MSC_two_6792asdad | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 135 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
No_MVS | | | | | 99.93 2 | 99.91 44 | 99.80 2 | | 98.41 135 | | | | | 100.00 1 | 99.96 9 | 100.00 1 | 100.00 1 |
|
SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 8 | 99.93 27 | 99.30 11 | 99.96 25 | 98.43 119 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 99.93 27 | 99.31 9 | | 98.41 135 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 119 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DVP-MVS |  | | 99.30 4 | 99.16 3 | 99.73 11 | 99.93 27 | 99.29 14 | 99.95 43 | 98.32 159 | 97.28 18 | 99.83 10 | 99.91 15 | 97.22 18 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 94 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 96.48 42 | 99.83 10 | 99.91 15 | 97.87 4 | 100.00 1 | 99.92 12 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 99.82 7 | 99.94 14 | 99.47 7 | 99.95 43 | 98.43 119 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
DPE-MVS |  | | 99.26 6 | 99.10 7 | 99.74 10 | 99.89 50 | 99.24 18 | 99.87 92 | 98.44 111 | 97.48 15 | 99.64 39 | 99.94 4 | 96.68 25 | 99.99 40 | 99.99 5 | 100.00 1 | 99.99 24 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
agg_prior2 | | | | | | | | | | | | | | | 99.48 40 | 100.00 1 | 100.00 1 |
|
region2R | | | 98.54 40 | 98.37 41 | 99.05 76 | 99.96 8 | 97.18 112 | 99.96 25 | 98.55 84 | 94.87 92 | 99.45 57 | 99.85 35 | 94.07 92 | 100.00 1 | 98.67 82 | 100.00 1 | 99.98 55 |
|
test_prior3 | | | 98.99 14 | 98.84 15 | 99.43 38 | 99.94 14 | 98.49 61 | 99.95 43 | 98.65 61 | 95.78 63 | 99.73 29 | 99.76 75 | 96.00 32 | 99.80 110 | 99.78 24 | 100.00 1 | 99.99 24 |
|
test_prior2 | | | | | | | | 99.95 43 | | 95.78 63 | 99.73 29 | 99.76 75 | 96.00 32 | | 99.78 24 | 100.00 1 | |
|
MSLP-MVS++ | | | 99.13 8 | 99.01 10 | 99.49 34 | 99.94 14 | 98.46 63 | 99.98 10 | 98.86 46 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 36 | 100.00 1 | 99.51 38 | 100.00 1 | 100.00 1 |
|
APDe-MVS | | | 99.06 11 | 98.91 13 | 99.51 31 | 99.94 14 | 98.76 44 | 99.91 74 | 98.39 142 | 97.20 24 | 99.46 56 | 99.85 35 | 95.53 45 | 99.79 113 | 99.86 16 | 100.00 1 | 99.99 24 |
|
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 5 | 99.97 3 | 99.59 5 | 99.97 18 | 98.64 64 | 98.47 2 | 99.13 82 | 99.92 13 | 96.38 29 | 100.00 1 | 99.74 28 | 100.00 1 | 100.00 1 |
|
CDPH-MVS | | | 98.65 32 | 98.36 43 | 99.49 34 | 99.94 14 | 98.73 45 | 99.87 92 | 98.33 157 | 93.97 132 | 99.76 26 | 99.87 28 | 94.99 61 | 99.75 125 | 98.55 89 | 100.00 1 | 99.98 55 |
|
mPP-MVS | | | 98.39 53 | 98.20 51 | 98.97 84 | 99.97 3 | 96.92 122 | 99.95 43 | 98.38 146 | 95.04 83 | 98.61 107 | 99.80 60 | 93.39 107 | 100.00 1 | 98.64 86 | 100.00 1 | 99.98 55 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 6 | 99.98 2 | 99.51 6 | 99.98 10 | 98.69 56 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 22 | 100.00 1 | 99.75 26 | 100.00 1 | 99.99 24 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 13 | 99.96 8 | 99.15 20 | 99.97 18 | 98.62 68 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 16 | 100.00 1 | 99.54 37 | 100.00 1 | 100.00 1 |
|
MG-MVS | | | 98.91 18 | 98.65 21 | 99.68 14 | 99.94 14 | 99.07 22 | 99.64 165 | 99.44 19 | 97.33 17 | 99.00 89 | 99.72 87 | 94.03 93 | 99.98 46 | 98.73 79 | 100.00 1 | 100.00 1 |
|
ZNCC-MVS | | | 98.31 57 | 98.03 61 | 99.17 60 | 99.88 54 | 97.59 92 | 99.94 60 | 98.44 111 | 94.31 117 | 98.50 111 | 99.82 55 | 93.06 120 | 99.99 40 | 98.30 98 | 99.99 22 | 99.93 85 |
|
testtj | | | 98.89 19 | 98.69 19 | 99.52 29 | 99.94 14 | 98.56 57 | 99.90 78 | 98.55 84 | 95.14 82 | 99.72 33 | 99.84 48 | 95.46 46 | 100.00 1 | 99.65 36 | 99.99 22 | 99.99 24 |
|
SMA-MVS |  | | 98.76 27 | 98.48 30 | 99.62 18 | 99.87 57 | 98.87 31 | 99.86 103 | 98.38 146 | 93.19 158 | 99.77 25 | 99.94 4 | 95.54 43 | 100.00 1 | 99.74 28 | 99.99 22 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test9_res | | | | | | | | | | | | | | | 99.71 33 | 99.99 22 | 100.00 1 |
|
agg_prior1 | | | 98.88 20 | 98.66 20 | 99.54 26 | 99.93 27 | 98.77 40 | 99.96 25 | 98.43 119 | 94.63 102 | 99.63 40 | 99.85 35 | 95.79 40 | 99.85 98 | 99.72 32 | 99.99 22 | 99.99 24 |
|
HPM-MVS++ |  | | 99.07 10 | 98.88 14 | 99.63 15 | 99.90 47 | 99.02 23 | 99.95 43 | 98.56 78 | 97.56 13 | 99.44 58 | 99.85 35 | 95.38 48 | 100.00 1 | 99.31 47 | 99.99 22 | 99.87 97 |
|
HPM-MVS_fast | | | 97.80 80 | 97.50 81 | 98.68 98 | 99.79 75 | 96.42 137 | 99.88 89 | 98.16 185 | 91.75 211 | 98.94 91 | 99.54 110 | 91.82 149 | 99.65 142 | 97.62 126 | 99.99 22 | 99.99 24 |
|
HPM-MVS |  | | 97.96 71 | 97.72 73 | 98.68 98 | 99.84 65 | 96.39 140 | 99.90 78 | 98.17 182 | 92.61 180 | 98.62 106 | 99.57 107 | 91.87 147 | 99.67 140 | 98.87 69 | 99.99 22 | 99.99 24 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
APD-MVS |  | | 98.62 33 | 98.35 44 | 99.41 42 | 99.90 47 | 98.51 60 | 99.87 92 | 98.36 151 | 94.08 125 | 99.74 28 | 99.73 86 | 94.08 91 | 99.74 129 | 99.42 43 | 99.99 22 | 99.99 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CP-MVS | | | 98.45 47 | 98.32 45 | 98.87 89 | 99.96 8 | 96.62 131 | 99.97 18 | 98.39 142 | 94.43 109 | 98.90 92 | 99.87 28 | 94.30 84 | 100.00 1 | 99.04 58 | 99.99 22 | 99.99 24 |
|
SteuartSystems-ACMMP | | | 99.02 12 | 98.97 12 | 99.18 57 | 98.72 143 | 97.71 87 | 99.98 10 | 98.44 111 | 96.85 30 | 99.80 16 | 99.91 15 | 97.57 6 | 99.85 98 | 99.44 42 | 99.99 22 | 99.99 24 |
Skip Steuart: Steuart Systems R&D Blog. |
CPTT-MVS | | | 97.64 87 | 97.32 90 | 98.58 108 | 99.97 3 | 95.77 163 | 99.96 25 | 98.35 154 | 89.90 249 | 98.36 117 | 99.79 64 | 91.18 159 | 99.99 40 | 98.37 94 | 99.99 22 | 99.99 24 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 23 | 98.54 27 | 99.62 18 | 99.90 47 | 98.85 33 | 99.24 221 | 98.47 104 | 98.14 4 | 99.08 83 | 99.91 15 | 93.09 119 | 100.00 1 | 99.04 58 | 99.99 22 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DVP-MVS++ | | | 99.26 6 | 99.09 8 | 99.77 8 | 99.91 44 | 99.31 9 | 99.95 43 | 98.43 119 | 96.48 42 | 99.80 16 | 99.93 11 | 97.44 13 | 100.00 1 | 99.92 12 | 99.98 35 | 100.00 1 |
|
PC_three_1452 | | | | | | | | | | 96.96 29 | 99.80 16 | 99.79 64 | 97.49 9 | 100.00 1 | 99.99 5 | 99.98 35 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 50 | 99.80 2 | 99.96 25 | | | | 99.80 60 | 97.44 13 | 100.00 1 | 100.00 1 | 99.98 35 | 100.00 1 |
|
ETH3 D test6400 | | | 98.81 23 | 98.54 27 | 99.59 21 | 99.93 27 | 98.93 26 | 99.93 66 | 98.46 106 | 94.56 104 | 99.84 8 | 99.92 13 | 94.32 83 | 99.86 94 | 99.96 9 | 99.98 35 | 100.00 1 |
|
ETH3D-3000-0.1 | | | 98.68 30 | 98.42 32 | 99.47 37 | 99.83 68 | 98.57 55 | 99.90 78 | 98.37 149 | 93.81 140 | 99.81 12 | 99.90 19 | 94.34 79 | 99.86 94 | 99.84 17 | 99.98 35 | 99.97 67 |
|
MSP-MVS | | | 99.09 9 | 99.12 5 | 98.98 83 | 99.93 27 | 97.24 109 | 99.95 43 | 98.42 131 | 97.50 14 | 99.52 53 | 99.88 24 | 97.43 15 | 99.71 133 | 99.50 39 | 99.98 35 | 100.00 1 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TSAR-MVS + MP. | | | 98.93 16 | 98.77 17 | 99.41 42 | 99.74 82 | 98.67 48 | 99.77 131 | 98.38 146 | 96.73 36 | 99.88 3 | 99.74 84 | 94.89 65 | 99.59 144 | 99.80 22 | 99.98 35 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
train_agg | | | 98.88 20 | 98.65 21 | 99.59 21 | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 119 | 94.35 114 | 99.71 35 | 99.86 31 | 95.94 34 | 99.85 98 | 99.69 35 | 99.98 35 | 99.99 24 |
|
HFP-MVS | | | 98.56 38 | 98.37 41 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 70 | 94.77 94 | 99.31 70 | 99.85 35 | 94.22 86 | 100.00 1 | 98.70 80 | 99.98 35 | 99.98 55 |
|
#test# | | | 98.59 36 | 98.41 34 | 99.14 66 | 99.96 8 | 97.43 104 | 99.95 43 | 98.61 70 | 95.00 84 | 99.31 70 | 99.85 35 | 94.22 86 | 100.00 1 | 98.78 76 | 99.98 35 | 99.98 55 |
|
ACMMPR | | | 98.50 43 | 98.32 45 | 99.05 76 | 99.96 8 | 97.18 112 | 99.95 43 | 98.60 72 | 94.77 94 | 99.31 70 | 99.84 48 | 93.73 101 | 100.00 1 | 98.70 80 | 99.98 35 | 99.98 55 |
|
test12 | | | | | 99.43 38 | 99.74 82 | 98.56 57 | | 98.40 139 | | 99.65 38 | | 94.76 66 | 99.75 125 | | 99.98 35 | 99.99 24 |
|
PAPM_NR | | | 98.12 67 | 97.93 69 | 98.70 97 | 99.94 14 | 96.13 152 | 99.82 117 | 98.43 119 | 94.56 104 | 97.52 139 | 99.70 91 | 94.40 74 | 99.98 46 | 97.00 139 | 99.98 35 | 99.99 24 |
|
ZD-MVS | | | | | | 99.92 36 | 98.57 55 | | 98.52 91 | 92.34 193 | 99.31 70 | 99.83 51 | 95.06 55 | 99.80 110 | 99.70 34 | 99.97 48 | |
|
9.14 | | | | 98.38 39 | | 99.87 57 | | 99.91 74 | 98.33 157 | 93.22 157 | 99.78 24 | 99.89 21 | 94.57 71 | 99.85 98 | 99.84 17 | 99.97 48 | |
|
MP-MVS |  | | 98.23 64 | 97.97 65 | 99.03 78 | 99.94 14 | 97.17 115 | 99.95 43 | 98.39 142 | 94.70 97 | 98.26 123 | 99.81 59 | 91.84 148 | 100.00 1 | 98.85 70 | 99.97 48 | 99.93 85 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
114514_t | | | 97.41 96 | 96.83 105 | 99.14 66 | 99.51 103 | 97.83 84 | 99.89 86 | 98.27 169 | 88.48 273 | 99.06 84 | 99.66 100 | 90.30 171 | 99.64 143 | 96.32 149 | 99.97 48 | 99.96 74 |
|
SD-MVS | | | 98.92 17 | 98.70 18 | 99.56 24 | 99.70 90 | 98.73 45 | 99.94 60 | 98.34 156 | 96.38 47 | 99.81 12 | 99.76 75 | 94.59 70 | 99.98 46 | 99.84 17 | 99.96 52 | 99.97 67 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
PGM-MVS | | | 98.34 55 | 98.13 56 | 98.99 82 | 99.92 36 | 97.00 118 | 99.75 139 | 99.50 17 | 93.90 137 | 99.37 67 | 99.76 75 | 93.24 116 | 100.00 1 | 97.75 124 | 99.96 52 | 99.98 55 |
|
API-MVS | | | 97.86 75 | 97.66 74 | 98.47 118 | 99.52 101 | 95.41 175 | 99.47 191 | 98.87 45 | 91.68 212 | 98.84 93 | 99.85 35 | 92.34 138 | 99.99 40 | 98.44 92 | 99.96 52 | 100.00 1 |
|
ETH3D cwj APD-0.16 | | | 98.40 52 | 98.07 60 | 99.40 44 | 99.59 95 | 98.41 64 | 99.86 103 | 98.24 172 | 92.18 197 | 99.73 29 | 99.87 28 | 93.47 106 | 99.85 98 | 99.74 28 | 99.95 55 | 99.93 85 |
|
SR-MVS | | | 98.46 46 | 98.30 47 | 98.93 87 | 99.88 54 | 97.04 117 | 99.84 110 | 98.35 154 | 94.92 89 | 99.32 69 | 99.80 60 | 93.35 108 | 99.78 115 | 99.30 48 | 99.95 55 | 99.96 74 |
|
XVS | | | 98.70 29 | 98.55 26 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 60 | 98.42 131 | 96.22 52 | 99.41 61 | 99.78 69 | 94.34 79 | 99.96 57 | 98.92 64 | 99.95 55 | 99.99 24 |
|
X-MVStestdata | | | 93.83 195 | 92.06 224 | 99.15 64 | 99.94 14 | 97.50 99 | 99.94 60 | 98.42 131 | 96.22 52 | 99.41 61 | 41.37 375 | 94.34 79 | 99.96 57 | 98.92 64 | 99.95 55 | 99.99 24 |
|
原ACMM1 | | | | | 98.96 85 | 99.73 86 | 96.99 119 | | 98.51 98 | 94.06 128 | 99.62 43 | 99.85 35 | 94.97 62 | 99.96 57 | 95.11 162 | 99.95 55 | 99.92 91 |
|
test222 | | | | | | 99.55 99 | 97.41 107 | 99.34 208 | 98.55 84 | 91.86 206 | 99.27 75 | 99.83 51 | 93.84 99 | | | 99.95 55 | 99.99 24 |
|
DPM-MVS | | | 98.83 22 | 98.46 31 | 99.97 1 | 99.33 111 | 99.92 1 | 99.96 25 | 98.44 111 | 97.96 7 | 99.55 48 | 99.94 4 | 97.18 20 | 100.00 1 | 93.81 198 | 99.94 61 | 99.98 55 |
|
新几何1 | | | | | 99.42 41 | 99.75 81 | 98.27 69 | | 98.63 67 | 92.69 175 | 99.55 48 | 99.82 55 | 94.40 74 | 100.00 1 | 91.21 232 | 99.94 61 | 99.99 24 |
|
旧先验1 | | | | | | 99.76 79 | 97.52 96 | | 98.64 64 | | | 99.85 35 | 95.63 42 | | | 99.94 61 | 99.99 24 |
|
testdata | | | | | 98.42 123 | 99.47 105 | 95.33 177 | | 98.56 78 | 93.78 142 | 99.79 23 | 99.85 35 | 93.64 104 | 99.94 72 | 94.97 165 | 99.94 61 | 100.00 1 |
|
DELS-MVS | | | 98.54 40 | 98.22 49 | 99.50 32 | 99.15 116 | 98.65 52 | 100.00 1 | 98.58 74 | 97.70 9 | 98.21 125 | 99.24 137 | 92.58 131 | 99.94 72 | 98.63 87 | 99.94 61 | 99.92 91 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_111021_HR | | | 98.72 28 | 98.62 23 | 99.01 81 | 99.36 110 | 97.18 112 | 99.93 66 | 99.90 1 | 96.81 34 | 98.67 103 | 99.77 71 | 93.92 95 | 99.89 83 | 99.27 49 | 99.94 61 | 99.96 74 |
|
xxxxxxxxxxxxxcwj | | | 98.98 15 | 98.79 16 | 99.54 26 | 99.82 70 | 98.79 37 | 99.96 25 | 97.52 242 | 97.66 10 | 99.81 12 | 99.89 21 | 94.70 68 | 99.86 94 | 99.84 17 | 99.93 67 | 99.96 74 |
|
SF-MVS | | | 98.67 31 | 98.40 36 | 99.50 32 | 99.77 78 | 98.67 48 | 99.90 78 | 98.21 176 | 93.53 149 | 99.81 12 | 99.89 21 | 94.70 68 | 99.86 94 | 99.84 17 | 99.93 67 | 99.96 74 |
|
PHI-MVS | | | 98.41 50 | 98.21 50 | 99.03 78 | 99.86 59 | 97.10 116 | 99.98 10 | 98.80 51 | 90.78 236 | 99.62 43 | 99.78 69 | 95.30 49 | 100.00 1 | 99.80 22 | 99.93 67 | 99.99 24 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 85 | 98.98 11 | 93.92 273 | 99.63 93 | 81.76 350 | 99.96 25 | 98.56 78 | 99.47 1 | 99.19 80 | 99.99 1 | 94.16 90 | 100.00 1 | 99.92 12 | 99.93 67 | 100.00 1 |
|
test1172 | | | 98.38 54 | 98.25 48 | 98.77 93 | 99.88 54 | 96.56 134 | 99.80 124 | 98.36 151 | 94.68 99 | 99.20 77 | 99.80 60 | 93.28 113 | 99.78 115 | 99.34 46 | 99.92 71 | 99.98 55 |
|
SR-MVS-dyc-post | | | 98.31 57 | 98.17 53 | 98.71 96 | 99.79 75 | 96.37 141 | 99.76 136 | 98.31 161 | 94.43 109 | 99.40 65 | 99.75 80 | 93.28 113 | 99.78 115 | 98.90 67 | 99.92 71 | 99.97 67 |
|
RE-MVS-def | | | | 98.13 56 | | 99.79 75 | 96.37 141 | 99.76 136 | 98.31 161 | 94.43 109 | 99.40 65 | 99.75 80 | 92.95 122 | | 98.90 67 | 99.92 71 | 99.97 67 |
|
1121 | | | 98.03 70 | 97.57 80 | 99.40 44 | 99.74 82 | 98.21 70 | 98.31 296 | 98.62 68 | 92.78 170 | 99.53 50 | 99.83 51 | 95.08 53 | 100.00 1 | 94.36 185 | 99.92 71 | 99.99 24 |
|
APD-MVS_3200maxsize | | | 98.25 63 | 98.08 59 | 98.78 92 | 99.81 73 | 96.60 132 | 99.82 117 | 98.30 164 | 93.95 134 | 99.37 67 | 99.77 71 | 92.84 124 | 99.76 122 | 98.95 61 | 99.92 71 | 99.97 67 |
|
Regformer-1 | | | 98.79 25 | 98.60 24 | 99.36 48 | 99.85 60 | 98.34 66 | 99.87 92 | 98.52 91 | 96.05 56 | 99.41 61 | 99.79 64 | 94.93 63 | 99.76 122 | 99.07 53 | 99.90 76 | 99.99 24 |
|
Regformer-2 | | | 98.78 26 | 98.59 25 | 99.36 48 | 99.85 60 | 98.32 67 | 99.87 92 | 98.52 91 | 96.04 57 | 99.41 61 | 99.79 64 | 94.92 64 | 99.76 122 | 99.05 54 | 99.90 76 | 99.98 55 |
|
MP-MVS-pluss | | | 98.07 69 | 97.64 75 | 99.38 47 | 99.74 82 | 98.41 64 | 99.74 142 | 98.18 181 | 93.35 153 | 96.45 165 | 99.85 35 | 92.64 130 | 99.97 55 | 98.91 66 | 99.89 78 | 99.77 108 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM | | | 98.60 34 | 98.42 32 | 99.14 66 | 96.05 258 | 98.96 24 | 99.90 78 | 99.35 24 | 96.68 38 | 98.35 118 | 99.66 100 | 96.45 28 | 98.51 192 | 99.45 41 | 99.89 78 | 99.96 74 |
|
zzz-MVS | | | 98.33 56 | 98.00 63 | 99.30 50 | 99.85 60 | 97.93 82 | 99.80 124 | 98.28 166 | 95.76 65 | 97.18 146 | 99.88 24 | 92.74 127 | 100.00 1 | 98.67 82 | 99.88 80 | 99.99 24 |
|
MTAPA | | | 98.29 59 | 97.96 68 | 99.30 50 | 99.85 60 | 97.93 82 | 99.39 202 | 98.28 166 | 95.76 65 | 97.18 146 | 99.88 24 | 92.74 127 | 100.00 1 | 98.67 82 | 99.88 80 | 99.99 24 |
|
MVS | | | 96.60 127 | 95.56 146 | 99.72 12 | 96.85 241 | 99.22 19 | 98.31 296 | 98.94 37 | 91.57 215 | 90.90 230 | 99.61 104 | 86.66 210 | 99.96 57 | 97.36 130 | 99.88 80 | 99.99 24 |
|
MVS_111021_LR | | | 98.42 49 | 98.38 39 | 98.53 115 | 99.39 108 | 95.79 162 | 99.87 92 | 99.86 2 | 96.70 37 | 98.78 96 | 99.79 64 | 92.03 144 | 99.90 79 | 99.17 50 | 99.86 83 | 99.88 96 |
|
ACMMP_NAP | | | 98.49 44 | 98.14 55 | 99.54 26 | 99.66 92 | 98.62 54 | 99.85 106 | 98.37 149 | 94.68 99 | 99.53 50 | 99.83 51 | 92.87 123 | 100.00 1 | 98.66 85 | 99.84 84 | 99.99 24 |
|
Regformer-3 | | | 98.58 37 | 98.41 34 | 99.10 72 | 99.84 65 | 97.57 93 | 99.66 158 | 98.52 91 | 95.79 62 | 99.01 87 | 99.77 71 | 94.40 74 | 99.75 125 | 98.82 72 | 99.83 85 | 99.98 55 |
|
Regformer-4 | | | 98.56 38 | 98.39 38 | 99.08 74 | 99.84 65 | 97.52 96 | 99.66 158 | 98.52 91 | 95.76 65 | 99.01 87 | 99.77 71 | 94.33 82 | 99.75 125 | 98.80 75 | 99.83 85 | 99.98 55 |
|
QAPM | | | 95.40 160 | 94.17 176 | 99.10 72 | 96.92 235 | 97.71 87 | 99.40 198 | 98.68 57 | 89.31 254 | 88.94 268 | 98.89 167 | 82.48 241 | 99.96 57 | 93.12 215 | 99.83 85 | 99.62 132 |
|
PAPR | | | 98.52 42 | 98.16 54 | 99.58 23 | 99.97 3 | 98.77 40 | 99.95 43 | 98.43 119 | 95.35 77 | 98.03 128 | 99.75 80 | 94.03 93 | 99.98 46 | 98.11 104 | 99.83 85 | 99.99 24 |
|
3Dnovator+ | | 91.53 11 | 96.31 137 | 95.24 153 | 99.52 29 | 96.88 240 | 98.64 53 | 99.72 150 | 98.24 172 | 95.27 80 | 88.42 279 | 98.98 154 | 82.76 240 | 99.94 72 | 97.10 137 | 99.83 85 | 99.96 74 |
|
3Dnovator | | 91.47 12 | 96.28 140 | 95.34 151 | 99.08 74 | 96.82 243 | 97.47 102 | 99.45 194 | 98.81 49 | 95.52 74 | 89.39 256 | 99.00 151 | 81.97 244 | 99.95 64 | 97.27 132 | 99.83 85 | 99.84 99 |
|
LS3D | | | 95.84 148 | 95.11 158 | 98.02 140 | 99.85 60 | 95.10 185 | 98.74 273 | 98.50 102 | 87.22 289 | 93.66 206 | 99.86 31 | 87.45 202 | 99.95 64 | 90.94 241 | 99.81 91 | 99.02 197 |
|
CHOSEN 280x420 | | | 99.01 13 | 99.03 9 | 98.95 86 | 99.38 109 | 98.87 31 | 98.46 289 | 99.42 21 | 97.03 27 | 99.02 86 | 99.09 143 | 99.35 1 | 98.21 224 | 99.73 31 | 99.78 92 | 99.77 108 |
|
GST-MVS | | | 98.27 60 | 97.97 65 | 99.17 60 | 99.92 36 | 97.57 93 | 99.93 66 | 98.39 142 | 94.04 130 | 98.80 95 | 99.74 84 | 92.98 121 | 100.00 1 | 98.16 101 | 99.76 93 | 99.93 85 |
|
OpenMVS |  | 90.15 15 | 94.77 173 | 93.59 190 | 98.33 127 | 96.07 257 | 97.48 101 | 99.56 176 | 98.57 76 | 90.46 239 | 86.51 303 | 98.95 162 | 78.57 278 | 99.94 72 | 93.86 194 | 99.74 94 | 97.57 226 |
|
1314 | | | 96.84 115 | 95.96 134 | 99.48 36 | 96.74 248 | 98.52 59 | 98.31 296 | 98.86 46 | 95.82 61 | 89.91 242 | 98.98 154 | 87.49 201 | 99.96 57 | 97.80 117 | 99.73 95 | 99.96 74 |
|
abl_6 | | | 97.67 86 | 97.34 88 | 98.66 100 | 99.68 91 | 96.11 155 | 99.68 155 | 98.14 188 | 93.80 141 | 99.27 75 | 99.70 91 | 88.65 194 | 99.98 46 | 97.46 128 | 99.72 96 | 99.89 94 |
|
DP-MVS Recon | | | 98.41 50 | 98.02 62 | 99.56 24 | 99.97 3 | 98.70 47 | 99.92 70 | 98.44 111 | 92.06 202 | 98.40 116 | 99.84 48 | 95.68 41 | 100.00 1 | 98.19 99 | 99.71 97 | 99.97 67 |
|
MVP-Stereo | | | 90.93 256 | 90.45 251 | 92.37 302 | 91.25 342 | 88.76 307 | 98.05 309 | 96.17 332 | 87.27 288 | 84.04 321 | 95.30 293 | 78.46 280 | 97.27 267 | 83.78 310 | 99.70 98 | 91.09 345 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PS-MVSNAJ | | | 98.44 48 | 98.20 51 | 99.16 62 | 98.80 140 | 98.92 27 | 99.54 180 | 98.17 182 | 97.34 16 | 99.85 6 | 99.85 35 | 91.20 156 | 99.89 83 | 99.41 44 | 99.67 99 | 98.69 210 |
|
BH-w/o | | | 95.71 152 | 95.38 150 | 96.68 187 | 98.49 154 | 92.28 247 | 99.84 110 | 97.50 245 | 92.12 199 | 92.06 221 | 98.79 177 | 84.69 227 | 98.67 185 | 95.29 161 | 99.66 100 | 99.09 195 |
|
MAR-MVS | | | 97.43 92 | 97.19 93 | 98.15 135 | 99.47 105 | 94.79 194 | 99.05 241 | 98.76 52 | 92.65 178 | 98.66 104 | 99.82 55 | 88.52 195 | 99.98 46 | 98.12 103 | 99.63 101 | 99.67 120 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MS-PatchMatch | | | 90.65 263 | 90.30 254 | 91.71 310 | 94.22 297 | 85.50 331 | 98.24 300 | 97.70 221 | 88.67 269 | 86.42 306 | 96.37 255 | 67.82 334 | 98.03 233 | 83.62 311 | 99.62 102 | 91.60 342 |
|
MVSFormer | | | 96.94 111 | 96.60 112 | 97.95 141 | 97.28 224 | 97.70 89 | 99.55 178 | 97.27 268 | 91.17 225 | 99.43 59 | 99.54 110 | 90.92 163 | 96.89 289 | 94.67 179 | 99.62 102 | 99.25 184 |
|
lupinMVS | | | 97.85 76 | 97.60 78 | 98.62 103 | 97.28 224 | 97.70 89 | 99.99 5 | 97.55 236 | 95.50 75 | 99.43 59 | 99.67 98 | 90.92 163 | 98.71 182 | 98.40 93 | 99.62 102 | 99.45 163 |
|
BH-untuned | | | 95.18 163 | 94.83 164 | 96.22 202 | 98.36 158 | 91.22 273 | 99.80 124 | 97.32 264 | 90.91 232 | 91.08 228 | 98.67 181 | 83.51 235 | 98.54 191 | 94.23 190 | 99.61 105 | 98.92 199 |
|
DeepC-MVS | | 94.51 4 | 96.92 113 | 96.40 119 | 98.45 120 | 99.16 115 | 95.90 159 | 99.66 158 | 98.06 194 | 96.37 50 | 94.37 197 | 99.49 113 | 83.29 238 | 99.90 79 | 97.63 125 | 99.61 105 | 99.55 147 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
GG-mvs-BLEND | | | | | 98.54 113 | 98.21 168 | 98.01 77 | 93.87 349 | 98.52 91 | | 97.92 131 | 97.92 211 | 99.02 2 | 97.94 240 | 98.17 100 | 99.58 107 | 99.67 120 |
|
gg-mvs-nofinetune | | | 93.51 205 | 91.86 229 | 98.47 118 | 97.72 200 | 97.96 81 | 92.62 353 | 98.51 98 | 74.70 356 | 97.33 143 | 69.59 367 | 98.91 3 | 97.79 243 | 97.77 122 | 99.56 108 | 99.67 120 |
|
BH-RMVSNet | | | 95.18 163 | 94.31 174 | 97.80 145 | 98.17 171 | 95.23 182 | 99.76 136 | 97.53 240 | 92.52 187 | 94.27 199 | 99.25 135 | 76.84 287 | 98.80 173 | 90.89 243 | 99.54 109 | 99.35 175 |
|
EI-MVSNet-Vis-set | | | 98.27 60 | 98.11 58 | 98.75 95 | 99.83 68 | 96.59 133 | 99.40 198 | 98.51 98 | 95.29 79 | 98.51 110 | 99.76 75 | 93.60 105 | 99.71 133 | 98.53 90 | 99.52 110 | 99.95 82 |
|
TAPA-MVS | | 92.12 8 | 94.42 185 | 93.60 189 | 96.90 180 | 99.33 111 | 91.78 260 | 99.78 128 | 98.00 197 | 89.89 250 | 94.52 194 | 99.47 114 | 91.97 145 | 99.18 161 | 69.90 353 | 99.52 110 | 99.73 112 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PLC |  | 95.54 3 | 97.93 73 | 97.89 70 | 98.05 139 | 99.82 70 | 94.77 195 | 99.92 70 | 98.46 106 | 93.93 135 | 97.20 145 | 99.27 131 | 95.44 47 | 99.97 55 | 97.41 129 | 99.51 112 | 99.41 168 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
jason | | | 97.24 102 | 96.86 104 | 98.38 126 | 95.73 270 | 97.32 108 | 99.97 18 | 97.40 257 | 95.34 78 | 98.60 108 | 99.54 110 | 87.70 199 | 98.56 189 | 97.94 114 | 99.47 113 | 99.25 184 |
jason: jason. |
CSCG | | | 97.10 106 | 97.04 100 | 97.27 172 | 99.89 50 | 91.92 256 | 99.90 78 | 99.07 32 | 88.67 269 | 95.26 188 | 99.82 55 | 93.17 118 | 99.98 46 | 98.15 102 | 99.47 113 | 99.90 93 |
|
CNLPA | | | 97.76 82 | 97.38 85 | 98.92 88 | 99.53 100 | 96.84 124 | 99.87 92 | 98.14 188 | 93.78 142 | 96.55 163 | 99.69 94 | 92.28 139 | 99.98 46 | 97.13 135 | 99.44 115 | 99.93 85 |
|
AdaColmap |  | | 97.23 103 | 96.80 107 | 98.51 116 | 99.99 1 | 95.60 171 | 99.09 230 | 98.84 48 | 93.32 154 | 96.74 157 | 99.72 87 | 86.04 215 | 100.00 1 | 98.01 109 | 99.43 116 | 99.94 84 |
|
CANet | | | 98.27 60 | 97.82 71 | 99.63 15 | 99.72 88 | 99.10 21 | 99.98 10 | 98.51 98 | 97.00 28 | 98.52 109 | 99.71 89 | 87.80 198 | 99.95 64 | 99.75 26 | 99.38 117 | 99.83 100 |
|
F-COLMAP | | | 96.93 112 | 96.95 103 | 96.87 181 | 99.71 89 | 91.74 261 | 99.85 106 | 97.95 203 | 93.11 161 | 95.72 181 | 99.16 141 | 92.35 137 | 99.94 72 | 95.32 160 | 99.35 118 | 98.92 199 |
|
EI-MVSNet-UG-set | | | 98.14 66 | 97.99 64 | 98.60 105 | 99.80 74 | 96.27 143 | 99.36 207 | 98.50 102 | 95.21 81 | 98.30 120 | 99.75 80 | 93.29 112 | 99.73 132 | 98.37 94 | 99.30 119 | 99.81 102 |
|
PVSNet_Blended | | | 97.94 72 | 97.64 75 | 98.83 91 | 99.59 95 | 96.99 119 | 100.00 1 | 99.10 29 | 95.38 76 | 98.27 121 | 99.08 144 | 89.00 189 | 99.95 64 | 99.12 51 | 99.25 120 | 99.57 145 |
|
CS-MVS | | | 97.74 83 | 97.61 77 | 98.15 135 | 97.52 211 | 96.69 128 | 100.00 1 | 97.11 282 | 94.93 86 | 99.73 29 | 99.41 120 | 91.68 150 | 98.25 222 | 98.84 71 | 99.24 121 | 99.52 154 |
|
DROMVSNet | | | 97.38 98 | 97.24 91 | 97.80 145 | 97.41 214 | 95.64 170 | 99.99 5 | 97.06 287 | 94.59 103 | 99.63 40 | 99.32 127 | 89.20 187 | 98.14 226 | 98.76 78 | 99.23 122 | 99.62 132 |
|
PatchMatch-RL | | | 96.04 144 | 95.40 148 | 97.95 141 | 99.59 95 | 95.22 183 | 99.52 182 | 99.07 32 | 93.96 133 | 96.49 164 | 98.35 199 | 82.28 242 | 99.82 109 | 90.15 255 | 99.22 123 | 98.81 206 |
|
CHOSEN 1792x2688 | | | 96.81 116 | 96.53 115 | 97.64 154 | 98.91 132 | 93.07 228 | 99.65 161 | 99.80 3 | 95.64 70 | 95.39 185 | 98.86 173 | 84.35 231 | 99.90 79 | 96.98 140 | 99.16 124 | 99.95 82 |
|
EIA-MVS | | | 97.53 89 | 97.46 82 | 97.76 150 | 98.04 177 | 94.84 191 | 99.98 10 | 97.61 230 | 94.41 112 | 97.90 132 | 99.59 105 | 92.40 136 | 98.87 170 | 98.04 108 | 99.13 125 | 99.59 138 |
|
UGNet | | | 95.33 161 | 94.57 169 | 97.62 156 | 98.55 150 | 94.85 190 | 98.67 280 | 99.32 25 | 95.75 68 | 96.80 156 | 96.27 258 | 72.18 317 | 99.96 57 | 94.58 181 | 99.05 126 | 98.04 217 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CS-MVS-test | | | 97.44 91 | 97.41 84 | 97.53 157 | 97.46 213 | 94.66 197 | 100.00 1 | 97.04 291 | 94.69 98 | 99.72 33 | 99.25 135 | 91.22 154 | 98.29 214 | 98.33 97 | 98.95 127 | 99.64 126 |
|
CANet_DTU | | | 96.76 119 | 96.15 123 | 98.60 105 | 98.78 141 | 97.53 95 | 99.84 110 | 97.63 225 | 97.25 23 | 99.20 77 | 99.64 102 | 81.36 252 | 99.98 46 | 92.77 218 | 98.89 128 | 98.28 213 |
|
TESTMET0.1,1 | | | 96.74 121 | 96.26 121 | 98.16 132 | 97.36 217 | 96.48 135 | 99.96 25 | 98.29 165 | 91.93 204 | 95.77 180 | 98.07 205 | 95.54 43 | 98.29 214 | 90.55 247 | 98.89 128 | 99.70 115 |
|
test-LLR | | | 96.47 130 | 96.04 125 | 97.78 147 | 97.02 232 | 95.44 173 | 99.96 25 | 98.21 176 | 94.07 126 | 95.55 182 | 96.38 253 | 93.90 97 | 98.27 219 | 90.42 250 | 98.83 130 | 99.64 126 |
|
test-mter | | | 96.39 134 | 95.93 136 | 97.78 147 | 97.02 232 | 95.44 173 | 99.96 25 | 98.21 176 | 91.81 209 | 95.55 182 | 96.38 253 | 95.17 50 | 98.27 219 | 90.42 250 | 98.83 130 | 99.64 126 |
|
PVSNet | | 91.05 13 | 97.13 105 | 96.69 110 | 98.45 120 | 99.52 101 | 95.81 161 | 99.95 43 | 99.65 11 | 94.73 96 | 99.04 85 | 99.21 139 | 84.48 229 | 99.95 64 | 94.92 167 | 98.74 132 | 99.58 144 |
|
EPNet | | | 98.49 44 | 98.40 36 | 98.77 93 | 99.62 94 | 96.80 126 | 99.90 78 | 99.51 16 | 97.60 12 | 99.20 77 | 99.36 126 | 93.71 102 | 99.91 78 | 97.99 111 | 98.71 133 | 99.61 135 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v2_base | | | 98.23 64 | 97.97 65 | 99.02 80 | 98.69 144 | 98.66 50 | 99.52 182 | 98.08 193 | 97.05 26 | 99.86 4 | 99.86 31 | 90.65 167 | 99.71 133 | 99.39 45 | 98.63 134 | 98.69 210 |
|
ETV-MVS | | | 97.92 74 | 97.80 72 | 98.25 130 | 98.14 173 | 96.48 135 | 99.98 10 | 97.63 225 | 95.61 71 | 99.29 74 | 99.46 116 | 92.55 132 | 98.82 172 | 99.02 60 | 98.54 135 | 99.46 161 |
|
Vis-MVSNet |  | | 95.72 150 | 95.15 157 | 97.45 162 | 97.62 204 | 94.28 203 | 99.28 218 | 98.24 172 | 94.27 120 | 96.84 154 | 98.94 164 | 79.39 271 | 98.76 178 | 93.25 209 | 98.49 136 | 99.30 180 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PCF-MVS | | 94.20 5 | 95.18 163 | 94.10 178 | 98.43 122 | 98.55 150 | 95.99 157 | 97.91 312 | 97.31 265 | 90.35 242 | 89.48 255 | 99.22 138 | 85.19 224 | 99.89 83 | 90.40 252 | 98.47 137 | 99.41 168 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
MSDG | | | 94.37 187 | 93.36 200 | 97.40 165 | 98.88 135 | 93.95 210 | 99.37 205 | 97.38 258 | 85.75 310 | 90.80 231 | 99.17 140 | 84.11 233 | 99.88 89 | 86.35 293 | 98.43 138 | 98.36 212 |
|
PVSNet_Blended_VisFu | | | 97.27 101 | 96.81 106 | 98.66 100 | 98.81 139 | 96.67 129 | 99.92 70 | 98.64 64 | 94.51 106 | 96.38 169 | 98.49 192 | 89.05 188 | 99.88 89 | 97.10 137 | 98.34 139 | 99.43 166 |
|
EPNet_dtu | | | 95.71 152 | 95.39 149 | 96.66 188 | 98.92 130 | 93.41 223 | 99.57 174 | 98.90 42 | 96.19 54 | 97.52 139 | 98.56 190 | 92.65 129 | 97.36 257 | 77.89 337 | 98.33 140 | 99.20 187 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
xiu_mvs_v1_base_debu | | | 97.43 92 | 97.06 97 | 98.55 110 | 97.74 196 | 98.14 71 | 99.31 212 | 97.86 213 | 96.43 44 | 99.62 43 | 99.69 94 | 85.56 219 | 99.68 137 | 99.05 54 | 98.31 141 | 97.83 219 |
|
xiu_mvs_v1_base | | | 97.43 92 | 97.06 97 | 98.55 110 | 97.74 196 | 98.14 71 | 99.31 212 | 97.86 213 | 96.43 44 | 99.62 43 | 99.69 94 | 85.56 219 | 99.68 137 | 99.05 54 | 98.31 141 | 97.83 219 |
|
xiu_mvs_v1_base_debi | | | 97.43 92 | 97.06 97 | 98.55 110 | 97.74 196 | 98.14 71 | 99.31 212 | 97.86 213 | 96.43 44 | 99.62 43 | 99.69 94 | 85.56 219 | 99.68 137 | 99.05 54 | 98.31 141 | 97.83 219 |
|
OMC-MVS | | | 97.28 100 | 97.23 92 | 97.41 164 | 99.76 79 | 93.36 226 | 99.65 161 | 97.95 203 | 96.03 58 | 97.41 142 | 99.70 91 | 89.61 178 | 99.51 147 | 96.73 146 | 98.25 144 | 99.38 170 |
|
test2506 | | | 97.53 89 | 97.19 93 | 98.58 108 | 98.66 146 | 96.90 123 | 98.81 268 | 99.77 5 | 94.93 86 | 97.95 130 | 98.96 158 | 92.51 133 | 99.20 159 | 94.93 166 | 98.15 145 | 99.64 126 |
|
ECVR-MVS |  | | 95.66 154 | 95.05 159 | 97.51 160 | 98.66 146 | 93.71 215 | 98.85 265 | 98.45 108 | 94.93 86 | 96.86 153 | 98.96 158 | 75.22 303 | 99.20 159 | 95.34 159 | 98.15 145 | 99.64 126 |
|
test1111 | | | 95.57 156 | 94.98 161 | 97.37 167 | 98.56 148 | 93.37 225 | 98.86 262 | 98.45 108 | 94.95 85 | 96.63 159 | 98.95 162 | 75.21 304 | 99.11 163 | 95.02 164 | 98.14 147 | 99.64 126 |
|
mvs-test1 | | | 95.53 157 | 95.97 132 | 94.20 261 | 97.77 193 | 85.44 332 | 99.95 43 | 97.06 287 | 94.92 89 | 96.58 161 | 98.72 179 | 85.81 216 | 98.98 167 | 94.80 172 | 98.11 148 | 98.18 214 |
|
DP-MVS | | | 94.54 181 | 93.42 196 | 97.91 144 | 99.46 107 | 94.04 206 | 98.93 253 | 97.48 247 | 81.15 339 | 90.04 239 | 99.55 108 | 87.02 207 | 99.95 64 | 88.97 264 | 98.11 148 | 99.73 112 |
|
EPMVS | | | 96.53 129 | 96.01 126 | 98.09 137 | 98.43 156 | 96.12 154 | 96.36 333 | 99.43 20 | 93.53 149 | 97.64 137 | 95.04 302 | 94.41 73 | 98.38 208 | 91.13 234 | 98.11 148 | 99.75 110 |
|
PatchmatchNet |  | | 95.94 146 | 95.45 147 | 97.39 166 | 97.83 189 | 94.41 201 | 96.05 339 | 98.40 139 | 92.86 164 | 97.09 148 | 95.28 297 | 94.21 89 | 98.07 231 | 89.26 262 | 98.11 148 | 99.70 115 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
baseline2 | | | 96.71 123 | 96.49 116 | 97.37 167 | 95.63 277 | 95.96 158 | 99.74 142 | 98.88 44 | 92.94 163 | 91.61 223 | 98.97 156 | 97.72 5 | 98.62 187 | 94.83 171 | 98.08 152 | 97.53 227 |
|
ACMMP |  | | 97.74 83 | 97.44 83 | 98.66 100 | 99.92 36 | 96.13 152 | 99.18 225 | 99.45 18 | 94.84 93 | 96.41 168 | 99.71 89 | 91.40 152 | 99.99 40 | 97.99 111 | 98.03 153 | 99.87 97 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MVS-HIRNet | | | 86.22 305 | 83.19 317 | 95.31 221 | 96.71 250 | 90.29 289 | 92.12 355 | 97.33 263 | 62.85 362 | 86.82 298 | 70.37 366 | 69.37 327 | 97.49 252 | 75.12 346 | 97.99 154 | 98.15 215 |
|
PMMVS | | | 96.76 119 | 96.76 108 | 96.76 184 | 98.28 162 | 92.10 251 | 99.91 74 | 97.98 200 | 94.12 123 | 99.53 50 | 99.39 123 | 86.93 208 | 98.73 180 | 96.95 142 | 97.73 155 | 99.45 163 |
|
UA-Net | | | 96.54 128 | 95.96 134 | 98.27 129 | 98.23 167 | 95.71 167 | 98.00 310 | 98.45 108 | 93.72 145 | 98.41 114 | 99.27 131 | 88.71 193 | 99.66 141 | 91.19 233 | 97.69 156 | 99.44 165 |
|
TSAR-MVS + GP. | | | 98.60 34 | 98.51 29 | 98.86 90 | 99.73 86 | 96.63 130 | 99.97 18 | 97.92 207 | 98.07 5 | 98.76 99 | 99.55 108 | 95.00 60 | 99.94 72 | 99.91 15 | 97.68 157 | 99.99 24 |
|
mvs_anonymous | | | 95.65 155 | 95.03 160 | 97.53 157 | 98.19 169 | 95.74 165 | 99.33 209 | 97.49 246 | 90.87 233 | 90.47 235 | 97.10 228 | 88.23 196 | 97.16 270 | 95.92 154 | 97.66 158 | 99.68 118 |
|
LCM-MVSNet-Re | | | 92.31 231 | 92.60 211 | 91.43 311 | 97.53 207 | 79.27 360 | 99.02 244 | 91.83 367 | 92.07 200 | 80.31 339 | 94.38 323 | 83.50 236 | 95.48 330 | 97.22 134 | 97.58 159 | 99.54 151 |
|
MVS_Test | | | 96.46 131 | 95.74 142 | 98.61 104 | 98.18 170 | 97.23 110 | 99.31 212 | 97.15 278 | 91.07 229 | 98.84 93 | 97.05 232 | 88.17 197 | 98.97 168 | 94.39 184 | 97.50 160 | 99.61 135 |
|
SCA | | | 94.69 175 | 93.81 186 | 97.33 171 | 97.10 227 | 94.44 199 | 98.86 262 | 98.32 159 | 93.30 155 | 96.17 173 | 95.59 276 | 76.48 291 | 97.95 238 | 91.06 236 | 97.43 161 | 99.59 138 |
|
Vis-MVSNet (Re-imp) | | | 96.32 136 | 95.98 129 | 97.35 170 | 97.93 182 | 94.82 192 | 99.47 191 | 98.15 187 | 91.83 207 | 95.09 189 | 99.11 142 | 91.37 153 | 97.47 254 | 93.47 207 | 97.43 161 | 99.74 111 |
|
diffmvs | | | 97.00 109 | 96.64 111 | 98.09 137 | 97.64 203 | 96.17 151 | 99.81 119 | 97.19 272 | 94.67 101 | 98.95 90 | 99.28 128 | 86.43 212 | 98.76 178 | 98.37 94 | 97.42 163 | 99.33 177 |
|
IS-MVSNet | | | 96.29 139 | 95.90 138 | 97.45 162 | 98.13 174 | 94.80 193 | 99.08 232 | 97.61 230 | 92.02 203 | 95.54 184 | 98.96 158 | 90.64 168 | 98.08 229 | 93.73 203 | 97.41 164 | 99.47 160 |
|
Effi-MVS+ | | | 96.30 138 | 95.69 143 | 98.16 132 | 97.85 188 | 96.26 144 | 97.41 318 | 97.21 271 | 90.37 241 | 98.65 105 | 98.58 188 | 86.61 211 | 98.70 183 | 97.11 136 | 97.37 165 | 99.52 154 |
|
DWT-MVSNet_test | | | 97.31 99 | 97.19 93 | 97.66 153 | 98.24 166 | 94.67 196 | 98.86 262 | 98.20 180 | 93.60 148 | 98.09 126 | 98.89 167 | 97.51 7 | 98.78 175 | 94.04 192 | 97.28 166 | 99.55 147 |
|
ADS-MVSNet2 | | | 93.80 198 | 93.88 184 | 93.55 285 | 97.87 186 | 85.94 328 | 94.24 345 | 96.84 310 | 90.07 246 | 96.43 166 | 94.48 320 | 90.29 172 | 95.37 332 | 87.44 280 | 97.23 167 | 99.36 173 |
|
ADS-MVSNet | | | 94.79 171 | 94.02 180 | 97.11 176 | 97.87 186 | 93.79 212 | 94.24 345 | 98.16 185 | 90.07 246 | 96.43 166 | 94.48 320 | 90.29 172 | 98.19 225 | 87.44 280 | 97.23 167 | 99.36 173 |
|
EPP-MVSNet | | | 96.69 124 | 96.60 112 | 96.96 178 | 97.74 196 | 93.05 230 | 99.37 205 | 98.56 78 | 88.75 267 | 95.83 179 | 99.01 149 | 96.01 31 | 98.56 189 | 96.92 143 | 97.20 169 | 99.25 184 |
|
Fast-Effi-MVS+ | | | 95.02 167 | 94.19 175 | 97.52 159 | 97.88 184 | 94.55 198 | 99.97 18 | 97.08 285 | 88.85 266 | 94.47 196 | 97.96 210 | 84.59 228 | 98.41 200 | 89.84 258 | 97.10 170 | 99.59 138 |
|
Effi-MVS+-dtu | | | 94.53 183 | 95.30 152 | 92.22 303 | 97.77 193 | 82.54 343 | 99.59 171 | 97.06 287 | 94.92 89 | 95.29 187 | 95.37 290 | 85.81 216 | 97.89 241 | 94.80 172 | 97.07 171 | 96.23 234 |
|
casdiffmvs | | | 96.42 133 | 95.97 132 | 97.77 149 | 97.30 222 | 94.98 187 | 99.84 110 | 97.09 284 | 93.75 144 | 96.58 161 | 99.26 134 | 85.07 225 | 98.78 175 | 97.77 122 | 97.04 172 | 99.54 151 |
|
sss | | | 97.57 88 | 97.03 101 | 99.18 57 | 98.37 157 | 98.04 76 | 99.73 147 | 99.38 22 | 93.46 151 | 98.76 99 | 99.06 145 | 91.21 155 | 99.89 83 | 96.33 148 | 97.01 173 | 99.62 132 |
|
Patchmatch-test | | | 92.65 225 | 91.50 235 | 96.10 205 | 96.85 241 | 90.49 285 | 91.50 358 | 97.19 272 | 82.76 334 | 90.23 236 | 95.59 276 | 95.02 57 | 98.00 234 | 77.41 339 | 96.98 174 | 99.82 101 |
|
MDTV_nov1_ep13 | | | | 95.69 143 | | 97.90 183 | 94.15 204 | 95.98 340 | 98.44 111 | 93.12 160 | 97.98 129 | 95.74 269 | 95.10 52 | 98.58 188 | 90.02 256 | 96.92 175 | |
|
Fast-Effi-MVS+-dtu | | | 93.72 202 | 93.86 185 | 93.29 288 | 97.06 229 | 86.16 326 | 99.80 124 | 96.83 311 | 92.66 177 | 92.58 219 | 97.83 212 | 81.39 251 | 97.67 247 | 89.75 259 | 96.87 176 | 96.05 236 |
|
baseline | | | 96.43 132 | 95.98 129 | 97.76 150 | 97.34 218 | 95.17 184 | 99.51 184 | 97.17 275 | 93.92 136 | 96.90 152 | 99.28 128 | 85.37 222 | 98.64 186 | 97.50 127 | 96.86 177 | 99.46 161 |
|
tpmrst | | | 96.27 141 | 95.98 129 | 97.13 174 | 97.96 180 | 93.15 227 | 96.34 334 | 98.17 182 | 92.07 200 | 98.71 102 | 95.12 300 | 93.91 96 | 98.73 180 | 94.91 169 | 96.62 178 | 99.50 158 |
|
JIA-IIPM | | | 91.76 246 | 90.70 246 | 94.94 232 | 96.11 256 | 87.51 321 | 93.16 352 | 98.13 190 | 75.79 353 | 97.58 138 | 77.68 364 | 92.84 124 | 97.97 235 | 88.47 270 | 96.54 179 | 99.33 177 |
|
dp | | | 95.05 166 | 94.43 171 | 96.91 179 | 97.99 179 | 92.73 237 | 96.29 335 | 97.98 200 | 89.70 252 | 95.93 176 | 94.67 315 | 93.83 100 | 98.45 197 | 86.91 292 | 96.53 180 | 99.54 151 |
|
COLMAP_ROB |  | 90.47 14 | 92.18 234 | 91.49 236 | 94.25 260 | 99.00 122 | 88.04 319 | 98.42 294 | 96.70 320 | 82.30 336 | 88.43 277 | 99.01 149 | 76.97 285 | 99.85 98 | 86.11 296 | 96.50 181 | 94.86 237 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
GeoE | | | 94.36 189 | 93.48 194 | 96.99 177 | 97.29 223 | 93.54 219 | 99.96 25 | 96.72 319 | 88.35 276 | 93.43 207 | 98.94 164 | 82.05 243 | 98.05 232 | 88.12 275 | 96.48 182 | 99.37 172 |
|
tpm cat1 | | | 93.51 205 | 92.52 216 | 96.47 192 | 97.77 193 | 91.47 271 | 96.13 337 | 98.06 194 | 80.98 340 | 92.91 215 | 93.78 328 | 89.66 177 | 98.87 170 | 87.03 288 | 96.39 183 | 99.09 195 |
|
thisisatest0515 | | | 97.41 96 | 97.02 102 | 98.59 107 | 97.71 202 | 97.52 96 | 99.97 18 | 98.54 88 | 91.83 207 | 97.45 141 | 99.04 146 | 97.50 8 | 99.10 164 | 94.75 175 | 96.37 184 | 99.16 189 |
|
AllTest | | | 92.48 227 | 91.64 230 | 95.00 230 | 99.01 120 | 88.43 313 | 98.94 252 | 96.82 313 | 86.50 298 | 88.71 270 | 98.47 196 | 74.73 307 | 99.88 89 | 85.39 299 | 96.18 185 | 96.71 230 |
|
TestCases | | | | | 95.00 230 | 99.01 120 | 88.43 313 | | 96.82 313 | 86.50 298 | 88.71 270 | 98.47 196 | 74.73 307 | 99.88 89 | 85.39 299 | 96.18 185 | 96.71 230 |
|
thisisatest0530 | | | 97.10 106 | 96.72 109 | 98.22 131 | 97.60 205 | 96.70 127 | 99.92 70 | 98.54 88 | 91.11 228 | 97.07 149 | 98.97 156 | 97.47 11 | 99.03 165 | 93.73 203 | 96.09 187 | 98.92 199 |
|
DSMNet-mixed | | | 88.28 297 | 88.24 292 | 88.42 334 | 89.64 353 | 75.38 362 | 98.06 308 | 89.86 370 | 85.59 312 | 88.20 282 | 92.14 344 | 76.15 296 | 91.95 358 | 78.46 335 | 96.05 188 | 97.92 218 |
|
TR-MVS | | | 94.54 181 | 93.56 192 | 97.49 161 | 97.96 180 | 94.34 202 | 98.71 276 | 97.51 244 | 90.30 244 | 94.51 195 | 98.69 180 | 75.56 298 | 98.77 177 | 92.82 217 | 95.99 189 | 99.35 175 |
|
CR-MVSNet | | | 93.45 208 | 92.62 210 | 95.94 208 | 96.29 253 | 92.66 239 | 92.01 356 | 96.23 330 | 92.62 179 | 96.94 150 | 93.31 333 | 91.04 160 | 96.03 324 | 79.23 330 | 95.96 190 | 99.13 193 |
|
RPMNet | | | 89.76 284 | 87.28 299 | 97.19 173 | 96.29 253 | 92.66 239 | 92.01 356 | 98.31 161 | 70.19 361 | 96.94 150 | 85.87 360 | 87.25 204 | 99.78 115 | 62.69 363 | 95.96 190 | 99.13 193 |
|
PatchT | | | 90.38 270 | 88.75 284 | 95.25 224 | 95.99 260 | 90.16 291 | 91.22 360 | 97.54 238 | 76.80 349 | 97.26 144 | 86.01 359 | 91.88 146 | 96.07 323 | 66.16 360 | 95.91 192 | 99.51 156 |
|
tpmvs | | | 94.28 191 | 93.57 191 | 96.40 197 | 98.55 150 | 91.50 270 | 95.70 344 | 98.55 84 | 87.47 284 | 92.15 220 | 94.26 324 | 91.42 151 | 98.95 169 | 88.15 273 | 95.85 193 | 98.76 208 |
|
TAMVS | | | 95.85 147 | 95.58 145 | 96.65 189 | 97.07 228 | 93.50 220 | 99.17 226 | 97.82 217 | 91.39 224 | 95.02 190 | 98.01 206 | 92.20 140 | 97.30 262 | 93.75 202 | 95.83 194 | 99.14 192 |
|
CostFormer | | | 96.10 142 | 95.88 139 | 96.78 183 | 97.03 231 | 92.55 243 | 97.08 325 | 97.83 216 | 90.04 248 | 98.72 101 | 94.89 309 | 95.01 59 | 98.29 214 | 96.54 147 | 95.77 195 | 99.50 158 |
|
tttt0517 | | | 96.85 114 | 96.49 116 | 97.92 143 | 97.48 212 | 95.89 160 | 99.85 106 | 98.54 88 | 90.72 237 | 96.63 159 | 98.93 166 | 97.47 11 | 99.02 166 | 93.03 216 | 95.76 196 | 98.85 203 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 96 | 99.63 15 | 98.98 123 | 99.32 8 | 97.49 317 | 99.52 14 | 95.69 69 | 98.32 119 | 97.41 219 | 93.32 110 | 99.77 119 | 98.08 107 | 95.75 197 | 99.81 102 |
|
CDS-MVSNet | | | 96.34 135 | 96.07 124 | 97.13 174 | 97.37 216 | 94.96 188 | 99.53 181 | 97.91 208 | 91.55 216 | 95.37 186 | 98.32 200 | 95.05 56 | 97.13 273 | 93.80 199 | 95.75 197 | 99.30 180 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
tpm2 | | | 95.47 159 | 95.18 156 | 96.35 200 | 96.91 236 | 91.70 265 | 96.96 328 | 97.93 205 | 88.04 279 | 98.44 113 | 95.40 286 | 93.32 110 | 97.97 235 | 94.00 193 | 95.61 199 | 99.38 170 |
|
WTY-MVS | | | 98.10 68 | 97.60 78 | 99.60 20 | 98.92 130 | 99.28 16 | 99.89 86 | 99.52 14 | 95.58 72 | 98.24 124 | 99.39 123 | 93.33 109 | 99.74 129 | 97.98 113 | 95.58 200 | 99.78 107 |
|
HyFIR lowres test | | | 96.66 126 | 96.43 118 | 97.36 169 | 99.05 118 | 93.91 211 | 99.70 152 | 99.80 3 | 90.54 238 | 96.26 171 | 98.08 204 | 92.15 142 | 98.23 223 | 96.84 145 | 95.46 201 | 99.93 85 |
|
cascas | | | 94.64 178 | 93.61 187 | 97.74 152 | 97.82 190 | 96.26 144 | 99.96 25 | 97.78 219 | 85.76 308 | 94.00 202 | 97.54 216 | 76.95 286 | 99.21 158 | 97.23 133 | 95.43 202 | 97.76 223 |
|
CVMVSNet | | | 94.68 177 | 94.94 162 | 93.89 275 | 96.80 244 | 86.92 324 | 99.06 237 | 98.98 35 | 94.45 107 | 94.23 200 | 99.02 147 | 85.60 218 | 95.31 334 | 90.91 242 | 95.39 203 | 99.43 166 |
|
test_yl | | | 97.83 77 | 97.37 86 | 99.21 54 | 99.18 113 | 97.98 79 | 99.64 165 | 99.27 26 | 91.43 221 | 97.88 133 | 98.99 152 | 95.84 38 | 99.84 107 | 98.82 72 | 95.32 204 | 99.79 104 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 86 | 99.21 54 | 99.18 113 | 97.98 79 | 99.64 165 | 99.27 26 | 91.43 221 | 97.88 133 | 98.99 152 | 95.84 38 | 99.84 107 | 98.82 72 | 95.32 204 | 99.79 104 |
|
LFMVS | | | 94.75 174 | 93.56 192 | 98.30 128 | 99.03 119 | 95.70 168 | 98.74 273 | 97.98 200 | 87.81 282 | 98.47 112 | 99.39 123 | 67.43 336 | 99.53 145 | 98.01 109 | 95.20 206 | 99.67 120 |
|
thres200 | | | 96.96 110 | 96.21 122 | 99.22 53 | 98.97 124 | 98.84 34 | 99.85 106 | 99.71 6 | 93.17 159 | 96.26 171 | 98.88 169 | 89.87 176 | 99.51 147 | 94.26 189 | 94.91 207 | 99.31 179 |
|
thres100view900 | | | 96.74 121 | 95.92 137 | 99.18 57 | 98.90 133 | 98.77 40 | 99.74 142 | 99.71 6 | 92.59 182 | 95.84 177 | 98.86 173 | 89.25 184 | 99.50 149 | 93.84 195 | 94.57 208 | 99.27 182 |
|
tfpn200view9 | | | 96.79 117 | 95.99 127 | 99.19 56 | 98.94 126 | 98.82 35 | 99.78 128 | 99.71 6 | 92.86 164 | 96.02 174 | 98.87 171 | 89.33 182 | 99.50 149 | 93.84 195 | 94.57 208 | 99.27 182 |
|
thres400 | | | 96.78 118 | 95.99 127 | 99.16 62 | 98.94 126 | 98.82 35 | 99.78 128 | 99.71 6 | 92.86 164 | 96.02 174 | 98.87 171 | 89.33 182 | 99.50 149 | 93.84 195 | 94.57 208 | 99.16 189 |
|
thres600view7 | | | 96.69 124 | 95.87 140 | 99.14 66 | 98.90 133 | 98.78 39 | 99.74 142 | 99.71 6 | 92.59 182 | 95.84 177 | 98.86 173 | 89.25 184 | 99.50 149 | 93.44 208 | 94.50 211 | 99.16 189 |
|
VNet | | | 97.21 104 | 96.57 114 | 99.13 71 | 98.97 124 | 97.82 85 | 99.03 243 | 99.21 28 | 94.31 117 | 99.18 81 | 98.88 169 | 86.26 214 | 99.89 83 | 98.93 63 | 94.32 212 | 99.69 117 |
|
alignmvs | | | 97.81 79 | 97.33 89 | 99.25 52 | 98.77 142 | 98.66 50 | 99.99 5 | 98.44 111 | 94.40 113 | 98.41 114 | 99.47 114 | 93.65 103 | 99.42 155 | 98.57 88 | 94.26 213 | 99.67 120 |
|
VDD-MVS | | | 93.77 199 | 92.94 205 | 96.27 201 | 98.55 150 | 90.22 290 | 98.77 272 | 97.79 218 | 90.85 234 | 96.82 155 | 99.42 118 | 61.18 354 | 99.77 119 | 98.95 61 | 94.13 214 | 98.82 205 |
|
VDDNet | | | 93.12 212 | 91.91 227 | 96.76 184 | 96.67 251 | 92.65 241 | 98.69 278 | 98.21 176 | 82.81 333 | 97.75 136 | 99.28 128 | 61.57 352 | 99.48 153 | 98.09 106 | 94.09 215 | 98.15 215 |
|
GA-MVS | | | 93.83 195 | 92.84 206 | 96.80 182 | 95.73 270 | 93.57 217 | 99.88 89 | 97.24 270 | 92.57 185 | 92.92 214 | 96.66 246 | 78.73 277 | 97.67 247 | 87.75 278 | 94.06 216 | 99.17 188 |
|
canonicalmvs | | | 97.09 108 | 96.32 120 | 99.39 46 | 98.93 128 | 98.95 25 | 99.72 150 | 97.35 260 | 94.45 107 | 97.88 133 | 99.42 118 | 86.71 209 | 99.52 146 | 98.48 91 | 93.97 217 | 99.72 114 |
|
1112_ss | | | 96.01 145 | 95.20 155 | 98.42 123 | 97.80 191 | 96.41 138 | 99.65 161 | 96.66 321 | 92.71 173 | 92.88 216 | 99.40 121 | 92.16 141 | 99.30 156 | 91.92 225 | 93.66 218 | 99.55 147 |
|
Test_1112_low_res | | | 95.72 150 | 94.83 164 | 98.42 123 | 97.79 192 | 96.41 138 | 99.65 161 | 96.65 322 | 92.70 174 | 92.86 217 | 96.13 262 | 92.15 142 | 99.30 156 | 91.88 226 | 93.64 219 | 99.55 147 |
|
MIMVSNet | | | 90.30 273 | 88.67 285 | 95.17 226 | 96.45 252 | 91.64 267 | 92.39 354 | 97.15 278 | 85.99 304 | 90.50 234 | 93.19 335 | 66.95 337 | 94.86 340 | 82.01 320 | 93.43 220 | 99.01 198 |
|
XVG-OURS-SEG-HR | | | 94.79 171 | 94.70 168 | 95.08 227 | 98.05 176 | 89.19 303 | 99.08 232 | 97.54 238 | 93.66 146 | 94.87 191 | 99.58 106 | 78.78 276 | 99.79 113 | 97.31 131 | 93.40 221 | 96.25 232 |
|
ab-mvs | | | 94.69 175 | 93.42 196 | 98.51 116 | 98.07 175 | 96.26 144 | 96.49 332 | 98.68 57 | 90.31 243 | 94.54 193 | 97.00 234 | 76.30 293 | 99.71 133 | 95.98 153 | 93.38 222 | 99.56 146 |
|
test0.0.03 1 | | | 93.86 194 | 93.61 187 | 94.64 242 | 95.02 286 | 92.18 250 | 99.93 66 | 98.58 74 | 94.07 126 | 87.96 284 | 98.50 191 | 93.90 97 | 94.96 338 | 81.33 323 | 93.17 223 | 96.78 229 |
|
RPSCF | | | 91.80 243 | 92.79 208 | 88.83 330 | 98.15 172 | 69.87 364 | 98.11 306 | 96.60 323 | 83.93 326 | 94.33 198 | 99.27 131 | 79.60 270 | 99.46 154 | 91.99 223 | 93.16 224 | 97.18 228 |
|
XVG-OURS | | | 94.82 170 | 94.74 167 | 95.06 228 | 98.00 178 | 89.19 303 | 99.08 232 | 97.55 236 | 94.10 124 | 94.71 192 | 99.62 103 | 80.51 263 | 99.74 129 | 96.04 152 | 93.06 225 | 96.25 232 |
|
MVS_0304 | | | 89.28 291 | 88.31 290 | 92.21 304 | 97.05 230 | 86.53 325 | 97.76 315 | 99.57 13 | 85.58 313 | 93.86 205 | 92.71 337 | 51.04 365 | 96.30 314 | 84.49 305 | 92.72 226 | 93.79 305 |
|
Anonymous202405211 | | | 93.10 213 | 91.99 225 | 96.40 197 | 99.10 117 | 89.65 300 | 98.88 258 | 97.93 205 | 83.71 328 | 94.00 202 | 98.75 178 | 68.79 328 | 99.88 89 | 95.08 163 | 91.71 227 | 99.68 118 |
|
Anonymous20240529 | | | 92.10 236 | 90.65 247 | 96.47 192 | 98.82 138 | 90.61 282 | 98.72 275 | 98.67 60 | 75.54 354 | 93.90 204 | 98.58 188 | 66.23 339 | 99.90 79 | 94.70 178 | 90.67 228 | 98.90 202 |
|
HQP3-MVS | | | | | | | | | 97.89 209 | | | | | | | 89.60 229 | |
|
HQP-MVS | | | 94.61 179 | 94.50 170 | 94.92 233 | 95.78 264 | 91.85 257 | 99.87 92 | 97.89 209 | 96.82 31 | 93.37 208 | 98.65 182 | 80.65 261 | 98.39 204 | 97.92 115 | 89.60 229 | 94.53 238 |
|
plane_prior | | | | | | | 91.74 261 | 99.86 103 | | 96.76 35 | | | | | | 89.59 231 | |
|
HQP_MVS | | | 94.49 184 | 94.36 172 | 94.87 234 | 95.71 273 | 91.74 261 | 99.84 110 | 97.87 211 | 96.38 47 | 93.01 212 | 98.59 186 | 80.47 265 | 98.37 209 | 97.79 120 | 89.55 232 | 94.52 240 |
|
plane_prior5 | | | | | | | | | 97.87 211 | | | | | 98.37 209 | 97.79 120 | 89.55 232 | 94.52 240 |
|
CLD-MVS | | | 94.06 193 | 93.90 183 | 94.55 247 | 96.02 259 | 90.69 279 | 99.98 10 | 97.72 220 | 96.62 41 | 91.05 229 | 98.85 176 | 77.21 283 | 98.47 193 | 98.11 104 | 89.51 234 | 94.48 242 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
OPM-MVS | | | 93.21 210 | 92.80 207 | 94.44 254 | 93.12 316 | 90.85 278 | 99.77 131 | 97.61 230 | 96.19 54 | 91.56 224 | 98.65 182 | 75.16 305 | 98.47 193 | 93.78 201 | 89.39 235 | 93.99 290 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
LPG-MVS_test | | | 92.96 216 | 92.71 209 | 93.71 279 | 95.43 279 | 88.67 309 | 99.75 139 | 97.62 227 | 92.81 167 | 90.05 237 | 98.49 192 | 75.24 301 | 98.40 202 | 95.84 156 | 89.12 236 | 94.07 282 |
|
LGP-MVS_train | | | | | 93.71 279 | 95.43 279 | 88.67 309 | | 97.62 227 | 92.81 167 | 90.05 237 | 98.49 192 | 75.24 301 | 98.40 202 | 95.84 156 | 89.12 236 | 94.07 282 |
|
test_djsdf | | | 92.83 219 | 92.29 220 | 94.47 252 | 91.90 334 | 92.46 244 | 99.55 178 | 97.27 268 | 91.17 225 | 89.96 240 | 96.07 264 | 81.10 254 | 96.89 289 | 94.67 179 | 88.91 238 | 94.05 284 |
|
testgi | | | 89.01 293 | 88.04 294 | 91.90 308 | 93.49 309 | 84.89 335 | 99.73 147 | 95.66 342 | 93.89 139 | 85.14 317 | 98.17 202 | 59.68 355 | 94.66 342 | 77.73 338 | 88.88 239 | 96.16 235 |
|
ACMM | | 91.95 10 | 92.88 218 | 92.52 216 | 93.98 272 | 95.75 269 | 89.08 306 | 99.77 131 | 97.52 242 | 93.00 162 | 89.95 241 | 97.99 209 | 76.17 295 | 98.46 196 | 93.63 206 | 88.87 240 | 94.39 251 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 92.05 9 | 92.74 221 | 92.42 218 | 93.73 277 | 95.91 263 | 88.72 308 | 99.81 119 | 97.53 240 | 94.13 122 | 87.00 297 | 98.23 201 | 74.07 311 | 98.47 193 | 96.22 150 | 88.86 241 | 93.99 290 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jajsoiax | | | 91.92 238 | 91.18 240 | 94.15 262 | 91.35 340 | 90.95 276 | 99.00 245 | 97.42 253 | 92.61 180 | 87.38 293 | 97.08 229 | 72.46 316 | 97.36 257 | 94.53 182 | 88.77 242 | 94.13 279 |
|
anonymousdsp | | | 91.79 245 | 90.92 243 | 94.41 257 | 90.76 345 | 92.93 232 | 98.93 253 | 97.17 275 | 89.08 256 | 87.46 292 | 95.30 293 | 78.43 281 | 96.92 288 | 92.38 220 | 88.73 243 | 93.39 318 |
|
mvs_tets | | | 91.81 240 | 91.08 241 | 94.00 270 | 91.63 338 | 90.58 283 | 98.67 280 | 97.43 251 | 92.43 191 | 87.37 294 | 97.05 232 | 71.76 318 | 97.32 261 | 94.75 175 | 88.68 244 | 94.11 280 |
|
XVG-ACMP-BASELINE | | | 91.22 253 | 90.75 244 | 92.63 300 | 93.73 305 | 85.61 329 | 98.52 288 | 97.44 250 | 92.77 171 | 89.90 243 | 96.85 240 | 66.64 338 | 98.39 204 | 92.29 221 | 88.61 245 | 93.89 298 |
|
EG-PatchMatch MVS | | | 85.35 311 | 83.81 313 | 89.99 324 | 90.39 347 | 81.89 348 | 98.21 303 | 96.09 334 | 81.78 338 | 74.73 355 | 93.72 329 | 51.56 364 | 97.12 275 | 79.16 333 | 88.61 245 | 90.96 347 |
|
UniMVSNet_ETH3D | | | 90.06 280 | 88.58 286 | 94.49 251 | 94.67 291 | 88.09 318 | 97.81 314 | 97.57 235 | 83.91 327 | 88.44 275 | 97.41 219 | 57.44 358 | 97.62 249 | 91.41 230 | 88.59 247 | 97.77 222 |
|
tpm | | | 93.70 203 | 93.41 198 | 94.58 245 | 95.36 281 | 87.41 322 | 97.01 326 | 96.90 306 | 90.85 234 | 96.72 158 | 94.14 325 | 90.40 170 | 96.84 292 | 90.75 246 | 88.54 248 | 99.51 156 |
|
OpenMVS_ROB |  | 79.82 20 | 83.77 320 | 81.68 323 | 90.03 323 | 88.30 357 | 82.82 340 | 98.46 289 | 95.22 351 | 73.92 358 | 76.00 352 | 91.29 346 | 55.00 360 | 96.94 287 | 68.40 356 | 88.51 249 | 90.34 351 |
|
CMPMVS |  | 61.59 21 | 84.75 314 | 85.14 308 | 83.57 342 | 90.32 348 | 62.54 368 | 96.98 327 | 97.59 234 | 74.33 357 | 69.95 360 | 96.66 246 | 64.17 346 | 98.32 212 | 87.88 277 | 88.41 250 | 89.84 355 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ACMMP++ | | | | | | | | | | | | | | | | 88.23 251 | |
|
ITE_SJBPF | | | | | 92.38 301 | 95.69 275 | 85.14 333 | | 95.71 340 | 92.81 167 | 89.33 259 | 98.11 203 | 70.23 325 | 98.42 199 | 85.91 297 | 88.16 252 | 93.59 314 |
|
D2MVS | | | 92.76 220 | 92.59 214 | 93.27 289 | 95.13 282 | 89.54 302 | 99.69 153 | 99.38 22 | 92.26 195 | 87.59 288 | 94.61 317 | 85.05 226 | 97.79 243 | 91.59 229 | 88.01 253 | 92.47 334 |
|
EI-MVSNet | | | 93.73 201 | 93.40 199 | 94.74 238 | 96.80 244 | 92.69 238 | 99.06 237 | 97.67 223 | 88.96 262 | 91.39 225 | 99.02 147 | 88.75 192 | 97.30 262 | 91.07 235 | 87.85 254 | 94.22 264 |
|
MVSTER | | | 95.53 157 | 95.22 154 | 96.45 194 | 98.56 148 | 97.72 86 | 99.91 74 | 97.67 223 | 92.38 192 | 91.39 225 | 97.14 226 | 97.24 17 | 97.30 262 | 94.80 172 | 87.85 254 | 94.34 257 |
|
PS-MVSNAJss | | | 93.64 204 | 93.31 201 | 94.61 243 | 92.11 331 | 92.19 249 | 99.12 228 | 97.38 258 | 92.51 188 | 88.45 274 | 96.99 235 | 91.20 156 | 97.29 265 | 94.36 185 | 87.71 256 | 94.36 253 |
|
LTVRE_ROB | | 88.28 18 | 90.29 274 | 89.05 279 | 94.02 268 | 95.08 284 | 90.15 292 | 97.19 322 | 97.43 251 | 84.91 321 | 83.99 322 | 97.06 231 | 74.00 312 | 98.28 217 | 84.08 306 | 87.71 256 | 93.62 313 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ACMH | | 89.72 17 | 90.64 264 | 89.63 265 | 93.66 283 | 95.64 276 | 88.64 311 | 98.55 284 | 97.45 248 | 89.03 258 | 81.62 333 | 97.61 215 | 69.75 326 | 98.41 200 | 89.37 260 | 87.62 258 | 93.92 296 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PVSNet_BlendedMVS | | | 96.05 143 | 95.82 141 | 96.72 186 | 99.59 95 | 96.99 119 | 99.95 43 | 99.10 29 | 94.06 128 | 98.27 121 | 95.80 267 | 89.00 189 | 99.95 64 | 99.12 51 | 87.53 259 | 93.24 322 |
|
USDC | | | 90.00 281 | 88.96 280 | 93.10 294 | 94.81 288 | 88.16 317 | 98.71 276 | 95.54 345 | 93.66 146 | 83.75 324 | 97.20 225 | 65.58 341 | 98.31 213 | 83.96 309 | 87.49 260 | 92.85 329 |
|
RRT_MVS | | | 95.23 162 | 94.77 166 | 96.61 190 | 98.28 162 | 98.32 67 | 99.81 119 | 97.41 255 | 92.59 182 | 91.28 227 | 97.76 213 | 95.02 57 | 97.23 268 | 93.65 205 | 87.14 261 | 94.28 260 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 262 | |
|
test_0402 | | | 85.58 307 | 83.94 311 | 90.50 318 | 93.81 304 | 85.04 334 | 98.55 284 | 95.20 352 | 76.01 351 | 79.72 342 | 95.13 299 | 64.15 347 | 96.26 316 | 66.04 361 | 86.88 263 | 90.21 353 |
|
FIs | | | 94.10 192 | 93.43 195 | 96.11 204 | 94.70 290 | 96.82 125 | 99.58 172 | 98.93 41 | 92.54 186 | 89.34 258 | 97.31 222 | 87.62 200 | 97.10 276 | 94.22 191 | 86.58 264 | 94.40 250 |
|
FC-MVSNet-test | | | 93.81 197 | 93.15 204 | 95.80 212 | 94.30 296 | 96.20 149 | 99.42 197 | 98.89 43 | 92.33 194 | 89.03 267 | 97.27 224 | 87.39 203 | 96.83 293 | 93.20 210 | 86.48 265 | 94.36 253 |
|
TinyColmap | | | 87.87 301 | 86.51 302 | 91.94 307 | 95.05 285 | 85.57 330 | 97.65 316 | 94.08 360 | 84.40 324 | 81.82 332 | 96.85 240 | 62.14 351 | 98.33 211 | 80.25 328 | 86.37 266 | 91.91 341 |
|
ACMH+ | | 89.98 16 | 90.35 271 | 89.54 268 | 92.78 299 | 95.99 260 | 86.12 327 | 98.81 268 | 97.18 274 | 89.38 253 | 83.14 326 | 97.76 213 | 68.42 332 | 98.43 198 | 89.11 263 | 86.05 267 | 93.78 306 |
|
baseline1 | | | 95.78 149 | 94.86 163 | 98.54 113 | 98.47 155 | 98.07 74 | 99.06 237 | 97.99 198 | 92.68 176 | 94.13 201 | 98.62 185 | 93.28 113 | 98.69 184 | 93.79 200 | 85.76 268 | 98.84 204 |
|
GBi-Net | | | 90.88 258 | 89.82 263 | 94.08 265 | 97.53 207 | 91.97 252 | 98.43 291 | 96.95 300 | 87.05 290 | 89.68 248 | 94.72 311 | 71.34 320 | 96.11 319 | 87.01 289 | 85.65 269 | 94.17 268 |
|
test1 | | | 90.88 258 | 89.82 263 | 94.08 265 | 97.53 207 | 91.97 252 | 98.43 291 | 96.95 300 | 87.05 290 | 89.68 248 | 94.72 311 | 71.34 320 | 96.11 319 | 87.01 289 | 85.65 269 | 94.17 268 |
|
FMVSNet3 | | | 92.69 223 | 91.58 232 | 95.99 206 | 98.29 160 | 97.42 106 | 99.26 220 | 97.62 227 | 89.80 251 | 89.68 248 | 95.32 292 | 81.62 250 | 96.27 315 | 87.01 289 | 85.65 269 | 94.29 259 |
|
DeepMVS_CX |  | | | | 82.92 344 | 95.98 262 | 58.66 370 | | 96.01 335 | 92.72 172 | 78.34 346 | 95.51 281 | 58.29 357 | 98.08 229 | 82.57 316 | 85.29 272 | 92.03 339 |
|
LF4IMVS | | | 89.25 292 | 88.85 281 | 90.45 320 | 92.81 325 | 81.19 353 | 98.12 305 | 94.79 355 | 91.44 220 | 86.29 309 | 97.11 227 | 65.30 344 | 98.11 228 | 88.53 269 | 85.25 273 | 92.07 337 |
|
FMVSNet2 | | | 91.02 255 | 89.56 267 | 95.41 218 | 97.53 207 | 95.74 165 | 98.98 247 | 97.41 255 | 87.05 290 | 88.43 277 | 95.00 305 | 71.34 320 | 96.24 317 | 85.12 301 | 85.21 274 | 94.25 263 |
|
ET-MVSNet_ETH3D | | | 94.37 187 | 93.28 202 | 97.64 154 | 98.30 159 | 97.99 78 | 99.99 5 | 97.61 230 | 94.35 114 | 71.57 358 | 99.45 117 | 96.23 30 | 95.34 333 | 96.91 144 | 85.14 275 | 99.59 138 |
|
EGC-MVSNET | | | 69.38 329 | 63.76 336 | 86.26 339 | 90.32 348 | 81.66 351 | 96.24 336 | 93.85 363 | 0.99 376 | 3.22 377 | 92.33 343 | 52.44 362 | 92.92 355 | 59.53 366 | 84.90 276 | 84.21 362 |
|
OurMVSNet-221017-0 | | | 89.81 283 | 89.48 272 | 90.83 316 | 91.64 337 | 81.21 352 | 98.17 304 | 95.38 348 | 91.48 218 | 85.65 315 | 97.31 222 | 72.66 315 | 97.29 265 | 88.15 273 | 84.83 277 | 93.97 292 |
|
pmmvs4 | | | 92.10 236 | 91.07 242 | 95.18 225 | 92.82 324 | 94.96 188 | 99.48 190 | 96.83 311 | 87.45 285 | 88.66 273 | 96.56 251 | 83.78 234 | 96.83 293 | 89.29 261 | 84.77 278 | 93.75 307 |
|
our_test_3 | | | 90.39 269 | 89.48 272 | 93.12 292 | 92.40 328 | 89.57 301 | 99.33 209 | 96.35 329 | 87.84 281 | 85.30 316 | 94.99 306 | 84.14 232 | 96.09 322 | 80.38 327 | 84.56 279 | 93.71 312 |
|
cl22 | | | 93.77 199 | 93.25 203 | 95.33 220 | 99.49 104 | 94.43 200 | 99.61 169 | 98.09 191 | 90.38 240 | 89.16 265 | 95.61 274 | 90.56 169 | 97.34 259 | 91.93 224 | 84.45 280 | 94.21 266 |
|
miper_ehance_all_eth | | | 93.16 211 | 92.60 211 | 94.82 237 | 97.57 206 | 93.56 218 | 99.50 186 | 97.07 286 | 88.75 267 | 88.85 269 | 95.52 280 | 90.97 162 | 96.74 296 | 90.77 245 | 84.45 280 | 94.17 268 |
|
miper_enhance_ethall | | | 94.36 189 | 93.98 181 | 95.49 214 | 98.68 145 | 95.24 181 | 99.73 147 | 97.29 266 | 93.28 156 | 89.86 244 | 95.97 265 | 94.37 78 | 97.05 279 | 92.20 222 | 84.45 280 | 94.19 267 |
|
bset_n11_16_dypcd | | | 93.05 215 | 92.30 219 | 95.31 221 | 90.23 350 | 95.05 186 | 99.44 196 | 97.28 267 | 92.51 188 | 90.65 233 | 96.68 245 | 85.30 223 | 96.71 299 | 94.49 183 | 84.14 283 | 94.16 273 |
|
IterMVS | | | 90.91 257 | 90.17 258 | 93.12 292 | 96.78 247 | 90.42 288 | 98.89 256 | 97.05 290 | 89.03 258 | 86.49 304 | 95.42 285 | 76.59 290 | 95.02 336 | 87.22 285 | 84.09 284 | 93.93 295 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet1 | | | 88.50 295 | 86.64 301 | 94.08 265 | 95.62 278 | 91.97 252 | 98.43 291 | 96.95 300 | 83.00 331 | 86.08 312 | 94.72 311 | 59.09 356 | 96.11 319 | 81.82 322 | 84.07 285 | 94.17 268 |
|
XXY-MVS | | | 91.82 239 | 90.46 249 | 95.88 209 | 93.91 302 | 95.40 176 | 98.87 261 | 97.69 222 | 88.63 271 | 87.87 285 | 97.08 229 | 74.38 310 | 97.89 241 | 91.66 228 | 84.07 285 | 94.35 256 |
|
IterMVS-SCA-FT | | | 90.85 260 | 90.16 259 | 92.93 296 | 96.72 249 | 89.96 295 | 98.89 256 | 96.99 295 | 88.95 263 | 86.63 301 | 95.67 272 | 76.48 291 | 95.00 337 | 87.04 287 | 84.04 287 | 93.84 302 |
|
RRT_test8_iter05 | | | 94.58 180 | 94.11 177 | 95.98 207 | 97.88 184 | 96.11 155 | 99.89 86 | 97.45 248 | 91.66 213 | 88.28 280 | 96.71 244 | 96.53 27 | 97.40 255 | 94.73 177 | 83.85 288 | 94.45 248 |
|
pmmvs5 | | | 90.17 278 | 89.09 277 | 93.40 286 | 92.10 332 | 89.77 299 | 99.74 142 | 95.58 344 | 85.88 307 | 87.24 296 | 95.74 269 | 73.41 314 | 96.48 307 | 88.54 268 | 83.56 289 | 93.95 293 |
|
SixPastTwentyTwo | | | 88.73 294 | 88.01 295 | 90.88 314 | 91.85 335 | 82.24 345 | 98.22 302 | 95.18 353 | 88.97 261 | 82.26 329 | 96.89 237 | 71.75 319 | 96.67 301 | 84.00 307 | 82.98 290 | 93.72 311 |
|
N_pmnet | | | 80.06 327 | 80.78 325 | 77.89 345 | 91.94 333 | 45.28 376 | 98.80 270 | 56.82 379 | 78.10 348 | 80.08 341 | 93.33 331 | 77.03 284 | 95.76 329 | 68.14 357 | 82.81 291 | 92.64 330 |
|
ppachtmachnet_test | | | 89.58 287 | 88.35 289 | 93.25 290 | 92.40 328 | 90.44 287 | 99.33 209 | 96.73 318 | 85.49 314 | 85.90 314 | 95.77 268 | 81.09 255 | 96.00 326 | 76.00 345 | 82.49 292 | 93.30 320 |
|
cl____ | | | 92.31 231 | 91.58 232 | 94.52 248 | 97.33 220 | 92.77 233 | 99.57 174 | 96.78 316 | 86.97 294 | 87.56 289 | 95.51 281 | 89.43 180 | 96.62 302 | 88.60 266 | 82.44 293 | 94.16 273 |
|
DIV-MVS_self_test | | | 92.32 230 | 91.60 231 | 94.47 252 | 97.31 221 | 92.74 235 | 99.58 172 | 96.75 317 | 86.99 293 | 87.64 287 | 95.54 278 | 89.55 179 | 96.50 306 | 88.58 267 | 82.44 293 | 94.17 268 |
|
Patchmtry | | | 89.70 285 | 88.49 287 | 93.33 287 | 96.24 255 | 89.94 298 | 91.37 359 | 96.23 330 | 78.22 347 | 87.69 286 | 93.31 333 | 91.04 160 | 96.03 324 | 80.18 329 | 82.10 295 | 94.02 285 |
|
IterMVS-LS | | | 92.69 223 | 92.11 222 | 94.43 256 | 96.80 244 | 92.74 235 | 99.45 194 | 96.89 307 | 88.98 260 | 89.65 251 | 95.38 289 | 88.77 191 | 96.34 312 | 90.98 240 | 82.04 296 | 94.22 264 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EU-MVSNet | | | 90.14 279 | 90.34 253 | 89.54 326 | 92.55 327 | 81.06 354 | 98.69 278 | 98.04 196 | 91.41 223 | 86.59 302 | 96.84 242 | 80.83 258 | 93.31 354 | 86.20 294 | 81.91 297 | 94.26 261 |
|
Anonymous20231206 | | | 86.32 304 | 85.42 306 | 89.02 329 | 89.11 355 | 80.53 358 | 99.05 241 | 95.28 349 | 85.43 315 | 82.82 327 | 93.92 326 | 74.40 309 | 93.44 353 | 66.99 358 | 81.83 298 | 93.08 325 |
|
eth_miper_zixun_eth | | | 92.41 229 | 91.93 226 | 93.84 276 | 97.28 224 | 90.68 280 | 98.83 266 | 96.97 299 | 88.57 272 | 89.19 264 | 95.73 271 | 89.24 186 | 96.69 300 | 89.97 257 | 81.55 299 | 94.15 275 |
|
FMVSNet5 | | | 88.32 296 | 87.47 298 | 90.88 314 | 96.90 239 | 88.39 315 | 97.28 320 | 95.68 341 | 82.60 335 | 84.67 319 | 92.40 342 | 79.83 269 | 91.16 360 | 76.39 344 | 81.51 300 | 93.09 324 |
|
miper_lstm_enhance | | | 91.81 240 | 91.39 238 | 93.06 295 | 97.34 218 | 89.18 305 | 99.38 203 | 96.79 315 | 86.70 297 | 87.47 291 | 95.22 298 | 90.00 174 | 95.86 328 | 88.26 271 | 81.37 301 | 94.15 275 |
|
VPA-MVSNet | | | 92.70 222 | 91.55 234 | 96.16 203 | 95.09 283 | 96.20 149 | 98.88 258 | 99.00 34 | 91.02 231 | 91.82 222 | 95.29 296 | 76.05 297 | 97.96 237 | 95.62 158 | 81.19 302 | 94.30 258 |
|
v1192 | | | 90.62 266 | 89.25 274 | 94.72 240 | 93.13 314 | 93.07 228 | 99.50 186 | 97.02 292 | 86.33 301 | 89.56 254 | 95.01 303 | 79.22 272 | 97.09 278 | 82.34 318 | 81.16 303 | 94.01 287 |
|
v1144 | | | 91.09 254 | 89.83 262 | 94.87 234 | 93.25 313 | 93.69 216 | 99.62 168 | 96.98 297 | 86.83 296 | 89.64 252 | 94.99 306 | 80.94 256 | 97.05 279 | 85.08 302 | 81.16 303 | 93.87 300 |
|
Anonymous20240521 | | | 85.15 312 | 83.81 313 | 89.16 328 | 88.32 356 | 82.69 341 | 98.80 270 | 95.74 339 | 79.72 343 | 81.53 334 | 90.99 347 | 65.38 343 | 94.16 345 | 72.69 349 | 81.11 305 | 90.63 350 |
|
v1240 | | | 90.20 276 | 88.79 283 | 94.44 254 | 93.05 319 | 92.27 248 | 99.38 203 | 96.92 305 | 85.89 305 | 89.36 257 | 94.87 310 | 77.89 282 | 97.03 283 | 80.66 326 | 81.08 306 | 94.01 287 |
|
new_pmnet | | | 84.49 317 | 82.92 319 | 89.21 327 | 90.03 351 | 82.60 342 | 96.89 329 | 95.62 343 | 80.59 341 | 75.77 354 | 89.17 351 | 65.04 345 | 94.79 341 | 72.12 350 | 81.02 307 | 90.23 352 |
|
K. test v3 | | | 88.05 298 | 87.24 300 | 90.47 319 | 91.82 336 | 82.23 346 | 98.96 250 | 97.42 253 | 89.05 257 | 76.93 349 | 95.60 275 | 68.49 331 | 95.42 331 | 85.87 298 | 81.01 308 | 93.75 307 |
|
FPMVS | | | 68.72 330 | 68.72 332 | 68.71 350 | 65.95 373 | 44.27 378 | 95.97 341 | 94.74 356 | 51.13 365 | 53.26 368 | 90.50 350 | 25.11 373 | 83.00 368 | 60.80 364 | 80.97 309 | 78.87 364 |
|
v1921920 | | | 90.46 268 | 89.12 276 | 94.50 250 | 92.96 321 | 92.46 244 | 99.49 188 | 96.98 297 | 86.10 303 | 89.61 253 | 95.30 293 | 78.55 279 | 97.03 283 | 82.17 319 | 80.89 310 | 94.01 287 |
|
c3_l | | | 92.53 226 | 91.87 228 | 94.52 248 | 97.40 215 | 92.99 231 | 99.40 198 | 96.93 304 | 87.86 280 | 88.69 272 | 95.44 284 | 89.95 175 | 96.44 308 | 90.45 249 | 80.69 311 | 94.14 278 |
|
tfpnnormal | | | 89.29 290 | 87.61 297 | 94.34 258 | 94.35 295 | 94.13 205 | 98.95 251 | 98.94 37 | 83.94 325 | 84.47 320 | 95.51 281 | 74.84 306 | 97.39 256 | 77.05 342 | 80.41 312 | 91.48 344 |
|
v144192 | | | 90.79 261 | 89.52 269 | 94.59 244 | 93.11 317 | 92.77 233 | 99.56 176 | 96.99 295 | 86.38 300 | 89.82 247 | 94.95 308 | 80.50 264 | 97.10 276 | 83.98 308 | 80.41 312 | 93.90 297 |
|
nrg030 | | | 93.51 205 | 92.53 215 | 96.45 194 | 94.36 294 | 97.20 111 | 99.81 119 | 97.16 277 | 91.60 214 | 89.86 244 | 97.46 217 | 86.37 213 | 97.68 246 | 95.88 155 | 80.31 314 | 94.46 243 |
|
Anonymous20231211 | | | 89.86 282 | 88.44 288 | 94.13 264 | 98.93 128 | 90.68 280 | 98.54 286 | 98.26 170 | 76.28 350 | 86.73 299 | 95.54 278 | 70.60 324 | 97.56 250 | 90.82 244 | 80.27 315 | 94.15 275 |
|
V42 | | | 91.28 251 | 90.12 260 | 94.74 238 | 93.42 311 | 93.46 221 | 99.68 155 | 97.02 292 | 87.36 286 | 89.85 246 | 95.05 301 | 81.31 253 | 97.34 259 | 87.34 283 | 80.07 316 | 93.40 317 |
|
v2v482 | | | 91.30 249 | 90.07 261 | 95.01 229 | 93.13 314 | 93.79 212 | 99.77 131 | 97.02 292 | 88.05 278 | 89.25 260 | 95.37 290 | 80.73 259 | 97.15 271 | 87.28 284 | 80.04 317 | 94.09 281 |
|
WR-MVS | | | 92.31 231 | 91.25 239 | 95.48 217 | 94.45 293 | 95.29 178 | 99.60 170 | 98.68 57 | 90.10 245 | 88.07 283 | 96.89 237 | 80.68 260 | 96.80 295 | 93.14 213 | 79.67 318 | 94.36 253 |
|
v10 | | | 90.25 275 | 88.82 282 | 94.57 246 | 93.53 308 | 93.43 222 | 99.08 232 | 96.87 309 | 85.00 318 | 87.34 295 | 94.51 318 | 80.93 257 | 97.02 285 | 82.85 315 | 79.23 319 | 93.26 321 |
|
test_part1 | | | 92.15 235 | 90.72 245 | 96.44 196 | 98.87 136 | 97.46 103 | 98.99 246 | 98.26 170 | 85.89 305 | 86.34 308 | 96.34 256 | 81.71 246 | 97.48 253 | 91.06 236 | 78.99 320 | 94.37 252 |
|
CP-MVSNet | | | 91.23 252 | 90.22 256 | 94.26 259 | 93.96 301 | 92.39 246 | 99.09 230 | 98.57 76 | 88.95 263 | 86.42 306 | 96.57 250 | 79.19 273 | 96.37 310 | 90.29 253 | 78.95 321 | 94.02 285 |
|
MIMVSNet1 | | | 82.58 322 | 80.51 326 | 88.78 331 | 86.68 360 | 84.20 338 | 96.65 330 | 95.41 347 | 78.75 346 | 78.59 345 | 92.44 339 | 51.88 363 | 89.76 363 | 65.26 362 | 78.95 321 | 92.38 336 |
|
PS-CasMVS | | | 90.63 265 | 89.51 270 | 93.99 271 | 93.83 303 | 91.70 265 | 98.98 247 | 98.52 91 | 88.48 273 | 86.15 311 | 96.53 252 | 75.46 299 | 96.31 313 | 88.83 265 | 78.86 323 | 93.95 293 |
|
WR-MVS_H | | | 91.30 249 | 90.35 252 | 94.15 262 | 94.17 298 | 92.62 242 | 99.17 226 | 98.94 37 | 88.87 265 | 86.48 305 | 94.46 322 | 84.36 230 | 96.61 303 | 88.19 272 | 78.51 324 | 93.21 323 |
|
v8 | | | 90.54 267 | 89.17 275 | 94.66 241 | 93.43 310 | 93.40 224 | 99.20 223 | 96.94 303 | 85.76 308 | 87.56 289 | 94.51 318 | 81.96 245 | 97.19 269 | 84.94 303 | 78.25 325 | 93.38 319 |
|
UniMVSNet (Re) | | | 93.07 214 | 92.13 221 | 95.88 209 | 94.84 287 | 96.24 148 | 99.88 89 | 98.98 35 | 92.49 190 | 89.25 260 | 95.40 286 | 87.09 206 | 97.14 272 | 93.13 214 | 78.16 326 | 94.26 261 |
|
v7n | | | 89.65 286 | 88.29 291 | 93.72 278 | 92.22 330 | 90.56 284 | 99.07 236 | 97.10 283 | 85.42 316 | 86.73 299 | 94.72 311 | 80.06 267 | 97.13 273 | 81.14 324 | 78.12 327 | 93.49 315 |
|
VPNet | | | 91.81 240 | 90.46 249 | 95.85 211 | 94.74 289 | 95.54 172 | 98.98 247 | 98.59 73 | 92.14 198 | 90.77 232 | 97.44 218 | 68.73 330 | 97.54 251 | 94.89 170 | 77.89 328 | 94.46 243 |
|
Gipuma |  | | 66.95 333 | 65.00 333 | 72.79 348 | 91.52 339 | 67.96 365 | 66.16 368 | 95.15 354 | 47.89 366 | 58.54 364 | 67.99 368 | 29.74 370 | 87.54 365 | 50.20 368 | 77.83 329 | 62.87 368 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
NR-MVSNet | | | 91.56 248 | 90.22 256 | 95.60 213 | 94.05 299 | 95.76 164 | 98.25 299 | 98.70 55 | 91.16 227 | 80.78 338 | 96.64 248 | 83.23 239 | 96.57 304 | 91.41 230 | 77.73 330 | 94.46 243 |
|
UniMVSNet_NR-MVSNet | | | 92.95 217 | 92.11 222 | 95.49 214 | 94.61 292 | 95.28 179 | 99.83 116 | 99.08 31 | 91.49 217 | 89.21 262 | 96.86 239 | 87.14 205 | 96.73 297 | 93.20 210 | 77.52 331 | 94.46 243 |
|
DU-MVS | | | 92.46 228 | 91.45 237 | 95.49 214 | 94.05 299 | 95.28 179 | 99.81 119 | 98.74 53 | 92.25 196 | 89.21 262 | 96.64 248 | 81.66 248 | 96.73 297 | 93.20 210 | 77.52 331 | 94.46 243 |
|
MDA-MVSNet_test_wron | | | 85.51 309 | 83.32 316 | 92.10 305 | 90.96 343 | 88.58 312 | 99.20 223 | 96.52 325 | 79.70 344 | 57.12 366 | 92.69 338 | 79.11 274 | 93.86 349 | 77.10 341 | 77.46 333 | 93.86 301 |
|
YYNet1 | | | 85.50 310 | 83.33 315 | 92.00 306 | 90.89 344 | 88.38 316 | 99.22 222 | 96.55 324 | 79.60 345 | 57.26 365 | 92.72 336 | 79.09 275 | 93.78 350 | 77.25 340 | 77.37 334 | 93.84 302 |
|
test_method | | | 80.79 324 | 79.70 327 | 84.08 341 | 92.83 323 | 67.06 366 | 99.51 184 | 95.42 346 | 54.34 364 | 81.07 337 | 93.53 330 | 44.48 367 | 92.22 357 | 78.90 334 | 77.23 335 | 92.94 327 |
|
v148 | | | 90.70 262 | 89.63 265 | 93.92 273 | 92.97 320 | 90.97 275 | 99.75 139 | 96.89 307 | 87.51 283 | 88.27 281 | 95.01 303 | 81.67 247 | 97.04 281 | 87.40 282 | 77.17 336 | 93.75 307 |
|
Baseline_NR-MVSNet | | | 90.33 272 | 89.51 270 | 92.81 298 | 92.84 322 | 89.95 296 | 99.77 131 | 93.94 362 | 84.69 323 | 89.04 266 | 95.66 273 | 81.66 248 | 96.52 305 | 90.99 239 | 76.98 337 | 91.97 340 |
|
PEN-MVS | | | 90.19 277 | 89.06 278 | 93.57 284 | 93.06 318 | 90.90 277 | 99.06 237 | 98.47 104 | 88.11 277 | 85.91 313 | 96.30 257 | 76.67 288 | 95.94 327 | 87.07 286 | 76.91 338 | 93.89 298 |
|
TranMVSNet+NR-MVSNet | | | 91.68 247 | 90.61 248 | 94.87 234 | 93.69 306 | 93.98 209 | 99.69 153 | 98.65 61 | 91.03 230 | 88.44 275 | 96.83 243 | 80.05 268 | 96.18 318 | 90.26 254 | 76.89 339 | 94.45 248 |
|
MDA-MVSNet-bldmvs | | | 84.09 318 | 81.52 324 | 91.81 309 | 91.32 341 | 88.00 320 | 98.67 280 | 95.92 337 | 80.22 342 | 55.60 367 | 93.32 332 | 68.29 333 | 93.60 352 | 73.76 347 | 76.61 340 | 93.82 304 |
|
test20.03 | | | 84.72 315 | 83.99 309 | 86.91 337 | 88.19 358 | 80.62 357 | 98.88 258 | 95.94 336 | 88.36 275 | 78.87 343 | 94.62 316 | 68.75 329 | 89.11 364 | 66.52 359 | 75.82 341 | 91.00 346 |
|
DTE-MVSNet | | | 89.40 288 | 88.24 292 | 92.88 297 | 92.66 326 | 89.95 296 | 99.10 229 | 98.22 175 | 87.29 287 | 85.12 318 | 96.22 259 | 76.27 294 | 95.30 335 | 83.56 312 | 75.74 342 | 93.41 316 |
|
pm-mvs1 | | | 89.36 289 | 87.81 296 | 94.01 269 | 93.40 312 | 91.93 255 | 98.62 283 | 96.48 327 | 86.25 302 | 83.86 323 | 96.14 261 | 73.68 313 | 97.04 281 | 86.16 295 | 75.73 343 | 93.04 326 |
|
lessismore_v0 | | | | | 90.53 317 | 90.58 346 | 80.90 355 | | 95.80 338 | | 77.01 348 | 95.84 266 | 66.15 340 | 96.95 286 | 83.03 314 | 75.05 344 | 93.74 310 |
|
IB-MVS | | 92.85 6 | 94.99 168 | 93.94 182 | 98.16 132 | 97.72 200 | 95.69 169 | 99.99 5 | 98.81 49 | 94.28 119 | 92.70 218 | 96.90 236 | 95.08 53 | 99.17 162 | 96.07 151 | 73.88 345 | 99.60 137 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pmmvs6 | | | 85.69 306 | 83.84 312 | 91.26 313 | 90.00 352 | 84.41 337 | 97.82 313 | 96.15 333 | 75.86 352 | 81.29 335 | 95.39 288 | 61.21 353 | 96.87 291 | 83.52 313 | 73.29 346 | 92.50 333 |
|
h-mvs33 | | | 94.92 169 | 94.36 172 | 96.59 191 | 98.85 137 | 91.29 272 | 98.93 253 | 98.94 37 | 95.90 59 | 98.77 97 | 98.42 198 | 90.89 165 | 99.77 119 | 97.80 117 | 70.76 347 | 98.72 209 |
|
ambc | | | | | 83.23 343 | 77.17 368 | 62.61 367 | 87.38 363 | 94.55 359 | | 76.72 350 | 86.65 358 | 30.16 369 | 96.36 311 | 84.85 304 | 69.86 348 | 90.73 349 |
|
Patchmatch-RL test | | | 86.90 303 | 85.98 305 | 89.67 325 | 84.45 363 | 75.59 361 | 89.71 361 | 92.43 365 | 86.89 295 | 77.83 347 | 90.94 348 | 94.22 86 | 93.63 351 | 87.75 278 | 69.61 349 | 99.79 104 |
|
PM-MVS | | | 80.47 325 | 78.88 329 | 85.26 340 | 83.79 365 | 72.22 363 | 95.89 342 | 91.08 368 | 85.71 311 | 76.56 351 | 88.30 353 | 36.64 368 | 93.90 348 | 82.39 317 | 69.57 350 | 89.66 356 |
|
pmmvs-eth3d | | | 84.03 319 | 81.97 322 | 90.20 321 | 84.15 364 | 87.09 323 | 98.10 307 | 94.73 357 | 83.05 330 | 74.10 356 | 87.77 355 | 65.56 342 | 94.01 346 | 81.08 325 | 69.24 351 | 89.49 357 |
|
AUN-MVS | | | 93.28 209 | 92.60 211 | 95.34 219 | 98.29 160 | 90.09 293 | 99.31 212 | 98.56 78 | 91.80 210 | 96.35 170 | 98.00 207 | 89.38 181 | 98.28 217 | 92.46 219 | 69.22 352 | 97.64 224 |
|
hse-mvs2 | | | 94.38 186 | 94.08 179 | 95.31 221 | 98.27 164 | 90.02 294 | 99.29 217 | 98.56 78 | 95.90 59 | 98.77 97 | 98.00 207 | 90.89 165 | 98.26 221 | 97.80 117 | 69.20 353 | 97.64 224 |
|
TransMVSNet (Re) | | | 87.25 302 | 85.28 307 | 93.16 291 | 93.56 307 | 91.03 274 | 98.54 286 | 94.05 361 | 83.69 329 | 81.09 336 | 96.16 260 | 75.32 300 | 96.40 309 | 76.69 343 | 68.41 354 | 92.06 338 |
|
PMVS |  | 49.05 23 | 53.75 336 | 51.34 340 | 60.97 353 | 40.80 379 | 34.68 379 | 74.82 367 | 89.62 372 | 37.55 369 | 28.67 375 | 72.12 365 | 7.09 379 | 81.63 369 | 43.17 371 | 68.21 355 | 66.59 367 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
UnsupCasMVSNet_eth | | | 85.52 308 | 83.99 309 | 90.10 322 | 89.36 354 | 83.51 339 | 96.65 330 | 97.99 198 | 89.14 255 | 75.89 353 | 93.83 327 | 63.25 349 | 93.92 347 | 81.92 321 | 67.90 356 | 92.88 328 |
|
PVSNet_0 | | 88.03 19 | 91.80 243 | 90.27 255 | 96.38 199 | 98.27 164 | 90.46 286 | 99.94 60 | 99.61 12 | 93.99 131 | 86.26 310 | 97.39 221 | 71.13 323 | 99.89 83 | 98.77 77 | 67.05 357 | 98.79 207 |
|
TDRefinement | | | 84.76 313 | 82.56 320 | 91.38 312 | 74.58 369 | 84.80 336 | 97.36 319 | 94.56 358 | 84.73 322 | 80.21 340 | 96.12 263 | 63.56 348 | 98.39 204 | 87.92 276 | 63.97 358 | 90.95 348 |
|
new-patchmatchnet | | | 81.19 323 | 79.34 328 | 86.76 338 | 82.86 366 | 80.36 359 | 97.92 311 | 95.27 350 | 82.09 337 | 72.02 357 | 86.87 357 | 62.81 350 | 90.74 362 | 71.10 351 | 63.08 359 | 89.19 359 |
|
pmmvs3 | | | 80.27 326 | 77.77 330 | 87.76 336 | 80.32 367 | 82.43 344 | 98.23 301 | 91.97 366 | 72.74 359 | 78.75 344 | 87.97 354 | 57.30 359 | 90.99 361 | 70.31 352 | 62.37 360 | 89.87 354 |
|
KD-MVS_self_test | | | 83.59 321 | 82.06 321 | 88.20 335 | 86.93 359 | 80.70 356 | 97.21 321 | 96.38 328 | 82.87 332 | 82.49 328 | 88.97 352 | 67.63 335 | 92.32 356 | 73.75 348 | 62.30 361 | 91.58 343 |
|
CL-MVSNet_self_test | | | 84.50 316 | 83.15 318 | 88.53 333 | 86.00 361 | 81.79 349 | 98.82 267 | 97.35 260 | 85.12 317 | 83.62 325 | 90.91 349 | 76.66 289 | 91.40 359 | 69.53 354 | 60.36 362 | 92.40 335 |
|
UnsupCasMVSNet_bld | | | 79.97 328 | 77.03 331 | 88.78 331 | 85.62 362 | 81.98 347 | 93.66 350 | 97.35 260 | 75.51 355 | 70.79 359 | 83.05 361 | 48.70 366 | 94.91 339 | 78.31 336 | 60.29 363 | 89.46 358 |
|
LCM-MVSNet | | | 67.77 331 | 64.73 334 | 76.87 346 | 62.95 375 | 56.25 372 | 89.37 362 | 93.74 364 | 44.53 367 | 61.99 362 | 80.74 362 | 20.42 375 | 86.53 366 | 69.37 355 | 59.50 364 | 87.84 360 |
|
KD-MVS_2432*1600 | | | 88.00 299 | 86.10 303 | 93.70 281 | 96.91 236 | 94.04 206 | 97.17 323 | 97.12 280 | 84.93 319 | 81.96 330 | 92.41 340 | 92.48 134 | 94.51 343 | 79.23 330 | 52.68 365 | 92.56 331 |
|
miper_refine_blended | | | 88.00 299 | 86.10 303 | 93.70 281 | 96.91 236 | 94.04 206 | 97.17 323 | 97.12 280 | 84.93 319 | 81.96 330 | 92.41 340 | 92.48 134 | 94.51 343 | 79.23 330 | 52.68 365 | 92.56 331 |
|
PMMVS2 | | | 67.15 332 | 64.15 335 | 76.14 347 | 70.56 372 | 62.07 369 | 93.89 348 | 87.52 374 | 58.09 363 | 60.02 363 | 78.32 363 | 22.38 374 | 84.54 367 | 59.56 365 | 47.03 367 | 81.80 363 |
|
MVE |  | 53.74 22 | 51.54 338 | 47.86 342 | 62.60 352 | 59.56 376 | 50.93 373 | 79.41 366 | 77.69 376 | 35.69 371 | 36.27 373 | 61.76 372 | 5.79 381 | 69.63 371 | 37.97 372 | 36.61 368 | 67.24 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 52.30 337 | 52.18 339 | 52.67 354 | 71.51 370 | 45.40 375 | 93.62 351 | 76.60 377 | 36.01 370 | 43.50 371 | 64.13 370 | 27.11 372 | 67.31 373 | 31.06 373 | 26.06 369 | 45.30 372 |
|
EMVS | | | 51.44 339 | 51.22 341 | 52.11 355 | 70.71 371 | 44.97 377 | 94.04 347 | 75.66 378 | 35.34 372 | 42.40 372 | 61.56 373 | 28.93 371 | 65.87 374 | 27.64 374 | 24.73 370 | 45.49 371 |
|
ANet_high | | | 56.10 335 | 52.24 338 | 67.66 351 | 49.27 377 | 56.82 371 | 83.94 364 | 82.02 375 | 70.47 360 | 33.28 374 | 64.54 369 | 17.23 377 | 69.16 372 | 45.59 370 | 23.85 371 | 77.02 365 |
|
tmp_tt | | | 65.23 334 | 62.94 337 | 72.13 349 | 44.90 378 | 50.03 374 | 81.05 365 | 89.42 373 | 38.45 368 | 48.51 370 | 99.90 19 | 54.09 361 | 78.70 370 | 91.84 227 | 18.26 372 | 87.64 361 |
|
testmvs | | | 40.60 340 | 44.45 343 | 29.05 357 | 19.49 381 | 14.11 382 | 99.68 155 | 18.47 380 | 20.74 373 | 64.59 361 | 98.48 195 | 10.95 378 | 17.09 377 | 56.66 367 | 11.01 373 | 55.94 370 |
|
wuyk23d | | | 20.37 343 | 20.84 346 | 18.99 358 | 65.34 374 | 27.73 380 | 50.43 369 | 7.67 382 | 9.50 375 | 8.01 376 | 6.34 376 | 6.13 380 | 26.24 375 | 23.40 375 | 10.69 374 | 2.99 373 |
|
test123 | | | 37.68 341 | 39.14 344 | 33.31 356 | 19.94 380 | 24.83 381 | 98.36 295 | 9.75 381 | 15.53 374 | 51.31 369 | 87.14 356 | 19.62 376 | 17.74 376 | 47.10 369 | 3.47 375 | 57.36 369 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.02 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
cdsmvs_eth3d_5k | | | 23.43 342 | 31.24 345 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 98.09 191 | 0.00 377 | 0.00 378 | 99.67 98 | 83.37 237 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 7.60 345 | 10.13 348 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 91.20 156 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 8.28 344 | 11.04 347 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 99.40 121 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 378 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
FOURS1 | | | | | | 99.92 36 | 97.66 91 | 99.95 43 | 98.36 151 | 95.58 72 | 99.52 53 | | | | | | |
|
test_one_0601 | | | | | | 99.94 14 | 99.30 11 | | 98.41 135 | 96.63 39 | 99.75 27 | 99.93 11 | 97.49 9 | | | | |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
test_241102_ONE | | | | | | 99.93 27 | 99.30 11 | | 98.43 119 | 97.26 22 | 99.80 16 | 99.88 24 | 96.71 23 | 100.00 1 | | | |
|
save fliter | | | | | | 99.82 70 | 98.79 37 | 99.96 25 | 98.40 139 | 97.66 10 | | | | | | | |
|
test0726 | | | | | | 99.93 27 | 99.29 14 | 99.96 25 | 98.42 131 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 138 |
|
test_part2 | | | | | | 99.89 50 | 99.25 17 | | | | 99.49 55 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 67 | | | | 99.59 138 |
|
sam_mvs | | | | | | | | | | | | | 94.25 85 | | | | |
|
MTGPA |  | | | | | | | | 98.28 166 | | | | | | | | |
|
test_post1 | | | | | | | | 95.78 343 | | | | 59.23 374 | 93.20 117 | 97.74 245 | 91.06 236 | | |
|
test_post | | | | | | | | | | | | 63.35 371 | 94.43 72 | 98.13 227 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 345 | 95.12 51 | 97.95 238 | | | |
|
MTMP | | | | | | | | 99.87 92 | 96.49 326 | | | | | | | | |
|
gm-plane-assit | | | | | | 96.97 234 | 93.76 214 | | | 91.47 219 | | 98.96 158 | | 98.79 174 | 94.92 167 | | |
|
TEST9 | | | | | | 99.92 36 | 98.92 27 | 99.96 25 | 98.43 119 | 93.90 137 | 99.71 35 | 99.86 31 | 95.88 37 | 99.85 98 | | | |
|
test_8 | | | | | | 99.92 36 | 98.88 30 | 99.96 25 | 98.43 119 | 94.35 114 | 99.69 37 | 99.85 35 | 95.94 34 | 99.85 98 | | | |
|
agg_prior | | | | | | 99.93 27 | 98.77 40 | | 98.43 119 | | 99.63 40 | | | 99.85 98 | | | |
|
test_prior4 | | | | | | | 98.05 75 | 99.94 60 | | | | | | | | | |
|
test_prior | | | | | 99.43 38 | 99.94 14 | 98.49 61 | | 98.65 61 | | | | | 99.80 110 | | | 99.99 24 |
|
旧先验2 | | | | | | | | 99.46 193 | | 94.21 121 | 99.85 6 | | | 99.95 64 | 96.96 141 | | |
|
新几何2 | | | | | | | | 99.40 198 | | | | | | | | | |
|
无先验 | | | | | | | | 99.49 188 | 98.71 54 | 93.46 151 | | | | 100.00 1 | 94.36 185 | | 99.99 24 |
|
原ACMM2 | | | | | | | | 99.90 78 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.99 40 | 90.54 248 | | |
|
segment_acmp | | | | | | | | | | | | | 96.68 25 | | | | |
|
testdata1 | | | | | | | | 99.28 218 | | 96.35 51 | | | | | | | |
|
plane_prior7 | | | | | | 95.71 273 | 91.59 269 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 268 | 91.72 264 | | | | | | 80.47 265 | | | | |
|
plane_prior4 | | | | | | | | | | | | 98.59 186 | | | | | |
|
plane_prior3 | | | | | | | 91.64 267 | | | 96.63 39 | 93.01 212 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 110 | | 96.38 47 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 270 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 371 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 111 | | | | | | | | |
|
door | | | | | | | | | 90.31 369 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 257 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 264 | | 99.87 92 | | 96.82 31 | 93.37 208 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 264 | | 99.87 92 | | 96.82 31 | 93.37 208 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 97.92 115 | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 208 | | | 98.39 204 | | | 94.53 238 |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 261 | | | | |
|
NP-MVS | | | | | | 95.77 267 | 91.79 259 | | | | | 98.65 182 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 144 | 96.11 338 | | 91.89 205 | 98.06 127 | | 94.40 74 | | 94.30 188 | | 99.67 120 |
|
Test By Simon | | | | | | | | | | | | | 92.82 126 | | | | |
|