS-CasMVS90.63 26689.51 27193.99 27293.83 30491.70 26598.98 24898.52 9288.48 27486.15 31296.53 25375.46 30096.31 31488.83 26678.86 32493.95 294
tpm295.47 16095.18 15796.35 20096.91 23791.70 26596.96 32997.93 20688.04 28098.44 11495.40 28793.32 11197.97 23694.00 19495.61 20099.38 171
plane_prior391.64 26796.63 4093.01 213
MIMVSNet90.30 27488.67 28695.17 22796.45 25391.64 26792.39 35597.15 27985.99 30590.50 23593.19 33666.95 33894.86 34182.01 32193.43 22199.01 199
plane_prior795.71 27491.59 269
tpmvs94.28 19293.57 19296.40 19798.55 15391.50 27095.70 34598.55 8587.47 28592.15 22194.26 32591.42 15298.95 17088.15 27495.85 19498.76 209
tpm cat193.51 20692.52 21796.47 19297.77 19691.47 27196.13 33898.06 19580.98 34192.91 21693.78 32989.66 17898.87 17187.03 28996.39 18499.09 196
h-mvs3394.92 17094.36 17396.59 19198.85 14091.29 27298.93 25498.94 3795.90 6098.77 9898.42 19990.89 16699.77 12097.80 11870.76 34898.72 210
BH-untuned95.18 16494.83 16596.22 20298.36 16191.22 27399.80 12597.32 26590.91 23391.08 22998.67 18283.51 23698.54 19294.23 19199.61 10698.92 200
TransMVSNet (Re)87.25 30385.28 30893.16 29293.56 30891.03 27498.54 28794.05 36283.69 33081.09 33796.16 26175.32 30196.40 31076.69 34468.41 35592.06 339
v14890.70 26389.63 26693.92 27492.97 32190.97 27599.75 14096.89 30887.51 28488.27 28295.01 30481.67 24897.04 28287.40 28377.17 33793.75 308
jajsoiax91.92 23991.18 24194.15 26391.35 34190.95 27699.00 24697.42 25492.61 18187.38 29497.08 23072.46 31797.36 25894.53 18388.77 24394.13 280
PEN-MVS90.19 27889.06 27993.57 28593.06 31990.90 27799.06 23898.47 10588.11 27885.91 31496.30 25876.67 28995.94 32887.07 28776.91 33993.89 299
OPM-MVS93.21 21192.80 20894.44 25593.12 31790.85 27899.77 13297.61 23196.19 5591.56 22598.65 18375.16 30698.47 19493.78 20289.39 23693.99 291
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 19493.90 18494.55 24896.02 26090.69 27999.98 1097.72 22196.62 4291.05 23098.85 17777.21 28498.47 19498.11 10589.51 23594.48 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 23091.93 22793.84 27797.28 22590.68 28098.83 26796.97 30088.57 27389.19 26595.73 27289.24 18796.69 30189.97 25881.55 30094.15 276
Anonymous2023121189.86 28388.44 28994.13 26598.93 13190.68 28098.54 28798.26 17176.28 35186.73 30095.54 27970.60 32597.56 25190.82 24580.27 31694.15 276
Anonymous2024052992.10 23790.65 24896.47 19298.82 14190.61 28298.72 27698.67 6175.54 35593.90 20598.58 18966.23 34099.90 8094.70 17990.67 22998.90 203
mvs_tets91.81 24191.08 24294.00 27191.63 33990.58 28398.67 28197.43 25292.43 19287.37 29597.05 23371.76 31997.32 26294.75 17688.68 24594.11 281
v7n89.65 28788.29 29293.72 27992.22 33190.56 28499.07 23797.10 28485.42 31786.73 30094.72 31280.06 26897.13 27481.14 32578.12 32893.49 316
Patchmatch-test92.65 22691.50 23696.10 20596.85 24290.49 28591.50 35997.19 27382.76 33590.23 23795.59 27795.02 5898.00 23577.41 34096.98 17599.82 102
PVSNet_088.03 1991.80 24490.27 25696.38 19998.27 16790.46 28699.94 6199.61 1293.99 13286.26 31197.39 22271.13 32499.89 8498.77 7767.05 35898.79 208
ppachtmachnet_test89.58 28888.35 29093.25 29192.40 32990.44 28799.33 21096.73 31985.49 31585.90 31595.77 26981.09 25696.00 32776.00 34682.49 29393.30 321
IterMVS90.91 25890.17 25993.12 29396.78 24890.42 28898.89 25797.05 29189.03 25986.49 30595.42 28676.59 29195.02 33787.22 28684.09 28593.93 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 30683.19 31895.31 22296.71 25190.29 28992.12 35697.33 26462.85 36386.82 29970.37 36769.37 32897.49 25375.12 34797.99 15598.15 216
VDD-MVS93.77 20092.94 20696.27 20198.55 15390.22 29098.77 27397.79 21990.85 23596.82 15699.42 12061.18 35599.77 12098.95 6294.13 21598.82 206
PatchT90.38 27188.75 28595.25 22595.99 26190.16 29191.22 36197.54 23976.80 35097.26 14586.01 36091.88 14896.07 32466.16 36195.91 19399.51 157
LTVRE_ROB88.28 1890.29 27589.05 28094.02 26995.08 28590.15 29297.19 32397.43 25284.91 32283.99 32397.06 23274.00 31398.28 21984.08 30787.71 25793.62 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 21092.60 21295.34 22098.29 16390.09 29399.31 21398.56 7991.80 21196.35 17198.00 20889.38 18298.28 21992.46 22069.22 35397.64 225
hse-mvs294.38 18794.08 18095.31 22298.27 16790.02 29499.29 21898.56 7995.90 6098.77 9898.00 20890.89 16698.26 22397.80 11869.20 35497.64 225
IterMVS-SCA-FT90.85 26190.16 26092.93 29796.72 25089.96 29598.89 25796.99 29688.95 26486.63 30295.67 27376.48 29295.00 33887.04 28884.04 28893.84 303
DTE-MVSNet89.40 28988.24 29392.88 29892.66 32789.95 29699.10 23098.22 17687.29 28885.12 31996.22 26076.27 29595.30 33683.56 31375.74 34393.41 317
Baseline_NR-MVSNet90.33 27389.51 27192.81 29992.84 32389.95 29699.77 13293.94 36384.69 32489.04 26795.66 27481.66 24996.52 30690.99 24076.98 33891.97 341
Patchmtry89.70 28688.49 28893.33 28896.24 25689.94 29891.37 36096.23 33178.22 34887.69 28793.31 33491.04 16196.03 32580.18 33082.10 29694.02 286
pmmvs590.17 27989.09 27893.40 28792.10 33389.77 29999.74 14395.58 34585.88 30887.24 29795.74 27073.41 31596.48 30888.54 26983.56 29093.95 294
Anonymous20240521193.10 21491.99 22696.40 19799.10 11889.65 30098.88 25997.93 20683.71 32994.00 20398.75 17968.79 32999.88 9095.08 16491.71 22899.68 119
our_test_390.39 27089.48 27393.12 29392.40 32989.57 30199.33 21096.35 33087.84 28285.30 31794.99 30784.14 23396.09 32380.38 32884.56 28093.71 313
D2MVS92.76 22192.59 21593.27 29095.13 28389.54 30299.69 15499.38 2292.26 19687.59 28994.61 31885.05 22797.79 24491.59 23088.01 25492.47 335
XVG-OURS-SEG-HR94.79 17294.70 16995.08 22898.05 17989.19 30399.08 23397.54 23993.66 14794.87 19299.58 10878.78 27799.79 11497.31 13293.40 22296.25 233
XVG-OURS94.82 17194.74 16895.06 22998.00 18189.19 30399.08 23397.55 23794.10 12594.71 19399.62 10580.51 26499.74 13096.04 15393.06 22696.25 233
miper_lstm_enhance91.81 24191.39 23993.06 29697.34 21989.18 30599.38 20496.79 31686.70 29887.47 29295.22 29990.00 17595.86 32988.26 27281.37 30294.15 276
ACMM91.95 1092.88 21992.52 21793.98 27395.75 27089.08 30699.77 13297.52 24393.00 16389.95 24297.99 21076.17 29698.46 19793.63 20788.87 24194.39 252
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 25790.45 25292.37 30391.25 34388.76 30798.05 31096.17 33387.27 28984.04 32295.30 29478.46 28197.27 26883.78 31199.70 9991.09 346
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP92.05 992.74 22292.42 21993.73 27895.91 26488.72 30899.81 12097.53 24194.13 12387.00 29898.23 20274.07 31298.47 19496.22 15188.86 24293.99 291
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 21792.71 21093.71 28095.43 28088.67 30999.75 14097.62 22892.81 16890.05 23898.49 19375.24 30298.40 20395.84 15789.12 23794.07 283
LGP-MVS_train93.71 28095.43 28088.67 30997.62 22892.81 16890.05 23898.49 19375.24 30298.40 20395.84 15789.12 23794.07 283
ACMH89.72 1790.64 26589.63 26693.66 28495.64 27788.64 31198.55 28597.45 24989.03 25981.62 33497.61 21669.75 32798.41 20189.37 26187.62 25993.92 297
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 31083.32 31792.10 30690.96 34488.58 31299.20 22496.52 32679.70 34557.12 36792.69 33979.11 27593.86 35077.10 34277.46 33493.86 302
AllTest92.48 22891.64 23195.00 23199.01 12388.43 31398.94 25396.82 31486.50 29988.71 27198.47 19774.73 30899.88 9085.39 30096.18 18696.71 231
TestCases95.00 23199.01 12388.43 31396.82 31486.50 29988.71 27198.47 19774.73 30899.88 9085.39 30096.18 18696.71 231
FMVSNet588.32 29787.47 29990.88 31596.90 24088.39 31597.28 32195.68 34282.60 33684.67 32092.40 34379.83 27091.16 36176.39 34581.51 30193.09 325
YYNet185.50 31183.33 31692.00 30790.89 34588.38 31699.22 22396.55 32579.60 34657.26 36692.72 33779.09 27693.78 35177.25 34177.37 33593.84 303
USDC90.00 28288.96 28193.10 29594.81 28988.16 31798.71 27795.54 34693.66 14783.75 32597.20 22665.58 34298.31 21483.96 31087.49 26192.85 330
UniMVSNet_ETH3D90.06 28188.58 28794.49 25294.67 29288.09 31897.81 31597.57 23683.91 32888.44 27697.41 22057.44 35997.62 25091.41 23188.59 24897.77 223
COLMAP_ROBcopyleft90.47 1492.18 23591.49 23794.25 26199.00 12588.04 31998.42 29596.70 32182.30 33788.43 27899.01 15076.97 28699.85 9986.11 29796.50 18294.86 238
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 31981.52 32591.81 31091.32 34288.00 32098.67 28195.92 33880.22 34355.60 36893.32 33368.29 33493.60 35373.76 34876.61 34193.82 305
JIA-IIPM91.76 24790.70 24794.94 23396.11 25787.51 32193.16 35398.13 19175.79 35497.58 13977.68 36592.84 12697.97 23688.47 27196.54 18099.33 178
tpm93.70 20493.41 19994.58 24695.36 28287.41 32297.01 32796.90 30790.85 23596.72 15994.14 32690.40 17196.84 29390.75 24788.54 24999.51 157
pmmvs-eth3d84.03 32081.97 32390.20 32284.15 36587.09 32398.10 30894.73 35883.05 33174.10 35787.77 35665.56 34394.01 34781.08 32669.24 35289.49 358
CVMVSNet94.68 17894.94 16393.89 27696.80 24586.92 32499.06 23898.98 3594.45 10894.23 20199.02 14885.60 21995.31 33590.91 24395.39 20499.43 167
patch_mono-298.24 6499.12 595.59 21499.67 9286.91 32599.95 4398.89 4397.60 1299.90 299.76 7596.54 2799.98 4699.94 1299.82 9199.88 96
MVS_030489.28 29288.31 29192.21 30597.05 23186.53 32697.76 31699.57 1385.58 31493.86 20692.71 33851.04 36696.30 31584.49 30692.72 22793.79 306
Fast-Effi-MVS+-dtu93.72 20393.86 18693.29 28997.06 23086.16 32799.80 12596.83 31292.66 17892.58 22097.83 21381.39 25297.67 24889.75 26096.87 17796.05 237
ACMH+89.98 1690.35 27289.54 26992.78 30095.99 26186.12 32898.81 26997.18 27589.38 25483.14 32797.76 21468.42 33398.43 19989.11 26486.05 26893.78 307
ADS-MVSNet293.80 19993.88 18593.55 28697.87 18985.94 32994.24 34696.84 31190.07 24796.43 16794.48 32190.29 17395.37 33387.44 28197.23 16899.36 174
XVG-ACMP-BASELINE91.22 25490.75 24592.63 30193.73 30685.61 33098.52 28997.44 25192.77 17289.90 24496.85 24166.64 33998.39 20592.29 22288.61 24693.89 299
TinyColmap87.87 30286.51 30391.94 30895.05 28685.57 33197.65 31794.08 36184.40 32581.82 33396.85 24162.14 35298.33 21280.25 32986.37 26791.91 342
MS-PatchMatch90.65 26490.30 25591.71 31194.22 29885.50 33298.24 30197.70 22288.67 27086.42 30796.37 25667.82 33598.03 23483.62 31299.62 10391.60 343
mvs-test195.53 15895.97 13394.20 26297.77 19685.44 33399.95 4397.06 28894.92 9196.58 16298.72 18085.81 21798.98 16894.80 17398.11 14998.18 215
ITE_SJBPF92.38 30295.69 27685.14 33495.71 34192.81 16889.33 26098.11 20470.23 32698.42 20085.91 29888.16 25393.59 315
test_040285.58 30883.94 31290.50 31993.81 30585.04 33598.55 28595.20 35376.01 35279.72 34395.13 30064.15 34896.26 31766.04 36286.88 26490.21 354
testgi89.01 29488.04 29591.90 30993.49 31084.89 33699.73 14895.66 34393.89 14085.14 31898.17 20359.68 35694.66 34377.73 33988.88 24096.16 236
TDRefinement84.76 31482.56 32191.38 31374.58 37084.80 33797.36 32094.56 35984.73 32380.21 34196.12 26463.56 34998.39 20587.92 27763.97 35990.95 349
pmmvs685.69 30783.84 31391.26 31490.00 35384.41 33897.82 31496.15 33475.86 35381.29 33695.39 28961.21 35496.87 29283.52 31473.29 34792.50 334
MIMVSNet182.58 32380.51 32788.78 33286.68 36184.20 33996.65 33195.41 34878.75 34778.59 34692.44 34051.88 36489.76 36465.26 36378.95 32292.38 337
UnsupCasMVSNet_eth85.52 30983.99 31090.10 32389.36 35583.51 34096.65 33197.99 19989.14 25675.89 35493.83 32863.25 35093.92 34881.92 32267.90 35792.88 329
OpenMVS_ROBcopyleft79.82 2083.77 32181.68 32490.03 32488.30 35882.82 34198.46 29095.22 35273.92 35976.00 35391.29 34755.00 36196.94 28868.40 35788.51 25090.34 352
Anonymous2024052185.15 31383.81 31489.16 32988.32 35782.69 34298.80 27195.74 34079.72 34481.53 33590.99 34865.38 34494.16 34672.69 35081.11 30690.63 351
new_pmnet84.49 31882.92 32089.21 32890.03 35282.60 34396.89 33095.62 34480.59 34275.77 35589.17 35265.04 34694.79 34272.12 35181.02 30890.23 353
Effi-MVS+-dtu94.53 18495.30 15392.22 30497.77 19682.54 34499.59 17297.06 28894.92 9195.29 18895.37 29185.81 21797.89 24294.80 17397.07 17296.23 235
pmmvs380.27 32777.77 33187.76 33780.32 36882.43 34598.23 30291.97 36772.74 36078.75 34587.97 35557.30 36090.99 36270.31 35362.37 36189.87 355
SixPastTwentyTwo88.73 29588.01 29690.88 31591.85 33682.24 34698.22 30395.18 35488.97 26282.26 33096.89 23871.75 32096.67 30284.00 30882.98 29193.72 312
K. test v388.05 29987.24 30190.47 32091.82 33782.23 34798.96 25197.42 25489.05 25876.93 35095.60 27668.49 33295.42 33285.87 29981.01 30993.75 308
UnsupCasMVSNet_bld79.97 32977.03 33288.78 33285.62 36381.98 34893.66 35197.35 26175.51 35670.79 36083.05 36248.70 36794.91 34078.31 33760.29 36489.46 359
EG-PatchMatch MVS85.35 31283.81 31489.99 32590.39 34881.89 34998.21 30496.09 33581.78 33974.73 35693.72 33051.56 36597.12 27679.16 33488.61 24690.96 348
CL-MVSNet_self_test84.50 31783.15 31988.53 33486.00 36281.79 35098.82 26897.35 26185.12 31883.62 32690.91 35076.66 29091.40 36069.53 35560.36 36392.40 336
DeepPCF-MVS95.94 297.71 8698.98 1293.92 27499.63 9481.76 35199.96 2598.56 7999.47 199.19 8199.99 194.16 91100.00 199.92 1399.93 67100.00 1
EGC-MVSNET69.38 33063.76 33786.26 34090.32 34981.66 35296.24 33793.85 3640.99 3773.22 37892.33 34452.44 36392.92 35659.53 36784.90 27784.21 363
OurMVSNet-221017-089.81 28489.48 27390.83 31791.64 33881.21 35398.17 30595.38 34991.48 21985.65 31697.31 22372.66 31697.29 26688.15 27484.83 27893.97 293
LF4IMVS89.25 29388.85 28290.45 32192.81 32681.19 35498.12 30694.79 35691.44 22186.29 31097.11 22865.30 34598.11 22988.53 27085.25 27492.07 338
EU-MVSNet90.14 28090.34 25489.54 32792.55 32881.06 35598.69 27998.04 19791.41 22486.59 30396.84 24380.83 25993.31 35586.20 29581.91 29894.26 262
lessismore_v090.53 31890.58 34780.90 35695.80 33977.01 34995.84 26766.15 34196.95 28783.03 31575.05 34593.74 311
KD-MVS_self_test83.59 32282.06 32288.20 33686.93 36080.70 35797.21 32296.38 32982.87 33382.49 32988.97 35367.63 33692.32 35773.75 34962.30 36291.58 344
test20.0384.72 31683.99 31086.91 33888.19 35980.62 35898.88 25995.94 33788.36 27678.87 34494.62 31768.75 33089.11 36566.52 36075.82 34291.00 347
Anonymous2023120686.32 30585.42 30789.02 33089.11 35680.53 35999.05 24295.28 35085.43 31682.82 32893.92 32774.40 31093.44 35466.99 35981.83 29993.08 326
new-patchmatchnet81.19 32479.34 32986.76 33982.86 36780.36 36097.92 31295.27 35182.09 33872.02 35886.87 35862.81 35190.74 36371.10 35263.08 36089.19 360
LCM-MVSNet-Re92.31 23292.60 21291.43 31297.53 21079.27 36199.02 24591.83 36892.07 20180.31 34094.38 32483.50 23795.48 33197.22 13597.58 16099.54 151
Patchmatch-RL test86.90 30485.98 30689.67 32684.45 36475.59 36289.71 36292.43 36686.89 29677.83 34890.94 34994.22 8793.63 35287.75 27969.61 35099.79 105
DSMNet-mixed88.28 29888.24 29388.42 33589.64 35475.38 36398.06 30989.86 37185.59 31388.20 28392.14 34576.15 29791.95 35978.46 33696.05 18997.92 219
PM-MVS80.47 32678.88 33085.26 34183.79 36672.22 36495.89 34391.08 36985.71 31276.56 35288.30 35436.64 36993.90 34982.39 31869.57 35189.66 357
RPSCF91.80 24492.79 20988.83 33198.15 17569.87 36598.11 30796.60 32483.93 32794.33 19999.27 13279.60 27199.46 15591.99 22493.16 22597.18 229
Gipumacopyleft66.95 33465.00 33472.79 34991.52 34067.96 36666.16 36995.15 35547.89 36758.54 36567.99 36929.74 37187.54 36650.20 36977.83 33062.87 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 32579.70 32884.08 34292.83 32467.06 36799.51 18595.42 34754.34 36581.07 33893.53 33144.48 36892.22 35878.90 33577.23 33692.94 328
ambc83.23 34477.17 36962.61 36887.38 36494.55 36076.72 35186.65 35930.16 37096.36 31284.85 30569.86 34990.73 350
CMPMVSbinary61.59 2184.75 31585.14 30983.57 34390.32 34962.54 36996.98 32897.59 23574.33 35869.95 36196.66 24764.17 34798.32 21387.88 27888.41 25189.84 356
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS267.15 33364.15 33676.14 34870.56 37362.07 37093.89 34987.52 37558.09 36460.02 36478.32 36422.38 37584.54 36859.56 36647.03 36881.80 364
DeepMVS_CXcopyleft82.92 34595.98 26358.66 37196.01 33692.72 17378.34 34795.51 28258.29 35898.08 23082.57 31785.29 27392.03 340
ANet_high56.10 33652.24 33967.66 35249.27 37856.82 37283.94 36582.02 37670.47 36133.28 37564.54 37017.23 37869.16 37345.59 37123.85 37277.02 366
LCM-MVSNet67.77 33264.73 33576.87 34762.95 37656.25 37389.37 36393.74 36544.53 36861.99 36380.74 36320.42 37686.53 36769.37 35659.50 36587.84 361
MVEpermissive53.74 2251.54 33947.86 34362.60 35359.56 37750.93 37479.41 36777.69 37735.69 37236.27 37461.76 3735.79 38269.63 37237.97 37336.61 36967.24 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt65.23 33562.94 33872.13 35044.90 37950.03 37581.05 36689.42 37438.45 36948.51 37199.90 1954.09 36278.70 37191.84 22818.26 37387.64 362
E-PMN52.30 33852.18 34052.67 35571.51 37145.40 37693.62 35276.60 37836.01 37143.50 37264.13 37127.11 37367.31 37431.06 37426.06 37045.30 373
N_pmnet80.06 32880.78 32677.89 34691.94 33445.28 37798.80 27156.82 38078.10 34980.08 34293.33 33277.03 28595.76 33068.14 35882.81 29292.64 331
EMVS51.44 34051.22 34252.11 35670.71 37244.97 37894.04 34875.66 37935.34 37342.40 37361.56 37428.93 37265.87 37527.64 37524.73 37145.49 372
FPMVS68.72 33168.72 33368.71 35165.95 37444.27 37995.97 34294.74 35751.13 36653.26 36990.50 35125.11 37483.00 36960.80 36580.97 31078.87 365
PMVScopyleft49.05 2353.75 33751.34 34160.97 35440.80 38034.68 38074.82 36889.62 37337.55 37028.67 37672.12 3667.09 38081.63 37043.17 37268.21 35666.59 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 34420.84 34718.99 35965.34 37527.73 38150.43 3707.67 3839.50 3768.01 3776.34 3776.13 38126.24 37623.40 37610.69 3752.99 374
test12337.68 34239.14 34533.31 35719.94 38124.83 38298.36 2969.75 38215.53 37551.31 37087.14 35719.62 37717.74 37747.10 3703.47 37657.36 370
testmvs40.60 34144.45 34429.05 35819.49 38214.11 38399.68 15618.47 38120.74 37464.59 36298.48 19610.95 37917.09 37856.66 36811.01 37455.94 371
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.02 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
cdsmvs_eth3d_5k23.43 34331.24 3460.00 3600.00 3830.00 3840.00 37198.09 1920.00 3780.00 37999.67 10083.37 2380.00 3790.00 3770.00 3770.00 375
pcd_1.5k_mvsjas7.60 34610.13 3490.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37991.20 1570.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
ab-mvs-re8.28 34511.04 3480.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37999.40 1220.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3790.00 3830.00 3790.00 3770.00 3770.00 375
PC_three_145296.96 3099.80 1799.79 6497.49 9100.00 199.99 599.98 35100.00 1
eth-test20.00 383
eth-test0.00 383
test_241102_TWO98.43 12097.27 2199.80 1799.94 497.18 20100.00 1100.00 1100.00 1100.00 1
9.1498.38 4099.87 5799.91 7598.33 15893.22 15899.78 2599.89 2194.57 7299.85 9999.84 1899.97 48
test_0728_THIRD96.48 4399.83 1199.91 1597.87 4100.00 199.92 13100.00 1100.00 1
GSMVS99.59 138
sam_mvs194.72 6899.59 138
sam_mvs94.25 86
MTGPAbinary98.28 167
test_post195.78 34459.23 37593.20 11897.74 24691.06 237
test_post63.35 37294.43 7398.13 228
patchmatchnet-post91.70 34695.12 5297.95 239
MTMP99.87 9396.49 327
test9_res99.71 3499.99 22100.00 1
agg_prior299.48 41100.00 1100.00 1
test_prior299.95 4395.78 6499.73 3099.76 7596.00 3399.78 25100.00 1
旧先验299.46 19494.21 12299.85 799.95 6596.96 142
新几何299.40 199
无先验99.49 18998.71 5593.46 152100.00 194.36 18699.99 24
原ACMM299.90 79
testdata299.99 4090.54 249
segment_acmp96.68 25
testdata199.28 21996.35 52
plane_prior597.87 21298.37 21097.79 12189.55 23394.52 241
plane_prior498.59 187
plane_prior299.84 11196.38 48
plane_prior195.73 271
n20.00 384
nn0.00 384
door-mid89.69 372
test1198.44 112
door90.31 370
HQP-NCC95.78 26599.87 9396.82 3293.37 209
ACMP_Plane95.78 26599.87 9396.82 3293.37 209
BP-MVS97.92 116
HQP4-MVS93.37 20998.39 20594.53 239
HQP3-MVS97.89 21089.60 230
HQP2-MVS80.65 262
ACMMP++_ref87.04 263
ACMMP++88.23 252
Test By Simon92.82 128