SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 6 | 99.93 26 | 99.30 8 | 99.96 23 | 98.43 114 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 99.93 26 | 99.31 7 | | 98.41 129 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 114 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DVP-MVS | | | 99.30 4 | 99.16 3 | 99.73 8 | 99.93 26 | 99.29 10 | 99.95 40 | 98.32 149 | 97.28 18 | 99.83 10 | 99.91 13 | 97.22 15 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 90 |
|
test_0728_THIRD | | | | | | | | | | 96.48 40 | 99.83 10 | 99.91 13 | 97.87 4 | 100.00 1 | 99.92 9 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 99.82 5 | 99.94 14 | 99.47 5 | 99.95 40 | 98.43 114 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
DPE-MVS | | | 99.26 6 | 99.10 7 | 99.74 7 | 99.89 45 | 99.24 14 | 99.87 87 | 98.44 106 | 97.48 15 | 99.64 34 | 99.94 4 | 96.68 22 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 20 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 36 | 100.00 1 | 100.00 1 |
|
region2R | | | 98.54 39 | 98.37 40 | 99.05 73 | 99.96 8 | 97.18 106 | 99.96 23 | 98.55 81 | 94.87 83 | 99.45 50 | 99.85 33 | 94.07 89 | 100.00 1 | 98.67 77 | 100.00 1 | 99.98 51 |
|
test_prior3 | | | 98.99 13 | 98.84 14 | 99.43 35 | 99.94 14 | 98.49 57 | 99.95 40 | 98.65 59 | 95.78 58 | 99.73 26 | 99.76 72 | 96.00 29 | 99.80 106 | 99.78 20 | 100.00 1 | 99.99 20 |
|
test_prior2 | | | | | | | | 99.95 40 | | 95.78 58 | 99.73 26 | 99.76 72 | 96.00 29 | | 99.78 20 | 100.00 1 | |
|
MSLP-MVS++ | | | 99.13 7 | 99.01 9 | 99.49 31 | 99.94 14 | 98.46 59 | 99.98 8 | 98.86 44 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 33 | 100.00 1 | 99.51 34 | 100.00 1 | 100.00 1 |
|
APDe-MVS | | | 99.06 10 | 98.91 12 | 99.51 28 | 99.94 14 | 98.76 40 | 99.91 69 | 98.39 133 | 97.20 24 | 99.46 49 | 99.85 33 | 95.53 42 | 99.79 109 | 99.86 12 | 100.00 1 | 99.99 20 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 3 | 99.97 3 | 99.59 3 | 99.97 16 | 98.64 62 | 98.47 2 | 99.13 76 | 99.92 11 | 96.38 26 | 100.00 1 | 99.74 24 | 100.00 1 | 100.00 1 |
|
CDPH-MVS | | | 98.65 31 | 98.36 42 | 99.49 31 | 99.94 14 | 98.73 41 | 99.87 87 | 98.33 147 | 93.97 121 | 99.76 24 | 99.87 26 | 94.99 58 | 99.75 120 | 98.55 84 | 100.00 1 | 99.98 51 |
|
mPP-MVS | | | 98.39 52 | 98.20 50 | 98.97 81 | 99.97 3 | 96.92 116 | 99.95 40 | 98.38 137 | 95.04 78 | 98.61 99 | 99.80 58 | 93.39 104 | 100.00 1 | 98.64 81 | 100.00 1 | 99.98 51 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 4 | 99.98 2 | 99.51 4 | 99.98 8 | 98.69 54 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 19 | 100.00 1 | 99.75 22 | 100.00 1 | 99.99 20 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 10 | 99.96 8 | 99.15 16 | 99.97 16 | 98.62 66 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 13 | 100.00 1 | 99.54 33 | 100.00 1 | 100.00 1 |
|
MG-MVS | | | 98.91 17 | 98.65 20 | 99.68 11 | 99.94 14 | 99.07 18 | 99.64 160 | 99.44 18 | 97.33 17 | 99.00 83 | 99.72 84 | 94.03 90 | 99.98 42 | 98.73 74 | 100.00 1 | 100.00 1 |
|
ZNCC-MVS | | | 98.31 56 | 98.03 60 | 99.17 57 | 99.88 49 | 97.59 87 | 99.94 55 | 98.44 106 | 94.31 106 | 98.50 103 | 99.82 53 | 93.06 117 | 99.99 36 | 98.30 92 | 99.99 20 | 99.93 81 |
|
testtj | | | 98.89 18 | 98.69 18 | 99.52 26 | 99.94 14 | 98.56 53 | 99.90 73 | 98.55 81 | 95.14 77 | 99.72 29 | 99.84 46 | 95.46 43 | 100.00 1 | 99.65 32 | 99.99 20 | 99.99 20 |
|
SMA-MVS | | | 98.76 26 | 98.48 29 | 99.62 15 | 99.87 52 | 98.87 27 | 99.86 98 | 98.38 137 | 93.19 147 | 99.77 23 | 99.94 4 | 95.54 40 | 100.00 1 | 99.74 24 | 99.99 20 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test9_res | | | | | | | | | | | | | | | 99.71 29 | 99.99 20 | 100.00 1 |
|
agg_prior1 | | | 98.88 19 | 98.66 19 | 99.54 23 | 99.93 26 | 98.77 36 | 99.96 23 | 98.43 114 | 94.63 92 | 99.63 35 | 99.85 33 | 95.79 37 | 99.85 94 | 99.72 28 | 99.99 20 | 99.99 20 |
|
HPM-MVS++ | | | 99.07 9 | 98.88 13 | 99.63 12 | 99.90 42 | 99.02 19 | 99.95 40 | 98.56 76 | 97.56 13 | 99.44 51 | 99.85 33 | 95.38 45 | 100.00 1 | 99.31 43 | 99.99 20 | 99.87 93 |
|
HPM-MVS_fast | | | 97.80 80 | 97.50 80 | 98.68 95 | 99.79 70 | 96.42 129 | 99.88 84 | 98.16 174 | 91.75 199 | 98.94 85 | 99.54 108 | 91.82 143 | 99.65 137 | 97.62 118 | 99.99 20 | 99.99 20 |
|
HPM-MVS | | | 97.96 70 | 97.72 72 | 98.68 95 | 99.84 60 | 96.39 132 | 99.90 73 | 98.17 171 | 92.61 169 | 98.62 98 | 99.57 105 | 91.87 141 | 99.67 135 | 98.87 66 | 99.99 20 | 99.99 20 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS | | | 98.62 32 | 98.35 43 | 99.41 39 | 99.90 42 | 98.51 56 | 99.87 87 | 98.36 142 | 94.08 114 | 99.74 25 | 99.73 83 | 94.08 88 | 99.74 124 | 99.42 39 | 99.99 20 | 99.99 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 98.45 46 | 98.32 44 | 98.87 86 | 99.96 8 | 96.62 123 | 99.97 16 | 98.39 133 | 94.43 98 | 98.90 86 | 99.87 26 | 94.30 81 | 100.00 1 | 99.04 54 | 99.99 20 | 99.99 20 |
|
SteuartSystems-ACMMP | | | 99.02 11 | 98.97 11 | 99.18 54 | 98.72 136 | 97.71 83 | 99.98 8 | 98.44 106 | 96.85 29 | 99.80 16 | 99.91 13 | 97.57 6 | 99.85 94 | 99.44 38 | 99.99 20 | 99.99 20 |
Skip Steuart: Steuart Systems R&D Blog. |
CPTT-MVS | | | 97.64 86 | 97.32 88 | 98.58 105 | 99.97 3 | 95.77 156 | 99.96 23 | 98.35 144 | 89.90 237 | 98.36 109 | 99.79 62 | 91.18 151 | 99.99 36 | 98.37 89 | 99.99 20 | 99.99 20 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 15 | 99.90 42 | 98.85 29 | 99.24 213 | 98.47 101 | 98.14 4 | 99.08 77 | 99.91 13 | 93.09 116 | 100.00 1 | 99.04 54 | 99.99 20 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 23 | | | | 99.80 58 | 97.44 11 | 100.00 1 | 100.00 1 | 99.98 33 | 100.00 1 |
|
ETH3 D test6400 | | | 98.81 22 | 98.54 26 | 99.59 18 | 99.93 26 | 98.93 22 | 99.93 61 | 98.46 103 | 94.56 93 | 99.84 8 | 99.92 11 | 94.32 80 | 99.86 90 | 99.96 8 | 99.98 33 | 100.00 1 |
|
ETH3D-3000-0.1 | | | 98.68 29 | 98.42 31 | 99.47 34 | 99.83 63 | 98.57 51 | 99.90 73 | 98.37 140 | 93.81 129 | 99.81 12 | 99.90 17 | 94.34 76 | 99.86 90 | 99.84 13 | 99.98 33 | 99.97 63 |
|
MSP-MVS | | | 99.09 8 | 99.12 5 | 98.98 80 | 99.93 26 | 97.24 103 | 99.95 40 | 98.42 125 | 97.50 14 | 99.52 47 | 99.88 22 | 97.43 12 | 99.71 128 | 99.50 35 | 99.98 33 | 100.00 1 |
|
TSAR-MVS + MP. | | | 98.93 15 | 98.77 16 | 99.41 39 | 99.74 77 | 98.67 44 | 99.77 126 | 98.38 137 | 96.73 35 | 99.88 3 | 99.74 81 | 94.89 62 | 99.59 139 | 99.80 18 | 99.98 33 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
train_agg | | | 98.88 19 | 98.65 20 | 99.59 18 | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 114 | 94.35 103 | 99.71 30 | 99.86 29 | 95.94 31 | 99.85 94 | 99.69 31 | 99.98 33 | 99.99 20 |
|
HFP-MVS | | | 98.56 37 | 98.37 40 | 99.14 63 | 99.96 8 | 97.43 98 | 99.95 40 | 98.61 68 | 94.77 85 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
#test# | | | 98.59 35 | 98.41 33 | 99.14 63 | 99.96 8 | 97.43 98 | 99.95 40 | 98.61 68 | 95.00 79 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.78 72 | 99.98 33 | 99.98 51 |
|
ACMMPR | | | 98.50 42 | 98.32 44 | 99.05 73 | 99.96 8 | 97.18 106 | 99.95 40 | 98.60 70 | 94.77 85 | 99.31 63 | 99.84 46 | 93.73 98 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
test12 | | | | | 99.43 35 | 99.74 77 | 98.56 53 | | 98.40 130 | | 99.65 33 | | 94.76 63 | 99.75 120 | | 99.98 33 | 99.99 20 |
|
PAPM_NR | | | 98.12 66 | 97.93 68 | 98.70 94 | 99.94 14 | 96.13 145 | 99.82 112 | 98.43 114 | 94.56 93 | 97.52 130 | 99.70 88 | 94.40 71 | 99.98 42 | 97.00 131 | 99.98 33 | 99.99 20 |
|
ZD-MVS | | | | | | 99.92 35 | 98.57 51 | | 98.52 88 | 92.34 181 | 99.31 63 | 99.83 49 | 95.06 52 | 99.80 106 | 99.70 30 | 99.97 44 | |
|
9.14 | | | | 98.38 38 | | 99.87 52 | | 99.91 69 | 98.33 147 | 93.22 146 | 99.78 22 | 99.89 19 | 94.57 68 | 99.85 94 | 99.84 13 | 99.97 44 | |
|
MP-MVS | | | 98.23 63 | 97.97 64 | 99.03 75 | 99.94 14 | 97.17 109 | 99.95 40 | 98.39 133 | 94.70 88 | 98.26 115 | 99.81 57 | 91.84 142 | 100.00 1 | 98.85 67 | 99.97 44 | 99.93 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
114514_t | | | 97.41 93 | 96.83 101 | 99.14 63 | 99.51 98 | 97.83 80 | 99.89 81 | 98.27 159 | 88.48 261 | 99.06 78 | 99.66 97 | 90.30 162 | 99.64 138 | 96.32 141 | 99.97 44 | 99.96 70 |
|
SD-MVS | | | 98.92 16 | 98.70 17 | 99.56 21 | 99.70 85 | 98.73 41 | 99.94 55 | 98.34 146 | 96.38 44 | 99.81 12 | 99.76 72 | 94.59 67 | 99.98 42 | 99.84 13 | 99.96 48 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PGM-MVS | | | 98.34 54 | 98.13 55 | 98.99 79 | 99.92 35 | 97.00 112 | 99.75 134 | 99.50 16 | 93.90 126 | 99.37 60 | 99.76 72 | 93.24 113 | 100.00 1 | 97.75 116 | 99.96 48 | 99.98 51 |
|
API-MVS | | | 97.86 74 | 97.66 74 | 98.47 114 | 99.52 96 | 95.41 167 | 99.47 185 | 98.87 43 | 91.68 200 | 98.84 87 | 99.85 33 | 92.34 132 | 99.99 36 | 98.44 87 | 99.96 48 | 100.00 1 |
|
ETH3D cwj APD-0.16 | | | 98.40 51 | 98.07 59 | 99.40 41 | 99.59 90 | 98.41 60 | 99.86 98 | 98.24 161 | 92.18 185 | 99.73 26 | 99.87 26 | 93.47 103 | 99.85 94 | 99.74 24 | 99.95 51 | 99.93 81 |
|
SR-MVS | | | 98.46 45 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 111 | 99.84 105 | 98.35 144 | 94.92 80 | 99.32 62 | 99.80 58 | 93.35 105 | 99.78 111 | 99.30 44 | 99.95 51 | 99.96 70 |
|
XVS | | | 98.70 28 | 98.55 25 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 125 | 96.22 49 | 99.41 54 | 99.78 66 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
X-MVStestdata | | | 93.83 186 | 92.06 214 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 125 | 96.22 49 | 99.41 54 | 41.37 357 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
原ACMM1 | | | | | 98.96 82 | 99.73 81 | 96.99 113 | | 98.51 95 | 94.06 117 | 99.62 37 | 99.85 33 | 94.97 59 | 99.96 53 | 95.11 153 | 99.95 51 | 99.92 87 |
|
test222 | | | | | | 99.55 94 | 97.41 101 | 99.34 201 | 98.55 81 | 91.86 194 | 99.27 68 | 99.83 49 | 93.84 96 | | | 99.95 51 | 99.99 20 |
|
DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 106 | 99.92 1 | 99.96 23 | 98.44 106 | 97.96 7 | 99.55 42 | 99.94 4 | 97.18 17 | 100.00 1 | 93.81 186 | 99.94 57 | 99.98 51 |
|
新几何1 | | | | | 99.42 38 | 99.75 76 | 98.27 65 | | 98.63 65 | 92.69 164 | 99.55 42 | 99.82 53 | 94.40 71 | 100.00 1 | 91.21 221 | 99.94 57 | 99.99 20 |
|
旧先验1 | | | | | | 99.76 74 | 97.52 91 | | 98.64 62 | | | 99.85 33 | 95.63 39 | | | 99.94 57 | 99.99 20 |
|
testdata | | | | | 98.42 119 | 99.47 100 | 95.33 169 | | 98.56 76 | 93.78 131 | 99.79 21 | 99.85 33 | 93.64 101 | 99.94 68 | 94.97 155 | 99.94 57 | 100.00 1 |
|
DELS-MVS | | | 98.54 39 | 98.22 48 | 99.50 29 | 99.15 111 | 98.65 48 | 100.00 1 | 98.58 72 | 97.70 9 | 98.21 117 | 99.24 132 | 92.58 128 | 99.94 68 | 98.63 82 | 99.94 57 | 99.92 87 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 98.72 27 | 98.62 22 | 99.01 78 | 99.36 105 | 97.18 106 | 99.93 61 | 99.90 1 | 96.81 33 | 98.67 95 | 99.77 68 | 93.92 92 | 99.89 79 | 99.27 45 | 99.94 57 | 99.96 70 |
|
xxxxxxxxxxxxxcwj | | | 98.98 14 | 98.79 15 | 99.54 23 | 99.82 65 | 98.79 33 | 99.96 23 | 97.52 232 | 97.66 10 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 29 | 99.77 73 | 98.67 44 | 99.90 73 | 98.21 165 | 93.53 138 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
PHI-MVS | | | 98.41 49 | 98.21 49 | 99.03 75 | 99.86 54 | 97.10 110 | 99.98 8 | 98.80 49 | 90.78 224 | 99.62 37 | 99.78 66 | 95.30 46 | 100.00 1 | 99.80 18 | 99.93 63 | 99.99 20 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 84 | 98.98 10 | 93.92 261 | 99.63 88 | 81.76 333 | 99.96 23 | 98.56 76 | 99.47 1 | 99.19 74 | 99.99 1 | 94.16 87 | 100.00 1 | 99.92 9 | 99.93 63 | 100.00 1 |
|
test1172 | | | 98.38 53 | 98.25 47 | 98.77 90 | 99.88 49 | 96.56 126 | 99.80 119 | 98.36 142 | 94.68 89 | 99.20 71 | 99.80 58 | 93.28 110 | 99.78 111 | 99.34 42 | 99.92 67 | 99.98 51 |
|
SR-MVS-dyc-post | | | 98.31 56 | 98.17 52 | 98.71 93 | 99.79 70 | 96.37 133 | 99.76 131 | 98.31 151 | 94.43 98 | 99.40 58 | 99.75 77 | 93.28 110 | 99.78 111 | 98.90 64 | 99.92 67 | 99.97 63 |
|
RE-MVS-def | | | | 98.13 55 | | 99.79 70 | 96.37 133 | 99.76 131 | 98.31 151 | 94.43 98 | 99.40 58 | 99.75 77 | 92.95 119 | | 98.90 64 | 99.92 67 | 99.97 63 |
|
1121 | | | 98.03 69 | 97.57 79 | 99.40 41 | 99.74 77 | 98.21 66 | 98.31 281 | 98.62 66 | 92.78 159 | 99.53 44 | 99.83 49 | 95.08 50 | 100.00 1 | 94.36 173 | 99.92 67 | 99.99 20 |
|
APD-MVS_3200maxsize | | | 98.25 62 | 98.08 58 | 98.78 89 | 99.81 68 | 96.60 124 | 99.82 112 | 98.30 154 | 93.95 123 | 99.37 60 | 99.77 68 | 92.84 121 | 99.76 117 | 98.95 58 | 99.92 67 | 99.97 63 |
|
Regformer-1 | | | 98.79 24 | 98.60 23 | 99.36 45 | 99.85 55 | 98.34 62 | 99.87 87 | 98.52 88 | 96.05 53 | 99.41 54 | 99.79 62 | 94.93 60 | 99.76 117 | 99.07 49 | 99.90 72 | 99.99 20 |
|
Regformer-2 | | | 98.78 25 | 98.59 24 | 99.36 45 | 99.85 55 | 98.32 63 | 99.87 87 | 98.52 88 | 96.04 54 | 99.41 54 | 99.79 62 | 94.92 61 | 99.76 117 | 99.05 50 | 99.90 72 | 99.98 51 |
|
MP-MVS-pluss | | | 98.07 68 | 97.64 75 | 99.38 44 | 99.74 77 | 98.41 60 | 99.74 137 | 98.18 170 | 93.35 142 | 96.45 154 | 99.85 33 | 92.64 127 | 99.97 51 | 98.91 63 | 99.89 74 | 99.77 104 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM | | | 98.60 33 | 98.42 31 | 99.14 63 | 96.05 242 | 98.96 20 | 99.90 73 | 99.35 23 | 96.68 37 | 98.35 110 | 99.66 97 | 96.45 25 | 98.51 185 | 99.45 37 | 99.89 74 | 99.96 70 |
|
zzz-MVS | | | 98.33 55 | 98.00 62 | 99.30 47 | 99.85 55 | 97.93 78 | 99.80 119 | 98.28 156 | 95.76 60 | 97.18 137 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
MTAPA | | | 98.29 58 | 97.96 67 | 99.30 47 | 99.85 55 | 97.93 78 | 99.39 195 | 98.28 156 | 95.76 60 | 97.18 137 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
MVS | | | 96.60 123 | 95.56 142 | 99.72 9 | 96.85 225 | 99.22 15 | 98.31 281 | 98.94 36 | 91.57 203 | 90.90 218 | 99.61 102 | 86.66 200 | 99.96 53 | 97.36 122 | 99.88 76 | 99.99 20 |
|
MVS_111021_LR | | | 98.42 48 | 98.38 38 | 98.53 111 | 99.39 103 | 95.79 155 | 99.87 87 | 99.86 2 | 96.70 36 | 98.78 90 | 99.79 62 | 92.03 138 | 99.90 75 | 99.17 46 | 99.86 79 | 99.88 92 |
|
ACMMP_NAP | | | 98.49 43 | 98.14 54 | 99.54 23 | 99.66 87 | 98.62 50 | 99.85 101 | 98.37 140 | 94.68 89 | 99.53 44 | 99.83 49 | 92.87 120 | 100.00 1 | 98.66 80 | 99.84 80 | 99.99 20 |
|
Regformer-3 | | | 98.58 36 | 98.41 33 | 99.10 69 | 99.84 60 | 97.57 88 | 99.66 153 | 98.52 88 | 95.79 57 | 99.01 81 | 99.77 68 | 94.40 71 | 99.75 120 | 98.82 68 | 99.83 81 | 99.98 51 |
|
Regformer-4 | | | 98.56 37 | 98.39 37 | 99.08 71 | 99.84 60 | 97.52 91 | 99.66 153 | 98.52 88 | 95.76 60 | 99.01 81 | 99.77 68 | 94.33 79 | 99.75 120 | 98.80 71 | 99.83 81 | 99.98 51 |
|
QAPM | | | 95.40 154 | 94.17 169 | 99.10 69 | 96.92 221 | 97.71 83 | 99.40 191 | 98.68 55 | 89.31 242 | 88.94 255 | 98.89 158 | 82.48 230 | 99.96 53 | 93.12 203 | 99.83 81 | 99.62 125 |
|
PAPR | | | 98.52 41 | 98.16 53 | 99.58 20 | 99.97 3 | 98.77 36 | 99.95 40 | 98.43 114 | 95.35 71 | 98.03 120 | 99.75 77 | 94.03 90 | 99.98 42 | 98.11 98 | 99.83 81 | 99.99 20 |
|
3Dnovator+ | | 91.53 11 | 96.31 133 | 95.24 149 | 99.52 26 | 96.88 224 | 98.64 49 | 99.72 145 | 98.24 161 | 95.27 75 | 88.42 266 | 98.98 149 | 82.76 229 | 99.94 68 | 97.10 129 | 99.83 81 | 99.96 70 |
|
3Dnovator | | 91.47 12 | 96.28 136 | 95.34 147 | 99.08 71 | 96.82 227 | 97.47 97 | 99.45 188 | 98.81 47 | 95.52 68 | 89.39 243 | 99.00 146 | 81.97 232 | 99.95 60 | 97.27 124 | 99.83 81 | 99.84 95 |
|
LS3D | | | 95.84 144 | 95.11 154 | 98.02 136 | 99.85 55 | 95.10 177 | 98.74 258 | 98.50 99 | 87.22 277 | 93.66 195 | 99.86 29 | 87.45 192 | 99.95 60 | 90.94 229 | 99.81 87 | 99.02 187 |
|
CHOSEN 280x420 | | | 99.01 12 | 99.03 8 | 98.95 83 | 99.38 104 | 98.87 27 | 98.46 274 | 99.42 20 | 97.03 27 | 99.02 80 | 99.09 138 | 99.35 1 | 98.21 214 | 99.73 27 | 99.78 88 | 99.77 104 |
|
GST-MVS | | | 98.27 59 | 97.97 64 | 99.17 57 | 99.92 35 | 97.57 88 | 99.93 61 | 98.39 133 | 94.04 119 | 98.80 89 | 99.74 81 | 92.98 118 | 100.00 1 | 98.16 95 | 99.76 89 | 99.93 81 |
|
OpenMVS | | 90.15 15 | 94.77 166 | 93.59 182 | 98.33 123 | 96.07 241 | 97.48 96 | 99.56 171 | 98.57 74 | 90.46 227 | 86.51 290 | 98.95 155 | 78.57 265 | 99.94 68 | 93.86 182 | 99.74 90 | 97.57 214 |
|
1314 | | | 96.84 111 | 95.96 130 | 99.48 33 | 96.74 232 | 98.52 55 | 98.31 281 | 98.86 44 | 95.82 56 | 89.91 229 | 98.98 149 | 87.49 191 | 99.96 53 | 97.80 111 | 99.73 91 | 99.96 70 |
|
abl_6 | | | 97.67 85 | 97.34 86 | 98.66 97 | 99.68 86 | 96.11 148 | 99.68 150 | 98.14 177 | 93.80 130 | 99.27 68 | 99.70 88 | 88.65 184 | 99.98 42 | 97.46 120 | 99.72 92 | 99.89 90 |
|
DP-MVS Recon | | | 98.41 49 | 98.02 61 | 99.56 21 | 99.97 3 | 98.70 43 | 99.92 65 | 98.44 106 | 92.06 190 | 98.40 108 | 99.84 46 | 95.68 38 | 100.00 1 | 98.19 93 | 99.71 93 | 99.97 63 |
|
MVP-Stereo | | | 90.93 245 | 90.45 240 | 92.37 289 | 91.25 326 | 88.76 291 | 98.05 295 | 96.17 315 | 87.27 276 | 84.04 307 | 95.30 281 | 78.46 267 | 97.27 255 | 83.78 298 | 99.70 94 | 91.09 328 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PS-MVSNAJ | | | 98.44 47 | 98.20 50 | 99.16 59 | 98.80 133 | 98.92 23 | 99.54 175 | 98.17 171 | 97.34 16 | 99.85 6 | 99.85 33 | 91.20 148 | 99.89 79 | 99.41 40 | 99.67 95 | 98.69 199 |
|
BH-w/o | | | 95.71 148 | 95.38 146 | 96.68 178 | 98.49 144 | 92.28 233 | 99.84 105 | 97.50 236 | 92.12 187 | 92.06 209 | 98.79 168 | 84.69 216 | 98.67 178 | 95.29 152 | 99.66 96 | 99.09 185 |
|
MAR-MVS | | | 97.43 89 | 97.19 90 | 98.15 132 | 99.47 100 | 94.79 185 | 99.05 233 | 98.76 50 | 92.65 167 | 98.66 96 | 99.82 53 | 88.52 185 | 99.98 42 | 98.12 97 | 99.63 97 | 99.67 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MS-PatchMatch | | | 90.65 252 | 90.30 243 | 91.71 297 | 94.22 282 | 85.50 316 | 98.24 286 | 97.70 210 | 88.67 257 | 86.42 293 | 96.37 243 | 67.82 318 | 98.03 221 | 83.62 299 | 99.62 98 | 91.60 326 |
|
MVSFormer | | | 96.94 107 | 96.60 108 | 97.95 137 | 97.28 210 | 97.70 85 | 99.55 173 | 97.27 257 | 91.17 213 | 99.43 52 | 99.54 108 | 90.92 156 | 96.89 278 | 94.67 168 | 99.62 98 | 99.25 174 |
|
lupinMVS | | | 97.85 75 | 97.60 77 | 98.62 100 | 97.28 210 | 97.70 85 | 99.99 4 | 97.55 226 | 95.50 69 | 99.43 52 | 99.67 95 | 90.92 156 | 98.71 175 | 98.40 88 | 99.62 98 | 99.45 154 |
|
BH-untuned | | | 95.18 157 | 94.83 158 | 96.22 191 | 98.36 148 | 91.22 258 | 99.80 119 | 97.32 254 | 90.91 220 | 91.08 216 | 98.67 172 | 83.51 224 | 98.54 184 | 94.23 178 | 99.61 101 | 98.92 189 |
|
DeepC-MVS | | 94.51 4 | 96.92 109 | 96.40 115 | 98.45 116 | 99.16 110 | 95.90 152 | 99.66 153 | 98.06 183 | 96.37 47 | 94.37 186 | 99.49 111 | 83.29 227 | 99.90 75 | 97.63 117 | 99.61 101 | 99.55 139 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
GG-mvs-BLEND | | | | | 98.54 109 | 98.21 158 | 98.01 73 | 93.87 332 | 98.52 88 | | 97.92 122 | 97.92 200 | 99.02 2 | 97.94 228 | 98.17 94 | 99.58 103 | 99.67 117 |
|
gg-mvs-nofinetune | | | 93.51 196 | 91.86 219 | 98.47 114 | 97.72 190 | 97.96 77 | 92.62 336 | 98.51 95 | 74.70 338 | 97.33 134 | 69.59 349 | 98.91 3 | 97.79 231 | 97.77 114 | 99.56 104 | 99.67 117 |
|
BH-RMVSNet | | | 95.18 157 | 94.31 167 | 97.80 141 | 98.17 161 | 95.23 174 | 99.76 131 | 97.53 230 | 92.52 176 | 94.27 188 | 99.25 131 | 76.84 274 | 98.80 166 | 90.89 231 | 99.54 105 | 99.35 165 |
|
EI-MVSNet-Vis-set | | | 98.27 59 | 98.11 57 | 98.75 92 | 99.83 63 | 96.59 125 | 99.40 191 | 98.51 95 | 95.29 73 | 98.51 102 | 99.76 72 | 93.60 102 | 99.71 128 | 98.53 85 | 99.52 106 | 99.95 78 |
|
TAPA-MVS | | 92.12 8 | 94.42 178 | 93.60 181 | 96.90 171 | 99.33 106 | 91.78 246 | 99.78 123 | 98.00 186 | 89.89 238 | 94.52 183 | 99.47 112 | 91.97 139 | 99.18 154 | 69.90 336 | 99.52 106 | 99.73 108 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC | | 95.54 3 | 97.93 72 | 97.89 69 | 98.05 135 | 99.82 65 | 94.77 186 | 99.92 65 | 98.46 103 | 93.93 124 | 97.20 136 | 99.27 127 | 95.44 44 | 99.97 51 | 97.41 121 | 99.51 108 | 99.41 159 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
jason | | | 97.24 98 | 96.86 100 | 98.38 122 | 95.73 254 | 97.32 102 | 99.97 16 | 97.40 248 | 95.34 72 | 98.60 100 | 99.54 108 | 87.70 189 | 98.56 182 | 97.94 108 | 99.47 109 | 99.25 174 |
jason: jason. |
CSCG | | | 97.10 102 | 97.04 96 | 97.27 164 | 99.89 45 | 91.92 242 | 99.90 73 | 99.07 31 | 88.67 257 | 95.26 177 | 99.82 53 | 93.17 115 | 99.98 42 | 98.15 96 | 99.47 109 | 99.90 89 |
|
CNLPA | | | 97.76 82 | 97.38 83 | 98.92 85 | 99.53 95 | 96.84 117 | 99.87 87 | 98.14 177 | 93.78 131 | 96.55 152 | 99.69 91 | 92.28 133 | 99.98 42 | 97.13 127 | 99.44 111 | 99.93 81 |
|
AdaColmap | | | 97.23 99 | 96.80 103 | 98.51 112 | 99.99 1 | 95.60 163 | 99.09 222 | 98.84 46 | 93.32 143 | 96.74 147 | 99.72 84 | 86.04 205 | 100.00 1 | 98.01 103 | 99.43 112 | 99.94 80 |
|
CANet | | | 98.27 59 | 97.82 70 | 99.63 12 | 99.72 83 | 99.10 17 | 99.98 8 | 98.51 95 | 97.00 28 | 98.52 101 | 99.71 86 | 87.80 188 | 99.95 60 | 99.75 22 | 99.38 113 | 99.83 96 |
|
F-COLMAP | | | 96.93 108 | 96.95 99 | 96.87 172 | 99.71 84 | 91.74 247 | 99.85 101 | 97.95 192 | 93.11 150 | 95.72 170 | 99.16 136 | 92.35 131 | 99.94 68 | 95.32 151 | 99.35 114 | 98.92 189 |
|
EI-MVSNet-UG-set | | | 98.14 65 | 97.99 63 | 98.60 102 | 99.80 69 | 96.27 135 | 99.36 200 | 98.50 99 | 95.21 76 | 98.30 112 | 99.75 77 | 93.29 109 | 99.73 127 | 98.37 89 | 99.30 115 | 99.81 98 |
|
PVSNet_Blended | | | 97.94 71 | 97.64 75 | 98.83 88 | 99.59 90 | 96.99 113 | 100.00 1 | 99.10 28 | 95.38 70 | 98.27 113 | 99.08 139 | 89.00 179 | 99.95 60 | 99.12 47 | 99.25 116 | 99.57 137 |
|
PatchMatch-RL | | | 96.04 140 | 95.40 144 | 97.95 137 | 99.59 90 | 95.22 175 | 99.52 177 | 99.07 31 | 93.96 122 | 96.49 153 | 98.35 189 | 82.28 231 | 99.82 105 | 90.15 243 | 99.22 117 | 98.81 196 |
|
CHOSEN 1792x2688 | | | 96.81 112 | 96.53 111 | 97.64 149 | 98.91 127 | 93.07 214 | 99.65 156 | 99.80 3 | 95.64 65 | 95.39 174 | 98.86 164 | 84.35 220 | 99.90 75 | 96.98 132 | 99.16 118 | 99.95 78 |
|
EIA-MVS | | | 97.53 88 | 97.46 81 | 97.76 145 | 98.04 167 | 94.84 182 | 99.98 8 | 97.61 220 | 94.41 101 | 97.90 123 | 99.59 103 | 92.40 130 | 98.87 163 | 98.04 102 | 99.13 119 | 99.59 130 |
|
UGNet | | | 95.33 155 | 94.57 163 | 97.62 151 | 98.55 140 | 94.85 181 | 98.67 265 | 99.32 24 | 95.75 63 | 96.80 146 | 96.27 245 | 72.18 301 | 99.96 53 | 94.58 170 | 99.05 120 | 98.04 206 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CS-MVS | | | 97.84 76 | 97.69 73 | 98.31 124 | 98.28 152 | 96.27 135 | 100.00 1 | 97.52 232 | 95.29 73 | 99.25 70 | 99.65 99 | 91.18 151 | 98.94 162 | 98.96 57 | 99.04 121 | 99.73 108 |
|
CANet_DTU | | | 96.76 115 | 96.15 119 | 98.60 102 | 98.78 134 | 97.53 90 | 99.84 105 | 97.63 215 | 97.25 23 | 99.20 71 | 99.64 100 | 81.36 239 | 99.98 42 | 92.77 206 | 98.89 122 | 98.28 202 |
|
TESTMET0.1,1 | | | 96.74 117 | 96.26 117 | 98.16 129 | 97.36 204 | 96.48 127 | 99.96 23 | 98.29 155 | 91.93 192 | 95.77 169 | 98.07 195 | 95.54 40 | 98.29 207 | 90.55 235 | 98.89 122 | 99.70 112 |
|
test-LLR | | | 96.47 126 | 96.04 121 | 97.78 142 | 97.02 218 | 95.44 165 | 99.96 23 | 98.21 165 | 94.07 115 | 95.55 171 | 96.38 241 | 93.90 94 | 98.27 211 | 90.42 238 | 98.83 124 | 99.64 123 |
|
test-mter | | | 96.39 130 | 95.93 132 | 97.78 142 | 97.02 218 | 95.44 165 | 99.96 23 | 98.21 165 | 91.81 197 | 95.55 171 | 96.38 241 | 95.17 47 | 98.27 211 | 90.42 238 | 98.83 124 | 99.64 123 |
|
PVSNet | | 91.05 13 | 97.13 101 | 96.69 106 | 98.45 116 | 99.52 96 | 95.81 154 | 99.95 40 | 99.65 10 | 94.73 87 | 99.04 79 | 99.21 134 | 84.48 218 | 99.95 60 | 94.92 156 | 98.74 126 | 99.58 136 |
|
EPNet | | | 98.49 43 | 98.40 35 | 98.77 90 | 99.62 89 | 96.80 119 | 99.90 73 | 99.51 15 | 97.60 12 | 99.20 71 | 99.36 123 | 93.71 99 | 99.91 74 | 97.99 105 | 98.71 127 | 99.61 127 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v2_base | | | 98.23 63 | 97.97 64 | 99.02 77 | 98.69 137 | 98.66 46 | 99.52 177 | 98.08 182 | 97.05 26 | 99.86 4 | 99.86 29 | 90.65 158 | 99.71 128 | 99.39 41 | 98.63 128 | 98.69 199 |
|
ETV-MVS | | | 97.92 73 | 97.80 71 | 98.25 127 | 98.14 163 | 96.48 127 | 99.98 8 | 97.63 215 | 95.61 66 | 99.29 67 | 99.46 114 | 92.55 129 | 98.82 165 | 99.02 56 | 98.54 129 | 99.46 152 |
|
Vis-MVSNet | | | 95.72 146 | 95.15 153 | 97.45 155 | 97.62 194 | 94.28 193 | 99.28 210 | 98.24 161 | 94.27 109 | 96.84 144 | 98.94 156 | 79.39 258 | 98.76 171 | 93.25 197 | 98.49 130 | 99.30 170 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PCF-MVS | | 94.20 5 | 95.18 157 | 94.10 171 | 98.43 118 | 98.55 140 | 95.99 150 | 97.91 298 | 97.31 255 | 90.35 230 | 89.48 242 | 99.22 133 | 85.19 213 | 99.89 79 | 90.40 240 | 98.47 131 | 99.41 159 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MSDG | | | 94.37 179 | 93.36 191 | 97.40 158 | 98.88 130 | 93.95 199 | 99.37 198 | 97.38 249 | 85.75 297 | 90.80 219 | 99.17 135 | 84.11 222 | 99.88 85 | 86.35 281 | 98.43 132 | 98.36 201 |
|
PVSNet_Blended_VisFu | | | 97.27 97 | 96.81 102 | 98.66 97 | 98.81 132 | 96.67 121 | 99.92 65 | 98.64 62 | 94.51 95 | 96.38 158 | 98.49 183 | 89.05 178 | 99.88 85 | 97.10 129 | 98.34 133 | 99.43 157 |
|
EPNet_dtu | | | 95.71 148 | 95.39 145 | 96.66 179 | 98.92 125 | 93.41 210 | 99.57 169 | 98.90 40 | 96.19 51 | 97.52 130 | 98.56 181 | 92.65 126 | 97.36 244 | 77.89 322 | 98.33 134 | 99.20 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 186 | 98.14 67 | 99.31 205 | 97.86 202 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 209 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
xiu_mvs_v1_base | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 186 | 98.14 67 | 99.31 205 | 97.86 202 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 209 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 186 | 98.14 67 | 99.31 205 | 97.86 202 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 209 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
OMC-MVS | | | 97.28 96 | 97.23 89 | 97.41 157 | 99.76 74 | 93.36 212 | 99.65 156 | 97.95 192 | 96.03 55 | 97.41 133 | 99.70 88 | 89.61 169 | 99.51 142 | 96.73 138 | 98.25 138 | 99.38 161 |
|
mvs-test1 | | | 95.53 151 | 95.97 128 | 94.20 249 | 97.77 183 | 85.44 317 | 99.95 40 | 97.06 273 | 94.92 80 | 96.58 150 | 98.72 170 | 85.81 206 | 98.98 159 | 94.80 161 | 98.11 139 | 98.18 203 |
|
DP-MVS | | | 94.54 174 | 93.42 187 | 97.91 140 | 99.46 102 | 94.04 197 | 98.93 244 | 97.48 238 | 81.15 322 | 90.04 226 | 99.55 106 | 87.02 197 | 99.95 60 | 88.97 253 | 98.11 139 | 99.73 108 |
|
EPMVS | | | 96.53 125 | 96.01 122 | 98.09 133 | 98.43 146 | 96.12 147 | 96.36 317 | 99.43 19 | 93.53 138 | 97.64 128 | 95.04 290 | 94.41 70 | 98.38 201 | 91.13 223 | 98.11 139 | 99.75 106 |
|
PatchmatchNet | | | 95.94 142 | 95.45 143 | 97.39 159 | 97.83 179 | 94.41 191 | 96.05 322 | 98.40 130 | 92.86 153 | 97.09 139 | 95.28 285 | 94.21 86 | 98.07 220 | 89.26 251 | 98.11 139 | 99.70 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline2 | | | 96.71 119 | 96.49 112 | 97.37 160 | 95.63 261 | 95.96 151 | 99.74 137 | 98.88 42 | 92.94 152 | 91.61 211 | 98.97 151 | 97.72 5 | 98.62 180 | 94.83 160 | 98.08 143 | 97.53 215 |
|
ACMMP | | | 97.74 83 | 97.44 82 | 98.66 97 | 99.92 35 | 96.13 145 | 99.18 217 | 99.45 17 | 94.84 84 | 96.41 157 | 99.71 86 | 91.40 145 | 99.99 36 | 97.99 105 | 98.03 144 | 99.87 93 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS-HIRNet | | | 86.22 293 | 83.19 304 | 95.31 210 | 96.71 234 | 90.29 274 | 92.12 338 | 97.33 253 | 62.85 345 | 86.82 285 | 70.37 348 | 69.37 311 | 97.49 240 | 75.12 331 | 97.99 145 | 98.15 204 |
|
PMMVS | | | 96.76 115 | 96.76 104 | 96.76 175 | 98.28 152 | 92.10 237 | 99.91 69 | 97.98 189 | 94.12 112 | 99.53 44 | 99.39 120 | 86.93 198 | 98.73 173 | 96.95 134 | 97.73 146 | 99.45 154 |
|
UA-Net | | | 96.54 124 | 95.96 130 | 98.27 126 | 98.23 157 | 95.71 160 | 98.00 296 | 98.45 105 | 93.72 134 | 98.41 106 | 99.27 127 | 88.71 183 | 99.66 136 | 91.19 222 | 97.69 147 | 99.44 156 |
|
TSAR-MVS + GP. | | | 98.60 33 | 98.51 28 | 98.86 87 | 99.73 81 | 96.63 122 | 99.97 16 | 97.92 196 | 98.07 5 | 98.76 91 | 99.55 106 | 95.00 57 | 99.94 68 | 99.91 11 | 97.68 148 | 99.99 20 |
|
mvs_anonymous | | | 95.65 150 | 95.03 155 | 97.53 152 | 98.19 159 | 95.74 158 | 99.33 202 | 97.49 237 | 90.87 221 | 90.47 222 | 97.10 217 | 88.23 186 | 97.16 259 | 95.92 146 | 97.66 149 | 99.68 115 |
|
LCM-MVSNet-Re | | | 92.31 221 | 92.60 202 | 91.43 298 | 97.53 197 | 79.27 341 | 99.02 236 | 91.83 347 | 92.07 188 | 80.31 320 | 94.38 311 | 83.50 225 | 95.48 318 | 97.22 126 | 97.58 150 | 99.54 143 |
|
MVS_Test | | | 96.46 127 | 95.74 138 | 98.61 101 | 98.18 160 | 97.23 104 | 99.31 205 | 97.15 267 | 91.07 217 | 98.84 87 | 97.05 221 | 88.17 187 | 98.97 160 | 94.39 172 | 97.50 151 | 99.61 127 |
|
SCA | | | 94.69 168 | 93.81 178 | 97.33 163 | 97.10 213 | 94.44 189 | 98.86 252 | 98.32 149 | 93.30 144 | 96.17 162 | 95.59 264 | 76.48 277 | 97.95 226 | 91.06 225 | 97.43 152 | 99.59 130 |
|
Vis-MVSNet (Re-imp) | | | 96.32 132 | 95.98 125 | 97.35 162 | 97.93 172 | 94.82 183 | 99.47 185 | 98.15 176 | 91.83 195 | 95.09 178 | 99.11 137 | 91.37 146 | 97.47 241 | 93.47 195 | 97.43 152 | 99.74 107 |
|
diffmvs | | | 97.00 105 | 96.64 107 | 98.09 133 | 97.64 193 | 96.17 144 | 99.81 114 | 97.19 261 | 94.67 91 | 98.95 84 | 99.28 124 | 86.43 202 | 98.76 171 | 98.37 89 | 97.42 154 | 99.33 167 |
|
IS-MVSNet | | | 96.29 135 | 95.90 134 | 97.45 155 | 98.13 164 | 94.80 184 | 99.08 224 | 97.61 220 | 92.02 191 | 95.54 173 | 98.96 153 | 90.64 159 | 98.08 218 | 93.73 191 | 97.41 155 | 99.47 151 |
|
Effi-MVS+ | | | 96.30 134 | 95.69 139 | 98.16 129 | 97.85 178 | 96.26 137 | 97.41 305 | 97.21 260 | 90.37 229 | 98.65 97 | 98.58 179 | 86.61 201 | 98.70 176 | 97.11 128 | 97.37 156 | 99.52 146 |
|
DWT-MVSNet_test | | | 97.31 95 | 97.19 90 | 97.66 148 | 98.24 156 | 94.67 187 | 98.86 252 | 98.20 169 | 93.60 137 | 98.09 118 | 98.89 158 | 97.51 7 | 98.78 168 | 94.04 180 | 97.28 157 | 99.55 139 |
|
ADS-MVSNet2 | | | 93.80 189 | 93.88 176 | 93.55 271 | 97.87 176 | 85.94 313 | 94.24 328 | 96.84 295 | 90.07 234 | 96.43 155 | 94.48 308 | 90.29 163 | 95.37 320 | 87.44 268 | 97.23 158 | 99.36 163 |
|
ADS-MVSNet | | | 94.79 164 | 94.02 172 | 97.11 168 | 97.87 176 | 93.79 201 | 94.24 328 | 98.16 174 | 90.07 234 | 96.43 155 | 94.48 308 | 90.29 163 | 98.19 215 | 87.44 268 | 97.23 158 | 99.36 163 |
|
EPP-MVSNet | | | 96.69 120 | 96.60 108 | 96.96 169 | 97.74 186 | 93.05 216 | 99.37 198 | 98.56 76 | 88.75 255 | 95.83 168 | 99.01 144 | 96.01 28 | 98.56 182 | 96.92 135 | 97.20 160 | 99.25 174 |
|
Fast-Effi-MVS+ | | | 95.02 161 | 94.19 168 | 97.52 153 | 97.88 174 | 94.55 188 | 99.97 16 | 97.08 271 | 88.85 254 | 94.47 185 | 97.96 199 | 84.59 217 | 98.41 193 | 89.84 246 | 97.10 161 | 99.59 130 |
|
Effi-MVS+-dtu | | | 94.53 176 | 95.30 148 | 92.22 290 | 97.77 183 | 82.54 327 | 99.59 166 | 97.06 273 | 94.92 80 | 95.29 176 | 95.37 278 | 85.81 206 | 97.89 229 | 94.80 161 | 97.07 162 | 96.23 222 |
|
casdiffmvs | | | 96.42 129 | 95.97 128 | 97.77 144 | 97.30 209 | 94.98 178 | 99.84 105 | 97.09 270 | 93.75 133 | 96.58 150 | 99.26 130 | 85.07 214 | 98.78 168 | 97.77 114 | 97.04 163 | 99.54 143 |
|
sss | | | 97.57 87 | 97.03 97 | 99.18 54 | 98.37 147 | 98.04 72 | 99.73 142 | 99.38 21 | 93.46 140 | 98.76 91 | 99.06 140 | 91.21 147 | 99.89 79 | 96.33 140 | 97.01 164 | 99.62 125 |
|
Patchmatch-test | | | 92.65 215 | 91.50 225 | 96.10 194 | 96.85 225 | 90.49 270 | 91.50 341 | 97.19 261 | 82.76 317 | 90.23 223 | 95.59 264 | 95.02 54 | 98.00 222 | 77.41 324 | 96.98 165 | 99.82 97 |
|
MDTV_nov1_ep13 | | | | 95.69 139 | | 97.90 173 | 94.15 195 | 95.98 323 | 98.44 106 | 93.12 149 | 97.98 121 | 95.74 256 | 95.10 49 | 98.58 181 | 90.02 244 | 96.92 166 | |
|
Fast-Effi-MVS+-dtu | | | 93.72 193 | 93.86 177 | 93.29 274 | 97.06 215 | 86.16 311 | 99.80 119 | 96.83 296 | 92.66 166 | 92.58 207 | 97.83 201 | 81.39 238 | 97.67 235 | 89.75 248 | 96.87 167 | 96.05 224 |
|
baseline | | | 96.43 128 | 95.98 125 | 97.76 145 | 97.34 205 | 95.17 176 | 99.51 179 | 97.17 264 | 93.92 125 | 96.90 143 | 99.28 124 | 85.37 212 | 98.64 179 | 97.50 119 | 96.86 168 | 99.46 152 |
|
tpmrst | | | 96.27 137 | 95.98 125 | 97.13 166 | 97.96 170 | 93.15 213 | 96.34 318 | 98.17 171 | 92.07 188 | 98.71 94 | 95.12 288 | 93.91 93 | 98.73 173 | 94.91 158 | 96.62 169 | 99.50 149 |
|
JIA-IIPM | | | 91.76 235 | 90.70 235 | 94.94 220 | 96.11 240 | 87.51 306 | 93.16 335 | 98.13 179 | 75.79 335 | 97.58 129 | 77.68 346 | 92.84 121 | 97.97 223 | 88.47 259 | 96.54 170 | 99.33 167 |
|
dp | | | 95.05 160 | 94.43 165 | 96.91 170 | 97.99 169 | 92.73 223 | 96.29 319 | 97.98 189 | 89.70 240 | 95.93 165 | 94.67 303 | 93.83 97 | 98.45 190 | 86.91 280 | 96.53 171 | 99.54 143 |
|
COLMAP_ROB | | 90.47 14 | 92.18 224 | 91.49 226 | 94.25 248 | 99.00 117 | 88.04 304 | 98.42 279 | 96.70 304 | 82.30 319 | 88.43 264 | 99.01 144 | 76.97 272 | 99.85 94 | 86.11 284 | 96.50 172 | 94.86 225 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tpm cat1 | | | 93.51 196 | 92.52 207 | 96.47 182 | 97.77 183 | 91.47 257 | 96.13 320 | 98.06 183 | 80.98 323 | 92.91 203 | 93.78 316 | 89.66 168 | 98.87 163 | 87.03 276 | 96.39 173 | 99.09 185 |
|
thisisatest0515 | | | 97.41 93 | 97.02 98 | 98.59 104 | 97.71 192 | 97.52 91 | 99.97 16 | 98.54 85 | 91.83 195 | 97.45 132 | 99.04 141 | 97.50 8 | 99.10 156 | 94.75 164 | 96.37 174 | 99.16 179 |
|
AllTest | | | 92.48 217 | 91.64 220 | 95.00 218 | 99.01 115 | 88.43 297 | 98.94 243 | 96.82 298 | 86.50 286 | 88.71 257 | 98.47 187 | 74.73 291 | 99.88 85 | 85.39 287 | 96.18 175 | 96.71 218 |
|
TestCases | | | | | 95.00 218 | 99.01 115 | 88.43 297 | | 96.82 298 | 86.50 286 | 88.71 257 | 98.47 187 | 74.73 291 | 99.88 85 | 85.39 287 | 96.18 175 | 96.71 218 |
|
thisisatest0530 | | | 97.10 102 | 96.72 105 | 98.22 128 | 97.60 195 | 96.70 120 | 99.92 65 | 98.54 85 | 91.11 216 | 97.07 140 | 98.97 151 | 97.47 9 | 99.03 157 | 93.73 191 | 96.09 177 | 98.92 189 |
|
DSMNet-mixed | | | 88.28 286 | 88.24 281 | 88.42 319 | 89.64 335 | 75.38 343 | 98.06 294 | 89.86 350 | 85.59 299 | 88.20 269 | 92.14 328 | 76.15 282 | 91.95 340 | 78.46 320 | 96.05 178 | 97.92 207 |
|
TR-MVS | | | 94.54 174 | 93.56 184 | 97.49 154 | 97.96 170 | 94.34 192 | 98.71 261 | 97.51 235 | 90.30 232 | 94.51 184 | 98.69 171 | 75.56 284 | 98.77 170 | 92.82 205 | 95.99 179 | 99.35 165 |
|
CR-MVSNet | | | 93.45 199 | 92.62 201 | 95.94 197 | 96.29 237 | 92.66 225 | 92.01 339 | 96.23 313 | 92.62 168 | 96.94 141 | 93.31 320 | 91.04 153 | 96.03 312 | 79.23 318 | 95.96 180 | 99.13 183 |
|
RPMNet | | | 89.76 273 | 87.28 288 | 97.19 165 | 96.29 237 | 92.66 225 | 92.01 339 | 98.31 151 | 70.19 344 | 96.94 141 | 85.87 342 | 87.25 194 | 99.78 111 | 62.69 345 | 95.96 180 | 99.13 183 |
|
PatchT | | | 90.38 259 | 88.75 273 | 95.25 211 | 95.99 244 | 90.16 276 | 91.22 343 | 97.54 228 | 76.80 331 | 97.26 135 | 86.01 341 | 91.88 140 | 96.07 311 | 66.16 342 | 95.91 182 | 99.51 147 |
|
tpmvs | | | 94.28 182 | 93.57 183 | 96.40 186 | 98.55 140 | 91.50 256 | 95.70 327 | 98.55 81 | 87.47 272 | 92.15 208 | 94.26 312 | 91.42 144 | 98.95 161 | 88.15 262 | 95.85 183 | 98.76 198 |
|
TAMVS | | | 95.85 143 | 95.58 141 | 96.65 180 | 97.07 214 | 93.50 207 | 99.17 218 | 97.82 206 | 91.39 212 | 95.02 179 | 98.01 196 | 92.20 134 | 97.30 249 | 93.75 190 | 95.83 184 | 99.14 182 |
|
CostFormer | | | 96.10 138 | 95.88 135 | 96.78 174 | 97.03 217 | 92.55 229 | 97.08 309 | 97.83 205 | 90.04 236 | 98.72 93 | 94.89 297 | 95.01 56 | 98.29 207 | 96.54 139 | 95.77 185 | 99.50 149 |
|
tttt0517 | | | 96.85 110 | 96.49 112 | 97.92 139 | 97.48 201 | 95.89 153 | 99.85 101 | 98.54 85 | 90.72 225 | 96.63 149 | 98.93 157 | 97.47 9 | 99.02 158 | 93.03 204 | 95.76 186 | 98.85 193 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 92 | 99.63 12 | 98.98 118 | 99.32 6 | 97.49 304 | 99.52 13 | 95.69 64 | 98.32 111 | 97.41 208 | 93.32 107 | 99.77 115 | 98.08 101 | 95.75 187 | 99.81 98 |
|
CDS-MVSNet | | | 96.34 131 | 96.07 120 | 97.13 166 | 97.37 203 | 94.96 179 | 99.53 176 | 97.91 197 | 91.55 204 | 95.37 175 | 98.32 190 | 95.05 53 | 97.13 262 | 93.80 187 | 95.75 187 | 99.30 170 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm2 | | | 95.47 153 | 95.18 152 | 96.35 189 | 96.91 222 | 91.70 251 | 96.96 312 | 97.93 194 | 88.04 267 | 98.44 105 | 95.40 274 | 93.32 107 | 97.97 223 | 94.00 181 | 95.61 189 | 99.38 161 |
|
WTY-MVS | | | 98.10 67 | 97.60 77 | 99.60 17 | 98.92 125 | 99.28 12 | 99.89 81 | 99.52 13 | 95.58 67 | 98.24 116 | 99.39 120 | 93.33 106 | 99.74 124 | 97.98 107 | 95.58 190 | 99.78 103 |
|
HyFIR lowres test | | | 96.66 122 | 96.43 114 | 97.36 161 | 99.05 113 | 93.91 200 | 99.70 147 | 99.80 3 | 90.54 226 | 96.26 160 | 98.08 194 | 92.15 136 | 98.23 213 | 96.84 137 | 95.46 191 | 99.93 81 |
|
cascas | | | 94.64 171 | 93.61 179 | 97.74 147 | 97.82 180 | 96.26 137 | 99.96 23 | 97.78 208 | 85.76 295 | 94.00 191 | 97.54 205 | 76.95 273 | 99.21 153 | 97.23 125 | 95.43 192 | 97.76 212 |
|
CVMVSNet | | | 94.68 170 | 94.94 156 | 93.89 263 | 96.80 228 | 86.92 309 | 99.06 229 | 98.98 34 | 94.45 96 | 94.23 189 | 99.02 142 | 85.60 208 | 95.31 322 | 90.91 230 | 95.39 193 | 99.43 157 |
|
test_yl | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 209 | 97.88 124 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 209 | 97.88 124 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
LFMVS | | | 94.75 167 | 93.56 184 | 98.30 125 | 99.03 114 | 95.70 161 | 98.74 258 | 97.98 189 | 87.81 270 | 98.47 104 | 99.39 120 | 67.43 319 | 99.53 140 | 98.01 103 | 95.20 196 | 99.67 117 |
|
thres200 | | | 96.96 106 | 96.21 118 | 99.22 50 | 98.97 119 | 98.84 30 | 99.85 101 | 99.71 5 | 93.17 148 | 96.26 160 | 98.88 160 | 89.87 167 | 99.51 142 | 94.26 177 | 94.91 197 | 99.31 169 |
|
thres100view900 | | | 96.74 117 | 95.92 133 | 99.18 54 | 98.90 128 | 98.77 36 | 99.74 137 | 99.71 5 | 92.59 171 | 95.84 166 | 98.86 164 | 89.25 175 | 99.50 144 | 93.84 183 | 94.57 198 | 99.27 172 |
|
tfpn200view9 | | | 96.79 113 | 95.99 123 | 99.19 53 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 153 | 96.02 163 | 98.87 162 | 89.33 173 | 99.50 144 | 93.84 183 | 94.57 198 | 99.27 172 |
|
thres400 | | | 96.78 114 | 95.99 123 | 99.16 59 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 153 | 96.02 163 | 98.87 162 | 89.33 173 | 99.50 144 | 93.84 183 | 94.57 198 | 99.16 179 |
|
thres600view7 | | | 96.69 120 | 95.87 136 | 99.14 63 | 98.90 128 | 98.78 35 | 99.74 137 | 99.71 5 | 92.59 171 | 95.84 166 | 98.86 164 | 89.25 175 | 99.50 144 | 93.44 196 | 94.50 201 | 99.16 179 |
|
VNet | | | 97.21 100 | 96.57 110 | 99.13 68 | 98.97 119 | 97.82 81 | 99.03 235 | 99.21 27 | 94.31 106 | 99.18 75 | 98.88 160 | 86.26 204 | 99.89 79 | 98.93 60 | 94.32 202 | 99.69 114 |
|
alignmvs | | | 97.81 79 | 97.33 87 | 99.25 49 | 98.77 135 | 98.66 46 | 99.99 4 | 98.44 106 | 94.40 102 | 98.41 106 | 99.47 112 | 93.65 100 | 99.42 150 | 98.57 83 | 94.26 203 | 99.67 117 |
|
VDD-MVS | | | 93.77 190 | 92.94 196 | 96.27 190 | 98.55 140 | 90.22 275 | 98.77 257 | 97.79 207 | 90.85 222 | 96.82 145 | 99.42 116 | 61.18 337 | 99.77 115 | 98.95 58 | 94.13 204 | 98.82 195 |
|
VDDNet | | | 93.12 203 | 91.91 217 | 96.76 175 | 96.67 235 | 92.65 227 | 98.69 263 | 98.21 165 | 82.81 316 | 97.75 127 | 99.28 124 | 61.57 335 | 99.48 148 | 98.09 100 | 94.09 205 | 98.15 204 |
|
GA-MVS | | | 93.83 186 | 92.84 197 | 96.80 173 | 95.73 254 | 93.57 205 | 99.88 84 | 97.24 259 | 92.57 174 | 92.92 202 | 96.66 234 | 78.73 264 | 97.67 235 | 87.75 266 | 94.06 206 | 99.17 178 |
|
canonicalmvs | | | 97.09 104 | 96.32 116 | 99.39 43 | 98.93 123 | 98.95 21 | 99.72 145 | 97.35 251 | 94.45 96 | 97.88 124 | 99.42 116 | 86.71 199 | 99.52 141 | 98.48 86 | 93.97 207 | 99.72 111 |
|
1112_ss | | | 96.01 141 | 95.20 151 | 98.42 119 | 97.80 181 | 96.41 130 | 99.65 156 | 96.66 305 | 92.71 162 | 92.88 204 | 99.40 118 | 92.16 135 | 99.30 151 | 91.92 214 | 93.66 208 | 99.55 139 |
|
Test_1112_low_res | | | 95.72 146 | 94.83 158 | 98.42 119 | 97.79 182 | 96.41 130 | 99.65 156 | 96.65 306 | 92.70 163 | 92.86 205 | 96.13 249 | 92.15 136 | 99.30 151 | 91.88 215 | 93.64 209 | 99.55 139 |
|
MIMVSNet | | | 90.30 262 | 88.67 274 | 95.17 214 | 96.45 236 | 91.64 253 | 92.39 337 | 97.15 267 | 85.99 292 | 90.50 221 | 93.19 322 | 66.95 320 | 94.86 328 | 82.01 308 | 93.43 210 | 99.01 188 |
|
XVG-OURS-SEG-HR | | | 94.79 164 | 94.70 162 | 95.08 215 | 98.05 166 | 89.19 287 | 99.08 224 | 97.54 228 | 93.66 135 | 94.87 180 | 99.58 104 | 78.78 263 | 99.79 109 | 97.31 123 | 93.40 211 | 96.25 220 |
|
ab-mvs | | | 94.69 168 | 93.42 187 | 98.51 112 | 98.07 165 | 96.26 137 | 96.49 316 | 98.68 55 | 90.31 231 | 94.54 182 | 97.00 223 | 76.30 279 | 99.71 128 | 95.98 145 | 93.38 212 | 99.56 138 |
|
test0.0.03 1 | | | 93.86 185 | 93.61 179 | 94.64 230 | 95.02 271 | 92.18 236 | 99.93 61 | 98.58 72 | 94.07 115 | 87.96 271 | 98.50 182 | 93.90 94 | 94.96 326 | 81.33 311 | 93.17 213 | 96.78 217 |
|
RPSCF | | | 91.80 232 | 92.79 199 | 88.83 316 | 98.15 162 | 69.87 345 | 98.11 292 | 96.60 307 | 83.93 310 | 94.33 187 | 99.27 127 | 79.60 257 | 99.46 149 | 91.99 212 | 93.16 214 | 97.18 216 |
|
XVG-OURS | | | 94.82 163 | 94.74 161 | 95.06 216 | 98.00 168 | 89.19 287 | 99.08 224 | 97.55 226 | 94.10 113 | 94.71 181 | 99.62 101 | 80.51 250 | 99.74 124 | 96.04 144 | 93.06 215 | 96.25 220 |
|
MVS_0304 | | | 89.28 280 | 88.31 279 | 92.21 291 | 97.05 216 | 86.53 310 | 97.76 301 | 99.57 12 | 85.58 300 | 93.86 194 | 92.71 324 | 51.04 347 | 96.30 302 | 84.49 293 | 92.72 216 | 93.79 293 |
|
Anonymous202405211 | | | 93.10 204 | 91.99 215 | 96.40 186 | 99.10 112 | 89.65 284 | 98.88 248 | 97.93 194 | 83.71 312 | 94.00 191 | 98.75 169 | 68.79 312 | 99.88 85 | 95.08 154 | 91.71 217 | 99.68 115 |
|
Anonymous20240529 | | | 92.10 225 | 90.65 236 | 96.47 182 | 98.82 131 | 90.61 267 | 98.72 260 | 98.67 58 | 75.54 336 | 93.90 193 | 98.58 179 | 66.23 322 | 99.90 75 | 94.70 167 | 90.67 218 | 98.90 192 |
|
HQP3-MVS | | | | | | | | | 97.89 198 | | | | | | | 89.60 219 | |
|
HQP-MVS | | | 94.61 172 | 94.50 164 | 94.92 221 | 95.78 248 | 91.85 243 | 99.87 87 | 97.89 198 | 96.82 30 | 93.37 196 | 98.65 173 | 80.65 248 | 98.39 197 | 97.92 109 | 89.60 219 | 94.53 226 |
|
plane_prior | | | | | | | 91.74 247 | 99.86 98 | | 96.76 34 | | | | | | 89.59 221 | |
|
HQP_MVS | | | 94.49 177 | 94.36 166 | 94.87 222 | 95.71 257 | 91.74 247 | 99.84 105 | 97.87 200 | 96.38 44 | 93.01 200 | 98.59 177 | 80.47 252 | 98.37 202 | 97.79 112 | 89.55 222 | 94.52 228 |
|
plane_prior5 | | | | | | | | | 97.87 200 | | | | | 98.37 202 | 97.79 112 | 89.55 222 | 94.52 228 |
|
CLD-MVS | | | 94.06 184 | 93.90 175 | 94.55 235 | 96.02 243 | 90.69 264 | 99.98 8 | 97.72 209 | 96.62 39 | 91.05 217 | 98.85 167 | 77.21 270 | 98.47 186 | 98.11 98 | 89.51 224 | 94.48 230 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 93.21 201 | 92.80 198 | 94.44 242 | 93.12 301 | 90.85 263 | 99.77 126 | 97.61 220 | 96.19 51 | 91.56 212 | 98.65 173 | 75.16 289 | 98.47 186 | 93.78 189 | 89.39 225 | 93.99 277 |
|
LPG-MVS_test | | | 92.96 206 | 92.71 200 | 93.71 267 | 95.43 263 | 88.67 293 | 99.75 134 | 97.62 217 | 92.81 156 | 90.05 224 | 98.49 183 | 75.24 287 | 98.40 195 | 95.84 148 | 89.12 226 | 94.07 269 |
|
LGP-MVS_train | | | | | 93.71 267 | 95.43 263 | 88.67 293 | | 97.62 217 | 92.81 156 | 90.05 224 | 98.49 183 | 75.24 287 | 98.40 195 | 95.84 148 | 89.12 226 | 94.07 269 |
|
test_djsdf | | | 92.83 209 | 92.29 210 | 94.47 240 | 91.90 318 | 92.46 230 | 99.55 173 | 97.27 257 | 91.17 213 | 89.96 227 | 96.07 251 | 81.10 241 | 96.89 278 | 94.67 168 | 88.91 228 | 94.05 271 |
|
testgi | | | 89.01 282 | 88.04 283 | 91.90 295 | 93.49 294 | 84.89 320 | 99.73 142 | 95.66 324 | 93.89 128 | 85.14 303 | 98.17 192 | 59.68 338 | 94.66 330 | 77.73 323 | 88.88 229 | 96.16 223 |
|
ACMM | | 91.95 10 | 92.88 208 | 92.52 207 | 93.98 260 | 95.75 253 | 89.08 290 | 99.77 126 | 97.52 232 | 93.00 151 | 89.95 228 | 97.99 198 | 76.17 281 | 98.46 189 | 93.63 194 | 88.87 230 | 94.39 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 92.05 9 | 92.74 211 | 92.42 209 | 93.73 265 | 95.91 247 | 88.72 292 | 99.81 114 | 97.53 230 | 94.13 111 | 87.00 284 | 98.23 191 | 74.07 295 | 98.47 186 | 96.22 142 | 88.86 231 | 93.99 277 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jajsoiax | | | 91.92 227 | 91.18 230 | 94.15 250 | 91.35 324 | 90.95 261 | 99.00 237 | 97.42 244 | 92.61 169 | 87.38 280 | 97.08 218 | 72.46 300 | 97.36 244 | 94.53 171 | 88.77 232 | 94.13 266 |
|
anonymousdsp | | | 91.79 234 | 90.92 233 | 94.41 245 | 90.76 329 | 92.93 218 | 98.93 244 | 97.17 264 | 89.08 244 | 87.46 279 | 95.30 281 | 78.43 268 | 96.92 277 | 92.38 208 | 88.73 233 | 93.39 306 |
|
mvs_tets | | | 91.81 229 | 91.08 231 | 94.00 258 | 91.63 322 | 90.58 268 | 98.67 265 | 97.43 242 | 92.43 179 | 87.37 281 | 97.05 221 | 71.76 302 | 97.32 248 | 94.75 164 | 88.68 234 | 94.11 267 |
|
XVG-ACMP-BASELINE | | | 91.22 242 | 90.75 234 | 92.63 287 | 93.73 290 | 85.61 314 | 98.52 273 | 97.44 241 | 92.77 160 | 89.90 230 | 96.85 229 | 66.64 321 | 98.39 197 | 92.29 209 | 88.61 235 | 93.89 286 |
|
EG-PatchMatch MVS | | | 85.35 299 | 83.81 301 | 89.99 311 | 90.39 331 | 81.89 332 | 98.21 289 | 96.09 317 | 81.78 321 | 74.73 336 | 93.72 317 | 51.56 346 | 97.12 264 | 79.16 319 | 88.61 235 | 90.96 330 |
|
UniMVSNet_ETH3D | | | 90.06 269 | 88.58 275 | 94.49 239 | 94.67 276 | 88.09 303 | 97.81 300 | 97.57 225 | 83.91 311 | 88.44 262 | 97.41 208 | 57.44 341 | 97.62 237 | 91.41 219 | 88.59 237 | 97.77 211 |
|
tpm | | | 93.70 194 | 93.41 189 | 94.58 233 | 95.36 265 | 87.41 307 | 97.01 310 | 96.90 291 | 90.85 222 | 96.72 148 | 94.14 313 | 90.40 161 | 96.84 281 | 90.75 234 | 88.54 238 | 99.51 147 |
|
OpenMVS_ROB | | 79.82 20 | 83.77 307 | 81.68 309 | 90.03 310 | 88.30 338 | 82.82 325 | 98.46 274 | 95.22 332 | 73.92 340 | 76.00 333 | 91.29 330 | 55.00 343 | 96.94 276 | 68.40 338 | 88.51 239 | 90.34 333 |
|
CMPMVS | | 61.59 21 | 84.75 302 | 85.14 296 | 83.57 324 | 90.32 332 | 62.54 348 | 96.98 311 | 97.59 224 | 74.33 339 | 69.95 341 | 96.66 234 | 64.17 328 | 98.32 205 | 87.88 265 | 88.41 240 | 89.84 337 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMMP++ | | | | | | | | | | | | | | | | 88.23 241 | |
|
ITE_SJBPF | | | | | 92.38 288 | 95.69 259 | 85.14 318 | | 95.71 322 | 92.81 156 | 89.33 246 | 98.11 193 | 70.23 309 | 98.42 192 | 85.91 285 | 88.16 242 | 93.59 302 |
|
D2MVS | | | 92.76 210 | 92.59 205 | 93.27 275 | 95.13 267 | 89.54 286 | 99.69 148 | 99.38 21 | 92.26 183 | 87.59 275 | 94.61 305 | 85.05 215 | 97.79 231 | 91.59 218 | 88.01 243 | 92.47 319 |
|
EI-MVSNet | | | 93.73 192 | 93.40 190 | 94.74 226 | 96.80 228 | 92.69 224 | 99.06 229 | 97.67 213 | 88.96 250 | 91.39 213 | 99.02 142 | 88.75 182 | 97.30 249 | 91.07 224 | 87.85 244 | 94.22 252 |
|
MVSTER | | | 95.53 151 | 95.22 150 | 96.45 184 | 98.56 139 | 97.72 82 | 99.91 69 | 97.67 213 | 92.38 180 | 91.39 213 | 97.14 215 | 97.24 14 | 97.30 249 | 94.80 161 | 87.85 244 | 94.34 244 |
|
PS-MVSNAJss | | | 93.64 195 | 93.31 192 | 94.61 231 | 92.11 315 | 92.19 235 | 99.12 220 | 97.38 249 | 92.51 177 | 88.45 261 | 96.99 224 | 91.20 148 | 97.29 252 | 94.36 173 | 87.71 246 | 94.36 240 |
|
LTVRE_ROB | | 88.28 18 | 90.29 263 | 89.05 268 | 94.02 256 | 95.08 269 | 90.15 277 | 97.19 308 | 97.43 242 | 84.91 305 | 83.99 308 | 97.06 220 | 74.00 296 | 98.28 209 | 84.08 294 | 87.71 246 | 93.62 301 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH | | 89.72 17 | 90.64 253 | 89.63 254 | 93.66 269 | 95.64 260 | 88.64 295 | 98.55 269 | 97.45 239 | 89.03 246 | 81.62 316 | 97.61 204 | 69.75 310 | 98.41 193 | 89.37 249 | 87.62 248 | 93.92 284 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PVSNet_BlendedMVS | | | 96.05 139 | 95.82 137 | 96.72 177 | 99.59 90 | 96.99 113 | 99.95 40 | 99.10 28 | 94.06 117 | 98.27 113 | 95.80 254 | 89.00 179 | 99.95 60 | 99.12 47 | 87.53 249 | 93.24 310 |
|
USDC | | | 90.00 270 | 88.96 269 | 93.10 281 | 94.81 273 | 88.16 302 | 98.71 261 | 95.54 327 | 93.66 135 | 83.75 310 | 97.20 214 | 65.58 324 | 98.31 206 | 83.96 297 | 87.49 250 | 92.85 316 |
|
RRT_MVS | | | 95.23 156 | 94.77 160 | 96.61 181 | 98.28 152 | 98.32 63 | 99.81 114 | 97.41 246 | 92.59 171 | 91.28 215 | 97.76 202 | 95.02 54 | 97.23 256 | 93.65 193 | 87.14 251 | 94.28 248 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 252 | |
|
test_0402 | | | 85.58 295 | 83.94 299 | 90.50 305 | 93.81 289 | 85.04 319 | 98.55 269 | 95.20 333 | 76.01 333 | 79.72 323 | 95.13 287 | 64.15 329 | 96.26 304 | 66.04 343 | 86.88 253 | 90.21 335 |
|
FIs | | | 94.10 183 | 93.43 186 | 96.11 193 | 94.70 275 | 96.82 118 | 99.58 167 | 98.93 39 | 92.54 175 | 89.34 245 | 97.31 211 | 87.62 190 | 97.10 265 | 94.22 179 | 86.58 254 | 94.40 238 |
|
FC-MVSNet-test | | | 93.81 188 | 93.15 195 | 95.80 201 | 94.30 281 | 96.20 142 | 99.42 190 | 98.89 41 | 92.33 182 | 89.03 254 | 97.27 213 | 87.39 193 | 96.83 282 | 93.20 198 | 86.48 255 | 94.36 240 |
|
TinyColmap | | | 87.87 288 | 86.51 291 | 91.94 294 | 95.05 270 | 85.57 315 | 97.65 302 | 94.08 341 | 84.40 308 | 81.82 315 | 96.85 229 | 62.14 334 | 98.33 204 | 80.25 316 | 86.37 256 | 91.91 325 |
|
ACMH+ | | 89.98 16 | 90.35 260 | 89.54 257 | 92.78 286 | 95.99 244 | 86.12 312 | 98.81 255 | 97.18 263 | 89.38 241 | 83.14 312 | 97.76 202 | 68.42 316 | 98.43 191 | 89.11 252 | 86.05 257 | 93.78 294 |
|
baseline1 | | | 95.78 145 | 94.86 157 | 98.54 109 | 98.47 145 | 98.07 70 | 99.06 229 | 97.99 187 | 92.68 165 | 94.13 190 | 98.62 176 | 93.28 110 | 98.69 177 | 93.79 188 | 85.76 258 | 98.84 194 |
|
GBi-Net | | | 90.88 247 | 89.82 252 | 94.08 253 | 97.53 197 | 91.97 238 | 98.43 276 | 96.95 285 | 87.05 278 | 89.68 235 | 94.72 299 | 71.34 304 | 96.11 307 | 87.01 277 | 85.65 259 | 94.17 256 |
|
test1 | | | 90.88 247 | 89.82 252 | 94.08 253 | 97.53 197 | 91.97 238 | 98.43 276 | 96.95 285 | 87.05 278 | 89.68 235 | 94.72 299 | 71.34 304 | 96.11 307 | 87.01 277 | 85.65 259 | 94.17 256 |
|
FMVSNet3 | | | 92.69 213 | 91.58 222 | 95.99 195 | 98.29 150 | 97.42 100 | 99.26 212 | 97.62 217 | 89.80 239 | 89.68 235 | 95.32 280 | 81.62 237 | 96.27 303 | 87.01 277 | 85.65 259 | 94.29 247 |
|
DeepMVS_CX | | | | | 82.92 326 | 95.98 246 | 58.66 350 | | 96.01 318 | 92.72 161 | 78.34 327 | 95.51 269 | 58.29 340 | 98.08 218 | 82.57 304 | 85.29 262 | 92.03 323 |
|
LF4IMVS | | | 89.25 281 | 88.85 270 | 90.45 307 | 92.81 309 | 81.19 335 | 98.12 291 | 94.79 336 | 91.44 208 | 86.29 295 | 97.11 216 | 65.30 326 | 98.11 217 | 88.53 258 | 85.25 263 | 92.07 321 |
|
FMVSNet2 | | | 91.02 244 | 89.56 256 | 95.41 207 | 97.53 197 | 95.74 158 | 98.98 238 | 97.41 246 | 87.05 278 | 88.43 264 | 95.00 293 | 71.34 304 | 96.24 305 | 85.12 289 | 85.21 264 | 94.25 251 |
|
testing_2 | | | 85.10 300 | 81.72 308 | 95.22 212 | 82.25 346 | 94.16 194 | 97.54 303 | 97.01 279 | 88.15 264 | 62.23 343 | 86.43 340 | 44.43 349 | 97.18 258 | 92.28 210 | 85.20 265 | 94.31 245 |
|
ET-MVSNet_ETH3D | | | 94.37 179 | 93.28 193 | 97.64 149 | 98.30 149 | 97.99 74 | 99.99 4 | 97.61 220 | 94.35 103 | 71.57 339 | 99.45 115 | 96.23 27 | 95.34 321 | 96.91 136 | 85.14 266 | 99.59 130 |
|
OurMVSNet-221017-0 | | | 89.81 272 | 89.48 261 | 90.83 303 | 91.64 321 | 81.21 334 | 98.17 290 | 95.38 329 | 91.48 206 | 85.65 301 | 97.31 211 | 72.66 299 | 97.29 252 | 88.15 262 | 84.83 267 | 93.97 279 |
|
pmmvs4 | | | 92.10 225 | 91.07 232 | 95.18 213 | 92.82 308 | 94.96 179 | 99.48 184 | 96.83 296 | 87.45 273 | 88.66 260 | 96.56 239 | 83.78 223 | 96.83 282 | 89.29 250 | 84.77 268 | 93.75 295 |
|
our_test_3 | | | 90.39 258 | 89.48 261 | 93.12 279 | 92.40 312 | 89.57 285 | 99.33 202 | 96.35 312 | 87.84 269 | 85.30 302 | 94.99 294 | 84.14 221 | 96.09 310 | 80.38 315 | 84.56 269 | 93.71 300 |
|
cl-mvsnet2 | | | 93.77 190 | 93.25 194 | 95.33 209 | 99.49 99 | 94.43 190 | 99.61 164 | 98.09 180 | 90.38 228 | 89.16 252 | 95.61 262 | 90.56 160 | 97.34 246 | 91.93 213 | 84.45 270 | 94.21 254 |
|
miper_ehance_all_eth | | | 93.16 202 | 92.60 202 | 94.82 225 | 97.57 196 | 93.56 206 | 99.50 180 | 97.07 272 | 88.75 255 | 88.85 256 | 95.52 268 | 90.97 155 | 96.74 285 | 90.77 233 | 84.45 270 | 94.17 256 |
|
miper_enhance_ethall | | | 94.36 181 | 93.98 173 | 95.49 203 | 98.68 138 | 95.24 173 | 99.73 142 | 97.29 256 | 93.28 145 | 89.86 231 | 95.97 252 | 94.37 75 | 97.05 268 | 92.20 211 | 84.45 270 | 94.19 255 |
|
IterMVS | | | 90.91 246 | 90.17 247 | 93.12 279 | 96.78 231 | 90.42 273 | 98.89 246 | 97.05 275 | 89.03 246 | 86.49 291 | 95.42 273 | 76.59 276 | 95.02 324 | 87.22 273 | 84.09 273 | 93.93 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 88.50 284 | 86.64 290 | 94.08 253 | 95.62 262 | 91.97 238 | 98.43 276 | 96.95 285 | 83.00 315 | 86.08 298 | 94.72 299 | 59.09 339 | 96.11 307 | 81.82 310 | 84.07 274 | 94.17 256 |
|
XXY-MVS | | | 91.82 228 | 90.46 238 | 95.88 198 | 93.91 287 | 95.40 168 | 98.87 251 | 97.69 212 | 88.63 259 | 87.87 272 | 97.08 218 | 74.38 294 | 97.89 229 | 91.66 217 | 84.07 274 | 94.35 243 |
|
IterMVS-SCA-FT | | | 90.85 249 | 90.16 248 | 92.93 283 | 96.72 233 | 89.96 279 | 98.89 246 | 96.99 280 | 88.95 251 | 86.63 288 | 95.67 259 | 76.48 277 | 95.00 325 | 87.04 275 | 84.04 276 | 93.84 290 |
|
RRT_test8_iter05 | | | 94.58 173 | 94.11 170 | 95.98 196 | 97.88 174 | 96.11 148 | 99.89 81 | 97.45 239 | 91.66 201 | 88.28 267 | 96.71 233 | 96.53 24 | 97.40 242 | 94.73 166 | 83.85 277 | 94.45 236 |
|
pmmvs5 | | | 90.17 267 | 89.09 266 | 93.40 272 | 92.10 316 | 89.77 283 | 99.74 137 | 95.58 326 | 85.88 294 | 87.24 283 | 95.74 256 | 73.41 298 | 96.48 295 | 88.54 257 | 83.56 278 | 93.95 281 |
|
SixPastTwentyTwo | | | 88.73 283 | 88.01 284 | 90.88 301 | 91.85 319 | 82.24 329 | 98.22 288 | 95.18 334 | 88.97 249 | 82.26 314 | 96.89 226 | 71.75 303 | 96.67 289 | 84.00 295 | 82.98 279 | 93.72 299 |
|
N_pmnet | | | 80.06 312 | 80.78 311 | 77.89 327 | 91.94 317 | 45.28 356 | 98.80 256 | 56.82 359 | 78.10 330 | 80.08 322 | 93.33 318 | 77.03 271 | 95.76 317 | 68.14 339 | 82.81 280 | 92.64 317 |
|
ppachtmachnet_test | | | 89.58 276 | 88.35 278 | 93.25 276 | 92.40 312 | 90.44 272 | 99.33 202 | 96.73 303 | 85.49 301 | 85.90 300 | 95.77 255 | 81.09 242 | 96.00 314 | 76.00 330 | 82.49 281 | 93.30 308 |
|
cl-mvsnet_ | | | 92.31 221 | 91.58 222 | 94.52 236 | 97.33 207 | 92.77 219 | 99.57 169 | 96.78 301 | 86.97 282 | 87.56 276 | 95.51 269 | 89.43 171 | 96.62 290 | 88.60 255 | 82.44 282 | 94.16 261 |
|
cl-mvsnet1 | | | 92.32 220 | 91.60 221 | 94.47 240 | 97.31 208 | 92.74 221 | 99.58 167 | 96.75 302 | 86.99 281 | 87.64 274 | 95.54 266 | 89.55 170 | 96.50 294 | 88.58 256 | 82.44 282 | 94.17 256 |
|
Patchmtry | | | 89.70 274 | 88.49 276 | 93.33 273 | 96.24 239 | 89.94 282 | 91.37 342 | 96.23 313 | 78.22 329 | 87.69 273 | 93.31 320 | 91.04 153 | 96.03 312 | 80.18 317 | 82.10 284 | 94.02 272 |
|
IterMVS-LS | | | 92.69 213 | 92.11 212 | 94.43 244 | 96.80 228 | 92.74 221 | 99.45 188 | 96.89 292 | 88.98 248 | 89.65 238 | 95.38 277 | 88.77 181 | 96.34 300 | 90.98 228 | 82.04 285 | 94.22 252 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EU-MVSNet | | | 90.14 268 | 90.34 242 | 89.54 313 | 92.55 311 | 81.06 336 | 98.69 263 | 98.04 185 | 91.41 211 | 86.59 289 | 96.84 231 | 80.83 245 | 93.31 339 | 86.20 282 | 81.91 286 | 94.26 249 |
|
Anonymous20231206 | | | 86.32 292 | 85.42 294 | 89.02 315 | 89.11 337 | 80.53 339 | 99.05 233 | 95.28 330 | 85.43 302 | 82.82 313 | 93.92 314 | 74.40 293 | 93.44 338 | 66.99 340 | 81.83 287 | 93.08 313 |
|
eth_miper_zixun_eth | | | 92.41 219 | 91.93 216 | 93.84 264 | 97.28 210 | 90.68 265 | 98.83 254 | 96.97 284 | 88.57 260 | 89.19 251 | 95.73 258 | 89.24 177 | 96.69 288 | 89.97 245 | 81.55 288 | 94.15 262 |
|
FMVSNet5 | | | 88.32 285 | 87.47 287 | 90.88 301 | 96.90 223 | 88.39 299 | 97.28 307 | 95.68 323 | 82.60 318 | 84.67 305 | 92.40 327 | 79.83 256 | 91.16 341 | 76.39 329 | 81.51 289 | 93.09 312 |
|
miper_lstm_enhance | | | 91.81 229 | 91.39 228 | 93.06 282 | 97.34 205 | 89.18 289 | 99.38 196 | 96.79 300 | 86.70 285 | 87.47 278 | 95.22 286 | 90.00 165 | 95.86 316 | 88.26 260 | 81.37 290 | 94.15 262 |
|
VPA-MVSNet | | | 92.70 212 | 91.55 224 | 96.16 192 | 95.09 268 | 96.20 142 | 98.88 248 | 99.00 33 | 91.02 219 | 91.82 210 | 95.29 284 | 76.05 283 | 97.96 225 | 95.62 150 | 81.19 291 | 94.30 246 |
|
v1192 | | | 90.62 255 | 89.25 263 | 94.72 228 | 93.13 299 | 93.07 214 | 99.50 180 | 97.02 276 | 86.33 289 | 89.56 241 | 95.01 291 | 79.22 259 | 97.09 267 | 82.34 306 | 81.16 292 | 94.01 274 |
|
v1144 | | | 91.09 243 | 89.83 251 | 94.87 222 | 93.25 298 | 93.69 204 | 99.62 163 | 96.98 282 | 86.83 284 | 89.64 239 | 94.99 294 | 80.94 243 | 97.05 268 | 85.08 290 | 81.16 292 | 93.87 288 |
|
v1240 | | | 90.20 265 | 88.79 272 | 94.44 242 | 93.05 304 | 92.27 234 | 99.38 196 | 96.92 290 | 85.89 293 | 89.36 244 | 94.87 298 | 77.89 269 | 97.03 272 | 80.66 314 | 81.08 294 | 94.01 274 |
|
new_pmnet | | | 84.49 304 | 82.92 305 | 89.21 314 | 90.03 333 | 82.60 326 | 96.89 313 | 95.62 325 | 80.59 324 | 75.77 335 | 89.17 333 | 65.04 327 | 94.79 329 | 72.12 333 | 81.02 295 | 90.23 334 |
|
K. test v3 | | | 88.05 287 | 87.24 289 | 90.47 306 | 91.82 320 | 82.23 330 | 98.96 241 | 97.42 244 | 89.05 245 | 76.93 330 | 95.60 263 | 68.49 315 | 95.42 319 | 85.87 286 | 81.01 296 | 93.75 295 |
|
FPMVS | | | 68.72 314 | 68.72 317 | 68.71 332 | 65.95 353 | 44.27 358 | 95.97 324 | 94.74 337 | 51.13 347 | 53.26 350 | 90.50 332 | 25.11 355 | 83.00 349 | 60.80 346 | 80.97 297 | 78.87 345 |
|
v1921920 | | | 90.46 257 | 89.12 265 | 94.50 238 | 92.96 306 | 92.46 230 | 99.49 182 | 96.98 282 | 86.10 291 | 89.61 240 | 95.30 281 | 78.55 266 | 97.03 272 | 82.17 307 | 80.89 298 | 94.01 274 |
|
cl_fuxian | | | 92.53 216 | 91.87 218 | 94.52 236 | 97.40 202 | 92.99 217 | 99.40 191 | 96.93 289 | 87.86 268 | 88.69 259 | 95.44 272 | 89.95 166 | 96.44 296 | 90.45 237 | 80.69 299 | 94.14 265 |
|
tfpnnormal | | | 89.29 279 | 87.61 286 | 94.34 246 | 94.35 280 | 94.13 196 | 98.95 242 | 98.94 36 | 83.94 309 | 84.47 306 | 95.51 269 | 74.84 290 | 97.39 243 | 77.05 327 | 80.41 300 | 91.48 327 |
|
v144192 | | | 90.79 250 | 89.52 258 | 94.59 232 | 93.11 302 | 92.77 219 | 99.56 171 | 96.99 280 | 86.38 288 | 89.82 234 | 94.95 296 | 80.50 251 | 97.10 265 | 83.98 296 | 80.41 300 | 93.90 285 |
|
nrg030 | | | 93.51 196 | 92.53 206 | 96.45 184 | 94.36 279 | 97.20 105 | 99.81 114 | 97.16 266 | 91.60 202 | 89.86 231 | 97.46 206 | 86.37 203 | 97.68 234 | 95.88 147 | 80.31 302 | 94.46 231 |
|
Anonymous20231211 | | | 89.86 271 | 88.44 277 | 94.13 252 | 98.93 123 | 90.68 265 | 98.54 271 | 98.26 160 | 76.28 332 | 86.73 286 | 95.54 266 | 70.60 308 | 97.56 238 | 90.82 232 | 80.27 303 | 94.15 262 |
|
V42 | | | 91.28 240 | 90.12 249 | 94.74 226 | 93.42 296 | 93.46 208 | 99.68 150 | 97.02 276 | 87.36 274 | 89.85 233 | 95.05 289 | 81.31 240 | 97.34 246 | 87.34 271 | 80.07 304 | 93.40 305 |
|
v2v482 | | | 91.30 238 | 90.07 250 | 95.01 217 | 93.13 299 | 93.79 201 | 99.77 126 | 97.02 276 | 88.05 266 | 89.25 247 | 95.37 278 | 80.73 246 | 97.15 260 | 87.28 272 | 80.04 305 | 94.09 268 |
|
WR-MVS | | | 92.31 221 | 91.25 229 | 95.48 206 | 94.45 278 | 95.29 170 | 99.60 165 | 98.68 55 | 90.10 233 | 88.07 270 | 96.89 226 | 80.68 247 | 96.80 284 | 93.14 201 | 79.67 306 | 94.36 240 |
|
v10 | | | 90.25 264 | 88.82 271 | 94.57 234 | 93.53 293 | 93.43 209 | 99.08 224 | 96.87 294 | 85.00 304 | 87.34 282 | 94.51 306 | 80.93 244 | 97.02 274 | 82.85 303 | 79.23 307 | 93.26 309 |
|
CP-MVSNet | | | 91.23 241 | 90.22 245 | 94.26 247 | 93.96 286 | 92.39 232 | 99.09 222 | 98.57 74 | 88.95 251 | 86.42 293 | 96.57 238 | 79.19 260 | 96.37 298 | 90.29 241 | 78.95 308 | 94.02 272 |
|
MIMVSNet1 | | | 82.58 308 | 80.51 312 | 88.78 317 | 86.68 340 | 84.20 323 | 96.65 314 | 95.41 328 | 78.75 328 | 78.59 326 | 92.44 326 | 51.88 345 | 89.76 344 | 65.26 344 | 78.95 308 | 92.38 320 |
|
PS-CasMVS | | | 90.63 254 | 89.51 259 | 93.99 259 | 93.83 288 | 91.70 251 | 98.98 238 | 98.52 88 | 88.48 261 | 86.15 297 | 96.53 240 | 75.46 285 | 96.31 301 | 88.83 254 | 78.86 310 | 93.95 281 |
|
WR-MVS_H | | | 91.30 238 | 90.35 241 | 94.15 250 | 94.17 283 | 92.62 228 | 99.17 218 | 98.94 36 | 88.87 253 | 86.48 292 | 94.46 310 | 84.36 219 | 96.61 291 | 88.19 261 | 78.51 311 | 93.21 311 |
|
v8 | | | 90.54 256 | 89.17 264 | 94.66 229 | 93.43 295 | 93.40 211 | 99.20 215 | 96.94 288 | 85.76 295 | 87.56 276 | 94.51 306 | 81.96 233 | 97.19 257 | 84.94 291 | 78.25 312 | 93.38 307 |
|
UniMVSNet (Re) | | | 93.07 205 | 92.13 211 | 95.88 198 | 94.84 272 | 96.24 141 | 99.88 84 | 98.98 34 | 92.49 178 | 89.25 247 | 95.40 274 | 87.09 196 | 97.14 261 | 93.13 202 | 78.16 313 | 94.26 249 |
|
v7n | | | 89.65 275 | 88.29 280 | 93.72 266 | 92.22 314 | 90.56 269 | 99.07 228 | 97.10 269 | 85.42 303 | 86.73 286 | 94.72 299 | 80.06 254 | 97.13 262 | 81.14 312 | 78.12 314 | 93.49 303 |
|
VPNet | | | 91.81 229 | 90.46 238 | 95.85 200 | 94.74 274 | 95.54 164 | 98.98 238 | 98.59 71 | 92.14 186 | 90.77 220 | 97.44 207 | 68.73 314 | 97.54 239 | 94.89 159 | 77.89 315 | 94.46 231 |
|
Gipuma | | | 66.95 317 | 65.00 318 | 72.79 330 | 91.52 323 | 67.96 346 | 66.16 351 | 95.15 335 | 47.89 348 | 58.54 346 | 67.99 350 | 29.74 352 | 87.54 346 | 50.20 349 | 77.83 316 | 62.87 349 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
NR-MVSNet | | | 91.56 237 | 90.22 245 | 95.60 202 | 94.05 284 | 95.76 157 | 98.25 285 | 98.70 53 | 91.16 215 | 80.78 319 | 96.64 236 | 83.23 228 | 96.57 292 | 91.41 219 | 77.73 317 | 94.46 231 |
|
UniMVSNet_NR-MVSNet | | | 92.95 207 | 92.11 212 | 95.49 203 | 94.61 277 | 95.28 171 | 99.83 111 | 99.08 30 | 91.49 205 | 89.21 249 | 96.86 228 | 87.14 195 | 96.73 286 | 93.20 198 | 77.52 318 | 94.46 231 |
|
DU-MVS | | | 92.46 218 | 91.45 227 | 95.49 203 | 94.05 284 | 95.28 171 | 99.81 114 | 98.74 51 | 92.25 184 | 89.21 249 | 96.64 236 | 81.66 235 | 96.73 286 | 93.20 198 | 77.52 318 | 94.46 231 |
|
test_part1 | | | 87.55 289 | 85.69 293 | 93.15 278 | 95.35 266 | 88.21 301 | 98.30 284 | 97.70 210 | 71.40 342 | 83.19 311 | 95.62 261 | 62.37 333 | 97.28 254 | 89.77 247 | 77.47 320 | 93.96 280 |
|
MDA-MVSNet_test_wron | | | 85.51 297 | 83.32 303 | 92.10 292 | 90.96 327 | 88.58 296 | 99.20 215 | 96.52 309 | 79.70 326 | 57.12 348 | 92.69 325 | 79.11 261 | 93.86 334 | 77.10 326 | 77.46 321 | 93.86 289 |
|
YYNet1 | | | 85.50 298 | 83.33 302 | 92.00 293 | 90.89 328 | 88.38 300 | 99.22 214 | 96.55 308 | 79.60 327 | 57.26 347 | 92.72 323 | 79.09 262 | 93.78 335 | 77.25 325 | 77.37 322 | 93.84 290 |
|
v148 | | | 90.70 251 | 89.63 254 | 93.92 261 | 92.97 305 | 90.97 260 | 99.75 134 | 96.89 292 | 87.51 271 | 88.27 268 | 95.01 291 | 81.67 234 | 97.04 270 | 87.40 270 | 77.17 323 | 93.75 295 |
|
Baseline_NR-MVSNet | | | 90.33 261 | 89.51 259 | 92.81 285 | 92.84 307 | 89.95 280 | 99.77 126 | 93.94 343 | 84.69 307 | 89.04 253 | 95.66 260 | 81.66 235 | 96.52 293 | 90.99 227 | 76.98 324 | 91.97 324 |
|
PEN-MVS | | | 90.19 266 | 89.06 267 | 93.57 270 | 93.06 303 | 90.90 262 | 99.06 229 | 98.47 101 | 88.11 265 | 85.91 299 | 96.30 244 | 76.67 275 | 95.94 315 | 87.07 274 | 76.91 325 | 93.89 286 |
|
TranMVSNet+NR-MVSNet | | | 91.68 236 | 90.61 237 | 94.87 222 | 93.69 291 | 93.98 198 | 99.69 148 | 98.65 59 | 91.03 218 | 88.44 262 | 96.83 232 | 80.05 255 | 96.18 306 | 90.26 242 | 76.89 326 | 94.45 236 |
|
MDA-MVSNet-bldmvs | | | 84.09 305 | 81.52 310 | 91.81 296 | 91.32 325 | 88.00 305 | 98.67 265 | 95.92 320 | 80.22 325 | 55.60 349 | 93.32 319 | 68.29 317 | 93.60 337 | 73.76 332 | 76.61 327 | 93.82 292 |
|
test20.03 | | | 84.72 303 | 83.99 297 | 86.91 321 | 88.19 339 | 80.62 338 | 98.88 248 | 95.94 319 | 88.36 263 | 78.87 324 | 94.62 304 | 68.75 313 | 89.11 345 | 66.52 341 | 75.82 328 | 91.00 329 |
|
DTE-MVSNet | | | 89.40 277 | 88.24 281 | 92.88 284 | 92.66 310 | 89.95 280 | 99.10 221 | 98.22 164 | 87.29 275 | 85.12 304 | 96.22 246 | 76.27 280 | 95.30 323 | 83.56 300 | 75.74 329 | 93.41 304 |
|
pm-mvs1 | | | 89.36 278 | 87.81 285 | 94.01 257 | 93.40 297 | 91.93 241 | 98.62 268 | 96.48 311 | 86.25 290 | 83.86 309 | 96.14 248 | 73.68 297 | 97.04 270 | 86.16 283 | 75.73 330 | 93.04 314 |
|
lessismore_v0 | | | | | 90.53 304 | 90.58 330 | 80.90 337 | | 95.80 321 | | 77.01 329 | 95.84 253 | 66.15 323 | 96.95 275 | 83.03 302 | 75.05 331 | 93.74 298 |
|
IB-MVS | | 92.85 6 | 94.99 162 | 93.94 174 | 98.16 129 | 97.72 190 | 95.69 162 | 99.99 4 | 98.81 47 | 94.28 108 | 92.70 206 | 96.90 225 | 95.08 50 | 99.17 155 | 96.07 143 | 73.88 332 | 99.60 129 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pmmvs6 | | | 85.69 294 | 83.84 300 | 91.26 300 | 90.00 334 | 84.41 322 | 97.82 299 | 96.15 316 | 75.86 334 | 81.29 317 | 95.39 276 | 61.21 336 | 96.87 280 | 83.52 301 | 73.29 333 | 92.50 318 |
|
ambc | | | | | 83.23 325 | 77.17 348 | 62.61 347 | 87.38 346 | 94.55 340 | | 76.72 331 | 86.65 339 | 30.16 351 | 96.36 299 | 84.85 292 | 69.86 334 | 90.73 332 |
|
Patchmatch-RL test | | | 86.90 291 | 85.98 292 | 89.67 312 | 84.45 342 | 75.59 342 | 89.71 344 | 92.43 345 | 86.89 283 | 77.83 328 | 90.94 331 | 94.22 83 | 93.63 336 | 87.75 266 | 69.61 335 | 99.79 100 |
|
PM-MVS | | | 80.47 310 | 78.88 314 | 85.26 323 | 83.79 344 | 72.22 344 | 95.89 325 | 91.08 348 | 85.71 298 | 76.56 332 | 88.30 334 | 36.64 350 | 93.90 333 | 82.39 305 | 69.57 336 | 89.66 338 |
|
pmmvs-eth3d | | | 84.03 306 | 81.97 307 | 90.20 308 | 84.15 343 | 87.09 308 | 98.10 293 | 94.73 338 | 83.05 314 | 74.10 337 | 87.77 336 | 65.56 325 | 94.01 331 | 81.08 313 | 69.24 337 | 89.49 339 |
|
AUN-MVS | | | 93.28 200 | 92.60 202 | 95.34 208 | 98.29 150 | 90.09 278 | 99.31 205 | 98.56 76 | 91.80 198 | 96.35 159 | 98.00 197 | 89.38 172 | 98.28 209 | 92.46 207 | 69.22 338 | 97.64 213 |
|
TransMVSNet (Re) | | | 87.25 290 | 85.28 295 | 93.16 277 | 93.56 292 | 91.03 259 | 98.54 271 | 94.05 342 | 83.69 313 | 81.09 318 | 96.16 247 | 75.32 286 | 96.40 297 | 76.69 328 | 68.41 339 | 92.06 322 |
|
PMVS | | 49.05 23 | 53.75 320 | 51.34 324 | 60.97 335 | 40.80 359 | 34.68 359 | 74.82 350 | 89.62 352 | 37.55 351 | 28.67 357 | 72.12 347 | 7.09 361 | 81.63 350 | 43.17 352 | 68.21 340 | 66.59 348 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UnsupCasMVSNet_eth | | | 85.52 296 | 83.99 297 | 90.10 309 | 89.36 336 | 83.51 324 | 96.65 314 | 97.99 187 | 89.14 243 | 75.89 334 | 93.83 315 | 63.25 331 | 93.92 332 | 81.92 309 | 67.90 341 | 92.88 315 |
|
PVSNet_0 | | 88.03 19 | 91.80 232 | 90.27 244 | 96.38 188 | 98.27 155 | 90.46 271 | 99.94 55 | 99.61 11 | 93.99 120 | 86.26 296 | 97.39 210 | 71.13 307 | 99.89 79 | 98.77 73 | 67.05 342 | 98.79 197 |
|
TDRefinement | | | 84.76 301 | 82.56 306 | 91.38 299 | 74.58 349 | 84.80 321 | 97.36 306 | 94.56 339 | 84.73 306 | 80.21 321 | 96.12 250 | 63.56 330 | 98.39 197 | 87.92 264 | 63.97 343 | 90.95 331 |
|
new-patchmatchnet | | | 81.19 309 | 79.34 313 | 86.76 322 | 82.86 345 | 80.36 340 | 97.92 297 | 95.27 331 | 82.09 320 | 72.02 338 | 86.87 338 | 62.81 332 | 90.74 343 | 71.10 334 | 63.08 344 | 89.19 341 |
|
pmmvs3 | | | 80.27 311 | 77.77 315 | 87.76 320 | 80.32 347 | 82.43 328 | 98.23 287 | 91.97 346 | 72.74 341 | 78.75 325 | 87.97 335 | 57.30 342 | 90.99 342 | 70.31 335 | 62.37 345 | 89.87 336 |
|
UnsupCasMVSNet_bld | | | 79.97 313 | 77.03 316 | 88.78 317 | 85.62 341 | 81.98 331 | 93.66 333 | 97.35 251 | 75.51 337 | 70.79 340 | 83.05 343 | 48.70 348 | 94.91 327 | 78.31 321 | 60.29 346 | 89.46 340 |
|
LCM-MVSNet | | | 67.77 315 | 64.73 319 | 76.87 328 | 62.95 355 | 56.25 352 | 89.37 345 | 93.74 344 | 44.53 349 | 61.99 344 | 80.74 344 | 20.42 357 | 86.53 347 | 69.37 337 | 59.50 347 | 87.84 342 |
|
PMMVS2 | | | 67.15 316 | 64.15 320 | 76.14 329 | 70.56 352 | 62.07 349 | 93.89 331 | 87.52 354 | 58.09 346 | 60.02 345 | 78.32 345 | 22.38 356 | 84.54 348 | 59.56 347 | 47.03 348 | 81.80 344 |
|
MVE | | 53.74 22 | 51.54 322 | 47.86 326 | 62.60 334 | 59.56 356 | 50.93 353 | 79.41 349 | 77.69 356 | 35.69 353 | 36.27 355 | 61.76 354 | 5.79 363 | 69.63 352 | 37.97 353 | 36.61 349 | 67.24 347 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 52.30 321 | 52.18 323 | 52.67 336 | 71.51 350 | 45.40 355 | 93.62 334 | 76.60 357 | 36.01 352 | 43.50 353 | 64.13 352 | 27.11 354 | 67.31 354 | 31.06 354 | 26.06 350 | 45.30 353 |
|
EMVS | | | 51.44 323 | 51.22 325 | 52.11 337 | 70.71 351 | 44.97 357 | 94.04 330 | 75.66 358 | 35.34 354 | 42.40 354 | 61.56 355 | 28.93 353 | 65.87 355 | 27.64 355 | 24.73 351 | 45.49 352 |
|
ANet_high | | | 56.10 319 | 52.24 322 | 67.66 333 | 49.27 357 | 56.82 351 | 83.94 347 | 82.02 355 | 70.47 343 | 33.28 356 | 64.54 351 | 17.23 359 | 69.16 353 | 45.59 351 | 23.85 352 | 77.02 346 |
|
tmp_tt | | | 65.23 318 | 62.94 321 | 72.13 331 | 44.90 358 | 50.03 354 | 81.05 348 | 89.42 353 | 38.45 350 | 48.51 352 | 99.90 17 | 54.09 344 | 78.70 351 | 91.84 216 | 18.26 353 | 87.64 343 |
|
testmvs | | | 40.60 324 | 44.45 327 | 29.05 339 | 19.49 361 | 14.11 362 | 99.68 150 | 18.47 360 | 20.74 355 | 64.59 342 | 98.48 186 | 10.95 360 | 17.09 358 | 56.66 348 | 11.01 354 | 55.94 351 |
|
wuyk23d | | | 20.37 327 | 20.84 330 | 18.99 340 | 65.34 354 | 27.73 360 | 50.43 352 | 7.67 362 | 9.50 357 | 8.01 358 | 6.34 358 | 6.13 362 | 26.24 356 | 23.40 356 | 10.69 355 | 2.99 354 |
|
test123 | | | 37.68 325 | 39.14 328 | 33.31 338 | 19.94 360 | 24.83 361 | 98.36 280 | 9.75 361 | 15.53 356 | 51.31 351 | 87.14 337 | 19.62 358 | 17.74 357 | 47.10 350 | 3.47 356 | 57.36 350 |
|
uanet_test | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
cdsmvs_eth3d_5k | | | 23.43 326 | 31.24 329 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 98.09 180 | 0.00 358 | 0.00 359 | 99.67 95 | 83.37 226 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
pcd_1.5k_mvsjas | | | 7.60 329 | 10.13 332 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 91.20 148 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet-low-res | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
sosnet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uncertanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
Regformer | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
ab-mvs-re | | | 8.28 328 | 11.04 331 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 99.40 118 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
uanet | | | 0.00 330 | 0.00 333 | 0.00 341 | 0.00 362 | 0.00 363 | 0.00 353 | 0.00 363 | 0.00 358 | 0.00 359 | 0.00 359 | 0.00 364 | 0.00 359 | 0.00 357 | 0.00 357 | 0.00 355 |
|
test_241102_ONE | | | | | | 99.93 26 | 99.30 8 | | 98.43 114 | 97.26 22 | 99.80 16 | 99.88 22 | 96.71 20 | 100.00 1 | | | |
|
save fliter | | | | | | 99.82 65 | 98.79 33 | 99.96 23 | 98.40 130 | 97.66 10 | | | | | | | |
|
test0726 | | | | | | 99.93 26 | 99.29 10 | 99.96 23 | 98.42 125 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 15 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
test_part2 | | | | | | 99.89 45 | 99.25 13 | | | | 99.49 48 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 130 |
|
sam_mvs | | | | | | | | | | | | | 94.25 82 | | | | |
|
MTGPA | | | | | | | | | 98.28 156 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 326 | | | | 59.23 356 | 93.20 114 | 97.74 233 | 91.06 225 | | |
|
test_post | | | | | | | | | | | | 63.35 353 | 94.43 69 | 98.13 216 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 329 | 95.12 48 | 97.95 226 | | | |
|
MTMP | | | | | | | | 99.87 87 | 96.49 310 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 220 | 93.76 203 | | | 91.47 207 | | 98.96 153 | | 98.79 167 | 94.92 156 | | |
|
TEST9 | | | | | | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 114 | 93.90 126 | 99.71 30 | 99.86 29 | 95.88 34 | 99.85 94 | | | |
|
test_8 | | | | | | 99.92 35 | 98.88 26 | 99.96 23 | 98.43 114 | 94.35 103 | 99.69 32 | 99.85 33 | 95.94 31 | 99.85 94 | | | |
|
agg_prior | | | | | | 99.93 26 | 98.77 36 | | 98.43 114 | | 99.63 35 | | | 99.85 94 | | | |
|
test_prior4 | | | | | | | 98.05 71 | 99.94 55 | | | | | | | | | |
|
test_prior | | | | | 99.43 35 | 99.94 14 | 98.49 57 | | 98.65 59 | | | | | 99.80 106 | | | 99.99 20 |
|
旧先验2 | | | | | | | | 99.46 187 | | 94.21 110 | 99.85 6 | | | 99.95 60 | 96.96 133 | | |
|
新几何2 | | | | | | | | 99.40 191 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 182 | 98.71 52 | 93.46 140 | | | | 100.00 1 | 94.36 173 | | 99.99 20 |
|
原ACMM2 | | | | | | | | 99.90 73 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 236 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 22 | | | | |
|
testdata1 | | | | | | | | 99.28 210 | | 96.35 48 | | | | | | | |
|
plane_prior7 | | | | | | 95.71 257 | 91.59 255 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 252 | 91.72 250 | | | | | | 80.47 252 | | | | |
|
plane_prior4 | | | | | | | | | | | | 98.59 177 | | | | | |
|
plane_prior3 | | | | | | | 91.64 253 | | | 96.63 38 | 93.01 200 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 105 | | 96.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 254 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 363 | | | | | | | | |
|
nn | | | | | | | | | 0.00 363 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 351 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 106 | | | | | | | | |
|
door | | | | | | | | | 90.31 349 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 243 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 248 | | 99.87 87 | | 96.82 30 | 93.37 196 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 248 | | 99.87 87 | | 96.82 30 | 93.37 196 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 109 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 196 | | | 98.39 197 | | | 94.53 226 |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 248 | | | | |
|
NP-MVS | | | | | | 95.77 251 | 91.79 245 | | | | | 98.65 173 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 137 | 96.11 321 | | 91.89 193 | 98.06 119 | | 94.40 71 | | 94.30 176 | | 99.67 117 |
|
Test By Simon | | | | | | | | | | | | | 92.82 123 | | | | |
|