SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 6 | 99.93 26 | 99.30 8 | 99.96 23 | 98.43 116 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 99.93 26 | 99.31 7 | | 98.41 131 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 116 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DVP-MVS | | | 99.30 4 | 99.16 3 | 99.73 8 | 99.93 26 | 99.29 10 | 99.95 40 | 98.32 151 | 97.28 18 | 99.83 10 | 99.91 13 | 97.22 15 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 90 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 96.48 40 | 99.83 10 | 99.91 13 | 97.87 4 | 100.00 1 | 99.92 9 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 99.82 5 | 99.94 14 | 99.47 5 | 99.95 40 | 98.43 116 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
DPE-MVS |  | | 99.26 6 | 99.10 7 | 99.74 7 | 99.89 45 | 99.24 14 | 99.87 87 | 98.44 108 | 97.48 15 | 99.64 34 | 99.94 4 | 96.68 22 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 20 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
agg_prior2 | | | | | | | | | | | | | | | 99.48 36 | 100.00 1 | 100.00 1 |
|
region2R | | | 98.54 39 | 98.37 40 | 99.05 73 | 99.96 8 | 97.18 107 | 99.96 23 | 98.55 83 | 94.87 85 | 99.45 50 | 99.85 33 | 94.07 89 | 100.00 1 | 98.67 77 | 100.00 1 | 99.98 51 |
|
test_prior3 | | | 98.99 13 | 98.84 14 | 99.43 35 | 99.94 14 | 98.49 57 | 99.95 40 | 98.65 60 | 95.78 60 | 99.73 26 | 99.76 72 | 96.00 29 | 99.80 106 | 99.78 20 | 100.00 1 | 99.99 20 |
|
test_prior2 | | | | | | | | 99.95 40 | | 95.78 60 | 99.73 26 | 99.76 72 | 96.00 29 | | 99.78 20 | 100.00 1 | |
|
MSLP-MVS++ | | | 99.13 7 | 99.01 9 | 99.49 31 | 99.94 14 | 98.46 59 | 99.98 8 | 98.86 45 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 33 | 100.00 1 | 99.51 34 | 100.00 1 | 100.00 1 |
|
APDe-MVS | | | 99.06 10 | 98.91 12 | 99.51 28 | 99.94 14 | 98.76 40 | 99.91 69 | 98.39 135 | 97.20 24 | 99.46 49 | 99.85 33 | 95.53 42 | 99.79 109 | 99.86 12 | 100.00 1 | 99.99 20 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 3 | 99.97 3 | 99.59 3 | 99.97 16 | 98.64 63 | 98.47 2 | 99.13 76 | 99.92 11 | 96.38 26 | 100.00 1 | 99.74 24 | 100.00 1 | 100.00 1 |
|
CDPH-MVS | | | 98.65 31 | 98.36 42 | 99.49 31 | 99.94 14 | 98.73 41 | 99.87 87 | 98.33 149 | 93.97 123 | 99.76 24 | 99.87 26 | 94.99 58 | 99.75 121 | 98.55 84 | 100.00 1 | 99.98 51 |
|
mPP-MVS | | | 98.39 52 | 98.20 50 | 98.97 81 | 99.97 3 | 96.92 117 | 99.95 40 | 98.38 139 | 95.04 80 | 98.61 101 | 99.80 58 | 93.39 104 | 100.00 1 | 98.64 81 | 100.00 1 | 99.98 51 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 4 | 99.98 2 | 99.51 4 | 99.98 8 | 98.69 55 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 19 | 100.00 1 | 99.75 22 | 100.00 1 | 99.99 20 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 10 | 99.96 8 | 99.15 16 | 99.97 16 | 98.62 67 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 13 | 100.00 1 | 99.54 33 | 100.00 1 | 100.00 1 |
|
MG-MVS | | | 98.91 17 | 98.65 20 | 99.68 11 | 99.94 14 | 99.07 18 | 99.64 160 | 99.44 18 | 97.33 17 | 99.00 83 | 99.72 84 | 94.03 90 | 99.98 42 | 98.73 74 | 100.00 1 | 100.00 1 |
|
ZNCC-MVS | | | 98.31 56 | 98.03 60 | 99.17 57 | 99.88 49 | 97.59 87 | 99.94 55 | 98.44 108 | 94.31 108 | 98.50 105 | 99.82 53 | 93.06 117 | 99.99 36 | 98.30 92 | 99.99 20 | 99.93 81 |
|
testtj | | | 98.89 18 | 98.69 18 | 99.52 26 | 99.94 14 | 98.56 53 | 99.90 73 | 98.55 83 | 95.14 79 | 99.72 29 | 99.84 46 | 95.46 43 | 100.00 1 | 99.65 32 | 99.99 20 | 99.99 20 |
|
SMA-MVS |  | | 98.76 26 | 98.48 29 | 99.62 15 | 99.87 52 | 98.87 27 | 99.86 98 | 98.38 139 | 93.19 149 | 99.77 23 | 99.94 4 | 95.54 40 | 100.00 1 | 99.74 24 | 99.99 20 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test9_res | | | | | | | | | | | | | | | 99.71 29 | 99.99 20 | 100.00 1 |
|
agg_prior1 | | | 98.88 19 | 98.66 19 | 99.54 23 | 99.93 26 | 98.77 36 | 99.96 23 | 98.43 116 | 94.63 94 | 99.63 35 | 99.85 33 | 95.79 37 | 99.85 94 | 99.72 28 | 99.99 20 | 99.99 20 |
|
HPM-MVS++ |  | | 99.07 9 | 98.88 13 | 99.63 12 | 99.90 42 | 99.02 19 | 99.95 40 | 98.56 77 | 97.56 13 | 99.44 51 | 99.85 33 | 95.38 45 | 100.00 1 | 99.31 43 | 99.99 20 | 99.87 93 |
|
HPM-MVS_fast | | | 97.80 80 | 97.50 80 | 98.68 95 | 99.79 70 | 96.42 130 | 99.88 84 | 98.16 177 | 91.75 202 | 98.94 85 | 99.54 108 | 91.82 145 | 99.65 138 | 97.62 120 | 99.99 20 | 99.99 20 |
|
HPM-MVS |  | | 97.96 70 | 97.72 72 | 98.68 95 | 99.84 60 | 96.39 133 | 99.90 73 | 98.17 174 | 92.61 171 | 98.62 100 | 99.57 105 | 91.87 143 | 99.67 136 | 98.87 66 | 99.99 20 | 99.99 20 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS |  | | 98.62 32 | 98.35 43 | 99.41 39 | 99.90 42 | 98.51 56 | 99.87 87 | 98.36 144 | 94.08 116 | 99.74 25 | 99.73 83 | 94.08 88 | 99.74 125 | 99.42 39 | 99.99 20 | 99.99 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 98.45 46 | 98.32 44 | 98.87 86 | 99.96 8 | 96.62 124 | 99.97 16 | 98.39 135 | 94.43 100 | 98.90 86 | 99.87 26 | 94.30 81 | 100.00 1 | 99.04 54 | 99.99 20 | 99.99 20 |
|
SteuartSystems-ACMMP | | | 99.02 11 | 98.97 11 | 99.18 54 | 98.72 138 | 97.71 83 | 99.98 8 | 98.44 108 | 96.85 29 | 99.80 16 | 99.91 13 | 97.57 6 | 99.85 94 | 99.44 38 | 99.99 20 | 99.99 20 |
Skip Steuart: Steuart Systems R&D Blog. |
CPTT-MVS | | | 97.64 86 | 97.32 88 | 98.58 105 | 99.97 3 | 95.77 157 | 99.96 23 | 98.35 146 | 89.90 240 | 98.36 111 | 99.79 62 | 91.18 153 | 99.99 36 | 98.37 89 | 99.99 20 | 99.99 20 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 15 | 99.90 42 | 98.85 29 | 99.24 215 | 98.47 103 | 98.14 4 | 99.08 77 | 99.91 13 | 93.09 116 | 100.00 1 | 99.04 54 | 99.99 20 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 23 | | | | 99.80 58 | 97.44 11 | 100.00 1 | 100.00 1 | 99.98 33 | 100.00 1 |
|
ETH3 D test6400 | | | 98.81 22 | 98.54 26 | 99.59 18 | 99.93 26 | 98.93 22 | 99.93 61 | 98.46 105 | 94.56 95 | 99.84 8 | 99.92 11 | 94.32 80 | 99.86 90 | 99.96 8 | 99.98 33 | 100.00 1 |
|
ETH3D-3000-0.1 | | | 98.68 29 | 98.42 31 | 99.47 34 | 99.83 63 | 98.57 51 | 99.90 73 | 98.37 142 | 93.81 131 | 99.81 12 | 99.90 17 | 94.34 76 | 99.86 90 | 99.84 13 | 99.98 33 | 99.97 63 |
|
MSP-MVS | | | 99.09 8 | 99.12 5 | 98.98 80 | 99.93 26 | 97.24 104 | 99.95 40 | 98.42 127 | 97.50 14 | 99.52 47 | 99.88 22 | 97.43 12 | 99.71 129 | 99.50 35 | 99.98 33 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 98.93 15 | 98.77 16 | 99.41 39 | 99.74 77 | 98.67 44 | 99.77 126 | 98.38 139 | 96.73 35 | 99.88 3 | 99.74 81 | 94.89 62 | 99.59 140 | 99.80 18 | 99.98 33 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
train_agg | | | 98.88 19 | 98.65 20 | 99.59 18 | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 116 | 94.35 105 | 99.71 30 | 99.86 29 | 95.94 31 | 99.85 94 | 99.69 31 | 99.98 33 | 99.99 20 |
|
HFP-MVS | | | 98.56 37 | 98.37 40 | 99.14 63 | 99.96 8 | 97.43 99 | 99.95 40 | 98.61 69 | 94.77 87 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
#test# | | | 98.59 35 | 98.41 33 | 99.14 63 | 99.96 8 | 97.43 99 | 99.95 40 | 98.61 69 | 95.00 81 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.78 72 | 99.98 33 | 99.98 51 |
|
ACMMPR | | | 98.50 42 | 98.32 44 | 99.05 73 | 99.96 8 | 97.18 107 | 99.95 40 | 98.60 71 | 94.77 87 | 99.31 63 | 99.84 46 | 93.73 98 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
test12 | | | | | 99.43 35 | 99.74 77 | 98.56 53 | | 98.40 132 | | 99.65 33 | | 94.76 63 | 99.75 121 | | 99.98 33 | 99.99 20 |
|
PAPM_NR | | | 98.12 66 | 97.93 68 | 98.70 94 | 99.94 14 | 96.13 146 | 99.82 112 | 98.43 116 | 94.56 95 | 97.52 132 | 99.70 88 | 94.40 71 | 99.98 42 | 97.00 133 | 99.98 33 | 99.99 20 |
|
ZD-MVS | | | | | | 99.92 35 | 98.57 51 | | 98.52 90 | 92.34 184 | 99.31 63 | 99.83 49 | 95.06 52 | 99.80 106 | 99.70 30 | 99.97 44 | |
|
9.14 | | | | 98.38 38 | | 99.87 52 | | 99.91 69 | 98.33 149 | 93.22 148 | 99.78 22 | 99.89 19 | 94.57 68 | 99.85 94 | 99.84 13 | 99.97 44 | |
|
MP-MVS |  | | 98.23 63 | 97.97 64 | 99.03 75 | 99.94 14 | 97.17 110 | 99.95 40 | 98.39 135 | 94.70 90 | 98.26 117 | 99.81 57 | 91.84 144 | 100.00 1 | 98.85 67 | 99.97 44 | 99.93 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
114514_t | | | 97.41 93 | 96.83 101 | 99.14 63 | 99.51 98 | 97.83 80 | 99.89 81 | 98.27 161 | 88.48 264 | 99.06 78 | 99.66 97 | 90.30 166 | 99.64 139 | 96.32 143 | 99.97 44 | 99.96 70 |
|
SD-MVS | | | 98.92 16 | 98.70 17 | 99.56 21 | 99.70 85 | 98.73 41 | 99.94 55 | 98.34 148 | 96.38 44 | 99.81 12 | 99.76 72 | 94.59 67 | 99.98 42 | 99.84 13 | 99.96 48 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PGM-MVS | | | 98.34 54 | 98.13 55 | 98.99 79 | 99.92 35 | 97.00 113 | 99.75 134 | 99.50 16 | 93.90 128 | 99.37 60 | 99.76 72 | 93.24 113 | 100.00 1 | 97.75 118 | 99.96 48 | 99.98 51 |
|
API-MVS | | | 97.86 74 | 97.66 74 | 98.47 114 | 99.52 96 | 95.41 168 | 99.47 185 | 98.87 44 | 91.68 203 | 98.84 87 | 99.85 33 | 92.34 134 | 99.99 36 | 98.44 87 | 99.96 48 | 100.00 1 |
|
ETH3D cwj APD-0.16 | | | 98.40 51 | 98.07 59 | 99.40 41 | 99.59 90 | 98.41 60 | 99.86 98 | 98.24 164 | 92.18 188 | 99.73 26 | 99.87 26 | 93.47 103 | 99.85 94 | 99.74 24 | 99.95 51 | 99.93 81 |
|
SR-MVS | | | 98.46 45 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 112 | 99.84 105 | 98.35 146 | 94.92 82 | 99.32 62 | 99.80 58 | 93.35 105 | 99.78 111 | 99.30 44 | 99.95 51 | 99.96 70 |
|
XVS | | | 98.70 28 | 98.55 25 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 127 | 96.22 49 | 99.41 54 | 99.78 66 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
X-MVStestdata | | | 93.83 188 | 92.06 217 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 127 | 96.22 49 | 99.41 54 | 41.37 364 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
原ACMM1 | | | | | 98.96 82 | 99.73 81 | 96.99 114 | | 98.51 97 | 94.06 119 | 99.62 37 | 99.85 33 | 94.97 59 | 99.96 53 | 95.11 155 | 99.95 51 | 99.92 87 |
|
test222 | | | | | | 99.55 94 | 97.41 102 | 99.34 202 | 98.55 83 | 91.86 197 | 99.27 68 | 99.83 49 | 93.84 96 | | | 99.95 51 | 99.99 20 |
|
DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 106 | 99.92 1 | 99.96 23 | 98.44 108 | 97.96 7 | 99.55 42 | 99.94 4 | 97.18 17 | 100.00 1 | 93.81 189 | 99.94 57 | 99.98 51 |
|
新几何1 | | | | | 99.42 38 | 99.75 76 | 98.27 65 | | 98.63 66 | 92.69 166 | 99.55 42 | 99.82 53 | 94.40 71 | 100.00 1 | 91.21 223 | 99.94 57 | 99.99 20 |
|
旧先验1 | | | | | | 99.76 74 | 97.52 91 | | 98.64 63 | | | 99.85 33 | 95.63 39 | | | 99.94 57 | 99.99 20 |
|
testdata | | | | | 98.42 119 | 99.47 100 | 95.33 170 | | 98.56 77 | 93.78 133 | 99.79 21 | 99.85 33 | 93.64 101 | 99.94 68 | 94.97 157 | 99.94 57 | 100.00 1 |
|
DELS-MVS | | | 98.54 39 | 98.22 48 | 99.50 29 | 99.15 111 | 98.65 48 | 100.00 1 | 98.58 73 | 97.70 9 | 98.21 119 | 99.24 132 | 92.58 128 | 99.94 68 | 98.63 82 | 99.94 57 | 99.92 87 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 98.72 27 | 98.62 22 | 99.01 78 | 99.36 105 | 97.18 107 | 99.93 61 | 99.90 1 | 96.81 33 | 98.67 97 | 99.77 68 | 93.92 92 | 99.89 79 | 99.27 45 | 99.94 57 | 99.96 70 |
|
xxxxxxxxxxxxxcwj | | | 98.98 14 | 98.79 15 | 99.54 23 | 99.82 65 | 98.79 33 | 99.96 23 | 97.52 234 | 97.66 10 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 29 | 99.77 73 | 98.67 44 | 99.90 73 | 98.21 168 | 93.53 140 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
PHI-MVS | | | 98.41 49 | 98.21 49 | 99.03 75 | 99.86 54 | 97.10 111 | 99.98 8 | 98.80 50 | 90.78 227 | 99.62 37 | 99.78 66 | 95.30 46 | 100.00 1 | 99.80 18 | 99.93 63 | 99.99 20 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 84 | 98.98 10 | 93.92 264 | 99.63 88 | 81.76 339 | 99.96 23 | 98.56 77 | 99.47 1 | 99.19 74 | 99.99 1 | 94.16 87 | 100.00 1 | 99.92 9 | 99.93 63 | 100.00 1 |
|
test1172 | | | 98.38 53 | 98.25 47 | 98.77 90 | 99.88 49 | 96.56 127 | 99.80 119 | 98.36 144 | 94.68 91 | 99.20 71 | 99.80 58 | 93.28 110 | 99.78 111 | 99.34 42 | 99.92 67 | 99.98 51 |
|
SR-MVS-dyc-post | | | 98.31 56 | 98.17 52 | 98.71 93 | 99.79 70 | 96.37 134 | 99.76 131 | 98.31 153 | 94.43 100 | 99.40 58 | 99.75 77 | 93.28 110 | 99.78 111 | 98.90 64 | 99.92 67 | 99.97 63 |
|
RE-MVS-def | | | | 98.13 55 | | 99.79 70 | 96.37 134 | 99.76 131 | 98.31 153 | 94.43 100 | 99.40 58 | 99.75 77 | 92.95 119 | | 98.90 64 | 99.92 67 | 99.97 63 |
|
1121 | | | 98.03 69 | 97.57 79 | 99.40 41 | 99.74 77 | 98.21 66 | 98.31 287 | 98.62 67 | 92.78 161 | 99.53 44 | 99.83 49 | 95.08 50 | 100.00 1 | 94.36 176 | 99.92 67 | 99.99 20 |
|
APD-MVS_3200maxsize | | | 98.25 62 | 98.08 58 | 98.78 89 | 99.81 68 | 96.60 125 | 99.82 112 | 98.30 156 | 93.95 125 | 99.37 60 | 99.77 68 | 92.84 121 | 99.76 118 | 98.95 58 | 99.92 67 | 99.97 63 |
|
Regformer-1 | | | 98.79 24 | 98.60 23 | 99.36 45 | 99.85 55 | 98.34 62 | 99.87 87 | 98.52 90 | 96.05 53 | 99.41 54 | 99.79 62 | 94.93 60 | 99.76 118 | 99.07 49 | 99.90 72 | 99.99 20 |
|
Regformer-2 | | | 98.78 25 | 98.59 24 | 99.36 45 | 99.85 55 | 98.32 63 | 99.87 87 | 98.52 90 | 96.04 54 | 99.41 54 | 99.79 62 | 94.92 61 | 99.76 118 | 99.05 50 | 99.90 72 | 99.98 51 |
|
MP-MVS-pluss | | | 98.07 68 | 97.64 75 | 99.38 44 | 99.74 77 | 98.41 60 | 99.74 137 | 98.18 173 | 93.35 144 | 96.45 156 | 99.85 33 | 92.64 127 | 99.97 51 | 98.91 63 | 99.89 74 | 99.77 104 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM | | | 98.60 33 | 98.42 31 | 99.14 63 | 96.05 247 | 98.96 20 | 99.90 73 | 99.35 23 | 96.68 37 | 98.35 112 | 99.66 97 | 96.45 25 | 98.51 186 | 99.45 37 | 99.89 74 | 99.96 70 |
|
zzz-MVS | | | 98.33 55 | 98.00 62 | 99.30 47 | 99.85 55 | 97.93 78 | 99.80 119 | 98.28 158 | 95.76 62 | 97.18 139 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
MTAPA | | | 98.29 58 | 97.96 67 | 99.30 47 | 99.85 55 | 97.93 78 | 99.39 196 | 98.28 158 | 95.76 62 | 97.18 139 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
MVS | | | 96.60 123 | 95.56 142 | 99.72 9 | 96.85 230 | 99.22 15 | 98.31 287 | 98.94 36 | 91.57 206 | 90.90 220 | 99.61 102 | 86.66 204 | 99.96 53 | 97.36 124 | 99.88 76 | 99.99 20 |
|
MVS_111021_LR | | | 98.42 48 | 98.38 38 | 98.53 111 | 99.39 103 | 95.79 156 | 99.87 87 | 99.86 2 | 96.70 36 | 98.78 90 | 99.79 62 | 92.03 140 | 99.90 75 | 99.17 46 | 99.86 79 | 99.88 92 |
|
ACMMP_NAP | | | 98.49 43 | 98.14 54 | 99.54 23 | 99.66 87 | 98.62 50 | 99.85 101 | 98.37 142 | 94.68 91 | 99.53 44 | 99.83 49 | 92.87 120 | 100.00 1 | 98.66 80 | 99.84 80 | 99.99 20 |
|
Regformer-3 | | | 98.58 36 | 98.41 33 | 99.10 69 | 99.84 60 | 97.57 88 | 99.66 153 | 98.52 90 | 95.79 59 | 99.01 81 | 99.77 68 | 94.40 71 | 99.75 121 | 98.82 68 | 99.83 81 | 99.98 51 |
|
Regformer-4 | | | 98.56 37 | 98.39 37 | 99.08 71 | 99.84 60 | 97.52 91 | 99.66 153 | 98.52 90 | 95.76 62 | 99.01 81 | 99.77 68 | 94.33 79 | 99.75 121 | 98.80 71 | 99.83 81 | 99.98 51 |
|
QAPM | | | 95.40 154 | 94.17 170 | 99.10 69 | 96.92 224 | 97.71 83 | 99.40 192 | 98.68 56 | 89.31 245 | 88.94 258 | 98.89 158 | 82.48 235 | 99.96 53 | 93.12 206 | 99.83 81 | 99.62 125 |
|
PAPR | | | 98.52 41 | 98.16 53 | 99.58 20 | 99.97 3 | 98.77 36 | 99.95 40 | 98.43 116 | 95.35 73 | 98.03 122 | 99.75 77 | 94.03 90 | 99.98 42 | 98.11 98 | 99.83 81 | 99.99 20 |
|
3Dnovator+ | | 91.53 11 | 96.31 133 | 95.24 149 | 99.52 26 | 96.88 229 | 98.64 49 | 99.72 145 | 98.24 164 | 95.27 77 | 88.42 269 | 98.98 149 | 82.76 234 | 99.94 68 | 97.10 131 | 99.83 81 | 99.96 70 |
|
3Dnovator | | 91.47 12 | 96.28 136 | 95.34 147 | 99.08 71 | 96.82 232 | 97.47 97 | 99.45 188 | 98.81 48 | 95.52 70 | 89.39 246 | 99.00 146 | 81.97 237 | 99.95 60 | 97.27 126 | 99.83 81 | 99.84 95 |
|
LS3D | | | 95.84 144 | 95.11 154 | 98.02 136 | 99.85 55 | 95.10 178 | 98.74 264 | 98.50 101 | 87.22 279 | 93.66 197 | 99.86 29 | 87.45 196 | 99.95 60 | 90.94 232 | 99.81 87 | 99.02 187 |
|
CHOSEN 280x420 | | | 99.01 12 | 99.03 8 | 98.95 83 | 99.38 104 | 98.87 27 | 98.46 280 | 99.42 20 | 97.03 27 | 99.02 80 | 99.09 138 | 99.35 1 | 98.21 216 | 99.73 27 | 99.78 88 | 99.77 104 |
|
GST-MVS | | | 98.27 59 | 97.97 64 | 99.17 57 | 99.92 35 | 97.57 88 | 99.93 61 | 98.39 135 | 94.04 121 | 98.80 89 | 99.74 81 | 92.98 118 | 100.00 1 | 98.16 95 | 99.76 89 | 99.93 81 |
|
OpenMVS |  | 90.15 15 | 94.77 167 | 93.59 184 | 98.33 123 | 96.07 246 | 97.48 96 | 99.56 171 | 98.57 75 | 90.46 230 | 86.51 293 | 98.95 155 | 78.57 271 | 99.94 68 | 93.86 185 | 99.74 90 | 97.57 216 |
|
1314 | | | 96.84 111 | 95.96 130 | 99.48 33 | 96.74 237 | 98.52 55 | 98.31 287 | 98.86 45 | 95.82 58 | 89.91 232 | 98.98 149 | 87.49 195 | 99.96 53 | 97.80 111 | 99.73 91 | 99.96 70 |
|
abl_6 | | | 97.67 85 | 97.34 86 | 98.66 97 | 99.68 86 | 96.11 149 | 99.68 150 | 98.14 180 | 93.80 132 | 99.27 68 | 99.70 88 | 88.65 188 | 99.98 42 | 97.46 122 | 99.72 92 | 99.89 90 |
|
DP-MVS Recon | | | 98.41 49 | 98.02 61 | 99.56 21 | 99.97 3 | 98.70 43 | 99.92 65 | 98.44 108 | 92.06 193 | 98.40 110 | 99.84 46 | 95.68 38 | 100.00 1 | 98.19 93 | 99.71 93 | 99.97 63 |
|
MVP-Stereo | | | 90.93 249 | 90.45 244 | 92.37 293 | 91.25 330 | 88.76 296 | 98.05 300 | 96.17 321 | 87.27 278 | 84.04 311 | 95.30 284 | 78.46 273 | 97.27 257 | 83.78 300 | 99.70 94 | 91.09 334 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PS-MVSNAJ | | | 98.44 47 | 98.20 50 | 99.16 59 | 98.80 135 | 98.92 23 | 99.54 175 | 98.17 174 | 97.34 16 | 99.85 6 | 99.85 33 | 91.20 150 | 99.89 79 | 99.41 40 | 99.67 95 | 98.69 200 |
|
BH-w/o | | | 95.71 148 | 95.38 146 | 96.68 178 | 98.49 146 | 92.28 236 | 99.84 105 | 97.50 238 | 92.12 190 | 92.06 211 | 98.79 168 | 84.69 221 | 98.67 179 | 95.29 154 | 99.66 96 | 99.09 185 |
|
MAR-MVS | | | 97.43 89 | 97.19 90 | 98.15 132 | 99.47 100 | 94.79 187 | 99.05 235 | 98.76 51 | 92.65 169 | 98.66 98 | 99.82 53 | 88.52 189 | 99.98 42 | 98.12 97 | 99.63 97 | 99.67 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MS-PatchMatch | | | 90.65 256 | 90.30 247 | 91.71 301 | 94.22 286 | 85.50 320 | 98.24 291 | 97.70 213 | 88.67 260 | 86.42 296 | 96.37 246 | 67.82 325 | 98.03 223 | 83.62 301 | 99.62 98 | 91.60 331 |
|
MVSFormer | | | 96.94 107 | 96.60 108 | 97.95 137 | 97.28 213 | 97.70 85 | 99.55 173 | 97.27 261 | 91.17 216 | 99.43 52 | 99.54 108 | 90.92 158 | 96.89 279 | 94.67 170 | 99.62 98 | 99.25 174 |
|
lupinMVS | | | 97.85 75 | 97.60 77 | 98.62 100 | 97.28 213 | 97.70 85 | 99.99 4 | 97.55 228 | 95.50 71 | 99.43 52 | 99.67 95 | 90.92 158 | 98.71 176 | 98.40 88 | 99.62 98 | 99.45 154 |
|
BH-untuned | | | 95.18 157 | 94.83 158 | 96.22 193 | 98.36 150 | 91.22 262 | 99.80 119 | 97.32 257 | 90.91 223 | 91.08 218 | 98.67 172 | 83.51 229 | 98.54 185 | 94.23 181 | 99.61 101 | 98.92 189 |
|
DeepC-MVS | | 94.51 4 | 96.92 109 | 96.40 115 | 98.45 116 | 99.16 110 | 95.90 153 | 99.66 153 | 98.06 186 | 96.37 47 | 94.37 188 | 99.49 111 | 83.29 232 | 99.90 75 | 97.63 119 | 99.61 101 | 99.55 139 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
GG-mvs-BLEND | | | | | 98.54 109 | 98.21 161 | 98.01 73 | 93.87 339 | 98.52 90 | | 97.92 124 | 97.92 202 | 99.02 2 | 97.94 230 | 98.17 94 | 99.58 103 | 99.67 117 |
|
gg-mvs-nofinetune | | | 93.51 198 | 91.86 222 | 98.47 114 | 97.72 193 | 97.96 77 | 92.62 343 | 98.51 97 | 74.70 346 | 97.33 136 | 69.59 356 | 98.91 3 | 97.79 233 | 97.77 116 | 99.56 104 | 99.67 117 |
|
BH-RMVSNet | | | 95.18 157 | 94.31 168 | 97.80 141 | 98.17 164 | 95.23 175 | 99.76 131 | 97.53 232 | 92.52 178 | 94.27 190 | 99.25 131 | 76.84 280 | 98.80 167 | 90.89 234 | 99.54 105 | 99.35 165 |
|
EI-MVSNet-Vis-set | | | 98.27 59 | 98.11 57 | 98.75 92 | 99.83 63 | 96.59 126 | 99.40 192 | 98.51 97 | 95.29 75 | 98.51 104 | 99.76 72 | 93.60 102 | 99.71 129 | 98.53 85 | 99.52 106 | 99.95 78 |
|
TAPA-MVS | | 92.12 8 | 94.42 179 | 93.60 183 | 96.90 171 | 99.33 106 | 91.78 249 | 99.78 123 | 98.00 189 | 89.89 241 | 94.52 185 | 99.47 112 | 91.97 141 | 99.18 155 | 69.90 342 | 99.52 106 | 99.73 108 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 95.54 3 | 97.93 72 | 97.89 69 | 98.05 135 | 99.82 65 | 94.77 188 | 99.92 65 | 98.46 105 | 93.93 126 | 97.20 138 | 99.27 127 | 95.44 44 | 99.97 51 | 97.41 123 | 99.51 108 | 99.41 159 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
jason | | | 97.24 98 | 96.86 100 | 98.38 122 | 95.73 259 | 97.32 103 | 99.97 16 | 97.40 250 | 95.34 74 | 98.60 102 | 99.54 108 | 87.70 193 | 98.56 183 | 97.94 108 | 99.47 109 | 99.25 174 |
jason: jason. |
CSCG | | | 97.10 102 | 97.04 96 | 97.27 164 | 99.89 45 | 91.92 245 | 99.90 73 | 99.07 31 | 88.67 260 | 95.26 179 | 99.82 53 | 93.17 115 | 99.98 42 | 98.15 96 | 99.47 109 | 99.90 89 |
|
CNLPA | | | 97.76 82 | 97.38 83 | 98.92 85 | 99.53 95 | 96.84 118 | 99.87 87 | 98.14 180 | 93.78 133 | 96.55 154 | 99.69 91 | 92.28 135 | 99.98 42 | 97.13 129 | 99.44 111 | 99.93 81 |
|
AdaColmap |  | | 97.23 99 | 96.80 103 | 98.51 112 | 99.99 1 | 95.60 164 | 99.09 224 | 98.84 47 | 93.32 145 | 96.74 149 | 99.72 84 | 86.04 209 | 100.00 1 | 98.01 103 | 99.43 112 | 99.94 80 |
|
CANet | | | 98.27 59 | 97.82 70 | 99.63 12 | 99.72 83 | 99.10 17 | 99.98 8 | 98.51 97 | 97.00 28 | 98.52 103 | 99.71 86 | 87.80 192 | 99.95 60 | 99.75 22 | 99.38 113 | 99.83 96 |
|
F-COLMAP | | | 96.93 108 | 96.95 99 | 96.87 172 | 99.71 84 | 91.74 250 | 99.85 101 | 97.95 195 | 93.11 152 | 95.72 172 | 99.16 136 | 92.35 133 | 99.94 68 | 95.32 153 | 99.35 114 | 98.92 189 |
|
EI-MVSNet-UG-set | | | 98.14 65 | 97.99 63 | 98.60 102 | 99.80 69 | 96.27 136 | 99.36 201 | 98.50 101 | 95.21 78 | 98.30 114 | 99.75 77 | 93.29 109 | 99.73 128 | 98.37 89 | 99.30 115 | 99.81 98 |
|
PVSNet_Blended | | | 97.94 71 | 97.64 75 | 98.83 88 | 99.59 90 | 96.99 114 | 100.00 1 | 99.10 28 | 95.38 72 | 98.27 115 | 99.08 139 | 89.00 183 | 99.95 60 | 99.12 47 | 99.25 116 | 99.57 137 |
|
PatchMatch-RL | | | 96.04 140 | 95.40 144 | 97.95 137 | 99.59 90 | 95.22 176 | 99.52 177 | 99.07 31 | 93.96 124 | 96.49 155 | 98.35 190 | 82.28 236 | 99.82 105 | 90.15 246 | 99.22 117 | 98.81 196 |
|
CHOSEN 1792x2688 | | | 96.81 112 | 96.53 111 | 97.64 149 | 98.91 127 | 93.07 217 | 99.65 156 | 99.80 3 | 95.64 67 | 95.39 176 | 98.86 164 | 84.35 225 | 99.90 75 | 96.98 134 | 99.16 118 | 99.95 78 |
|
EIA-MVS | | | 97.53 88 | 97.46 81 | 97.76 145 | 98.04 170 | 94.84 184 | 99.98 8 | 97.61 222 | 94.41 103 | 97.90 125 | 99.59 103 | 92.40 132 | 98.87 164 | 98.04 102 | 99.13 119 | 99.59 130 |
|
UGNet | | | 95.33 155 | 94.57 163 | 97.62 151 | 98.55 142 | 94.85 183 | 98.67 271 | 99.32 24 | 95.75 65 | 96.80 148 | 96.27 249 | 72.18 308 | 99.96 53 | 94.58 172 | 99.05 120 | 98.04 207 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CS-MVS | | | 97.84 76 | 97.69 73 | 98.31 124 | 98.28 154 | 96.27 136 | 100.00 1 | 97.52 234 | 95.29 75 | 99.25 70 | 99.65 99 | 91.18 153 | 98.94 163 | 98.96 57 | 99.04 121 | 99.73 108 |
|
CANet_DTU | | | 96.76 115 | 96.15 119 | 98.60 102 | 98.78 136 | 97.53 90 | 99.84 105 | 97.63 217 | 97.25 23 | 99.20 71 | 99.64 100 | 81.36 245 | 99.98 42 | 92.77 209 | 98.89 122 | 98.28 203 |
|
TESTMET0.1,1 | | | 96.74 117 | 96.26 117 | 98.16 129 | 97.36 207 | 96.48 128 | 99.96 23 | 98.29 157 | 91.93 195 | 95.77 171 | 98.07 196 | 95.54 40 | 98.29 208 | 90.55 238 | 98.89 122 | 99.70 112 |
|
test-LLR | | | 96.47 126 | 96.04 121 | 97.78 142 | 97.02 221 | 95.44 166 | 99.96 23 | 98.21 168 | 94.07 117 | 95.55 173 | 96.38 244 | 93.90 94 | 98.27 212 | 90.42 241 | 98.83 124 | 99.64 123 |
|
test-mter | | | 96.39 130 | 95.93 132 | 97.78 142 | 97.02 221 | 95.44 166 | 99.96 23 | 98.21 168 | 91.81 200 | 95.55 173 | 96.38 244 | 95.17 47 | 98.27 212 | 90.42 241 | 98.83 124 | 99.64 123 |
|
PVSNet | | 91.05 13 | 97.13 101 | 96.69 106 | 98.45 116 | 99.52 96 | 95.81 155 | 99.95 40 | 99.65 10 | 94.73 89 | 99.04 79 | 99.21 134 | 84.48 223 | 99.95 60 | 94.92 158 | 98.74 126 | 99.58 136 |
|
EPNet | | | 98.49 43 | 98.40 35 | 98.77 90 | 99.62 89 | 96.80 120 | 99.90 73 | 99.51 15 | 97.60 12 | 99.20 71 | 99.36 123 | 93.71 99 | 99.91 74 | 97.99 105 | 98.71 127 | 99.61 127 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v2_base | | | 98.23 63 | 97.97 64 | 99.02 77 | 98.69 139 | 98.66 46 | 99.52 177 | 98.08 185 | 97.05 26 | 99.86 4 | 99.86 29 | 90.65 162 | 99.71 129 | 99.39 41 | 98.63 128 | 98.69 200 |
|
ETV-MVS | | | 97.92 73 | 97.80 71 | 98.25 127 | 98.14 166 | 96.48 128 | 99.98 8 | 97.63 217 | 95.61 68 | 99.29 67 | 99.46 114 | 92.55 129 | 98.82 166 | 99.02 56 | 98.54 129 | 99.46 152 |
|
Vis-MVSNet |  | | 95.72 146 | 95.15 153 | 97.45 155 | 97.62 197 | 94.28 195 | 99.28 212 | 98.24 164 | 94.27 111 | 96.84 146 | 98.94 156 | 79.39 264 | 98.76 172 | 93.25 200 | 98.49 130 | 99.30 170 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PCF-MVS | | 94.20 5 | 95.18 157 | 94.10 172 | 98.43 118 | 98.55 142 | 95.99 151 | 97.91 303 | 97.31 258 | 90.35 233 | 89.48 245 | 99.22 133 | 85.19 218 | 99.89 79 | 90.40 243 | 98.47 131 | 99.41 159 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MSDG | | | 94.37 181 | 93.36 193 | 97.40 158 | 98.88 130 | 93.95 202 | 99.37 199 | 97.38 251 | 85.75 300 | 90.80 221 | 99.17 135 | 84.11 227 | 99.88 85 | 86.35 283 | 98.43 132 | 98.36 202 |
|
PVSNet_Blended_VisFu | | | 97.27 97 | 96.81 102 | 98.66 97 | 98.81 134 | 96.67 122 | 99.92 65 | 98.64 63 | 94.51 97 | 96.38 160 | 98.49 183 | 89.05 182 | 99.88 85 | 97.10 131 | 98.34 133 | 99.43 157 |
|
EPNet_dtu | | | 95.71 148 | 95.39 145 | 96.66 179 | 98.92 125 | 93.41 213 | 99.57 169 | 98.90 41 | 96.19 51 | 97.52 132 | 98.56 181 | 92.65 126 | 97.36 247 | 77.89 326 | 98.33 134 | 99.20 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 189 | 98.14 67 | 99.31 206 | 97.86 205 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 213 | 99.68 133 | 99.05 50 | 98.31 135 | 97.83 209 |
|
xiu_mvs_v1_base | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 189 | 98.14 67 | 99.31 206 | 97.86 205 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 213 | 99.68 133 | 99.05 50 | 98.31 135 | 97.83 209 |
|
xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 189 | 98.14 67 | 99.31 206 | 97.86 205 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 213 | 99.68 133 | 99.05 50 | 98.31 135 | 97.83 209 |
|
OMC-MVS | | | 97.28 96 | 97.23 89 | 97.41 157 | 99.76 74 | 93.36 215 | 99.65 156 | 97.95 195 | 96.03 55 | 97.41 135 | 99.70 88 | 89.61 173 | 99.51 143 | 96.73 140 | 98.25 138 | 99.38 161 |
|
mvs-test1 | | | 95.53 151 | 95.97 128 | 94.20 252 | 97.77 186 | 85.44 321 | 99.95 40 | 97.06 279 | 94.92 82 | 96.58 152 | 98.72 170 | 85.81 210 | 98.98 160 | 94.80 163 | 98.11 139 | 98.18 204 |
|
DP-MVS | | | 94.54 175 | 93.42 189 | 97.91 140 | 99.46 102 | 94.04 198 | 98.93 247 | 97.48 240 | 81.15 329 | 90.04 229 | 99.55 106 | 87.02 201 | 99.95 60 | 88.97 255 | 98.11 139 | 99.73 108 |
|
EPMVS | | | 96.53 125 | 96.01 122 | 98.09 133 | 98.43 148 | 96.12 148 | 96.36 324 | 99.43 19 | 93.53 140 | 97.64 130 | 95.04 293 | 94.41 70 | 98.38 202 | 91.13 225 | 98.11 139 | 99.75 106 |
|
PatchmatchNet |  | | 95.94 142 | 95.45 143 | 97.39 159 | 97.83 182 | 94.41 193 | 96.05 329 | 98.40 132 | 92.86 155 | 97.09 141 | 95.28 288 | 94.21 86 | 98.07 222 | 89.26 253 | 98.11 139 | 99.70 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline2 | | | 96.71 119 | 96.49 112 | 97.37 160 | 95.63 266 | 95.96 152 | 99.74 137 | 98.88 43 | 92.94 154 | 91.61 213 | 98.97 151 | 97.72 5 | 98.62 181 | 94.83 162 | 98.08 143 | 97.53 217 |
|
ACMMP |  | | 97.74 83 | 97.44 82 | 98.66 97 | 99.92 35 | 96.13 146 | 99.18 219 | 99.45 17 | 94.84 86 | 96.41 159 | 99.71 86 | 91.40 147 | 99.99 36 | 97.99 105 | 98.03 144 | 99.87 93 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS-HIRNet | | | 86.22 298 | 83.19 310 | 95.31 212 | 96.71 239 | 90.29 278 | 92.12 345 | 97.33 256 | 62.85 352 | 86.82 288 | 70.37 355 | 69.37 318 | 97.49 242 | 75.12 335 | 97.99 145 | 98.15 205 |
|
PMMVS | | | 96.76 115 | 96.76 104 | 96.76 175 | 98.28 154 | 92.10 240 | 99.91 69 | 97.98 192 | 94.12 114 | 99.53 44 | 99.39 120 | 86.93 202 | 98.73 174 | 96.95 136 | 97.73 146 | 99.45 154 |
|
UA-Net | | | 96.54 124 | 95.96 130 | 98.27 126 | 98.23 160 | 95.71 161 | 98.00 301 | 98.45 107 | 93.72 136 | 98.41 108 | 99.27 127 | 88.71 187 | 99.66 137 | 91.19 224 | 97.69 147 | 99.44 156 |
|
TSAR-MVS + GP. | | | 98.60 33 | 98.51 28 | 98.86 87 | 99.73 81 | 96.63 123 | 99.97 16 | 97.92 199 | 98.07 5 | 98.76 93 | 99.55 106 | 95.00 57 | 99.94 68 | 99.91 11 | 97.68 148 | 99.99 20 |
|
mvs_anonymous | | | 95.65 150 | 95.03 155 | 97.53 152 | 98.19 162 | 95.74 159 | 99.33 203 | 97.49 239 | 90.87 224 | 90.47 225 | 97.10 219 | 88.23 190 | 97.16 260 | 95.92 148 | 97.66 149 | 99.68 115 |
|
LCM-MVSNet-Re | | | 92.31 224 | 92.60 204 | 91.43 302 | 97.53 200 | 79.27 348 | 99.02 238 | 91.83 354 | 92.07 191 | 80.31 328 | 94.38 314 | 83.50 230 | 95.48 320 | 97.22 128 | 97.58 150 | 99.54 143 |
|
MVS_Test | | | 96.46 127 | 95.74 138 | 98.61 101 | 98.18 163 | 97.23 105 | 99.31 206 | 97.15 271 | 91.07 220 | 98.84 87 | 97.05 223 | 88.17 191 | 98.97 161 | 94.39 175 | 97.50 151 | 99.61 127 |
|
SCA | | | 94.69 169 | 93.81 180 | 97.33 163 | 97.10 216 | 94.44 191 | 98.86 256 | 98.32 151 | 93.30 146 | 96.17 164 | 95.59 267 | 76.48 284 | 97.95 228 | 91.06 227 | 97.43 152 | 99.59 130 |
|
Vis-MVSNet (Re-imp) | | | 96.32 132 | 95.98 125 | 97.35 162 | 97.93 175 | 94.82 185 | 99.47 185 | 98.15 179 | 91.83 198 | 95.09 180 | 99.11 137 | 91.37 148 | 97.47 244 | 93.47 198 | 97.43 152 | 99.74 107 |
|
diffmvs | | | 97.00 105 | 96.64 107 | 98.09 133 | 97.64 196 | 96.17 145 | 99.81 114 | 97.19 265 | 94.67 93 | 98.95 84 | 99.28 124 | 86.43 206 | 98.76 172 | 98.37 89 | 97.42 154 | 99.33 167 |
|
IS-MVSNet | | | 96.29 135 | 95.90 134 | 97.45 155 | 98.13 167 | 94.80 186 | 99.08 226 | 97.61 222 | 92.02 194 | 95.54 175 | 98.96 153 | 90.64 163 | 98.08 220 | 93.73 194 | 97.41 155 | 99.47 151 |
|
Effi-MVS+ | | | 96.30 134 | 95.69 139 | 98.16 129 | 97.85 181 | 96.26 138 | 97.41 309 | 97.21 264 | 90.37 232 | 98.65 99 | 98.58 179 | 86.61 205 | 98.70 177 | 97.11 130 | 97.37 156 | 99.52 146 |
|
DWT-MVSNet_test | | | 97.31 95 | 97.19 90 | 97.66 148 | 98.24 159 | 94.67 189 | 98.86 256 | 98.20 172 | 93.60 139 | 98.09 120 | 98.89 158 | 97.51 7 | 98.78 169 | 94.04 183 | 97.28 157 | 99.55 139 |
|
ADS-MVSNet2 | | | 93.80 191 | 93.88 178 | 93.55 276 | 97.87 179 | 85.94 317 | 94.24 335 | 96.84 300 | 90.07 237 | 96.43 157 | 94.48 311 | 90.29 167 | 95.37 322 | 87.44 270 | 97.23 158 | 99.36 163 |
|
ADS-MVSNet | | | 94.79 165 | 94.02 174 | 97.11 168 | 97.87 179 | 93.79 204 | 94.24 335 | 98.16 177 | 90.07 237 | 96.43 157 | 94.48 311 | 90.29 167 | 98.19 217 | 87.44 270 | 97.23 158 | 99.36 163 |
|
EPP-MVSNet | | | 96.69 120 | 96.60 108 | 96.96 169 | 97.74 189 | 93.05 219 | 99.37 199 | 98.56 77 | 88.75 258 | 95.83 170 | 99.01 144 | 96.01 28 | 98.56 183 | 96.92 137 | 97.20 160 | 99.25 174 |
|
Fast-Effi-MVS+ | | | 95.02 161 | 94.19 169 | 97.52 153 | 97.88 177 | 94.55 190 | 99.97 16 | 97.08 277 | 88.85 257 | 94.47 187 | 97.96 201 | 84.59 222 | 98.41 194 | 89.84 249 | 97.10 161 | 99.59 130 |
|
Effi-MVS+-dtu | | | 94.53 177 | 95.30 148 | 92.22 294 | 97.77 186 | 82.54 332 | 99.59 166 | 97.06 279 | 94.92 82 | 95.29 178 | 95.37 281 | 85.81 210 | 97.89 231 | 94.80 163 | 97.07 162 | 96.23 224 |
|
casdiffmvs | | | 96.42 129 | 95.97 128 | 97.77 144 | 97.30 212 | 94.98 180 | 99.84 105 | 97.09 276 | 93.75 135 | 96.58 152 | 99.26 130 | 85.07 219 | 98.78 169 | 97.77 116 | 97.04 163 | 99.54 143 |
|
sss | | | 97.57 87 | 97.03 97 | 99.18 54 | 98.37 149 | 98.04 72 | 99.73 142 | 99.38 21 | 93.46 142 | 98.76 93 | 99.06 140 | 91.21 149 | 99.89 79 | 96.33 142 | 97.01 164 | 99.62 125 |
|
Patchmatch-test | | | 92.65 218 | 91.50 228 | 96.10 196 | 96.85 230 | 90.49 274 | 91.50 348 | 97.19 265 | 82.76 324 | 90.23 226 | 95.59 267 | 95.02 54 | 98.00 224 | 77.41 328 | 96.98 165 | 99.82 97 |
|
MDTV_nov1_ep13 | | | | 95.69 139 | | 97.90 176 | 94.15 196 | 95.98 330 | 98.44 108 | 93.12 151 | 97.98 123 | 95.74 260 | 95.10 49 | 98.58 182 | 90.02 247 | 96.92 166 | |
|
Fast-Effi-MVS+-dtu | | | 93.72 195 | 93.86 179 | 93.29 279 | 97.06 218 | 86.16 315 | 99.80 119 | 96.83 301 | 92.66 168 | 92.58 209 | 97.83 203 | 81.39 244 | 97.67 237 | 89.75 250 | 96.87 167 | 96.05 226 |
|
baseline | | | 96.43 128 | 95.98 125 | 97.76 145 | 97.34 208 | 95.17 177 | 99.51 179 | 97.17 268 | 93.92 127 | 96.90 145 | 99.28 124 | 85.37 216 | 98.64 180 | 97.50 121 | 96.86 168 | 99.46 152 |
|
tpmrst | | | 96.27 137 | 95.98 125 | 97.13 166 | 97.96 173 | 93.15 216 | 96.34 325 | 98.17 174 | 92.07 191 | 98.71 96 | 95.12 291 | 93.91 93 | 98.73 174 | 94.91 160 | 96.62 169 | 99.50 149 |
|
JIA-IIPM | | | 91.76 239 | 90.70 239 | 94.94 223 | 96.11 245 | 87.51 310 | 93.16 342 | 98.13 182 | 75.79 343 | 97.58 131 | 77.68 353 | 92.84 121 | 97.97 225 | 88.47 261 | 96.54 170 | 99.33 167 |
|
dp | | | 95.05 160 | 94.43 165 | 96.91 170 | 97.99 172 | 92.73 226 | 96.29 326 | 97.98 192 | 89.70 243 | 95.93 167 | 94.67 306 | 93.83 97 | 98.45 191 | 86.91 282 | 96.53 171 | 99.54 143 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 227 | 91.49 229 | 94.25 251 | 99.00 117 | 88.04 308 | 98.42 285 | 96.70 309 | 82.30 326 | 88.43 267 | 99.01 144 | 76.97 278 | 99.85 94 | 86.11 286 | 96.50 172 | 94.86 227 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
tpm cat1 | | | 93.51 198 | 92.52 209 | 96.47 183 | 97.77 186 | 91.47 260 | 96.13 327 | 98.06 186 | 80.98 330 | 92.91 205 | 93.78 319 | 89.66 172 | 98.87 164 | 87.03 278 | 96.39 173 | 99.09 185 |
|
thisisatest0515 | | | 97.41 93 | 97.02 98 | 98.59 104 | 97.71 195 | 97.52 91 | 99.97 16 | 98.54 87 | 91.83 198 | 97.45 134 | 99.04 141 | 97.50 8 | 99.10 157 | 94.75 166 | 96.37 174 | 99.16 179 |
|
AllTest | | | 92.48 220 | 91.64 223 | 95.00 221 | 99.01 115 | 88.43 302 | 98.94 246 | 96.82 303 | 86.50 288 | 88.71 260 | 98.47 187 | 74.73 298 | 99.88 85 | 85.39 289 | 96.18 175 | 96.71 220 |
|
TestCases | | | | | 95.00 221 | 99.01 115 | 88.43 302 | | 96.82 303 | 86.50 288 | 88.71 260 | 98.47 187 | 74.73 298 | 99.88 85 | 85.39 289 | 96.18 175 | 96.71 220 |
|
thisisatest0530 | | | 97.10 102 | 96.72 105 | 98.22 128 | 97.60 198 | 96.70 121 | 99.92 65 | 98.54 87 | 91.11 219 | 97.07 142 | 98.97 151 | 97.47 9 | 99.03 158 | 93.73 194 | 96.09 177 | 98.92 189 |
|
DSMNet-mixed | | | 88.28 290 | 88.24 285 | 88.42 325 | 89.64 340 | 75.38 350 | 98.06 299 | 89.86 357 | 85.59 302 | 88.20 272 | 92.14 333 | 76.15 289 | 91.95 346 | 78.46 324 | 96.05 178 | 97.92 208 |
|
TR-MVS | | | 94.54 175 | 93.56 186 | 97.49 154 | 97.96 173 | 94.34 194 | 98.71 267 | 97.51 237 | 90.30 235 | 94.51 186 | 98.69 171 | 75.56 291 | 98.77 171 | 92.82 208 | 95.99 179 | 99.35 165 |
|
CR-MVSNet | | | 93.45 201 | 92.62 203 | 95.94 199 | 96.29 242 | 92.66 228 | 92.01 346 | 96.23 319 | 92.62 170 | 96.94 143 | 93.31 323 | 91.04 155 | 96.03 314 | 79.23 320 | 95.96 180 | 99.13 183 |
|
RPMNet | | | 89.76 277 | 87.28 292 | 97.19 165 | 96.29 242 | 92.66 228 | 92.01 346 | 98.31 153 | 70.19 351 | 96.94 143 | 85.87 349 | 87.25 198 | 99.78 111 | 62.69 352 | 95.96 180 | 99.13 183 |
|
PatchT | | | 90.38 263 | 88.75 277 | 95.25 215 | 95.99 249 | 90.16 280 | 91.22 350 | 97.54 230 | 76.80 339 | 97.26 137 | 86.01 348 | 91.88 142 | 96.07 313 | 66.16 349 | 95.91 182 | 99.51 147 |
|
tpmvs | | | 94.28 184 | 93.57 185 | 96.40 188 | 98.55 142 | 91.50 259 | 95.70 334 | 98.55 83 | 87.47 274 | 92.15 210 | 94.26 315 | 91.42 146 | 98.95 162 | 88.15 264 | 95.85 183 | 98.76 198 |
|
TAMVS | | | 95.85 143 | 95.58 141 | 96.65 180 | 97.07 217 | 93.50 210 | 99.17 220 | 97.82 209 | 91.39 215 | 95.02 181 | 98.01 197 | 92.20 136 | 97.30 252 | 93.75 193 | 95.83 184 | 99.14 182 |
|
CostFormer | | | 96.10 138 | 95.88 135 | 96.78 174 | 97.03 220 | 92.55 232 | 97.08 316 | 97.83 208 | 90.04 239 | 98.72 95 | 94.89 300 | 95.01 56 | 98.29 208 | 96.54 141 | 95.77 185 | 99.50 149 |
|
tttt0517 | | | 96.85 110 | 96.49 112 | 97.92 139 | 97.48 204 | 95.89 154 | 99.85 101 | 98.54 87 | 90.72 228 | 96.63 151 | 98.93 157 | 97.47 9 | 99.02 159 | 93.03 207 | 95.76 186 | 98.85 193 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 92 | 99.63 12 | 98.98 118 | 99.32 6 | 97.49 308 | 99.52 13 | 95.69 66 | 98.32 113 | 97.41 210 | 93.32 107 | 99.77 115 | 98.08 101 | 95.75 187 | 99.81 98 |
|
CDS-MVSNet | | | 96.34 131 | 96.07 120 | 97.13 166 | 97.37 206 | 94.96 181 | 99.53 176 | 97.91 200 | 91.55 207 | 95.37 177 | 98.32 191 | 95.05 53 | 97.13 263 | 93.80 190 | 95.75 187 | 99.30 170 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm2 | | | 95.47 153 | 95.18 152 | 96.35 191 | 96.91 225 | 91.70 254 | 96.96 319 | 97.93 197 | 88.04 269 | 98.44 107 | 95.40 277 | 93.32 107 | 97.97 225 | 94.00 184 | 95.61 189 | 99.38 161 |
|
WTY-MVS | | | 98.10 67 | 97.60 77 | 99.60 17 | 98.92 125 | 99.28 12 | 99.89 81 | 99.52 13 | 95.58 69 | 98.24 118 | 99.39 120 | 93.33 106 | 99.74 125 | 97.98 107 | 95.58 190 | 99.78 103 |
|
HyFIR lowres test | | | 96.66 122 | 96.43 114 | 97.36 161 | 99.05 113 | 93.91 203 | 99.70 147 | 99.80 3 | 90.54 229 | 96.26 162 | 98.08 195 | 92.15 138 | 98.23 215 | 96.84 139 | 95.46 191 | 99.93 81 |
|
cascas | | | 94.64 172 | 93.61 181 | 97.74 147 | 97.82 183 | 96.26 138 | 99.96 23 | 97.78 211 | 85.76 298 | 94.00 193 | 97.54 207 | 76.95 279 | 99.21 154 | 97.23 127 | 95.43 192 | 97.76 213 |
|
CVMVSNet | | | 94.68 171 | 94.94 156 | 93.89 266 | 96.80 233 | 86.92 313 | 99.06 231 | 98.98 34 | 94.45 98 | 94.23 191 | 99.02 142 | 85.60 212 | 95.31 324 | 90.91 233 | 95.39 193 | 99.43 157 |
|
test_yl | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 212 | 97.88 126 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 212 | 97.88 126 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
LFMVS | | | 94.75 168 | 93.56 186 | 98.30 125 | 99.03 114 | 95.70 162 | 98.74 264 | 97.98 192 | 87.81 272 | 98.47 106 | 99.39 120 | 67.43 327 | 99.53 141 | 98.01 103 | 95.20 196 | 99.67 117 |
|
thres200 | | | 96.96 106 | 96.21 118 | 99.22 50 | 98.97 119 | 98.84 30 | 99.85 101 | 99.71 5 | 93.17 150 | 96.26 162 | 98.88 160 | 89.87 171 | 99.51 143 | 94.26 180 | 94.91 197 | 99.31 169 |
|
thres100view900 | | | 96.74 117 | 95.92 133 | 99.18 54 | 98.90 128 | 98.77 36 | 99.74 137 | 99.71 5 | 92.59 173 | 95.84 168 | 98.86 164 | 89.25 179 | 99.50 145 | 93.84 186 | 94.57 198 | 99.27 172 |
|
tfpn200view9 | | | 96.79 113 | 95.99 123 | 99.19 53 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 155 | 96.02 165 | 98.87 162 | 89.33 177 | 99.50 145 | 93.84 186 | 94.57 198 | 99.27 172 |
|
thres400 | | | 96.78 114 | 95.99 123 | 99.16 59 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 155 | 96.02 165 | 98.87 162 | 89.33 177 | 99.50 145 | 93.84 186 | 94.57 198 | 99.16 179 |
|
thres600view7 | | | 96.69 120 | 95.87 136 | 99.14 63 | 98.90 128 | 98.78 35 | 99.74 137 | 99.71 5 | 92.59 173 | 95.84 168 | 98.86 164 | 89.25 179 | 99.50 145 | 93.44 199 | 94.50 201 | 99.16 179 |
|
VNet | | | 97.21 100 | 96.57 110 | 99.13 68 | 98.97 119 | 97.82 81 | 99.03 237 | 99.21 27 | 94.31 108 | 99.18 75 | 98.88 160 | 86.26 208 | 99.89 79 | 98.93 60 | 94.32 202 | 99.69 114 |
|
alignmvs | | | 97.81 79 | 97.33 87 | 99.25 49 | 98.77 137 | 98.66 46 | 99.99 4 | 98.44 108 | 94.40 104 | 98.41 108 | 99.47 112 | 93.65 100 | 99.42 151 | 98.57 83 | 94.26 203 | 99.67 117 |
|
VDD-MVS | | | 93.77 192 | 92.94 198 | 96.27 192 | 98.55 142 | 90.22 279 | 98.77 263 | 97.79 210 | 90.85 225 | 96.82 147 | 99.42 116 | 61.18 345 | 99.77 115 | 98.95 58 | 94.13 204 | 98.82 195 |
|
VDDNet | | | 93.12 205 | 91.91 220 | 96.76 175 | 96.67 240 | 92.65 230 | 98.69 269 | 98.21 168 | 82.81 323 | 97.75 129 | 99.28 124 | 61.57 343 | 99.48 149 | 98.09 100 | 94.09 205 | 98.15 205 |
|
GA-MVS | | | 93.83 188 | 92.84 199 | 96.80 173 | 95.73 259 | 93.57 208 | 99.88 84 | 97.24 263 | 92.57 176 | 92.92 204 | 96.66 237 | 78.73 270 | 97.67 237 | 87.75 268 | 94.06 206 | 99.17 178 |
|
canonicalmvs | | | 97.09 104 | 96.32 116 | 99.39 43 | 98.93 123 | 98.95 21 | 99.72 145 | 97.35 253 | 94.45 98 | 97.88 126 | 99.42 116 | 86.71 203 | 99.52 142 | 98.48 86 | 93.97 207 | 99.72 111 |
|
1112_ss | | | 96.01 141 | 95.20 151 | 98.42 119 | 97.80 184 | 96.41 131 | 99.65 156 | 96.66 310 | 92.71 164 | 92.88 206 | 99.40 118 | 92.16 137 | 99.30 152 | 91.92 216 | 93.66 208 | 99.55 139 |
|
Test_1112_low_res | | | 95.72 146 | 94.83 158 | 98.42 119 | 97.79 185 | 96.41 131 | 99.65 156 | 96.65 311 | 92.70 165 | 92.86 207 | 96.13 253 | 92.15 138 | 99.30 152 | 91.88 217 | 93.64 209 | 99.55 139 |
|
MIMVSNet | | | 90.30 266 | 88.67 278 | 95.17 217 | 96.45 241 | 91.64 256 | 92.39 344 | 97.15 271 | 85.99 294 | 90.50 224 | 93.19 325 | 66.95 328 | 94.86 330 | 82.01 310 | 93.43 210 | 99.01 188 |
|
XVG-OURS-SEG-HR | | | 94.79 165 | 94.70 162 | 95.08 218 | 98.05 169 | 89.19 292 | 99.08 226 | 97.54 230 | 93.66 137 | 94.87 182 | 99.58 104 | 78.78 269 | 99.79 109 | 97.31 125 | 93.40 211 | 96.25 222 |
|
ab-mvs | | | 94.69 169 | 93.42 189 | 98.51 112 | 98.07 168 | 96.26 138 | 96.49 323 | 98.68 56 | 90.31 234 | 94.54 184 | 97.00 225 | 76.30 286 | 99.71 129 | 95.98 147 | 93.38 212 | 99.56 138 |
|
test0.0.03 1 | | | 93.86 187 | 93.61 181 | 94.64 233 | 95.02 275 | 92.18 239 | 99.93 61 | 98.58 73 | 94.07 117 | 87.96 274 | 98.50 182 | 93.90 94 | 94.96 328 | 81.33 313 | 93.17 213 | 96.78 219 |
|
RPSCF | | | 91.80 236 | 92.79 201 | 88.83 321 | 98.15 165 | 69.87 352 | 98.11 297 | 96.60 312 | 83.93 316 | 94.33 189 | 99.27 127 | 79.60 263 | 99.46 150 | 91.99 214 | 93.16 214 | 97.18 218 |
|
XVG-OURS | | | 94.82 164 | 94.74 161 | 95.06 219 | 98.00 171 | 89.19 292 | 99.08 226 | 97.55 228 | 94.10 115 | 94.71 183 | 99.62 101 | 80.51 256 | 99.74 125 | 96.04 146 | 93.06 215 | 96.25 222 |
|
MVS_0304 | | | 89.28 284 | 88.31 283 | 92.21 295 | 97.05 219 | 86.53 314 | 97.76 306 | 99.57 12 | 85.58 303 | 93.86 196 | 92.71 327 | 51.04 355 | 96.30 304 | 84.49 295 | 92.72 216 | 93.79 295 |
|
Anonymous202405211 | | | 93.10 206 | 91.99 218 | 96.40 188 | 99.10 112 | 89.65 289 | 98.88 252 | 97.93 197 | 83.71 318 | 94.00 193 | 98.75 169 | 68.79 319 | 99.88 85 | 95.08 156 | 91.71 217 | 99.68 115 |
|
Anonymous20240529 | | | 92.10 229 | 90.65 240 | 96.47 183 | 98.82 133 | 90.61 271 | 98.72 266 | 98.67 59 | 75.54 344 | 93.90 195 | 98.58 179 | 66.23 330 | 99.90 75 | 94.70 169 | 90.67 218 | 98.90 192 |
|
HQP3-MVS | | | | | | | | | 97.89 201 | | | | | | | 89.60 219 | |
|
HQP-MVS | | | 94.61 173 | 94.50 164 | 94.92 224 | 95.78 253 | 91.85 246 | 99.87 87 | 97.89 201 | 96.82 30 | 93.37 198 | 98.65 173 | 80.65 254 | 98.39 198 | 97.92 109 | 89.60 219 | 94.53 228 |
|
plane_prior | | | | | | | 91.74 250 | 99.86 98 | | 96.76 34 | | | | | | 89.59 221 | |
|
HQP_MVS | | | 94.49 178 | 94.36 166 | 94.87 225 | 95.71 262 | 91.74 250 | 99.84 105 | 97.87 203 | 96.38 44 | 93.01 202 | 98.59 177 | 80.47 258 | 98.37 203 | 97.79 114 | 89.55 222 | 94.52 230 |
|
plane_prior5 | | | | | | | | | 97.87 203 | | | | | 98.37 203 | 97.79 114 | 89.55 222 | 94.52 230 |
|
CLD-MVS | | | 94.06 186 | 93.90 177 | 94.55 238 | 96.02 248 | 90.69 268 | 99.98 8 | 97.72 212 | 96.62 39 | 91.05 219 | 98.85 167 | 77.21 276 | 98.47 187 | 98.11 98 | 89.51 224 | 94.48 232 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 93.21 203 | 92.80 200 | 94.44 245 | 93.12 305 | 90.85 267 | 99.77 126 | 97.61 222 | 96.19 51 | 91.56 214 | 98.65 173 | 75.16 296 | 98.47 187 | 93.78 192 | 89.39 225 | 93.99 280 |
|
LPG-MVS_test | | | 92.96 209 | 92.71 202 | 93.71 270 | 95.43 268 | 88.67 298 | 99.75 134 | 97.62 219 | 92.81 158 | 90.05 227 | 98.49 183 | 75.24 294 | 98.40 196 | 95.84 150 | 89.12 226 | 94.07 272 |
|
LGP-MVS_train | | | | | 93.71 270 | 95.43 268 | 88.67 298 | | 97.62 219 | 92.81 158 | 90.05 227 | 98.49 183 | 75.24 294 | 98.40 196 | 95.84 150 | 89.12 226 | 94.07 272 |
|
test_djsdf | | | 92.83 212 | 92.29 213 | 94.47 243 | 91.90 322 | 92.46 233 | 99.55 173 | 97.27 261 | 91.17 216 | 89.96 230 | 96.07 255 | 81.10 247 | 96.89 279 | 94.67 170 | 88.91 228 | 94.05 274 |
|
testgi | | | 89.01 286 | 88.04 287 | 91.90 299 | 93.49 298 | 84.89 324 | 99.73 142 | 95.66 331 | 93.89 130 | 85.14 307 | 98.17 193 | 59.68 346 | 94.66 332 | 77.73 327 | 88.88 229 | 96.16 225 |
|
ACMM | | 91.95 10 | 92.88 211 | 92.52 209 | 93.98 263 | 95.75 258 | 89.08 295 | 99.77 126 | 97.52 234 | 93.00 153 | 89.95 231 | 97.99 200 | 76.17 288 | 98.46 190 | 93.63 197 | 88.87 230 | 94.39 241 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 92.05 9 | 92.74 214 | 92.42 211 | 93.73 268 | 95.91 252 | 88.72 297 | 99.81 114 | 97.53 232 | 94.13 113 | 87.00 287 | 98.23 192 | 74.07 302 | 98.47 187 | 96.22 144 | 88.86 231 | 93.99 280 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jajsoiax | | | 91.92 231 | 91.18 233 | 94.15 253 | 91.35 328 | 90.95 265 | 99.00 239 | 97.42 246 | 92.61 171 | 87.38 283 | 97.08 220 | 72.46 307 | 97.36 247 | 94.53 173 | 88.77 232 | 94.13 269 |
|
anonymousdsp | | | 91.79 238 | 90.92 236 | 94.41 248 | 90.76 333 | 92.93 221 | 98.93 247 | 97.17 268 | 89.08 247 | 87.46 282 | 95.30 284 | 78.43 274 | 96.92 278 | 92.38 211 | 88.73 233 | 93.39 308 |
|
mvs_tets | | | 91.81 233 | 91.08 234 | 94.00 261 | 91.63 326 | 90.58 272 | 98.67 271 | 97.43 244 | 92.43 182 | 87.37 284 | 97.05 223 | 71.76 309 | 97.32 251 | 94.75 166 | 88.68 234 | 94.11 270 |
|
XVG-ACMP-BASELINE | | | 91.22 246 | 90.75 237 | 92.63 291 | 93.73 294 | 85.61 318 | 98.52 279 | 97.44 243 | 92.77 162 | 89.90 233 | 96.85 231 | 66.64 329 | 98.39 198 | 92.29 212 | 88.61 235 | 93.89 288 |
|
EG-PatchMatch MVS | | | 85.35 304 | 83.81 306 | 89.99 315 | 90.39 335 | 81.89 337 | 98.21 294 | 96.09 323 | 81.78 328 | 74.73 344 | 93.72 320 | 51.56 354 | 97.12 265 | 79.16 323 | 88.61 235 | 90.96 336 |
|
UniMVSNet_ETH3D | | | 90.06 273 | 88.58 279 | 94.49 242 | 94.67 280 | 88.09 307 | 97.81 305 | 97.57 227 | 83.91 317 | 88.44 265 | 97.41 210 | 57.44 349 | 97.62 239 | 91.41 221 | 88.59 237 | 97.77 212 |
|
tpm | | | 93.70 196 | 93.41 191 | 94.58 236 | 95.36 270 | 87.41 311 | 97.01 317 | 96.90 296 | 90.85 225 | 96.72 150 | 94.14 316 | 90.40 165 | 96.84 282 | 90.75 237 | 88.54 238 | 99.51 147 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 313 | 81.68 316 | 90.03 314 | 88.30 344 | 82.82 329 | 98.46 280 | 95.22 339 | 73.92 348 | 76.00 341 | 91.29 335 | 55.00 351 | 96.94 277 | 68.40 345 | 88.51 239 | 90.34 340 |
|
CMPMVS |  | 61.59 21 | 84.75 307 | 85.14 301 | 83.57 331 | 90.32 336 | 62.54 355 | 96.98 318 | 97.59 226 | 74.33 347 | 69.95 349 | 96.66 237 | 64.17 337 | 98.32 206 | 87.88 267 | 88.41 240 | 89.84 344 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMMP++ | | | | | | | | | | | | | | | | 88.23 241 | |
|
ITE_SJBPF | | | | | 92.38 292 | 95.69 264 | 85.14 322 | | 95.71 329 | 92.81 158 | 89.33 249 | 98.11 194 | 70.23 316 | 98.42 193 | 85.91 287 | 88.16 242 | 93.59 304 |
|
D2MVS | | | 92.76 213 | 92.59 207 | 93.27 280 | 95.13 271 | 89.54 291 | 99.69 148 | 99.38 21 | 92.26 186 | 87.59 278 | 94.61 308 | 85.05 220 | 97.79 233 | 91.59 220 | 88.01 243 | 92.47 323 |
|
EI-MVSNet | | | 93.73 194 | 93.40 192 | 94.74 229 | 96.80 233 | 92.69 227 | 99.06 231 | 97.67 215 | 88.96 253 | 91.39 215 | 99.02 142 | 88.75 186 | 97.30 252 | 91.07 226 | 87.85 244 | 94.22 254 |
|
MVSTER | | | 95.53 151 | 95.22 150 | 96.45 185 | 98.56 141 | 97.72 82 | 99.91 69 | 97.67 215 | 92.38 183 | 91.39 215 | 97.14 217 | 97.24 14 | 97.30 252 | 94.80 163 | 87.85 244 | 94.34 247 |
|
PS-MVSNAJss | | | 93.64 197 | 93.31 194 | 94.61 234 | 92.11 319 | 92.19 238 | 99.12 222 | 97.38 251 | 92.51 179 | 88.45 264 | 96.99 226 | 91.20 150 | 97.29 255 | 94.36 176 | 87.71 246 | 94.36 243 |
|
LTVRE_ROB | | 88.28 18 | 90.29 267 | 89.05 272 | 94.02 259 | 95.08 273 | 90.15 281 | 97.19 313 | 97.43 244 | 84.91 311 | 83.99 312 | 97.06 222 | 74.00 303 | 98.28 210 | 84.08 296 | 87.71 246 | 93.62 303 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH | | 89.72 17 | 90.64 257 | 89.63 258 | 93.66 274 | 95.64 265 | 88.64 300 | 98.55 275 | 97.45 241 | 89.03 249 | 81.62 323 | 97.61 206 | 69.75 317 | 98.41 194 | 89.37 251 | 87.62 248 | 93.92 286 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PVSNet_BlendedMVS | | | 96.05 139 | 95.82 137 | 96.72 177 | 99.59 90 | 96.99 114 | 99.95 40 | 99.10 28 | 94.06 119 | 98.27 115 | 95.80 258 | 89.00 183 | 99.95 60 | 99.12 47 | 87.53 249 | 93.24 312 |
|
USDC | | | 90.00 274 | 88.96 273 | 93.10 285 | 94.81 277 | 88.16 306 | 98.71 267 | 95.54 334 | 93.66 137 | 83.75 314 | 97.20 216 | 65.58 332 | 98.31 207 | 83.96 299 | 87.49 250 | 92.85 318 |
|
RRT_MVS | | | 95.23 156 | 94.77 160 | 96.61 181 | 98.28 154 | 98.32 63 | 99.81 114 | 97.41 248 | 92.59 173 | 91.28 217 | 97.76 204 | 95.02 54 | 97.23 258 | 93.65 196 | 87.14 251 | 94.28 250 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 252 | |
|
test_0402 | | | 85.58 300 | 83.94 304 | 90.50 309 | 93.81 293 | 85.04 323 | 98.55 275 | 95.20 340 | 76.01 341 | 79.72 331 | 95.13 290 | 64.15 338 | 96.26 306 | 66.04 350 | 86.88 253 | 90.21 342 |
|
FIs | | | 94.10 185 | 93.43 188 | 96.11 195 | 94.70 279 | 96.82 119 | 99.58 167 | 98.93 40 | 92.54 177 | 89.34 248 | 97.31 213 | 87.62 194 | 97.10 266 | 94.22 182 | 86.58 254 | 94.40 240 |
|
FC-MVSNet-test | | | 93.81 190 | 93.15 197 | 95.80 203 | 94.30 285 | 96.20 143 | 99.42 191 | 98.89 42 | 92.33 185 | 89.03 257 | 97.27 215 | 87.39 197 | 96.83 283 | 93.20 201 | 86.48 255 | 94.36 243 |
|
TinyColmap | | | 87.87 294 | 86.51 295 | 91.94 298 | 95.05 274 | 85.57 319 | 97.65 307 | 94.08 348 | 84.40 314 | 81.82 322 | 96.85 231 | 62.14 342 | 98.33 205 | 80.25 318 | 86.37 256 | 91.91 330 |
|
ACMH+ | | 89.98 16 | 90.35 264 | 89.54 261 | 92.78 290 | 95.99 249 | 86.12 316 | 98.81 260 | 97.18 267 | 89.38 244 | 83.14 316 | 97.76 204 | 68.42 323 | 98.43 192 | 89.11 254 | 86.05 257 | 93.78 296 |
|
baseline1 | | | 95.78 145 | 94.86 157 | 98.54 109 | 98.47 147 | 98.07 70 | 99.06 231 | 97.99 190 | 92.68 167 | 94.13 192 | 98.62 176 | 93.28 110 | 98.69 178 | 93.79 191 | 85.76 258 | 98.84 194 |
|
GBi-Net | | | 90.88 251 | 89.82 256 | 94.08 256 | 97.53 200 | 91.97 241 | 98.43 282 | 96.95 290 | 87.05 280 | 89.68 238 | 94.72 302 | 71.34 311 | 96.11 309 | 87.01 279 | 85.65 259 | 94.17 258 |
|
test1 | | | 90.88 251 | 89.82 256 | 94.08 256 | 97.53 200 | 91.97 241 | 98.43 282 | 96.95 290 | 87.05 280 | 89.68 238 | 94.72 302 | 71.34 311 | 96.11 309 | 87.01 279 | 85.65 259 | 94.17 258 |
|
FMVSNet3 | | | 92.69 216 | 91.58 225 | 95.99 197 | 98.29 152 | 97.42 101 | 99.26 214 | 97.62 219 | 89.80 242 | 89.68 238 | 95.32 283 | 81.62 243 | 96.27 305 | 87.01 279 | 85.65 259 | 94.29 249 |
|
DeepMVS_CX |  | | | | 82.92 333 | 95.98 251 | 58.66 357 | | 96.01 324 | 92.72 163 | 78.34 335 | 95.51 272 | 58.29 348 | 98.08 220 | 82.57 306 | 85.29 262 | 92.03 328 |
|
LF4IMVS | | | 89.25 285 | 88.85 274 | 90.45 311 | 92.81 313 | 81.19 341 | 98.12 296 | 94.79 343 | 91.44 211 | 86.29 299 | 97.11 218 | 65.30 335 | 98.11 219 | 88.53 260 | 85.25 263 | 92.07 326 |
|
FMVSNet2 | | | 91.02 248 | 89.56 260 | 95.41 209 | 97.53 200 | 95.74 159 | 98.98 241 | 97.41 248 | 87.05 280 | 88.43 267 | 95.00 296 | 71.34 311 | 96.24 307 | 85.12 291 | 85.21 264 | 94.25 253 |
|
ET-MVSNet_ETH3D | | | 94.37 181 | 93.28 195 | 97.64 149 | 98.30 151 | 97.99 74 | 99.99 4 | 97.61 222 | 94.35 105 | 71.57 347 | 99.45 115 | 96.23 27 | 95.34 323 | 96.91 138 | 85.14 265 | 99.59 130 |
|
OurMVSNet-221017-0 | | | 89.81 276 | 89.48 265 | 90.83 307 | 91.64 325 | 81.21 340 | 98.17 295 | 95.38 336 | 91.48 209 | 85.65 305 | 97.31 213 | 72.66 306 | 97.29 255 | 88.15 264 | 84.83 266 | 93.97 282 |
|
pmmvs4 | | | 92.10 229 | 91.07 235 | 95.18 216 | 92.82 312 | 94.96 181 | 99.48 184 | 96.83 301 | 87.45 275 | 88.66 263 | 96.56 242 | 83.78 228 | 96.83 283 | 89.29 252 | 84.77 267 | 93.75 297 |
|
our_test_3 | | | 90.39 262 | 89.48 265 | 93.12 283 | 92.40 316 | 89.57 290 | 99.33 203 | 96.35 318 | 87.84 271 | 85.30 306 | 94.99 297 | 84.14 226 | 96.09 312 | 80.38 317 | 84.56 268 | 93.71 302 |
|
cl-mvsnet2 | | | 93.77 192 | 93.25 196 | 95.33 211 | 99.49 99 | 94.43 192 | 99.61 164 | 98.09 183 | 90.38 231 | 89.16 255 | 95.61 265 | 90.56 164 | 97.34 249 | 91.93 215 | 84.45 269 | 94.21 256 |
|
miper_ehance_all_eth | | | 93.16 204 | 92.60 204 | 94.82 228 | 97.57 199 | 93.56 209 | 99.50 180 | 97.07 278 | 88.75 258 | 88.85 259 | 95.52 271 | 90.97 157 | 96.74 286 | 90.77 236 | 84.45 269 | 94.17 258 |
|
miper_enhance_ethall | | | 94.36 183 | 93.98 175 | 95.49 205 | 98.68 140 | 95.24 174 | 99.73 142 | 97.29 259 | 93.28 147 | 89.86 234 | 95.97 256 | 94.37 75 | 97.05 269 | 92.20 213 | 84.45 269 | 94.19 257 |
|
bset_n11_16_dypcd | | | 93.05 208 | 92.30 212 | 95.31 212 | 90.23 337 | 95.05 179 | 99.44 190 | 97.28 260 | 92.51 179 | 90.65 223 | 96.68 236 | 85.30 217 | 96.71 289 | 94.49 174 | 84.14 272 | 94.16 263 |
|
IterMVS | | | 90.91 250 | 90.17 251 | 93.12 283 | 96.78 236 | 90.42 277 | 98.89 250 | 97.05 281 | 89.03 249 | 86.49 294 | 95.42 276 | 76.59 283 | 95.02 326 | 87.22 275 | 84.09 273 | 93.93 285 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 88.50 288 | 86.64 294 | 94.08 256 | 95.62 267 | 91.97 241 | 98.43 282 | 96.95 290 | 83.00 321 | 86.08 302 | 94.72 302 | 59.09 347 | 96.11 309 | 81.82 312 | 84.07 274 | 94.17 258 |
|
XXY-MVS | | | 91.82 232 | 90.46 242 | 95.88 200 | 93.91 291 | 95.40 169 | 98.87 255 | 97.69 214 | 88.63 262 | 87.87 275 | 97.08 220 | 74.38 301 | 97.89 231 | 91.66 219 | 84.07 274 | 94.35 246 |
|
IterMVS-SCA-FT | | | 90.85 253 | 90.16 252 | 92.93 287 | 96.72 238 | 89.96 284 | 98.89 250 | 96.99 285 | 88.95 254 | 86.63 291 | 95.67 263 | 76.48 284 | 95.00 327 | 87.04 277 | 84.04 276 | 93.84 292 |
|
RRT_test8_iter05 | | | 94.58 174 | 94.11 171 | 95.98 198 | 97.88 177 | 96.11 149 | 99.89 81 | 97.45 241 | 91.66 204 | 88.28 270 | 96.71 235 | 96.53 24 | 97.40 245 | 94.73 168 | 83.85 277 | 94.45 238 |
|
pmmvs5 | | | 90.17 271 | 89.09 270 | 93.40 277 | 92.10 320 | 89.77 288 | 99.74 137 | 95.58 333 | 85.88 297 | 87.24 286 | 95.74 260 | 73.41 305 | 96.48 297 | 88.54 259 | 83.56 278 | 93.95 283 |
|
SixPastTwentyTwo | | | 88.73 287 | 88.01 288 | 90.88 305 | 91.85 323 | 82.24 334 | 98.22 293 | 95.18 341 | 88.97 252 | 82.26 319 | 96.89 228 | 71.75 310 | 96.67 291 | 84.00 297 | 82.98 279 | 93.72 301 |
|
N_pmnet | | | 80.06 319 | 80.78 318 | 77.89 334 | 91.94 321 | 45.28 363 | 98.80 261 | 56.82 366 | 78.10 338 | 80.08 330 | 93.33 321 | 77.03 277 | 95.76 319 | 68.14 346 | 82.81 280 | 92.64 319 |
|
ppachtmachnet_test | | | 89.58 280 | 88.35 282 | 93.25 281 | 92.40 316 | 90.44 276 | 99.33 203 | 96.73 308 | 85.49 304 | 85.90 304 | 95.77 259 | 81.09 248 | 96.00 316 | 76.00 334 | 82.49 281 | 93.30 310 |
|
cl-mvsnet_ | | | 92.31 224 | 91.58 225 | 94.52 239 | 97.33 210 | 92.77 222 | 99.57 169 | 96.78 306 | 86.97 284 | 87.56 279 | 95.51 272 | 89.43 175 | 96.62 292 | 88.60 257 | 82.44 282 | 94.16 263 |
|
cl-mvsnet1 | | | 92.32 223 | 91.60 224 | 94.47 243 | 97.31 211 | 92.74 224 | 99.58 167 | 96.75 307 | 86.99 283 | 87.64 277 | 95.54 269 | 89.55 174 | 96.50 296 | 88.58 258 | 82.44 282 | 94.17 258 |
|
Patchmtry | | | 89.70 278 | 88.49 280 | 93.33 278 | 96.24 244 | 89.94 287 | 91.37 349 | 96.23 319 | 78.22 337 | 87.69 276 | 93.31 323 | 91.04 155 | 96.03 314 | 80.18 319 | 82.10 284 | 94.02 275 |
|
IterMVS-LS | | | 92.69 216 | 92.11 215 | 94.43 247 | 96.80 233 | 92.74 224 | 99.45 188 | 96.89 297 | 88.98 251 | 89.65 241 | 95.38 280 | 88.77 185 | 96.34 302 | 90.98 231 | 82.04 285 | 94.22 254 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EU-MVSNet | | | 90.14 272 | 90.34 246 | 89.54 317 | 92.55 315 | 81.06 342 | 98.69 269 | 98.04 188 | 91.41 214 | 86.59 292 | 96.84 233 | 80.83 251 | 93.31 344 | 86.20 284 | 81.91 286 | 94.26 251 |
|
Anonymous20231206 | | | 86.32 297 | 85.42 299 | 89.02 320 | 89.11 342 | 80.53 346 | 99.05 235 | 95.28 337 | 85.43 305 | 82.82 317 | 93.92 317 | 74.40 300 | 93.44 343 | 66.99 347 | 81.83 287 | 93.08 315 |
|
eth_miper_zixun_eth | | | 92.41 222 | 91.93 219 | 93.84 267 | 97.28 213 | 90.68 269 | 98.83 258 | 96.97 289 | 88.57 263 | 89.19 254 | 95.73 262 | 89.24 181 | 96.69 290 | 89.97 248 | 81.55 288 | 94.15 265 |
|
FMVSNet5 | | | 88.32 289 | 87.47 291 | 90.88 305 | 96.90 228 | 88.39 304 | 97.28 311 | 95.68 330 | 82.60 325 | 84.67 309 | 92.40 332 | 79.83 262 | 91.16 348 | 76.39 333 | 81.51 289 | 93.09 314 |
|
miper_lstm_enhance | | | 91.81 233 | 91.39 231 | 93.06 286 | 97.34 208 | 89.18 294 | 99.38 197 | 96.79 305 | 86.70 287 | 87.47 281 | 95.22 289 | 90.00 169 | 95.86 318 | 88.26 262 | 81.37 290 | 94.15 265 |
|
VPA-MVSNet | | | 92.70 215 | 91.55 227 | 96.16 194 | 95.09 272 | 96.20 143 | 98.88 252 | 99.00 33 | 91.02 222 | 91.82 212 | 95.29 287 | 76.05 290 | 97.96 227 | 95.62 152 | 81.19 291 | 94.30 248 |
|
v1192 | | | 90.62 259 | 89.25 267 | 94.72 231 | 93.13 303 | 93.07 217 | 99.50 180 | 97.02 282 | 86.33 291 | 89.56 244 | 95.01 294 | 79.22 265 | 97.09 268 | 82.34 308 | 81.16 292 | 94.01 277 |
|
v1144 | | | 91.09 247 | 89.83 255 | 94.87 225 | 93.25 302 | 93.69 207 | 99.62 163 | 96.98 287 | 86.83 286 | 89.64 242 | 94.99 297 | 80.94 249 | 97.05 269 | 85.08 292 | 81.16 292 | 93.87 290 |
|
Anonymous20240521 | | | 85.15 305 | 83.81 306 | 89.16 319 | 88.32 343 | 82.69 330 | 98.80 261 | 95.74 328 | 79.72 333 | 81.53 324 | 90.99 336 | 65.38 334 | 94.16 335 | 72.69 338 | 81.11 294 | 90.63 339 |
|
v1240 | | | 90.20 269 | 88.79 276 | 94.44 245 | 93.05 308 | 92.27 237 | 99.38 197 | 96.92 295 | 85.89 295 | 89.36 247 | 94.87 301 | 77.89 275 | 97.03 273 | 80.66 316 | 81.08 295 | 94.01 277 |
|
new_pmnet | | | 84.49 310 | 82.92 312 | 89.21 318 | 90.03 338 | 82.60 331 | 96.89 320 | 95.62 332 | 80.59 331 | 75.77 343 | 89.17 340 | 65.04 336 | 94.79 331 | 72.12 339 | 81.02 296 | 90.23 341 |
|
K. test v3 | | | 88.05 291 | 87.24 293 | 90.47 310 | 91.82 324 | 82.23 335 | 98.96 244 | 97.42 246 | 89.05 248 | 76.93 338 | 95.60 266 | 68.49 322 | 95.42 321 | 85.87 288 | 81.01 297 | 93.75 297 |
|
FPMVS | | | 68.72 321 | 68.72 324 | 68.71 339 | 65.95 360 | 44.27 365 | 95.97 331 | 94.74 344 | 51.13 354 | 53.26 357 | 90.50 339 | 25.11 362 | 83.00 356 | 60.80 353 | 80.97 298 | 78.87 352 |
|
v1921920 | | | 90.46 261 | 89.12 269 | 94.50 241 | 92.96 310 | 92.46 233 | 99.49 182 | 96.98 287 | 86.10 293 | 89.61 243 | 95.30 284 | 78.55 272 | 97.03 273 | 82.17 309 | 80.89 299 | 94.01 277 |
|
cl_fuxian | | | 92.53 219 | 91.87 221 | 94.52 239 | 97.40 205 | 92.99 220 | 99.40 192 | 96.93 294 | 87.86 270 | 88.69 262 | 95.44 275 | 89.95 170 | 96.44 298 | 90.45 240 | 80.69 300 | 94.14 268 |
|
tfpnnormal | | | 89.29 283 | 87.61 290 | 94.34 249 | 94.35 284 | 94.13 197 | 98.95 245 | 98.94 36 | 83.94 315 | 84.47 310 | 95.51 272 | 74.84 297 | 97.39 246 | 77.05 331 | 80.41 301 | 91.48 333 |
|
v144192 | | | 90.79 254 | 89.52 262 | 94.59 235 | 93.11 306 | 92.77 222 | 99.56 171 | 96.99 285 | 86.38 290 | 89.82 237 | 94.95 299 | 80.50 257 | 97.10 266 | 83.98 298 | 80.41 301 | 93.90 287 |
|
nrg030 | | | 93.51 198 | 92.53 208 | 96.45 185 | 94.36 283 | 97.20 106 | 99.81 114 | 97.16 270 | 91.60 205 | 89.86 234 | 97.46 208 | 86.37 207 | 97.68 236 | 95.88 149 | 80.31 303 | 94.46 233 |
|
Anonymous20231211 | | | 89.86 275 | 88.44 281 | 94.13 255 | 98.93 123 | 90.68 269 | 98.54 277 | 98.26 162 | 76.28 340 | 86.73 289 | 95.54 269 | 70.60 315 | 97.56 240 | 90.82 235 | 80.27 304 | 94.15 265 |
|
V42 | | | 91.28 244 | 90.12 253 | 94.74 229 | 93.42 300 | 93.46 211 | 99.68 150 | 97.02 282 | 87.36 276 | 89.85 236 | 95.05 292 | 81.31 246 | 97.34 249 | 87.34 273 | 80.07 305 | 93.40 307 |
|
v2v482 | | | 91.30 242 | 90.07 254 | 95.01 220 | 93.13 303 | 93.79 204 | 99.77 126 | 97.02 282 | 88.05 268 | 89.25 250 | 95.37 281 | 80.73 252 | 97.15 261 | 87.28 274 | 80.04 306 | 94.09 271 |
|
WR-MVS | | | 92.31 224 | 91.25 232 | 95.48 208 | 94.45 282 | 95.29 171 | 99.60 165 | 98.68 56 | 90.10 236 | 88.07 273 | 96.89 228 | 80.68 253 | 96.80 285 | 93.14 204 | 79.67 307 | 94.36 243 |
|
v10 | | | 90.25 268 | 88.82 275 | 94.57 237 | 93.53 297 | 93.43 212 | 99.08 226 | 96.87 299 | 85.00 308 | 87.34 285 | 94.51 309 | 80.93 250 | 97.02 275 | 82.85 305 | 79.23 308 | 93.26 311 |
|
test_part1 | | | 92.15 228 | 90.72 238 | 96.44 187 | 98.87 131 | 97.46 98 | 98.99 240 | 98.26 162 | 85.89 295 | 86.34 298 | 96.34 247 | 81.71 239 | 97.48 243 | 91.06 227 | 78.99 309 | 94.37 242 |
|
CP-MVSNet | | | 91.23 245 | 90.22 249 | 94.26 250 | 93.96 290 | 92.39 235 | 99.09 224 | 98.57 75 | 88.95 254 | 86.42 296 | 96.57 241 | 79.19 266 | 96.37 300 | 90.29 244 | 78.95 310 | 94.02 275 |
|
MIMVSNet1 | | | 82.58 315 | 80.51 319 | 88.78 322 | 86.68 347 | 84.20 327 | 96.65 321 | 95.41 335 | 78.75 336 | 78.59 334 | 92.44 329 | 51.88 353 | 89.76 351 | 65.26 351 | 78.95 310 | 92.38 325 |
|
PS-CasMVS | | | 90.63 258 | 89.51 263 | 93.99 262 | 93.83 292 | 91.70 254 | 98.98 241 | 98.52 90 | 88.48 264 | 86.15 301 | 96.53 243 | 75.46 292 | 96.31 303 | 88.83 256 | 78.86 312 | 93.95 283 |
|
WR-MVS_H | | | 91.30 242 | 90.35 245 | 94.15 253 | 94.17 287 | 92.62 231 | 99.17 220 | 98.94 36 | 88.87 256 | 86.48 295 | 94.46 313 | 84.36 224 | 96.61 293 | 88.19 263 | 78.51 313 | 93.21 313 |
|
v8 | | | 90.54 260 | 89.17 268 | 94.66 232 | 93.43 299 | 93.40 214 | 99.20 217 | 96.94 293 | 85.76 298 | 87.56 279 | 94.51 309 | 81.96 238 | 97.19 259 | 84.94 293 | 78.25 314 | 93.38 309 |
|
UniMVSNet (Re) | | | 93.07 207 | 92.13 214 | 95.88 200 | 94.84 276 | 96.24 142 | 99.88 84 | 98.98 34 | 92.49 181 | 89.25 250 | 95.40 277 | 87.09 200 | 97.14 262 | 93.13 205 | 78.16 315 | 94.26 251 |
|
v7n | | | 89.65 279 | 88.29 284 | 93.72 269 | 92.22 318 | 90.56 273 | 99.07 230 | 97.10 275 | 85.42 306 | 86.73 289 | 94.72 302 | 80.06 260 | 97.13 263 | 81.14 314 | 78.12 316 | 93.49 305 |
|
VPNet | | | 91.81 233 | 90.46 242 | 95.85 202 | 94.74 278 | 95.54 165 | 98.98 241 | 98.59 72 | 92.14 189 | 90.77 222 | 97.44 209 | 68.73 321 | 97.54 241 | 94.89 161 | 77.89 317 | 94.46 233 |
|
Gipuma |  | | 66.95 324 | 65.00 325 | 72.79 337 | 91.52 327 | 67.96 353 | 66.16 358 | 95.15 342 | 47.89 355 | 58.54 353 | 67.99 357 | 29.74 359 | 87.54 353 | 50.20 356 | 77.83 318 | 62.87 356 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
NR-MVSNet | | | 91.56 241 | 90.22 249 | 95.60 204 | 94.05 288 | 95.76 158 | 98.25 290 | 98.70 54 | 91.16 218 | 80.78 327 | 96.64 239 | 83.23 233 | 96.57 294 | 91.41 221 | 77.73 319 | 94.46 233 |
|
UniMVSNet_NR-MVSNet | | | 92.95 210 | 92.11 215 | 95.49 205 | 94.61 281 | 95.28 172 | 99.83 111 | 99.08 30 | 91.49 208 | 89.21 252 | 96.86 230 | 87.14 199 | 96.73 287 | 93.20 201 | 77.52 320 | 94.46 233 |
|
DU-MVS | | | 92.46 221 | 91.45 230 | 95.49 205 | 94.05 288 | 95.28 172 | 99.81 114 | 98.74 52 | 92.25 187 | 89.21 252 | 96.64 239 | 81.66 241 | 96.73 287 | 93.20 201 | 77.52 320 | 94.46 233 |
|
MDA-MVSNet_test_wron | | | 85.51 302 | 83.32 309 | 92.10 296 | 90.96 331 | 88.58 301 | 99.20 217 | 96.52 314 | 79.70 334 | 57.12 355 | 92.69 328 | 79.11 267 | 93.86 339 | 77.10 330 | 77.46 322 | 93.86 291 |
|
YYNet1 | | | 85.50 303 | 83.33 308 | 92.00 297 | 90.89 332 | 88.38 305 | 99.22 216 | 96.55 313 | 79.60 335 | 57.26 354 | 92.72 326 | 79.09 268 | 93.78 340 | 77.25 329 | 77.37 323 | 93.84 292 |
|
v148 | | | 90.70 255 | 89.63 258 | 93.92 264 | 92.97 309 | 90.97 264 | 99.75 134 | 96.89 297 | 87.51 273 | 88.27 271 | 95.01 294 | 81.67 240 | 97.04 271 | 87.40 272 | 77.17 324 | 93.75 297 |
|
Baseline_NR-MVSNet | | | 90.33 265 | 89.51 263 | 92.81 289 | 92.84 311 | 89.95 285 | 99.77 126 | 93.94 350 | 84.69 313 | 89.04 256 | 95.66 264 | 81.66 241 | 96.52 295 | 90.99 230 | 76.98 325 | 91.97 329 |
|
PEN-MVS | | | 90.19 270 | 89.06 271 | 93.57 275 | 93.06 307 | 90.90 266 | 99.06 231 | 98.47 103 | 88.11 267 | 85.91 303 | 96.30 248 | 76.67 281 | 95.94 317 | 87.07 276 | 76.91 326 | 93.89 288 |
|
TranMVSNet+NR-MVSNet | | | 91.68 240 | 90.61 241 | 94.87 225 | 93.69 295 | 93.98 201 | 99.69 148 | 98.65 60 | 91.03 221 | 88.44 265 | 96.83 234 | 80.05 261 | 96.18 308 | 90.26 245 | 76.89 327 | 94.45 238 |
|
MDA-MVSNet-bldmvs | | | 84.09 311 | 81.52 317 | 91.81 300 | 91.32 329 | 88.00 309 | 98.67 271 | 95.92 326 | 80.22 332 | 55.60 356 | 93.32 322 | 68.29 324 | 93.60 342 | 73.76 336 | 76.61 328 | 93.82 294 |
|
test20.03 | | | 84.72 308 | 83.99 302 | 86.91 328 | 88.19 345 | 80.62 345 | 98.88 252 | 95.94 325 | 88.36 266 | 78.87 332 | 94.62 307 | 68.75 320 | 89.11 352 | 66.52 348 | 75.82 329 | 91.00 335 |
|
DTE-MVSNet | | | 89.40 281 | 88.24 285 | 92.88 288 | 92.66 314 | 89.95 285 | 99.10 223 | 98.22 167 | 87.29 277 | 85.12 308 | 96.22 250 | 76.27 287 | 95.30 325 | 83.56 302 | 75.74 330 | 93.41 306 |
|
pm-mvs1 | | | 89.36 282 | 87.81 289 | 94.01 260 | 93.40 301 | 91.93 244 | 98.62 274 | 96.48 316 | 86.25 292 | 83.86 313 | 96.14 252 | 73.68 304 | 97.04 271 | 86.16 285 | 75.73 331 | 93.04 316 |
|
lessismore_v0 | | | | | 90.53 308 | 90.58 334 | 80.90 343 | | 95.80 327 | | 77.01 337 | 95.84 257 | 66.15 331 | 96.95 276 | 83.03 304 | 75.05 332 | 93.74 300 |
|
IB-MVS | | 92.85 6 | 94.99 162 | 93.94 176 | 98.16 129 | 97.72 193 | 95.69 163 | 99.99 4 | 98.81 48 | 94.28 110 | 92.70 208 | 96.90 227 | 95.08 50 | 99.17 156 | 96.07 145 | 73.88 333 | 99.60 129 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pmmvs6 | | | 85.69 299 | 83.84 305 | 91.26 304 | 90.00 339 | 84.41 326 | 97.82 304 | 96.15 322 | 75.86 342 | 81.29 325 | 95.39 279 | 61.21 344 | 96.87 281 | 83.52 303 | 73.29 334 | 92.50 322 |
|
hse-mvs3 | | | 94.92 163 | 94.36 166 | 96.59 182 | 98.85 132 | 91.29 261 | 98.93 247 | 98.94 36 | 95.90 56 | 98.77 91 | 98.42 189 | 90.89 160 | 99.77 115 | 97.80 111 | 70.76 335 | 98.72 199 |
|
ambc | | | | | 83.23 332 | 77.17 355 | 62.61 354 | 87.38 353 | 94.55 347 | | 76.72 339 | 86.65 347 | 30.16 358 | 96.36 301 | 84.85 294 | 69.86 336 | 90.73 338 |
|
Patchmatch-RL test | | | 86.90 296 | 85.98 298 | 89.67 316 | 84.45 350 | 75.59 349 | 89.71 351 | 92.43 352 | 86.89 285 | 77.83 336 | 90.94 337 | 94.22 83 | 93.63 341 | 87.75 268 | 69.61 337 | 99.79 100 |
|
PM-MVS | | | 80.47 317 | 78.88 321 | 85.26 330 | 83.79 352 | 72.22 351 | 95.89 332 | 91.08 355 | 85.71 301 | 76.56 340 | 88.30 342 | 36.64 357 | 93.90 338 | 82.39 307 | 69.57 338 | 89.66 345 |
|
pmmvs-eth3d | | | 84.03 312 | 81.97 315 | 90.20 312 | 84.15 351 | 87.09 312 | 98.10 298 | 94.73 345 | 83.05 320 | 74.10 345 | 87.77 344 | 65.56 333 | 94.01 336 | 81.08 315 | 69.24 339 | 89.49 346 |
|
AUN-MVS | | | 93.28 202 | 92.60 204 | 95.34 210 | 98.29 152 | 90.09 282 | 99.31 206 | 98.56 77 | 91.80 201 | 96.35 161 | 98.00 198 | 89.38 176 | 98.28 210 | 92.46 210 | 69.22 340 | 97.64 214 |
|
hse-mvs2 | | | 94.38 180 | 94.08 173 | 95.31 212 | 98.27 157 | 90.02 283 | 99.29 211 | 98.56 77 | 95.90 56 | 98.77 91 | 98.00 198 | 90.89 160 | 98.26 214 | 97.80 111 | 69.20 341 | 97.64 214 |
|
TransMVSNet (Re) | | | 87.25 295 | 85.28 300 | 93.16 282 | 93.56 296 | 91.03 263 | 98.54 277 | 94.05 349 | 83.69 319 | 81.09 326 | 96.16 251 | 75.32 293 | 96.40 299 | 76.69 332 | 68.41 342 | 92.06 327 |
|
PMVS |  | 49.05 23 | 53.75 327 | 51.34 331 | 60.97 342 | 40.80 366 | 34.68 366 | 74.82 357 | 89.62 359 | 37.55 358 | 28.67 364 | 72.12 354 | 7.09 368 | 81.63 357 | 43.17 359 | 68.21 343 | 66.59 355 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UnsupCasMVSNet_eth | | | 85.52 301 | 83.99 302 | 90.10 313 | 89.36 341 | 83.51 328 | 96.65 321 | 97.99 190 | 89.14 246 | 75.89 342 | 93.83 318 | 63.25 340 | 93.92 337 | 81.92 311 | 67.90 344 | 92.88 317 |
|
PVSNet_0 | | 88.03 19 | 91.80 236 | 90.27 248 | 96.38 190 | 98.27 157 | 90.46 275 | 99.94 55 | 99.61 11 | 93.99 122 | 86.26 300 | 97.39 212 | 71.13 314 | 99.89 79 | 98.77 73 | 67.05 345 | 98.79 197 |
|
TDRefinement | | | 84.76 306 | 82.56 313 | 91.38 303 | 74.58 356 | 84.80 325 | 97.36 310 | 94.56 346 | 84.73 312 | 80.21 329 | 96.12 254 | 63.56 339 | 98.39 198 | 87.92 266 | 63.97 346 | 90.95 337 |
|
new-patchmatchnet | | | 81.19 316 | 79.34 320 | 86.76 329 | 82.86 353 | 80.36 347 | 97.92 302 | 95.27 338 | 82.09 327 | 72.02 346 | 86.87 346 | 62.81 341 | 90.74 350 | 71.10 340 | 63.08 347 | 89.19 348 |
|
pmmvs3 | | | 80.27 318 | 77.77 322 | 87.76 327 | 80.32 354 | 82.43 333 | 98.23 292 | 91.97 353 | 72.74 349 | 78.75 333 | 87.97 343 | 57.30 350 | 90.99 349 | 70.31 341 | 62.37 348 | 89.87 343 |
|
DIV-MVS_2432*1600 | | | 83.59 314 | 82.06 314 | 88.20 326 | 86.93 346 | 80.70 344 | 97.21 312 | 96.38 317 | 82.87 322 | 82.49 318 | 88.97 341 | 67.63 326 | 92.32 345 | 73.75 337 | 62.30 349 | 91.58 332 |
|
CL-MVSNet_2432*1600 | | | 84.50 309 | 83.15 311 | 88.53 324 | 86.00 348 | 81.79 338 | 98.82 259 | 97.35 253 | 85.12 307 | 83.62 315 | 90.91 338 | 76.66 282 | 91.40 347 | 69.53 343 | 60.36 350 | 92.40 324 |
|
UnsupCasMVSNet_bld | | | 79.97 320 | 77.03 323 | 88.78 322 | 85.62 349 | 81.98 336 | 93.66 340 | 97.35 253 | 75.51 345 | 70.79 348 | 83.05 350 | 48.70 356 | 94.91 329 | 78.31 325 | 60.29 351 | 89.46 347 |
|
LCM-MVSNet | | | 67.77 322 | 64.73 326 | 76.87 335 | 62.95 362 | 56.25 359 | 89.37 352 | 93.74 351 | 44.53 356 | 61.99 351 | 80.74 351 | 20.42 364 | 86.53 354 | 69.37 344 | 59.50 352 | 87.84 349 |
|
KD-MVS_2432*1600 | | | 88.00 292 | 86.10 296 | 93.70 272 | 96.91 225 | 94.04 198 | 97.17 314 | 97.12 273 | 84.93 309 | 81.96 320 | 92.41 330 | 92.48 130 | 94.51 333 | 79.23 320 | 52.68 353 | 92.56 320 |
|
miper_refine_blended | | | 88.00 292 | 86.10 296 | 93.70 272 | 96.91 225 | 94.04 198 | 97.17 314 | 97.12 273 | 84.93 309 | 81.96 320 | 92.41 330 | 92.48 130 | 94.51 333 | 79.23 320 | 52.68 353 | 92.56 320 |
|
PMMVS2 | | | 67.15 323 | 64.15 327 | 76.14 336 | 70.56 359 | 62.07 356 | 93.89 338 | 87.52 361 | 58.09 353 | 60.02 352 | 78.32 352 | 22.38 363 | 84.54 355 | 59.56 354 | 47.03 355 | 81.80 351 |
|
MVE |  | 53.74 22 | 51.54 329 | 47.86 333 | 62.60 341 | 59.56 363 | 50.93 360 | 79.41 356 | 77.69 363 | 35.69 360 | 36.27 362 | 61.76 361 | 5.79 370 | 69.63 359 | 37.97 360 | 36.61 356 | 67.24 354 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 52.30 328 | 52.18 330 | 52.67 343 | 71.51 357 | 45.40 362 | 93.62 341 | 76.60 364 | 36.01 359 | 43.50 360 | 64.13 359 | 27.11 361 | 67.31 361 | 31.06 361 | 26.06 357 | 45.30 360 |
|
EMVS | | | 51.44 330 | 51.22 332 | 52.11 344 | 70.71 358 | 44.97 364 | 94.04 337 | 75.66 365 | 35.34 361 | 42.40 361 | 61.56 362 | 28.93 360 | 65.87 362 | 27.64 362 | 24.73 358 | 45.49 359 |
|
ANet_high | | | 56.10 326 | 52.24 329 | 67.66 340 | 49.27 364 | 56.82 358 | 83.94 354 | 82.02 362 | 70.47 350 | 33.28 363 | 64.54 358 | 17.23 366 | 69.16 360 | 45.59 358 | 23.85 359 | 77.02 353 |
|
tmp_tt | | | 65.23 325 | 62.94 328 | 72.13 338 | 44.90 365 | 50.03 361 | 81.05 355 | 89.42 360 | 38.45 357 | 48.51 359 | 99.90 17 | 54.09 352 | 78.70 358 | 91.84 218 | 18.26 360 | 87.64 350 |
|
testmvs | | | 40.60 331 | 44.45 334 | 29.05 346 | 19.49 368 | 14.11 369 | 99.68 150 | 18.47 367 | 20.74 362 | 64.59 350 | 98.48 186 | 10.95 367 | 17.09 365 | 56.66 355 | 11.01 361 | 55.94 358 |
|
wuyk23d | | | 20.37 334 | 20.84 337 | 18.99 347 | 65.34 361 | 27.73 367 | 50.43 359 | 7.67 369 | 9.50 364 | 8.01 365 | 6.34 365 | 6.13 369 | 26.24 363 | 23.40 363 | 10.69 362 | 2.99 361 |
|
test123 | | | 37.68 332 | 39.14 335 | 33.31 345 | 19.94 367 | 24.83 368 | 98.36 286 | 9.75 368 | 15.53 363 | 51.31 358 | 87.14 345 | 19.62 365 | 17.74 364 | 47.10 357 | 3.47 363 | 57.36 357 |
|
uanet_test | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
cdsmvs_eth3d_5k | | | 23.43 333 | 31.24 336 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 98.09 183 | 0.00 365 | 0.00 366 | 99.67 95 | 83.37 231 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
pcd_1.5k_mvsjas | | | 7.60 336 | 10.13 339 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 91.20 150 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
sosnet-low-res | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
sosnet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
uncertanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
Regformer | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
ab-mvs-re | | | 8.28 335 | 11.04 338 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 99.40 118 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
uanet | | | 0.00 337 | 0.00 340 | 0.00 348 | 0.00 369 | 0.00 370 | 0.00 360 | 0.00 370 | 0.00 365 | 0.00 366 | 0.00 366 | 0.00 371 | 0.00 366 | 0.00 364 | 0.00 364 | 0.00 362 |
|
test_241102_ONE | | | | | | 99.93 26 | 99.30 8 | | 98.43 116 | 97.26 22 | 99.80 16 | 99.88 22 | 96.71 20 | 100.00 1 | | | |
|
save fliter | | | | | | 99.82 65 | 98.79 33 | 99.96 23 | 98.40 132 | 97.66 10 | | | | | | | |
|
test0726 | | | | | | 99.93 26 | 99.29 10 | 99.96 23 | 98.42 127 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 15 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
test_part2 | | | | | | 99.89 45 | 99.25 13 | | | | 99.49 48 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 130 |
|
sam_mvs | | | | | | | | | | | | | 94.25 82 | | | | |
|
MTGPA |  | | | | | | | | 98.28 158 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 333 | | | | 59.23 363 | 93.20 114 | 97.74 235 | 91.06 227 | | |
|
test_post | | | | | | | | | | | | 63.35 360 | 94.43 69 | 98.13 218 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 334 | 95.12 48 | 97.95 228 | | | |
|
MTMP | | | | | | | | 99.87 87 | 96.49 315 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 223 | 93.76 206 | | | 91.47 210 | | 98.96 153 | | 98.79 168 | 94.92 158 | | |
|
TEST9 | | | | | | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 116 | 93.90 128 | 99.71 30 | 99.86 29 | 95.88 34 | 99.85 94 | | | |
|
test_8 | | | | | | 99.92 35 | 98.88 26 | 99.96 23 | 98.43 116 | 94.35 105 | 99.69 32 | 99.85 33 | 95.94 31 | 99.85 94 | | | |
|
agg_prior | | | | | | 99.93 26 | 98.77 36 | | 98.43 116 | | 99.63 35 | | | 99.85 94 | | | |
|
test_prior4 | | | | | | | 98.05 71 | 99.94 55 | | | | | | | | | |
|
test_prior | | | | | 99.43 35 | 99.94 14 | 98.49 57 | | 98.65 60 | | | | | 99.80 106 | | | 99.99 20 |
|
旧先验2 | | | | | | | | 99.46 187 | | 94.21 112 | 99.85 6 | | | 99.95 60 | 96.96 135 | | |
|
新几何2 | | | | | | | | 99.40 192 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 182 | 98.71 53 | 93.46 142 | | | | 100.00 1 | 94.36 176 | | 99.99 20 |
|
原ACMM2 | | | | | | | | 99.90 73 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 239 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 22 | | | | |
|
testdata1 | | | | | | | | 99.28 212 | | 96.35 48 | | | | | | | |
|
plane_prior7 | | | | | | 95.71 262 | 91.59 258 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 257 | 91.72 253 | | | | | | 80.47 258 | | | | |
|
plane_prior4 | | | | | | | | | | | | 98.59 177 | | | | | |
|
plane_prior3 | | | | | | | 91.64 256 | | | 96.63 38 | 93.01 202 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 105 | | 96.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 259 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 370 | | | | | | | | |
|
nn | | | | | | | | | 0.00 370 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 358 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 108 | | | | | | | | |
|
door | | | | | | | | | 90.31 356 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 246 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 253 | | 99.87 87 | | 96.82 30 | 93.37 198 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 253 | | 99.87 87 | | 96.82 30 | 93.37 198 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 109 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 198 | | | 98.39 198 | | | 94.53 228 |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 254 | | | | |
|
NP-MVS | | | | | | 95.77 256 | 91.79 248 | | | | | 98.65 173 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 138 | 96.11 328 | | 91.89 196 | 98.06 121 | | 94.40 71 | | 94.30 179 | | 99.67 117 |
|
Test By Simon | | | | | | | | | | | | | 92.82 123 | | | | |
|