This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.56 196.55 4197.84 892.68 21198.71 9278.11 32399.70 1897.71 7898.18 197.36 5599.76 190.37 4599.94 3399.27 999.54 5799.99 1
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1897.98 4497.18 295.96 8699.33 2192.62 22100.00 198.99 1399.93 199.98 6
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1397.78 6396.61 498.15 3299.53 793.62 14100.00 191.79 14199.80 2399.94 14
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 4198.76 1296.54 597.84 4698.22 11987.49 8699.66 8095.35 9097.78 11599.00 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11797.64 8996.51 795.88 8999.39 1987.35 9399.99 596.61 6299.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 497.84 5396.36 895.20 10398.24 11888.17 7399.83 5796.11 7499.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 597.52 11795.90 997.21 5698.90 7682.66 17199.93 3598.71 1698.80 9599.63 69
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9997.11 16695.83 1098.97 1199.14 4382.48 17499.60 9198.60 1999.08 8098.00 178
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2495.45 27495.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
save fliter99.34 5393.85 5999.65 2497.63 9395.69 11
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7397.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4399.87 799.68 61
CANet_DTU94.31 10493.35 11397.20 5797.03 14294.71 4298.62 14595.54 26995.61 1497.21 5698.47 10971.88 25599.84 5588.38 17897.46 12297.04 202
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10297.04 17395.51 1698.86 1399.11 5082.19 18099.36 12198.59 2198.14 10998.00 178
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 14099.41 5697.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 3096.54 19895.09 1896.84 6898.63 9791.16 2699.77 6799.04 1296.42 13399.81 31
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1898.13 3694.61 1997.78 4799.46 1189.85 5099.81 6297.97 3899.91 499.88 24
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6997.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15697.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9499.06 994.45 2296.42 7998.70 9288.81 6399.74 7095.35 9099.86 1099.97 7
PAPM96.35 4795.94 5697.58 4094.10 23695.25 2098.93 10998.17 3194.26 2393.94 12398.72 8989.68 5497.88 18196.36 6999.29 7499.62 71
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 1097.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
CLD-MVS91.06 17090.71 16892.10 22194.05 23986.10 23399.55 3496.29 21494.16 2684.70 21897.17 15769.62 26997.82 18594.74 10386.08 22492.39 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1497.66 8394.14 2898.13 3399.26 2492.16 2499.66 8097.91 4199.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1597.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1595.20 2699.77 1097.70 7993.95 2999.35 399.54 393.18 18
HQP-NCC93.95 24099.16 7893.92 3187.57 194
ACMP_Plane93.95 24099.16 7893.92 3187.57 194
HQP-MVS91.50 16291.23 15692.29 21593.95 24086.39 22399.16 7896.37 20793.92 3187.57 19496.67 17773.34 24197.77 18993.82 11986.29 21992.72 229
DeepC-MVS91.02 494.56 10093.92 10596.46 9997.16 13490.76 12798.39 17797.11 16693.92 3188.66 18798.33 11478.14 21199.85 5495.02 9798.57 10398.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12199.14 8799.45 193.86 3595.15 10498.73 8788.48 6899.76 6897.23 5099.56 5599.40 89
hse-mvs392.47 14891.95 14494.05 18097.13 13685.01 25798.36 17998.08 3793.85 3696.27 8096.73 17583.19 16099.43 11495.81 7968.09 33097.70 183
hse-mvs291.67 16091.51 15392.15 22096.22 16582.61 28997.74 22297.53 11493.85 3696.27 8096.15 18883.19 16097.44 21395.81 7966.86 33596.40 213
lupinMVS96.32 4995.94 5697.44 4595.05 21494.87 3399.86 296.50 20093.82 3898.04 3898.77 8385.52 12798.09 16896.98 5698.97 8599.37 90
plane_prior86.07 23599.14 8793.81 3986.26 221
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6797.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
plane_prior385.91 23893.65 4186.99 201
PVSNet_Blended95.94 6295.66 6796.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11897.76 13083.50 15199.87 4797.41 4697.75 11698.79 141
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3397.52 11793.59 4398.01 4099.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
jason95.40 7794.86 8197.03 6192.91 26794.23 5299.70 1896.30 21193.56 4496.73 7398.52 10381.46 18997.91 17896.08 7598.47 10698.96 123
jason: jason.
MVS_111021_LR95.78 6995.94 5695.28 14198.19 10687.69 19198.80 12299.26 793.39 4595.04 10698.69 9384.09 14699.76 6896.96 5799.06 8198.38 163
HQP_MVS91.26 16690.95 16192.16 21993.84 24786.07 23599.02 10096.30 21193.38 4686.99 20196.52 17972.92 24597.75 19493.46 12486.17 22292.67 231
plane_prior299.02 10093.38 46
ETV-MVS96.00 5796.00 5496.00 11696.56 15491.05 11999.63 2696.61 18993.26 4897.39 5498.30 11686.62 10898.13 16598.07 3797.57 11798.82 138
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
EPNet_dtu92.28 15092.15 13992.70 21097.29 13084.84 25998.64 14297.82 5592.91 5393.02 13697.02 16385.48 13295.70 29472.25 31494.89 15497.55 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11497.94 4592.89 5496.90 6199.02 5789.78 5199.53 9797.06 5199.26 7699.75 48
OPM-MVS89.76 19589.15 18991.57 23290.53 29685.58 24698.11 20095.93 23992.88 5586.05 20996.47 18267.06 28897.87 18289.29 17186.08 22491.26 278
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11497.93 4692.86 5696.88 6299.02 5789.74 5399.53 9797.03 5299.26 7699.75 48
zzz-MVS96.21 5395.96 5596.96 7099.29 6191.19 11098.69 13497.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
MTAPA96.09 5595.80 6496.96 7099.29 6191.19 11097.23 24297.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
EIA-MVS95.11 8395.27 7594.64 16096.34 16186.51 21899.59 2996.62 18892.51 5994.08 12198.64 9586.05 12298.24 16295.07 9698.50 10599.18 108
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30298.36 2392.50 6095.62 9797.52 14297.92 197.38 21698.31 3398.80 9598.20 174
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12997.90 4892.48 6196.00 8398.95 7088.60 6599.52 10096.44 6798.83 9299.49 83
CS-MVS-test95.99 5996.01 5395.93 12195.70 18390.90 12599.86 296.13 22592.45 6298.17 3198.53 10186.43 11597.62 20297.94 3998.88 8999.26 101
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12997.88 4992.43 6395.97 8598.95 7088.42 6999.51 10196.40 6898.83 9299.49 83
testdata197.89 21192.43 63
PAPR96.35 4795.82 6097.94 2999.63 2194.19 5499.42 5597.55 11092.43 6393.82 12799.12 4687.30 9499.91 3894.02 11399.06 8199.74 51
HY-MVS88.56 795.29 7894.23 9198.48 1197.72 11596.41 1094.03 31098.74 1392.42 6695.65 9694.76 20986.52 11299.49 10495.29 9292.97 16999.53 78
XVS96.47 4496.37 4096.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6598.96 6887.37 8999.87 4795.65 8199.43 6499.78 38
X-MVStestdata90.69 17988.66 19996.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6529.59 36887.37 8999.87 4795.65 8199.43 6499.78 38
UGNet91.91 15790.85 16395.10 14497.06 14088.69 17798.01 20798.24 2792.41 6792.39 14293.61 23060.52 31499.68 7888.14 18197.25 12496.92 204
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS95.97 6095.11 7898.54 1097.62 11996.65 699.44 5098.74 1392.25 7095.21 10298.46 11186.56 11199.46 11195.00 9892.69 17399.50 82
OMC-MVS93.90 11293.62 11094.73 15798.63 9487.00 21198.04 20696.56 19592.19 7192.46 14098.73 8779.49 20199.14 13692.16 13994.34 15998.03 177
ET-MVSNet_ETH3D92.56 14691.45 15495.88 12296.39 15994.13 5599.46 4796.97 17992.18 7266.94 34498.29 11794.65 1194.28 32294.34 11183.82 24099.24 103
CHOSEN 1792x268894.35 10393.82 10795.95 12097.40 12688.74 17698.41 17198.27 2592.18 7291.43 15396.40 18378.88 20499.81 6293.59 12297.81 11299.30 96
CS-MVS95.86 6595.81 6295.98 11895.62 18791.26 10799.80 896.12 22692.15 7497.93 4498.45 11285.88 12597.55 20897.56 4498.80 9599.14 110
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10697.14 13591.10 11699.32 6897.43 13692.10 7591.53 15296.38 18683.29 15799.68 7893.42 12696.37 13498.25 170
Effi-MVS+-dtu89.97 19390.68 16987.81 30195.15 20571.98 34397.87 21495.40 27891.92 7687.57 19491.44 26874.27 23496.84 23289.45 16493.10 16894.60 222
mvs-test191.57 16192.20 13789.70 27495.15 20574.34 33399.51 3995.40 27891.92 7691.02 15997.25 15074.27 23498.08 17189.45 16495.83 14696.67 205
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11199.14 7190.33 13598.49 16397.82 5591.92 7694.75 10998.88 7887.06 9799.48 10995.40 8997.17 12698.70 148
canonicalmvs95.02 8593.96 10298.20 1797.53 12595.92 1498.71 12996.19 22191.78 7995.86 9198.49 10779.53 20099.03 14096.12 7391.42 19699.66 65
EI-MVSNet-UG-set95.43 7495.29 7395.86 12399.07 7789.87 15198.43 16897.80 6091.78 7994.11 12098.77 8386.25 12099.48 10994.95 10096.45 13298.22 172
diffmvs94.59 9994.19 9295.81 12495.54 19090.69 12998.70 13395.68 26091.61 8195.96 8697.81 12780.11 19598.06 17296.52 6595.76 14798.67 149
Vis-MVSNetpermissive92.64 14291.85 14595.03 14995.12 20788.23 18398.48 16496.81 18391.61 8192.16 14497.22 15371.58 26098.00 17785.85 20897.81 11298.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DROMVSNet95.24 8195.28 7495.12 14395.48 19388.95 16999.55 3495.95 23591.59 8397.46 5298.38 11383.18 16297.42 21597.32 4998.58 10298.97 122
3Dnovator87.35 1193.17 13591.77 14897.37 5195.41 19593.07 7698.82 12097.85 5291.53 8482.56 24197.58 14171.97 25499.82 6091.01 14899.23 7899.22 106
alignmvs95.77 7095.00 8098.06 2597.35 12895.68 1699.71 1797.50 12391.50 8596.16 8298.61 9886.28 11999.00 14196.19 7291.74 19099.51 81
PVSNet_BlendedMVS93.36 12893.20 11793.84 18798.77 9091.61 10199.47 4298.04 4091.44 8694.21 11892.63 25183.50 15199.87 4797.41 4683.37 24490.05 310
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3197.57 10791.43 8798.12 3598.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior299.57 3191.43 8798.12 3598.97 6390.43 4098.33 3099.81 19
PVSNet87.13 1293.69 11792.83 12596.28 10797.99 11190.22 13999.38 5998.93 1091.42 8993.66 12897.68 13571.29 26299.64 8687.94 18497.20 12598.98 120
3Dnovator+87.72 893.43 12591.84 14698.17 1895.73 18295.08 2998.92 11197.04 17391.42 8981.48 26597.60 13974.60 22799.79 6590.84 15198.97 8599.64 67
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7897.74 6891.28 9198.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
PMMVS93.62 12293.90 10692.79 20696.79 14881.40 29798.85 11796.81 18391.25 9296.82 7198.15 12377.02 21798.13 16593.15 13096.30 13798.83 137
IB-MVS89.43 692.12 15390.83 16695.98 11895.40 19690.78 12699.81 698.06 3891.23 9385.63 21293.66 22990.63 3798.78 14591.22 14571.85 32098.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2697.73 7291.05 9498.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
baseline93.91 11193.30 11495.72 12795.10 21190.07 14497.48 23195.91 24491.03 9593.54 12997.68 13579.58 19898.02 17594.27 11295.14 15299.08 115
casdiffmvs93.98 10993.43 11295.61 13195.07 21389.86 15298.80 12295.84 25290.98 9692.74 13897.66 13779.71 19798.10 16794.72 10495.37 15198.87 133
DWT-MVSNet_test94.36 10293.95 10395.62 12996.99 14389.47 16096.62 26697.38 14190.96 9793.07 13597.27 14993.73 1398.09 16885.86 20793.65 16499.29 97
#test#96.48 4396.34 4296.90 7499.69 990.96 12299.53 3897.81 5890.94 9896.88 6299.05 5487.57 8399.96 2795.87 7899.72 3099.78 38
UA-Net93.30 13092.62 12995.34 13996.27 16388.53 18195.88 28996.97 17990.90 9995.37 10097.07 16182.38 17799.10 13883.91 23094.86 15598.38 163
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11697.59 10290.66 10097.98 4199.14 4386.59 109100.00 196.47 6699.46 6099.89 23
mPP-MVS95.90 6495.75 6596.38 10499.58 2989.41 16299.26 7097.41 13890.66 10094.82 10898.95 7086.15 12199.98 1095.24 9399.64 4399.74 51
PAPM_NR95.43 7495.05 7996.57 9599.42 4990.14 14098.58 15397.51 12090.65 10292.44 14198.90 7687.77 8199.90 4090.88 15099.32 7199.68 61
MP-MVScopyleft96.00 5795.82 6096.54 9699.47 4690.13 14299.36 6397.41 13890.64 10395.49 9898.95 7085.51 12999.98 1096.00 7799.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
region2R96.30 5096.17 4796.70 8899.70 890.31 13699.46 4797.66 8390.55 10497.07 5999.07 5186.85 10199.97 2095.43 8899.74 2899.81 31
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12299.47 4297.81 5890.54 10596.88 6299.05 5487.57 8399.96 2795.65 8199.72 3099.78 38
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13499.47 4297.80 6090.54 10596.83 7099.03 5686.51 11399.95 3095.65 8199.72 3099.75 48
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16598.59 15197.33 14690.44 10796.84 6899.12 4686.75 10399.41 11797.47 4599.44 6399.76 47
EPMVS92.59 14591.59 15195.59 13297.22 13290.03 14891.78 32898.04 4090.42 10891.66 14890.65 28786.49 11497.46 21181.78 25196.31 13699.28 99
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6497.64 8990.38 10997.98 4199.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
ACMMPcopyleft94.67 9594.30 8995.79 12599.25 6488.13 18598.41 17198.67 1990.38 10991.43 15398.72 8982.22 17999.95 3093.83 11895.76 14799.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8494.26 9097.55 4398.07 10993.88 5898.68 13698.73 1590.33 11197.16 5897.43 14679.19 20399.53 9796.91 5891.85 18899.24 103
test117295.92 6396.07 5295.46 13499.42 4987.24 20998.51 15997.24 15090.29 11296.56 7899.12 4686.73 10599.36 12197.33 4899.42 6799.78 38
test-LLR93.11 13692.68 12794.40 16794.94 21987.27 20599.15 8497.25 14890.21 11391.57 14994.04 21584.89 13897.58 20485.94 20496.13 13998.36 166
test0.0.03 188.96 20588.61 20090.03 26791.09 29084.43 26498.97 10697.02 17690.21 11380.29 27596.31 18784.89 13891.93 34572.98 31185.70 22793.73 224
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5997.66 8390.18 11598.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
test_899.55 3593.07 7699.37 6297.64 8990.18 11598.36 2999.19 3290.94 3099.64 86
131493.44 12491.98 14397.84 3095.24 19894.38 5096.22 27997.92 4790.18 11582.28 24797.71 13477.63 21499.80 6491.94 14098.67 10099.34 93
CVMVSNet90.30 18490.91 16288.46 29794.32 23273.58 33797.61 22897.59 10290.16 11888.43 19097.10 15976.83 21892.86 33182.64 24293.54 16598.93 128
MVSTER92.71 14092.32 13393.86 18697.29 13092.95 8299.01 10296.59 19190.09 11985.51 21394.00 21994.61 1296.56 24490.77 15383.03 24692.08 247
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7897.44 13490.08 12098.59 2299.07 5189.06 5999.42 11597.92 4099.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15899.70 1897.61 9690.07 12196.00 8399.16 3987.43 8799.92 3696.03 7699.72 3099.70 57
SCA90.64 18089.25 18794.83 15394.95 21888.83 17296.26 27697.21 15490.06 12290.03 17590.62 28966.61 29096.81 23483.16 23694.36 15898.84 134
baseline294.04 10793.80 10894.74 15693.07 26590.25 13798.12 19898.16 3389.86 12386.53 20896.95 16695.56 598.05 17391.44 14394.53 15695.93 217
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4297.52 11789.85 12498.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
baseline192.61 14491.28 15596.58 9497.05 14194.63 4497.72 22396.20 21989.82 12588.56 18896.85 17186.85 10197.82 18588.42 17780.10 26197.30 193
PVSNet_083.28 1687.31 23685.16 25093.74 19094.78 22484.59 26298.91 11298.69 1889.81 12678.59 29693.23 23961.95 30999.34 12694.75 10255.72 35297.30 193
bset_n11_16_dypcd89.07 20387.85 21092.76 20886.16 33990.66 13197.30 23695.62 26389.78 12783.94 22693.15 24374.85 22495.89 28891.34 14478.48 26791.74 255
ZNCC-MVS96.09 5595.81 6296.95 7299.42 4991.19 11099.55 3497.53 11489.72 12895.86 9198.94 7586.59 10999.97 2095.13 9499.56 5599.68 61
GST-MVS95.97 6095.66 6796.90 7499.49 4591.22 10899.45 4997.48 12689.69 12995.89 8898.72 8986.37 11899.95 3094.62 10799.22 7999.52 79
GA-MVS90.10 19088.69 19894.33 16992.44 27187.97 18999.08 9396.26 21589.65 13086.92 20393.11 24468.09 27896.96 22882.54 24490.15 20698.05 176
SR-MVS-dyc-post95.75 7295.86 5995.41 13799.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6386.73 10599.36 12196.62 6099.31 7299.60 73
RE-MVS-def95.70 6699.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6385.24 13596.62 6099.31 7299.60 73
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 5097.45 13089.60 13398.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
MDTV_nov1_ep1390.47 17396.14 17288.55 17991.34 33197.51 12089.58 13492.24 14390.50 29786.99 10097.61 20377.64 27792.34 179
TEST999.57 3393.17 7299.38 5997.66 8389.57 13598.39 2799.18 3590.88 3299.66 80
PatchmatchNetpermissive92.05 15591.04 15995.06 14796.17 17089.04 16591.26 33297.26 14789.56 13690.64 16590.56 29388.35 7197.11 22279.53 26396.07 14399.03 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7897.65 8889.55 13799.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
sss94.85 8893.94 10497.58 4096.43 15894.09 5698.93 10999.16 889.50 13895.27 10197.85 12581.50 18799.65 8492.79 13594.02 16198.99 119
ACMP87.39 1088.71 21688.24 20790.12 26393.91 24581.06 30598.50 16195.67 26189.43 13980.37 27395.55 19765.67 29597.83 18490.55 15484.51 23291.47 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1496.87 2699.34 5399.50 4097.49 12589.41 14098.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
abl_694.63 9794.48 8695.09 14598.61 9686.96 21298.06 20596.97 17989.31 14195.86 9198.56 10079.82 19699.64 8694.53 10998.65 10198.66 152
thres20093.69 11792.59 13096.97 6997.76 11494.74 4099.35 6499.36 289.23 14291.21 15896.97 16583.42 15498.77 14685.08 21190.96 19997.39 191
PGM-MVS95.85 6695.65 6996.45 10099.50 4389.77 15498.22 18998.90 1189.19 14396.74 7298.95 7085.91 12499.92 3693.94 11499.46 6099.66 65
TESTMET0.1,193.82 11493.26 11695.49 13395.21 20090.25 13799.15 8497.54 11389.18 14491.79 14594.87 20789.13 5897.63 20086.21 20096.29 13898.60 153
UniMVSNet (Re)89.50 20088.32 20693.03 20092.21 27490.96 12298.90 11398.39 2289.13 14583.22 23092.03 25581.69 18596.34 26486.79 19672.53 31391.81 254
FIs90.70 17889.87 17793.18 19892.29 27291.12 11498.17 19598.25 2689.11 14683.44 22994.82 20882.26 17896.17 27387.76 18582.76 24892.25 239
tpmrst92.78 13992.16 13894.65 15996.27 16387.45 19991.83 32797.10 16989.10 14794.68 11190.69 28488.22 7297.73 19689.78 16191.80 18998.77 144
RRT_MVS91.95 15691.09 15794.53 16396.71 15295.12 2898.64 14296.23 21789.04 14885.24 21595.06 20487.71 8296.43 25489.10 17482.06 25392.05 249
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 9097.44 13489.02 14997.90 4599.22 2988.90 6299.49 10494.63 10699.79 2599.68 61
原ACMM196.18 10999.03 7890.08 14397.63 9388.98 15097.00 6098.97 6388.14 7599.71 7388.23 18099.62 4798.76 145
XVG-OURS90.83 17590.49 17291.86 22495.23 19981.25 30195.79 29495.92 24088.96 15190.02 17698.03 12471.60 25999.35 12591.06 14787.78 21494.98 220
MP-MVS-pluss95.80 6895.30 7297.29 5298.95 8392.66 8498.59 15197.14 16288.95 15293.12 13399.25 2585.62 12699.94 3396.56 6499.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test-mter93.27 13292.89 12494.40 16794.94 21987.27 20599.15 8497.25 14888.95 15291.57 14994.04 21588.03 7797.58 20485.94 20496.13 13998.36 166
APD-MVS_3200maxsize95.64 7395.65 6995.62 12999.24 6587.80 19098.42 16997.22 15388.93 15496.64 7798.98 6285.49 13099.36 12196.68 5999.27 7599.70 57
CR-MVSNet88.83 21187.38 21893.16 19993.47 25586.24 22784.97 34894.20 31388.92 15590.76 16386.88 33184.43 14294.82 31470.64 31892.17 18498.41 160
DU-MVS88.83 21187.51 21592.79 20691.46 28690.07 14498.71 12997.62 9588.87 15683.21 23193.68 22774.63 22595.93 28386.95 19372.47 31492.36 236
FC-MVSNet-test90.22 18689.40 18492.67 21291.78 28289.86 15297.89 21198.22 2888.81 15782.96 23694.66 21081.90 18495.96 28185.89 20682.52 25192.20 243
USDC84.74 27182.93 27590.16 26291.73 28383.54 27495.00 30093.30 32688.77 15873.19 32393.30 23753.62 33697.65 19975.88 29181.54 25689.30 320
testgi82.29 29281.00 29586.17 31287.24 33374.84 33297.39 23291.62 34488.63 15975.85 31195.42 20146.07 35191.55 34666.87 33279.94 26292.12 245
VPNet88.30 22186.57 23093.49 19391.95 27891.35 10698.18 19397.20 15888.61 16084.52 22194.89 20662.21 30896.76 23789.34 16872.26 31792.36 236
miper_enhance_ethall90.33 18389.70 17892.22 21697.12 13788.93 17098.35 18095.96 23388.60 16183.14 23592.33 25387.38 8896.18 27286.49 19877.89 27191.55 265
IS-MVSNet93.00 13792.51 13194.49 16496.14 17287.36 20298.31 18495.70 25888.58 16290.17 17397.50 14383.02 16497.22 21987.06 19096.07 14398.90 130
RRT_test8_iter0591.04 17290.40 17492.95 20396.20 16989.75 15598.97 10696.38 20688.52 16382.00 25593.51 23490.69 3696.73 23890.43 15576.91 27992.38 235
PS-MVSNAJss89.54 19989.05 19091.00 24188.77 31784.36 26597.39 23295.97 23188.47 16481.88 25893.80 22582.48 17496.50 24889.34 16883.34 24592.15 244
jajsoiax87.35 23586.51 23289.87 26887.75 33181.74 29497.03 24995.98 23088.47 16480.15 27793.80 22561.47 31096.36 25889.44 16684.47 23491.50 266
Fast-Effi-MVS+-dtu88.84 20988.59 20289.58 27893.44 25878.18 32198.65 14094.62 30388.46 16684.12 22495.37 20268.91 27196.52 24782.06 24891.70 19294.06 223
tfpn200view993.43 12592.27 13596.90 7497.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20197.12 197
thres40093.39 12792.27 13596.73 8597.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20196.61 206
LCM-MVSNet-Re88.59 21788.61 20088.51 29695.53 19172.68 34196.85 25688.43 35788.45 16773.14 32490.63 28875.82 21994.38 32192.95 13195.71 14998.48 158
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 9097.38 14188.44 17098.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
PLCcopyleft91.07 394.23 10594.01 9894.87 15199.17 7087.49 19799.25 7196.55 19688.43 17191.26 15698.21 12185.92 12399.86 5289.77 16297.57 11797.24 195
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-OURS-SEG-HR90.95 17390.66 17091.83 22595.18 20481.14 30495.92 28695.92 24088.40 17290.33 17297.85 12570.66 26599.38 11992.83 13488.83 21094.98 220
UniMVSNet_NR-MVSNet89.60 19788.55 20392.75 20992.17 27590.07 14498.74 12898.15 3488.37 17383.21 23193.98 22082.86 16695.93 28386.95 19372.47 31492.25 239
MAR-MVS94.43 10194.09 9695.45 13599.10 7587.47 19898.39 17797.79 6288.37 17394.02 12299.17 3778.64 20999.91 3892.48 13698.85 9198.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Vis-MVSNet (Re-imp)93.26 13393.00 12394.06 17996.14 17286.71 21798.68 13696.70 18688.30 17589.71 18197.64 13885.43 13396.39 25688.06 18396.32 13599.08 115
1112_ss92.71 14091.55 15296.20 10895.56 18991.12 11498.48 16494.69 30188.29 17686.89 20498.50 10587.02 9898.66 15384.75 21689.77 20898.81 139
Test_1112_low_res92.27 15190.97 16096.18 10995.53 19191.10 11698.47 16694.66 30288.28 17786.83 20693.50 23587.00 9998.65 15484.69 21789.74 20998.80 140
gm-plane-assit94.69 22688.14 18488.22 17897.20 15498.29 16090.79 152
mvs_tets87.09 23886.22 23589.71 27387.87 32781.39 29896.73 26395.90 24588.19 17979.99 27993.61 23059.96 31696.31 26689.40 16784.34 23591.43 270
BH-w/o92.32 14991.79 14793.91 18596.85 14586.18 23099.11 9295.74 25688.13 18084.81 21797.00 16477.26 21697.91 17889.16 17398.03 11097.64 184
nrg03090.23 18588.87 19394.32 17091.53 28593.54 6598.79 12695.89 24788.12 18184.55 22094.61 21178.80 20796.88 23192.35 13875.21 28592.53 233
AUN-MVS90.17 18889.50 18192.19 21896.21 16682.67 28797.76 22197.53 11488.05 18291.67 14796.15 18883.10 16397.47 21088.11 18266.91 33496.43 212
D2MVS87.96 22587.39 21789.70 27491.84 28183.40 27598.31 18498.49 2088.04 18378.23 30090.26 29973.57 23996.79 23684.21 22383.53 24288.90 325
NR-MVSNet87.74 23186.00 23992.96 20291.46 28690.68 13096.65 26597.42 13788.02 18473.42 32293.68 22777.31 21595.83 29084.26 22271.82 32192.36 236
thres100view90093.34 12992.15 13996.90 7497.62 11994.84 3599.06 9699.36 287.96 18590.47 16996.78 17383.29 15798.75 14884.11 22690.69 20197.12 197
thres600view793.18 13492.00 14296.75 8397.62 11994.92 3199.07 9499.36 287.96 18590.47 16996.78 17383.29 15798.71 15282.93 24090.47 20596.61 206
CDS-MVSNet93.47 12393.04 12194.76 15494.75 22589.45 16198.82 12097.03 17587.91 18790.97 16096.48 18189.06 5996.36 25889.50 16392.81 17298.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM86.95 1388.77 21488.22 20890.43 25593.61 25281.34 29998.50 16195.92 24087.88 18883.85 22795.20 20367.20 28697.89 18086.90 19584.90 23092.06 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm89.67 19688.95 19291.82 22692.54 27081.43 29692.95 31895.92 24087.81 18990.50 16889.44 31284.99 13695.65 29583.67 23382.71 24998.38 163
ZD-MVS99.67 1393.28 7097.61 9687.78 19097.41 5399.16 3990.15 4799.56 9398.35 2999.70 35
TranMVSNet+NR-MVSNet87.75 22986.31 23492.07 22290.81 29388.56 17898.33 18197.18 15987.76 19181.87 25993.90 22272.45 24995.43 30083.13 23871.30 32492.23 241
PatchMatch-RL91.47 16390.54 17194.26 17298.20 10486.36 22596.94 25297.14 16287.75 19288.98 18595.75 19571.80 25799.40 11880.92 25697.39 12397.02 203
BH-RMVSNet91.25 16889.99 17695.03 14996.75 14988.55 17998.65 14094.95 29487.74 19387.74 19397.80 12868.27 27798.14 16480.53 26097.49 12198.41 160
LPG-MVS_test88.86 20888.47 20590.06 26493.35 26080.95 30698.22 18995.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
LGP-MVS_train90.06 26493.35 26080.95 30695.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
MVS_Test93.67 12092.67 12896.69 8996.72 15092.66 8497.22 24396.03 22987.69 19695.12 10594.03 21781.55 18698.28 16189.17 17296.46 13199.14 110
ITE_SJBPF87.93 29992.26 27376.44 32793.47 32587.67 19779.95 28095.49 20056.50 32497.38 21675.24 29482.33 25289.98 312
HyFIR lowres test93.68 11993.29 11594.87 15197.57 12388.04 18798.18 19398.47 2187.57 19891.24 15795.05 20585.49 13097.46 21193.22 12892.82 17099.10 113
thisisatest051594.75 9094.19 9296.43 10196.13 17592.64 8899.47 4297.60 9887.55 19993.17 13297.59 14094.71 998.42 15688.28 17993.20 16698.24 171
TAMVS92.62 14392.09 14194.20 17494.10 23687.68 19298.41 17196.97 17987.53 20089.74 17996.04 19284.77 14196.49 25088.97 17592.31 18098.42 159
MDTV_nov1_ep13_2view91.17 11391.38 33087.45 20193.08 13486.67 10787.02 19198.95 127
XVG-ACMP-BASELINE85.86 25884.95 25488.57 29489.90 30277.12 32694.30 30695.60 26687.40 20282.12 25092.99 24753.42 33797.66 19885.02 21383.83 23890.92 286
HPM-MVScopyleft95.41 7695.22 7695.99 11799.29 6189.14 16399.17 7797.09 17087.28 20395.40 9998.48 10884.93 13799.38 11995.64 8599.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
无先验98.52 15697.82 5587.20 20499.90 4087.64 18799.85 29
VDD-MVS91.24 16990.18 17594.45 16697.08 13985.84 24298.40 17496.10 22786.99 20593.36 13098.16 12254.27 33499.20 13096.59 6390.63 20498.31 169
WR-MVS88.54 21887.22 22292.52 21391.93 28089.50 15998.56 15497.84 5386.99 20581.87 25993.81 22474.25 23695.92 28585.29 20974.43 29492.12 245
Effi-MVS+93.87 11393.15 11896.02 11595.79 17990.76 12796.70 26495.78 25386.98 20795.71 9497.17 15779.58 19898.01 17694.57 10896.09 14199.31 95
CostFormer92.89 13892.48 13294.12 17794.99 21685.89 23992.89 31997.00 17886.98 20795.00 10790.78 28090.05 4897.51 20992.92 13391.73 19198.96 123
VPA-MVSNet89.10 20287.66 21493.45 19492.56 26991.02 12097.97 20998.32 2486.92 20986.03 21092.01 25768.84 27397.10 22490.92 14975.34 28492.23 241
MVSFormer94.71 9494.08 9796.61 9295.05 21494.87 3397.77 21996.17 22286.84 21098.04 3898.52 10385.52 12795.99 27989.83 15998.97 8598.96 123
test_djsdf88.26 22387.73 21289.84 27088.05 32682.21 29197.77 21996.17 22286.84 21082.41 24591.95 26072.07 25395.99 27989.83 15984.50 23391.32 275
AdaColmapbinary93.82 11493.06 11996.10 11399.88 189.07 16498.33 18197.55 11086.81 21290.39 17198.65 9475.09 22399.98 1093.32 12797.53 12099.26 101
test_yl95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
DCV-MVSNet95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
mvs_anonymous92.50 14791.65 15095.06 14796.60 15389.64 15797.06 24896.44 20486.64 21584.14 22393.93 22182.49 17396.17 27391.47 14296.08 14299.35 91
thisisatest053094.00 10893.52 11195.43 13695.76 18190.02 14998.99 10497.60 9886.58 21691.74 14697.36 14894.78 898.34 15786.37 19992.48 17797.94 180
DP-MVS Recon95.85 6695.15 7797.95 2899.87 294.38 5099.60 2897.48 12686.58 21694.42 11499.13 4587.36 9299.98 1093.64 12198.33 10899.48 85
F-COLMAP92.07 15491.75 14993.02 20198.16 10782.89 28398.79 12695.97 23186.54 21887.92 19297.80 12878.69 20899.65 8485.97 20295.93 14596.53 211
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1898.05 3986.48 21998.05 3799.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
DeepMVS_CXcopyleft76.08 33690.74 29551.65 36290.84 34986.47 22057.89 35387.98 31935.88 35992.60 33565.77 33565.06 33883.97 350
BH-untuned91.46 16490.84 16493.33 19696.51 15784.83 26098.84 11995.50 27186.44 22183.50 22896.70 17675.49 22297.77 18986.78 19797.81 11297.40 190
CNLPA93.64 12192.74 12696.36 10598.96 8290.01 15099.19 7395.89 24786.22 22289.40 18298.85 7980.66 19499.84 5588.57 17696.92 12799.24 103
OurMVSNet-221017-084.13 28383.59 27285.77 31587.81 32870.24 34694.89 30193.65 32286.08 22376.53 30493.28 23861.41 31196.14 27580.95 25577.69 27690.93 285
tttt051793.30 13093.01 12294.17 17595.57 18886.47 22098.51 15997.60 9885.99 22490.55 16697.19 15594.80 798.31 15885.06 21291.86 18797.74 182
FMVSNet388.81 21387.08 22393.99 18396.52 15694.59 4598.08 20396.20 21985.85 22582.12 25091.60 26574.05 23795.40 30279.04 26780.24 25891.99 251
HPM-MVS_fast94.89 8694.62 8395.70 12899.11 7388.44 18299.14 8797.11 16685.82 22695.69 9598.47 10983.46 15399.32 12793.16 12999.63 4699.35 91
旧先验298.67 13885.75 22798.96 1298.97 14293.84 117
ab-mvs91.05 17189.17 18896.69 8995.96 17691.72 9892.62 32397.23 15285.61 22889.74 17993.89 22368.55 27499.42 11591.09 14687.84 21398.92 129
新几何197.40 4898.92 8492.51 9197.77 6585.52 22996.69 7499.06 5388.08 7699.89 4384.88 21599.62 4799.79 34
TR-MVS90.77 17689.44 18394.76 15496.31 16288.02 18897.92 21095.96 23385.52 22988.22 19197.23 15266.80 28998.09 16884.58 21992.38 17898.17 175
112195.19 8294.45 8797.42 4698.88 8692.58 8996.22 27997.75 6685.50 23196.86 6599.01 6188.59 6799.90 4087.64 18799.60 5299.79 34
CP-MVSNet86.54 24885.45 24889.79 27291.02 29282.78 28697.38 23497.56 10985.37 23279.53 28693.03 24571.86 25695.25 30579.92 26273.43 30791.34 274
EU-MVSNet84.19 28184.42 26583.52 32688.64 32067.37 35296.04 28595.76 25585.29 23378.44 29793.18 24070.67 26491.48 34775.79 29275.98 28191.70 256
testdata95.26 14298.20 10487.28 20497.60 9885.21 23498.48 2599.15 4188.15 7498.72 15190.29 15699.45 6299.78 38
IterMVS-LS88.34 22087.44 21691.04 24094.10 23685.85 24198.10 20195.48 27285.12 23582.03 25491.21 27381.35 19095.63 29683.86 23175.73 28391.63 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 19489.38 18591.36 23594.32 23285.87 24097.61 22896.59 19185.10 23685.51 21397.10 15981.30 19196.56 24483.85 23283.03 24691.64 257
IterMVS85.81 26084.67 26089.22 28593.51 25483.67 27396.32 27394.80 29785.09 23778.69 29290.17 30666.57 29293.17 33079.48 26577.42 27790.81 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.78 591.26 16689.63 17996.16 11295.44 19491.58 10395.29 29896.10 22785.07 23882.75 23797.45 14578.28 21099.78 6680.60 25995.65 15097.12 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet289.57 19888.79 19691.91 22397.94 11287.62 19497.98 20896.51 19985.03 23982.37 24691.79 26183.65 14996.50 24885.96 20377.89 27191.61 262
IterMVS-SCA-FT85.73 26384.64 26189.00 29093.46 25782.90 28296.27 27494.70 30085.02 24078.62 29490.35 29866.61 29093.33 32779.38 26677.36 27890.76 292
Fast-Effi-MVS+91.72 15990.79 16794.49 16495.89 17787.40 20199.54 3795.70 25885.01 24189.28 18495.68 19677.75 21397.57 20783.22 23595.06 15398.51 156
WR-MVS_H86.53 24985.49 24789.66 27791.04 29183.31 27797.53 23098.20 3084.95 24279.64 28390.90 27878.01 21295.33 30376.29 28872.81 30990.35 302
MVS93.92 11092.28 13498.83 495.69 18496.82 596.22 27998.17 3184.89 24384.34 22298.61 9879.32 20299.83 5793.88 11699.43 6499.86 28
PS-CasMVS85.81 26084.58 26289.49 28290.77 29482.11 29297.20 24497.36 14484.83 24479.12 29192.84 24867.42 28595.16 30778.39 27473.25 30891.21 279
dp90.16 18988.83 19594.14 17696.38 16086.42 22191.57 32997.06 17284.76 24588.81 18690.19 30584.29 14497.43 21475.05 29591.35 19898.56 154
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 34974.94 33191.98 32696.31 21084.64 24665.84 34887.71 32151.33 34192.23 34172.89 31256.50 35189.56 318
v2v48287.27 23785.76 24291.78 23189.59 30687.58 19598.56 15495.54 26984.53 24782.51 24291.78 26273.11 24496.47 25182.07 24774.14 30091.30 276
EPP-MVSNet93.75 11693.67 10994.01 18295.86 17885.70 24498.67 13897.66 8384.46 24891.36 15597.18 15691.16 2697.79 18792.93 13293.75 16298.53 155
PEN-MVS85.21 26883.93 27089.07 28989.89 30381.31 30097.09 24797.24 15084.45 24978.66 29392.68 25068.44 27694.87 31275.98 29070.92 32591.04 283
SixPastTwentyTwo82.63 29181.58 28985.79 31488.12 32571.01 34595.17 29992.54 33284.33 25072.93 32892.08 25460.41 31595.61 29774.47 30074.15 29990.75 293
miper_ehance_all_eth88.94 20688.12 20991.40 23395.32 19786.93 21397.85 21595.55 26884.19 25181.97 25691.50 26784.16 14595.91 28684.69 21777.89 27191.36 273
eth_miper_zixun_eth87.76 22887.00 22590.06 26494.67 22782.65 28897.02 25195.37 28184.19 25181.86 26191.58 26681.47 18895.90 28783.24 23473.61 30391.61 262
XXY-MVS87.75 22986.02 23892.95 20390.46 29789.70 15697.71 22595.90 24584.02 25380.95 26794.05 21467.51 28497.10 22485.16 21078.41 26892.04 250
tpm291.77 15891.09 15793.82 18894.83 22385.56 24792.51 32497.16 16184.00 25493.83 12690.66 28687.54 8597.17 22087.73 18691.55 19498.72 146
anonymousdsp86.69 24485.75 24389.53 27986.46 33782.94 28096.39 27095.71 25783.97 25579.63 28490.70 28368.85 27295.94 28286.01 20184.02 23789.72 315
GeoE90.60 18189.56 18093.72 19195.10 21185.43 24899.41 5694.94 29583.96 25687.21 20096.83 17274.37 23297.05 22680.50 26193.73 16398.67 149
v14886.38 25185.06 25190.37 25989.47 31184.10 26898.52 15695.48 27283.80 25780.93 26890.22 30374.60 22796.31 26680.92 25671.55 32290.69 296
MS-PatchMatch86.75 24385.92 24089.22 28591.97 27782.47 29096.91 25396.14 22483.74 25877.73 30193.53 23358.19 31997.37 21876.75 28498.35 10787.84 331
test22298.32 10191.21 10998.08 20397.58 10483.74 25895.87 9099.02 5786.74 10499.64 4399.81 31
K. test v381.04 29879.77 30184.83 31987.41 33270.23 34795.60 29693.93 31783.70 26067.51 34289.35 31455.76 32593.58 32676.67 28568.03 33190.67 297
V4287.00 23985.68 24490.98 24289.91 30186.08 23498.32 18395.61 26583.67 26182.72 23890.67 28574.00 23896.53 24681.94 25074.28 29790.32 303
API-MVS94.78 8994.18 9496.59 9399.21 6890.06 14798.80 12297.78 6383.59 26293.85 12599.21 3083.79 14899.97 2092.37 13799.00 8499.74 51
DTE-MVSNet84.14 28282.80 27788.14 29888.95 31679.87 31296.81 25796.24 21683.50 26377.60 30292.52 25267.89 28294.24 32372.64 31369.05 32890.32 303
cl_fuxian88.19 22487.23 22191.06 23994.97 21786.17 23197.72 22395.38 28083.43 26481.68 26391.37 26982.81 16795.72 29384.04 22973.70 30291.29 277
LFMVS92.23 15290.84 16496.42 10298.24 10391.08 11898.24 18896.22 21883.39 26594.74 11098.31 11561.12 31398.85 14394.45 11092.82 17099.32 94
LF4IMVS81.94 29581.17 29484.25 32387.23 33468.87 35193.35 31691.93 34183.35 26675.40 31393.00 24649.25 34896.65 24078.88 27078.11 27087.22 338
v114486.83 24285.31 24991.40 23389.75 30487.21 21098.31 18495.45 27483.22 26782.70 23990.78 28073.36 24096.36 25879.49 26474.69 29190.63 298
CPTT-MVS94.60 9894.43 8895.09 14599.66 1586.85 21499.44 5097.47 12883.22 26794.34 11798.96 6882.50 17299.55 9494.81 10199.50 5898.88 131
Patchmatch-RL test81.90 29680.13 29987.23 30680.71 35370.12 34884.07 35288.19 35883.16 26970.57 33282.18 34487.18 9592.59 33682.28 24662.78 34098.98 120
ADS-MVSNet287.62 23386.88 22689.86 26996.21 16679.14 31487.15 34192.99 32783.01 27089.91 17787.27 32778.87 20592.80 33474.20 30292.27 18197.64 184
ADS-MVSNet88.99 20487.30 21994.07 17896.21 16687.56 19687.15 34196.78 18583.01 27089.91 17787.27 32778.87 20597.01 22774.20 30292.27 18197.64 184
GBi-Net86.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
test186.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
FMVSNet286.90 24084.79 25893.24 19795.11 20892.54 9097.67 22695.86 25182.94 27280.55 27191.17 27462.89 30595.29 30477.23 27879.71 26491.90 253
cl-mvsnet187.82 22686.81 22790.87 24694.87 22285.39 25097.81 21695.22 29282.92 27580.76 26991.31 27181.99 18195.81 29181.36 25275.04 28791.42 271
cl-mvsnet____87.82 22686.79 22890.89 24594.88 22185.43 24897.81 21695.24 28882.91 27680.71 27091.22 27281.97 18395.84 28981.34 25375.06 28691.40 272
CSCG94.87 8794.71 8295.36 13899.54 3686.49 21999.34 6698.15 3482.71 27790.15 17499.25 2589.48 5699.86 5294.97 9998.82 9499.72 54
OpenMVScopyleft85.28 1490.75 17788.84 19496.48 9893.58 25393.51 6698.80 12297.41 13882.59 27878.62 29497.49 14468.00 28099.82 6084.52 22098.55 10496.11 216
114514_t94.06 10693.05 12097.06 6099.08 7692.26 9398.97 10697.01 17782.58 27992.57 13998.22 11980.68 19399.30 12889.34 16899.02 8399.63 69
pmmvs487.58 23486.17 23791.80 22789.58 30788.92 17197.25 24095.28 28482.54 28080.49 27293.17 24175.62 22196.05 27882.75 24178.90 26590.42 301
v119286.32 25284.71 25991.17 23789.53 30986.40 22298.13 19695.44 27682.52 28182.42 24490.62 28971.58 26096.33 26577.23 27874.88 28890.79 290
v14419286.40 25084.89 25590.91 24389.48 31085.59 24598.21 19195.43 27782.45 28282.62 24090.58 29272.79 24896.36 25878.45 27374.04 30190.79 290
TAPA-MVS87.50 990.35 18289.05 19094.25 17398.48 10085.17 25498.42 16996.58 19482.44 28387.24 19998.53 10182.77 16898.84 14459.09 34997.88 11198.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_lstm_enhance86.90 24086.20 23689.00 29094.53 22981.19 30296.74 26295.24 28882.33 28480.15 27790.51 29681.99 18194.68 31880.71 25873.58 30491.12 281
test_part188.43 21986.68 22993.67 19297.56 12492.40 9298.12 19896.55 19682.26 28580.31 27493.16 24274.59 22996.62 24185.00 21472.61 31291.99 251
v192192086.02 25584.44 26490.77 24889.32 31285.20 25298.10 20195.35 28382.19 28682.25 24890.71 28270.73 26396.30 26976.85 28374.49 29390.80 289
MVP-Stereo86.61 24785.83 24188.93 29288.70 31983.85 27296.07 28494.41 30982.15 28775.64 31291.96 25967.65 28396.45 25377.20 28098.72 9886.51 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v886.11 25484.45 26391.10 23889.99 30086.85 21497.24 24195.36 28281.99 28879.89 28189.86 30874.53 23096.39 25678.83 27172.32 31690.05 310
tpmvs89.16 20187.76 21193.35 19597.19 13384.75 26190.58 33897.36 14481.99 28884.56 21989.31 31583.98 14798.17 16374.85 29890.00 20797.12 197
pm-mvs184.68 27382.78 27990.40 25689.58 30785.18 25397.31 23594.73 29981.93 29076.05 30792.01 25765.48 29796.11 27678.75 27269.14 32789.91 313
v124085.77 26284.11 26790.73 24989.26 31385.15 25597.88 21395.23 29181.89 29182.16 24990.55 29469.60 27096.31 26675.59 29374.87 28990.72 295
test20.0378.51 31277.48 30781.62 33283.07 34771.03 34496.11 28392.83 33081.66 29269.31 33589.68 31057.53 32087.29 35558.65 35068.47 32986.53 341
pmmvs585.87 25784.40 26690.30 26088.53 32184.23 26698.60 14993.71 32081.53 29380.29 27592.02 25664.51 30095.52 29882.04 24978.34 26991.15 280
MIMVSNet84.48 27781.83 28792.42 21491.73 28387.36 20285.52 34494.42 30881.40 29481.91 25787.58 32251.92 34092.81 33373.84 30588.15 21297.08 201
our_test_384.47 27882.80 27789.50 28089.01 31483.90 27197.03 24994.56 30481.33 29575.36 31490.52 29571.69 25894.54 32068.81 32476.84 28090.07 308
v1085.73 26384.01 26990.87 24690.03 29986.73 21697.20 24495.22 29281.25 29679.85 28289.75 30973.30 24396.28 27076.87 28272.64 31189.61 317
CL-MVSNet_2432*160079.89 30478.34 30484.54 32281.56 35175.01 33096.88 25595.62 26381.10 29775.86 31085.81 33768.49 27590.26 34963.21 34056.51 35088.35 328
ACMH+83.78 1584.21 28082.56 28589.15 28793.73 25179.16 31396.43 26994.28 31181.09 29874.00 31994.03 21754.58 33397.67 19776.10 28978.81 26690.63 298
ACMH83.09 1784.60 27482.61 28490.57 25193.18 26382.94 28096.27 27494.92 29681.01 29972.61 33093.61 23056.54 32397.79 18774.31 30181.07 25790.99 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PM-MVS74.88 31972.85 32280.98 33478.98 35664.75 35390.81 33585.77 36080.95 30068.23 33982.81 34229.08 36192.84 33276.54 28662.46 34285.36 347
QAPM91.41 16589.49 18297.17 5895.66 18693.42 6898.60 14997.51 12080.92 30181.39 26697.41 14772.89 24799.87 4782.33 24598.68 9998.21 173
v7n84.42 27982.75 28089.43 28388.15 32481.86 29396.75 26195.67 26180.53 30278.38 29889.43 31369.89 26696.35 26373.83 30672.13 31890.07 308
cascas90.93 17489.33 18695.76 12695.69 18493.03 7898.99 10496.59 19180.49 30386.79 20794.45 21265.23 29898.60 15593.52 12392.18 18395.66 219
KD-MVS_2432*160082.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
miper_refine_blended82.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
Baseline_NR-MVSNet85.83 25984.82 25788.87 29388.73 31883.34 27698.63 14491.66 34380.41 30682.44 24391.35 27074.63 22595.42 30184.13 22571.39 32387.84 331
Anonymous2023120680.76 29979.42 30384.79 32084.78 34272.98 33896.53 26792.97 32879.56 30774.33 31688.83 31661.27 31292.15 34260.59 34675.92 28289.24 322
MVS_030484.13 28382.66 28288.52 29593.07 26580.15 30995.81 29398.21 2979.27 30886.85 20586.40 33441.33 35694.69 31776.36 28786.69 21890.73 294
DSMNet-mixed81.60 29781.43 29182.10 33084.36 34360.79 35593.63 31486.74 35979.00 30979.32 28887.15 32963.87 30389.78 35066.89 33191.92 18695.73 218
LTVRE_ROB81.71 1984.59 27582.72 28190.18 26192.89 26883.18 27893.15 31794.74 29878.99 31075.14 31592.69 24965.64 29697.63 20069.46 32281.82 25589.74 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test83.63 28781.57 29089.80 27189.01 31485.09 25697.13 24694.50 30578.84 31176.14 30691.00 27669.78 26794.61 31963.40 33974.36 29589.71 316
TransMVSNet (Re)81.97 29479.61 30289.08 28889.70 30584.01 26997.26 23991.85 34278.84 31173.07 32791.62 26467.17 28795.21 30667.50 32859.46 34788.02 330
UniMVSNet_ETH3D85.65 26583.79 27191.21 23690.41 29880.75 30895.36 29795.78 25378.76 31381.83 26294.33 21349.86 34596.66 23984.30 22183.52 24396.22 215
tfpnnormal83.65 28681.35 29290.56 25291.37 28888.06 18697.29 23797.87 5178.51 31476.20 30590.91 27764.78 29996.47 25161.71 34473.50 30587.13 339
FMVSNet183.94 28581.32 29391.80 22791.94 27988.81 17396.77 25895.25 28577.98 31578.25 29990.25 30050.37 34494.97 30973.27 30977.81 27591.62 259
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 35481.19 30294.17 30892.13 33877.97 31666.90 34582.31 34355.76 32592.56 33773.63 30862.31 34385.38 346
AllTest84.97 27083.12 27490.52 25396.82 14678.84 31695.89 28792.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
TestCases90.52 25396.82 14678.84 31692.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
MSDG88.29 22286.37 23394.04 18196.90 14486.15 23296.52 26894.36 31077.89 31979.22 28996.95 16669.72 26899.59 9273.20 31092.58 17696.37 214
new-patchmatchnet74.80 32072.40 32381.99 33178.36 35772.20 34294.44 30492.36 33477.06 32063.47 34979.98 34951.04 34288.85 35260.53 34754.35 35384.92 349
DIV-MVS_2432*160077.47 31675.88 31582.24 32881.59 35068.93 35092.83 32294.02 31677.03 32173.14 32483.39 34155.44 32990.42 34867.95 32757.53 34987.38 334
FMVSNet582.29 29280.54 29687.52 30393.79 25084.01 26993.73 31292.47 33376.92 32274.27 31786.15 33663.69 30489.24 35169.07 32374.79 29089.29 321
Anonymous20240521188.84 20987.03 22494.27 17198.14 10884.18 26798.44 16795.58 26776.79 32389.34 18396.88 17053.42 33799.54 9687.53 18987.12 21799.09 114
VDDNet90.08 19188.54 20494.69 15894.41 23187.68 19298.21 19196.40 20576.21 32493.33 13197.75 13154.93 33298.77 14694.71 10590.96 19997.61 188
tpm cat188.89 20787.27 22093.76 18995.79 17985.32 25190.76 33697.09 17076.14 32585.72 21188.59 31882.92 16598.04 17476.96 28191.43 19597.90 181
MDA-MVSNet-bldmvs77.82 31574.75 31987.03 30788.33 32278.52 31996.34 27292.85 32975.57 32648.87 35787.89 32057.32 32292.49 33960.79 34564.80 33990.08 307
TinyColmap80.42 30177.94 30587.85 30092.09 27678.58 31893.74 31189.94 35274.99 32769.77 33491.78 26246.09 35097.58 20465.17 33777.89 27187.38 334
LS3D90.19 18788.72 19794.59 16298.97 8086.33 22696.90 25496.60 19074.96 32884.06 22598.74 8675.78 22099.83 5774.93 29697.57 11797.62 187
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 33577.90 32596.20 28294.06 31574.61 32966.53 34688.76 31740.40 35896.20 27167.02 33083.66 24186.61 340
TDRefinement78.01 31375.31 31686.10 31370.06 36073.84 33593.59 31591.58 34574.51 33073.08 32691.04 27549.63 34797.12 22174.88 29759.47 34687.33 336
RPSCF85.33 26785.55 24684.67 32194.63 22862.28 35493.73 31293.76 31874.38 33185.23 21697.06 16264.09 30198.31 15880.98 25486.08 22493.41 228
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33080.13 31096.25 27794.44 30673.87 33251.80 35587.47 32668.04 27992.12 34366.02 33367.79 33290.09 306
YYNet179.64 30677.04 31087.43 30587.80 32979.98 31196.23 27894.44 30673.83 33351.83 35487.53 32367.96 28192.07 34466.00 33467.75 33390.23 305
Anonymous2024052178.63 31176.90 31183.82 32482.82 34872.86 33995.72 29593.57 32373.55 33472.17 33184.79 33949.69 34692.51 33865.29 33674.50 29286.09 344
MIMVSNet175.92 31873.30 32183.81 32581.29 35275.57 32992.26 32592.05 33973.09 33567.48 34386.18 33540.87 35787.64 35455.78 35270.68 32688.21 329
Patchmatch-test86.25 25384.06 26892.82 20594.42 23082.88 28482.88 35594.23 31271.58 33679.39 28790.62 28989.00 6196.42 25563.03 34191.37 19799.16 109
COLMAP_ROBcopyleft82.69 1884.54 27682.82 27689.70 27496.72 15078.85 31595.89 28792.83 33071.55 33777.54 30395.89 19459.40 31799.14 13667.26 32988.26 21191.11 282
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT85.44 26683.19 27392.22 21693.13 26483.00 27983.80 35496.37 20770.62 33890.55 16679.63 35084.81 14094.87 31258.18 35191.59 19398.79 141
DP-MVS88.75 21586.56 23195.34 13998.92 8487.45 19997.64 22793.52 32470.55 33981.49 26497.25 15074.43 23199.88 4471.14 31794.09 16098.67 149
new_pmnet76.02 31773.71 32082.95 32783.88 34572.85 34091.26 33292.26 33570.44 34062.60 35081.37 34547.64 34992.32 34061.85 34372.10 31983.68 351
N_pmnet70.19 32369.87 32571.12 33988.24 32330.63 37095.85 29228.70 37070.18 34168.73 33686.55 33364.04 30293.81 32453.12 35573.46 30688.94 324
UnsupCasMVSNet_bld73.85 32170.14 32484.99 31879.44 35575.73 32888.53 33995.24 28870.12 34261.94 35174.81 35241.41 35593.62 32568.65 32551.13 35685.62 345
JIA-IIPM85.97 25684.85 25689.33 28493.23 26273.68 33685.05 34797.13 16469.62 34391.56 15168.03 35588.03 7796.96 22877.89 27693.12 16797.34 192
Patchmtry83.61 28881.64 28889.50 28093.36 25982.84 28584.10 35194.20 31369.47 34479.57 28586.88 33184.43 14294.78 31568.48 32674.30 29690.88 287
test_040278.81 30976.33 31386.26 31191.18 28978.44 32095.88 28991.34 34768.55 34570.51 33389.91 30752.65 33994.99 30847.14 35779.78 26385.34 348
CMPMVSbinary58.40 2180.48 30080.11 30081.59 33385.10 34159.56 35694.14 30995.95 23568.54 34660.71 35293.31 23655.35 33097.87 18283.06 23984.85 23187.33 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
gg-mvs-nofinetune90.00 19287.71 21396.89 7996.15 17194.69 4385.15 34697.74 6868.32 34792.97 13760.16 35796.10 396.84 23293.89 11598.87 9099.14 110
pmmvs679.90 30377.31 30887.67 30284.17 34478.13 32295.86 29193.68 32167.94 34872.67 32989.62 31150.98 34395.75 29274.80 29966.04 33689.14 323
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31886.77 30983.81 34677.94 32496.38 27191.53 34667.54 34968.38 33787.13 33043.94 35296.08 27755.03 35381.83 25486.29 343
Anonymous2023121184.72 27282.65 28390.91 24397.71 11684.55 26397.28 23896.67 18766.88 35079.18 29090.87 27958.47 31896.60 24282.61 24374.20 29891.59 264
Anonymous2024052987.66 23285.58 24593.92 18497.59 12285.01 25798.13 19697.13 16466.69 35188.47 18996.01 19355.09 33199.51 10187.00 19284.12 23697.23 196
ANet_high50.71 33046.17 33364.33 34244.27 36852.30 36176.13 35878.73 36464.95 35227.37 36355.23 36014.61 36867.74 36236.01 35918.23 36272.95 356
RPMNet85.07 26981.88 28694.64 16093.47 25586.24 22784.97 34897.21 15464.85 35390.76 16378.80 35180.95 19299.27 12953.76 35492.17 18498.41 160
pmmvs372.86 32269.76 32682.17 32973.86 35874.19 33494.20 30789.01 35664.23 35467.72 34080.91 34741.48 35488.65 35362.40 34254.02 35483.68 351
MVS-HIRNet79.01 30775.13 31790.66 25093.82 24981.69 29585.16 34593.75 31954.54 35574.17 31859.15 35957.46 32196.58 24363.74 33894.38 15793.72 225
PMMVS258.97 32755.07 33070.69 34062.72 36155.37 36085.97 34380.52 36349.48 35645.94 35868.31 35415.73 36780.78 35849.79 35637.12 35975.91 354
FPMVS61.57 32560.32 32865.34 34160.14 36442.44 36591.02 33489.72 35444.15 35742.63 35980.93 34619.02 36380.59 35942.50 35872.76 31073.00 355
LCM-MVSNet60.07 32656.37 32971.18 33854.81 36648.67 36382.17 35689.48 35537.95 35849.13 35669.12 35313.75 36981.76 35659.28 34851.63 35583.10 353
Gipumacopyleft54.77 32852.22 33262.40 34386.50 33659.37 35750.20 36290.35 35136.52 35941.20 36049.49 36118.33 36581.29 35732.10 36065.34 33746.54 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method70.10 32468.66 32774.41 33786.30 33855.84 35994.47 30389.82 35335.18 36066.15 34784.75 34030.54 36077.96 36070.40 32160.33 34589.44 319
PMVScopyleft41.42 2345.67 33142.50 33455.17 34534.28 36932.37 36866.24 36078.71 36530.72 36122.04 36659.59 3584.59 37077.85 36127.49 36158.84 34855.29 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 33340.93 33541.29 34761.97 36233.83 36784.00 35365.17 36827.17 36227.56 36246.72 36317.63 36660.41 36519.32 36318.82 36129.61 361
EMVS39.96 33439.88 33640.18 34859.57 36532.12 36984.79 35064.57 36926.27 36326.14 36444.18 36618.73 36459.29 36617.03 36417.67 36329.12 362
MVEpermissive44.00 2241.70 33237.64 33753.90 34649.46 36743.37 36465.09 36166.66 36726.19 36425.77 36548.53 3623.58 37263.35 36426.15 36227.28 36054.97 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt53.66 32952.86 33156.05 34432.75 37041.97 36673.42 35976.12 36621.91 36539.68 36196.39 18542.59 35365.10 36378.00 27514.92 36461.08 357
wuyk23d16.71 33716.73 34116.65 34960.15 36325.22 37141.24 3635.17 3716.56 3665.48 3693.61 3693.64 37122.72 36715.20 3659.52 3651.99 365
testmvs18.81 33623.05 3396.10 3514.48 3712.29 37397.78 2183.00 3723.27 36718.60 36762.71 3561.53 3742.49 36914.26 3661.80 36613.50 364
test12316.58 33819.47 3407.91 3503.59 3725.37 37294.32 3051.39 3732.49 36813.98 36844.60 3652.91 3732.65 36811.35 3670.57 36715.70 363
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k22.52 33530.03 3380.00 3520.00 3730.00 3740.00 36497.17 1600.00 3690.00 37098.77 8374.35 2330.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.87 3409.16 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37082.48 1740.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.21 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.50 1050.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.49 299.64 2098.51 299.77 1099.19 3295.12 699.97 2099.90 199.92 399.99 1
test_0728_SECOND98.77 599.66 1596.37 1199.72 1597.68 8199.98 1099.64 599.82 1599.96 8
GSMVS98.84 134
test_part299.54 3695.42 1798.13 33
sam_mvs188.39 7098.84 134
sam_mvs87.08 96
ambc79.60 33572.76 35956.61 35876.20 35792.01 34068.25 33880.23 34823.34 36294.73 31673.78 30760.81 34487.48 333
MTGPAbinary97.45 130
test_post190.74 33741.37 36785.38 13496.36 25883.16 236
test_post46.00 36487.37 8997.11 222
patchmatchnet-post84.86 33888.73 6496.81 234
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 34097.74 6893.91 12496.40 18396.56 296.94 23095.08 9598.95 8899.20 107
MTMP99.21 7291.09 348
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4299.87 799.91 18
agg_prior99.54 3692.66 8497.64 8997.98 4199.61 89
test_prior492.00 9499.41 56
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
新几何298.26 187
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
原ACMM298.69 134
testdata299.88 4484.16 224
segment_acmp90.56 39
test1297.83 3199.33 5994.45 4797.55 11097.56 4888.60 6599.50 10399.71 3499.55 77
plane_prior793.84 24785.73 243
plane_prior693.92 24486.02 23772.92 245
plane_prior596.30 21197.75 19493.46 12486.17 22292.67 231
plane_prior496.52 179
plane_prior193.90 246
n20.00 374
nn0.00 374
door-mid84.90 362
lessismore_v085.08 31785.59 34069.28 34990.56 35067.68 34190.21 30454.21 33595.46 29973.88 30462.64 34190.50 300
test1197.68 81
door85.30 361
HQP5-MVS86.39 223
BP-MVS93.82 119
HQP4-MVS87.57 19497.77 18992.72 229
HQP3-MVS96.37 20786.29 219
HQP2-MVS73.34 241
NP-MVS93.94 24386.22 22996.67 177
ACMMP++_ref82.64 250
ACMMP++83.83 238
Test By Simon83.62 150