This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 116100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8798.44 10897.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior299.48 36100.00 1100.00 1
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8599.45 5099.85 3394.07 89100.00 198.67 77100.00 199.98 51
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4098.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13597.20 2499.46 4999.85 3395.53 4299.79 10999.86 12100.00 199.99 20
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4098.38 13995.04 8098.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16099.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5598.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7398.55 8395.14 7999.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9898.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test9_res99.71 2999.99 20100.00 1
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4098.56 7797.56 1399.44 5199.85 3395.38 45100.00 199.31 4399.99 2099.87 93
HPM-MVS_fast97.80 8097.50 8098.68 9599.79 7096.42 13099.88 8498.16 17791.75 20298.94 8599.54 10891.82 14599.65 13897.62 12099.99 2099.99 20
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7398.17 17492.61 17198.62 10099.57 10591.87 14399.67 13698.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8798.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8697.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21598.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7398.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4098.42 12797.50 1499.52 4799.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12698.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4098.61 6994.77 8799.31 6399.85 3394.22 83100.00 198.70 7599.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4098.61 6995.00 8199.31 6399.85 3394.22 83100.00 198.78 7299.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4098.60 7194.77 8799.31 6399.84 4693.73 98100.00 198.70 7599.98 3399.98 51
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14699.82 11298.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6399.83 4995.06 5299.80 10699.70 3099.97 44
9.1498.38 3899.87 5299.91 6998.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4098.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8198.27 16188.48 26499.06 7899.66 9790.30 16699.64 13996.32 14399.97 4499.96 70
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5598.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13499.50 1693.90 12899.37 6099.76 7293.24 113100.00 197.75 11899.96 4899.98 51
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 16899.47 18598.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9898.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10598.35 14694.92 8299.32 6299.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5598.42 12796.22 4999.41 5499.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 18892.06 21799.15 6199.94 1497.50 9499.94 5598.42 12796.22 4999.41 5441.37 36494.34 7699.96 5398.92 6199.95 5199.99 20
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3799.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
test22299.55 9497.41 10299.34 20298.55 8391.86 19799.27 6899.83 4993.84 9699.95 5199.99 20
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4299.94 497.18 17100.00 193.81 18999.94 5799.98 51
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4299.82 5394.40 71100.00 191.21 22399.94 5799.99 20
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6199.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7398.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3799.78 6695.30 46100.00 199.80 1899.93 6399.99 20
DeepPCF-MVS95.94 297.71 8498.98 1093.92 26499.63 8881.76 33999.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 11998.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13198.31 15394.43 10099.40 5899.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13198.31 15394.43 10099.40 5899.75 7792.95 11998.90 6499.92 6799.97 63
112198.03 6997.57 7999.40 4199.74 7798.21 6698.31 28798.62 6792.78 16199.53 4499.83 4995.08 50100.00 194.36 17699.92 6799.99 20
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11298.30 15693.95 12599.37 6099.77 6892.84 12199.76 11898.95 5899.92 6799.97 63
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8798.52 9096.05 5399.41 5499.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8798.52 9096.04 5499.41 5499.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 13798.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM98.60 3398.42 3199.14 6396.05 24798.96 2099.90 7399.35 2396.68 3798.35 11299.66 9796.45 2598.51 18699.45 3799.89 7499.96 70
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 11998.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19698.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MVS96.60 12395.56 14299.72 996.85 23099.22 1598.31 28798.94 3691.57 20690.90 22099.61 10286.66 20499.96 5397.36 12499.88 7699.99 20
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8799.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10198.37 14294.68 9199.53 4499.83 4992.87 120100.00 198.66 8099.84 8099.99 20
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15398.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6899.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15398.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7199.83 8199.98 51
QAPM95.40 15494.17 17099.10 6996.92 22497.71 8399.40 19298.68 5689.31 24588.94 25898.89 15882.48 23599.96 5393.12 20699.83 8199.62 125
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4098.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 22998.64 4999.72 14598.24 16495.27 7788.42 26998.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23297.47 9799.45 18898.81 4895.52 7089.39 24699.00 14681.97 23799.95 6097.27 12699.83 8199.84 95
LS3D95.84 14495.11 15498.02 13699.85 5595.10 17898.74 26498.50 10187.22 27993.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 187
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28099.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6198.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24697.48 9699.56 17198.57 7590.46 23086.51 29398.95 15578.57 27199.94 6893.86 18599.74 9097.57 216
131496.84 11195.96 13099.48 3396.74 23798.52 5598.31 28798.86 4595.82 5889.91 23298.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
abl_697.67 8597.34 8698.66 9799.68 8696.11 14999.68 15098.14 18093.80 13299.27 6899.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6598.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
MVP-Stereo90.93 24990.45 24492.37 29391.25 33088.76 29698.05 30096.17 32187.27 27884.04 31195.30 28478.46 27397.27 25783.78 30099.70 9491.09 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17598.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 200
BH-w/o95.71 14895.38 14696.68 17898.49 14692.28 23699.84 10597.50 23892.12 19092.06 21198.79 16884.69 22198.67 17995.29 15499.66 9699.09 185
MAR-MVS97.43 8997.19 9098.15 13299.47 10094.79 18799.05 23598.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.65 25690.30 24791.71 30194.22 28685.50 32098.24 29197.70 21388.67 26086.42 29696.37 24667.82 32598.03 22383.62 30199.62 9891.60 331
MVSFormer96.94 10796.60 10897.95 13797.28 21397.70 8599.55 17397.27 26191.17 21699.43 5299.54 10890.92 15896.89 27994.67 17099.62 9899.25 174
lupinMVS97.85 7597.60 7798.62 10097.28 21397.70 8599.99 497.55 22895.50 7199.43 5299.67 9590.92 15898.71 17698.40 8899.62 9899.45 154
BH-untuned95.18 15794.83 15896.22 19398.36 15091.22 26299.80 11997.32 25790.91 22391.08 21898.67 17283.51 22998.54 18594.23 18199.61 10198.92 189
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15398.06 18696.37 4794.37 18899.49 11183.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GG-mvs-BLEND98.54 10998.21 16198.01 7393.87 33998.52 9097.92 12497.92 20299.02 297.94 23098.17 9499.58 10399.67 117
gg-mvs-nofinetune93.51 19891.86 22298.47 11497.72 19397.96 7792.62 34398.51 9774.70 34697.33 13669.59 35698.91 397.79 23397.77 11699.56 10499.67 117
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16495.23 17599.76 13197.53 23292.52 17894.27 19099.25 13176.84 28098.80 16790.89 23499.54 10599.35 165
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19298.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
TAPA-MVS92.12 894.42 17993.60 18396.90 17199.33 10691.78 24999.78 12398.00 18989.89 24194.52 18599.47 11291.97 14199.18 15569.90 34299.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft95.54 397.93 7297.89 6998.05 13599.82 6594.77 18899.92 6598.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
jason97.24 9896.86 10098.38 12295.73 25997.32 10399.97 1697.40 25095.34 7498.60 10299.54 10887.70 19398.56 18397.94 10899.47 10999.25 174
jason: jason.
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24599.90 7399.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
CNLPA97.76 8297.38 8398.92 8599.53 9596.84 11899.87 8798.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22498.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
F-COLMAP96.93 10896.95 9996.87 17299.71 8491.74 25099.85 10197.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 189
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20198.50 10195.21 7898.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17799.07 3193.96 12496.49 15598.35 19082.28 23699.82 10590.15 24699.22 11798.81 196
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21799.65 15699.80 395.64 6795.39 17698.86 16484.35 22599.90 7596.98 13499.16 11899.95 78
EIA-MVS97.53 8897.46 8197.76 14598.04 17094.84 18499.98 897.61 22294.41 10397.90 12599.59 10392.40 13298.87 16498.04 10299.13 11999.59 130
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27199.32 2495.75 6596.80 14896.27 24972.18 30899.96 5394.58 17299.05 12098.04 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS97.84 7697.69 7398.31 12498.28 15496.27 136100.00 197.52 23495.29 7599.25 7099.65 9991.18 15398.94 16398.96 5799.04 12199.73 108
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10597.63 21797.25 2399.20 7199.64 10081.36 24599.98 4292.77 20998.89 12298.28 203
TESTMET0.1,196.74 11796.26 11798.16 12997.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19695.54 4098.29 20890.55 23898.89 12299.70 112
test-LLR96.47 12696.04 12197.78 14297.02 22195.44 16699.96 2398.21 16894.07 11795.55 17396.38 24493.90 9498.27 21290.42 24198.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 22195.44 16699.96 2398.21 16891.81 20095.55 17396.38 24495.17 4798.27 21290.42 24198.83 12499.64 123
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4099.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7399.51 1597.60 1299.20 7199.36 12393.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17798.08 18597.05 2699.86 499.86 2990.65 16299.71 12999.39 4198.63 12898.69 200
ETV-MVS97.92 7397.80 7198.25 12798.14 16696.48 12899.98 897.63 21795.61 6899.29 6799.46 11492.55 12998.82 16699.02 5698.54 12999.46 152
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19794.28 19599.28 21298.24 16494.27 11196.84 14698.94 15679.39 26498.76 17293.25 20098.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30397.31 25890.35 23389.48 24599.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG94.37 18193.36 19397.40 15898.88 13093.95 20299.37 19997.38 25185.75 30090.80 22199.17 13584.11 22799.88 8586.35 28398.43 13298.36 202
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6598.64 6394.51 9796.38 16098.49 18389.05 18299.88 8597.10 13198.34 13399.43 157
EPNet_dtu95.71 14895.39 14596.66 17998.92 12593.41 21399.57 16998.90 4196.19 5197.52 13298.56 18192.65 12697.36 24777.89 32698.33 13499.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18998.14 6799.31 20697.86 20596.43 4199.62 3799.69 9185.56 21399.68 13399.05 5098.31 13597.83 209
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18998.14 6799.31 20697.86 20596.43 4199.62 3799.69 9185.56 21399.68 13399.05 5098.31 13597.83 209
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18998.14 6799.31 20697.86 20596.43 4199.62 3799.69 9185.56 21399.68 13399.05 5098.31 13597.83 209
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21599.65 15697.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
mvs-test195.53 15195.97 12894.20 25297.77 18685.44 32199.95 4097.06 27994.92 8296.58 15298.72 17085.81 21098.98 16094.80 16398.11 13998.18 204
DP-MVS94.54 17593.42 18997.91 14099.46 10294.04 19898.93 24797.48 24081.15 32990.04 22999.55 10687.02 20199.95 6088.97 25598.11 13999.73 108
EPMVS96.53 12596.01 12298.09 13398.43 14896.12 14896.36 32499.43 1993.53 14097.64 13095.04 29394.41 7098.38 20291.13 22598.11 13999.75 106
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18294.41 19396.05 32998.40 13292.86 15597.09 14195.28 28894.21 8698.07 22289.26 25398.11 13999.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 11996.49 11297.37 16095.63 26695.96 15299.74 13798.88 4392.94 15491.61 21398.97 15197.72 598.62 18194.83 16298.08 14397.53 217
ACMMPcopyleft97.74 8397.44 8298.66 9799.92 3596.13 14699.18 21999.45 1794.84 8696.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet86.22 29883.19 31095.31 21296.71 23990.29 27892.12 34597.33 25662.85 35286.82 28870.37 35569.37 31897.49 24275.12 33597.99 14598.15 205
PMMVS96.76 11596.76 10496.76 17598.28 15492.10 24099.91 6997.98 19294.12 11499.53 4499.39 12086.93 20298.73 17496.95 13697.73 14699.45 154
UA-Net96.54 12495.96 13098.27 12698.23 16095.71 16198.00 30198.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10695.00 5799.94 6899.91 1197.68 14899.99 20
mvs_anonymous95.65 15095.03 15597.53 15298.19 16295.74 15999.33 20397.49 23990.87 22490.47 22597.10 21988.23 19097.16 26095.92 14897.66 14999.68 115
LCM-MVSNet-Re92.31 22492.60 20491.43 30297.53 20079.27 34899.02 23891.83 35492.07 19180.31 32894.38 31483.50 23095.48 32097.22 12897.58 15099.54 143
MVS_Test96.46 12795.74 13898.61 10198.18 16397.23 10599.31 20697.15 27191.07 22098.84 8797.05 22388.17 19198.97 16194.39 17597.50 15199.61 127
SCA94.69 16993.81 18097.33 16397.10 21694.44 19198.86 25698.32 15193.30 14696.17 16495.59 26776.48 28497.95 22891.06 22797.43 15299.59 130
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17594.82 18599.47 18598.15 17991.83 19895.09 18099.11 13791.37 14897.47 24493.47 19897.43 15299.74 107
diffmvs97.00 10596.64 10798.09 13397.64 19696.17 14599.81 11497.19 26594.67 9398.95 8499.28 12486.43 20698.76 17298.37 8997.42 15499.33 167
IS-MVSNet96.29 13595.90 13497.45 15598.13 16794.80 18699.08 22697.61 22292.02 19495.54 17598.96 15390.64 16398.08 22093.73 19497.41 15599.47 151
Effi-MVS+96.30 13495.69 13998.16 12997.85 18196.26 13897.41 30997.21 26490.37 23298.65 9998.58 17986.61 20598.70 17797.11 13097.37 15699.52 146
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15994.67 18998.86 25698.20 17293.60 13998.09 12098.89 15897.51 798.78 16994.04 18397.28 15799.55 139
ADS-MVSNet293.80 19193.88 17893.55 27697.87 17985.94 31794.24 33596.84 30090.07 23796.43 15794.48 31190.29 16795.37 32287.44 27097.23 15899.36 163
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17993.79 20494.24 33598.16 17790.07 23796.43 15794.48 31190.29 16798.19 21787.44 27097.23 15899.36 163
EPP-MVSNet96.69 12096.60 10896.96 16997.74 18993.05 21999.37 19998.56 7788.75 25895.83 17099.01 14496.01 2898.56 18396.92 13797.20 16099.25 174
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17794.55 19099.97 1697.08 27788.85 25794.47 18797.96 20184.59 22298.41 19489.84 24997.10 16199.59 130
Effi-MVS+-dtu94.53 17795.30 14892.22 29497.77 18682.54 33299.59 16697.06 27994.92 8295.29 17895.37 28185.81 21097.89 23194.80 16397.07 16296.23 224
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10597.09 27693.75 13596.58 15299.26 13085.07 21998.78 16997.77 11697.04 16399.54 143
sss97.57 8797.03 9799.18 5498.37 14998.04 7299.73 14299.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
Patchmatch-test92.65 21891.50 22896.10 19696.85 23090.49 27491.50 34897.19 26582.76 32490.23 22695.59 26795.02 5498.00 22477.41 32896.98 16599.82 97
MDTV_nov1_ep1395.69 13997.90 17694.15 19695.98 33098.44 10893.12 15197.98 12395.74 26095.10 4998.58 18290.02 24796.92 166
Fast-Effi-MVS+-dtu93.72 19593.86 17993.29 27997.06 21886.16 31599.80 11996.83 30192.66 16892.58 20997.83 20381.39 24497.67 23789.75 25096.87 16796.05 226
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 17997.17 26893.92 12796.90 14599.28 12485.37 21698.64 18097.50 12196.86 16899.46 152
tpmrst96.27 13795.98 12597.13 16697.96 17393.15 21696.34 32598.17 17492.07 19198.71 9695.12 29193.91 9398.73 17494.91 16096.62 16999.50 149
JIA-IIPM91.76 23990.70 23994.94 22396.11 24587.51 31093.16 34298.13 18275.79 34397.58 13177.68 35392.84 12197.97 22588.47 26196.54 17099.33 167
dp95.05 16094.43 16596.91 17097.99 17292.73 22696.29 32697.98 19289.70 24395.93 16794.67 30693.83 9798.45 19186.91 28296.53 17199.54 143
COLMAP_ROBcopyleft90.47 1492.18 22791.49 22994.25 25199.00 11788.04 30898.42 28596.70 30982.30 32688.43 26799.01 14476.97 27899.85 9486.11 28696.50 17294.86 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
tpm cat193.51 19892.52 20996.47 18397.77 18691.47 26096.13 32798.06 18680.98 33092.91 20593.78 31989.66 17298.87 16487.03 27896.39 17399.09 185
thisisatest051597.41 9397.02 9898.59 10497.71 19597.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17499.16 179
AllTest92.48 22091.64 22395.00 22199.01 11588.43 30298.94 24696.82 30386.50 28888.71 26098.47 18774.73 29899.88 8585.39 28996.18 17596.71 220
TestCases95.00 22199.01 11588.43 30296.82 30386.50 28888.71 26098.47 18774.73 29899.88 8585.39 28996.18 17596.71 220
thisisatest053097.10 10296.72 10598.22 12897.60 19896.70 12199.92 6598.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17798.92 189
DSMNet-mixed88.28 29088.24 28588.42 32589.64 34075.38 35098.06 29989.86 35785.59 30288.20 27292.14 33376.15 28991.95 34678.46 32496.05 17897.92 208
TR-MVS94.54 17593.56 18697.49 15497.96 17394.34 19498.71 26797.51 23790.30 23594.51 18698.69 17175.56 29198.77 17192.82 20895.99 17999.35 165
CR-MVSNet93.45 20192.62 20395.94 19996.29 24292.66 22892.01 34696.23 31992.62 17096.94 14393.31 32391.04 15596.03 31479.23 32095.96 18099.13 183
RPMNet89.76 27787.28 29297.19 16596.29 24292.66 22892.01 34698.31 15370.19 35196.94 14385.87 34987.25 19899.78 11162.69 35295.96 18099.13 183
PatchT90.38 26388.75 27795.25 21595.99 24990.16 28091.22 35097.54 23076.80 33997.26 13786.01 34891.88 14296.07 31366.16 34995.91 18299.51 147
tpmvs94.28 18493.57 18596.40 18898.55 14291.50 25995.70 33498.55 8387.47 27492.15 21094.26 31591.42 14698.95 16288.15 26495.85 18398.76 198
TAMVS95.85 14395.58 14196.65 18097.07 21793.50 21099.17 22097.82 20991.39 21595.02 18198.01 19792.20 13697.30 25293.75 19395.83 18499.14 182
CostFormer96.10 13895.88 13596.78 17497.03 22092.55 23297.08 31697.83 20890.04 23998.72 9594.89 30095.01 5698.29 20896.54 14195.77 18599.50 149
tttt051796.85 11096.49 11297.92 13997.48 20495.89 15499.85 10198.54 8790.72 22896.63 15198.93 15797.47 999.02 15993.03 20795.76 18698.85 193
HY-MVS92.50 797.79 8197.17 9299.63 1298.98 11899.32 697.49 30899.52 1395.69 6698.32 11397.41 21093.32 10799.77 11598.08 10195.75 18799.81 98
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17697.91 20091.55 20795.37 17798.32 19195.05 5397.13 26393.80 19095.75 18799.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm295.47 15395.18 15296.35 19196.91 22591.70 25496.96 31997.93 19788.04 26998.44 10795.40 27793.32 10797.97 22594.00 18495.61 18999.38 161
WTY-MVS98.10 6797.60 7799.60 1798.92 12599.28 1299.89 8199.52 1395.58 6998.24 11899.39 12093.33 10699.74 12597.98 10795.58 19099.78 103
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14799.80 390.54 22996.26 16298.08 19592.15 13898.23 21596.84 13995.46 19199.93 81
cascas94.64 17293.61 18197.74 14797.82 18396.26 13899.96 2397.78 21185.76 29894.00 19397.54 20776.95 27999.21 15497.23 12795.43 19297.76 213
CVMVSNet94.68 17194.94 15693.89 26696.80 23386.92 31399.06 23198.98 3494.45 9894.23 19199.02 14285.60 21295.31 32490.91 23395.39 19399.43 157
test_yl97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
DCV-MVSNet97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
LFMVS94.75 16893.56 18698.30 12599.03 11495.70 16298.74 26497.98 19287.81 27298.47 10699.39 12067.43 32799.53 14198.01 10395.20 19699.67 117
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10199.71 593.17 15096.26 16298.88 16089.87 17199.51 14394.26 18094.91 19799.31 169
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13799.71 592.59 17395.84 16898.86 16489.25 17999.50 14593.84 18694.57 19899.27 172
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12399.71 592.86 15596.02 16598.87 16289.33 17799.50 14593.84 18694.57 19899.27 172
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12399.71 592.86 15596.02 16598.87 16289.33 17799.50 14593.84 18694.57 19899.16 179
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13799.71 592.59 17395.84 16898.86 16489.25 17999.50 14593.44 19994.50 20199.16 179
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23799.21 2794.31 10899.18 7598.88 16086.26 20899.89 7998.93 6094.32 20299.69 114
alignmvs97.81 7997.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11293.65 10099.42 15198.57 8394.26 20399.67 117
VDD-MVS93.77 19292.94 19896.27 19298.55 14290.22 27998.77 26397.79 21090.85 22596.82 14799.42 11661.18 34599.77 11598.95 5894.13 20498.82 195
VDDNet93.12 20591.91 22096.76 17596.67 24092.65 23098.69 26998.21 16882.81 32397.75 12999.28 12461.57 34399.48 14998.09 10094.09 20598.15 205
GA-MVS93.83 18892.84 19996.80 17395.73 25993.57 20899.88 8497.24 26392.57 17692.92 20496.66 23778.73 27097.67 23787.75 26894.06 20699.17 178
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14597.35 25394.45 9897.88 12699.42 11686.71 20399.52 14298.48 8693.97 20799.72 111
1112_ss96.01 14195.20 15198.42 11997.80 18496.41 13199.65 15696.66 31092.71 16492.88 20699.40 11892.16 13799.30 15291.92 21693.66 20899.55 139
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18596.41 13199.65 15696.65 31192.70 16592.86 20796.13 25392.15 13899.30 15291.88 21793.64 20999.55 139
MIMVSNet90.30 26688.67 27895.17 21796.45 24191.64 25692.39 34497.15 27185.99 29490.50 22493.19 32566.95 32894.86 33082.01 31093.43 21099.01 188
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21898.05 16989.19 29299.08 22697.54 23093.66 13794.87 18299.58 10478.78 26999.79 10997.31 12593.40 21196.25 222
ab-mvs94.69 16993.42 18998.51 11298.07 16896.26 13896.49 32398.68 5690.31 23494.54 18497.00 22576.30 28699.71 12995.98 14793.38 21299.56 138
test0.0.03 193.86 18793.61 18194.64 23395.02 27592.18 23999.93 6198.58 7394.07 11787.96 27498.50 18293.90 9494.96 32881.33 31393.17 21396.78 219
RPSCF91.80 23692.79 20188.83 32198.15 16569.87 35298.11 29796.60 31283.93 31694.33 18999.27 12779.60 26399.46 15091.99 21493.16 21497.18 218
XVG-OURS94.82 16494.74 16195.06 21998.00 17189.19 29299.08 22697.55 22894.10 11594.71 18399.62 10180.51 25699.74 12596.04 14693.06 21596.25 222
MVS_030489.28 28488.31 28392.21 29597.05 21986.53 31497.76 30699.57 1285.58 30393.86 19692.71 32751.04 35596.30 30484.49 29592.72 21693.79 295
Anonymous20240521193.10 20691.99 21896.40 18899.10 11289.65 28998.88 25297.93 19783.71 31894.00 19398.75 16968.79 31999.88 8595.08 15691.71 21799.68 115
Anonymous2024052992.10 22990.65 24096.47 18398.82 13390.61 27198.72 26698.67 5975.54 34493.90 19598.58 17966.23 33099.90 7594.70 16990.67 21898.90 192
HQP3-MVS97.89 20189.60 219
HQP-MVS94.61 17394.50 16494.92 22495.78 25391.85 24699.87 8797.89 20196.82 3093.37 19898.65 17380.65 25498.39 19897.92 10989.60 21994.53 228
plane_prior91.74 25099.86 9896.76 3489.59 221
HQP_MVS94.49 17894.36 16694.87 22595.71 26291.74 25099.84 10597.87 20396.38 4493.01 20298.59 17780.47 25898.37 20397.79 11489.55 22294.52 230
plane_prior597.87 20398.37 20397.79 11489.55 22294.52 230
CLD-MVS94.06 18693.90 17794.55 23896.02 24890.69 26899.98 897.72 21296.62 3991.05 21998.85 16777.21 27698.47 18798.11 9889.51 22494.48 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.21 20392.80 20094.44 24593.12 30590.85 26799.77 12697.61 22296.19 5191.56 21498.65 17375.16 29698.47 18793.78 19289.39 22593.99 280
LPG-MVS_test92.96 20992.71 20293.71 27095.43 26888.67 29899.75 13497.62 21992.81 15890.05 22798.49 18375.24 29498.40 19695.84 15089.12 22694.07 272
LGP-MVS_train93.71 27095.43 26888.67 29897.62 21992.81 15890.05 22798.49 18375.24 29498.40 19695.84 15089.12 22694.07 272
test_djsdf92.83 21292.29 21394.47 24391.90 32292.46 23399.55 17397.27 26191.17 21689.96 23096.07 25581.10 24796.89 27994.67 17088.91 22894.05 274
testgi89.01 28688.04 28791.90 29993.49 29884.89 32499.73 14295.66 33193.89 13085.14 30798.17 19359.68 34694.66 33277.73 32788.88 22996.16 225
ACMM91.95 1092.88 21192.52 20993.98 26395.75 25889.08 29599.77 12697.52 23493.00 15389.95 23197.99 20076.17 28898.46 19093.63 19788.87 23094.39 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 21492.42 21193.73 26895.91 25288.72 29799.81 11497.53 23294.13 11387.00 28798.23 19274.07 30298.47 18796.22 14488.86 23193.99 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax91.92 23191.18 23394.15 25391.35 32890.95 26599.00 23997.42 24692.61 17187.38 28397.08 22072.46 30797.36 24794.53 17388.77 23294.13 269
anonymousdsp91.79 23890.92 23694.41 24890.76 33392.93 22198.93 24797.17 26889.08 24787.46 28295.30 28478.43 27496.92 27892.38 21188.73 23393.39 308
mvs_tets91.81 23391.08 23494.00 26191.63 32690.58 27298.67 27197.43 24492.43 18287.37 28497.05 22371.76 30997.32 25194.75 16688.68 23494.11 270
XVG-ACMP-BASELINE91.22 24690.75 23792.63 29193.73 29485.61 31898.52 27997.44 24392.77 16289.90 23396.85 23166.64 32998.39 19892.29 21288.61 23593.89 288
EG-PatchMatch MVS85.35 30483.81 30689.99 31590.39 33581.89 33798.21 29496.09 32381.78 32874.73 34493.72 32051.56 35497.12 26579.16 32388.61 23590.96 336
UniMVSNet_ETH3D90.06 27388.58 27994.49 24294.67 28088.09 30797.81 30597.57 22783.91 31788.44 26597.41 21057.44 34997.62 23991.41 22188.59 23797.77 212
tpm93.70 19693.41 19194.58 23695.36 27087.41 31197.01 31796.90 29690.85 22596.72 15094.14 31690.40 16596.84 28290.75 23788.54 23899.51 147
OpenMVS_ROBcopyleft79.82 2083.77 31381.68 31690.03 31488.30 34482.82 32998.46 28095.22 33973.92 34876.00 34191.29 33555.00 35196.94 27768.40 34588.51 23990.34 340
CMPMVSbinary61.59 2184.75 30785.14 30183.57 33190.32 33662.54 35596.98 31897.59 22674.33 34769.95 34996.66 23764.17 33798.32 20687.88 26788.41 24089.84 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++88.23 241
ITE_SJBPF92.38 29295.69 26485.14 32295.71 32992.81 15889.33 24998.11 19470.23 31698.42 19385.91 28788.16 24293.59 304
D2MVS92.76 21392.59 20793.27 28095.13 27189.54 29199.69 14899.38 2192.26 18687.59 27894.61 30885.05 22097.79 23391.59 22088.01 24392.47 323
EI-MVSNet93.73 19493.40 19294.74 22996.80 23392.69 22799.06 23197.67 21588.96 25391.39 21599.02 14288.75 18697.30 25291.07 22687.85 24494.22 254
MVSTER95.53 15195.22 15096.45 18598.56 14197.72 8299.91 6997.67 21592.38 18391.39 21597.14 21797.24 1497.30 25294.80 16387.85 24494.34 247
PS-MVSNAJss93.64 19793.31 19494.61 23492.11 31992.19 23899.12 22297.38 25192.51 17988.45 26496.99 22691.20 15097.29 25594.36 17687.71 24694.36 243
LTVRE_ROB88.28 1890.29 26789.05 27294.02 25995.08 27390.15 28197.19 31397.43 24484.91 31183.99 31297.06 22274.00 30398.28 21084.08 29687.71 24693.62 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH89.72 1790.64 25789.63 25893.66 27495.64 26588.64 30098.55 27597.45 24189.03 24981.62 32397.61 20669.75 31798.41 19489.37 25187.62 24893.92 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS96.05 13995.82 13796.72 17799.59 9096.99 11499.95 4099.10 2894.06 11998.27 11595.80 25889.00 18399.95 6099.12 4787.53 24993.24 312
USDC90.00 27488.96 27393.10 28594.81 27788.16 30698.71 26795.54 33493.66 13783.75 31497.20 21665.58 33298.31 20783.96 29987.49 25092.85 318
RRT_MVS95.23 15694.77 16096.61 18198.28 15498.32 6399.81 11497.41 24892.59 17391.28 21797.76 20495.02 5497.23 25893.65 19687.14 25194.28 250
ACMMP++_ref87.04 252
test_040285.58 30083.94 30490.50 30993.81 29385.04 32398.55 27595.20 34076.01 34179.72 33195.13 29064.15 33896.26 30666.04 35086.88 25390.21 342
FIs94.10 18593.43 18896.11 19594.70 27996.82 11999.58 16798.93 4092.54 17789.34 24897.31 21387.62 19497.10 26694.22 18286.58 25494.40 240
FC-MVSNet-test93.81 19093.15 19795.80 20394.30 28596.20 14399.42 19198.89 4292.33 18589.03 25797.27 21587.39 19796.83 28393.20 20186.48 25594.36 243
TinyColmap87.87 29486.51 29591.94 29895.05 27485.57 31997.65 30794.08 34884.40 31481.82 32296.85 23162.14 34298.33 20580.25 31886.37 25691.91 330
ACMH+89.98 1690.35 26489.54 26192.78 29095.99 24986.12 31698.81 26097.18 26789.38 24483.14 31697.76 20468.42 32398.43 19289.11 25486.05 25793.78 296
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23197.99 19092.68 16794.13 19298.62 17693.28 11098.69 17893.79 19185.76 25898.84 194
GBi-Net90.88 25189.82 25694.08 25697.53 20091.97 24198.43 28296.95 29087.05 28089.68 23894.72 30271.34 31196.11 30987.01 27985.65 25994.17 258
test190.88 25189.82 25694.08 25697.53 20091.97 24198.43 28296.95 29087.05 28089.68 23894.72 30271.34 31196.11 30987.01 27985.65 25994.17 258
FMVSNet392.69 21691.58 22595.99 19798.29 15297.42 10199.26 21497.62 21989.80 24289.68 23895.32 28381.62 24396.27 30587.01 27985.65 25994.29 249
DeepMVS_CXcopyleft82.92 33395.98 25158.66 35796.01 32492.72 16378.34 33595.51 27258.29 34898.08 22082.57 30685.29 26292.03 328
LF4IMVS89.25 28588.85 27490.45 31192.81 31381.19 34198.12 29694.79 34391.44 21186.29 29997.11 21865.30 33598.11 21988.53 26085.25 26392.07 326
FMVSNet291.02 24889.56 26095.41 20997.53 20095.74 15998.98 24197.41 24887.05 28088.43 26795.00 29671.34 31196.24 30785.12 29185.21 26494.25 253
ET-MVSNet_ETH3D94.37 18193.28 19597.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34799.45 11596.23 2795.34 32396.91 13885.14 26599.59 130
OurMVSNet-221017-089.81 27689.48 26590.83 30791.64 32581.21 34098.17 29595.38 33691.48 20985.65 30597.31 21372.66 30697.29 25588.15 26484.83 26693.97 282
pmmvs492.10 22991.07 23595.18 21692.82 31294.96 18199.48 18496.83 30187.45 27588.66 26396.56 24283.78 22896.83 28389.29 25284.77 26793.75 297
our_test_390.39 26289.48 26593.12 28392.40 31689.57 29099.33 20396.35 31887.84 27185.30 30694.99 29784.14 22696.09 31280.38 31784.56 26893.71 302
cl-mvsnet293.77 19293.25 19695.33 21199.49 9994.43 19299.61 16498.09 18390.38 23189.16 25595.61 26590.56 16497.34 24991.93 21584.45 26994.21 256
miper_ehance_all_eth93.16 20492.60 20494.82 22897.57 19993.56 20999.50 18097.07 27888.75 25888.85 25995.52 27190.97 15796.74 28690.77 23684.45 26994.17 258
miper_enhance_ethall94.36 18393.98 17595.49 20598.68 14095.24 17499.73 14297.29 25993.28 14789.86 23495.97 25694.37 7597.05 26992.20 21384.45 26994.19 257
bset_n11_16_dypcd93.05 20892.30 21295.31 21290.23 33795.05 17999.44 19097.28 26092.51 17990.65 22396.68 23685.30 21796.71 28994.49 17484.14 27294.16 263
IterMVS90.91 25090.17 25193.12 28396.78 23690.42 27798.89 25097.05 28189.03 24986.49 29495.42 27676.59 28395.02 32687.22 27584.09 27393.93 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet188.50 28886.64 29494.08 25695.62 26791.97 24198.43 28296.95 29083.00 32186.08 30294.72 30259.09 34796.11 30981.82 31284.07 27494.17 258
XXY-MVS91.82 23290.46 24295.88 20093.91 29195.40 16998.87 25597.69 21488.63 26287.87 27597.08 22074.38 30197.89 23191.66 21984.07 27494.35 246
IterMVS-SCA-FT90.85 25390.16 25292.93 28796.72 23889.96 28498.89 25096.99 28588.95 25486.63 29195.67 26376.48 28495.00 32787.04 27784.04 27693.84 292
RRT_test8_iter0594.58 17494.11 17195.98 19897.88 17796.11 14999.89 8197.45 24191.66 20488.28 27096.71 23596.53 2497.40 24594.73 16883.85 27794.45 238
pmmvs590.17 27189.09 27093.40 27792.10 32089.77 28899.74 13795.58 33385.88 29787.24 28695.74 26073.41 30596.48 29788.54 25983.56 27893.95 283
SixPastTwentyTwo88.73 28788.01 28890.88 30591.85 32382.24 33498.22 29395.18 34188.97 25282.26 31996.89 22871.75 31096.67 29184.00 29782.98 27993.72 301
N_pmnet80.06 31980.78 31877.89 33491.94 32145.28 36398.80 26156.82 36678.10 33880.08 33093.33 32177.03 27795.76 31968.14 34682.81 28092.64 319
ppachtmachnet_test89.58 28088.35 28293.25 28192.40 31690.44 27699.33 20396.73 30885.49 30485.90 30495.77 25981.09 24896.00 31676.00 33482.49 28193.30 310
cl-mvsnet_92.31 22491.58 22594.52 23997.33 21092.77 22299.57 16996.78 30686.97 28487.56 27995.51 27289.43 17596.62 29288.60 25782.44 28294.16 263
cl-mvsnet192.32 22391.60 22494.47 24397.31 21192.74 22499.58 16796.75 30786.99 28387.64 27795.54 26989.55 17496.50 29688.58 25882.44 28294.17 258
Patchmtry89.70 27888.49 28093.33 27896.24 24489.94 28791.37 34996.23 31978.22 33787.69 27693.31 32391.04 15596.03 31480.18 31982.10 28494.02 275
IterMVS-LS92.69 21692.11 21594.43 24796.80 23392.74 22499.45 18896.89 29788.98 25189.65 24195.38 28088.77 18596.34 30290.98 23182.04 28594.22 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet90.14 27290.34 24689.54 31792.55 31581.06 34298.69 26998.04 18891.41 21486.59 29296.84 23380.83 25193.31 34486.20 28481.91 28694.26 251
Anonymous2023120686.32 29785.42 29989.02 32089.11 34280.53 34699.05 23595.28 33785.43 30582.82 31793.92 31774.40 30093.44 34366.99 34781.83 28793.08 315
eth_miper_zixun_eth92.41 22291.93 21993.84 26797.28 21390.68 26998.83 25896.97 28988.57 26389.19 25495.73 26289.24 18196.69 29089.97 24881.55 28894.15 265
FMVSNet588.32 28987.47 29190.88 30596.90 22888.39 30497.28 31195.68 33082.60 32584.67 30992.40 33279.83 26291.16 34876.39 33381.51 28993.09 314
miper_lstm_enhance91.81 23391.39 23193.06 28697.34 20889.18 29499.38 19796.79 30586.70 28787.47 28195.22 28990.00 16995.86 31888.26 26281.37 29094.15 265
VPA-MVSNet92.70 21591.55 22796.16 19495.09 27296.20 14398.88 25299.00 3391.02 22291.82 21295.29 28776.05 29097.96 22795.62 15281.19 29194.30 248
v119290.62 25989.25 26794.72 23193.13 30393.07 21799.50 18097.02 28286.33 29189.56 24495.01 29479.22 26597.09 26882.34 30881.16 29294.01 277
v114491.09 24789.83 25594.87 22593.25 30293.69 20799.62 16396.98 28786.83 28689.64 24294.99 29780.94 24997.05 26985.08 29281.16 29293.87 290
Anonymous2024052185.15 30583.81 30689.16 31988.32 34382.69 33098.80 26195.74 32879.72 33381.53 32490.99 33665.38 33494.16 33572.69 33881.11 29490.63 339
v124090.20 26988.79 27694.44 24593.05 30892.27 23799.38 19796.92 29585.89 29589.36 24794.87 30177.89 27597.03 27380.66 31681.08 29594.01 277
new_pmnet84.49 31082.92 31289.21 31890.03 33882.60 33196.89 32095.62 33280.59 33175.77 34389.17 34065.04 33694.79 33172.12 33981.02 29690.23 341
K. test v388.05 29187.24 29390.47 31091.82 32482.23 33598.96 24497.42 24689.05 24876.93 33895.60 26668.49 32295.42 32185.87 28881.01 29793.75 297
FPMVS68.72 32168.72 32468.71 33965.95 36044.27 36595.97 33194.74 34451.13 35453.26 35790.50 33925.11 36283.00 35660.80 35380.97 29878.87 352
v192192090.46 26189.12 26994.50 24192.96 31092.46 23399.49 18296.98 28786.10 29389.61 24395.30 28478.55 27297.03 27382.17 30980.89 29994.01 277
cl_fuxian92.53 21991.87 22194.52 23997.40 20592.99 22099.40 19296.93 29487.86 27088.69 26295.44 27589.95 17096.44 29890.45 24080.69 30094.14 268
tfpnnormal89.29 28387.61 29094.34 24994.35 28494.13 19798.95 24598.94 3683.94 31584.47 31095.51 27274.84 29797.39 24677.05 33180.41 30191.48 333
v14419290.79 25489.52 26294.59 23593.11 30692.77 22299.56 17196.99 28586.38 29089.82 23794.95 29980.50 25797.10 26683.98 29880.41 30193.90 287
nrg03093.51 19892.53 20896.45 18594.36 28397.20 10699.81 11497.16 27091.60 20589.86 23497.46 20886.37 20797.68 23695.88 14980.31 30394.46 233
Anonymous2023121189.86 27588.44 28194.13 25598.93 12390.68 26998.54 27798.26 16276.28 34086.73 28995.54 26970.60 31597.56 24090.82 23580.27 30494.15 265
V4291.28 24490.12 25394.74 22993.42 30093.46 21199.68 15097.02 28287.36 27689.85 23695.05 29281.31 24697.34 24987.34 27380.07 30593.40 307
v2v48291.30 24290.07 25495.01 22093.13 30393.79 20499.77 12697.02 28288.05 26889.25 25095.37 28180.73 25297.15 26187.28 27480.04 30694.09 271
WR-MVS92.31 22491.25 23295.48 20894.45 28295.29 17199.60 16598.68 5690.10 23688.07 27396.89 22880.68 25396.80 28593.14 20479.67 30794.36 243
v1090.25 26888.82 27594.57 23793.53 29793.43 21299.08 22696.87 29985.00 30887.34 28594.51 30980.93 25097.02 27582.85 30579.23 30893.26 311
test_part192.15 22890.72 23896.44 18798.87 13197.46 9898.99 24098.26 16285.89 29586.34 29896.34 24781.71 23997.48 24391.06 22778.99 30994.37 242
CP-MVSNet91.23 24590.22 24994.26 25093.96 29092.39 23599.09 22498.57 7588.95 25486.42 29696.57 24179.19 26696.37 30090.29 24478.95 31094.02 275
MIMVSNet182.58 31580.51 31988.78 32286.68 34784.20 32796.65 32195.41 33578.75 33678.59 33492.44 32951.88 35389.76 35165.26 35178.95 31092.38 325
PS-CasMVS90.63 25889.51 26393.99 26293.83 29291.70 25498.98 24198.52 9088.48 26486.15 30196.53 24375.46 29296.31 30388.83 25678.86 31293.95 283
WR-MVS_H91.30 24290.35 24594.15 25394.17 28792.62 23199.17 22098.94 3688.87 25686.48 29594.46 31384.36 22496.61 29388.19 26378.51 31393.21 313
v890.54 26089.17 26894.66 23293.43 29993.40 21499.20 21796.94 29385.76 29887.56 27994.51 30981.96 23897.19 25984.94 29378.25 31493.38 309
UniMVSNet (Re)93.07 20792.13 21495.88 20094.84 27696.24 14299.88 8498.98 3492.49 18189.25 25095.40 27787.09 20097.14 26293.13 20578.16 31594.26 251
v7n89.65 27988.29 28493.72 26992.22 31890.56 27399.07 23097.10 27585.42 30686.73 28994.72 30280.06 26097.13 26381.14 31478.12 31693.49 305
VPNet91.81 23390.46 24295.85 20294.74 27895.54 16598.98 24198.59 7292.14 18990.77 22297.44 20968.73 32197.54 24194.89 16177.89 31794.46 233
Gipumacopyleft66.95 32465.00 32572.79 33791.52 32767.96 35366.16 35895.15 34247.89 35558.54 35367.99 35729.74 35987.54 35350.20 35677.83 31862.87 356
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet91.56 24190.22 24995.60 20494.05 28895.76 15898.25 29098.70 5491.16 21880.78 32796.64 23983.23 23396.57 29491.41 22177.73 31994.46 233
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20594.61 28195.28 17299.83 11199.08 3091.49 20889.21 25296.86 23087.14 19996.73 28793.20 20177.52 32094.46 233
DU-MVS92.46 22191.45 23095.49 20594.05 28895.28 17299.81 11498.74 5292.25 18789.21 25296.64 23981.66 24196.73 28793.20 20177.52 32094.46 233
MDA-MVSNet_test_wron85.51 30283.32 30992.10 29690.96 33188.58 30199.20 21796.52 31479.70 33457.12 35592.69 32879.11 26793.86 33977.10 33077.46 32293.86 291
YYNet185.50 30383.33 30892.00 29790.89 33288.38 30599.22 21696.55 31379.60 33557.26 35492.72 32679.09 26893.78 34077.25 32977.37 32393.84 292
v14890.70 25589.63 25893.92 26492.97 30990.97 26499.75 13496.89 29787.51 27388.27 27195.01 29481.67 24097.04 27187.40 27277.17 32493.75 297
Baseline_NR-MVSNet90.33 26589.51 26392.81 28992.84 31189.95 28599.77 12693.94 35084.69 31389.04 25695.66 26481.66 24196.52 29590.99 23076.98 32591.97 329
PEN-MVS90.19 27089.06 27193.57 27593.06 30790.90 26699.06 23198.47 10388.11 26785.91 30396.30 24876.67 28195.94 31787.07 27676.91 32693.89 288
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22593.69 29593.98 20199.69 14898.65 6091.03 22188.44 26596.83 23480.05 26196.18 30890.26 24576.89 32794.45 238
MDA-MVSNet-bldmvs84.09 31181.52 31791.81 30091.32 32988.00 30998.67 27195.92 32680.22 33255.60 35693.32 32268.29 32493.60 34273.76 33676.61 32893.82 294
test20.0384.72 30883.99 30286.91 32888.19 34580.62 34598.88 25295.94 32588.36 26678.87 33294.62 30768.75 32089.11 35266.52 34875.82 32991.00 335
DTE-MVSNet89.40 28188.24 28592.88 28892.66 31489.95 28599.10 22398.22 16787.29 27785.12 30896.22 25076.27 28795.30 32583.56 30275.74 33093.41 306
pm-mvs189.36 28287.81 28994.01 26093.40 30191.93 24498.62 27496.48 31686.25 29283.86 31396.14 25273.68 30497.04 27186.16 28575.73 33193.04 316
lessismore_v090.53 30890.58 33480.90 34395.80 32777.01 33795.84 25766.15 33196.95 27683.03 30475.05 33293.74 300
IB-MVS92.85 694.99 16293.94 17698.16 12997.72 19395.69 16399.99 498.81 4894.28 11092.70 20896.90 22795.08 5099.17 15696.07 14573.88 33399.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs685.69 29983.84 30591.26 30490.00 33984.41 32697.82 30496.15 32275.86 34281.29 32595.39 27961.21 34496.87 28183.52 30373.29 33492.50 322
hse-mvs394.92 16394.36 16696.59 18298.85 13291.29 26198.93 24798.94 3695.90 5698.77 9198.42 18990.89 16099.77 11597.80 11170.76 33598.72 199
ambc83.23 33277.17 35562.61 35487.38 35394.55 34776.72 33986.65 34730.16 35896.36 30184.85 29469.86 33690.73 338
Patchmatch-RL test86.90 29685.98 29889.67 31684.45 35075.59 34989.71 35192.43 35286.89 28577.83 33690.94 33794.22 8393.63 34187.75 26869.61 33799.79 100
PM-MVS80.47 31778.88 32185.26 33083.79 35272.22 35195.89 33291.08 35585.71 30176.56 34088.30 34236.64 35793.90 33882.39 30769.57 33889.66 345
pmmvs-eth3d84.03 31281.97 31590.20 31284.15 35187.09 31298.10 29894.73 34583.05 32074.10 34587.77 34465.56 33394.01 33681.08 31569.24 33989.49 346
AUN-MVS93.28 20292.60 20495.34 21098.29 15290.09 28299.31 20698.56 7791.80 20196.35 16198.00 19889.38 17698.28 21092.46 21069.22 34097.64 214
hse-mvs294.38 18094.08 17395.31 21298.27 15790.02 28399.29 21198.56 7795.90 5698.77 9198.00 19890.89 16098.26 21497.80 11169.20 34197.64 214
TransMVSNet (Re)87.25 29585.28 30093.16 28293.56 29691.03 26398.54 27794.05 34983.69 31981.09 32696.16 25175.32 29396.40 29976.69 33268.41 34292.06 327
PMVScopyleft49.05 2353.75 32751.34 33160.97 34240.80 36634.68 36674.82 35789.62 35937.55 35828.67 36472.12 3547.09 36881.63 35743.17 35968.21 34366.59 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth85.52 30183.99 30290.10 31389.36 34183.51 32896.65 32197.99 19089.14 24675.89 34293.83 31863.25 34093.92 33781.92 31167.90 34492.88 317
PVSNet_088.03 1991.80 23690.27 24896.38 19098.27 15790.46 27599.94 5599.61 1193.99 12286.26 30097.39 21271.13 31499.89 7998.77 7367.05 34598.79 197
TDRefinement84.76 30682.56 31391.38 30374.58 35684.80 32597.36 31094.56 34684.73 31280.21 32996.12 25463.56 33998.39 19887.92 26663.97 34690.95 337
new-patchmatchnet81.19 31679.34 32086.76 32982.86 35380.36 34797.92 30295.27 33882.09 32772.02 34686.87 34662.81 34190.74 35071.10 34063.08 34789.19 348
pmmvs380.27 31877.77 32287.76 32780.32 35482.43 33398.23 29291.97 35372.74 34978.75 33387.97 34357.30 35090.99 34970.31 34162.37 34889.87 343
DIV-MVS_2432*160083.59 31482.06 31488.20 32686.93 34680.70 34497.21 31296.38 31782.87 32282.49 31888.97 34167.63 32692.32 34573.75 33762.30 34991.58 332
CL-MVSNet_2432*160084.50 30983.15 31188.53 32486.00 34881.79 33898.82 25997.35 25385.12 30783.62 31590.91 33876.66 28291.40 34769.53 34360.36 35092.40 324
UnsupCasMVSNet_bld79.97 32077.03 32388.78 32285.62 34981.98 33693.66 34097.35 25375.51 34570.79 34883.05 35048.70 35694.91 32978.31 32560.29 35189.46 347
LCM-MVSNet67.77 32264.73 32676.87 33562.95 36256.25 35989.37 35293.74 35144.53 35661.99 35180.74 35120.42 36486.53 35469.37 34459.50 35287.84 349
KD-MVS_2432*160088.00 29286.10 29693.70 27296.91 22594.04 19897.17 31497.12 27384.93 30981.96 32092.41 33092.48 13094.51 33379.23 32052.68 35392.56 320
miper_refine_blended88.00 29286.10 29693.70 27296.91 22594.04 19897.17 31497.12 27384.93 30981.96 32092.41 33092.48 13094.51 33379.23 32052.68 35392.56 320
PMMVS267.15 32364.15 32776.14 33670.56 35962.07 35693.89 33887.52 36158.09 35360.02 35278.32 35222.38 36384.54 35559.56 35447.03 35581.80 351
MVEpermissive53.74 2251.54 32947.86 33362.60 34159.56 36350.93 36079.41 35677.69 36335.69 36036.27 36261.76 3615.79 37069.63 35937.97 36036.61 35667.24 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 32852.18 33052.67 34371.51 35745.40 36293.62 34176.60 36436.01 35943.50 36064.13 35927.11 36167.31 36131.06 36126.06 35745.30 360
EMVS51.44 33051.22 33252.11 34470.71 35844.97 36494.04 33775.66 36535.34 36142.40 36161.56 36228.93 36065.87 36227.64 36224.73 35845.49 359
ANet_high56.10 32652.24 32967.66 34049.27 36456.82 35883.94 35482.02 36270.47 35033.28 36364.54 35817.23 36669.16 36045.59 35823.85 35977.02 353
tmp_tt65.23 32562.94 32872.13 33844.90 36550.03 36181.05 35589.42 36038.45 35748.51 35999.90 1754.09 35278.70 35891.84 21818.26 36087.64 350
testmvs40.60 33144.45 33429.05 34619.49 36814.11 36999.68 15018.47 36720.74 36264.59 35098.48 18610.95 36717.09 36556.66 35511.01 36155.94 358
wuyk23d20.37 33420.84 33718.99 34765.34 36127.73 36750.43 3597.67 3699.50 3648.01 3656.34 3656.13 36926.24 36323.40 36310.69 3622.99 361
test12337.68 33239.14 33533.31 34519.94 36724.83 36898.36 2869.75 36815.53 36351.31 35887.14 34519.62 36517.74 36447.10 3573.47 36357.36 357
uanet_test0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
cdsmvs_eth3d_5k23.43 33331.24 3360.00 3480.00 3690.00 3700.00 36098.09 1830.00 3650.00 36699.67 9583.37 2310.00 3660.00 3640.00 3640.00 362
pcd_1.5k_mvsjas7.60 33610.13 3390.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 36691.20 1500.00 3660.00 3640.00 3640.00 362
sosnet-low-res0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
sosnet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
uncertanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
Regformer0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
ab-mvs-re8.28 33511.04 3380.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 36699.40 1180.00 3710.00 3660.00 3640.00 3640.00 362
uanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
GSMVS99.59 130
test_part299.89 4599.25 1399.49 48
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post195.78 33359.23 36393.20 11497.74 23591.06 227
test_post63.35 36094.43 6998.13 218
patchmatchnet-post91.70 33495.12 4897.95 228
MTMP99.87 8796.49 315
gm-plane-assit96.97 22393.76 20691.47 21098.96 15398.79 16894.92 158
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
agg_prior99.93 2698.77 3698.43 11699.63 3599.85 94
test_prior498.05 7199.94 55
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
旧先验299.46 18794.21 11299.85 699.95 6096.96 135
新几何299.40 192
无先验99.49 18298.71 5393.46 142100.00 194.36 17699.99 20
原ACMM299.90 73
testdata299.99 3690.54 239
segment_acmp96.68 22
testdata199.28 21296.35 48
plane_prior795.71 26291.59 258
plane_prior695.76 25791.72 25380.47 258
plane_prior498.59 177
plane_prior391.64 25696.63 3893.01 202
plane_prior299.84 10596.38 44
plane_prior195.73 259
n20.00 370
nn0.00 370
door-mid89.69 358
test1198.44 108
door90.31 356
HQP5-MVS91.85 246
HQP-NCC95.78 25399.87 8796.82 3093.37 198
ACMP_Plane95.78 25399.87 8796.82 3093.37 198
BP-MVS97.92 109
HQP4-MVS93.37 19898.39 19894.53 228
HQP2-MVS80.65 254
NP-MVS95.77 25691.79 24898.65 173
MDTV_nov1_ep13_2view96.26 13896.11 32891.89 19698.06 12194.40 7194.30 17999.67 117
Test By Simon92.82 123