This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27399.63 9381.76 35099.96 2598.56 7899.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6498.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5698.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10498.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15799.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6898.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 11197.96 799.55 4899.94 497.18 20100.00 193.81 19899.94 6199.98 55
IU-MVS99.93 2799.31 998.41 13597.71 899.84 8100.00 1100.00 1100.00 1
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7497.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 24297.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 13997.66 10
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12699.90 7899.51 1697.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7897.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13197.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 11197.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 18297.34 1699.85 699.85 3591.20 15699.89 8399.41 4499.67 9998.69 210
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1997.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15997.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 13197.28 1899.86 499.94 497.22 18
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11997.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 11997.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 11997.26 2299.80 1699.88 2496.71 23100.00 1
CANet_DTU96.76 11996.15 12398.60 10598.78 14197.53 9599.84 11097.63 22597.25 2399.20 7799.64 10281.36 25299.98 4692.77 21898.89 12898.28 213
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 14297.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4697.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19397.05 2699.86 499.86 3190.65 16799.71 13399.39 4598.63 13498.69 210
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28999.42 2197.03 2799.02 8699.09 14399.35 198.21 22499.73 3199.78 9299.77 108
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9897.00 2898.52 10999.71 8987.80 19899.95 6499.75 2699.38 11799.83 100
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 11196.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
HQP-NCC95.78 26499.87 9296.82 3193.37 208
ACMP_Plane95.78 26499.87 9296.82 3193.37 208
HQP-MVS94.61 17994.50 17094.92 23395.78 26491.85 25799.87 9297.89 20996.82 3193.37 20898.65 18280.65 26198.39 20497.92 11589.60 22994.53 238
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
plane_prior91.74 26199.86 10396.76 3589.59 231
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14696.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_LR98.42 4998.38 3998.53 11599.39 10895.79 16299.87 9299.86 296.70 3798.78 9699.79 6492.03 14499.90 7999.17 5099.86 8399.88 96
PAPM98.60 3498.42 3299.14 6696.05 25898.96 2499.90 7899.35 2496.68 3898.35 11899.66 10096.45 2898.51 19299.45 4199.89 7899.96 74
test_one_060199.94 1499.30 1198.41 13596.63 3999.75 2799.93 1197.49 9
plane_prior391.64 26796.63 3993.01 212
CLD-MVS94.06 19393.90 18394.55 24796.02 25990.69 27999.98 1097.72 22096.62 4191.05 22998.85 17677.21 28398.47 19398.11 10489.51 23494.48 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DVP-MVS++99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11996.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
xiu_mvs_v1_base_debu97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base_debi97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15696.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS94.49 18494.36 17294.87 23495.71 27391.74 26199.84 11097.87 21196.38 4793.01 21298.59 18680.47 26598.37 20997.79 12089.55 23294.52 240
plane_prior299.84 11096.38 47
DeepC-MVS94.51 496.92 11396.40 11998.45 12099.16 11595.90 15999.66 15898.06 19496.37 5094.37 19799.49 11383.29 23899.90 7997.63 12599.61 10599.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testdata199.28 21896.35 51
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
X-MVStestdata93.83 19592.06 22499.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6141.37 37594.34 7999.96 5798.92 6499.95 5599.99 24
OPM-MVS93.21 21092.80 20794.44 25493.12 31690.85 27899.77 13197.61 23096.19 5491.56 22498.65 18275.16 30598.47 19393.78 20189.39 23593.99 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet_dtu95.71 15295.39 14996.66 18898.92 13093.41 22399.57 17498.90 4296.19 5497.52 13998.56 19092.65 12997.36 25777.89 33798.33 14099.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9196.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9196.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
OMC-MVS97.28 10097.23 9297.41 16499.76 7993.36 22699.65 16197.95 20396.03 5897.41 14299.70 9189.61 17899.51 14796.73 14698.25 14499.38 170
h-mvs3394.92 16994.36 17296.59 19198.85 13791.29 27298.93 25398.94 3795.90 5998.77 9798.42 19890.89 16599.77 11997.80 11770.76 34798.72 209
hse-mvs294.38 18694.08 17995.31 22198.27 16490.02 29499.29 21798.56 7895.90 5998.77 9798.00 20790.89 16598.26 22197.80 11769.20 35397.64 224
131496.84 11595.96 13499.48 3696.74 24898.52 5998.31 29698.86 4695.82 6189.91 24298.98 15487.49 20199.96 5797.80 11799.73 9599.96 74
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9195.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6195.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9195.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
UGNet95.33 16194.57 16997.62 15698.55 15094.85 19098.67 28099.32 2595.75 6896.80 15696.27 25872.18 31799.96 5794.58 18199.05 12698.04 217
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HY-MVS92.50 797.79 8197.17 9699.63 1598.98 12399.32 897.49 31799.52 1495.69 6998.32 11997.41 21993.32 11099.77 11998.08 10795.75 19799.81 102
CHOSEN 1792x268896.81 11696.53 11597.64 15498.91 13293.07 22899.65 16199.80 395.64 7095.39 18598.86 17384.35 23199.90 7996.98 14099.16 12499.95 82
ETV-MVS97.92 7497.80 7298.25 13098.14 17396.48 13599.98 1097.63 22595.61 7199.29 7499.46 11692.55 13298.82 17299.02 6098.54 13599.46 161
FOURS199.92 3697.66 9199.95 4398.36 15195.58 7299.52 53
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1495.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 20099.78 107
3Dnovator91.47 1296.28 14095.34 15199.08 7496.82 24397.47 10299.45 19498.81 4995.52 7489.39 25699.00 15181.97 24499.95 6497.27 13299.83 8599.84 99
lupinMVS97.85 7697.60 7898.62 10397.28 22497.70 8999.99 597.55 23695.50 7599.43 5999.67 9890.92 16398.71 18298.40 9399.62 10299.45 163
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2995.38 7698.27 12199.08 14489.00 18999.95 6499.12 5199.25 12099.57 145
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11995.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
jason97.24 10296.86 10498.38 12695.73 27097.32 10899.97 1897.40 25795.34 7898.60 10899.54 11087.70 19998.56 18997.94 11499.47 11399.25 184
jason: jason.
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13399.40 19898.51 9895.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
3Dnovator+91.53 1196.31 13795.24 15399.52 2996.88 24098.64 5399.72 15098.24 17295.27 8088.42 27998.98 15482.76 24099.94 7297.10 13799.83 8599.96 74
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14399.36 20798.50 10295.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8495.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14695.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 7095.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
test111195.57 15694.98 16197.37 16798.56 14893.37 22598.86 26298.45 10894.95 8596.63 15998.95 16275.21 30499.11 16395.02 16498.14 14799.64 126
test250697.53 8997.19 9398.58 10898.66 14696.90 12398.81 26899.77 594.93 8697.95 13098.96 15892.51 13399.20 15994.93 16698.15 14599.64 126
ECVR-MVScopyleft95.66 15495.05 15997.51 16098.66 14693.71 21598.85 26598.45 10894.93 8696.86 15398.96 15875.22 30399.20 15995.34 15998.15 14599.64 126
CS-MVS97.74 8397.61 7798.15 13597.52 21196.69 128100.00 197.11 28294.93 8699.73 2999.41 12091.68 15098.25 22298.84 7199.24 12199.52 154
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15494.92 8999.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
Effi-MVS+-dtu94.53 18395.30 15292.22 30397.77 19382.54 34399.59 17197.06 28794.92 8995.29 18795.37 29085.81 21697.89 24194.80 17297.07 17196.23 234
mvs-test195.53 15795.97 13294.20 26197.77 19385.44 33299.95 4397.06 28794.92 8996.58 16198.72 17985.81 21698.98 16794.80 17298.11 14898.18 214
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8494.87 9299.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15299.18 22599.45 1894.84 9396.41 16899.71 8991.40 15299.99 4097.99 11198.03 15399.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 7094.77 9499.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7294.77 9499.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
PVSNet91.05 1397.13 10596.69 11098.45 12099.52 10195.81 16199.95 4399.65 1194.73 9699.04 8599.21 13984.48 22999.95 6494.92 16798.74 13299.58 144
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 14294.70 9798.26 12399.81 5991.84 148100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CS-MVS-test97.44 9197.41 8497.53 15797.46 21394.66 197100.00 197.04 29194.69 9899.72 3399.25 13591.22 15498.29 21498.33 9798.95 12799.64 126
test117298.38 5498.25 4898.77 9399.88 5496.56 13499.80 12498.36 15194.68 9999.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14994.68 9999.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
diffmvs97.00 10996.64 11198.09 13797.64 20396.17 15199.81 11997.19 27294.67 10198.95 9099.28 12886.43 21298.76 17898.37 9497.42 16399.33 177
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11994.63 10299.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
DROMVSNet97.38 9897.24 9197.80 14597.41 21495.64 17099.99 597.06 28794.59 10399.63 4099.32 12789.20 18798.14 22698.76 7899.23 12299.62 132
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10694.56 10499.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15299.82 11798.43 11994.56 10497.52 13999.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
PVSNet_Blended_VisFu97.27 10196.81 10698.66 10098.81 13996.67 12999.92 7098.64 6494.51 10696.38 16998.49 19289.05 18899.88 8997.10 13798.34 13999.43 166
canonicalmvs97.09 10896.32 12099.39 4698.93 12898.95 2599.72 15097.35 26094.45 10797.88 13399.42 11886.71 20999.52 14698.48 9193.97 21799.72 114
CVMVSNet94.68 17794.94 16293.89 27596.80 24486.92 32499.06 23798.98 3594.45 10794.23 20099.02 14785.60 21895.31 33490.91 24295.39 20399.43 166
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13199.97 1898.39 14294.43 10998.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
EIA-MVS97.53 8997.46 8297.76 15098.04 17794.84 19199.98 1097.61 23094.41 11297.90 13299.59 10592.40 13698.87 17098.04 10899.13 12599.59 138
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 11194.40 11398.41 11499.47 11493.65 10399.42 15598.57 8894.26 21399.67 120
ET-MVSNet_ETH3D94.37 18793.28 20297.64 15498.30 15997.99 7899.99 597.61 23094.35 11471.57 35899.45 11796.23 3095.34 33396.91 14485.14 27599.59 138
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11994.35 11499.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
test_899.92 3698.88 3099.96 2598.43 11994.35 11499.69 3799.85 3595.94 3499.85 98
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 11194.31 11798.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
VNet97.21 10496.57 11499.13 7198.97 12497.82 8599.03 24399.21 2894.31 11799.18 8198.88 16986.26 21499.89 8398.93 6394.32 21299.69 117
IB-MVS92.85 694.99 16893.94 18298.16 13297.72 20095.69 16999.99 598.81 4994.28 11992.70 21896.90 23695.08 5399.17 16296.07 15173.88 34599.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Vis-MVSNetpermissive95.72 15095.15 15797.45 16297.62 20494.28 20399.28 21898.24 17294.27 12096.84 15498.94 16479.39 27198.76 17893.25 20998.49 13699.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
旧先验299.46 19394.21 12199.85 699.95 6496.96 141
ACMP92.05 992.74 22192.42 21893.73 27795.91 26388.72 30899.81 11997.53 24094.13 12287.00 29798.23 20174.07 31198.47 19396.22 15088.86 24193.99 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMMVS96.76 11996.76 10896.76 18498.28 16292.10 25199.91 7497.98 20094.12 12399.53 5099.39 12386.93 20898.73 18096.95 14297.73 15599.45 163
XVG-OURS94.82 17094.74 16795.06 22898.00 17889.19 30399.08 23297.55 23694.10 12494.71 19299.62 10380.51 26399.74 12996.04 15293.06 22596.25 232
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 15194.08 12599.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test-LLR96.47 13096.04 12597.78 14797.02 23295.44 17399.96 2598.21 17694.07 12695.55 18296.38 25393.90 9798.27 21990.42 25098.83 13099.64 126
test0.0.03 193.86 19493.61 18794.64 24295.02 28692.18 25099.93 6698.58 7494.07 12687.96 28498.50 19193.90 9794.96 33881.33 32393.17 22396.78 229
原ACMM198.96 8599.73 8696.99 11998.51 9894.06 12899.62 4399.85 3594.97 6299.96 5795.11 16299.95 5599.92 91
PVSNet_BlendedMVS96.05 14395.82 14196.72 18699.59 9596.99 11999.95 4399.10 2994.06 12898.27 12195.80 26789.00 18999.95 6499.12 5187.53 25993.24 322
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 14294.04 13098.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
PVSNet_088.03 1991.80 24390.27 25596.38 19998.27 16490.46 28699.94 6099.61 1293.99 13186.26 31097.39 22171.13 32399.89 8398.77 7767.05 35798.79 207
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15793.97 13299.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
PatchMatch-RL96.04 14495.40 14897.95 14199.59 9595.22 18399.52 18299.07 3293.96 13396.49 16498.35 19982.28 24299.82 10990.15 25599.22 12398.81 206
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13299.82 11798.30 16493.95 13499.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
PLCcopyleft95.54 397.93 7397.89 7098.05 13999.82 7094.77 19599.92 7098.46 10693.93 13597.20 14599.27 13195.44 4799.97 5597.41 12999.51 11299.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
baseline96.43 13295.98 12997.76 15097.34 21895.17 18499.51 18497.17 27593.92 13696.90 15299.28 12885.37 22298.64 18697.50 12796.86 17799.46 161
TEST999.92 3698.92 2799.96 2598.43 11993.90 13799.71 3599.86 3195.88 3799.85 98
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1793.90 13799.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
testgi89.01 29388.04 29491.90 30893.49 30984.89 33599.73 14795.66 34293.89 13985.14 31798.17 20259.68 35594.66 34277.73 33888.88 23996.16 235
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14993.81 14099.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
abl_697.67 8697.34 8898.66 10099.68 9196.11 15599.68 15598.14 18893.80 14199.27 7599.70 9188.65 19499.98 4697.46 12899.72 9699.89 94
testdata98.42 12399.47 10595.33 17798.56 7893.78 14299.79 2399.85 3593.64 10499.94 7294.97 16599.94 61100.00 1
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12499.87 9298.14 18893.78 14296.55 16399.69 9492.28 13999.98 4697.13 13599.44 11599.93 85
casdiffmvs96.42 13395.97 13297.77 14997.30 22294.98 18799.84 11097.09 28493.75 14496.58 16199.26 13485.07 22598.78 17597.77 12297.04 17299.54 151
UA-Net96.54 12895.96 13498.27 12998.23 16795.71 16798.00 31098.45 10893.72 14598.41 11499.27 13188.71 19399.66 14191.19 23397.69 15699.44 165
XVG-OURS-SEG-HR94.79 17194.70 16895.08 22798.05 17689.19 30399.08 23297.54 23893.66 14694.87 19199.58 10678.78 27699.79 11397.31 13193.40 22196.25 232
USDC90.00 28188.96 28093.10 29494.81 28888.16 31798.71 27695.54 34593.66 14683.75 32497.20 22565.58 34198.31 21383.96 30987.49 26092.85 329
DWT-MVSNet_test97.31 9997.19 9397.66 15398.24 16694.67 19698.86 26298.20 18093.60 14898.09 12698.89 16797.51 798.78 17594.04 19297.28 16699.55 147
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17693.53 14999.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
EPMVS96.53 12996.01 12698.09 13798.43 15696.12 15496.36 33399.43 2093.53 14997.64 13795.04 30294.41 7398.38 20891.13 23498.11 14899.75 110
无先验99.49 18898.71 5493.46 151100.00 194.36 18599.99 24
sss97.57 8897.03 10199.18 5798.37 15798.04 7699.73 14799.38 2293.46 15198.76 9999.06 14591.21 15599.89 8396.33 14897.01 17399.62 132
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 18193.35 15396.45 16599.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
AdaColmapbinary97.23 10396.80 10798.51 11699.99 195.60 17199.09 23098.84 4893.32 15496.74 15799.72 8786.04 215100.00 198.01 10999.43 11699.94 84
SCA94.69 17593.81 18697.33 17197.10 22794.44 19998.86 26298.32 15993.30 15596.17 17395.59 27676.48 29197.95 23891.06 23697.43 16199.59 138
miper_enhance_ethall94.36 18993.98 18195.49 21498.68 14595.24 18199.73 14797.29 26693.28 15689.86 24495.97 26594.37 7897.05 27992.20 22284.45 28094.19 267
9.1498.38 3999.87 5799.91 7498.33 15793.22 15799.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14693.19 15899.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thres20096.96 11096.21 12299.22 5398.97 12498.84 3499.85 10699.71 693.17 15996.26 17198.88 16989.87 17699.51 14794.26 18994.91 20799.31 179
MDTV_nov1_ep1395.69 14397.90 18394.15 20495.98 34098.44 11193.12 16097.98 12995.74 26995.10 5298.58 18890.02 25696.92 175
F-COLMAP96.93 11296.95 10396.87 18199.71 8991.74 26199.85 10697.95 20393.11 16195.72 18199.16 14192.35 13799.94 7295.32 16099.35 11898.92 199
ACMM91.95 1092.88 21892.52 21693.98 27295.75 26989.08 30699.77 13197.52 24293.00 16289.95 24197.99 20976.17 29598.46 19693.63 20688.87 24094.39 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline296.71 12396.49 11697.37 16795.63 27795.96 15899.74 14298.88 4492.94 16391.61 22398.97 15697.72 598.62 18794.83 17198.08 15297.53 227
tfpn200view996.79 11795.99 12799.19 5698.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.27 182
thres40096.78 11895.99 12799.16 6298.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.16 189
PatchmatchNetpermissive95.94 14695.45 14797.39 16697.83 18994.41 20196.05 33998.40 13992.86 16497.09 14895.28 29794.21 8998.07 23189.26 26298.11 14899.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
LPG-MVS_test92.96 21692.71 20993.71 27995.43 27988.67 30999.75 13997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
LGP-MVS_train93.71 27995.43 27988.67 30997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
ITE_SJBPF92.38 30195.69 27585.14 33395.71 34092.81 16789.33 25998.11 20370.23 32598.42 19985.91 29788.16 25293.59 314
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29698.62 6892.78 17099.53 5099.83 5195.08 53100.00 194.36 18599.92 7199.99 24
XVG-ACMP-BASELINE91.22 25390.75 24492.63 30093.73 30585.61 32998.52 28897.44 25092.77 17189.90 24396.85 24066.64 33898.39 20492.29 22188.61 24593.89 298
DeepMVS_CXcopyleft82.92 34495.98 26258.66 37096.01 33592.72 17278.34 34695.51 28158.29 35798.08 22982.57 31685.29 27292.03 339
1112_ss96.01 14595.20 15598.42 12397.80 19196.41 13899.65 16196.66 32192.71 17392.88 21699.40 12192.16 14199.30 15691.92 22593.66 21899.55 147
Test_1112_low_res95.72 15094.83 16498.42 12397.79 19296.41 13899.65 16196.65 32292.70 17492.86 21796.13 26292.15 14299.30 15691.88 22693.64 21999.55 147
新几何199.42 4199.75 8198.27 6998.63 6792.69 17599.55 4899.82 5594.40 74100.00 191.21 23299.94 6199.99 24
baseline195.78 14994.86 16398.54 11398.47 15598.07 7499.06 23797.99 19892.68 17694.13 20198.62 18593.28 11398.69 18493.79 20085.76 26898.84 204
Fast-Effi-MVS+-dtu93.72 20293.86 18593.29 28897.06 22986.16 32699.80 12496.83 31192.66 17792.58 21997.83 21281.39 25197.67 24789.75 25996.87 17696.05 236
MAR-MVS97.43 9297.19 9398.15 13599.47 10594.79 19499.05 24198.76 5292.65 17898.66 10499.82 5588.52 19599.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet93.45 20892.62 21095.94 20896.29 25392.66 23992.01 35696.23 33092.62 17996.94 15093.31 33391.04 16096.03 32479.23 33095.96 19099.13 193
jajsoiax91.92 23891.18 24094.15 26291.35 34090.95 27699.00 24597.42 25392.61 18087.38 29397.08 22972.46 31697.36 25794.53 18288.77 24294.13 279
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 14099.90 7898.17 18292.61 18098.62 10699.57 10791.87 14799.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
thres100view90096.74 12195.92 13799.18 5798.90 13398.77 4099.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.84 19594.57 20899.27 182
RRT_MVS95.23 16294.77 16696.61 19098.28 16298.32 6799.81 11997.41 25592.59 18291.28 22797.76 21395.02 5797.23 26893.65 20587.14 26194.28 260
thres600view796.69 12495.87 14099.14 6698.90 13398.78 3999.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.44 20894.50 21199.16 189
GA-MVS93.83 19592.84 20696.80 18295.73 27093.57 21799.88 8997.24 27092.57 18592.92 21496.66 24678.73 27797.67 24787.75 27894.06 21699.17 188
FIs94.10 19293.43 19596.11 20494.70 29096.82 12599.58 17298.93 4192.54 18689.34 25897.31 22287.62 20097.10 27694.22 19186.58 26494.40 250
BH-RMVSNet95.18 16394.31 17497.80 14598.17 17195.23 18299.76 13697.53 24092.52 18794.27 19999.25 13576.84 28798.80 17390.89 24399.54 10999.35 175
bset_n11_16_dypcd93.05 21592.30 21995.31 22190.23 35095.05 18699.44 19697.28 26792.51 18890.65 23396.68 24585.30 22396.71 29994.49 18384.14 28394.16 273
PS-MVSNAJss93.64 20493.31 20194.61 24392.11 33192.19 24999.12 22897.38 25892.51 18888.45 27496.99 23591.20 15697.29 26594.36 18587.71 25694.36 253
UniMVSNet (Re)93.07 21492.13 22195.88 20994.84 28796.24 14899.88 8998.98 3592.49 19089.25 26095.40 28687.09 20697.14 27293.13 21478.16 32694.26 261
mvs_tets91.81 24091.08 24194.00 27091.63 33890.58 28398.67 28097.43 25192.43 19187.37 29497.05 23271.76 31897.32 26194.75 17588.68 24494.11 280
MVSTER95.53 15795.22 15496.45 19498.56 14897.72 8699.91 7497.67 22392.38 19291.39 22597.14 22697.24 1797.30 26294.80 17287.85 25494.34 257
ZD-MVS99.92 3698.57 5598.52 9192.34 19399.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
FC-MVSNet-test93.81 19793.15 20495.80 21294.30 29696.20 14999.42 19798.89 4392.33 19489.03 26797.27 22487.39 20396.83 29393.20 21086.48 26594.36 253
D2MVS92.76 22092.59 21493.27 28995.13 28289.54 30299.69 15399.38 2292.26 19587.59 28894.61 31785.05 22697.79 24391.59 22988.01 25392.47 334
DU-MVS92.46 22891.45 23795.49 21494.05 29995.28 17999.81 11998.74 5392.25 19689.21 26296.64 24881.66 24896.73 29793.20 21077.52 33194.46 243
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 17292.18 19799.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
VPNet91.81 24090.46 24995.85 21194.74 28995.54 17298.98 24798.59 7392.14 19890.77 23297.44 21868.73 33097.54 25194.89 17077.89 32894.46 243
BH-w/o95.71 15295.38 15096.68 18798.49 15492.28 24799.84 11097.50 24592.12 19992.06 22198.79 17784.69 22798.67 18595.29 16199.66 10099.09 195
LCM-MVSNet-Re92.31 23192.60 21191.43 31197.53 20779.27 36099.02 24491.83 36792.07 20080.31 33994.38 32383.50 23695.48 33097.22 13497.58 15999.54 151
tpmrst96.27 14195.98 12997.13 17497.96 18093.15 22796.34 33498.17 18292.07 20098.71 10295.12 30093.91 9698.73 18094.91 16996.62 17899.50 158
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 11192.06 20298.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 19399.08 23297.61 23092.02 20395.54 18498.96 15890.64 16898.08 22993.73 20397.41 16499.47 160
TESTMET0.1,196.74 12196.26 12198.16 13297.36 21796.48 13599.96 2598.29 16591.93 20495.77 18098.07 20595.54 4398.29 21490.55 24798.89 12899.70 115
MDTV_nov1_ep13_2view96.26 14496.11 33891.89 20598.06 12794.40 7494.30 18899.67 120
test22299.55 9997.41 10799.34 20898.55 8491.86 20699.27 7599.83 5193.84 9999.95 5599.99 24
thisisatest051597.41 9697.02 10298.59 10797.71 20297.52 9699.97 1898.54 8891.83 20797.45 14199.04 14697.50 899.10 16494.75 17596.37 18499.16 189
Vis-MVSNet (Re-imp)96.32 13695.98 12997.35 17097.93 18294.82 19299.47 19198.15 18791.83 20795.09 18999.11 14291.37 15397.47 25493.47 20797.43 16199.74 111
test-mter96.39 13495.93 13697.78 14797.02 23295.44 17399.96 2598.21 17691.81 20995.55 18296.38 25395.17 5098.27 21990.42 25098.83 13099.64 126
AUN-MVS93.28 20992.60 21195.34 21998.29 16090.09 29399.31 21298.56 7891.80 21096.35 17098.00 20789.38 18198.28 21792.46 21969.22 35297.64 224
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13799.88 8998.16 18591.75 21198.94 9199.54 11091.82 14999.65 14297.62 12699.99 2299.99 24
API-MVS97.86 7597.66 7498.47 11899.52 10195.41 17599.47 19198.87 4591.68 21298.84 9399.85 3592.34 13899.99 4098.44 9299.96 52100.00 1
RRT_test8_iter0594.58 18094.11 17795.98 20797.88 18496.11 15599.89 8697.45 24891.66 21388.28 28096.71 24496.53 2797.40 25594.73 17783.85 28894.45 248
nrg03093.51 20592.53 21596.45 19494.36 29497.20 11199.81 11997.16 27791.60 21489.86 24497.46 21786.37 21397.68 24695.88 15580.31 31494.46 243
MVS96.60 12795.56 14699.72 1296.85 24199.22 1998.31 29698.94 3791.57 21590.90 23099.61 10486.66 21099.96 5797.36 13099.88 8099.99 24
CDS-MVSNet96.34 13596.07 12497.13 17497.37 21694.96 18899.53 18197.91 20891.55 21695.37 18698.32 20095.05 5697.13 27393.80 19995.75 19799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 21494.61 29295.28 17999.83 11699.08 3191.49 21789.21 26296.86 23987.14 20596.73 29793.20 21077.52 33194.46 243
OurMVSNet-221017-089.81 28389.48 27290.83 31691.64 33781.21 35298.17 30495.38 34891.48 21885.65 31597.31 22272.66 31597.29 26588.15 27384.83 27793.97 292
gm-plane-assit96.97 23493.76 21491.47 21998.96 15898.79 17494.92 167
LF4IMVS89.25 29288.85 28190.45 32092.81 32581.19 35398.12 30594.79 35591.44 22086.29 30997.11 22765.30 34498.11 22888.53 26985.25 27392.07 337
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
EU-MVSNet90.14 27990.34 25389.54 32692.55 32781.06 35498.69 27898.04 19691.41 22386.59 30296.84 24280.83 25893.31 35486.20 29481.91 29794.26 261
TAMVS95.85 14795.58 14596.65 18997.07 22893.50 22099.17 22697.82 21791.39 22495.02 19098.01 20692.20 14097.30 26293.75 20295.83 19499.14 192
MVSFormer96.94 11196.60 11297.95 14197.28 22497.70 8999.55 17897.27 26891.17 22599.43 5999.54 11090.92 16396.89 28994.67 17999.62 10299.25 184
test_djsdf92.83 21992.29 22094.47 25291.90 33492.46 24499.55 17897.27 26891.17 22589.96 24096.07 26481.10 25496.89 28994.67 17988.91 23894.05 284
NR-MVSNet91.56 24890.22 25695.60 21394.05 29995.76 16498.25 29998.70 5591.16 22780.78 33896.64 24883.23 23996.57 30491.41 23077.73 33094.46 243
thisisatest053097.10 10696.72 10998.22 13197.60 20596.70 12799.92 7098.54 8891.11 22897.07 14998.97 15697.47 1199.03 16593.73 20396.09 18798.92 199
MVS_Test96.46 13195.74 14298.61 10498.18 17097.23 11099.31 21297.15 27891.07 22998.84 9397.05 23288.17 19798.97 16894.39 18497.50 16099.61 135
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23493.69 30693.98 20999.69 15398.65 6191.03 23088.44 27596.83 24380.05 26896.18 31890.26 25476.89 33994.45 248
VPA-MVSNet92.70 22291.55 23496.16 20395.09 28396.20 14998.88 25899.00 3491.02 23191.82 22295.29 29676.05 29797.96 23795.62 15881.19 30294.30 258
BH-untuned95.18 16394.83 16496.22 20298.36 15891.22 27399.80 12497.32 26490.91 23291.08 22898.67 18183.51 23598.54 19194.23 19099.61 10598.92 199
mvs_anonymous95.65 15595.03 16097.53 15798.19 16995.74 16599.33 20997.49 24690.87 23390.47 23597.10 22888.23 19697.16 27095.92 15497.66 15899.68 118
VDD-MVS93.77 19992.94 20596.27 20198.55 15090.22 29098.77 27297.79 21890.85 23496.82 15599.42 11861.18 35499.77 11998.95 6194.13 21498.82 205
tpm93.70 20393.41 19894.58 24595.36 28187.41 32297.01 32696.90 30690.85 23496.72 15894.14 32590.40 17096.84 29290.75 24688.54 24899.51 156
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5190.78 23699.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
tttt051796.85 11496.49 11697.92 14397.48 21295.89 16099.85 10698.54 8890.72 23796.63 15998.93 16697.47 1199.02 16693.03 21695.76 19698.85 203
HyFIR lowres test96.66 12696.43 11897.36 16999.05 11893.91 21199.70 15299.80 390.54 23896.26 17198.08 20492.15 14298.23 22396.84 14595.46 20199.93 85
OpenMVScopyleft90.15 1594.77 17393.59 19098.33 12796.07 25797.48 10199.56 17698.57 7690.46 23986.51 30398.95 16278.57 27899.94 7293.86 19499.74 9497.57 226
cl2293.77 19993.25 20395.33 22099.49 10494.43 20099.61 16998.09 19190.38 24089.16 26595.61 27490.56 16997.34 25991.93 22484.45 28094.21 266
Effi-MVS+96.30 13895.69 14398.16 13297.85 18896.26 14497.41 31897.21 27190.37 24198.65 10598.58 18886.61 21198.70 18397.11 13697.37 16599.52 154
PCF-MVS94.20 595.18 16394.10 17898.43 12298.55 15095.99 15797.91 31297.31 26590.35 24289.48 25599.22 13885.19 22499.89 8390.40 25298.47 13799.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs94.69 17593.42 19698.51 11698.07 17596.26 14496.49 33298.68 5790.31 24394.54 19397.00 23476.30 29399.71 13395.98 15393.38 22299.56 146
TR-MVS94.54 18193.56 19297.49 16197.96 18094.34 20298.71 27697.51 24490.30 24494.51 19598.69 18075.56 29898.77 17792.82 21795.99 18999.35 175
WR-MVS92.31 23191.25 23995.48 21794.45 29395.29 17899.60 17098.68 5790.10 24588.07 28396.89 23780.68 26096.80 29593.14 21379.67 31894.36 253
ADS-MVSNet293.80 19893.88 18493.55 28597.87 18685.94 32894.24 34596.84 31090.07 24696.43 16694.48 32090.29 17295.37 33287.44 28097.23 16799.36 173
ADS-MVSNet94.79 17194.02 18097.11 17697.87 18693.79 21294.24 34598.16 18590.07 24696.43 16694.48 32090.29 17298.19 22587.44 28097.23 16799.36 173
CostFormer96.10 14295.88 13996.78 18397.03 23192.55 24397.08 32597.83 21690.04 24898.72 10194.89 30995.01 5998.29 21496.54 14795.77 19599.50 158
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16399.96 2598.35 15489.90 24998.36 11799.79 6491.18 15999.99 4098.37 9499.99 2299.99 24
TAPA-MVS92.12 894.42 18593.60 18996.90 18099.33 11191.78 26099.78 12898.00 19789.89 25094.52 19499.47 11491.97 14599.18 16169.90 35399.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet392.69 22391.58 23295.99 20698.29 16097.42 10699.26 22097.62 22789.80 25189.68 24895.32 29281.62 25096.27 31587.01 28985.65 26994.29 259
dp95.05 16694.43 17196.91 17997.99 17992.73 23796.29 33597.98 20089.70 25295.93 17694.67 31593.83 10098.45 19786.91 29296.53 18099.54 151
ACMH+89.98 1690.35 27189.54 26892.78 29995.99 26086.12 32798.81 26897.18 27489.38 25383.14 32697.76 21368.42 33298.43 19889.11 26386.05 26793.78 306
QAPM95.40 16094.17 17699.10 7296.92 23597.71 8799.40 19898.68 5789.31 25488.94 26898.89 16782.48 24199.96 5793.12 21599.83 8599.62 132
UnsupCasMVSNet_eth85.52 30883.99 30990.10 32289.36 35483.51 33996.65 33097.99 19889.14 25575.89 35393.83 32763.25 34993.92 34781.92 32167.90 35692.88 328
anonymousdsp91.79 24590.92 24394.41 25790.76 34592.93 23298.93 25397.17 27589.08 25687.46 29295.30 29378.43 28196.92 28892.38 22088.73 24393.39 318
K. test v388.05 29887.24 30090.47 31991.82 33682.23 34698.96 25097.42 25389.05 25776.93 34995.60 27568.49 33195.42 33185.87 29881.01 30893.75 307
IterMVS90.91 25790.17 25893.12 29296.78 24790.42 28898.89 25697.05 29089.03 25886.49 30495.42 28576.59 29095.02 33687.22 28584.09 28493.93 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH89.72 1790.64 26489.63 26593.66 28395.64 27688.64 31198.55 28497.45 24889.03 25881.62 33397.61 21569.75 32698.41 20089.37 26087.62 25893.92 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-LS92.69 22392.11 22294.43 25696.80 24492.74 23599.45 19496.89 30788.98 26089.65 25195.38 28988.77 19196.34 31290.98 24082.04 29694.22 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo88.73 29488.01 29590.88 31491.85 33582.24 34598.22 30295.18 35388.97 26182.26 32996.89 23771.75 31996.67 30184.00 30782.98 29093.72 311
EI-MVSNet93.73 20193.40 19994.74 23896.80 24492.69 23899.06 23797.67 22388.96 26291.39 22599.02 14788.75 19297.30 26291.07 23587.85 25494.22 264
IterMVS-SCA-FT90.85 26090.16 25992.93 29696.72 24989.96 29598.89 25696.99 29588.95 26386.63 30195.67 27276.48 29195.00 33787.04 28784.04 28793.84 302
CP-MVSNet91.23 25290.22 25694.26 25993.96 30192.39 24699.09 23098.57 7688.95 26386.42 30696.57 25079.19 27396.37 31090.29 25378.95 32194.02 285
WR-MVS_H91.30 24990.35 25294.15 26294.17 29892.62 24299.17 22698.94 3788.87 26586.48 30594.46 32284.36 23096.61 30388.19 27278.51 32493.21 323
Fast-Effi-MVS+95.02 16794.19 17597.52 15997.88 18494.55 19899.97 1897.08 28588.85 26694.47 19697.96 21084.59 22898.41 20089.84 25897.10 17099.59 138
miper_ehance_all_eth93.16 21192.60 21194.82 23797.57 20693.56 21899.50 18697.07 28688.75 26788.85 26995.52 28090.97 16296.74 29690.77 24584.45 28094.17 268
EPP-MVSNet96.69 12496.60 11296.96 17897.74 19693.05 23099.37 20598.56 7888.75 26795.83 17999.01 14996.01 3198.56 18996.92 14397.20 16999.25 184
MS-PatchMatch90.65 26390.30 25491.71 31094.22 29785.50 33198.24 30097.70 22188.67 26986.42 30696.37 25567.82 33498.03 23383.62 31199.62 10291.60 342
CSCG97.10 10697.04 10097.27 17299.89 5091.92 25699.90 7899.07 3288.67 26995.26 18899.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
XXY-MVS91.82 23990.46 24995.88 20993.91 30295.40 17698.87 26197.69 22288.63 27187.87 28597.08 22974.38 31097.89 24191.66 22884.07 28594.35 256
eth_miper_zixun_eth92.41 22991.93 22693.84 27697.28 22490.68 28098.83 26696.97 29988.57 27289.19 26495.73 27189.24 18696.69 30089.97 25781.55 29994.15 275
PS-CasMVS90.63 26589.51 27093.99 27193.83 30391.70 26598.98 24798.52 9188.48 27386.15 31196.53 25275.46 29996.31 31388.83 26578.86 32393.95 293
114514_t97.41 9696.83 10599.14 6699.51 10397.83 8499.89 8698.27 16988.48 27399.06 8499.66 10090.30 17199.64 14396.32 14999.97 4899.96 74
test20.0384.72 31583.99 30986.91 33788.19 35880.62 35798.88 25895.94 33688.36 27578.87 34394.62 31668.75 32989.11 36466.52 35975.82 34191.00 346
GeoE94.36 18993.48 19496.99 17797.29 22393.54 21999.96 2596.72 31988.35 27693.43 20798.94 16482.05 24398.05 23288.12 27596.48 18299.37 172
PEN-MVS90.19 27789.06 27893.57 28493.06 31890.90 27799.06 23798.47 10488.11 27785.91 31396.30 25776.67 28895.94 32787.07 28676.91 33893.89 298
v2v48291.30 24990.07 26195.01 22993.13 31493.79 21299.77 13197.02 29288.05 27889.25 26095.37 29080.73 25997.15 27187.28 28480.04 31794.09 281
tpm295.47 15995.18 15696.35 20096.91 23691.70 26596.96 32897.93 20588.04 27998.44 11395.40 28693.32 11097.97 23594.00 19395.61 19999.38 170
c3_l92.53 22691.87 22894.52 24897.40 21592.99 23199.40 19896.93 30487.86 28088.69 27295.44 28489.95 17596.44 30890.45 24980.69 31194.14 278
our_test_390.39 26989.48 27293.12 29292.40 32889.57 30199.33 20996.35 32987.84 28185.30 31694.99 30684.14 23296.09 32280.38 32784.56 27993.71 312
LFMVS94.75 17493.56 19298.30 12899.03 11995.70 16898.74 27397.98 20087.81 28298.47 11299.39 12367.43 33699.53 14598.01 10995.20 20699.67 120
v14890.70 26289.63 26593.92 27392.97 32090.97 27599.75 13996.89 30787.51 28388.27 28195.01 30381.67 24797.04 28187.40 28277.17 33693.75 307
tpmvs94.28 19193.57 19196.40 19798.55 15091.50 27095.70 34498.55 8487.47 28492.15 22094.26 32491.42 15198.95 16988.15 27395.85 19398.76 208
pmmvs492.10 23691.07 24295.18 22592.82 32494.96 18899.48 19096.83 31187.45 28588.66 27396.56 25183.78 23496.83 29389.29 26184.77 27893.75 307
V4291.28 25190.12 26094.74 23893.42 31193.46 22199.68 15597.02 29287.36 28689.85 24695.05 30181.31 25397.34 25987.34 28380.07 31693.40 317
DTE-MVSNet89.40 28888.24 29292.88 29792.66 32689.95 29699.10 22998.22 17587.29 28785.12 31896.22 25976.27 29495.30 33583.56 31275.74 34293.41 316
MVP-Stereo90.93 25690.45 25192.37 30291.25 34288.76 30798.05 30996.17 33287.27 28884.04 32195.30 29378.46 28097.27 26783.78 31099.70 9891.09 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LS3D95.84 14895.11 15898.02 14099.85 6095.10 18598.74 27398.50 10287.22 28993.66 20699.86 3187.45 20299.95 6490.94 24199.81 9199.02 197
GBi-Net90.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
test190.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
FMVSNet291.02 25589.56 26795.41 21897.53 20795.74 16598.98 24797.41 25587.05 29088.43 27795.00 30571.34 32096.24 31785.12 30185.21 27494.25 263
DIV-MVS_self_test92.32 23091.60 23194.47 25297.31 22192.74 23599.58 17296.75 31786.99 29387.64 28795.54 27889.55 17996.50 30688.58 26782.44 29394.17 268
cl____92.31 23191.58 23294.52 24897.33 22092.77 23399.57 17496.78 31686.97 29487.56 28995.51 28189.43 18096.62 30288.60 26682.44 29394.16 273
Patchmatch-RL test86.90 30385.98 30589.67 32584.45 36375.59 36189.71 36192.43 36586.89 29577.83 34790.94 34894.22 8693.63 35187.75 27869.61 34999.79 104
v114491.09 25489.83 26294.87 23493.25 31393.69 21699.62 16896.98 29786.83 29689.64 25294.99 30680.94 25697.05 27985.08 30281.16 30393.87 300
miper_lstm_enhance91.81 24091.39 23893.06 29597.34 21889.18 30599.38 20396.79 31586.70 29787.47 29195.22 29890.00 17495.86 32888.26 27181.37 30194.15 275
AllTest92.48 22791.64 23095.00 23099.01 12088.43 31398.94 25296.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
TestCases95.00 23099.01 12088.43 31396.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
v14419290.79 26189.52 26994.59 24493.11 31792.77 23399.56 17696.99 29586.38 30089.82 24794.95 30880.50 26497.10 27683.98 30880.41 31293.90 297
v119290.62 26689.25 27494.72 24093.13 31493.07 22899.50 18697.02 29286.33 30189.56 25495.01 30379.22 27297.09 27882.34 31881.16 30394.01 287
pm-mvs189.36 28987.81 29694.01 26993.40 31291.93 25598.62 28396.48 32786.25 30283.86 32396.14 26173.68 31397.04 28186.16 29575.73 34393.04 326
v192192090.46 26889.12 27694.50 25092.96 32192.46 24499.49 18896.98 29786.10 30389.61 25395.30 29378.55 27997.03 28382.17 31980.89 31094.01 287
MIMVSNet90.30 27388.67 28595.17 22696.45 25291.64 26792.39 35497.15 27885.99 30490.50 23493.19 33566.95 33794.86 34082.01 32093.43 22099.01 198
test_part192.15 23590.72 24596.44 19698.87 13697.46 10398.99 24698.26 17085.89 30586.34 30896.34 25681.71 24697.48 25391.06 23678.99 32094.37 252
v124090.20 27688.79 28394.44 25493.05 31992.27 24899.38 20396.92 30585.89 30589.36 25794.87 31077.89 28297.03 28380.66 32681.08 30694.01 287
pmmvs590.17 27889.09 27793.40 28692.10 33289.77 29999.74 14295.58 34485.88 30787.24 29695.74 26973.41 31496.48 30788.54 26883.56 28993.95 293
v890.54 26789.17 27594.66 24193.43 31093.40 22499.20 22396.94 30385.76 30887.56 28994.51 31881.96 24597.19 26984.94 30378.25 32593.38 319
cascas94.64 17893.61 18797.74 15297.82 19096.26 14499.96 2597.78 21985.76 30894.00 20297.54 21676.95 28699.21 15897.23 13395.43 20297.76 223
MSDG94.37 18793.36 20097.40 16598.88 13593.95 21099.37 20597.38 25885.75 31090.80 23199.17 14084.11 23399.88 8986.35 29398.43 13898.36 212
PM-MVS80.47 32578.88 32985.26 34083.79 36572.22 36395.89 34291.08 36885.71 31176.56 35188.30 35336.64 36893.90 34882.39 31769.57 35089.66 356
DSMNet-mixed88.28 29788.24 29288.42 33489.64 35375.38 36298.06 30889.86 37085.59 31288.20 28292.14 34476.15 29691.95 35878.46 33596.05 18897.92 218
MVS_030489.28 29188.31 29092.21 30497.05 23086.53 32597.76 31599.57 1385.58 31393.86 20592.71 33751.04 36596.30 31484.49 30592.72 22693.79 305
ppachtmachnet_test89.58 28788.35 28993.25 29092.40 32890.44 28799.33 20996.73 31885.49 31485.90 31495.77 26881.09 25596.00 32676.00 34582.49 29293.30 320
Anonymous2023120686.32 30485.42 30689.02 32989.11 35580.53 35899.05 24195.28 34985.43 31582.82 32793.92 32674.40 30993.44 35366.99 35881.83 29893.08 325
v7n89.65 28688.29 29193.72 27892.22 33090.56 28499.07 23697.10 28385.42 31686.73 29994.72 31180.06 26797.13 27381.14 32478.12 32793.49 315
CL-MVSNet_self_test84.50 31683.15 31888.53 33386.00 36181.79 34998.82 26797.35 26085.12 31783.62 32590.91 34976.66 28991.40 35969.53 35460.36 36292.40 335
v1090.25 27588.82 28294.57 24693.53 30893.43 22299.08 23296.87 30985.00 31887.34 29594.51 31880.93 25797.02 28582.85 31579.23 31993.26 321
KD-MVS_2432*160088.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
miper_refine_blended88.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
LTVRE_ROB88.28 1890.29 27489.05 27994.02 26895.08 28490.15 29297.19 32297.43 25184.91 32183.99 32297.06 23174.00 31298.28 21784.08 30687.71 25693.62 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement84.76 31382.56 32091.38 31274.58 36984.80 33697.36 31994.56 35884.73 32280.21 34096.12 26363.56 34898.39 20487.92 27663.97 35890.95 348
Baseline_NR-MVSNet90.33 27289.51 27092.81 29892.84 32289.95 29699.77 13193.94 36284.69 32389.04 26695.66 27381.66 24896.52 30590.99 23976.98 33791.97 340
TinyColmap87.87 30186.51 30291.94 30795.05 28585.57 33097.65 31694.08 36084.40 32481.82 33296.85 24062.14 35198.33 21180.25 32886.37 26691.91 341
tfpnnormal89.29 29087.61 29794.34 25894.35 29594.13 20598.95 25198.94 3783.94 32584.47 32095.51 28174.84 30697.39 25677.05 34280.41 31291.48 344
RPSCF91.80 24392.79 20888.83 33098.15 17269.87 36498.11 30696.60 32383.93 32694.33 19899.27 13179.60 27099.46 15491.99 22393.16 22497.18 228
UniMVSNet_ETH3D90.06 28088.58 28694.49 25194.67 29188.09 31897.81 31497.57 23583.91 32788.44 27597.41 21957.44 35897.62 24991.41 23088.59 24797.77 222
Anonymous20240521193.10 21391.99 22596.40 19799.10 11789.65 30098.88 25897.93 20583.71 32894.00 20298.75 17868.79 32899.88 8995.08 16391.71 22799.68 118
TransMVSNet (Re)87.25 30285.28 30793.16 29193.56 30791.03 27498.54 28694.05 36183.69 32981.09 33696.16 26075.32 30096.40 30976.69 34368.41 35492.06 338
pmmvs-eth3d84.03 31981.97 32290.20 32184.15 36487.09 32398.10 30794.73 35783.05 33074.10 35687.77 35565.56 34294.01 34681.08 32569.24 35189.49 357
FMVSNet188.50 29586.64 30194.08 26595.62 27891.97 25298.43 29196.95 30083.00 33186.08 31294.72 31159.09 35696.11 31981.82 32284.07 28594.17 268
KD-MVS_self_test83.59 32182.06 32188.20 33586.93 35980.70 35697.21 32196.38 32882.87 33282.49 32888.97 35267.63 33592.32 35673.75 34862.30 36191.58 343
VDDNet93.12 21291.91 22796.76 18496.67 25192.65 24198.69 27898.21 17682.81 33397.75 13699.28 12861.57 35299.48 15398.09 10694.09 21598.15 215
Patchmatch-test92.65 22591.50 23596.10 20596.85 24190.49 28591.50 35897.19 27282.76 33490.23 23695.59 27695.02 5798.00 23477.41 33996.98 17499.82 101
FMVSNet588.32 29687.47 29890.88 31496.90 23988.39 31597.28 32095.68 34182.60 33584.67 31992.40 34279.83 26991.16 36076.39 34481.51 30093.09 324
COLMAP_ROBcopyleft90.47 1492.18 23491.49 23694.25 26099.00 12288.04 31998.42 29496.70 32082.30 33688.43 27799.01 14976.97 28599.85 9886.11 29696.50 18194.86 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet81.19 32379.34 32886.76 33882.86 36680.36 35997.92 31195.27 35082.09 33772.02 35786.87 35762.81 35090.74 36271.10 35163.08 35989.19 359
EG-PatchMatch MVS85.35 31183.81 31389.99 32490.39 34781.89 34898.21 30396.09 33481.78 33874.73 35593.72 32951.56 36497.12 27579.16 33388.61 24590.96 347
DP-MVS94.54 18193.42 19697.91 14499.46 10794.04 20698.93 25397.48 24781.15 33990.04 23999.55 10887.02 20799.95 6488.97 26498.11 14899.73 112
tpm cat193.51 20592.52 21696.47 19297.77 19391.47 27196.13 33798.06 19480.98 34092.91 21593.78 32889.66 17798.87 17087.03 28896.39 18399.09 195
new_pmnet84.49 31782.92 31989.21 32790.03 35182.60 34296.89 32995.62 34380.59 34175.77 35489.17 35165.04 34594.79 34172.12 35081.02 30790.23 352
MDA-MVSNet-bldmvs84.09 31881.52 32491.81 30991.32 34188.00 32098.67 28095.92 33780.22 34255.60 36793.32 33268.29 33393.60 35273.76 34776.61 34093.82 304
Anonymous2024052185.15 31283.81 31389.16 32888.32 35682.69 34198.80 27095.74 33979.72 34381.53 33490.99 34765.38 34394.16 34572.69 34981.11 30590.63 350
MDA-MVSNet_test_wron85.51 30983.32 31692.10 30590.96 34388.58 31299.20 22396.52 32579.70 34457.12 36692.69 33879.11 27493.86 34977.10 34177.46 33393.86 301
YYNet185.50 31083.33 31592.00 30690.89 34488.38 31699.22 22296.55 32479.60 34557.26 36592.72 33679.09 27593.78 35077.25 34077.37 33493.84 302
MIMVSNet182.58 32280.51 32688.78 33186.68 36084.20 33896.65 33095.41 34778.75 34678.59 34592.44 33951.88 36389.76 36365.26 36278.95 32192.38 336
Patchmtry89.70 28588.49 28793.33 28796.24 25589.94 29891.37 35996.23 33078.22 34787.69 28693.31 33391.04 16096.03 32480.18 32982.10 29594.02 285
N_pmnet80.06 32780.78 32577.89 34591.94 33345.28 37698.80 27056.82 37978.10 34880.08 34193.33 33177.03 28495.76 32968.14 35782.81 29192.64 330
PatchT90.38 27088.75 28495.25 22495.99 26090.16 29191.22 36097.54 23876.80 34997.26 14486.01 35991.88 14696.07 32366.16 36095.91 19299.51 156
Anonymous2023121189.86 28288.44 28894.13 26498.93 12890.68 28098.54 28698.26 17076.28 35086.73 29995.54 27870.60 32497.56 25090.82 24480.27 31594.15 275
test_040285.58 30783.94 31190.50 31893.81 30485.04 33498.55 28495.20 35276.01 35179.72 34295.13 29964.15 34796.26 31666.04 36186.88 26390.21 353
pmmvs685.69 30683.84 31291.26 31390.00 35284.41 33797.82 31396.15 33375.86 35281.29 33595.39 28861.21 35396.87 29183.52 31373.29 34692.50 333
JIA-IIPM91.76 24690.70 24694.94 23296.11 25687.51 32193.16 35298.13 19075.79 35397.58 13877.68 36492.84 12497.97 23588.47 27096.54 17999.33 177
Anonymous2024052992.10 23690.65 24796.47 19298.82 13890.61 28298.72 27598.67 6075.54 35493.90 20498.58 18866.23 33999.90 7994.70 17890.67 22898.90 202
UnsupCasMVSNet_bld79.97 32877.03 33188.78 33185.62 36281.98 34793.66 35097.35 26075.51 35570.79 35983.05 36148.70 36694.91 33978.31 33660.29 36389.46 358
gg-mvs-nofinetune93.51 20591.86 22998.47 11897.72 20097.96 8192.62 35398.51 9874.70 35697.33 14369.59 36798.91 397.79 24397.77 12299.56 10899.67 120
CMPMVSbinary61.59 2184.75 31485.14 30883.57 34290.32 34862.54 36896.98 32797.59 23474.33 35769.95 36096.66 24664.17 34698.32 21287.88 27788.41 25089.84 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft79.82 2083.77 32081.68 32390.03 32388.30 35782.82 34098.46 28995.22 35173.92 35876.00 35291.29 34655.00 36096.94 28768.40 35688.51 24990.34 351
pmmvs380.27 32677.77 33087.76 33680.32 36782.43 34498.23 30191.97 36672.74 35978.75 34487.97 35457.30 35990.99 36170.31 35262.37 36089.87 354
ANet_high56.10 33552.24 33867.66 35149.27 37756.82 37183.94 36482.02 37570.47 36033.28 37464.54 36917.23 37769.16 37245.59 37023.85 37177.02 365
RPMNet89.76 28487.28 29997.19 17396.29 25392.66 23992.01 35698.31 16170.19 36196.94 15085.87 36087.25 20499.78 11562.69 36395.96 19099.13 193
MVS-HIRNet86.22 30583.19 31795.31 22196.71 25090.29 28992.12 35597.33 26362.85 36286.82 29870.37 36669.37 32797.49 25275.12 34697.99 15498.15 215
PMMVS267.15 33264.15 33576.14 34770.56 37262.07 36993.89 34887.52 37458.09 36360.02 36378.32 36322.38 37484.54 36759.56 36547.03 36781.80 363
test_method80.79 32479.70 32784.08 34192.83 32367.06 36699.51 18495.42 34654.34 36481.07 33793.53 33044.48 36792.22 35778.90 33477.23 33592.94 327
FPMVS68.72 33068.72 33268.71 35065.95 37344.27 37895.97 34194.74 35651.13 36553.26 36890.50 35025.11 37383.00 36860.80 36480.97 30978.87 364
Gipumacopyleft66.95 33365.00 33372.79 34891.52 33967.96 36566.16 36895.15 35447.89 36658.54 36467.99 36829.74 37087.54 36550.20 36877.83 32962.87 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet67.77 33164.73 33476.87 34662.95 37556.25 37289.37 36293.74 36444.53 36761.99 36280.74 36220.42 37586.53 36669.37 35559.50 36487.84 360
tmp_tt65.23 33462.94 33772.13 34944.90 37850.03 37481.05 36589.42 37338.45 36848.51 37099.90 1954.09 36178.70 37091.84 22718.26 37287.64 361
PMVScopyleft49.05 2353.75 33651.34 34060.97 35340.80 37934.68 37974.82 36789.62 37237.55 36928.67 37572.12 3657.09 37981.63 36943.17 37168.21 35566.59 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 33752.18 33952.67 35471.51 37045.40 37593.62 35176.60 37736.01 37043.50 37164.13 37027.11 37267.31 37331.06 37326.06 36945.30 372
MVEpermissive53.74 2251.54 33847.86 34262.60 35259.56 37650.93 37379.41 36677.69 37635.69 37136.27 37361.76 3725.79 38169.63 37137.97 37236.61 36867.24 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS51.44 33951.22 34152.11 35570.71 37144.97 37794.04 34775.66 37835.34 37242.40 37261.56 37328.93 37165.87 37427.64 37424.73 37045.49 371
testmvs40.60 34044.45 34329.05 35719.49 38114.11 38299.68 15518.47 38020.74 37364.59 36198.48 19510.95 37817.09 37756.66 36711.01 37355.94 370
test12337.68 34139.14 34433.31 35619.94 38024.83 38198.36 2959.75 38115.53 37451.31 36987.14 35619.62 37617.74 37647.10 3693.47 37557.36 369
wuyk23d20.37 34320.84 34618.99 35865.34 37427.73 38050.43 3697.67 3829.50 3758.01 3766.34 3766.13 38026.24 37523.40 37510.69 3742.99 373
EGC-MVSNET69.38 32963.76 33686.26 33990.32 34881.66 35196.24 33693.85 3630.99 3763.22 37792.33 34352.44 36292.92 35559.53 36684.90 27684.21 362
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.02 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.43 34231.24 3450.00 3590.00 3820.00 3830.00 37098.09 1910.00 3770.00 37899.67 9883.37 2370.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.60 34510.13 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37891.20 1560.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.28 34411.04 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.40 1210.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
eth-test20.00 382
eth-test0.00 382
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 119100.00 199.99 5100.00 1100.00 1
GSMVS99.59 138
test_part299.89 5099.25 1799.49 55
sam_mvs194.72 6799.59 138
sam_mvs94.25 85
ambc83.23 34377.17 36862.61 36787.38 36394.55 35976.72 35086.65 35830.16 36996.36 31184.85 30469.86 34890.73 349
MTGPAbinary98.28 166
test_post195.78 34359.23 37493.20 11797.74 24591.06 236
test_post63.35 37194.43 7298.13 227
patchmatchnet-post91.70 34595.12 5197.95 238
GG-mvs-BLEND98.54 11398.21 16898.01 7793.87 34998.52 9197.92 13197.92 21199.02 297.94 24098.17 10099.58 10799.67 120
MTMP99.87 9296.49 326
test9_res99.71 3399.99 22100.00 1
agg_prior299.48 40100.00 1100.00 1
agg_prior99.93 2798.77 4098.43 11999.63 4099.85 98
test_prior498.05 7599.94 60
test_prior99.43 3899.94 1498.49 6198.65 6199.80 11099.99 24
新几何299.40 198
旧先验199.76 7997.52 9698.64 6499.85 3595.63 4299.94 6199.99 24
原ACMM299.90 78
testdata299.99 4090.54 248
segment_acmp96.68 25
test1299.43 3899.74 8298.56 5798.40 13999.65 3894.76 6699.75 12599.98 3599.99 24
plane_prior795.71 27391.59 269
plane_prior695.76 26891.72 26480.47 265
plane_prior597.87 21198.37 20997.79 12089.55 23294.52 240
plane_prior498.59 186
plane_prior195.73 270
n20.00 383
nn0.00 383
door-mid89.69 371
lessismore_v090.53 31790.58 34680.90 35595.80 33877.01 34895.84 26666.15 34096.95 28683.03 31475.05 34493.74 310
test1198.44 111
door90.31 369
HQP5-MVS91.85 257
BP-MVS97.92 115
HQP4-MVS93.37 20898.39 20494.53 238
HQP3-MVS97.89 20989.60 229
HQP2-MVS80.65 261
NP-MVS95.77 26791.79 25998.65 182
ACMMP++_ref87.04 262
ACMMP++88.23 251
Test By Simon92.82 126