DPM-MVS | | | 98.83 22 | 98.46 32 | 99.97 1 | 99.33 112 | 99.92 1 | 99.96 25 | 98.44 112 | 97.96 7 | 99.55 49 | 99.94 4 | 97.18 20 | 100.00 1 | 93.81 199 | 99.94 61 | 99.98 55 |
|
MSC_two_6792asdad | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 136 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 136 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 50 | 99.80 2 | 99.96 25 | | | | 99.80 60 | 97.44 13 | 100.00 1 | 100.00 1 | 99.98 35 | 100.00 1 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 18 | 98.64 65 | 98.47 2 | 99.13 83 | 99.92 13 | 96.38 30 | 100.00 1 | 99.74 29 | 100.00 1 | 100.00 1 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 10 | 98.69 57 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 22 | 100.00 1 | 99.75 27 | 100.00 1 | 99.99 24 |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 14 | 99.47 7 | 99.95 43 | 98.43 120 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
HY-MVS | | 92.50 7 | 97.79 82 | 97.17 97 | 99.63 15 | 98.98 126 | 99.32 8 | 97.49 318 | 99.52 14 | 95.69 70 | 98.32 120 | 97.41 220 | 93.32 111 | 99.77 120 | 98.08 108 | 95.75 198 | 99.81 103 |
|
DVP-MVS++ | | | 99.26 6 | 99.09 9 | 99.77 8 | 99.91 44 | 99.31 9 | 99.95 43 | 98.43 120 | 96.48 43 | 99.80 17 | 99.93 11 | 97.44 13 | 100.00 1 | 99.92 13 | 99.98 35 | 100.00 1 |
|
IU-MVS | | | | | | 99.93 27 | 99.31 9 | | 98.41 136 | 97.71 8 | 99.84 9 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_one_0601 | | | | | | 99.94 14 | 99.30 11 | | 98.41 136 | 96.63 40 | 99.75 28 | 99.93 11 | 97.49 9 | | | | |
|
SED-MVS | | | 99.28 5 | 99.11 7 | 99.77 8 | 99.93 27 | 99.30 11 | 99.96 25 | 98.43 120 | 97.27 21 | 99.80 17 | 99.94 4 | 96.71 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 99.93 27 | 99.30 11 | | 98.43 120 | 97.26 23 | 99.80 17 | 99.88 24 | 96.71 23 | 100.00 1 | | | |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 27 | 99.29 14 | 99.95 43 | 98.32 160 | 97.28 19 | 99.83 11 | 99.91 15 | 97.22 18 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 94 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.93 27 | 99.29 14 | 99.96 25 | 98.42 132 | 97.28 19 | 99.86 5 | 99.94 4 | 97.22 18 | | | | |
|
WTY-MVS | | | 98.10 69 | 97.60 80 | 99.60 20 | 98.92 133 | 99.28 16 | 99.89 87 | 99.52 14 | 95.58 73 | 98.24 125 | 99.39 124 | 93.33 110 | 99.74 130 | 97.98 114 | 95.58 201 | 99.78 108 |
|
test_part2 | | | | | | 99.89 50 | 99.25 17 | | | | 99.49 56 | | | | | | |
|
DPE-MVS |  | | 99.26 6 | 99.10 8 | 99.74 10 | 99.89 50 | 99.24 18 | 99.87 93 | 98.44 112 | 97.48 16 | 99.64 40 | 99.94 4 | 96.68 25 | 99.99 40 | 99.99 5 | 100.00 1 | 99.99 24 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
MVS | | | 96.60 128 | 95.56 147 | 99.72 12 | 96.85 242 | 99.22 19 | 98.31 297 | 98.94 37 | 91.57 216 | 90.90 231 | 99.61 106 | 86.66 211 | 99.96 58 | 97.36 131 | 99.88 80 | 99.99 24 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 18 | 98.62 69 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 16 | 100.00 1 | 99.54 38 | 100.00 1 | 100.00 1 |
|
CANet | | | 98.27 60 | 97.82 73 | 99.63 15 | 99.72 88 | 99.10 21 | 99.98 10 | 98.51 99 | 97.00 29 | 98.52 110 | 99.71 91 | 87.80 199 | 99.95 65 | 99.75 27 | 99.38 118 | 99.83 101 |
|
MG-MVS | | | 98.91 18 | 98.65 22 | 99.68 14 | 99.94 14 | 99.07 22 | 99.64 166 | 99.44 19 | 97.33 18 | 99.00 90 | 99.72 89 | 94.03 94 | 99.98 46 | 98.73 79 | 100.00 1 | 100.00 1 |
|
HPM-MVS++ |  | | 99.07 10 | 98.88 15 | 99.63 15 | 99.90 47 | 99.02 23 | 99.95 43 | 98.56 79 | 97.56 14 | 99.44 59 | 99.85 35 | 95.38 49 | 100.00 1 | 99.31 48 | 99.99 22 | 99.87 98 |
|
PAPM | | | 98.60 34 | 98.42 33 | 99.14 66 | 96.05 259 | 98.96 24 | 99.90 79 | 99.35 24 | 96.68 39 | 98.35 119 | 99.66 102 | 96.45 29 | 98.51 193 | 99.45 42 | 99.89 78 | 99.96 74 |
|
canonicalmvs | | | 97.09 109 | 96.32 121 | 99.39 46 | 98.93 131 | 98.95 25 | 99.72 151 | 97.35 261 | 94.45 108 | 97.88 134 | 99.42 120 | 86.71 210 | 99.52 147 | 98.48 91 | 93.97 218 | 99.72 115 |
|
ETH3 D test6400 | | | 98.81 23 | 98.54 28 | 99.59 21 | 99.93 27 | 98.93 26 | 99.93 67 | 98.46 107 | 94.56 105 | 99.84 9 | 99.92 13 | 94.32 84 | 99.86 95 | 99.96 9 | 99.98 35 | 100.00 1 |
|
TEST9 | | | | | | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 120 | 93.90 138 | 99.71 34 | 99.86 31 | 95.88 38 | 99.85 99 | | | |
|
train_agg | | | 98.88 20 | 98.65 22 | 99.59 21 | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 120 | 94.35 115 | 99.71 34 | 99.86 31 | 95.94 35 | 99.85 99 | 99.69 36 | 99.98 35 | 99.99 24 |
|
PS-MVSNAJ | | | 98.44 48 | 98.20 52 | 99.16 62 | 98.80 143 | 98.92 27 | 99.54 181 | 98.17 183 | 97.34 17 | 99.85 7 | 99.85 35 | 91.20 157 | 99.89 84 | 99.41 45 | 99.67 100 | 98.69 211 |
|
test_8 | | | | | | 99.92 36 | 98.88 30 | 99.96 25 | 98.43 120 | 94.35 115 | 99.69 36 | 99.85 35 | 95.94 35 | 99.85 99 | | | |
|
SMA-MVS |  | | 98.76 27 | 98.48 31 | 99.62 18 | 99.87 57 | 98.87 31 | 99.86 104 | 98.38 147 | 93.19 159 | 99.77 26 | 99.94 4 | 95.54 44 | 100.00 1 | 99.74 29 | 99.99 22 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CHOSEN 280x420 | | | 99.01 13 | 99.03 10 | 98.95 86 | 99.38 110 | 98.87 31 | 98.46 290 | 99.42 21 | 97.03 28 | 99.02 87 | 99.09 144 | 99.35 1 | 98.21 225 | 99.73 32 | 99.78 93 | 99.77 109 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 28 | 99.62 18 | 99.90 47 | 98.85 33 | 99.24 222 | 98.47 105 | 98.14 4 | 99.08 84 | 99.91 15 | 93.09 120 | 100.00 1 | 99.04 59 | 99.99 22 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
thres200 | | | 96.96 111 | 96.21 123 | 99.22 53 | 98.97 127 | 98.84 34 | 99.85 107 | 99.71 6 | 93.17 160 | 96.26 172 | 98.88 170 | 89.87 177 | 99.51 148 | 94.26 190 | 94.91 208 | 99.31 180 |
|
tfpn200view9 | | | 96.79 118 | 95.99 128 | 99.19 56 | 98.94 129 | 98.82 35 | 99.78 129 | 99.71 6 | 92.86 165 | 96.02 175 | 98.87 172 | 89.33 183 | 99.50 150 | 93.84 196 | 94.57 209 | 99.27 183 |
|
thres400 | | | 96.78 119 | 95.99 128 | 99.16 62 | 98.94 129 | 98.82 35 | 99.78 129 | 99.71 6 | 92.86 165 | 96.02 175 | 98.87 172 | 89.33 183 | 99.50 150 | 93.84 196 | 94.57 209 | 99.16 190 |
|
xxxxxxxxxxxxxcwj | | | 98.98 15 | 98.79 17 | 99.54 26 | 99.82 70 | 98.79 37 | 99.96 25 | 97.52 243 | 97.66 10 | 99.81 13 | 99.89 21 | 94.70 69 | 99.86 95 | 99.84 18 | 99.93 67 | 99.96 74 |
|
save fliter | | | | | | 99.82 70 | 98.79 37 | 99.96 25 | 98.40 140 | 97.66 10 | | | | | | | |
|
thres600view7 | | | 96.69 125 | 95.87 141 | 99.14 66 | 98.90 136 | 98.78 39 | 99.74 143 | 99.71 6 | 92.59 183 | 95.84 178 | 98.86 174 | 89.25 185 | 99.50 150 | 93.44 209 | 94.50 212 | 99.16 190 |
|
thres100view900 | | | 96.74 122 | 95.92 138 | 99.18 57 | 98.90 136 | 98.77 40 | 99.74 143 | 99.71 6 | 92.59 183 | 95.84 178 | 98.86 174 | 89.25 185 | 99.50 150 | 93.84 196 | 94.57 209 | 99.27 183 |
|
agg_prior1 | | | 98.88 20 | 98.66 21 | 99.54 26 | 99.93 27 | 98.77 40 | 99.96 25 | 98.43 120 | 94.63 103 | 99.63 41 | 99.85 35 | 95.79 41 | 99.85 99 | 99.72 33 | 99.99 22 | 99.99 24 |
|
agg_prior | | | | | | 99.93 27 | 98.77 40 | | 98.43 120 | | 99.63 41 | | | 99.85 99 | | | |
|
PAPR | | | 98.52 42 | 98.16 55 | 99.58 23 | 99.97 3 | 98.77 40 | 99.95 43 | 98.43 120 | 95.35 78 | 98.03 129 | 99.75 81 | 94.03 94 | 99.98 46 | 98.11 105 | 99.83 85 | 99.99 24 |
|
APDe-MVS | | | 99.06 11 | 98.91 14 | 99.51 31 | 99.94 14 | 98.76 44 | 99.91 75 | 98.39 143 | 97.20 25 | 99.46 57 | 99.85 35 | 95.53 46 | 99.79 114 | 99.86 17 | 100.00 1 | 99.99 24 |
|
SD-MVS | | | 98.92 17 | 98.70 19 | 99.56 24 | 99.70 90 | 98.73 45 | 99.94 61 | 98.34 157 | 96.38 48 | 99.81 13 | 99.76 75 | 94.59 71 | 99.98 46 | 99.84 18 | 99.96 52 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
CDPH-MVS | | | 98.65 32 | 98.36 44 | 99.49 34 | 99.94 14 | 98.73 45 | 99.87 93 | 98.33 158 | 93.97 133 | 99.76 27 | 99.87 28 | 94.99 62 | 99.75 126 | 98.55 89 | 100.00 1 | 99.98 55 |
|
DP-MVS Recon | | | 98.41 50 | 98.02 63 | 99.56 24 | 99.97 3 | 98.70 47 | 99.92 71 | 98.44 112 | 92.06 203 | 98.40 117 | 99.84 48 | 95.68 42 | 100.00 1 | 98.19 100 | 99.71 98 | 99.97 67 |
|
SF-MVS | | | 98.67 31 | 98.40 37 | 99.50 32 | 99.77 78 | 98.67 48 | 99.90 79 | 98.21 177 | 93.53 150 | 99.81 13 | 99.89 21 | 94.70 69 | 99.86 95 | 99.84 18 | 99.93 67 | 99.96 74 |
|
TSAR-MVS + MP. | | | 98.93 16 | 98.77 18 | 99.41 42 | 99.74 82 | 98.67 48 | 99.77 132 | 98.38 147 | 96.73 37 | 99.88 4 | 99.74 86 | 94.89 66 | 99.59 145 | 99.80 23 | 99.98 35 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v2_base | | | 98.23 65 | 97.97 66 | 99.02 80 | 98.69 147 | 98.66 50 | 99.52 183 | 98.08 194 | 97.05 27 | 99.86 5 | 99.86 31 | 90.65 168 | 99.71 134 | 99.39 46 | 98.63 135 | 98.69 211 |
|
alignmvs | | | 97.81 80 | 97.33 90 | 99.25 52 | 98.77 145 | 98.66 50 | 99.99 4 | 98.44 112 | 94.40 114 | 98.41 115 | 99.47 116 | 93.65 104 | 99.42 156 | 98.57 88 | 94.26 214 | 99.67 121 |
|
DELS-MVS | | | 98.54 40 | 98.22 50 | 99.50 32 | 99.15 117 | 98.65 52 | 100.00 1 | 98.58 75 | 97.70 9 | 98.21 126 | 99.24 138 | 92.58 133 | 99.94 73 | 98.63 87 | 99.94 61 | 99.92 91 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
3Dnovator+ | | 91.53 11 | 96.31 138 | 95.24 154 | 99.52 29 | 96.88 241 | 98.64 53 | 99.72 151 | 98.24 173 | 95.27 81 | 88.42 280 | 98.98 155 | 82.76 241 | 99.94 73 | 97.10 138 | 99.83 85 | 99.96 74 |
|
ACMMP_NAP | | | 98.49 44 | 98.14 56 | 99.54 26 | 99.66 93 | 98.62 54 | 99.85 107 | 98.37 150 | 94.68 100 | 99.53 51 | 99.83 51 | 92.87 125 | 100.00 1 | 98.66 85 | 99.84 84 | 99.99 24 |
|
ZD-MVS | | | | | | 99.92 36 | 98.57 55 | | 98.52 92 | 92.34 194 | 99.31 71 | 99.83 51 | 95.06 56 | 99.80 111 | 99.70 35 | 99.97 48 | |
|
ETH3D-3000-0.1 | | | 98.68 30 | 98.42 33 | 99.47 37 | 99.83 68 | 98.57 55 | 99.90 79 | 98.37 150 | 93.81 141 | 99.81 13 | 99.90 19 | 94.34 80 | 99.86 95 | 99.84 18 | 99.98 35 | 99.97 67 |
|
testtj | | | 98.89 19 | 98.69 20 | 99.52 29 | 99.94 14 | 98.56 57 | 99.90 79 | 98.55 85 | 95.14 83 | 99.72 33 | 99.84 48 | 95.46 47 | 100.00 1 | 99.65 37 | 99.99 22 | 99.99 24 |
|
test12 | | | | | 99.43 38 | 99.74 82 | 98.56 57 | | 98.40 140 | | 99.65 39 | | 94.76 67 | 99.75 126 | | 99.98 35 | 99.99 24 |
|
1314 | | | 96.84 116 | 95.96 135 | 99.48 36 | 96.74 249 | 98.52 59 | 98.31 297 | 98.86 47 | 95.82 62 | 89.91 243 | 98.98 155 | 87.49 202 | 99.96 58 | 97.80 118 | 99.73 96 | 99.96 74 |
|
APD-MVS |  | | 98.62 33 | 98.35 45 | 99.41 42 | 99.90 47 | 98.51 60 | 99.87 93 | 98.36 152 | 94.08 126 | 99.74 29 | 99.73 88 | 94.08 92 | 99.74 130 | 99.42 44 | 99.99 22 | 99.99 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test_prior3 | | | 98.99 14 | 98.84 16 | 99.43 38 | 99.94 14 | 98.49 61 | 99.95 43 | 98.65 62 | 95.78 64 | 99.73 30 | 99.76 75 | 96.00 33 | 99.80 111 | 99.78 25 | 100.00 1 | 99.99 24 |
|
test_prior | | | | | 99.43 38 | 99.94 14 | 98.49 61 | | 98.65 62 | | | | | 99.80 111 | | | 99.99 24 |
|
MSLP-MVS++ | | | 99.13 8 | 99.01 11 | 99.49 34 | 99.94 14 | 98.46 63 | 99.98 10 | 98.86 47 | 97.10 26 | 99.80 17 | 99.94 4 | 95.92 37 | 100.00 1 | 99.51 39 | 100.00 1 | 100.00 1 |
|
ETH3D cwj APD-0.16 | | | 98.40 52 | 98.07 61 | 99.40 44 | 99.59 96 | 98.41 64 | 99.86 104 | 98.24 173 | 92.18 198 | 99.73 30 | 99.87 28 | 93.47 107 | 99.85 99 | 99.74 29 | 99.95 55 | 99.93 85 |
|
MP-MVS-pluss | | | 98.07 70 | 97.64 77 | 99.38 47 | 99.74 82 | 98.41 64 | 99.74 143 | 98.18 182 | 93.35 154 | 96.45 166 | 99.85 35 | 92.64 132 | 99.97 56 | 98.91 67 | 99.89 78 | 99.77 109 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
Regformer-1 | | | 98.79 25 | 98.60 25 | 99.36 48 | 99.85 60 | 98.34 66 | 99.87 93 | 98.52 92 | 96.05 57 | 99.41 62 | 99.79 64 | 94.93 64 | 99.76 123 | 99.07 54 | 99.90 76 | 99.99 24 |
|
RRT_MVS | | | 95.23 163 | 94.77 167 | 96.61 190 | 98.28 165 | 98.32 67 | 99.81 120 | 97.41 256 | 92.59 183 | 91.28 228 | 97.76 214 | 95.02 58 | 97.23 269 | 93.65 206 | 87.14 262 | 94.28 261 |
|
Regformer-2 | | | 98.78 26 | 98.59 26 | 99.36 48 | 99.85 60 | 98.32 67 | 99.87 93 | 98.52 92 | 96.04 58 | 99.41 62 | 99.79 64 | 94.92 65 | 99.76 123 | 99.05 55 | 99.90 76 | 99.98 55 |
|
新几何1 | | | | | 99.42 41 | 99.75 81 | 98.27 69 | | 98.63 68 | 92.69 176 | 99.55 49 | 99.82 55 | 94.40 75 | 100.00 1 | 91.21 233 | 99.94 61 | 99.99 24 |
|
1121 | | | 98.03 71 | 97.57 82 | 99.40 44 | 99.74 82 | 98.21 70 | 98.31 297 | 98.62 69 | 92.78 171 | 99.53 51 | 99.83 51 | 95.08 54 | 100.00 1 | 94.36 186 | 99.92 71 | 99.99 24 |
|
xiu_mvs_v1_base_debu | | | 97.43 93 | 97.06 98 | 98.55 110 | 97.74 199 | 98.14 71 | 99.31 213 | 97.86 214 | 96.43 45 | 99.62 44 | 99.69 96 | 85.56 220 | 99.68 138 | 99.05 55 | 98.31 142 | 97.83 220 |
|
xiu_mvs_v1_base | | | 97.43 93 | 97.06 98 | 98.55 110 | 97.74 199 | 98.14 71 | 99.31 213 | 97.86 214 | 96.43 45 | 99.62 44 | 99.69 96 | 85.56 220 | 99.68 138 | 99.05 55 | 98.31 142 | 97.83 220 |
|
xiu_mvs_v1_base_debi | | | 97.43 93 | 97.06 98 | 98.55 110 | 97.74 199 | 98.14 71 | 99.31 213 | 97.86 214 | 96.43 45 | 99.62 44 | 99.69 96 | 85.56 220 | 99.68 138 | 99.05 55 | 98.31 142 | 97.83 220 |
|
baseline1 | | | 95.78 150 | 94.86 164 | 98.54 113 | 98.47 158 | 98.07 74 | 99.06 238 | 97.99 199 | 92.68 177 | 94.13 202 | 98.62 186 | 93.28 114 | 98.69 185 | 93.79 201 | 85.76 269 | 98.84 205 |
|
test_prior4 | | | | | | | 98.05 75 | 99.94 61 | | | | | | | | | |
|
sss | | | 97.57 89 | 97.03 102 | 99.18 57 | 98.37 160 | 98.04 76 | 99.73 148 | 99.38 22 | 93.46 152 | 98.76 100 | 99.06 146 | 91.21 156 | 99.89 84 | 96.33 149 | 97.01 174 | 99.62 132 |
|
GG-mvs-BLEND | | | | | 98.54 113 | 98.21 171 | 98.01 77 | 93.87 350 | 98.52 92 | | 97.92 132 | 97.92 212 | 99.02 2 | 97.94 241 | 98.17 101 | 99.58 108 | 99.67 121 |
|
ET-MVSNet_ETH3D | | | 94.37 188 | 93.28 203 | 97.64 153 | 98.30 162 | 97.99 78 | 99.99 4 | 97.61 231 | 94.35 115 | 71.57 359 | 99.45 119 | 96.23 31 | 95.34 334 | 96.91 145 | 85.14 276 | 99.59 138 |
|
test_yl | | | 97.83 78 | 97.37 87 | 99.21 54 | 99.18 114 | 97.98 79 | 99.64 166 | 99.27 26 | 91.43 222 | 97.88 134 | 98.99 153 | 95.84 39 | 99.84 108 | 98.82 72 | 95.32 205 | 99.79 105 |
|
DCV-MVSNet | | | 97.83 78 | 97.37 87 | 99.21 54 | 99.18 114 | 97.98 79 | 99.64 166 | 99.27 26 | 91.43 222 | 97.88 134 | 98.99 153 | 95.84 39 | 99.84 108 | 98.82 72 | 95.32 205 | 99.79 105 |
|
gg-mvs-nofinetune | | | 93.51 206 | 91.86 230 | 98.47 118 | 97.72 203 | 97.96 81 | 92.62 354 | 98.51 99 | 74.70 357 | 97.33 144 | 69.59 368 | 98.91 3 | 97.79 244 | 97.77 123 | 99.56 109 | 99.67 121 |
|
zzz-MVS | | | 98.33 56 | 98.00 64 | 99.30 50 | 99.85 60 | 97.93 82 | 99.80 125 | 98.28 167 | 95.76 66 | 97.18 147 | 99.88 24 | 92.74 129 | 100.00 1 | 98.67 82 | 99.88 80 | 99.99 24 |
|
MTAPA | | | 98.29 59 | 97.96 69 | 99.30 50 | 99.85 60 | 97.93 82 | 99.39 203 | 98.28 167 | 95.76 66 | 97.18 147 | 99.88 24 | 92.74 129 | 100.00 1 | 98.67 82 | 99.88 80 | 99.99 24 |
|
114514_t | | | 97.41 97 | 96.83 106 | 99.14 66 | 99.51 104 | 97.83 84 | 99.89 87 | 98.27 170 | 88.48 274 | 99.06 85 | 99.66 102 | 90.30 172 | 99.64 144 | 96.32 150 | 99.97 48 | 99.96 74 |
|
VNet | | | 97.21 105 | 96.57 115 | 99.13 71 | 98.97 127 | 97.82 85 | 99.03 244 | 99.21 28 | 94.31 118 | 99.18 82 | 98.88 170 | 86.26 215 | 99.89 84 | 98.93 64 | 94.32 213 | 99.69 118 |
|
MVSTER | | | 95.53 158 | 95.22 155 | 96.45 194 | 98.56 151 | 97.72 86 | 99.91 75 | 97.67 224 | 92.38 193 | 91.39 226 | 97.14 227 | 97.24 17 | 97.30 263 | 94.80 173 | 87.85 255 | 94.34 258 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 13 | 99.18 57 | 98.72 146 | 97.71 87 | 99.98 10 | 98.44 112 | 96.85 31 | 99.80 17 | 99.91 15 | 97.57 6 | 99.85 99 | 99.44 43 | 99.99 22 | 99.99 24 |
Skip Steuart: Steuart Systems R&D Blog. |
QAPM | | | 95.40 161 | 94.17 177 | 99.10 72 | 96.92 236 | 97.71 87 | 99.40 199 | 98.68 58 | 89.31 255 | 88.94 269 | 98.89 168 | 82.48 242 | 99.96 58 | 93.12 216 | 99.83 85 | 99.62 132 |
|
MVSFormer | | | 96.94 112 | 96.60 113 | 97.95 140 | 97.28 225 | 97.70 89 | 99.55 179 | 97.27 269 | 91.17 226 | 99.43 60 | 99.54 112 | 90.92 164 | 96.89 290 | 94.67 180 | 99.62 103 | 99.25 185 |
|
lupinMVS | | | 97.85 77 | 97.60 80 | 98.62 103 | 97.28 225 | 97.70 89 | 99.99 4 | 97.55 237 | 95.50 76 | 99.43 60 | 99.67 100 | 90.92 164 | 98.71 183 | 98.40 93 | 99.62 103 | 99.45 164 |
|
FOURS1 | | | | | | 99.92 36 | 97.66 91 | 99.95 43 | 98.36 152 | 95.58 73 | 99.52 54 | | | | | | |
|
ZNCC-MVS | | | 98.31 57 | 98.03 62 | 99.17 60 | 99.88 54 | 97.59 92 | 99.94 61 | 98.44 112 | 94.31 118 | 98.50 112 | 99.82 55 | 93.06 122 | 99.99 40 | 98.30 99 | 99.99 22 | 99.93 85 |
|
GST-MVS | | | 98.27 60 | 97.97 66 | 99.17 60 | 99.92 36 | 97.57 93 | 99.93 67 | 98.39 143 | 94.04 131 | 98.80 96 | 99.74 86 | 92.98 123 | 100.00 1 | 98.16 102 | 99.76 94 | 99.93 85 |
|
Regformer-3 | | | 98.58 37 | 98.41 35 | 99.10 72 | 99.84 65 | 97.57 93 | 99.66 159 | 98.52 92 | 95.79 63 | 99.01 88 | 99.77 71 | 94.40 75 | 99.75 126 | 98.82 72 | 99.83 85 | 99.98 55 |
|
CANet_DTU | | | 96.76 120 | 96.15 124 | 98.60 105 | 98.78 144 | 97.53 95 | 99.84 111 | 97.63 226 | 97.25 24 | 99.20 78 | 99.64 104 | 81.36 253 | 99.98 46 | 92.77 219 | 98.89 129 | 98.28 214 |
|
thisisatest0515 | | | 97.41 97 | 97.02 103 | 98.59 107 | 97.71 205 | 97.52 96 | 99.97 18 | 98.54 89 | 91.83 208 | 97.45 142 | 99.04 147 | 97.50 8 | 99.10 165 | 94.75 176 | 96.37 185 | 99.16 190 |
|
Regformer-4 | | | 98.56 38 | 98.39 39 | 99.08 74 | 99.84 65 | 97.52 96 | 99.66 159 | 98.52 92 | 95.76 66 | 99.01 88 | 99.77 71 | 94.33 83 | 99.75 126 | 98.80 75 | 99.83 85 | 99.98 55 |
|
旧先验1 | | | | | | 99.76 79 | 97.52 96 | | 98.64 65 | | | 99.85 35 | 95.63 43 | | | 99.94 61 | 99.99 24 |
|
XVS | | | 98.70 29 | 98.55 27 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 61 | 98.42 132 | 96.22 53 | 99.41 62 | 99.78 69 | 94.34 80 | 99.96 58 | 98.92 65 | 99.95 55 | 99.99 24 |
|
X-MVStestdata | | | 93.83 196 | 92.06 225 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 61 | 98.42 132 | 96.22 53 | 99.41 62 | 41.37 376 | 94.34 80 | 99.96 58 | 98.92 65 | 99.95 55 | 99.99 24 |
|
OpenMVS |  | 90.15 15 | 94.77 174 | 93.59 191 | 98.33 127 | 96.07 258 | 97.48 101 | 99.56 177 | 98.57 77 | 90.46 240 | 86.51 304 | 98.95 163 | 78.57 279 | 99.94 73 | 93.86 195 | 99.74 95 | 97.57 227 |
|
3Dnovator | | 91.47 12 | 96.28 141 | 95.34 152 | 99.08 74 | 96.82 244 | 97.47 102 | 99.45 195 | 98.81 50 | 95.52 75 | 89.39 257 | 99.00 152 | 81.97 245 | 99.95 65 | 97.27 133 | 99.83 85 | 99.84 100 |
|
test_part1 | | | 92.15 236 | 90.72 246 | 96.44 196 | 98.87 139 | 97.46 103 | 98.99 247 | 98.26 171 | 85.89 306 | 86.34 309 | 96.34 257 | 81.71 247 | 97.48 254 | 91.06 237 | 78.99 321 | 94.37 253 |
|
HFP-MVS | | | 98.56 38 | 98.37 42 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 71 | 94.77 96 | 99.31 71 | 99.85 35 | 94.22 87 | 100.00 1 | 98.70 80 | 99.98 35 | 99.98 55 |
|
#test# | | | 98.59 36 | 98.41 35 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 71 | 95.00 87 | 99.31 71 | 99.85 35 | 94.22 87 | 100.00 1 | 98.78 76 | 99.98 35 | 99.98 55 |
|
FMVSNet3 | | | 92.69 224 | 91.58 233 | 95.99 206 | 98.29 163 | 97.42 106 | 99.26 221 | 97.62 228 | 89.80 252 | 89.68 249 | 95.32 293 | 81.62 251 | 96.27 316 | 87.01 290 | 85.65 270 | 94.29 260 |
|
test222 | | | | | | 99.55 100 | 97.41 107 | 99.34 209 | 98.55 85 | 91.86 207 | 99.27 76 | 99.83 51 | 93.84 100 | | | 99.95 55 | 99.99 24 |
|
jason | | | 97.24 103 | 96.86 105 | 98.38 126 | 95.73 271 | 97.32 108 | 99.97 18 | 97.40 258 | 95.34 79 | 98.60 109 | 99.54 112 | 87.70 200 | 98.56 190 | 97.94 115 | 99.47 114 | 99.25 185 |
jason: jason. |
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 83 | 99.93 27 | 97.24 109 | 99.95 43 | 98.42 132 | 97.50 15 | 99.52 54 | 99.88 24 | 97.43 15 | 99.71 134 | 99.50 40 | 99.98 35 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MVS_Test | | | 96.46 132 | 95.74 143 | 98.61 104 | 98.18 173 | 97.23 110 | 99.31 213 | 97.15 279 | 91.07 230 | 98.84 94 | 97.05 233 | 88.17 198 | 98.97 169 | 94.39 185 | 97.50 161 | 99.61 135 |
|
nrg030 | | | 93.51 206 | 92.53 216 | 96.45 194 | 94.36 295 | 97.20 111 | 99.81 120 | 97.16 278 | 91.60 215 | 89.86 245 | 97.46 218 | 86.37 214 | 97.68 247 | 95.88 156 | 80.31 315 | 94.46 244 |
|
region2R | | | 98.54 40 | 98.37 42 | 99.05 76 | 99.96 8 | 97.18 112 | 99.96 25 | 98.55 85 | 94.87 94 | 99.45 58 | 99.85 35 | 94.07 93 | 100.00 1 | 98.67 82 | 100.00 1 | 99.98 55 |
|
ACMMPR | | | 98.50 43 | 98.32 46 | 99.05 76 | 99.96 8 | 97.18 112 | 99.95 43 | 98.60 73 | 94.77 96 | 99.31 71 | 99.84 48 | 93.73 102 | 100.00 1 | 98.70 80 | 99.98 35 | 99.98 55 |
|
MVS_111021_HR | | | 98.72 28 | 98.62 24 | 99.01 81 | 99.36 111 | 97.18 112 | 99.93 67 | 99.90 1 | 96.81 35 | 98.67 104 | 99.77 71 | 93.92 96 | 99.89 84 | 99.27 50 | 99.94 61 | 99.96 74 |
|
MP-MVS |  | | 98.23 65 | 97.97 66 | 99.03 78 | 99.94 14 | 97.17 115 | 99.95 43 | 98.39 143 | 94.70 99 | 98.26 124 | 99.81 59 | 91.84 150 | 100.00 1 | 98.85 71 | 99.97 48 | 99.93 85 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PHI-MVS | | | 98.41 50 | 98.21 51 | 99.03 78 | 99.86 59 | 97.10 116 | 99.98 10 | 98.80 52 | 90.78 237 | 99.62 44 | 99.78 69 | 95.30 50 | 100.00 1 | 99.80 23 | 99.93 67 | 99.99 24 |
|
SR-MVS | | | 98.46 46 | 98.30 48 | 98.93 87 | 99.88 54 | 97.04 117 | 99.84 111 | 98.35 155 | 94.92 91 | 99.32 70 | 99.80 60 | 93.35 109 | 99.78 116 | 99.30 49 | 99.95 55 | 99.96 74 |
|
PGM-MVS | | | 98.34 55 | 98.13 57 | 98.99 82 | 99.92 36 | 97.00 118 | 99.75 140 | 99.50 17 | 93.90 138 | 99.37 68 | 99.76 75 | 93.24 117 | 100.00 1 | 97.75 125 | 99.96 52 | 99.98 55 |
|
原ACMM1 | | | | | 98.96 85 | 99.73 86 | 96.99 119 | | 98.51 99 | 94.06 129 | 99.62 44 | 99.85 35 | 94.97 63 | 99.96 58 | 95.11 163 | 99.95 55 | 99.92 91 |
|
PVSNet_BlendedMVS | | | 96.05 144 | 95.82 142 | 96.72 186 | 99.59 96 | 96.99 119 | 99.95 43 | 99.10 29 | 94.06 129 | 98.27 122 | 95.80 268 | 89.00 190 | 99.95 65 | 99.12 52 | 87.53 260 | 93.24 323 |
|
PVSNet_Blended | | | 97.94 73 | 97.64 77 | 98.83 91 | 99.59 96 | 96.99 119 | 100.00 1 | 99.10 29 | 95.38 77 | 98.27 122 | 99.08 145 | 89.00 190 | 99.95 65 | 99.12 52 | 99.25 121 | 99.57 145 |
|
mPP-MVS | | | 98.39 53 | 98.20 52 | 98.97 84 | 99.97 3 | 96.92 122 | 99.95 43 | 98.38 147 | 95.04 86 | 98.61 108 | 99.80 60 | 93.39 108 | 100.00 1 | 98.64 86 | 100.00 1 | 99.98 55 |
|
test2506 | | | 97.53 90 | 97.19 94 | 98.58 108 | 98.66 149 | 96.90 123 | 98.81 269 | 99.77 5 | 94.93 89 | 97.95 131 | 98.96 159 | 92.51 135 | 99.20 160 | 94.93 167 | 98.15 146 | 99.64 127 |
|
CNLPA | | | 97.76 83 | 97.38 86 | 98.92 88 | 99.53 101 | 96.84 124 | 99.87 93 | 98.14 189 | 93.78 143 | 96.55 164 | 99.69 96 | 92.28 141 | 99.98 46 | 97.13 136 | 99.44 116 | 99.93 85 |
|
FIs | | | 94.10 193 | 93.43 196 | 96.11 204 | 94.70 291 | 96.82 125 | 99.58 173 | 98.93 41 | 92.54 187 | 89.34 259 | 97.31 223 | 87.62 201 | 97.10 277 | 94.22 192 | 86.58 265 | 94.40 251 |
|
EPNet | | | 98.49 44 | 98.40 37 | 98.77 93 | 99.62 95 | 96.80 126 | 99.90 79 | 99.51 16 | 97.60 12 | 99.20 78 | 99.36 127 | 93.71 103 | 99.91 79 | 97.99 112 | 98.71 134 | 99.61 135 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thisisatest0530 | | | 97.10 107 | 96.72 110 | 98.22 131 | 97.60 208 | 96.70 127 | 99.92 71 | 98.54 89 | 91.11 229 | 97.07 150 | 98.97 157 | 97.47 11 | 99.03 166 | 93.73 204 | 96.09 188 | 98.92 200 |
|
PVSNet_Blended_VisFu | | | 97.27 102 | 96.81 107 | 98.66 100 | 98.81 142 | 96.67 128 | 99.92 71 | 98.64 65 | 94.51 107 | 96.38 170 | 98.49 193 | 89.05 189 | 99.88 90 | 97.10 138 | 98.34 140 | 99.43 167 |
|
TSAR-MVS + GP. | | | 98.60 34 | 98.51 30 | 98.86 90 | 99.73 86 | 96.63 129 | 99.97 18 | 97.92 208 | 98.07 5 | 98.76 100 | 99.55 110 | 95.00 61 | 99.94 73 | 99.91 16 | 97.68 158 | 99.99 24 |
|
CP-MVS | | | 98.45 47 | 98.32 46 | 98.87 89 | 99.96 8 | 96.62 130 | 99.97 18 | 98.39 143 | 94.43 110 | 98.90 93 | 99.87 28 | 94.30 85 | 100.00 1 | 99.04 59 | 99.99 22 | 99.99 24 |
|
APD-MVS_3200maxsize | | | 98.25 63 | 98.08 60 | 98.78 92 | 99.81 73 | 96.60 131 | 99.82 118 | 98.30 165 | 93.95 135 | 99.37 68 | 99.77 71 | 92.84 126 | 99.76 123 | 98.95 62 | 99.92 71 | 99.97 67 |
|
EI-MVSNet-Vis-set | | | 98.27 60 | 98.11 59 | 98.75 95 | 99.83 68 | 96.59 132 | 99.40 199 | 98.51 99 | 95.29 80 | 98.51 111 | 99.76 75 | 93.60 106 | 99.71 134 | 98.53 90 | 99.52 111 | 99.95 82 |
|
test1172 | | | 98.38 54 | 98.25 49 | 98.77 93 | 99.88 54 | 96.56 133 | 99.80 125 | 98.36 152 | 94.68 100 | 99.20 78 | 99.80 60 | 93.28 114 | 99.78 116 | 99.34 47 | 99.92 71 | 99.98 55 |
|
ETV-MVS | | | 97.92 75 | 97.80 74 | 98.25 130 | 98.14 176 | 96.48 134 | 99.98 10 | 97.63 226 | 95.61 72 | 99.29 75 | 99.46 118 | 92.55 134 | 98.82 173 | 99.02 61 | 98.54 136 | 99.46 162 |
|
TESTMET0.1,1 | | | 96.74 122 | 96.26 122 | 98.16 132 | 97.36 218 | 96.48 134 | 99.96 25 | 98.29 166 | 91.93 205 | 95.77 181 | 98.07 206 | 95.54 44 | 98.29 217 | 90.55 248 | 98.89 129 | 99.70 116 |
|
HPM-MVS_fast | | | 97.80 81 | 97.50 83 | 98.68 98 | 99.79 75 | 96.42 136 | 99.88 90 | 98.16 186 | 91.75 212 | 98.94 92 | 99.54 112 | 91.82 151 | 99.65 143 | 97.62 127 | 99.99 22 | 99.99 24 |
|
Test_1112_low_res | | | 95.72 151 | 94.83 165 | 98.42 123 | 97.79 195 | 96.41 137 | 99.65 162 | 96.65 323 | 92.70 175 | 92.86 218 | 96.13 263 | 92.15 144 | 99.30 157 | 91.88 227 | 93.64 220 | 99.55 147 |
|
1112_ss | | | 96.01 146 | 95.20 156 | 98.42 123 | 97.80 194 | 96.41 137 | 99.65 162 | 96.66 322 | 92.71 174 | 92.88 217 | 99.40 122 | 92.16 143 | 99.30 157 | 91.92 226 | 93.66 219 | 99.55 147 |
|
HPM-MVS |  | | 97.96 72 | 97.72 75 | 98.68 98 | 99.84 65 | 96.39 139 | 99.90 79 | 98.17 183 | 92.61 181 | 98.62 107 | 99.57 109 | 91.87 149 | 99.67 141 | 98.87 70 | 99.99 22 | 99.99 24 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
SR-MVS-dyc-post | | | 98.31 57 | 98.17 54 | 98.71 96 | 99.79 75 | 96.37 140 | 99.76 137 | 98.31 162 | 94.43 110 | 99.40 66 | 99.75 81 | 93.28 114 | 99.78 116 | 98.90 68 | 99.92 71 | 99.97 67 |
|
RE-MVS-def | | | | 98.13 57 | | 99.79 75 | 96.37 140 | 99.76 137 | 98.31 162 | 94.43 110 | 99.40 66 | 99.75 81 | 92.95 124 | | 98.90 68 | 99.92 71 | 99.97 67 |
|
EI-MVSNet-UG-set | | | 98.14 67 | 97.99 65 | 98.60 105 | 99.80 74 | 96.27 142 | 99.36 208 | 98.50 103 | 95.21 82 | 98.30 121 | 99.75 81 | 93.29 113 | 99.73 133 | 98.37 94 | 99.30 120 | 99.81 103 |
|
Effi-MVS+ | | | 96.30 139 | 95.69 144 | 98.16 132 | 97.85 191 | 96.26 143 | 97.41 319 | 97.21 272 | 90.37 242 | 98.65 106 | 98.58 189 | 86.61 212 | 98.70 184 | 97.11 137 | 97.37 166 | 99.52 156 |
|
cascas | | | 94.64 179 | 93.61 188 | 97.74 151 | 97.82 193 | 96.26 143 | 99.96 25 | 97.78 220 | 85.76 309 | 94.00 203 | 97.54 217 | 76.95 287 | 99.21 159 | 97.23 134 | 95.43 203 | 97.76 224 |
|
ab-mvs | | | 94.69 176 | 93.42 197 | 98.51 116 | 98.07 178 | 96.26 143 | 96.49 333 | 98.68 58 | 90.31 244 | 94.54 194 | 97.00 235 | 76.30 294 | 99.71 134 | 95.98 154 | 93.38 223 | 99.56 146 |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 143 | 96.11 339 | | 91.89 206 | 98.06 128 | | 94.40 75 | | 94.30 189 | | 99.67 121 |
|
UniMVSNet (Re) | | | 93.07 215 | 92.13 222 | 95.88 209 | 94.84 288 | 96.24 147 | 99.88 90 | 98.98 35 | 92.49 191 | 89.25 261 | 95.40 287 | 87.09 207 | 97.14 273 | 93.13 215 | 78.16 327 | 94.26 262 |
|
FC-MVSNet-test | | | 93.81 198 | 93.15 205 | 95.80 212 | 94.30 297 | 96.20 148 | 99.42 198 | 98.89 43 | 92.33 195 | 89.03 268 | 97.27 225 | 87.39 204 | 96.83 294 | 93.20 211 | 86.48 266 | 94.36 254 |
|
VPA-MVSNet | | | 92.70 223 | 91.55 235 | 96.16 203 | 95.09 284 | 96.20 148 | 98.88 259 | 99.00 34 | 91.02 232 | 91.82 223 | 95.29 297 | 76.05 298 | 97.96 238 | 95.62 159 | 81.19 303 | 94.30 259 |
|
diffmvs | | | 97.00 110 | 96.64 112 | 98.09 136 | 97.64 206 | 96.17 150 | 99.81 120 | 97.19 273 | 94.67 102 | 98.95 91 | 99.28 129 | 86.43 213 | 98.76 179 | 98.37 94 | 97.42 164 | 99.33 178 |
|
PAPM_NR | | | 98.12 68 | 97.93 70 | 98.70 97 | 99.94 14 | 96.13 151 | 99.82 118 | 98.43 120 | 94.56 105 | 97.52 140 | 99.70 93 | 94.40 75 | 99.98 46 | 97.00 140 | 99.98 35 | 99.99 24 |
|
ACMMP |  | | 97.74 84 | 97.44 85 | 98.66 100 | 99.92 36 | 96.13 151 | 99.18 226 | 99.45 18 | 94.84 95 | 96.41 169 | 99.71 91 | 91.40 153 | 99.99 40 | 97.99 112 | 98.03 154 | 99.87 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EPMVS | | | 96.53 130 | 96.01 127 | 98.09 136 | 98.43 159 | 96.12 153 | 96.36 334 | 99.43 20 | 93.53 150 | 97.64 138 | 95.04 303 | 94.41 74 | 98.38 209 | 91.13 235 | 98.11 149 | 99.75 111 |
|
abl_6 | | | 97.67 87 | 97.34 89 | 98.66 100 | 99.68 91 | 96.11 154 | 99.68 156 | 98.14 189 | 93.80 142 | 99.27 76 | 99.70 93 | 88.65 195 | 99.98 46 | 97.46 129 | 99.72 97 | 99.89 94 |
|
RRT_test8_iter05 | | | 94.58 181 | 94.11 178 | 95.98 207 | 97.88 187 | 96.11 154 | 99.89 87 | 97.45 249 | 91.66 214 | 88.28 281 | 96.71 245 | 96.53 28 | 97.40 256 | 94.73 178 | 83.85 289 | 94.45 249 |
|
PCF-MVS | | 94.20 5 | 95.18 164 | 94.10 179 | 98.43 122 | 98.55 153 | 95.99 156 | 97.91 313 | 97.31 266 | 90.35 243 | 89.48 256 | 99.22 139 | 85.19 225 | 99.89 84 | 90.40 253 | 98.47 138 | 99.41 169 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
baseline2 | | | 96.71 124 | 96.49 117 | 97.37 165 | 95.63 278 | 95.96 157 | 99.74 143 | 98.88 45 | 92.94 164 | 91.61 224 | 98.97 157 | 97.72 5 | 98.62 188 | 94.83 172 | 98.08 153 | 97.53 228 |
|
DeepC-MVS | | 94.51 4 | 96.92 114 | 96.40 120 | 98.45 120 | 99.16 116 | 95.90 158 | 99.66 159 | 98.06 195 | 96.37 51 | 94.37 198 | 99.49 115 | 83.29 239 | 99.90 80 | 97.63 126 | 99.61 106 | 99.55 147 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
tttt0517 | | | 96.85 115 | 96.49 117 | 97.92 142 | 97.48 214 | 95.89 159 | 99.85 107 | 98.54 89 | 90.72 238 | 96.63 160 | 98.93 167 | 97.47 11 | 99.02 167 | 93.03 217 | 95.76 197 | 98.85 204 |
|
PVSNet | | 91.05 13 | 97.13 106 | 96.69 111 | 98.45 120 | 99.52 102 | 95.81 160 | 99.95 43 | 99.65 11 | 94.73 98 | 99.04 86 | 99.21 140 | 84.48 230 | 99.95 65 | 94.92 168 | 98.74 133 | 99.58 144 |
|
MVS_111021_LR | | | 98.42 49 | 98.38 40 | 98.53 115 | 99.39 109 | 95.79 161 | 99.87 93 | 99.86 2 | 96.70 38 | 98.78 97 | 99.79 64 | 92.03 146 | 99.90 80 | 99.17 51 | 99.86 83 | 99.88 96 |
|
CPTT-MVS | | | 97.64 88 | 97.32 91 | 98.58 108 | 99.97 3 | 95.77 162 | 99.96 25 | 98.35 155 | 89.90 250 | 98.36 118 | 99.79 64 | 91.18 160 | 99.99 40 | 98.37 94 | 99.99 22 | 99.99 24 |
|
NR-MVSNet | | | 91.56 249 | 90.22 257 | 95.60 213 | 94.05 300 | 95.76 163 | 98.25 300 | 98.70 56 | 91.16 228 | 80.78 339 | 96.64 249 | 83.23 240 | 96.57 305 | 91.41 231 | 77.73 331 | 94.46 244 |
|
mvs_anonymous | | | 95.65 156 | 95.03 161 | 97.53 156 | 98.19 172 | 95.74 164 | 99.33 210 | 97.49 247 | 90.87 234 | 90.47 236 | 97.10 229 | 88.23 197 | 97.16 271 | 95.92 155 | 97.66 159 | 99.68 119 |
|
FMVSNet2 | | | 91.02 256 | 89.56 268 | 95.41 219 | 97.53 210 | 95.74 164 | 98.98 248 | 97.41 256 | 87.05 291 | 88.43 278 | 95.00 306 | 71.34 321 | 96.24 318 | 85.12 302 | 85.21 275 | 94.25 264 |
|
UA-Net | | | 96.54 129 | 95.96 135 | 98.27 129 | 98.23 170 | 95.71 166 | 98.00 311 | 98.45 109 | 93.72 146 | 98.41 115 | 99.27 132 | 88.71 194 | 99.66 142 | 91.19 234 | 97.69 157 | 99.44 166 |
|
LFMVS | | | 94.75 175 | 93.56 193 | 98.30 128 | 99.03 122 | 95.70 167 | 98.74 274 | 97.98 201 | 87.81 283 | 98.47 113 | 99.39 124 | 67.43 337 | 99.53 146 | 98.01 110 | 95.20 207 | 99.67 121 |
|
IB-MVS | | 92.85 6 | 94.99 169 | 93.94 183 | 98.16 132 | 97.72 203 | 95.69 168 | 99.99 4 | 98.81 50 | 94.28 120 | 92.70 219 | 96.90 237 | 95.08 54 | 99.17 163 | 96.07 152 | 73.88 346 | 99.60 137 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DROMVSNet | | | 97.38 99 | 97.24 92 | 97.80 144 | 97.41 215 | 95.64 169 | 99.99 4 | 97.06 288 | 94.59 104 | 99.63 41 | 99.32 128 | 89.20 188 | 98.14 227 | 98.76 78 | 99.23 122 | 99.62 132 |
|
AdaColmap |  | | 97.23 104 | 96.80 108 | 98.51 116 | 99.99 1 | 95.60 170 | 99.09 231 | 98.84 49 | 93.32 155 | 96.74 158 | 99.72 89 | 86.04 216 | 100.00 1 | 98.01 110 | 99.43 117 | 99.94 84 |
|
VPNet | | | 91.81 241 | 90.46 250 | 95.85 211 | 94.74 290 | 95.54 171 | 98.98 248 | 98.59 74 | 92.14 199 | 90.77 233 | 97.44 219 | 68.73 331 | 97.54 252 | 94.89 171 | 77.89 329 | 94.46 244 |
|
test-LLR | | | 96.47 131 | 96.04 126 | 97.78 146 | 97.02 233 | 95.44 172 | 99.96 25 | 98.21 177 | 94.07 127 | 95.55 183 | 96.38 254 | 93.90 98 | 98.27 221 | 90.42 251 | 98.83 131 | 99.64 127 |
|
test-mter | | | 96.39 135 | 95.93 137 | 97.78 146 | 97.02 233 | 95.44 172 | 99.96 25 | 98.21 177 | 91.81 210 | 95.55 183 | 96.38 254 | 95.17 51 | 98.27 221 | 90.42 251 | 98.83 131 | 99.64 127 |
|
API-MVS | | | 97.86 76 | 97.66 76 | 98.47 118 | 99.52 102 | 95.41 174 | 99.47 192 | 98.87 46 | 91.68 213 | 98.84 94 | 99.85 35 | 92.34 140 | 99.99 40 | 98.44 92 | 99.96 52 | 100.00 1 |
|
XXY-MVS | | | 91.82 240 | 90.46 250 | 95.88 209 | 93.91 303 | 95.40 175 | 98.87 262 | 97.69 223 | 88.63 272 | 87.87 286 | 97.08 230 | 74.38 311 | 97.89 242 | 91.66 229 | 84.07 286 | 94.35 257 |
|
testdata | | | | | 98.42 123 | 99.47 106 | 95.33 176 | | 98.56 79 | 93.78 143 | 99.79 24 | 99.85 35 | 93.64 105 | 99.94 73 | 94.97 166 | 99.94 61 | 100.00 1 |
|
WR-MVS | | | 92.31 232 | 91.25 240 | 95.48 218 | 94.45 294 | 95.29 177 | 99.60 171 | 98.68 58 | 90.10 246 | 88.07 284 | 96.89 238 | 80.68 261 | 96.80 296 | 93.14 214 | 79.67 319 | 94.36 254 |
|
UniMVSNet_NR-MVSNet | | | 92.95 218 | 92.11 223 | 95.49 215 | 94.61 293 | 95.28 178 | 99.83 117 | 99.08 31 | 91.49 218 | 89.21 263 | 96.86 240 | 87.14 206 | 96.73 298 | 93.20 211 | 77.52 332 | 94.46 244 |
|
DU-MVS | | | 92.46 229 | 91.45 238 | 95.49 215 | 94.05 300 | 95.28 178 | 99.81 120 | 98.74 54 | 92.25 197 | 89.21 263 | 96.64 249 | 81.66 249 | 96.73 298 | 93.20 211 | 77.52 332 | 94.46 244 |
|
miper_enhance_ethall | | | 94.36 190 | 93.98 182 | 95.49 215 | 98.68 148 | 95.24 180 | 99.73 148 | 97.29 267 | 93.28 157 | 89.86 245 | 95.97 266 | 94.37 79 | 97.05 280 | 92.20 223 | 84.45 281 | 94.19 268 |
|
BH-RMVSNet | | | 95.18 164 | 94.31 175 | 97.80 144 | 98.17 174 | 95.23 181 | 99.76 137 | 97.53 241 | 92.52 188 | 94.27 200 | 99.25 136 | 76.84 288 | 98.80 174 | 90.89 244 | 99.54 110 | 99.35 176 |
|
PatchMatch-RL | | | 96.04 145 | 95.40 149 | 97.95 140 | 99.59 96 | 95.22 182 | 99.52 183 | 99.07 32 | 93.96 134 | 96.49 165 | 98.35 200 | 82.28 243 | 99.82 110 | 90.15 256 | 99.22 123 | 98.81 207 |
|
baseline | | | 96.43 133 | 95.98 130 | 97.76 149 | 97.34 219 | 95.17 183 | 99.51 185 | 97.17 276 | 93.92 137 | 96.90 153 | 99.28 129 | 85.37 223 | 98.64 187 | 97.50 128 | 96.86 178 | 99.46 162 |
|
LS3D | | | 95.84 149 | 95.11 159 | 98.02 139 | 99.85 60 | 95.10 184 | 98.74 274 | 98.50 103 | 87.22 290 | 93.66 207 | 99.86 31 | 87.45 203 | 99.95 65 | 90.94 242 | 99.81 92 | 99.02 198 |
|
bset_n11_16_dypcd | | | 93.05 216 | 92.30 220 | 95.31 222 | 90.23 351 | 95.05 185 | 99.44 197 | 97.28 268 | 92.51 189 | 90.65 234 | 96.68 246 | 85.30 224 | 96.71 300 | 94.49 184 | 84.14 284 | 94.16 274 |
|
casdiffmvs | | | 96.42 134 | 95.97 133 | 97.77 148 | 97.30 223 | 94.98 186 | 99.84 111 | 97.09 285 | 93.75 145 | 96.58 162 | 99.26 135 | 85.07 226 | 98.78 176 | 97.77 123 | 97.04 173 | 99.54 151 |
|
pmmvs4 | | | 92.10 237 | 91.07 243 | 95.18 226 | 92.82 325 | 94.96 187 | 99.48 191 | 96.83 312 | 87.45 286 | 88.66 274 | 96.56 252 | 83.78 235 | 96.83 294 | 89.29 262 | 84.77 279 | 93.75 308 |
|
CDS-MVSNet | | | 96.34 136 | 96.07 125 | 97.13 174 | 97.37 217 | 94.96 187 | 99.53 182 | 97.91 209 | 91.55 217 | 95.37 187 | 98.32 201 | 95.05 57 | 97.13 274 | 93.80 200 | 95.75 198 | 99.30 181 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UGNet | | | 95.33 162 | 94.57 170 | 97.62 155 | 98.55 153 | 94.85 189 | 98.67 281 | 99.32 25 | 95.75 69 | 96.80 157 | 96.27 259 | 72.18 318 | 99.96 58 | 94.58 182 | 99.05 128 | 98.04 218 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
EIA-MVS | | | 97.53 90 | 97.46 84 | 97.76 149 | 98.04 180 | 94.84 190 | 99.98 10 | 97.61 231 | 94.41 113 | 97.90 133 | 99.59 107 | 92.40 138 | 98.87 171 | 98.04 109 | 99.13 125 | 99.59 138 |
|
Vis-MVSNet (Re-imp) | | | 96.32 137 | 95.98 130 | 97.35 168 | 97.93 185 | 94.82 191 | 99.47 192 | 98.15 188 | 91.83 208 | 95.09 190 | 99.11 143 | 91.37 154 | 97.47 255 | 93.47 208 | 97.43 162 | 99.74 112 |
|
IS-MVSNet | | | 96.29 140 | 95.90 139 | 97.45 160 | 98.13 177 | 94.80 192 | 99.08 233 | 97.61 231 | 92.02 204 | 95.54 185 | 98.96 159 | 90.64 169 | 98.08 230 | 93.73 204 | 97.41 165 | 99.47 161 |
|
MAR-MVS | | | 97.43 93 | 97.19 94 | 98.15 135 | 99.47 106 | 94.79 193 | 99.05 242 | 98.76 53 | 92.65 179 | 98.66 105 | 99.82 55 | 88.52 196 | 99.98 46 | 98.12 104 | 99.63 102 | 99.67 121 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PLC |  | 95.54 3 | 97.93 74 | 97.89 72 | 98.05 138 | 99.82 70 | 94.77 194 | 99.92 71 | 98.46 107 | 93.93 136 | 97.20 146 | 99.27 132 | 95.44 48 | 99.97 56 | 97.41 130 | 99.51 113 | 99.41 169 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
DWT-MVSNet_test | | | 97.31 100 | 97.19 94 | 97.66 152 | 98.24 169 | 94.67 195 | 98.86 263 | 98.20 181 | 93.60 149 | 98.09 127 | 98.89 168 | 97.51 7 | 98.78 176 | 94.04 193 | 97.28 167 | 99.55 147 |
|
Fast-Effi-MVS+ | | | 95.02 168 | 94.19 176 | 97.52 157 | 97.88 187 | 94.55 196 | 99.97 18 | 97.08 286 | 88.85 267 | 94.47 197 | 97.96 211 | 84.59 229 | 98.41 201 | 89.84 259 | 97.10 171 | 99.59 138 |
|
SCA | | | 94.69 176 | 93.81 187 | 97.33 169 | 97.10 228 | 94.44 197 | 98.86 263 | 98.32 160 | 93.30 156 | 96.17 174 | 95.59 277 | 76.48 292 | 97.95 239 | 91.06 237 | 97.43 162 | 99.59 138 |
|
cl22 | | | 93.77 200 | 93.25 204 | 95.33 221 | 99.49 105 | 94.43 198 | 99.61 170 | 98.09 192 | 90.38 241 | 89.16 266 | 95.61 275 | 90.56 170 | 97.34 260 | 91.93 225 | 84.45 281 | 94.21 267 |
|
PatchmatchNet |  | | 95.94 147 | 95.45 148 | 97.39 164 | 97.83 192 | 94.41 199 | 96.05 340 | 98.40 140 | 92.86 165 | 97.09 149 | 95.28 298 | 94.21 90 | 98.07 232 | 89.26 263 | 98.11 149 | 99.70 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
TR-MVS | | | 94.54 182 | 93.56 193 | 97.49 159 | 97.96 183 | 94.34 200 | 98.71 277 | 97.51 245 | 90.30 245 | 94.51 196 | 98.69 181 | 75.56 299 | 98.77 178 | 92.82 218 | 95.99 190 | 99.35 176 |
|
Vis-MVSNet |  | | 95.72 151 | 95.15 158 | 97.45 160 | 97.62 207 | 94.28 201 | 99.28 219 | 98.24 173 | 94.27 121 | 96.84 155 | 98.94 165 | 79.39 272 | 98.76 179 | 93.25 210 | 98.49 137 | 99.30 181 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MDTV_nov1_ep13 | | | | 95.69 144 | | 97.90 186 | 94.15 202 | 95.98 341 | 98.44 112 | 93.12 161 | 97.98 130 | 95.74 270 | 95.10 53 | 98.58 189 | 90.02 257 | 96.92 176 | |
|
tfpnnormal | | | 89.29 291 | 87.61 298 | 94.34 259 | 94.35 296 | 94.13 203 | 98.95 252 | 98.94 37 | 83.94 326 | 84.47 321 | 95.51 282 | 74.84 307 | 97.39 257 | 77.05 343 | 80.41 313 | 91.48 345 |
|
KD-MVS_2432*1600 | | | 88.00 300 | 86.10 304 | 93.70 282 | 96.91 237 | 94.04 204 | 97.17 324 | 97.12 282 | 84.93 320 | 81.96 331 | 92.41 341 | 92.48 136 | 94.51 344 | 79.23 331 | 52.68 366 | 92.56 332 |
|
miper_refine_blended | | | 88.00 300 | 86.10 304 | 93.70 282 | 96.91 237 | 94.04 204 | 97.17 324 | 97.12 282 | 84.93 320 | 81.96 331 | 92.41 341 | 92.48 136 | 94.51 344 | 79.23 331 | 52.68 366 | 92.56 332 |
|
DP-MVS | | | 94.54 182 | 93.42 197 | 97.91 143 | 99.46 108 | 94.04 204 | 98.93 254 | 97.48 248 | 81.15 340 | 90.04 240 | 99.55 110 | 87.02 208 | 99.95 65 | 88.97 265 | 98.11 149 | 99.73 113 |
|
TranMVSNet+NR-MVSNet | | | 91.68 248 | 90.61 249 | 94.87 235 | 93.69 307 | 93.98 207 | 99.69 154 | 98.65 62 | 91.03 231 | 88.44 276 | 96.83 244 | 80.05 269 | 96.18 319 | 90.26 255 | 76.89 340 | 94.45 249 |
|
MSDG | | | 94.37 188 | 93.36 201 | 97.40 163 | 98.88 138 | 93.95 208 | 99.37 206 | 97.38 259 | 85.75 311 | 90.80 232 | 99.17 141 | 84.11 234 | 99.88 90 | 86.35 294 | 98.43 139 | 98.36 213 |
|
HyFIR lowres test | | | 96.66 127 | 96.43 119 | 97.36 167 | 99.05 121 | 93.91 209 | 99.70 153 | 99.80 3 | 90.54 239 | 96.26 172 | 98.08 205 | 92.15 144 | 98.23 224 | 96.84 146 | 95.46 202 | 99.93 85 |
|
v2v482 | | | 91.30 250 | 90.07 262 | 95.01 230 | 93.13 315 | 93.79 210 | 99.77 132 | 97.02 293 | 88.05 279 | 89.25 261 | 95.37 291 | 80.73 260 | 97.15 272 | 87.28 285 | 80.04 318 | 94.09 282 |
|
ADS-MVSNet | | | 94.79 172 | 94.02 181 | 97.11 176 | 97.87 189 | 93.79 210 | 94.24 346 | 98.16 186 | 90.07 247 | 96.43 167 | 94.48 321 | 90.29 173 | 98.19 226 | 87.44 281 | 97.23 168 | 99.36 174 |
|
gm-plane-assit | | | | | | 96.97 235 | 93.76 212 | | | 91.47 220 | | 98.96 159 | | 98.79 175 | 94.92 168 | | |
|
ECVR-MVS |  | | 95.66 155 | 95.05 160 | 97.51 158 | 98.66 149 | 93.71 213 | 98.85 266 | 98.45 109 | 94.93 89 | 96.86 154 | 98.96 159 | 75.22 304 | 99.20 160 | 95.34 160 | 98.15 146 | 99.64 127 |
|
CS-MVS | | | 97.73 85 | 97.92 71 | 97.18 172 | 99.09 119 | 93.69 214 | 99.99 4 | 97.14 281 | 95.06 85 | 99.67 37 | 99.75 81 | 93.09 120 | 98.31 214 | 98.32 97 | 99.12 126 | 99.54 151 |
|
CS-MVS-test | | | 97.53 90 | 97.64 77 | 97.18 172 | 99.09 119 | 93.69 214 | 100.00 1 | 97.04 292 | 95.07 84 | 99.67 37 | 99.25 136 | 91.22 155 | 98.31 214 | 98.32 97 | 99.12 126 | 99.54 151 |
|
v1144 | | | 91.09 255 | 89.83 263 | 94.87 235 | 93.25 314 | 93.69 214 | 99.62 169 | 96.98 298 | 86.83 297 | 89.64 253 | 94.99 307 | 80.94 257 | 97.05 280 | 85.08 303 | 81.16 304 | 93.87 301 |
|
GA-MVS | | | 93.83 196 | 92.84 207 | 96.80 182 | 95.73 271 | 93.57 217 | 99.88 90 | 97.24 271 | 92.57 186 | 92.92 215 | 96.66 247 | 78.73 278 | 97.67 248 | 87.75 279 | 94.06 217 | 99.17 189 |
|
miper_ehance_all_eth | | | 93.16 212 | 92.60 212 | 94.82 238 | 97.57 209 | 93.56 218 | 99.50 187 | 97.07 287 | 88.75 268 | 88.85 270 | 95.52 281 | 90.97 163 | 96.74 297 | 90.77 246 | 84.45 281 | 94.17 269 |
|
GeoE | | | 94.36 190 | 93.48 195 | 96.99 177 | 97.29 224 | 93.54 219 | 99.96 25 | 96.72 320 | 88.35 277 | 93.43 208 | 98.94 165 | 82.05 244 | 98.05 233 | 88.12 276 | 96.48 183 | 99.37 173 |
|
TAMVS | | | 95.85 148 | 95.58 146 | 96.65 189 | 97.07 229 | 93.50 220 | 99.17 227 | 97.82 218 | 91.39 225 | 95.02 191 | 98.01 207 | 92.20 142 | 97.30 263 | 93.75 203 | 95.83 195 | 99.14 193 |
|
V42 | | | 91.28 252 | 90.12 261 | 94.74 239 | 93.42 312 | 93.46 221 | 99.68 156 | 97.02 293 | 87.36 287 | 89.85 247 | 95.05 302 | 81.31 254 | 97.34 260 | 87.34 284 | 80.07 317 | 93.40 318 |
|
v10 | | | 90.25 276 | 88.82 283 | 94.57 247 | 93.53 309 | 93.43 222 | 99.08 233 | 96.87 310 | 85.00 319 | 87.34 296 | 94.51 319 | 80.93 258 | 97.02 286 | 82.85 316 | 79.23 320 | 93.26 322 |
|
EPNet_dtu | | | 95.71 153 | 95.39 150 | 96.66 188 | 98.92 133 | 93.41 223 | 99.57 175 | 98.90 42 | 96.19 55 | 97.52 140 | 98.56 191 | 92.65 131 | 97.36 258 | 77.89 338 | 98.33 141 | 99.20 188 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v8 | | | 90.54 268 | 89.17 276 | 94.66 242 | 93.43 311 | 93.40 224 | 99.20 224 | 96.94 304 | 85.76 309 | 87.56 290 | 94.51 319 | 81.96 246 | 97.19 270 | 84.94 304 | 78.25 326 | 93.38 320 |
|
test1111 | | | 95.57 157 | 94.98 162 | 97.37 165 | 98.56 151 | 93.37 225 | 98.86 263 | 98.45 109 | 94.95 88 | 96.63 160 | 98.95 163 | 75.21 305 | 99.11 164 | 95.02 165 | 98.14 148 | 99.64 127 |
|
OMC-MVS | | | 97.28 101 | 97.23 93 | 97.41 162 | 99.76 79 | 93.36 226 | 99.65 162 | 97.95 204 | 96.03 59 | 97.41 143 | 99.70 93 | 89.61 179 | 99.51 148 | 96.73 147 | 98.25 145 | 99.38 171 |
|
tpmrst | | | 96.27 142 | 95.98 130 | 97.13 174 | 97.96 183 | 93.15 227 | 96.34 335 | 98.17 183 | 92.07 201 | 98.71 103 | 95.12 301 | 93.91 97 | 98.73 181 | 94.91 170 | 96.62 179 | 99.50 159 |
|
v1192 | | | 90.62 267 | 89.25 275 | 94.72 241 | 93.13 315 | 93.07 228 | 99.50 187 | 97.02 293 | 86.33 302 | 89.56 255 | 95.01 304 | 79.22 273 | 97.09 279 | 82.34 319 | 81.16 304 | 94.01 288 |
|
CHOSEN 1792x2688 | | | 96.81 117 | 96.53 116 | 97.64 153 | 98.91 135 | 93.07 228 | 99.65 162 | 99.80 3 | 95.64 71 | 95.39 186 | 98.86 174 | 84.35 232 | 99.90 80 | 96.98 141 | 99.16 124 | 99.95 82 |
|
EPP-MVSNet | | | 96.69 125 | 96.60 113 | 96.96 178 | 97.74 199 | 93.05 230 | 99.37 206 | 98.56 79 | 88.75 268 | 95.83 180 | 99.01 150 | 96.01 32 | 98.56 190 | 96.92 144 | 97.20 170 | 99.25 185 |
|
c3_l | | | 92.53 227 | 91.87 229 | 94.52 249 | 97.40 216 | 92.99 231 | 99.40 199 | 96.93 305 | 87.86 281 | 88.69 273 | 95.44 285 | 89.95 176 | 96.44 309 | 90.45 250 | 80.69 312 | 94.14 279 |
|
anonymousdsp | | | 91.79 246 | 90.92 244 | 94.41 258 | 90.76 346 | 92.93 232 | 98.93 254 | 97.17 276 | 89.08 257 | 87.46 293 | 95.30 294 | 78.43 282 | 96.92 289 | 92.38 221 | 88.73 244 | 93.39 319 |
|
cl____ | | | 92.31 232 | 91.58 233 | 94.52 249 | 97.33 221 | 92.77 233 | 99.57 175 | 96.78 317 | 86.97 295 | 87.56 290 | 95.51 282 | 89.43 181 | 96.62 303 | 88.60 267 | 82.44 294 | 94.16 274 |
|
v144192 | | | 90.79 262 | 89.52 270 | 94.59 245 | 93.11 318 | 92.77 233 | 99.56 177 | 96.99 296 | 86.38 301 | 89.82 248 | 94.95 309 | 80.50 265 | 97.10 277 | 83.98 309 | 80.41 313 | 93.90 298 |
|
DIV-MVS_self_test | | | 92.32 231 | 91.60 232 | 94.47 253 | 97.31 222 | 92.74 235 | 99.58 173 | 96.75 318 | 86.99 294 | 87.64 288 | 95.54 279 | 89.55 180 | 96.50 307 | 88.58 268 | 82.44 294 | 94.17 269 |
|
IterMVS-LS | | | 92.69 224 | 92.11 223 | 94.43 257 | 96.80 245 | 92.74 235 | 99.45 195 | 96.89 308 | 88.98 261 | 89.65 252 | 95.38 290 | 88.77 192 | 96.34 313 | 90.98 241 | 82.04 297 | 94.22 265 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
dp | | | 95.05 167 | 94.43 172 | 96.91 179 | 97.99 182 | 92.73 237 | 96.29 336 | 97.98 201 | 89.70 253 | 95.93 177 | 94.67 316 | 93.83 101 | 98.45 198 | 86.91 293 | 96.53 181 | 99.54 151 |
|
EI-MVSNet | | | 93.73 202 | 93.40 200 | 94.74 239 | 96.80 245 | 92.69 238 | 99.06 238 | 97.67 224 | 88.96 263 | 91.39 226 | 99.02 148 | 88.75 193 | 97.30 263 | 91.07 236 | 87.85 255 | 94.22 265 |
|
CR-MVSNet | | | 93.45 209 | 92.62 211 | 95.94 208 | 96.29 254 | 92.66 239 | 92.01 357 | 96.23 331 | 92.62 180 | 96.94 151 | 93.31 334 | 91.04 161 | 96.03 325 | 79.23 331 | 95.96 191 | 99.13 194 |
|
RPMNet | | | 89.76 285 | 87.28 300 | 97.19 171 | 96.29 254 | 92.66 239 | 92.01 357 | 98.31 162 | 70.19 362 | 96.94 151 | 85.87 361 | 87.25 205 | 99.78 116 | 62.69 364 | 95.96 191 | 99.13 194 |
|
VDDNet | | | 93.12 213 | 91.91 228 | 96.76 184 | 96.67 252 | 92.65 241 | 98.69 279 | 98.21 177 | 82.81 334 | 97.75 137 | 99.28 129 | 61.57 353 | 99.48 154 | 98.09 107 | 94.09 216 | 98.15 216 |
|
WR-MVS_H | | | 91.30 250 | 90.35 253 | 94.15 263 | 94.17 299 | 92.62 242 | 99.17 227 | 98.94 37 | 88.87 266 | 86.48 306 | 94.46 323 | 84.36 231 | 96.61 304 | 88.19 273 | 78.51 325 | 93.21 324 |
|
CostFormer | | | 96.10 143 | 95.88 140 | 96.78 183 | 97.03 232 | 92.55 243 | 97.08 326 | 97.83 217 | 90.04 249 | 98.72 102 | 94.89 310 | 95.01 60 | 98.29 217 | 96.54 148 | 95.77 196 | 99.50 159 |
|
v1921920 | | | 90.46 269 | 89.12 277 | 94.50 251 | 92.96 322 | 92.46 244 | 99.49 189 | 96.98 298 | 86.10 304 | 89.61 254 | 95.30 294 | 78.55 280 | 97.03 284 | 82.17 320 | 80.89 311 | 94.01 288 |
|
test_djsdf | | | 92.83 220 | 92.29 221 | 94.47 253 | 91.90 335 | 92.46 244 | 99.55 179 | 97.27 269 | 91.17 226 | 89.96 241 | 96.07 265 | 81.10 255 | 96.89 290 | 94.67 180 | 88.91 239 | 94.05 285 |
|
CP-MVSNet | | | 91.23 253 | 90.22 257 | 94.26 260 | 93.96 302 | 92.39 246 | 99.09 231 | 98.57 77 | 88.95 264 | 86.42 307 | 96.57 251 | 79.19 274 | 96.37 311 | 90.29 254 | 78.95 322 | 94.02 286 |
|
BH-w/o | | | 95.71 153 | 95.38 151 | 96.68 187 | 98.49 157 | 92.28 247 | 99.84 111 | 97.50 246 | 92.12 200 | 92.06 222 | 98.79 178 | 84.69 228 | 98.67 186 | 95.29 162 | 99.66 101 | 99.09 196 |
|
v1240 | | | 90.20 277 | 88.79 284 | 94.44 255 | 93.05 320 | 92.27 248 | 99.38 204 | 96.92 306 | 85.89 306 | 89.36 258 | 94.87 311 | 77.89 283 | 97.03 284 | 80.66 327 | 81.08 307 | 94.01 288 |
|
PS-MVSNAJss | | | 93.64 205 | 93.31 202 | 94.61 244 | 92.11 332 | 92.19 249 | 99.12 229 | 97.38 259 | 92.51 189 | 88.45 275 | 96.99 236 | 91.20 157 | 97.29 266 | 94.36 186 | 87.71 257 | 94.36 254 |
|
test0.0.03 1 | | | 93.86 195 | 93.61 188 | 94.64 243 | 95.02 287 | 92.18 250 | 99.93 67 | 98.58 75 | 94.07 127 | 87.96 285 | 98.50 192 | 93.90 98 | 94.96 339 | 81.33 324 | 93.17 224 | 96.78 230 |
|
PMMVS | | | 96.76 120 | 96.76 109 | 96.76 184 | 98.28 165 | 92.10 251 | 99.91 75 | 97.98 201 | 94.12 124 | 99.53 51 | 99.39 124 | 86.93 209 | 98.73 181 | 96.95 143 | 97.73 156 | 99.45 164 |
|
GBi-Net | | | 90.88 259 | 89.82 264 | 94.08 266 | 97.53 210 | 91.97 252 | 98.43 292 | 96.95 301 | 87.05 291 | 89.68 249 | 94.72 312 | 71.34 321 | 96.11 320 | 87.01 290 | 85.65 270 | 94.17 269 |
|
test1 | | | 90.88 259 | 89.82 264 | 94.08 266 | 97.53 210 | 91.97 252 | 98.43 292 | 96.95 301 | 87.05 291 | 89.68 249 | 94.72 312 | 71.34 321 | 96.11 320 | 87.01 290 | 85.65 270 | 94.17 269 |
|
FMVSNet1 | | | 88.50 296 | 86.64 302 | 94.08 266 | 95.62 279 | 91.97 252 | 98.43 292 | 96.95 301 | 83.00 332 | 86.08 313 | 94.72 312 | 59.09 357 | 96.11 320 | 81.82 323 | 84.07 286 | 94.17 269 |
|
pm-mvs1 | | | 89.36 290 | 87.81 297 | 94.01 270 | 93.40 313 | 91.93 255 | 98.62 284 | 96.48 328 | 86.25 303 | 83.86 324 | 96.14 262 | 73.68 314 | 97.04 282 | 86.16 296 | 75.73 344 | 93.04 327 |
|
CSCG | | | 97.10 107 | 97.04 101 | 97.27 170 | 99.89 50 | 91.92 256 | 99.90 79 | 99.07 32 | 88.67 270 | 95.26 189 | 99.82 55 | 93.17 119 | 99.98 46 | 98.15 103 | 99.47 114 | 99.90 93 |
|
HQP5-MVS | | | | | | | 91.85 257 | | | | | | | | | | |
|
HQP-MVS | | | 94.61 180 | 94.50 171 | 94.92 234 | 95.78 265 | 91.85 257 | 99.87 93 | 97.89 210 | 96.82 32 | 93.37 209 | 98.65 183 | 80.65 262 | 98.39 205 | 97.92 116 | 89.60 230 | 94.53 239 |
|
NP-MVS | | | | | | 95.77 268 | 91.79 259 | | | | | 98.65 183 | | | | | |
|
TAPA-MVS | | 92.12 8 | 94.42 186 | 93.60 190 | 96.90 180 | 99.33 112 | 91.78 260 | 99.78 129 | 98.00 198 | 89.89 251 | 94.52 195 | 99.47 116 | 91.97 147 | 99.18 162 | 69.90 354 | 99.52 111 | 99.73 113 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
HQP_MVS | | | 94.49 185 | 94.36 173 | 94.87 235 | 95.71 274 | 91.74 261 | 99.84 111 | 97.87 212 | 96.38 48 | 93.01 213 | 98.59 187 | 80.47 266 | 98.37 210 | 97.79 121 | 89.55 233 | 94.52 241 |
|
plane_prior | | | | | | | 91.74 261 | 99.86 104 | | 96.76 36 | | | | | | 89.59 232 | |
|
F-COLMAP | | | 96.93 113 | 96.95 104 | 96.87 181 | 99.71 89 | 91.74 261 | 99.85 107 | 97.95 204 | 93.11 162 | 95.72 182 | 99.16 142 | 92.35 139 | 99.94 73 | 95.32 161 | 99.35 119 | 98.92 200 |
|
plane_prior6 | | | | | | 95.76 269 | 91.72 264 | | | | | | 80.47 266 | | | | |
|
PS-CasMVS | | | 90.63 266 | 89.51 271 | 93.99 272 | 93.83 304 | 91.70 265 | 98.98 248 | 98.52 92 | 88.48 274 | 86.15 312 | 96.53 253 | 75.46 300 | 96.31 314 | 88.83 266 | 78.86 324 | 93.95 294 |
|
tpm2 | | | 95.47 160 | 95.18 157 | 96.35 200 | 96.91 237 | 91.70 265 | 96.96 329 | 97.93 206 | 88.04 280 | 98.44 114 | 95.40 287 | 93.32 111 | 97.97 236 | 94.00 194 | 95.61 200 | 99.38 171 |
|
plane_prior3 | | | | | | | 91.64 267 | | | 96.63 40 | 93.01 213 | | | | | | |
|
MIMVSNet | | | 90.30 274 | 88.67 286 | 95.17 227 | 96.45 253 | 91.64 267 | 92.39 355 | 97.15 279 | 85.99 305 | 90.50 235 | 93.19 336 | 66.95 338 | 94.86 341 | 82.01 321 | 93.43 221 | 99.01 199 |
|
plane_prior7 | | | | | | 95.71 274 | 91.59 269 | | | | | | | | | | |
|
tpmvs | | | 94.28 192 | 93.57 192 | 96.40 197 | 98.55 153 | 91.50 270 | 95.70 345 | 98.55 85 | 87.47 285 | 92.15 221 | 94.26 325 | 91.42 152 | 98.95 170 | 88.15 274 | 95.85 194 | 98.76 209 |
|
tpm cat1 | | | 93.51 206 | 92.52 217 | 96.47 192 | 97.77 196 | 91.47 271 | 96.13 338 | 98.06 195 | 80.98 341 | 92.91 216 | 93.78 329 | 89.66 178 | 98.87 171 | 87.03 289 | 96.39 184 | 99.09 196 |
|
h-mvs33 | | | 94.92 170 | 94.36 173 | 96.59 191 | 98.85 140 | 91.29 272 | 98.93 254 | 98.94 37 | 95.90 60 | 98.77 98 | 98.42 199 | 90.89 166 | 99.77 120 | 97.80 118 | 70.76 348 | 98.72 210 |
|
BH-untuned | | | 95.18 164 | 94.83 165 | 96.22 202 | 98.36 161 | 91.22 273 | 99.80 125 | 97.32 265 | 90.91 233 | 91.08 229 | 98.67 182 | 83.51 236 | 98.54 192 | 94.23 191 | 99.61 106 | 98.92 200 |
|
TransMVSNet (Re) | | | 87.25 303 | 85.28 308 | 93.16 292 | 93.56 308 | 91.03 274 | 98.54 287 | 94.05 362 | 83.69 330 | 81.09 337 | 96.16 261 | 75.32 301 | 96.40 310 | 76.69 344 | 68.41 355 | 92.06 339 |
|
v148 | | | 90.70 263 | 89.63 266 | 93.92 274 | 92.97 321 | 90.97 275 | 99.75 140 | 96.89 308 | 87.51 284 | 88.27 282 | 95.01 304 | 81.67 248 | 97.04 282 | 87.40 283 | 77.17 337 | 93.75 308 |
|
jajsoiax | | | 91.92 239 | 91.18 241 | 94.15 263 | 91.35 341 | 90.95 276 | 99.00 246 | 97.42 254 | 92.61 181 | 87.38 294 | 97.08 230 | 72.46 317 | 97.36 258 | 94.53 183 | 88.77 243 | 94.13 280 |
|
PEN-MVS | | | 90.19 278 | 89.06 279 | 93.57 285 | 93.06 319 | 90.90 277 | 99.06 238 | 98.47 105 | 88.11 278 | 85.91 314 | 96.30 258 | 76.67 289 | 95.94 328 | 87.07 287 | 76.91 339 | 93.89 299 |
|
OPM-MVS | | | 93.21 211 | 92.80 208 | 94.44 255 | 93.12 317 | 90.85 278 | 99.77 132 | 97.61 231 | 96.19 55 | 91.56 225 | 98.65 183 | 75.16 306 | 98.47 194 | 93.78 202 | 89.39 236 | 93.99 291 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
CLD-MVS | | | 94.06 194 | 93.90 184 | 94.55 248 | 96.02 260 | 90.69 279 | 99.98 10 | 97.72 221 | 96.62 42 | 91.05 230 | 98.85 177 | 77.21 284 | 98.47 194 | 98.11 105 | 89.51 235 | 94.48 243 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
eth_miper_zixun_eth | | | 92.41 230 | 91.93 227 | 93.84 277 | 97.28 225 | 90.68 280 | 98.83 267 | 96.97 300 | 88.57 273 | 89.19 265 | 95.73 272 | 89.24 187 | 96.69 301 | 89.97 258 | 81.55 300 | 94.15 276 |
|
Anonymous20231211 | | | 89.86 283 | 88.44 289 | 94.13 265 | 98.93 131 | 90.68 280 | 98.54 287 | 98.26 171 | 76.28 351 | 86.73 300 | 95.54 279 | 70.60 325 | 97.56 251 | 90.82 245 | 80.27 316 | 94.15 276 |
|
Anonymous20240529 | | | 92.10 237 | 90.65 248 | 96.47 192 | 98.82 141 | 90.61 282 | 98.72 276 | 98.67 61 | 75.54 355 | 93.90 205 | 98.58 189 | 66.23 340 | 99.90 80 | 94.70 179 | 90.67 229 | 98.90 203 |
|
mvs_tets | | | 91.81 241 | 91.08 242 | 94.00 271 | 91.63 339 | 90.58 283 | 98.67 281 | 97.43 252 | 92.43 192 | 87.37 295 | 97.05 233 | 71.76 319 | 97.32 262 | 94.75 176 | 88.68 245 | 94.11 281 |
|
v7n | | | 89.65 287 | 88.29 292 | 93.72 279 | 92.22 331 | 90.56 284 | 99.07 237 | 97.10 284 | 85.42 317 | 86.73 300 | 94.72 312 | 80.06 268 | 97.13 274 | 81.14 325 | 78.12 328 | 93.49 316 |
|
Patchmatch-test | | | 92.65 226 | 91.50 236 | 96.10 205 | 96.85 242 | 90.49 285 | 91.50 359 | 97.19 273 | 82.76 335 | 90.23 237 | 95.59 277 | 95.02 58 | 98.00 235 | 77.41 340 | 96.98 175 | 99.82 102 |
|
PVSNet_0 | | 88.03 19 | 91.80 244 | 90.27 256 | 96.38 199 | 98.27 167 | 90.46 286 | 99.94 61 | 99.61 12 | 93.99 132 | 86.26 311 | 97.39 222 | 71.13 324 | 99.89 84 | 98.77 77 | 67.05 358 | 98.79 208 |
|
ppachtmachnet_test | | | 89.58 288 | 88.35 290 | 93.25 291 | 92.40 329 | 90.44 287 | 99.33 210 | 96.73 319 | 85.49 315 | 85.90 315 | 95.77 269 | 81.09 256 | 96.00 327 | 76.00 346 | 82.49 293 | 93.30 321 |
|
IterMVS | | | 90.91 258 | 90.17 259 | 93.12 293 | 96.78 248 | 90.42 288 | 98.89 257 | 97.05 291 | 89.03 259 | 86.49 305 | 95.42 286 | 76.59 291 | 95.02 337 | 87.22 286 | 84.09 285 | 93.93 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MVS-HIRNet | | | 86.22 306 | 83.19 318 | 95.31 222 | 96.71 251 | 90.29 289 | 92.12 356 | 97.33 264 | 62.85 363 | 86.82 299 | 70.37 367 | 69.37 328 | 97.49 253 | 75.12 347 | 97.99 155 | 98.15 216 |
|
VDD-MVS | | | 93.77 200 | 92.94 206 | 96.27 201 | 98.55 153 | 90.22 290 | 98.77 273 | 97.79 219 | 90.85 235 | 96.82 156 | 99.42 120 | 61.18 355 | 99.77 120 | 98.95 62 | 94.13 215 | 98.82 206 |
|
PatchT | | | 90.38 271 | 88.75 285 | 95.25 225 | 95.99 261 | 90.16 291 | 91.22 361 | 97.54 239 | 76.80 350 | 97.26 145 | 86.01 360 | 91.88 148 | 96.07 324 | 66.16 361 | 95.91 193 | 99.51 157 |
|
LTVRE_ROB | | 88.28 18 | 90.29 275 | 89.05 280 | 94.02 269 | 95.08 285 | 90.15 292 | 97.19 323 | 97.43 252 | 84.91 322 | 83.99 323 | 97.06 232 | 74.00 313 | 98.28 219 | 84.08 307 | 87.71 257 | 93.62 314 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
AUN-MVS | | | 93.28 210 | 92.60 212 | 95.34 220 | 98.29 163 | 90.09 293 | 99.31 213 | 98.56 79 | 91.80 211 | 96.35 171 | 98.00 208 | 89.38 182 | 98.28 219 | 92.46 220 | 69.22 353 | 97.64 225 |
|
hse-mvs2 | | | 94.38 187 | 94.08 180 | 95.31 222 | 98.27 167 | 90.02 294 | 99.29 218 | 98.56 79 | 95.90 60 | 98.77 98 | 98.00 208 | 90.89 166 | 98.26 223 | 97.80 118 | 69.20 354 | 97.64 225 |
|
IterMVS-SCA-FT | | | 90.85 261 | 90.16 260 | 92.93 297 | 96.72 250 | 89.96 295 | 98.89 257 | 96.99 296 | 88.95 264 | 86.63 302 | 95.67 273 | 76.48 292 | 95.00 338 | 87.04 288 | 84.04 288 | 93.84 303 |
|
DTE-MVSNet | | | 89.40 289 | 88.24 293 | 92.88 298 | 92.66 327 | 89.95 296 | 99.10 230 | 98.22 176 | 87.29 288 | 85.12 319 | 96.22 260 | 76.27 295 | 95.30 336 | 83.56 313 | 75.74 343 | 93.41 317 |
|
Baseline_NR-MVSNet | | | 90.33 273 | 89.51 271 | 92.81 299 | 92.84 323 | 89.95 296 | 99.77 132 | 93.94 363 | 84.69 324 | 89.04 267 | 95.66 274 | 81.66 249 | 96.52 306 | 90.99 240 | 76.98 338 | 91.97 341 |
|
Patchmtry | | | 89.70 286 | 88.49 288 | 93.33 288 | 96.24 256 | 89.94 298 | 91.37 360 | 96.23 331 | 78.22 348 | 87.69 287 | 93.31 334 | 91.04 161 | 96.03 325 | 80.18 330 | 82.10 296 | 94.02 286 |
|
pmmvs5 | | | 90.17 279 | 89.09 278 | 93.40 287 | 92.10 333 | 89.77 299 | 99.74 143 | 95.58 345 | 85.88 308 | 87.24 297 | 95.74 270 | 73.41 315 | 96.48 308 | 88.54 269 | 83.56 290 | 93.95 294 |
|
Anonymous202405211 | | | 93.10 214 | 91.99 226 | 96.40 197 | 99.10 118 | 89.65 300 | 98.88 259 | 97.93 206 | 83.71 329 | 94.00 203 | 98.75 179 | 68.79 329 | 99.88 90 | 95.08 164 | 91.71 228 | 99.68 119 |
|
our_test_3 | | | 90.39 270 | 89.48 273 | 93.12 293 | 92.40 329 | 89.57 301 | 99.33 210 | 96.35 330 | 87.84 282 | 85.30 317 | 94.99 307 | 84.14 233 | 96.09 323 | 80.38 328 | 84.56 280 | 93.71 313 |
|
D2MVS | | | 92.76 221 | 92.59 215 | 93.27 290 | 95.13 283 | 89.54 302 | 99.69 154 | 99.38 22 | 92.26 196 | 87.59 289 | 94.61 318 | 85.05 227 | 97.79 244 | 91.59 230 | 88.01 254 | 92.47 335 |
|
XVG-OURS-SEG-HR | | | 94.79 172 | 94.70 169 | 95.08 228 | 98.05 179 | 89.19 303 | 99.08 233 | 97.54 239 | 93.66 147 | 94.87 192 | 99.58 108 | 78.78 277 | 99.79 114 | 97.31 132 | 93.40 222 | 96.25 233 |
|
XVG-OURS | | | 94.82 171 | 94.74 168 | 95.06 229 | 98.00 181 | 89.19 303 | 99.08 233 | 97.55 237 | 94.10 125 | 94.71 193 | 99.62 105 | 80.51 264 | 99.74 130 | 96.04 153 | 93.06 226 | 96.25 233 |
|
miper_lstm_enhance | | | 91.81 241 | 91.39 239 | 93.06 296 | 97.34 219 | 89.18 305 | 99.38 204 | 96.79 316 | 86.70 298 | 87.47 292 | 95.22 299 | 90.00 175 | 95.86 329 | 88.26 272 | 81.37 302 | 94.15 276 |
|
ACMM | | 91.95 10 | 92.88 219 | 92.52 217 | 93.98 273 | 95.75 270 | 89.08 306 | 99.77 132 | 97.52 243 | 93.00 163 | 89.95 242 | 97.99 210 | 76.17 296 | 98.46 197 | 93.63 207 | 88.87 241 | 94.39 252 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MVP-Stereo | | | 90.93 257 | 90.45 252 | 92.37 303 | 91.25 343 | 88.76 307 | 98.05 310 | 96.17 333 | 87.27 289 | 84.04 322 | 95.30 294 | 78.46 281 | 97.27 268 | 83.78 311 | 99.70 99 | 91.09 346 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
ACMP | | 92.05 9 | 92.74 222 | 92.42 219 | 93.73 278 | 95.91 264 | 88.72 308 | 99.81 120 | 97.53 241 | 94.13 123 | 87.00 298 | 98.23 202 | 74.07 312 | 98.47 194 | 96.22 151 | 88.86 242 | 93.99 291 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LPG-MVS_test | | | 92.96 217 | 92.71 210 | 93.71 280 | 95.43 280 | 88.67 309 | 99.75 140 | 97.62 228 | 92.81 168 | 90.05 238 | 98.49 193 | 75.24 302 | 98.40 203 | 95.84 157 | 89.12 237 | 94.07 283 |
|
LGP-MVS_train | | | | | 93.71 280 | 95.43 280 | 88.67 309 | | 97.62 228 | 92.81 168 | 90.05 238 | 98.49 193 | 75.24 302 | 98.40 203 | 95.84 157 | 89.12 237 | 94.07 283 |
|
ACMH | | 89.72 17 | 90.64 265 | 89.63 266 | 93.66 284 | 95.64 277 | 88.64 311 | 98.55 285 | 97.45 249 | 89.03 259 | 81.62 334 | 97.61 216 | 69.75 327 | 98.41 201 | 89.37 261 | 87.62 259 | 93.92 297 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MDA-MVSNet_test_wron | | | 85.51 310 | 83.32 317 | 92.10 306 | 90.96 344 | 88.58 312 | 99.20 224 | 96.52 326 | 79.70 345 | 57.12 367 | 92.69 339 | 79.11 275 | 93.86 350 | 77.10 342 | 77.46 334 | 93.86 302 |
|
AllTest | | | 92.48 228 | 91.64 231 | 95.00 231 | 99.01 123 | 88.43 313 | 98.94 253 | 96.82 314 | 86.50 299 | 88.71 271 | 98.47 197 | 74.73 308 | 99.88 90 | 85.39 300 | 96.18 186 | 96.71 231 |
|
TestCases | | | | | 95.00 231 | 99.01 123 | 88.43 313 | | 96.82 314 | 86.50 299 | 88.71 271 | 98.47 197 | 74.73 308 | 99.88 90 | 85.39 300 | 96.18 186 | 96.71 231 |
|
FMVSNet5 | | | 88.32 297 | 87.47 299 | 90.88 315 | 96.90 240 | 88.39 315 | 97.28 321 | 95.68 342 | 82.60 336 | 84.67 320 | 92.40 343 | 79.83 270 | 91.16 361 | 76.39 345 | 81.51 301 | 93.09 325 |
|
YYNet1 | | | 85.50 311 | 83.33 316 | 92.00 307 | 90.89 345 | 88.38 316 | 99.22 223 | 96.55 325 | 79.60 346 | 57.26 366 | 92.72 337 | 79.09 276 | 93.78 351 | 77.25 341 | 77.37 335 | 93.84 303 |
|
USDC | | | 90.00 282 | 88.96 281 | 93.10 295 | 94.81 289 | 88.16 317 | 98.71 277 | 95.54 346 | 93.66 147 | 83.75 325 | 97.20 226 | 65.58 342 | 98.31 214 | 83.96 310 | 87.49 261 | 92.85 330 |
|
UniMVSNet_ETH3D | | | 90.06 281 | 88.58 287 | 94.49 252 | 94.67 292 | 88.09 318 | 97.81 315 | 97.57 236 | 83.91 328 | 88.44 276 | 97.41 220 | 57.44 359 | 97.62 250 | 91.41 231 | 88.59 248 | 97.77 223 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 235 | 91.49 237 | 94.25 261 | 99.00 125 | 88.04 319 | 98.42 295 | 96.70 321 | 82.30 337 | 88.43 278 | 99.01 150 | 76.97 286 | 99.85 99 | 86.11 297 | 96.50 182 | 94.86 238 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MDA-MVSNet-bldmvs | | | 84.09 319 | 81.52 325 | 91.81 310 | 91.32 342 | 88.00 320 | 98.67 281 | 95.92 338 | 80.22 343 | 55.60 368 | 93.32 333 | 68.29 334 | 93.60 353 | 73.76 348 | 76.61 341 | 93.82 305 |
|
JIA-IIPM | | | 91.76 247 | 90.70 247 | 94.94 233 | 96.11 257 | 87.51 321 | 93.16 353 | 98.13 191 | 75.79 354 | 97.58 139 | 77.68 365 | 92.84 126 | 97.97 236 | 88.47 271 | 96.54 180 | 99.33 178 |
|
tpm | | | 93.70 204 | 93.41 199 | 94.58 246 | 95.36 282 | 87.41 322 | 97.01 327 | 96.90 307 | 90.85 235 | 96.72 159 | 94.14 326 | 90.40 171 | 96.84 293 | 90.75 247 | 88.54 249 | 99.51 157 |
|
pmmvs-eth3d | | | 84.03 320 | 81.97 323 | 90.20 322 | 84.15 365 | 87.09 323 | 98.10 308 | 94.73 358 | 83.05 331 | 74.10 357 | 87.77 356 | 65.56 343 | 94.01 347 | 81.08 326 | 69.24 352 | 89.49 358 |
|
CVMVSNet | | | 94.68 178 | 94.94 163 | 93.89 276 | 96.80 245 | 86.92 324 | 99.06 238 | 98.98 35 | 94.45 108 | 94.23 201 | 99.02 148 | 85.60 219 | 95.31 335 | 90.91 243 | 95.39 204 | 99.43 167 |
|
patch_mono-2 | | | 98.24 64 | 99.12 5 | 95.59 214 | 99.67 92 | 86.91 325 | 99.95 43 | 98.89 43 | 97.60 12 | 99.90 2 | 99.76 75 | 96.54 27 | 99.98 46 | 99.94 12 | 99.82 91 | 99.88 96 |
|
MVS_0304 | | | 89.28 292 | 88.31 291 | 92.21 305 | 97.05 231 | 86.53 326 | 97.76 316 | 99.57 13 | 85.58 314 | 93.86 206 | 92.71 338 | 51.04 366 | 96.30 315 | 84.49 306 | 92.72 227 | 93.79 306 |
|
Fast-Effi-MVS+-dtu | | | 93.72 203 | 93.86 186 | 93.29 289 | 97.06 230 | 86.16 327 | 99.80 125 | 96.83 312 | 92.66 178 | 92.58 220 | 97.83 213 | 81.39 252 | 97.67 248 | 89.75 260 | 96.87 177 | 96.05 237 |
|
ACMH+ | | 89.98 16 | 90.35 272 | 89.54 269 | 92.78 300 | 95.99 261 | 86.12 328 | 98.81 269 | 97.18 275 | 89.38 254 | 83.14 327 | 97.76 214 | 68.42 333 | 98.43 199 | 89.11 264 | 86.05 268 | 93.78 307 |
|
ADS-MVSNet2 | | | 93.80 199 | 93.88 185 | 93.55 286 | 97.87 189 | 85.94 329 | 94.24 346 | 96.84 311 | 90.07 247 | 96.43 167 | 94.48 321 | 90.29 173 | 95.37 333 | 87.44 281 | 97.23 168 | 99.36 174 |
|
XVG-ACMP-BASELINE | | | 91.22 254 | 90.75 245 | 92.63 301 | 93.73 306 | 85.61 330 | 98.52 289 | 97.44 251 | 92.77 172 | 89.90 244 | 96.85 241 | 66.64 339 | 98.39 205 | 92.29 222 | 88.61 246 | 93.89 299 |
|
TinyColmap | | | 87.87 302 | 86.51 303 | 91.94 308 | 95.05 286 | 85.57 331 | 97.65 317 | 94.08 361 | 84.40 325 | 81.82 333 | 96.85 241 | 62.14 352 | 98.33 212 | 80.25 329 | 86.37 267 | 91.91 342 |
|
MS-PatchMatch | | | 90.65 264 | 90.30 255 | 91.71 311 | 94.22 298 | 85.50 332 | 98.24 301 | 97.70 222 | 88.67 270 | 86.42 307 | 96.37 256 | 67.82 335 | 98.03 234 | 83.62 312 | 99.62 103 | 91.60 343 |
|
mvs-test1 | | | 95.53 158 | 95.97 133 | 94.20 262 | 97.77 196 | 85.44 333 | 99.95 43 | 97.06 288 | 94.92 91 | 96.58 162 | 98.72 180 | 85.81 217 | 98.98 168 | 94.80 173 | 98.11 149 | 98.18 215 |
|
ITE_SJBPF | | | | | 92.38 302 | 95.69 276 | 85.14 334 | | 95.71 341 | 92.81 168 | 89.33 260 | 98.11 204 | 70.23 326 | 98.42 200 | 85.91 298 | 88.16 253 | 93.59 315 |
|
test_0402 | | | 85.58 308 | 83.94 312 | 90.50 319 | 93.81 305 | 85.04 335 | 98.55 285 | 95.20 353 | 76.01 352 | 79.72 343 | 95.13 300 | 64.15 348 | 96.26 317 | 66.04 362 | 86.88 264 | 90.21 354 |
|
testgi | | | 89.01 294 | 88.04 295 | 91.90 309 | 93.49 310 | 84.89 336 | 99.73 148 | 95.66 343 | 93.89 140 | 85.14 318 | 98.17 203 | 59.68 356 | 94.66 343 | 77.73 339 | 88.88 240 | 96.16 236 |
|
TDRefinement | | | 84.76 314 | 82.56 321 | 91.38 313 | 74.58 370 | 84.80 337 | 97.36 320 | 94.56 359 | 84.73 323 | 80.21 341 | 96.12 264 | 63.56 349 | 98.39 205 | 87.92 277 | 63.97 359 | 90.95 349 |
|
pmmvs6 | | | 85.69 307 | 83.84 313 | 91.26 314 | 90.00 353 | 84.41 338 | 97.82 314 | 96.15 334 | 75.86 353 | 81.29 336 | 95.39 289 | 61.21 354 | 96.87 292 | 83.52 314 | 73.29 347 | 92.50 334 |
|
MIMVSNet1 | | | 82.58 323 | 80.51 327 | 88.78 332 | 86.68 361 | 84.20 339 | 96.65 331 | 95.41 348 | 78.75 347 | 78.59 346 | 92.44 340 | 51.88 364 | 89.76 364 | 65.26 363 | 78.95 322 | 92.38 337 |
|
UnsupCasMVSNet_eth | | | 85.52 309 | 83.99 310 | 90.10 323 | 89.36 355 | 83.51 340 | 96.65 331 | 97.99 199 | 89.14 256 | 75.89 354 | 93.83 328 | 63.25 350 | 93.92 348 | 81.92 322 | 67.90 357 | 92.88 329 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 321 | 81.68 324 | 90.03 324 | 88.30 358 | 82.82 341 | 98.46 290 | 95.22 352 | 73.92 359 | 76.00 353 | 91.29 347 | 55.00 361 | 96.94 288 | 68.40 357 | 88.51 250 | 90.34 352 |
|
Anonymous20240521 | | | 85.15 313 | 83.81 314 | 89.16 329 | 88.32 357 | 82.69 342 | 98.80 271 | 95.74 340 | 79.72 344 | 81.53 335 | 90.99 348 | 65.38 344 | 94.16 346 | 72.69 350 | 81.11 306 | 90.63 351 |
|
new_pmnet | | | 84.49 318 | 82.92 320 | 89.21 328 | 90.03 352 | 82.60 343 | 96.89 330 | 95.62 344 | 80.59 342 | 75.77 355 | 89.17 352 | 65.04 346 | 94.79 342 | 72.12 351 | 81.02 308 | 90.23 353 |
|
Effi-MVS+-dtu | | | 94.53 184 | 95.30 153 | 92.22 304 | 97.77 196 | 82.54 344 | 99.59 172 | 97.06 288 | 94.92 91 | 95.29 188 | 95.37 291 | 85.81 217 | 97.89 242 | 94.80 173 | 97.07 172 | 96.23 235 |
|
pmmvs3 | | | 80.27 327 | 77.77 331 | 87.76 337 | 80.32 368 | 82.43 345 | 98.23 302 | 91.97 367 | 72.74 360 | 78.75 345 | 87.97 355 | 57.30 360 | 90.99 362 | 70.31 353 | 62.37 361 | 89.87 355 |
|
SixPastTwentyTwo | | | 88.73 295 | 88.01 296 | 90.88 315 | 91.85 336 | 82.24 346 | 98.22 303 | 95.18 354 | 88.97 262 | 82.26 330 | 96.89 238 | 71.75 320 | 96.67 302 | 84.00 308 | 82.98 291 | 93.72 312 |
|
K. test v3 | | | 88.05 299 | 87.24 301 | 90.47 320 | 91.82 337 | 82.23 347 | 98.96 251 | 97.42 254 | 89.05 258 | 76.93 350 | 95.60 276 | 68.49 332 | 95.42 332 | 85.87 299 | 81.01 309 | 93.75 308 |
|
UnsupCasMVSNet_bld | | | 79.97 329 | 77.03 332 | 88.78 332 | 85.62 363 | 81.98 348 | 93.66 351 | 97.35 261 | 75.51 356 | 70.79 360 | 83.05 362 | 48.70 367 | 94.91 340 | 78.31 337 | 60.29 364 | 89.46 359 |
|
EG-PatchMatch MVS | | | 85.35 312 | 83.81 314 | 89.99 325 | 90.39 348 | 81.89 349 | 98.21 304 | 96.09 335 | 81.78 339 | 74.73 356 | 93.72 330 | 51.56 365 | 97.12 276 | 79.16 334 | 88.61 246 | 90.96 348 |
|
CL-MVSNet_self_test | | | 84.50 317 | 83.15 319 | 88.53 334 | 86.00 362 | 81.79 350 | 98.82 268 | 97.35 261 | 85.12 318 | 83.62 326 | 90.91 350 | 76.66 290 | 91.40 360 | 69.53 355 | 60.36 363 | 92.40 336 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 86 | 98.98 12 | 93.92 274 | 99.63 94 | 81.76 351 | 99.96 25 | 98.56 79 | 99.47 1 | 99.19 81 | 99.99 1 | 94.16 91 | 100.00 1 | 99.92 13 | 99.93 67 | 100.00 1 |
|
EGC-MVSNET | | | 69.38 330 | 63.76 337 | 86.26 340 | 90.32 349 | 81.66 352 | 96.24 337 | 93.85 364 | 0.99 377 | 3.22 378 | 92.33 344 | 52.44 363 | 92.92 356 | 59.53 367 | 84.90 277 | 84.21 363 |
|
OurMVSNet-221017-0 | | | 89.81 284 | 89.48 273 | 90.83 317 | 91.64 338 | 81.21 353 | 98.17 305 | 95.38 349 | 91.48 219 | 85.65 316 | 97.31 223 | 72.66 316 | 97.29 266 | 88.15 274 | 84.83 278 | 93.97 293 |
|
LF4IMVS | | | 89.25 293 | 88.85 282 | 90.45 321 | 92.81 326 | 81.19 354 | 98.12 306 | 94.79 356 | 91.44 221 | 86.29 310 | 97.11 228 | 65.30 345 | 98.11 229 | 88.53 270 | 85.25 274 | 92.07 338 |
|
EU-MVSNet | | | 90.14 280 | 90.34 254 | 89.54 327 | 92.55 328 | 81.06 355 | 98.69 279 | 98.04 197 | 91.41 224 | 86.59 303 | 96.84 243 | 80.83 259 | 93.31 355 | 86.20 295 | 81.91 298 | 94.26 262 |
|
lessismore_v0 | | | | | 90.53 318 | 90.58 347 | 80.90 356 | | 95.80 339 | | 77.01 349 | 95.84 267 | 66.15 341 | 96.95 287 | 83.03 315 | 75.05 345 | 93.74 311 |
|
KD-MVS_self_test | | | 83.59 322 | 82.06 322 | 88.20 336 | 86.93 360 | 80.70 357 | 97.21 322 | 96.38 329 | 82.87 333 | 82.49 329 | 88.97 353 | 67.63 336 | 92.32 357 | 73.75 349 | 62.30 362 | 91.58 344 |
|
test20.03 | | | 84.72 316 | 83.99 310 | 86.91 338 | 88.19 359 | 80.62 358 | 98.88 259 | 95.94 337 | 88.36 276 | 78.87 344 | 94.62 317 | 68.75 330 | 89.11 365 | 66.52 360 | 75.82 342 | 91.00 347 |
|
Anonymous20231206 | | | 86.32 305 | 85.42 307 | 89.02 330 | 89.11 356 | 80.53 359 | 99.05 242 | 95.28 350 | 85.43 316 | 82.82 328 | 93.92 327 | 74.40 310 | 93.44 354 | 66.99 359 | 81.83 299 | 93.08 326 |
|
new-patchmatchnet | | | 81.19 324 | 79.34 329 | 86.76 339 | 82.86 367 | 80.36 360 | 97.92 312 | 95.27 351 | 82.09 338 | 72.02 358 | 86.87 358 | 62.81 351 | 90.74 363 | 71.10 352 | 63.08 360 | 89.19 360 |
|
LCM-MVSNet-Re | | | 92.31 232 | 92.60 212 | 91.43 312 | 97.53 210 | 79.27 361 | 99.02 245 | 91.83 368 | 92.07 201 | 80.31 340 | 94.38 324 | 83.50 237 | 95.48 331 | 97.22 135 | 97.58 160 | 99.54 151 |
|
Patchmatch-RL test | | | 86.90 304 | 85.98 306 | 89.67 326 | 84.45 364 | 75.59 362 | 89.71 362 | 92.43 366 | 86.89 296 | 77.83 348 | 90.94 349 | 94.22 87 | 93.63 352 | 87.75 279 | 69.61 350 | 99.79 105 |
|
DSMNet-mixed | | | 88.28 298 | 88.24 293 | 88.42 335 | 89.64 354 | 75.38 363 | 98.06 309 | 89.86 371 | 85.59 313 | 88.20 283 | 92.14 345 | 76.15 297 | 91.95 359 | 78.46 336 | 96.05 189 | 97.92 219 |
|
PM-MVS | | | 80.47 326 | 78.88 330 | 85.26 341 | 83.79 366 | 72.22 364 | 95.89 343 | 91.08 369 | 85.71 312 | 76.56 352 | 88.30 354 | 36.64 369 | 93.90 349 | 82.39 318 | 69.57 351 | 89.66 357 |
|
RPSCF | | | 91.80 244 | 92.79 209 | 88.83 331 | 98.15 175 | 69.87 365 | 98.11 307 | 96.60 324 | 83.93 327 | 94.33 199 | 99.27 132 | 79.60 271 | 99.46 155 | 91.99 224 | 93.16 225 | 97.18 229 |
|
Gipuma |  | | 66.95 334 | 65.00 334 | 72.79 349 | 91.52 340 | 67.96 366 | 66.16 369 | 95.15 355 | 47.89 367 | 58.54 365 | 67.99 369 | 29.74 371 | 87.54 366 | 50.20 369 | 77.83 330 | 62.87 369 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_method | | | 80.79 325 | 79.70 328 | 84.08 342 | 92.83 324 | 67.06 367 | 99.51 185 | 95.42 347 | 54.34 365 | 81.07 338 | 93.53 331 | 44.48 368 | 92.22 358 | 78.90 335 | 77.23 336 | 92.94 328 |
|
ambc | | | | | 83.23 344 | 77.17 369 | 62.61 368 | 87.38 364 | 94.55 360 | | 76.72 351 | 86.65 359 | 30.16 370 | 96.36 312 | 84.85 305 | 69.86 349 | 90.73 350 |
|
CMPMVS |  | 61.59 21 | 84.75 315 | 85.14 309 | 83.57 343 | 90.32 349 | 62.54 369 | 96.98 328 | 97.59 235 | 74.33 358 | 69.95 361 | 96.66 247 | 64.17 347 | 98.32 213 | 87.88 278 | 88.41 251 | 89.84 356 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PMMVS2 | | | 67.15 333 | 64.15 336 | 76.14 348 | 70.56 373 | 62.07 370 | 93.89 349 | 87.52 375 | 58.09 364 | 60.02 364 | 78.32 364 | 22.38 375 | 84.54 368 | 59.56 366 | 47.03 368 | 81.80 364 |
|
DeepMVS_CX |  | | | | 82.92 345 | 95.98 263 | 58.66 371 | | 96.01 336 | 92.72 173 | 78.34 347 | 95.51 282 | 58.29 358 | 98.08 230 | 82.57 317 | 85.29 273 | 92.03 340 |
|
ANet_high | | | 56.10 336 | 52.24 339 | 67.66 352 | 49.27 378 | 56.82 372 | 83.94 365 | 82.02 376 | 70.47 361 | 33.28 375 | 64.54 370 | 17.23 378 | 69.16 373 | 45.59 371 | 23.85 372 | 77.02 366 |
|
LCM-MVSNet | | | 67.77 332 | 64.73 335 | 76.87 347 | 62.95 376 | 56.25 373 | 89.37 363 | 93.74 365 | 44.53 368 | 61.99 363 | 80.74 363 | 20.42 376 | 86.53 367 | 69.37 356 | 59.50 365 | 87.84 361 |
|
MVE |  | 53.74 22 | 51.54 339 | 47.86 343 | 62.60 353 | 59.56 377 | 50.93 374 | 79.41 367 | 77.69 377 | 35.69 372 | 36.27 374 | 61.76 373 | 5.79 382 | 69.63 372 | 37.97 373 | 36.61 369 | 67.24 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 65.23 335 | 62.94 338 | 72.13 350 | 44.90 379 | 50.03 375 | 81.05 366 | 89.42 374 | 38.45 369 | 48.51 371 | 99.90 19 | 54.09 362 | 78.70 371 | 91.84 228 | 18.26 373 | 87.64 362 |
|
E-PMN | | | 52.30 338 | 52.18 340 | 52.67 355 | 71.51 371 | 45.40 376 | 93.62 352 | 76.60 378 | 36.01 371 | 43.50 372 | 64.13 371 | 27.11 373 | 67.31 374 | 31.06 374 | 26.06 370 | 45.30 373 |
|
N_pmnet | | | 80.06 328 | 80.78 326 | 77.89 346 | 91.94 334 | 45.28 377 | 98.80 271 | 56.82 380 | 78.10 349 | 80.08 342 | 93.33 332 | 77.03 285 | 95.76 330 | 68.14 358 | 82.81 292 | 92.64 331 |
|
EMVS | | | 51.44 340 | 51.22 342 | 52.11 356 | 70.71 372 | 44.97 378 | 94.04 348 | 75.66 379 | 35.34 373 | 42.40 373 | 61.56 374 | 28.93 372 | 65.87 375 | 27.64 375 | 24.73 371 | 45.49 372 |
|
FPMVS | | | 68.72 331 | 68.72 333 | 68.71 351 | 65.95 374 | 44.27 379 | 95.97 342 | 94.74 357 | 51.13 366 | 53.26 369 | 90.50 351 | 25.11 374 | 83.00 369 | 60.80 365 | 80.97 310 | 78.87 365 |
|
PMVS |  | 49.05 23 | 53.75 337 | 51.34 341 | 60.97 354 | 40.80 380 | 34.68 380 | 74.82 368 | 89.62 373 | 37.55 370 | 28.67 376 | 72.12 366 | 7.09 380 | 81.63 370 | 43.17 372 | 68.21 356 | 66.59 368 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
wuyk23d | | | 20.37 344 | 20.84 347 | 18.99 359 | 65.34 375 | 27.73 381 | 50.43 370 | 7.67 383 | 9.50 376 | 8.01 377 | 6.34 377 | 6.13 381 | 26.24 376 | 23.40 376 | 10.69 375 | 2.99 374 |
|
test123 | | | 37.68 342 | 39.14 345 | 33.31 357 | 19.94 381 | 24.83 382 | 98.36 296 | 9.75 382 | 15.53 375 | 51.31 370 | 87.14 357 | 19.62 377 | 17.74 377 | 47.10 370 | 3.47 376 | 57.36 370 |
|
testmvs | | | 40.60 341 | 44.45 344 | 29.05 358 | 19.49 382 | 14.11 383 | 99.68 156 | 18.47 381 | 20.74 374 | 64.59 362 | 98.48 196 | 10.95 379 | 17.09 378 | 56.66 368 | 11.01 374 | 55.94 371 |
|
test_blank | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.02 378 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet_test | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
cdsmvs_eth3d_5k | | | 23.43 343 | 31.24 346 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 98.09 192 | 0.00 378 | 0.00 379 | 99.67 100 | 83.37 238 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
pcd_1.5k_mvsjas | | | 7.60 346 | 10.13 349 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 91.20 157 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet-low-res | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
sosnet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uncertanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
Regformer | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
ab-mvs-re | | | 8.28 345 | 11.04 348 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 99.40 122 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
uanet | | | 0.00 347 | 0.00 350 | 0.00 360 | 0.00 383 | 0.00 384 | 0.00 371 | 0.00 384 | 0.00 378 | 0.00 379 | 0.00 379 | 0.00 383 | 0.00 379 | 0.00 377 | 0.00 377 | 0.00 375 |
|
PC_three_1452 | | | | | | | | | | 96.96 30 | 99.80 17 | 99.79 64 | 97.49 9 | 100.00 1 | 99.99 5 | 99.98 35 | 100.00 1 |
|
eth-test2 | | | | | | 0.00 383 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 383 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 98.43 120 | 97.27 21 | 99.80 17 | 99.94 4 | 97.18 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
9.14 | | | | 98.38 40 | | 99.87 57 | | 99.91 75 | 98.33 158 | 93.22 158 | 99.78 25 | 99.89 21 | 94.57 72 | 99.85 99 | 99.84 18 | 99.97 48 | |
|
test_0728_THIRD | | | | | | | | | | 96.48 43 | 99.83 11 | 99.91 15 | 97.87 4 | 100.00 1 | 99.92 13 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 138 |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 68 | | | | 99.59 138 |
|
sam_mvs | | | | | | | | | | | | | 94.25 86 | | | | |
|
MTGPA |  | | | | | | | | 98.28 167 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 344 | | | | 59.23 375 | 93.20 118 | 97.74 246 | 91.06 237 | | |
|
test_post | | | | | | | | | | | | 63.35 372 | 94.43 73 | 98.13 228 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 346 | 95.12 52 | 97.95 239 | | | |
|
MTMP | | | | | | | | 99.87 93 | 96.49 327 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 99.71 34 | 99.99 22 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 41 | 100.00 1 | 100.00 1 |
|
test_prior2 | | | | | | | | 99.95 43 | | 95.78 64 | 99.73 30 | 99.76 75 | 96.00 33 | | 99.78 25 | 100.00 1 | |
|
旧先验2 | | | | | | | | 99.46 194 | | 94.21 122 | 99.85 7 | | | 99.95 65 | 96.96 142 | | |
|
新几何2 | | | | | | | | 99.40 199 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 189 | 98.71 55 | 93.46 152 | | | | 100.00 1 | 94.36 186 | | 99.99 24 |
|
原ACMM2 | | | | | | | | 99.90 79 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 40 | 90.54 249 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 25 | | | | |
|
testdata1 | | | | | | | | 99.28 219 | | 96.35 52 | | | | | | | |
|
plane_prior5 | | | | | | | | | 97.87 212 | | | | | 98.37 210 | 97.79 121 | 89.55 233 | 94.52 241 |
|
plane_prior4 | | | | | | | | | | | | 98.59 187 | | | | | |
|
plane_prior2 | | | | | | | | 99.84 111 | | 96.38 48 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 271 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 384 | | | | | | | | |
|
nn | | | | | | | | | 0.00 384 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 372 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 112 | | | | | | | | |
|
door | | | | | | | | | 90.31 370 | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 265 | | 99.87 93 | | 96.82 32 | 93.37 209 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 265 | | 99.87 93 | | 96.82 32 | 93.37 209 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 116 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 209 | | | 98.39 205 | | | 94.53 239 |
|
HQP3-MVS | | | | | | | | | 97.89 210 | | | | | | | 89.60 230 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 262 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 263 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 252 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 128 | | | | |
|