This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSC_two_6792asdad99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11997.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2799.31 998.41 13597.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11997.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15997.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 119100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 11197.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
agg_prior299.48 40100.00 1100.00 1
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8494.87 9299.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6195.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4697.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 14297.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6498.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15793.97 13299.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14695.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5698.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6898.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1997.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 11194.31 11798.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8495.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14693.19 15899.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test9_res99.71 3399.99 22100.00 1
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11994.63 10299.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7897.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13799.88 8998.16 18591.75 21198.94 9199.54 11091.82 14999.65 14297.62 12699.99 2299.99 24
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 14099.90 7898.17 18292.61 18098.62 10699.57 10791.87 14799.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 15194.08 12599.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13199.97 1898.39 14294.43 10998.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 11196.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16399.96 2598.35 15489.90 24998.36 11799.79 6491.18 15999.99 4098.37 9499.99 2299.99 24
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10498.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11996.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10694.56 10499.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14993.81 14099.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13197.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14696.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11994.35 11499.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 7094.77 9499.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 7095.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7294.77 9499.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
test1299.43 3899.74 8298.56 5798.40 13999.65 3894.76 6699.75 12599.98 3599.99 24
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15299.82 11798.43 11994.56 10497.52 13999.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
ZD-MVS99.92 3698.57 5598.52 9192.34 19399.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
9.1498.38 3999.87 5799.91 7498.33 15793.22 15799.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 14294.70 9798.26 12399.81 5991.84 148100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
114514_t97.41 9696.83 10599.14 6699.51 10397.83 8499.89 8698.27 16988.48 27399.06 8499.66 10090.30 17199.64 14396.32 14999.97 4899.96 74
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15696.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1793.90 13799.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
API-MVS97.86 7597.66 7498.47 11899.52 10195.41 17599.47 19198.87 4591.68 21298.84 9399.85 3592.34 13899.99 4098.44 9299.96 52100.00 1
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 17292.18 19799.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15494.92 8999.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
X-MVStestdata93.83 19592.06 22499.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6141.37 37594.34 7999.96 5798.92 6499.95 5599.99 24
原ACMM198.96 8599.73 8696.99 11998.51 9894.06 12899.62 4399.85 3594.97 6299.96 5795.11 16299.95 5599.92 91
test22299.55 9997.41 10799.34 20898.55 8491.86 20699.27 7599.83 5193.84 9999.95 5599.99 24
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 11197.96 799.55 4899.94 497.18 20100.00 193.81 19899.94 6199.98 55
新几何199.42 4199.75 8198.27 6998.63 6792.69 17599.55 4899.82 5594.40 74100.00 191.21 23299.94 6199.99 24
旧先验199.76 7997.52 9698.64 6499.85 3595.63 4299.94 6199.99 24
testdata98.42 12399.47 10595.33 17798.56 7893.78 14299.79 2399.85 3593.64 10499.94 7294.97 16599.94 61100.00 1
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7497.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 24297.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17693.53 14999.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5190.78 23699.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27399.63 9381.76 35099.96 2598.56 7899.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
test117298.38 5498.25 4898.77 9399.88 5496.56 13499.80 12498.36 15194.68 9999.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29698.62 6892.78 17099.53 5099.83 5195.08 53100.00 194.36 18599.92 7199.99 24
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13299.82 11798.30 16493.95 13499.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9196.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9196.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 18193.35 15396.45 16599.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PAPM98.60 3498.42 3299.14 6696.05 25898.96 2499.90 7899.35 2496.68 3898.35 11899.66 10096.45 2898.51 19299.45 4199.89 7899.96 74
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MVS96.60 12795.56 14699.72 1296.85 24199.22 1998.31 29698.94 3791.57 21590.90 23099.61 10486.66 21099.96 5797.36 13099.88 8099.99 24
MVS_111021_LR98.42 4998.38 3998.53 11599.39 10895.79 16299.87 9299.86 296.70 3798.78 9699.79 6492.03 14499.90 7999.17 5099.86 8399.88 96
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14994.68 9999.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9195.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9195.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
QAPM95.40 16094.17 17699.10 7296.92 23597.71 8799.40 19898.68 5789.31 25488.94 26898.89 16782.48 24199.96 5793.12 21599.83 8599.62 132
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11995.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
3Dnovator+91.53 1196.31 13795.24 15399.52 2996.88 24098.64 5399.72 15098.24 17295.27 8088.42 27998.98 15482.76 24099.94 7297.10 13799.83 8599.96 74
3Dnovator91.47 1296.28 14095.34 15199.08 7496.82 24397.47 10299.45 19498.81 4995.52 7489.39 25699.00 15181.97 24499.95 6497.27 13299.83 8599.84 99
LS3D95.84 14895.11 15898.02 14099.85 6095.10 18598.74 27398.50 10287.22 28993.66 20699.86 3187.45 20299.95 6490.94 24199.81 9199.02 197
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28999.42 2197.03 2799.02 8699.09 14399.35 198.21 22499.73 3199.78 9299.77 108
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 14294.04 13098.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
OpenMVScopyleft90.15 1594.77 17393.59 19098.33 12796.07 25797.48 10199.56 17698.57 7690.46 23986.51 30398.95 16278.57 27899.94 7293.86 19499.74 9497.57 226
131496.84 11595.96 13499.48 3696.74 24898.52 5998.31 29698.86 4695.82 6189.91 24298.98 15487.49 20199.96 5797.80 11799.73 9599.96 74
abl_697.67 8697.34 8898.66 10099.68 9196.11 15599.68 15598.14 18893.80 14199.27 7599.70 9188.65 19499.98 4697.46 12899.72 9699.89 94
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 11192.06 20298.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
MVP-Stereo90.93 25690.45 25192.37 30291.25 34288.76 30798.05 30996.17 33287.27 28884.04 32195.30 29378.46 28097.27 26783.78 31099.70 9891.09 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 18297.34 1699.85 699.85 3591.20 15699.89 8399.41 4499.67 9998.69 210
BH-w/o95.71 15295.38 15096.68 18798.49 15492.28 24799.84 11097.50 24592.12 19992.06 22198.79 17784.69 22798.67 18595.29 16199.66 10099.09 195
MAR-MVS97.43 9297.19 9398.15 13599.47 10594.79 19499.05 24198.76 5292.65 17898.66 10499.82 5588.52 19599.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MS-PatchMatch90.65 26390.30 25491.71 31094.22 29785.50 33198.24 30097.70 22188.67 26986.42 30696.37 25567.82 33498.03 23383.62 31199.62 10291.60 342
MVSFormer96.94 11196.60 11297.95 14197.28 22497.70 8999.55 17897.27 26891.17 22599.43 5999.54 11090.92 16396.89 28994.67 17999.62 10299.25 184
lupinMVS97.85 7697.60 7898.62 10397.28 22497.70 8999.99 597.55 23695.50 7599.43 5999.67 9890.92 16398.71 18298.40 9399.62 10299.45 163
BH-untuned95.18 16394.83 16496.22 20298.36 15891.22 27399.80 12497.32 26490.91 23291.08 22898.67 18183.51 23598.54 19194.23 19099.61 10598.92 199
DeepC-MVS94.51 496.92 11396.40 11998.45 12099.16 11595.90 15999.66 15898.06 19496.37 5094.37 19799.49 11383.29 23899.90 7997.63 12599.61 10599.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GG-mvs-BLEND98.54 11398.21 16898.01 7793.87 34998.52 9197.92 13197.92 21199.02 297.94 24098.17 10099.58 10799.67 120
gg-mvs-nofinetune93.51 20591.86 22998.47 11897.72 20097.96 8192.62 35398.51 9874.70 35697.33 14369.59 36798.91 397.79 24397.77 12299.56 10899.67 120
BH-RMVSNet95.18 16394.31 17497.80 14598.17 17195.23 18299.76 13697.53 24092.52 18794.27 19999.25 13576.84 28798.80 17390.89 24399.54 10999.35 175
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13399.40 19898.51 9895.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
TAPA-MVS92.12 894.42 18593.60 18996.90 18099.33 11191.78 26099.78 12898.00 19789.89 25094.52 19499.47 11491.97 14599.18 16169.90 35399.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PLCcopyleft95.54 397.93 7397.89 7098.05 13999.82 7094.77 19599.92 7098.46 10693.93 13597.20 14599.27 13195.44 4799.97 5597.41 12999.51 11299.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
jason97.24 10296.86 10498.38 12695.73 27097.32 10899.97 1897.40 25795.34 7898.60 10899.54 11087.70 19998.56 18997.94 11499.47 11399.25 184
jason: jason.
CSCG97.10 10697.04 10097.27 17299.89 5091.92 25699.90 7899.07 3288.67 26995.26 18899.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12499.87 9298.14 18893.78 14296.55 16399.69 9492.28 13999.98 4697.13 13599.44 11599.93 85
AdaColmapbinary97.23 10396.80 10798.51 11699.99 195.60 17199.09 23098.84 4893.32 15496.74 15799.72 8786.04 215100.00 198.01 10999.43 11699.94 84
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9897.00 2898.52 10999.71 8987.80 19899.95 6499.75 2699.38 11799.83 100
F-COLMAP96.93 11296.95 10396.87 18199.71 8991.74 26199.85 10697.95 20393.11 16195.72 18199.16 14192.35 13799.94 7295.32 16099.35 11898.92 199
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14399.36 20798.50 10295.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2995.38 7698.27 12199.08 14489.00 18999.95 6499.12 5199.25 12099.57 145
CS-MVS97.74 8397.61 7798.15 13597.52 21196.69 128100.00 197.11 28294.93 8699.73 2999.41 12091.68 15098.25 22298.84 7199.24 12199.52 154
DROMVSNet97.38 9897.24 9197.80 14597.41 21495.64 17099.99 597.06 28794.59 10399.63 4099.32 12789.20 18798.14 22698.76 7899.23 12299.62 132
PatchMatch-RL96.04 14495.40 14897.95 14199.59 9595.22 18399.52 18299.07 3293.96 13396.49 16498.35 19982.28 24299.82 10990.15 25599.22 12398.81 206
CHOSEN 1792x268896.81 11696.53 11597.64 15498.91 13293.07 22899.65 16199.80 395.64 7095.39 18598.86 17384.35 23199.90 7996.98 14099.16 12499.95 82
EIA-MVS97.53 8997.46 8297.76 15098.04 17794.84 19199.98 1097.61 23094.41 11297.90 13299.59 10592.40 13698.87 17098.04 10899.13 12599.59 138
UGNet95.33 16194.57 16997.62 15698.55 15094.85 19098.67 28099.32 2595.75 6896.80 15696.27 25872.18 31799.96 5794.58 18199.05 12698.04 217
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test97.44 9197.41 8497.53 15797.46 21394.66 197100.00 197.04 29194.69 9899.72 3399.25 13591.22 15498.29 21498.33 9798.95 12799.64 126
CANet_DTU96.76 11996.15 12398.60 10598.78 14197.53 9599.84 11097.63 22597.25 2399.20 7799.64 10281.36 25299.98 4692.77 21898.89 12898.28 213
TESTMET0.1,196.74 12196.26 12198.16 13297.36 21796.48 13599.96 2598.29 16591.93 20495.77 18098.07 20595.54 4398.29 21490.55 24798.89 12899.70 115
test-LLR96.47 13096.04 12597.78 14797.02 23295.44 17399.96 2598.21 17694.07 12695.55 18296.38 25393.90 9798.27 21990.42 25098.83 13099.64 126
test-mter96.39 13495.93 13697.78 14797.02 23295.44 17399.96 2598.21 17691.81 20995.55 18296.38 25395.17 5098.27 21990.42 25098.83 13099.64 126
PVSNet91.05 1397.13 10596.69 11098.45 12099.52 10195.81 16199.95 4399.65 1194.73 9699.04 8599.21 13984.48 22999.95 6494.92 16798.74 13299.58 144
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12699.90 7899.51 1697.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19397.05 2699.86 499.86 3190.65 16799.71 13399.39 4598.63 13498.69 210
ETV-MVS97.92 7497.80 7298.25 13098.14 17396.48 13599.98 1097.63 22595.61 7199.29 7499.46 11692.55 13298.82 17299.02 6098.54 13599.46 161
Vis-MVSNetpermissive95.72 15095.15 15797.45 16297.62 20494.28 20399.28 21898.24 17294.27 12096.84 15498.94 16479.39 27198.76 17893.25 20998.49 13699.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS94.20 595.18 16394.10 17898.43 12298.55 15095.99 15797.91 31297.31 26590.35 24289.48 25599.22 13885.19 22499.89 8390.40 25298.47 13799.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MSDG94.37 18793.36 20097.40 16598.88 13593.95 21099.37 20597.38 25885.75 31090.80 23199.17 14084.11 23399.88 8986.35 29398.43 13898.36 212
PVSNet_Blended_VisFu97.27 10196.81 10698.66 10098.81 13996.67 12999.92 7098.64 6494.51 10696.38 16998.49 19289.05 18899.88 8997.10 13798.34 13999.43 166
EPNet_dtu95.71 15295.39 14996.66 18898.92 13093.41 22399.57 17498.90 4296.19 5497.52 13998.56 19092.65 12997.36 25777.89 33798.33 14099.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base_debi97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
OMC-MVS97.28 10097.23 9297.41 16499.76 7993.36 22699.65 16197.95 20396.03 5897.41 14299.70 9189.61 17899.51 14796.73 14698.25 14499.38 170
test250697.53 8997.19 9398.58 10898.66 14696.90 12398.81 26899.77 594.93 8697.95 13098.96 15892.51 13399.20 15994.93 16698.15 14599.64 126
ECVR-MVScopyleft95.66 15495.05 15997.51 16098.66 14693.71 21598.85 26598.45 10894.93 8696.86 15398.96 15875.22 30399.20 15995.34 15998.15 14599.64 126
test111195.57 15694.98 16197.37 16798.56 14893.37 22598.86 26298.45 10894.95 8596.63 15998.95 16275.21 30499.11 16395.02 16498.14 14799.64 126
mvs-test195.53 15795.97 13294.20 26197.77 19385.44 33299.95 4397.06 28794.92 8996.58 16198.72 17985.81 21698.98 16794.80 17298.11 14898.18 214
DP-MVS94.54 18193.42 19697.91 14499.46 10794.04 20698.93 25397.48 24781.15 33990.04 23999.55 10887.02 20799.95 6488.97 26498.11 14899.73 112
EPMVS96.53 12996.01 12698.09 13798.43 15696.12 15496.36 33399.43 2093.53 14997.64 13795.04 30294.41 7398.38 20891.13 23498.11 14899.75 110
PatchmatchNetpermissive95.94 14695.45 14797.39 16697.83 18994.41 20196.05 33998.40 13992.86 16497.09 14895.28 29794.21 8998.07 23189.26 26298.11 14899.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 12396.49 11697.37 16795.63 27795.96 15899.74 14298.88 4492.94 16391.61 22398.97 15697.72 598.62 18794.83 17198.08 15297.53 227
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15299.18 22599.45 1894.84 9396.41 16899.71 8991.40 15299.99 4097.99 11198.03 15399.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS-HIRNet86.22 30583.19 31795.31 22196.71 25090.29 28992.12 35597.33 26362.85 36286.82 29870.37 36669.37 32797.49 25275.12 34697.99 15498.15 215
PMMVS96.76 11996.76 10896.76 18498.28 16292.10 25199.91 7497.98 20094.12 12399.53 5099.39 12386.93 20898.73 18096.95 14297.73 15599.45 163
UA-Net96.54 12895.96 13498.27 12998.23 16795.71 16798.00 31098.45 10893.72 14598.41 11499.27 13188.71 19399.66 14191.19 23397.69 15699.44 165
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15799.99 24
mvs_anonymous95.65 15595.03 16097.53 15798.19 16995.74 16599.33 20997.49 24690.87 23390.47 23597.10 22888.23 19697.16 27095.92 15497.66 15899.68 118
LCM-MVSNet-Re92.31 23192.60 21191.43 31197.53 20779.27 36099.02 24491.83 36792.07 20080.31 33994.38 32383.50 23695.48 33097.22 13497.58 15999.54 151
MVS_Test96.46 13195.74 14298.61 10498.18 17097.23 11099.31 21297.15 27891.07 22998.84 9397.05 23288.17 19798.97 16894.39 18497.50 16099.61 135
SCA94.69 17593.81 18697.33 17197.10 22794.44 19998.86 26298.32 15993.30 15596.17 17395.59 27676.48 29197.95 23891.06 23697.43 16199.59 138
Vis-MVSNet (Re-imp)96.32 13695.98 12997.35 17097.93 18294.82 19299.47 19198.15 18791.83 20795.09 18999.11 14291.37 15397.47 25493.47 20797.43 16199.74 111
diffmvs97.00 10996.64 11198.09 13797.64 20396.17 15199.81 11997.19 27294.67 10198.95 9099.28 12886.43 21298.76 17898.37 9497.42 16399.33 177
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 19399.08 23297.61 23092.02 20395.54 18498.96 15890.64 16898.08 22993.73 20397.41 16499.47 160
Effi-MVS+96.30 13895.69 14398.16 13297.85 18896.26 14497.41 31897.21 27190.37 24198.65 10598.58 18886.61 21198.70 18397.11 13697.37 16599.52 154
DWT-MVSNet_test97.31 9997.19 9397.66 15398.24 16694.67 19698.86 26298.20 18093.60 14898.09 12698.89 16797.51 798.78 17594.04 19297.28 16699.55 147
ADS-MVSNet293.80 19893.88 18493.55 28597.87 18685.94 32894.24 34596.84 31090.07 24696.43 16694.48 32090.29 17295.37 33287.44 28097.23 16799.36 173
ADS-MVSNet94.79 17194.02 18097.11 17697.87 18693.79 21294.24 34598.16 18590.07 24696.43 16694.48 32090.29 17298.19 22587.44 28097.23 16799.36 173
EPP-MVSNet96.69 12496.60 11296.96 17897.74 19693.05 23099.37 20598.56 7888.75 26795.83 17999.01 14996.01 3198.56 18996.92 14397.20 16999.25 184
Fast-Effi-MVS+95.02 16794.19 17597.52 15997.88 18494.55 19899.97 1897.08 28588.85 26694.47 19697.96 21084.59 22898.41 20089.84 25897.10 17099.59 138
Effi-MVS+-dtu94.53 18395.30 15292.22 30397.77 19382.54 34399.59 17197.06 28794.92 8995.29 18795.37 29085.81 21697.89 24194.80 17297.07 17196.23 234
casdiffmvs96.42 13395.97 13297.77 14997.30 22294.98 18799.84 11097.09 28493.75 14496.58 16199.26 13485.07 22598.78 17597.77 12297.04 17299.54 151
sss97.57 8897.03 10199.18 5798.37 15798.04 7699.73 14799.38 2293.46 15198.76 9999.06 14591.21 15599.89 8396.33 14897.01 17399.62 132
Patchmatch-test92.65 22591.50 23596.10 20596.85 24190.49 28591.50 35897.19 27282.76 33490.23 23695.59 27695.02 5798.00 23477.41 33996.98 17499.82 101
MDTV_nov1_ep1395.69 14397.90 18394.15 20495.98 34098.44 11193.12 16097.98 12995.74 26995.10 5298.58 18890.02 25696.92 175
Fast-Effi-MVS+-dtu93.72 20293.86 18593.29 28897.06 22986.16 32699.80 12496.83 31192.66 17792.58 21997.83 21281.39 25197.67 24789.75 25996.87 17696.05 236
baseline96.43 13295.98 12997.76 15097.34 21895.17 18499.51 18497.17 27593.92 13696.90 15299.28 12885.37 22298.64 18697.50 12796.86 17799.46 161
tpmrst96.27 14195.98 12997.13 17497.96 18093.15 22796.34 33498.17 18292.07 20098.71 10295.12 30093.91 9698.73 18094.91 16996.62 17899.50 158
JIA-IIPM91.76 24690.70 24694.94 23296.11 25687.51 32193.16 35298.13 19075.79 35397.58 13877.68 36492.84 12497.97 23588.47 27096.54 17999.33 177
dp95.05 16694.43 17196.91 17997.99 17992.73 23796.29 33597.98 20089.70 25295.93 17694.67 31593.83 10098.45 19786.91 29296.53 18099.54 151
COLMAP_ROBcopyleft90.47 1492.18 23491.49 23694.25 26099.00 12288.04 31998.42 29496.70 32082.30 33688.43 27799.01 14976.97 28599.85 9886.11 29696.50 18194.86 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
GeoE94.36 18993.48 19496.99 17797.29 22393.54 21999.96 2596.72 31988.35 27693.43 20798.94 16482.05 24398.05 23288.12 27596.48 18299.37 172
tpm cat193.51 20592.52 21696.47 19297.77 19391.47 27196.13 33798.06 19480.98 34092.91 21593.78 32889.66 17798.87 17087.03 28896.39 18399.09 195
thisisatest051597.41 9697.02 10298.59 10797.71 20297.52 9699.97 1898.54 8891.83 20797.45 14199.04 14697.50 899.10 16494.75 17596.37 18499.16 189
AllTest92.48 22791.64 23095.00 23099.01 12088.43 31398.94 25296.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
TestCases95.00 23099.01 12088.43 31396.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
thisisatest053097.10 10696.72 10998.22 13197.60 20596.70 12799.92 7098.54 8891.11 22897.07 14998.97 15697.47 1199.03 16593.73 20396.09 18798.92 199
DSMNet-mixed88.28 29788.24 29288.42 33489.64 35375.38 36298.06 30889.86 37085.59 31288.20 28292.14 34476.15 29691.95 35878.46 33596.05 18897.92 218
TR-MVS94.54 18193.56 19297.49 16197.96 18094.34 20298.71 27697.51 24490.30 24494.51 19598.69 18075.56 29898.77 17792.82 21795.99 18999.35 175
CR-MVSNet93.45 20892.62 21095.94 20896.29 25392.66 23992.01 35696.23 33092.62 17996.94 15093.31 33391.04 16096.03 32479.23 33095.96 19099.13 193
RPMNet89.76 28487.28 29997.19 17396.29 25392.66 23992.01 35698.31 16170.19 36196.94 15085.87 36087.25 20499.78 11562.69 36395.96 19099.13 193
PatchT90.38 27088.75 28495.25 22495.99 26090.16 29191.22 36097.54 23876.80 34997.26 14486.01 35991.88 14696.07 32366.16 36095.91 19299.51 156
tpmvs94.28 19193.57 19196.40 19798.55 15091.50 27095.70 34498.55 8487.47 28492.15 22094.26 32491.42 15198.95 16988.15 27395.85 19398.76 208
TAMVS95.85 14795.58 14596.65 18997.07 22893.50 22099.17 22697.82 21791.39 22495.02 19098.01 20692.20 14097.30 26293.75 20295.83 19499.14 192
CostFormer96.10 14295.88 13996.78 18397.03 23192.55 24397.08 32597.83 21690.04 24898.72 10194.89 30995.01 5998.29 21496.54 14795.77 19599.50 158
tttt051796.85 11496.49 11697.92 14397.48 21295.89 16099.85 10698.54 8890.72 23796.63 15998.93 16697.47 1199.02 16693.03 21695.76 19698.85 203
HY-MVS92.50 797.79 8197.17 9699.63 1598.98 12399.32 897.49 31799.52 1495.69 6998.32 11997.41 21993.32 11099.77 11998.08 10795.75 19799.81 102
CDS-MVSNet96.34 13596.07 12497.13 17497.37 21694.96 18899.53 18197.91 20891.55 21695.37 18698.32 20095.05 5697.13 27393.80 19995.75 19799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm295.47 15995.18 15696.35 20096.91 23691.70 26596.96 32897.93 20588.04 27998.44 11395.40 28693.32 11097.97 23594.00 19395.61 19999.38 170
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1495.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 20099.78 107
HyFIR lowres test96.66 12696.43 11897.36 16999.05 11893.91 21199.70 15299.80 390.54 23896.26 17198.08 20492.15 14298.23 22396.84 14595.46 20199.93 85
cascas94.64 17893.61 18797.74 15297.82 19096.26 14499.96 2597.78 21985.76 30894.00 20297.54 21676.95 28699.21 15897.23 13395.43 20297.76 223
CVMVSNet94.68 17794.94 16293.89 27596.80 24486.92 32499.06 23798.98 3594.45 10794.23 20099.02 14785.60 21895.31 33490.91 24295.39 20399.43 166
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
LFMVS94.75 17493.56 19298.30 12899.03 11995.70 16898.74 27397.98 20087.81 28298.47 11299.39 12367.43 33699.53 14598.01 10995.20 20699.67 120
thres20096.96 11096.21 12299.22 5398.97 12498.84 3499.85 10699.71 693.17 15996.26 17198.88 16989.87 17699.51 14794.26 18994.91 20799.31 179
thres100view90096.74 12195.92 13799.18 5798.90 13398.77 4099.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.84 19594.57 20899.27 182
tfpn200view996.79 11795.99 12799.19 5698.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.27 182
thres40096.78 11895.99 12799.16 6298.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.16 189
thres600view796.69 12495.87 14099.14 6698.90 13398.78 3999.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.44 20894.50 21199.16 189
VNet97.21 10496.57 11499.13 7198.97 12497.82 8599.03 24399.21 2894.31 11799.18 8198.88 16986.26 21499.89 8398.93 6394.32 21299.69 117
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 11194.40 11398.41 11499.47 11493.65 10399.42 15598.57 8894.26 21399.67 120
VDD-MVS93.77 19992.94 20596.27 20198.55 15090.22 29098.77 27297.79 21890.85 23496.82 15599.42 11861.18 35499.77 11998.95 6194.13 21498.82 205
VDDNet93.12 21291.91 22796.76 18496.67 25192.65 24198.69 27898.21 17682.81 33397.75 13699.28 12861.57 35299.48 15398.09 10694.09 21598.15 215
GA-MVS93.83 19592.84 20696.80 18295.73 27093.57 21799.88 8997.24 27092.57 18592.92 21496.66 24678.73 27797.67 24787.75 27894.06 21699.17 188
canonicalmvs97.09 10896.32 12099.39 4698.93 12898.95 2599.72 15097.35 26094.45 10797.88 13399.42 11886.71 20999.52 14698.48 9193.97 21799.72 114
1112_ss96.01 14595.20 15598.42 12397.80 19196.41 13899.65 16196.66 32192.71 17392.88 21699.40 12192.16 14199.30 15691.92 22593.66 21899.55 147
Test_1112_low_res95.72 15094.83 16498.42 12397.79 19296.41 13899.65 16196.65 32292.70 17492.86 21796.13 26292.15 14299.30 15691.88 22693.64 21999.55 147
MIMVSNet90.30 27388.67 28595.17 22696.45 25291.64 26792.39 35497.15 27885.99 30490.50 23493.19 33566.95 33794.86 34082.01 32093.43 22099.01 198
XVG-OURS-SEG-HR94.79 17194.70 16895.08 22798.05 17689.19 30399.08 23297.54 23893.66 14694.87 19199.58 10678.78 27699.79 11397.31 13193.40 22196.25 232
ab-mvs94.69 17593.42 19698.51 11698.07 17596.26 14496.49 33298.68 5790.31 24394.54 19397.00 23476.30 29399.71 13395.98 15393.38 22299.56 146
test0.0.03 193.86 19493.61 18794.64 24295.02 28692.18 25099.93 6698.58 7494.07 12687.96 28498.50 19193.90 9794.96 33881.33 32393.17 22396.78 229
RPSCF91.80 24392.79 20888.83 33098.15 17269.87 36498.11 30696.60 32383.93 32694.33 19899.27 13179.60 27099.46 15491.99 22393.16 22497.18 228
XVG-OURS94.82 17094.74 16795.06 22898.00 17889.19 30399.08 23297.55 23694.10 12494.71 19299.62 10380.51 26399.74 12996.04 15293.06 22596.25 232
MVS_030489.28 29188.31 29092.21 30497.05 23086.53 32597.76 31599.57 1385.58 31393.86 20592.71 33751.04 36596.30 31484.49 30592.72 22693.79 305
Anonymous20240521193.10 21391.99 22596.40 19799.10 11789.65 30098.88 25897.93 20583.71 32894.00 20298.75 17868.79 32899.88 8995.08 16391.71 22799.68 118
Anonymous2024052992.10 23690.65 24796.47 19298.82 13890.61 28298.72 27598.67 6075.54 35493.90 20498.58 18866.23 33999.90 7994.70 17890.67 22898.90 202
HQP3-MVS97.89 20989.60 229
HQP-MVS94.61 17994.50 17094.92 23395.78 26491.85 25799.87 9297.89 20996.82 3193.37 20898.65 18280.65 26198.39 20497.92 11589.60 22994.53 238
plane_prior91.74 26199.86 10396.76 3589.59 231
HQP_MVS94.49 18494.36 17294.87 23495.71 27391.74 26199.84 11097.87 21196.38 4793.01 21298.59 18680.47 26598.37 20997.79 12089.55 23294.52 240
plane_prior597.87 21198.37 20997.79 12089.55 23294.52 240
CLD-MVS94.06 19393.90 18394.55 24796.02 25990.69 27999.98 1097.72 22096.62 4191.05 22998.85 17677.21 28398.47 19398.11 10489.51 23494.48 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS93.21 21092.80 20794.44 25493.12 31690.85 27899.77 13197.61 23096.19 5491.56 22498.65 18275.16 30598.47 19393.78 20189.39 23593.99 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test92.96 21692.71 20993.71 27995.43 27988.67 30999.75 13997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
LGP-MVS_train93.71 27995.43 27988.67 30997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
test_djsdf92.83 21992.29 22094.47 25291.90 33492.46 24499.55 17897.27 26891.17 22589.96 24096.07 26481.10 25496.89 28994.67 17988.91 23894.05 284
testgi89.01 29388.04 29491.90 30893.49 30984.89 33599.73 14795.66 34293.89 13985.14 31798.17 20259.68 35594.66 34277.73 33888.88 23996.16 235
ACMM91.95 1092.88 21892.52 21693.98 27295.75 26989.08 30699.77 13197.52 24293.00 16289.95 24197.99 20976.17 29598.46 19693.63 20688.87 24094.39 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.05 992.74 22192.42 21893.73 27795.91 26388.72 30899.81 11997.53 24094.13 12287.00 29798.23 20174.07 31198.47 19396.22 15088.86 24193.99 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jajsoiax91.92 23891.18 24094.15 26291.35 34090.95 27699.00 24597.42 25392.61 18087.38 29397.08 22972.46 31697.36 25794.53 18288.77 24294.13 279
anonymousdsp91.79 24590.92 24394.41 25790.76 34592.93 23298.93 25397.17 27589.08 25687.46 29295.30 29378.43 28196.92 28892.38 22088.73 24393.39 318
mvs_tets91.81 24091.08 24194.00 27091.63 33890.58 28398.67 28097.43 25192.43 19187.37 29497.05 23271.76 31897.32 26194.75 17588.68 24494.11 280
XVG-ACMP-BASELINE91.22 25390.75 24492.63 30093.73 30585.61 32998.52 28897.44 25092.77 17189.90 24396.85 24066.64 33898.39 20492.29 22188.61 24593.89 298
EG-PatchMatch MVS85.35 31183.81 31389.99 32490.39 34781.89 34898.21 30396.09 33481.78 33874.73 35593.72 32951.56 36497.12 27579.16 33388.61 24590.96 347
UniMVSNet_ETH3D90.06 28088.58 28694.49 25194.67 29188.09 31897.81 31497.57 23583.91 32788.44 27597.41 21957.44 35897.62 24991.41 23088.59 24797.77 222
tpm93.70 20393.41 19894.58 24595.36 28187.41 32297.01 32696.90 30690.85 23496.72 15894.14 32590.40 17096.84 29290.75 24688.54 24899.51 156
OpenMVS_ROBcopyleft79.82 2083.77 32081.68 32390.03 32388.30 35782.82 34098.46 28995.22 35173.92 35876.00 35291.29 34655.00 36096.94 28768.40 35688.51 24990.34 351
CMPMVSbinary61.59 2184.75 31485.14 30883.57 34290.32 34862.54 36896.98 32797.59 23474.33 35769.95 36096.66 24664.17 34698.32 21287.88 27788.41 25089.84 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMMP++88.23 251
ITE_SJBPF92.38 30195.69 27585.14 33395.71 34092.81 16789.33 25998.11 20370.23 32598.42 19985.91 29788.16 25293.59 314
D2MVS92.76 22092.59 21493.27 28995.13 28289.54 30299.69 15399.38 2292.26 19587.59 28894.61 31785.05 22697.79 24391.59 22988.01 25392.47 334
EI-MVSNet93.73 20193.40 19994.74 23896.80 24492.69 23899.06 23797.67 22388.96 26291.39 22599.02 14788.75 19297.30 26291.07 23587.85 25494.22 264
MVSTER95.53 15795.22 15496.45 19498.56 14897.72 8699.91 7497.67 22392.38 19291.39 22597.14 22697.24 1797.30 26294.80 17287.85 25494.34 257
PS-MVSNAJss93.64 20493.31 20194.61 24392.11 33192.19 24999.12 22897.38 25892.51 18888.45 27496.99 23591.20 15697.29 26594.36 18587.71 25694.36 253
LTVRE_ROB88.28 1890.29 27489.05 27994.02 26895.08 28490.15 29297.19 32297.43 25184.91 32183.99 32297.06 23174.00 31298.28 21784.08 30687.71 25693.62 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH89.72 1790.64 26489.63 26593.66 28395.64 27688.64 31198.55 28497.45 24889.03 25881.62 33397.61 21569.75 32698.41 20089.37 26087.62 25893.92 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PVSNet_BlendedMVS96.05 14395.82 14196.72 18699.59 9596.99 11999.95 4399.10 2994.06 12898.27 12195.80 26789.00 18999.95 6499.12 5187.53 25993.24 322
USDC90.00 28188.96 28093.10 29494.81 28888.16 31798.71 27695.54 34593.66 14683.75 32497.20 22565.58 34198.31 21383.96 30987.49 26092.85 329
RRT_MVS95.23 16294.77 16696.61 19098.28 16298.32 6799.81 11997.41 25592.59 18291.28 22797.76 21395.02 5797.23 26893.65 20587.14 26194.28 260
ACMMP++_ref87.04 262
test_040285.58 30783.94 31190.50 31893.81 30485.04 33498.55 28495.20 35276.01 35179.72 34295.13 29964.15 34796.26 31666.04 36186.88 26390.21 353
FIs94.10 19293.43 19596.11 20494.70 29096.82 12599.58 17298.93 4192.54 18689.34 25897.31 22287.62 20097.10 27694.22 19186.58 26494.40 250
FC-MVSNet-test93.81 19793.15 20495.80 21294.30 29696.20 14999.42 19798.89 4392.33 19489.03 26797.27 22487.39 20396.83 29393.20 21086.48 26594.36 253
TinyColmap87.87 30186.51 30291.94 30795.05 28585.57 33097.65 31694.08 36084.40 32481.82 33296.85 24062.14 35198.33 21180.25 32886.37 26691.91 341
ACMH+89.98 1690.35 27189.54 26892.78 29995.99 26086.12 32798.81 26897.18 27489.38 25383.14 32697.76 21368.42 33298.43 19889.11 26386.05 26793.78 306
baseline195.78 14994.86 16398.54 11398.47 15598.07 7499.06 23797.99 19892.68 17694.13 20198.62 18593.28 11398.69 18493.79 20085.76 26898.84 204
GBi-Net90.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
test190.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
FMVSNet392.69 22391.58 23295.99 20698.29 16097.42 10699.26 22097.62 22789.80 25189.68 24895.32 29281.62 25096.27 31587.01 28985.65 26994.29 259
DeepMVS_CXcopyleft82.92 34495.98 26258.66 37096.01 33592.72 17278.34 34695.51 28158.29 35798.08 22982.57 31685.29 27292.03 339
LF4IMVS89.25 29288.85 28190.45 32092.81 32581.19 35398.12 30594.79 35591.44 22086.29 30997.11 22765.30 34498.11 22888.53 26985.25 27392.07 337
FMVSNet291.02 25589.56 26795.41 21897.53 20795.74 16598.98 24797.41 25587.05 29088.43 27795.00 30571.34 32096.24 31785.12 30185.21 27494.25 263
ET-MVSNet_ETH3D94.37 18793.28 20297.64 15498.30 15997.99 7899.99 597.61 23094.35 11471.57 35899.45 11796.23 3095.34 33396.91 14485.14 27599.59 138
EGC-MVSNET69.38 32963.76 33686.26 33990.32 34881.66 35196.24 33693.85 3630.99 3763.22 37792.33 34352.44 36292.92 35559.53 36684.90 27684.21 362
OurMVSNet-221017-089.81 28389.48 27290.83 31691.64 33781.21 35298.17 30495.38 34891.48 21885.65 31597.31 22272.66 31597.29 26588.15 27384.83 27793.97 292
pmmvs492.10 23691.07 24295.18 22592.82 32494.96 18899.48 19096.83 31187.45 28588.66 27396.56 25183.78 23496.83 29389.29 26184.77 27893.75 307
our_test_390.39 26989.48 27293.12 29292.40 32889.57 30199.33 20996.35 32987.84 28185.30 31694.99 30684.14 23296.09 32280.38 32784.56 27993.71 312
cl2293.77 19993.25 20395.33 22099.49 10494.43 20099.61 16998.09 19190.38 24089.16 26595.61 27490.56 16997.34 25991.93 22484.45 28094.21 266
miper_ehance_all_eth93.16 21192.60 21194.82 23797.57 20693.56 21899.50 18697.07 28688.75 26788.85 26995.52 28090.97 16296.74 29690.77 24584.45 28094.17 268
miper_enhance_ethall94.36 18993.98 18195.49 21498.68 14595.24 18199.73 14797.29 26693.28 15689.86 24495.97 26594.37 7897.05 27992.20 22284.45 28094.19 267
bset_n11_16_dypcd93.05 21592.30 21995.31 22190.23 35095.05 18699.44 19697.28 26792.51 18890.65 23396.68 24585.30 22396.71 29994.49 18384.14 28394.16 273
IterMVS90.91 25790.17 25893.12 29296.78 24790.42 28898.89 25697.05 29089.03 25886.49 30495.42 28576.59 29095.02 33687.22 28584.09 28493.93 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet188.50 29586.64 30194.08 26595.62 27891.97 25298.43 29196.95 30083.00 33186.08 31294.72 31159.09 35696.11 31981.82 32284.07 28594.17 268
XXY-MVS91.82 23990.46 24995.88 20993.91 30295.40 17698.87 26197.69 22288.63 27187.87 28597.08 22974.38 31097.89 24191.66 22884.07 28594.35 256
IterMVS-SCA-FT90.85 26090.16 25992.93 29696.72 24989.96 29598.89 25696.99 29588.95 26386.63 30195.67 27276.48 29195.00 33787.04 28784.04 28793.84 302
RRT_test8_iter0594.58 18094.11 17795.98 20797.88 18496.11 15599.89 8697.45 24891.66 21388.28 28096.71 24496.53 2797.40 25594.73 17783.85 28894.45 248
pmmvs590.17 27889.09 27793.40 28692.10 33289.77 29999.74 14295.58 34485.88 30787.24 29695.74 26973.41 31496.48 30788.54 26883.56 28993.95 293
SixPastTwentyTwo88.73 29488.01 29590.88 31491.85 33582.24 34598.22 30295.18 35388.97 26182.26 32996.89 23771.75 31996.67 30184.00 30782.98 29093.72 311
N_pmnet80.06 32780.78 32577.89 34591.94 33345.28 37698.80 27056.82 37978.10 34880.08 34193.33 33177.03 28495.76 32968.14 35782.81 29192.64 330
ppachtmachnet_test89.58 28788.35 28993.25 29092.40 32890.44 28799.33 20996.73 31885.49 31485.90 31495.77 26881.09 25596.00 32676.00 34582.49 29293.30 320
cl____92.31 23191.58 23294.52 24897.33 22092.77 23399.57 17496.78 31686.97 29487.56 28995.51 28189.43 18096.62 30288.60 26682.44 29394.16 273
DIV-MVS_self_test92.32 23091.60 23194.47 25297.31 22192.74 23599.58 17296.75 31786.99 29387.64 28795.54 27889.55 17996.50 30688.58 26782.44 29394.17 268
Patchmtry89.70 28588.49 28793.33 28796.24 25589.94 29891.37 35996.23 33078.22 34787.69 28693.31 33391.04 16096.03 32480.18 32982.10 29594.02 285
IterMVS-LS92.69 22392.11 22294.43 25696.80 24492.74 23599.45 19496.89 30788.98 26089.65 25195.38 28988.77 19196.34 31290.98 24082.04 29694.22 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet90.14 27990.34 25389.54 32692.55 32781.06 35498.69 27898.04 19691.41 22386.59 30296.84 24280.83 25893.31 35486.20 29481.91 29794.26 261
Anonymous2023120686.32 30485.42 30689.02 32989.11 35580.53 35899.05 24195.28 34985.43 31582.82 32793.92 32674.40 30993.44 35366.99 35881.83 29893.08 325
eth_miper_zixun_eth92.41 22991.93 22693.84 27697.28 22490.68 28098.83 26696.97 29988.57 27289.19 26495.73 27189.24 18696.69 30089.97 25781.55 29994.15 275
FMVSNet588.32 29687.47 29890.88 31496.90 23988.39 31597.28 32095.68 34182.60 33584.67 31992.40 34279.83 26991.16 36076.39 34481.51 30093.09 324
miper_lstm_enhance91.81 24091.39 23893.06 29597.34 21889.18 30599.38 20396.79 31586.70 29787.47 29195.22 29890.00 17495.86 32888.26 27181.37 30194.15 275
VPA-MVSNet92.70 22291.55 23496.16 20395.09 28396.20 14998.88 25899.00 3491.02 23191.82 22295.29 29676.05 29797.96 23795.62 15881.19 30294.30 258
v119290.62 26689.25 27494.72 24093.13 31493.07 22899.50 18697.02 29286.33 30189.56 25495.01 30379.22 27297.09 27882.34 31881.16 30394.01 287
v114491.09 25489.83 26294.87 23493.25 31393.69 21699.62 16896.98 29786.83 29689.64 25294.99 30680.94 25697.05 27985.08 30281.16 30393.87 300
Anonymous2024052185.15 31283.81 31389.16 32888.32 35682.69 34198.80 27095.74 33979.72 34381.53 33490.99 34765.38 34394.16 34572.69 34981.11 30590.63 350
v124090.20 27688.79 28394.44 25493.05 31992.27 24899.38 20396.92 30585.89 30589.36 25794.87 31077.89 28297.03 28380.66 32681.08 30694.01 287
new_pmnet84.49 31782.92 31989.21 32790.03 35182.60 34296.89 32995.62 34380.59 34175.77 35489.17 35165.04 34594.79 34172.12 35081.02 30790.23 352
K. test v388.05 29887.24 30090.47 31991.82 33682.23 34698.96 25097.42 25389.05 25776.93 34995.60 27568.49 33195.42 33185.87 29881.01 30893.75 307
FPMVS68.72 33068.72 33268.71 35065.95 37344.27 37895.97 34194.74 35651.13 36553.26 36890.50 35025.11 37383.00 36860.80 36480.97 30978.87 364
v192192090.46 26889.12 27694.50 25092.96 32192.46 24499.49 18896.98 29786.10 30389.61 25395.30 29378.55 27997.03 28382.17 31980.89 31094.01 287
c3_l92.53 22691.87 22894.52 24897.40 21592.99 23199.40 19896.93 30487.86 28088.69 27295.44 28489.95 17596.44 30890.45 24980.69 31194.14 278
tfpnnormal89.29 29087.61 29794.34 25894.35 29594.13 20598.95 25198.94 3783.94 32584.47 32095.51 28174.84 30697.39 25677.05 34280.41 31291.48 344
v14419290.79 26189.52 26994.59 24493.11 31792.77 23399.56 17696.99 29586.38 30089.82 24794.95 30880.50 26497.10 27683.98 30880.41 31293.90 297
nrg03093.51 20592.53 21596.45 19494.36 29497.20 11199.81 11997.16 27791.60 21489.86 24497.46 21786.37 21397.68 24695.88 15580.31 31494.46 243
Anonymous2023121189.86 28288.44 28894.13 26498.93 12890.68 28098.54 28698.26 17076.28 35086.73 29995.54 27870.60 32497.56 25090.82 24480.27 31594.15 275
V4291.28 25190.12 26094.74 23893.42 31193.46 22199.68 15597.02 29287.36 28689.85 24695.05 30181.31 25397.34 25987.34 28380.07 31693.40 317
v2v48291.30 24990.07 26195.01 22993.13 31493.79 21299.77 13197.02 29288.05 27889.25 26095.37 29080.73 25997.15 27187.28 28480.04 31794.09 281
WR-MVS92.31 23191.25 23995.48 21794.45 29395.29 17899.60 17098.68 5790.10 24588.07 28396.89 23780.68 26096.80 29593.14 21379.67 31894.36 253
v1090.25 27588.82 28294.57 24693.53 30893.43 22299.08 23296.87 30985.00 31887.34 29594.51 31880.93 25797.02 28582.85 31579.23 31993.26 321
test_part192.15 23590.72 24596.44 19698.87 13697.46 10398.99 24698.26 17085.89 30586.34 30896.34 25681.71 24697.48 25391.06 23678.99 32094.37 252
CP-MVSNet91.23 25290.22 25694.26 25993.96 30192.39 24699.09 23098.57 7688.95 26386.42 30696.57 25079.19 27396.37 31090.29 25378.95 32194.02 285
MIMVSNet182.58 32280.51 32688.78 33186.68 36084.20 33896.65 33095.41 34778.75 34678.59 34592.44 33951.88 36389.76 36365.26 36278.95 32192.38 336
PS-CasMVS90.63 26589.51 27093.99 27193.83 30391.70 26598.98 24798.52 9188.48 27386.15 31196.53 25275.46 29996.31 31388.83 26578.86 32393.95 293
WR-MVS_H91.30 24990.35 25294.15 26294.17 29892.62 24299.17 22698.94 3788.87 26586.48 30594.46 32284.36 23096.61 30388.19 27278.51 32493.21 323
v890.54 26789.17 27594.66 24193.43 31093.40 22499.20 22396.94 30385.76 30887.56 28994.51 31881.96 24597.19 26984.94 30378.25 32593.38 319
UniMVSNet (Re)93.07 21492.13 22195.88 20994.84 28796.24 14899.88 8998.98 3592.49 19089.25 26095.40 28687.09 20697.14 27293.13 21478.16 32694.26 261
v7n89.65 28688.29 29193.72 27892.22 33090.56 28499.07 23697.10 28385.42 31686.73 29994.72 31180.06 26797.13 27381.14 32478.12 32793.49 315
VPNet91.81 24090.46 24995.85 21194.74 28995.54 17298.98 24798.59 7392.14 19890.77 23297.44 21868.73 33097.54 25194.89 17077.89 32894.46 243
Gipumacopyleft66.95 33365.00 33372.79 34891.52 33967.96 36566.16 36895.15 35447.89 36658.54 36467.99 36829.74 37087.54 36550.20 36877.83 32962.87 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
NR-MVSNet91.56 24890.22 25695.60 21394.05 29995.76 16498.25 29998.70 5591.16 22780.78 33896.64 24883.23 23996.57 30491.41 23077.73 33094.46 243
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 21494.61 29295.28 17999.83 11699.08 3191.49 21789.21 26296.86 23987.14 20596.73 29793.20 21077.52 33194.46 243
DU-MVS92.46 22891.45 23795.49 21494.05 29995.28 17999.81 11998.74 5392.25 19689.21 26296.64 24881.66 24896.73 29793.20 21077.52 33194.46 243
MDA-MVSNet_test_wron85.51 30983.32 31692.10 30590.96 34388.58 31299.20 22396.52 32579.70 34457.12 36692.69 33879.11 27493.86 34977.10 34177.46 33393.86 301
YYNet185.50 31083.33 31592.00 30690.89 34488.38 31699.22 22296.55 32479.60 34557.26 36592.72 33679.09 27593.78 35077.25 34077.37 33493.84 302
test_method80.79 32479.70 32784.08 34192.83 32367.06 36699.51 18495.42 34654.34 36481.07 33793.53 33044.48 36792.22 35778.90 33477.23 33592.94 327
v14890.70 26289.63 26593.92 27392.97 32090.97 27599.75 13996.89 30787.51 28388.27 28195.01 30381.67 24797.04 28187.40 28277.17 33693.75 307
Baseline_NR-MVSNet90.33 27289.51 27092.81 29892.84 32289.95 29699.77 13193.94 36284.69 32389.04 26695.66 27381.66 24896.52 30590.99 23976.98 33791.97 340
PEN-MVS90.19 27789.06 27893.57 28493.06 31890.90 27799.06 23798.47 10488.11 27785.91 31396.30 25776.67 28895.94 32787.07 28676.91 33893.89 298
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23493.69 30693.98 20999.69 15398.65 6191.03 23088.44 27596.83 24380.05 26896.18 31890.26 25476.89 33994.45 248
MDA-MVSNet-bldmvs84.09 31881.52 32491.81 30991.32 34188.00 32098.67 28095.92 33780.22 34255.60 36793.32 33268.29 33393.60 35273.76 34776.61 34093.82 304
test20.0384.72 31583.99 30986.91 33788.19 35880.62 35798.88 25895.94 33688.36 27578.87 34394.62 31668.75 32989.11 36466.52 35975.82 34191.00 346
DTE-MVSNet89.40 28888.24 29292.88 29792.66 32689.95 29699.10 22998.22 17587.29 28785.12 31896.22 25976.27 29495.30 33583.56 31275.74 34293.41 316
pm-mvs189.36 28987.81 29694.01 26993.40 31291.93 25598.62 28396.48 32786.25 30283.86 32396.14 26173.68 31397.04 28186.16 29575.73 34393.04 326
lessismore_v090.53 31790.58 34680.90 35595.80 33877.01 34895.84 26666.15 34096.95 28683.03 31475.05 34493.74 310
IB-MVS92.85 694.99 16893.94 18298.16 13297.72 20095.69 16999.99 598.81 4994.28 11992.70 21896.90 23695.08 5399.17 16296.07 15173.88 34599.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs685.69 30683.84 31291.26 31390.00 35284.41 33797.82 31396.15 33375.86 35281.29 33595.39 28861.21 35396.87 29183.52 31373.29 34692.50 333
h-mvs3394.92 16994.36 17296.59 19198.85 13791.29 27298.93 25398.94 3795.90 5998.77 9798.42 19890.89 16599.77 11997.80 11770.76 34798.72 209
ambc83.23 34377.17 36862.61 36787.38 36394.55 35976.72 35086.65 35830.16 36996.36 31184.85 30469.86 34890.73 349
Patchmatch-RL test86.90 30385.98 30589.67 32584.45 36375.59 36189.71 36192.43 36586.89 29577.83 34790.94 34894.22 8693.63 35187.75 27869.61 34999.79 104
PM-MVS80.47 32578.88 32985.26 34083.79 36572.22 36395.89 34291.08 36885.71 31176.56 35188.30 35336.64 36893.90 34882.39 31769.57 35089.66 356
pmmvs-eth3d84.03 31981.97 32290.20 32184.15 36487.09 32398.10 30794.73 35783.05 33074.10 35687.77 35565.56 34294.01 34681.08 32569.24 35189.49 357
AUN-MVS93.28 20992.60 21195.34 21998.29 16090.09 29399.31 21298.56 7891.80 21096.35 17098.00 20789.38 18198.28 21792.46 21969.22 35297.64 224
hse-mvs294.38 18694.08 17995.31 22198.27 16490.02 29499.29 21798.56 7895.90 5998.77 9798.00 20790.89 16598.26 22197.80 11769.20 35397.64 224
TransMVSNet (Re)87.25 30285.28 30793.16 29193.56 30791.03 27498.54 28694.05 36183.69 32981.09 33696.16 26075.32 30096.40 30976.69 34368.41 35492.06 338
PMVScopyleft49.05 2353.75 33651.34 34060.97 35340.80 37934.68 37974.82 36789.62 37237.55 36928.67 37572.12 3657.09 37981.63 36943.17 37168.21 35566.59 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UnsupCasMVSNet_eth85.52 30883.99 30990.10 32289.36 35483.51 33996.65 33097.99 19889.14 25575.89 35393.83 32763.25 34993.92 34781.92 32167.90 35692.88 328
PVSNet_088.03 1991.80 24390.27 25596.38 19998.27 16490.46 28699.94 6099.61 1293.99 13186.26 31097.39 22171.13 32399.89 8398.77 7767.05 35798.79 207
TDRefinement84.76 31382.56 32091.38 31274.58 36984.80 33697.36 31994.56 35884.73 32280.21 34096.12 26363.56 34898.39 20487.92 27663.97 35890.95 348
new-patchmatchnet81.19 32379.34 32886.76 33882.86 36680.36 35997.92 31195.27 35082.09 33772.02 35786.87 35762.81 35090.74 36271.10 35163.08 35989.19 359
pmmvs380.27 32677.77 33087.76 33680.32 36782.43 34498.23 30191.97 36672.74 35978.75 34487.97 35457.30 35990.99 36170.31 35262.37 36089.87 354
KD-MVS_self_test83.59 32182.06 32188.20 33586.93 35980.70 35697.21 32196.38 32882.87 33282.49 32888.97 35267.63 33592.32 35673.75 34862.30 36191.58 343
CL-MVSNet_self_test84.50 31683.15 31888.53 33386.00 36181.79 34998.82 26797.35 26085.12 31783.62 32590.91 34976.66 28991.40 35969.53 35460.36 36292.40 335
UnsupCasMVSNet_bld79.97 32877.03 33188.78 33185.62 36281.98 34793.66 35097.35 26075.51 35570.79 35983.05 36148.70 36694.91 33978.31 33660.29 36389.46 358
LCM-MVSNet67.77 33164.73 33476.87 34662.95 37556.25 37289.37 36293.74 36444.53 36761.99 36280.74 36220.42 37586.53 36669.37 35559.50 36487.84 360
KD-MVS_2432*160088.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
miper_refine_blended88.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
PMMVS267.15 33264.15 33576.14 34770.56 37262.07 36993.89 34887.52 37458.09 36360.02 36378.32 36322.38 37484.54 36759.56 36547.03 36781.80 363
MVEpermissive53.74 2251.54 33847.86 34262.60 35259.56 37650.93 37379.41 36677.69 37635.69 37136.27 37361.76 3725.79 38169.63 37137.97 37236.61 36867.24 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 33752.18 33952.67 35471.51 37045.40 37593.62 35176.60 37736.01 37043.50 37164.13 37027.11 37267.31 37331.06 37326.06 36945.30 372
EMVS51.44 33951.22 34152.11 35570.71 37144.97 37794.04 34775.66 37835.34 37242.40 37261.56 37328.93 37165.87 37427.64 37424.73 37045.49 371
ANet_high56.10 33552.24 33867.66 35149.27 37756.82 37183.94 36482.02 37570.47 36033.28 37464.54 36917.23 37769.16 37245.59 37023.85 37177.02 365
tmp_tt65.23 33462.94 33772.13 34944.90 37850.03 37481.05 36589.42 37338.45 36848.51 37099.90 1954.09 36178.70 37091.84 22718.26 37287.64 361
testmvs40.60 34044.45 34329.05 35719.49 38114.11 38299.68 15518.47 38020.74 37364.59 36198.48 19510.95 37817.09 37756.66 36711.01 37355.94 370
wuyk23d20.37 34320.84 34618.99 35865.34 37427.73 38050.43 3697.67 3829.50 3758.01 3766.34 3766.13 38026.24 37523.40 37510.69 3742.99 373
test12337.68 34139.14 34433.31 35619.94 38024.83 38198.36 2959.75 38115.53 37451.31 36987.14 35619.62 37617.74 37647.10 3693.47 37557.36 369
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.02 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.43 34231.24 3450.00 3590.00 3820.00 3830.00 37098.09 1910.00 3770.00 37899.67 9883.37 2370.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.60 34510.13 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37891.20 1560.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.28 34411.04 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.40 1210.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.92 3697.66 9199.95 4398.36 15195.58 7299.52 53
test_one_060199.94 1499.30 1198.41 13596.63 3999.75 2799.93 1197.49 9
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.93 2799.30 1198.43 11997.26 2299.80 1699.88 2496.71 23100.00 1
save fliter99.82 7098.79 3799.96 2598.40 13997.66 10
test072699.93 2799.29 1499.96 2598.42 13197.28 1899.86 499.94 497.22 18
GSMVS99.59 138
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 138
sam_mvs94.25 85
MTGPAbinary98.28 166
test_post195.78 34359.23 37493.20 11797.74 24591.06 236
test_post63.35 37194.43 7298.13 227
patchmatchnet-post91.70 34595.12 5197.95 238
MTMP99.87 9296.49 326
gm-plane-assit96.97 23493.76 21491.47 21998.96 15898.79 17494.92 167
TEST999.92 3698.92 2799.96 2598.43 11993.90 13799.71 3599.86 3195.88 3799.85 98
test_899.92 3698.88 3099.96 2598.43 11994.35 11499.69 3799.85 3595.94 3499.85 98
agg_prior99.93 2798.77 4098.43 11999.63 4099.85 98
test_prior498.05 7599.94 60
test_prior99.43 3899.94 1498.49 6198.65 6199.80 11099.99 24
旧先验299.46 19394.21 12199.85 699.95 6496.96 141
新几何299.40 198
无先验99.49 18898.71 5493.46 151100.00 194.36 18599.99 24
原ACMM299.90 78
testdata299.99 4090.54 248
segment_acmp96.68 25
testdata199.28 21896.35 51
plane_prior795.71 27391.59 269
plane_prior695.76 26891.72 26480.47 265
plane_prior498.59 186
plane_prior391.64 26796.63 3993.01 212
plane_prior299.84 11096.38 47
plane_prior195.73 270
n20.00 383
nn0.00 383
door-mid89.69 371
test1198.44 111
door90.31 369
HQP5-MVS91.85 257
HQP-NCC95.78 26499.87 9296.82 3193.37 208
ACMP_Plane95.78 26499.87 9296.82 3193.37 208
BP-MVS97.92 115
HQP4-MVS93.37 20898.39 20494.53 238
HQP2-MVS80.65 261
NP-MVS95.77 26791.79 25998.65 182
MDTV_nov1_ep13_2view96.26 14496.11 33891.89 20598.06 12794.40 7494.30 18899.67 120
Test By Simon92.82 126