This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4497.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14499.41 5897.70 8095.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 5096.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7594.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8493.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13393.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7594.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4597.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
DeepPCF-MVS93.56 196.55 4297.84 992.68 21798.71 9778.11 33199.70 1797.71 7998.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6795.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12293.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12894.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3794.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 28095.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14793.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10999.75 1397.66 8794.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7391.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6496.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
test_prior397.07 2797.09 1997.01 6599.58 3391.77 10099.57 3197.57 11291.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8790.18 12298.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6991.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9390.38 11697.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12289.85 13198.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9289.55 14499.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13689.60 14098.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10599.58 3096.54 20495.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 14099.81 35
9.1496.87 2799.34 5899.50 4197.49 13089.41 14798.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30798.36 2492.50 6395.62 10197.52 14597.92 197.38 22398.31 3798.80 9898.20 181
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9396.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4692.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4792.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 14090.08 12798.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12699.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1396.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5496.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14788.44 17798.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12295.90 997.21 6098.90 7982.66 17599.93 3998.71 2098.80 9899.63 73
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 10099.70 1798.05 4086.48 22698.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17295.83 1098.97 1399.14 4582.48 17899.60 9598.60 2399.08 8498.00 185
XVS96.47 4596.37 4196.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10398.71 13197.90 4992.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
#test#96.48 4496.34 4396.90 7799.69 990.96 12799.53 3997.81 5990.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 11098.71 13197.88 5092.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12799.47 4497.81 5990.54 11296.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10790.66 10797.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 14089.02 15697.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17995.51 1698.86 1699.11 5382.19 18499.36 12598.59 2598.14 11398.00 185
region2R96.30 5196.17 4896.70 9199.70 890.31 14099.46 4997.66 8790.55 11197.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
SR-MVS96.13 5596.16 5096.07 11899.42 5489.04 16998.59 15397.33 15290.44 11496.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
CP-MVS96.22 5396.15 5196.42 10699.67 1389.62 16299.70 1797.61 10190.07 12896.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13899.47 4497.80 6190.54 11296.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
test117295.92 6396.07 5395.46 13799.42 5487.24 21798.51 16197.24 15690.29 11996.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
ETV-MVS96.00 5896.00 5496.00 12096.56 15991.05 12499.63 2596.61 19593.26 4997.39 5798.30 11886.62 11198.13 17298.07 4197.57 12198.82 145
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11598.69 13697.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
lupinMVS96.32 5095.94 5697.44 4895.05 22294.87 3799.86 296.50 20693.82 3998.04 4198.77 8685.52 13098.09 17596.98 5998.97 8999.37 94
MVS_111021_LR95.78 6995.94 5695.28 14498.19 11187.69 19898.80 12499.26 793.39 4695.04 11098.69 9684.09 15099.76 7296.96 6099.06 8598.38 170
PAPM96.35 4895.94 5697.58 4394.10 24495.25 2398.93 11198.17 3294.26 2493.94 12798.72 9289.68 5797.88 18896.36 7299.29 7899.62 75
SR-MVS-dyc-post95.75 7295.86 5995.41 14099.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
MP-MVScopyleft96.00 5895.82 6096.54 10099.47 5190.13 14699.36 6597.41 14490.64 11095.49 10298.95 7385.51 13299.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11592.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11599.55 3497.53 11989.72 13595.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
CS-MVS95.86 6595.81 6295.98 12295.62 19591.26 11299.80 796.12 23192.15 7697.93 4798.45 11485.88 12897.55 21497.56 4798.80 9899.14 114
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11597.23 24797.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
mPP-MVS95.90 6495.75 6596.38 10899.58 3389.41 16699.26 7297.41 14490.66 10794.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
RE-MVS-def95.70 6699.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6685.24 13896.62 6399.31 7699.60 77
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11399.45 5197.48 13189.69 13695.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10699.88 198.04 4193.64 4394.21 12297.76 13383.50 15599.87 5197.41 4997.75 12098.79 148
APD-MVS_3200maxsize95.64 7395.65 6995.62 13299.24 7087.80 19798.42 17197.22 15988.93 16196.64 8198.98 6585.49 13399.36 12596.68 6299.27 7999.70 61
PGM-MVS95.85 6695.65 6996.45 10499.50 4789.77 15898.22 19198.90 1289.19 15096.74 7698.95 7385.91 12799.92 4093.94 11899.46 6499.66 69
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11599.14 7690.33 13998.49 16597.82 5691.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13298.70 155
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16888.95 15993.12 13899.25 2785.62 12999.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 8289.87 15598.43 17097.80 6191.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13998.22 179
EIA-MVS95.11 8395.27 7494.64 16696.34 16886.51 22699.59 2996.62 19492.51 6294.08 12598.64 9886.05 12498.24 16995.07 10098.50 10899.18 112
CS-MVS-test95.20 8195.27 7494.98 15495.67 19388.17 18899.62 2795.84 25791.52 8697.42 5598.30 11885.07 13997.51 21595.81 8298.20 11299.26 105
HPM-MVScopyleft95.41 7695.22 7695.99 12199.29 6689.14 16799.17 7997.09 17687.28 21095.40 10398.48 11084.93 14199.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DROMVSNet95.09 8495.17 7794.84 15895.42 20288.17 18899.48 4295.92 24491.47 8897.34 5998.36 11582.77 17197.41 22297.24 5298.58 10598.94 134
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13186.58 22394.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1492.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 18099.50 86
PAPM_NR95.43 7495.05 8096.57 9999.42 5490.14 14498.58 15597.51 12590.65 10992.44 14698.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12891.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19799.51 85
jason95.40 7794.86 8297.03 6492.91 27594.23 5699.70 1796.30 21793.56 4596.73 7798.52 10581.46 19397.91 18596.08 7898.47 10998.96 129
jason: jason.
CSCG94.87 8894.71 8395.36 14199.54 4086.49 22799.34 6898.15 3582.71 28490.15 18199.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
HPM-MVS_fast94.89 8794.62 8495.70 13199.11 7888.44 18699.14 8997.11 17285.82 23395.69 9998.47 11183.46 15799.32 13193.16 13399.63 5099.35 95
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
abl_694.63 9994.48 8795.09 14898.61 10186.96 22098.06 20996.97 18589.31 14895.86 9598.56 10379.82 20099.64 9094.53 11398.65 10498.66 159
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28497.75 6785.50 23896.86 6999.01 6488.59 7099.90 4487.64 19499.60 5699.79 38
CPTT-MVS94.60 10094.43 8995.09 14899.66 1586.85 22299.44 5297.47 13383.22 27494.34 12198.96 7182.50 17699.55 9894.81 10599.50 6298.88 138
ACMMPcopyleft94.67 9794.30 9095.79 12899.25 6988.13 19198.41 17398.67 2090.38 11691.43 15898.72 9282.22 18399.95 3493.83 12295.76 15499.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1690.33 11897.16 6297.43 14979.19 20799.53 10196.91 6191.85 19599.24 107
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31598.74 1492.42 6895.65 10094.76 21586.52 11599.49 10895.29 9692.97 17699.53 82
test250694.80 9094.21 9396.58 9796.41 16492.18 9898.01 21198.96 1090.82 10593.46 13497.28 15285.92 12598.45 16189.82 16697.19 13099.12 117
thisisatest051594.75 9294.19 9496.43 10596.13 18392.64 9299.47 4497.60 10387.55 20693.17 13797.59 14394.71 1198.42 16288.28 18693.20 17398.24 178
diffmvs94.59 10194.19 9495.81 12795.54 19890.69 13398.70 13595.68 26691.61 8395.96 9097.81 13080.11 19998.06 17996.52 6895.76 15498.67 156
API-MVS94.78 9194.18 9696.59 9699.21 7390.06 15198.80 12497.78 6483.59 26993.85 12999.21 3283.79 15299.97 2392.37 14199.00 8899.74 55
PVSNet_Blended_VisFu94.67 9794.11 9796.34 11097.14 14091.10 12199.32 7097.43 14292.10 7791.53 15796.38 19283.29 16199.68 8293.42 13096.37 14198.25 177
MAR-MVS94.43 10394.09 9895.45 13899.10 8087.47 20598.39 17997.79 6388.37 18094.02 12699.17 3978.64 21399.91 4292.48 14098.85 9498.96 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSFormer94.71 9694.08 9996.61 9595.05 22294.87 3797.77 22496.17 22886.84 21798.04 4198.52 10585.52 13095.99 28689.83 16498.97 8998.96 129
PLCcopyleft91.07 394.23 10794.01 10094.87 15699.17 7587.49 20499.25 7396.55 20288.43 17891.26 16298.21 12485.92 12599.86 5689.77 16897.57 12197.24 202
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base_debi94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
canonicalmvs95.02 8693.96 10498.20 2097.53 13095.92 1698.71 13196.19 22791.78 8195.86 9598.49 10979.53 20499.03 14496.12 7691.42 20399.66 69
DWT-MVSNet_test94.36 10493.95 10595.62 13296.99 14889.47 16496.62 27197.38 14790.96 10193.07 14097.27 15493.73 1598.09 17585.86 21493.65 17199.29 101
sss94.85 8993.94 10697.58 4396.43 16394.09 6098.93 11199.16 889.50 14595.27 10597.85 12881.50 19199.65 8892.79 13994.02 16898.99 126
DeepC-MVS91.02 494.56 10293.92 10796.46 10397.16 13990.76 13198.39 17997.11 17293.92 3288.66 19498.33 11678.14 21599.85 5895.02 10198.57 10698.78 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMMVS93.62 12493.90 10892.79 21296.79 15381.40 30598.85 11996.81 18991.25 9696.82 7598.15 12677.02 22198.13 17293.15 13496.30 14498.83 144
CHOSEN 1792x268894.35 10593.82 10995.95 12497.40 13188.74 18098.41 17398.27 2692.18 7491.43 15896.40 18978.88 20899.81 6693.59 12697.81 11699.30 100
baseline294.04 10993.80 11094.74 16293.07 27390.25 14198.12 20098.16 3489.86 13086.53 21596.95 17295.56 598.05 18091.44 14794.53 16395.93 224
EPP-MVSNet93.75 11893.67 11194.01 18895.86 18685.70 25298.67 14097.66 8784.46 25591.36 16197.18 16291.16 2997.79 19492.93 13693.75 16998.53 162
OMC-MVS93.90 11493.62 11294.73 16398.63 9987.00 21998.04 21096.56 20192.19 7392.46 14598.73 9079.49 20599.14 14092.16 14394.34 16698.03 184
thisisatest053094.00 11093.52 11395.43 13995.76 18990.02 15398.99 10697.60 10386.58 22391.74 15197.36 15194.78 1098.34 16486.37 20692.48 18497.94 187
casdiffmvs93.98 11193.43 11495.61 13495.07 22189.86 15698.80 12495.84 25790.98 10092.74 14397.66 14079.71 20198.10 17494.72 10895.37 15898.87 140
CANet_DTU94.31 10693.35 11597.20 6097.03 14794.71 4698.62 14795.54 27595.61 1497.21 6098.47 11171.88 25999.84 5988.38 18597.46 12697.04 209
baseline93.91 11393.30 11695.72 13095.10 21990.07 14897.48 23695.91 24991.03 9993.54 13397.68 13879.58 20298.02 18294.27 11695.14 15999.08 121
HyFIR lowres test93.68 12193.29 11794.87 15697.57 12888.04 19398.18 19598.47 2287.57 20591.24 16395.05 21185.49 13397.46 21893.22 13292.82 17799.10 119
TESTMET0.1,193.82 11693.26 11895.49 13695.21 20890.25 14199.15 8697.54 11889.18 15191.79 15094.87 21389.13 6197.63 20786.21 20796.29 14598.60 160
PVSNet_BlendedMVS93.36 13093.20 11993.84 19398.77 9591.61 10699.47 4498.04 4191.44 8994.21 12292.63 25783.50 15599.87 5197.41 4983.37 25190.05 317
Effi-MVS+93.87 11593.15 12096.02 11995.79 18790.76 13196.70 26995.78 25986.98 21495.71 9897.17 16379.58 20298.01 18394.57 11296.09 14899.31 99
AdaColmapbinary93.82 11693.06 12196.10 11799.88 189.07 16898.33 18397.55 11586.81 21990.39 17898.65 9775.09 22799.98 1093.32 13197.53 12499.26 105
114514_t94.06 10893.05 12297.06 6399.08 8192.26 9798.97 10897.01 18382.58 28692.57 14498.22 12280.68 19799.30 13289.34 17599.02 8799.63 73
CDS-MVSNet93.47 12593.04 12394.76 16094.75 23389.45 16598.82 12297.03 18187.91 19490.97 16696.48 18789.06 6296.36 26589.50 17092.81 17998.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051793.30 13293.01 12494.17 18195.57 19686.47 22898.51 16197.60 10385.99 23190.55 17397.19 16194.80 998.31 16585.06 21991.86 19497.74 189
Vis-MVSNet (Re-imp)93.26 13593.00 12594.06 18596.14 18086.71 22598.68 13896.70 19288.30 18289.71 18897.64 14185.43 13696.39 26388.06 19096.32 14299.08 121
test-mter93.27 13492.89 12694.40 17394.94 22787.27 21399.15 8697.25 15488.95 15991.57 15494.04 22188.03 8097.58 21085.94 21196.13 14698.36 173
PVSNet87.13 1293.69 11992.83 12796.28 11197.99 11690.22 14399.38 6198.93 1191.42 9293.66 13297.68 13871.29 26699.64 9087.94 19197.20 12998.98 127
CNLPA93.64 12392.74 12896.36 10998.96 8790.01 15499.19 7595.89 25286.22 22989.40 18998.85 8280.66 19899.84 5988.57 18396.92 13499.24 107
test-LLR93.11 13892.68 12994.40 17394.94 22787.27 21399.15 8697.25 15490.21 12091.57 15494.04 22184.89 14297.58 21085.94 21196.13 14698.36 173
MVS_Test93.67 12292.67 13096.69 9296.72 15592.66 8897.22 24896.03 23487.69 20395.12 10994.03 22381.55 19098.28 16889.17 17996.46 13899.14 114
UA-Net93.30 13292.62 13195.34 14296.27 17088.53 18595.88 29496.97 18590.90 10395.37 10497.07 16782.38 18199.10 14283.91 23794.86 16298.38 170
thres20093.69 11992.59 13296.97 7297.76 11994.74 4499.35 6699.36 289.23 14991.21 16496.97 17183.42 15898.77 15085.08 21890.96 20697.39 198
IS-MVSNet93.00 13992.51 13394.49 17096.14 18087.36 20998.31 18695.70 26488.58 16990.17 18097.50 14683.02 16797.22 22687.06 19796.07 15098.90 137
CostFormer92.89 14092.48 13494.12 18394.99 22485.89 24792.89 32497.00 18486.98 21495.00 11190.78 28690.05 5197.51 21592.92 13791.73 19898.96 129
MVSTER92.71 14292.32 13593.86 19297.29 13592.95 8699.01 10496.59 19790.09 12685.51 22094.00 22594.61 1496.56 25190.77 15783.03 25392.08 254
MVS93.92 11292.28 13698.83 695.69 19196.82 796.22 28498.17 3284.89 25084.34 22998.61 10179.32 20699.83 6193.88 12099.43 6899.86 32
tfpn200view993.43 12792.27 13796.90 7797.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20897.12 204
thres40093.39 12992.27 13796.73 8897.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20896.61 213
mvs-test191.57 16592.20 13989.70 28095.15 21374.34 34199.51 4095.40 28491.92 7891.02 16597.25 15674.27 23898.08 17889.45 17195.83 15396.67 212
tpmrst92.78 14192.16 14094.65 16596.27 17087.45 20691.83 33297.10 17589.10 15494.68 11590.69 29088.22 7597.73 20389.78 16791.80 19698.77 151
thres100view90093.34 13192.15 14196.90 7797.62 12494.84 3999.06 9899.36 287.96 19290.47 17696.78 17983.29 16198.75 15284.11 23390.69 20897.12 204
EPNet_dtu92.28 15392.15 14192.70 21697.29 13584.84 26798.64 14497.82 5692.91 5693.02 14197.02 16985.48 13595.70 30172.25 32194.89 16197.55 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS92.62 14592.09 14394.20 18094.10 24487.68 19998.41 17396.97 18587.53 20789.74 18696.04 19884.77 14596.49 25788.97 18292.31 18798.42 166
thres600view793.18 13692.00 14496.75 8697.62 12494.92 3499.07 9699.36 287.96 19290.47 17696.78 17983.29 16198.71 15682.93 24790.47 21296.61 213
131493.44 12691.98 14597.84 3395.24 20694.38 5496.22 28497.92 4890.18 12282.28 25497.71 13777.63 21899.80 6891.94 14498.67 10399.34 97
h-mvs3392.47 15091.95 14694.05 18697.13 14185.01 26598.36 18198.08 3893.85 3796.27 8496.73 18183.19 16499.43 11895.81 8268.09 33897.70 190
Vis-MVSNetpermissive92.64 14491.85 14795.03 15295.12 21588.23 18798.48 16696.81 18991.61 8392.16 14997.22 15971.58 26498.00 18485.85 21597.81 11698.88 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+87.72 893.43 12791.84 14898.17 2195.73 19095.08 3298.92 11397.04 17991.42 9281.48 27297.60 14274.60 23199.79 6990.84 15598.97 8999.64 71
BH-w/o92.32 15191.79 14993.91 19196.85 15086.18 23899.11 9495.74 26288.13 18784.81 22497.00 17077.26 22097.91 18589.16 18098.03 11497.64 191
3Dnovator87.35 1193.17 13791.77 15097.37 5495.41 20393.07 8098.82 12297.85 5391.53 8582.56 24897.58 14471.97 25899.82 6491.01 15299.23 8299.22 110
F-COLMAP92.07 15891.75 15193.02 20798.16 11282.89 29198.79 12895.97 23686.54 22587.92 19997.80 13178.69 21299.65 8885.97 20995.93 15296.53 218
mvs_anonymous92.50 14991.65 15295.06 15096.60 15889.64 16197.06 25396.44 21086.64 22284.14 23093.93 22782.49 17796.17 28091.47 14696.08 14999.35 95
EPMVS92.59 14791.59 15395.59 13597.22 13790.03 15291.78 33398.04 4190.42 11591.66 15390.65 29386.49 11797.46 21881.78 25896.31 14399.28 103
1112_ss92.71 14291.55 15496.20 11295.56 19791.12 11998.48 16694.69 30988.29 18386.89 21198.50 10787.02 10198.66 15784.75 22389.77 21598.81 146
hse-mvs291.67 16491.51 15592.15 22696.22 17282.61 29797.74 22797.53 11993.85 3796.27 8496.15 19483.19 16497.44 22095.81 8266.86 34396.40 220
ET-MVSNet_ETH3D92.56 14891.45 15695.88 12596.39 16694.13 5999.46 4996.97 18592.18 7466.94 35198.29 12094.65 1394.28 32994.34 11583.82 24799.24 107
ECVR-MVScopyleft92.29 15291.33 15795.15 14696.41 16487.84 19698.10 20494.84 30390.82 10591.42 16097.28 15265.61 30198.49 16090.33 16097.19 13099.12 117
baseline192.61 14691.28 15896.58 9797.05 14694.63 4897.72 22896.20 22589.82 13288.56 19596.85 17786.85 10497.82 19288.42 18480.10 26897.30 200
HQP-MVS91.50 16691.23 15992.29 22193.95 24886.39 23199.16 8096.37 21393.92 3287.57 20196.67 18373.34 24597.77 19693.82 12386.29 22692.72 236
test111192.12 15691.19 16094.94 15596.15 17887.36 20998.12 20094.84 30390.85 10490.97 16697.26 15565.60 30298.37 16389.74 16997.14 13399.07 123
RRT_MVS91.95 16091.09 16194.53 16996.71 15795.12 3198.64 14496.23 22389.04 15585.24 22295.06 21087.71 8596.43 26189.10 18182.06 26092.05 256
tpm291.77 16291.09 16193.82 19494.83 23185.56 25592.51 32997.16 16784.00 26193.83 13090.66 29287.54 8897.17 22787.73 19391.55 20198.72 153
PatchmatchNetpermissive92.05 15991.04 16395.06 15096.17 17789.04 16991.26 33797.26 15389.56 14390.64 17290.56 29988.35 7497.11 22979.53 27096.07 15099.03 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Test_1112_low_res92.27 15490.97 16496.18 11395.53 19991.10 12198.47 16894.66 31088.28 18486.83 21393.50 24187.00 10298.65 15884.69 22489.74 21698.80 147
HQP_MVS91.26 17090.95 16592.16 22593.84 25586.07 24399.02 10296.30 21793.38 4786.99 20896.52 18572.92 24997.75 20193.46 12886.17 22992.67 238
CVMVSNet90.30 18890.91 16688.46 30394.32 24073.58 34597.61 23397.59 10790.16 12588.43 19797.10 16576.83 22292.86 33882.64 24993.54 17298.93 135
UGNet91.91 16190.85 16795.10 14797.06 14588.69 18198.01 21198.24 2892.41 6992.39 14793.61 23660.52 32099.68 8288.14 18897.25 12896.92 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS92.23 15590.84 16896.42 10698.24 10891.08 12398.24 19096.22 22483.39 27294.74 11498.31 11761.12 31998.85 14794.45 11492.82 17799.32 98
BH-untuned91.46 16890.84 16893.33 20296.51 16284.83 26898.84 12195.50 27786.44 22883.50 23596.70 18275.49 22697.77 19686.78 20497.81 11697.40 197
IB-MVS89.43 692.12 15690.83 17095.98 12295.40 20490.78 13099.81 598.06 3991.23 9785.63 21993.66 23590.63 4098.78 14991.22 14971.85 32898.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+91.72 16390.79 17194.49 17095.89 18587.40 20899.54 3895.70 26485.01 24889.28 19195.68 20277.75 21797.57 21383.22 24295.06 16098.51 163
CLD-MVS91.06 17490.71 17292.10 22794.05 24786.10 24199.55 3496.29 22094.16 2784.70 22597.17 16369.62 27397.82 19294.74 10786.08 23192.39 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu89.97 19790.68 17387.81 30795.15 21371.98 35197.87 21995.40 28491.92 7887.57 20191.44 27474.27 23896.84 23989.45 17193.10 17594.60 229
XVG-OURS-SEG-HR90.95 17790.66 17491.83 23195.18 21281.14 31295.92 29195.92 24488.40 17990.33 17997.85 12870.66 26999.38 12392.83 13888.83 21794.98 227
PatchMatch-RL91.47 16790.54 17594.26 17898.20 10986.36 23396.94 25797.14 16887.75 19988.98 19295.75 20171.80 26199.40 12280.92 26397.39 12797.02 210
XVG-OURS90.83 17990.49 17691.86 23095.23 20781.25 30995.79 29995.92 24488.96 15890.02 18398.03 12771.60 26399.35 12991.06 15187.78 22194.98 227
MDTV_nov1_ep1390.47 17796.14 18088.55 18391.34 33697.51 12589.58 14192.24 14890.50 30386.99 10397.61 20977.64 28492.34 186
RRT_test8_iter0591.04 17690.40 17892.95 20996.20 17689.75 15998.97 10896.38 21288.52 17082.00 26293.51 24090.69 3996.73 24590.43 15976.91 28692.38 242
VDD-MVS91.24 17390.18 17994.45 17297.08 14485.84 25098.40 17696.10 23286.99 21293.36 13598.16 12554.27 34099.20 13496.59 6690.63 21198.31 176
BH-RMVSNet91.25 17289.99 18095.03 15296.75 15488.55 18398.65 14294.95 30087.74 20087.74 20097.80 13168.27 28198.14 17180.53 26797.49 12598.41 167
FIs90.70 18289.87 18193.18 20492.29 28091.12 11998.17 19798.25 2789.11 15383.44 23694.82 21482.26 18296.17 28087.76 19282.76 25592.25 246
miper_enhance_ethall90.33 18789.70 18292.22 22297.12 14288.93 17498.35 18295.96 23888.60 16883.14 24292.33 25987.38 9196.18 27986.49 20577.89 27891.55 272
PCF-MVS89.78 591.26 17089.63 18396.16 11695.44 20191.58 10895.29 30396.10 23285.07 24582.75 24497.45 14878.28 21499.78 7080.60 26695.65 15797.12 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE90.60 18589.56 18493.72 19795.10 21985.43 25699.41 5894.94 30183.96 26387.21 20796.83 17874.37 23697.05 23380.50 26893.73 17098.67 156
AUN-MVS90.17 19289.50 18592.19 22496.21 17382.67 29597.76 22697.53 11988.05 18991.67 15296.15 19483.10 16697.47 21788.11 18966.91 34296.43 219
QAPM91.41 16989.49 18697.17 6195.66 19493.42 7298.60 15197.51 12580.92 30881.39 27397.41 15072.89 25199.87 5182.33 25298.68 10298.21 180
TR-MVS90.77 18089.44 18794.76 16096.31 16988.02 19497.92 21595.96 23885.52 23688.22 19897.23 15866.80 29398.09 17584.58 22692.38 18598.17 182
FC-MVSNet-test90.22 19089.40 18892.67 21891.78 29089.86 15697.89 21698.22 2988.81 16482.96 24394.66 21681.90 18895.96 28885.89 21382.52 25892.20 250
EI-MVSNet89.87 19889.38 18991.36 24194.32 24085.87 24897.61 23396.59 19785.10 24385.51 22097.10 16581.30 19596.56 25183.85 23983.03 25391.64 264
cascas90.93 17889.33 19095.76 12995.69 19193.03 8298.99 10696.59 19780.49 31086.79 21494.45 21865.23 30498.60 15993.52 12792.18 19095.66 226
SCA90.64 18489.25 19194.83 15994.95 22688.83 17696.26 28197.21 16090.06 12990.03 18290.62 29566.61 29496.81 24183.16 24394.36 16598.84 141
ab-mvs91.05 17589.17 19296.69 9295.96 18491.72 10392.62 32897.23 15885.61 23589.74 18693.89 22968.55 27899.42 11991.09 15087.84 22098.92 136
OPM-MVS89.76 19989.15 19391.57 23890.53 30485.58 25498.11 20395.93 24392.88 5886.05 21696.47 18867.06 29297.87 18989.29 17886.08 23191.26 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-MVSNAJss89.54 20389.05 19491.00 24788.77 32584.36 27397.39 23795.97 23688.47 17181.88 26593.80 23182.48 17896.50 25589.34 17583.34 25292.15 251
TAPA-MVS87.50 990.35 18689.05 19494.25 17998.48 10585.17 26298.42 17196.58 20082.44 29087.24 20698.53 10482.77 17198.84 14859.09 35697.88 11598.72 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm89.67 20088.95 19691.82 23292.54 27881.43 30492.95 32395.92 24487.81 19690.50 17589.44 31884.99 14095.65 30283.67 24082.71 25698.38 170
nrg03090.23 18988.87 19794.32 17691.53 29393.54 6998.79 12895.89 25288.12 18884.55 22794.61 21778.80 21196.88 23892.35 14275.21 29292.53 240
OpenMVScopyleft85.28 1490.75 18188.84 19896.48 10293.58 26193.51 7098.80 12497.41 14482.59 28578.62 30197.49 14768.00 28499.82 6484.52 22798.55 10796.11 223
dp90.16 19388.83 19994.14 18296.38 16786.42 22991.57 33497.06 17884.76 25288.81 19390.19 31184.29 14897.43 22175.05 30291.35 20598.56 161
cl2289.57 20288.79 20091.91 22997.94 11787.62 20197.98 21396.51 20585.03 24682.37 25391.79 26783.65 15396.50 25585.96 21077.89 27891.61 269
LS3D90.19 19188.72 20194.59 16898.97 8586.33 23496.90 25996.60 19674.96 33584.06 23298.74 8975.78 22499.83 6174.93 30397.57 12197.62 194
GA-MVS90.10 19488.69 20294.33 17592.44 27987.97 19599.08 9596.26 22189.65 13786.92 21093.11 25068.09 28296.96 23582.54 25190.15 21398.05 183
X-MVStestdata90.69 18388.66 20396.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6929.59 37587.37 9299.87 5195.65 8599.43 6899.78 42
test0.0.03 188.96 20988.61 20490.03 27391.09 29884.43 27298.97 10897.02 18290.21 12080.29 28296.31 19384.89 14291.93 35272.98 31885.70 23493.73 231
LCM-MVSNet-Re88.59 22188.61 20488.51 30295.53 19972.68 34996.85 26188.43 36588.45 17473.14 33190.63 29475.82 22394.38 32892.95 13595.71 15698.48 165
Fast-Effi-MVS+-dtu88.84 21388.59 20689.58 28493.44 26678.18 32998.65 14294.62 31188.46 17384.12 23195.37 20868.91 27596.52 25482.06 25591.70 19994.06 230
UniMVSNet_NR-MVSNet89.60 20188.55 20792.75 21592.17 28390.07 14898.74 13098.15 3588.37 18083.21 23893.98 22682.86 16995.93 29086.95 20072.47 32292.25 246
VDDNet90.08 19588.54 20894.69 16494.41 23987.68 19998.21 19396.40 21176.21 33193.33 13697.75 13454.93 33898.77 15094.71 10990.96 20697.61 195
LPG-MVS_test88.86 21288.47 20990.06 27093.35 26880.95 31498.22 19195.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
UniMVSNet (Re)89.50 20488.32 21093.03 20692.21 28290.96 12798.90 11598.39 2389.13 15283.22 23792.03 26181.69 18996.34 27186.79 20372.53 32191.81 261
ACMP87.39 1088.71 22088.24 21190.12 26993.91 25381.06 31398.50 16395.67 26789.43 14680.37 28095.55 20365.67 29997.83 19190.55 15884.51 23991.47 274
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM86.95 1388.77 21888.22 21290.43 26193.61 26081.34 30798.50 16395.92 24487.88 19583.85 23495.20 20967.20 29097.89 18786.90 20284.90 23792.06 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_ehance_all_eth88.94 21088.12 21391.40 23995.32 20586.93 22197.85 22095.55 27484.19 25881.97 26391.50 27384.16 14995.91 29384.69 22477.89 27891.36 280
bset_n11_16_dypcd89.07 20787.85 21492.76 21486.16 34890.66 13597.30 24195.62 26989.78 13483.94 23393.15 24974.85 22895.89 29591.34 14878.48 27491.74 262
tpmvs89.16 20587.76 21593.35 20197.19 13884.75 26990.58 34397.36 15081.99 29584.56 22689.31 32183.98 15198.17 17074.85 30590.00 21497.12 204
test_djsdf88.26 22787.73 21689.84 27688.05 33482.21 29997.77 22496.17 22886.84 21782.41 25291.95 26672.07 25795.99 28689.83 16484.50 24091.32 282
gg-mvs-nofinetune90.00 19687.71 21796.89 8296.15 17894.69 4785.15 35297.74 6968.32 35492.97 14260.16 36496.10 396.84 23993.89 11998.87 9399.14 114
VPA-MVSNet89.10 20687.66 21893.45 20092.56 27791.02 12597.97 21498.32 2586.92 21686.03 21792.01 26368.84 27797.10 23190.92 15375.34 29192.23 248
DU-MVS88.83 21587.51 21992.79 21291.46 29490.07 14898.71 13197.62 10088.87 16383.21 23893.68 23374.63 22995.93 29086.95 20072.47 32292.36 243
IterMVS-LS88.34 22487.44 22091.04 24694.10 24485.85 24998.10 20495.48 27885.12 24282.03 26191.21 27981.35 19495.63 30383.86 23875.73 29091.63 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS87.96 22987.39 22189.70 28091.84 28983.40 28398.31 18698.49 2188.04 19078.23 30790.26 30573.57 24396.79 24384.21 23083.53 24988.90 332
CR-MVSNet88.83 21587.38 22293.16 20593.47 26386.24 23584.97 35494.20 32188.92 16290.76 17086.88 33784.43 14694.82 32170.64 32592.17 19198.41 167
ADS-MVSNet88.99 20887.30 22394.07 18496.21 17387.56 20387.15 34796.78 19183.01 27789.91 18487.27 33378.87 20997.01 23474.20 30992.27 18897.64 191
tpm cat188.89 21187.27 22493.76 19595.79 18785.32 25990.76 34197.09 17676.14 33285.72 21888.59 32482.92 16898.04 18176.96 28891.43 20297.90 188
c3_l88.19 22887.23 22591.06 24594.97 22586.17 23997.72 22895.38 28683.43 27181.68 27091.37 27582.81 17095.72 30084.04 23673.70 30991.29 284
WR-MVS88.54 22287.22 22692.52 21991.93 28889.50 16398.56 15697.84 5486.99 21281.87 26693.81 23074.25 24095.92 29285.29 21674.43 30192.12 252
FMVSNet388.81 21787.08 22793.99 18996.52 16194.59 4998.08 20796.20 22585.85 23282.12 25791.60 27174.05 24195.40 30979.04 27480.24 26591.99 258
Anonymous20240521188.84 21387.03 22894.27 17798.14 11384.18 27598.44 16995.58 27376.79 33089.34 19096.88 17653.42 34399.54 10087.53 19687.12 22499.09 120
eth_miper_zixun_eth87.76 23287.00 22990.06 27094.67 23582.65 29697.02 25695.37 28784.19 25881.86 26891.58 27281.47 19295.90 29483.24 24173.61 31091.61 269
ADS-MVSNet287.62 23786.88 23089.86 27596.21 17379.14 32287.15 34792.99 33583.01 27789.91 18487.27 33378.87 20992.80 34174.20 30992.27 18897.64 191
DIV-MVS_self_test87.82 23086.81 23190.87 25294.87 23085.39 25897.81 22195.22 29882.92 28280.76 27691.31 27781.99 18595.81 29881.36 25975.04 29491.42 278
cl____87.82 23086.79 23290.89 25194.88 22985.43 25697.81 22195.24 29482.91 28380.71 27791.22 27881.97 18795.84 29681.34 26075.06 29391.40 279
test_part188.43 22386.68 23393.67 19897.56 12992.40 9698.12 20096.55 20282.26 29280.31 28193.16 24874.59 23396.62 24885.00 22172.61 32091.99 258
VPNet88.30 22586.57 23493.49 19991.95 28691.35 11198.18 19597.20 16488.61 16784.52 22894.89 21262.21 31496.76 24489.34 17572.26 32592.36 243
DP-MVS88.75 21986.56 23595.34 14298.92 8987.45 20697.64 23293.52 33270.55 34681.49 27197.25 15674.43 23599.88 4871.14 32494.09 16798.67 156
jajsoiax87.35 23986.51 23689.87 27487.75 33981.74 30297.03 25495.98 23588.47 17180.15 28493.80 23161.47 31696.36 26589.44 17384.47 24191.50 273
MSDG88.29 22686.37 23794.04 18796.90 14986.15 24096.52 27394.36 31877.89 32679.22 29696.95 17269.72 27299.59 9673.20 31792.58 18396.37 221
TranMVSNet+NR-MVSNet87.75 23386.31 23892.07 22890.81 30188.56 18298.33 18397.18 16587.76 19881.87 26693.90 22872.45 25395.43 30783.13 24571.30 33292.23 248
mvs_tets87.09 24286.22 23989.71 27987.87 33581.39 30696.73 26895.90 25088.19 18679.99 28693.61 23659.96 32296.31 27389.40 17484.34 24291.43 277
miper_lstm_enhance86.90 24486.20 24089.00 29694.53 23781.19 31096.74 26795.24 29482.33 29180.15 28490.51 30281.99 18594.68 32580.71 26573.58 31191.12 288
pmmvs487.58 23886.17 24191.80 23389.58 31588.92 17597.25 24595.28 29082.54 28780.49 27993.17 24775.62 22596.05 28582.75 24878.90 27290.42 308
XXY-MVS87.75 23386.02 24292.95 20990.46 30589.70 16097.71 23095.90 25084.02 26080.95 27494.05 22067.51 28897.10 23185.16 21778.41 27592.04 257
NR-MVSNet87.74 23586.00 24392.96 20891.46 29490.68 13496.65 27097.42 14388.02 19173.42 32993.68 23377.31 21995.83 29784.26 22971.82 32992.36 243
MS-PatchMatch86.75 24785.92 24489.22 29191.97 28582.47 29896.91 25896.14 23083.74 26577.73 30893.53 23958.19 32597.37 22576.75 29198.35 11087.84 338
MVP-Stereo86.61 25185.83 24588.93 29888.70 32783.85 28096.07 28994.41 31782.15 29475.64 31991.96 26567.65 28796.45 26077.20 28798.72 10186.51 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v2v48287.27 24185.76 24691.78 23789.59 31487.58 20298.56 15695.54 27584.53 25482.51 24991.78 26873.11 24896.47 25882.07 25474.14 30791.30 283
anonymousdsp86.69 24885.75 24789.53 28586.46 34582.94 28896.39 27595.71 26383.97 26279.63 29190.70 28968.85 27695.94 28986.01 20884.02 24489.72 322
V4287.00 24385.68 24890.98 24889.91 30986.08 24298.32 18595.61 27183.67 26882.72 24590.67 29174.00 24296.53 25381.94 25774.28 30490.32 310
Anonymous2024052987.66 23685.58 24993.92 19097.59 12785.01 26598.13 19897.13 17066.69 35888.47 19696.01 19955.09 33799.51 10587.00 19984.12 24397.23 203
RPSCF85.33 27185.55 25084.67 32794.63 23662.28 36393.73 31793.76 32674.38 33885.23 22397.06 16864.09 30798.31 16580.98 26186.08 23193.41 235
WR-MVS_H86.53 25385.49 25189.66 28391.04 29983.31 28597.53 23598.20 3184.95 24979.64 29090.90 28478.01 21695.33 31076.29 29572.81 31790.35 309
CP-MVSNet86.54 25285.45 25289.79 27891.02 30082.78 29497.38 23997.56 11485.37 23979.53 29393.03 25171.86 26095.25 31279.92 26973.43 31591.34 281
v114486.83 24685.31 25391.40 23989.75 31287.21 21898.31 18695.45 28083.22 27482.70 24690.78 28673.36 24496.36 26579.49 27174.69 29890.63 305
PVSNet_083.28 1687.31 24085.16 25493.74 19694.78 23284.59 27098.91 11498.69 1989.81 13378.59 30393.23 24561.95 31599.34 13094.75 10655.72 36097.30 200
v14886.38 25585.06 25590.37 26589.47 31984.10 27698.52 15895.48 27883.80 26480.93 27590.22 30974.60 23196.31 27380.92 26371.55 33090.69 303
GBi-Net86.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
test186.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
XVG-ACMP-BASELINE85.86 26284.95 25888.57 30089.90 31077.12 33494.30 31195.60 27287.40 20982.12 25792.99 25353.42 34397.66 20585.02 22083.83 24590.92 293
v14419286.40 25484.89 25990.91 24989.48 31885.59 25398.21 19395.43 28382.45 28982.62 24790.58 29872.79 25296.36 26578.45 28074.04 30890.79 297
JIA-IIPM85.97 26084.85 26089.33 29093.23 27073.68 34485.05 35397.13 17069.62 35091.56 15668.03 36288.03 8096.96 23577.89 28393.12 17497.34 199
Baseline_NR-MVSNet85.83 26384.82 26188.87 29988.73 32683.34 28498.63 14691.66 35180.41 31382.44 25091.35 27674.63 22995.42 30884.13 23271.39 33187.84 338
FMVSNet286.90 24484.79 26293.24 20395.11 21692.54 9497.67 23195.86 25682.94 27980.55 27891.17 28062.89 31195.29 31177.23 28579.71 27191.90 260
v119286.32 25684.71 26391.17 24389.53 31786.40 23098.13 19895.44 28282.52 28882.42 25190.62 29571.58 26496.33 27277.23 28574.88 29590.79 297
IterMVS85.81 26484.67 26489.22 29193.51 26283.67 28196.32 27894.80 30585.09 24478.69 29990.17 31266.57 29693.17 33779.48 27277.42 28490.81 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26784.64 26589.00 29693.46 26582.90 29096.27 27994.70 30885.02 24778.62 30190.35 30466.61 29493.33 33479.38 27377.36 28590.76 299
PS-CasMVS85.81 26484.58 26689.49 28890.77 30282.11 30097.20 24997.36 15084.83 25179.12 29892.84 25467.42 28995.16 31478.39 28173.25 31691.21 286
v886.11 25884.45 26791.10 24489.99 30886.85 22297.24 24695.36 28881.99 29579.89 28889.86 31474.53 23496.39 26378.83 27872.32 32490.05 317
v192192086.02 25984.44 26890.77 25489.32 32085.20 26098.10 20495.35 28982.19 29382.25 25590.71 28870.73 26796.30 27676.85 29074.49 30090.80 296
EU-MVSNet84.19 28584.42 26983.52 33288.64 32867.37 36196.04 29095.76 26185.29 24078.44 30493.18 24670.67 26891.48 35475.79 29975.98 28891.70 263
pmmvs585.87 26184.40 27090.30 26688.53 32984.23 27498.60 15193.71 32881.53 30080.29 28292.02 26264.51 30695.52 30582.04 25678.34 27691.15 287
v124085.77 26684.11 27190.73 25589.26 32185.15 26397.88 21895.23 29781.89 29882.16 25690.55 30069.60 27496.31 27375.59 30074.87 29690.72 302
Patchmatch-test86.25 25784.06 27292.82 21194.42 23882.88 29282.88 36194.23 32071.58 34379.39 29490.62 29589.00 6496.42 26263.03 34891.37 20499.16 113
v1085.73 26784.01 27390.87 25290.03 30786.73 22497.20 24995.22 29881.25 30379.85 28989.75 31573.30 24796.28 27776.87 28972.64 31989.61 324
PEN-MVS85.21 27283.93 27489.07 29589.89 31181.31 30897.09 25297.24 15684.45 25678.66 30092.68 25668.44 28094.87 31975.98 29770.92 33391.04 290
UniMVSNet_ETH3D85.65 26983.79 27591.21 24290.41 30680.75 31695.36 30295.78 25978.76 32081.83 26994.33 21949.86 35196.66 24684.30 22883.52 25096.22 222
OurMVSNet-221017-084.13 28783.59 27685.77 32187.81 33670.24 35594.89 30693.65 33086.08 23076.53 31193.28 24461.41 31796.14 28280.95 26277.69 28390.93 292
PatchT85.44 27083.19 27792.22 22293.13 27283.00 28783.80 36096.37 21370.62 34590.55 17379.63 35784.81 14494.87 31958.18 35891.59 20098.79 148
AllTest84.97 27483.12 27890.52 25996.82 15178.84 32495.89 29292.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
USDC84.74 27582.93 27990.16 26891.73 29183.54 28295.00 30593.30 33488.77 16573.19 33093.30 24353.62 34297.65 20675.88 29881.54 26389.30 327
COLMAP_ROBcopyleft82.69 1884.54 28082.82 28089.70 28096.72 15578.85 32395.89 29292.83 33871.55 34477.54 31095.89 20059.40 32399.14 14067.26 33688.26 21891.11 289
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
our_test_384.47 28282.80 28189.50 28689.01 32283.90 27997.03 25494.56 31281.33 30275.36 32190.52 30171.69 26294.54 32768.81 33176.84 28790.07 315
DTE-MVSNet84.14 28682.80 28188.14 30488.95 32479.87 32096.81 26296.24 22283.50 27077.60 30992.52 25867.89 28694.24 33072.64 32069.05 33690.32 310
pm-mvs184.68 27782.78 28390.40 26289.58 31585.18 26197.31 24094.73 30781.93 29776.05 31492.01 26365.48 30396.11 28378.75 27969.14 33589.91 320
v7n84.42 28382.75 28489.43 28988.15 33281.86 30196.75 26695.67 26780.53 30978.38 30589.43 31969.89 27096.35 27073.83 31372.13 32690.07 315
LTVRE_ROB81.71 1984.59 27982.72 28590.18 26792.89 27683.18 28693.15 32294.74 30678.99 31775.14 32292.69 25565.64 30097.63 20769.46 32981.82 26289.74 321
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS_030484.13 28782.66 28688.52 30193.07 27380.15 31795.81 29898.21 3079.27 31586.85 21286.40 34041.33 36294.69 32476.36 29486.69 22590.73 301
Anonymous2023121184.72 27682.65 28790.91 24997.71 12184.55 27197.28 24396.67 19366.88 35779.18 29790.87 28558.47 32496.60 24982.61 25074.20 30591.59 271
ACMH83.09 1784.60 27882.61 28890.57 25793.18 27182.94 28896.27 27994.92 30281.01 30672.61 33793.61 23656.54 32997.79 19474.31 30881.07 26490.99 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+83.78 1584.21 28482.56 28989.15 29393.73 25979.16 32196.43 27494.28 31981.09 30574.00 32694.03 22354.58 33997.67 20476.10 29678.81 27390.63 305
RPMNet85.07 27381.88 29094.64 16693.47 26386.24 23584.97 35497.21 16064.85 36090.76 17078.80 35880.95 19699.27 13353.76 36192.17 19198.41 167
MIMVSNet84.48 28181.83 29192.42 22091.73 29187.36 20985.52 35094.42 31681.40 30181.91 26487.58 32851.92 34692.81 34073.84 31288.15 21997.08 208
Patchmtry83.61 29281.64 29289.50 28693.36 26782.84 29384.10 35794.20 32169.47 35179.57 29286.88 33784.43 14694.78 32268.48 33374.30 30390.88 294
SixPastTwentyTwo82.63 29581.58 29385.79 32088.12 33371.01 35495.17 30492.54 34084.33 25772.93 33592.08 26060.41 32195.61 30474.47 30774.15 30690.75 300
ppachtmachnet_test83.63 29181.57 29489.80 27789.01 32285.09 26497.13 25194.50 31378.84 31876.14 31391.00 28269.78 27194.61 32663.40 34674.36 30289.71 323
DSMNet-mixed81.60 30181.43 29582.10 33684.36 35260.79 36493.63 31986.74 36779.00 31679.32 29587.15 33563.87 30989.78 35766.89 33891.92 19395.73 225
tfpnnormal83.65 29081.35 29690.56 25891.37 29688.06 19297.29 24297.87 5278.51 32176.20 31290.91 28364.78 30596.47 25861.71 35173.50 31287.13 346
FMVSNet183.94 28981.32 29791.80 23391.94 28788.81 17796.77 26395.25 29177.98 32278.25 30690.25 30650.37 35094.97 31673.27 31677.81 28291.62 266
LF4IMVS81.94 29981.17 29884.25 32987.23 34268.87 36093.35 32191.93 34983.35 27375.40 32093.00 25249.25 35496.65 24778.88 27778.11 27787.22 345
testgi82.29 29681.00 29986.17 31887.24 34174.84 34097.39 23791.62 35288.63 16675.85 31895.42 20746.07 35791.55 35366.87 33979.94 26992.12 252
FMVSNet582.29 29680.54 30087.52 30993.79 25884.01 27793.73 31792.47 34176.92 32974.27 32486.15 34263.69 31089.24 35869.07 33074.79 29789.29 328
KD-MVS_2432*160082.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
miper_refine_blended82.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
Patchmatch-RL test81.90 30080.13 30387.23 31280.71 36270.12 35784.07 35888.19 36683.16 27670.57 33982.18 35187.18 9892.59 34382.28 25362.78 34898.98 127
CMPMVSbinary58.40 2180.48 30480.11 30481.59 33985.10 35059.56 36594.14 31495.95 24068.54 35360.71 35993.31 24255.35 33697.87 18983.06 24684.85 23887.33 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
K. test v381.04 30279.77 30584.83 32587.41 34070.23 35695.60 30193.93 32583.70 26767.51 34989.35 32055.76 33193.58 33376.67 29268.03 33990.67 304
TransMVSNet (Re)81.97 29879.61 30689.08 29489.70 31384.01 27797.26 24491.85 35078.84 31873.07 33491.62 27067.17 29195.21 31367.50 33559.46 35588.02 337
Anonymous2023120680.76 30379.42 30784.79 32684.78 35172.98 34696.53 27292.97 33679.56 31474.33 32388.83 32261.27 31892.15 34960.59 35375.92 28989.24 329
CL-MVSNet_self_test79.89 30878.34 30884.54 32881.56 36075.01 33896.88 26095.62 26981.10 30475.86 31785.81 34368.49 27990.26 35663.21 34756.51 35888.35 335
TinyColmap80.42 30577.94 30987.85 30692.09 28478.58 32693.74 31689.94 36074.99 33469.77 34191.78 26846.09 35697.58 21065.17 34477.89 27887.38 341
EG-PatchMatch MVS79.92 30677.59 31086.90 31487.06 34377.90 33396.20 28794.06 32374.61 33666.53 35388.76 32340.40 36496.20 27867.02 33783.66 24886.61 347
test20.0378.51 31677.48 31181.62 33883.07 35671.03 35396.11 28892.83 33881.66 29969.31 34289.68 31657.53 32687.29 36358.65 35768.47 33786.53 348
pmmvs679.90 30777.31 31287.67 30884.17 35378.13 33095.86 29693.68 32967.94 35572.67 33689.62 31750.98 34995.75 29974.80 30666.04 34489.14 330
MDA-MVSNet_test_wron79.65 30977.05 31387.45 31087.79 33880.13 31896.25 28294.44 31473.87 33951.80 36287.47 33268.04 28392.12 35066.02 34067.79 34090.09 313
YYNet179.64 31077.04 31487.43 31187.80 33779.98 31996.23 28394.44 31473.83 34051.83 36187.53 32967.96 28592.07 35166.00 34167.75 34190.23 312
Anonymous2024052178.63 31576.90 31583.82 33082.82 35772.86 34795.72 30093.57 33173.55 34172.17 33884.79 34549.69 35292.51 34565.29 34374.50 29986.09 351
UnsupCasMVSNet_eth78.90 31276.67 31685.58 32282.81 35874.94 33991.98 33196.31 21684.64 25365.84 35587.71 32751.33 34792.23 34872.89 31956.50 35989.56 325
test_040278.81 31376.33 31786.26 31791.18 29778.44 32895.88 29491.34 35568.55 35270.51 34089.91 31352.65 34594.99 31547.14 36479.78 27085.34 355
pmmvs-eth3d78.71 31476.16 31886.38 31680.25 36381.19 31094.17 31392.13 34677.97 32366.90 35282.31 35055.76 33192.56 34473.63 31562.31 35185.38 353
KD-MVS_self_test77.47 32075.88 31982.24 33481.59 35968.93 35992.83 32794.02 32477.03 32873.14 33183.39 34855.44 33590.42 35567.95 33457.53 35787.38 341
TDRefinement78.01 31775.31 32086.10 31970.06 36973.84 34393.59 32091.58 35374.51 33773.08 33391.04 28149.63 35397.12 22874.88 30459.47 35487.33 343
MVS-HIRNet79.01 31175.13 32190.66 25693.82 25781.69 30385.16 35193.75 32754.54 36274.17 32559.15 36657.46 32796.58 25063.74 34594.38 16493.72 232
OpenMVS_ROBcopyleft73.86 2077.99 31875.06 32286.77 31583.81 35577.94 33296.38 27691.53 35467.54 35668.38 34487.13 33643.94 35896.08 28455.03 36081.83 26186.29 350
MDA-MVSNet-bldmvs77.82 31974.75 32387.03 31388.33 33078.52 32796.34 27792.85 33775.57 33348.87 36487.89 32657.32 32892.49 34660.79 35264.80 34790.08 314
new_pmnet76.02 32173.71 32482.95 33383.88 35472.85 34891.26 33792.26 34370.44 34762.60 35781.37 35247.64 35592.32 34761.85 35072.10 32783.68 358
MIMVSNet175.92 32273.30 32583.81 33181.29 36175.57 33792.26 33092.05 34773.09 34267.48 35086.18 34140.87 36387.64 36255.78 35970.68 33488.21 336
PM-MVS74.88 32372.85 32680.98 34078.98 36564.75 36290.81 34085.77 36880.95 30768.23 34682.81 34929.08 36892.84 33976.54 29362.46 35085.36 354
new-patchmatchnet74.80 32472.40 32781.99 33778.36 36672.20 35094.44 30992.36 34277.06 32763.47 35679.98 35651.04 34888.85 35960.53 35454.35 36184.92 356
UnsupCasMVSNet_bld73.85 32570.14 32884.99 32479.44 36475.73 33688.53 34595.24 29470.12 34961.94 35874.81 35941.41 36193.62 33268.65 33251.13 36485.62 352
N_pmnet70.19 32769.87 32971.12 34688.24 33130.63 37995.85 29728.70 37970.18 34868.73 34386.55 33964.04 30893.81 33153.12 36273.46 31388.94 331
pmmvs372.86 32669.76 33082.17 33573.86 36774.19 34294.20 31289.01 36464.23 36167.72 34780.91 35441.48 36088.65 36062.40 34954.02 36283.68 358
test_method70.10 32868.66 33174.41 34486.30 34755.84 36894.47 30889.82 36135.18 36766.15 35484.75 34630.54 36777.96 36870.40 32860.33 35389.44 326
FPMVS61.57 32960.32 33265.34 34860.14 37342.44 37491.02 33989.72 36244.15 36442.63 36680.93 35319.02 37080.59 36742.50 36572.76 31873.00 362
LCM-MVSNet60.07 33156.37 33371.18 34554.81 37548.67 37282.17 36289.48 36337.95 36549.13 36369.12 36013.75 37681.76 36459.28 35551.63 36383.10 360
EGC-MVSNET60.70 33055.37 33476.72 34286.35 34671.08 35289.96 34484.44 3710.38 3761.50 37784.09 34737.30 36588.10 36140.85 36673.44 31470.97 364
PMMVS258.97 33255.07 33570.69 34762.72 37055.37 36985.97 34980.52 37249.48 36345.94 36568.31 36115.73 37480.78 36649.79 36337.12 36775.91 361
tmp_tt53.66 33452.86 33656.05 35132.75 37941.97 37573.42 36576.12 37521.91 37239.68 36896.39 19142.59 35965.10 37178.00 28214.92 37261.08 365
Gipumacopyleft54.77 33352.22 33762.40 35086.50 34459.37 36650.20 36890.35 35936.52 36641.20 36749.49 36818.33 37281.29 36532.10 36865.34 34546.54 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high50.71 33546.17 33864.33 34944.27 37752.30 37076.13 36478.73 37364.95 35927.37 37055.23 36714.61 37567.74 37036.01 36718.23 37072.95 363
PMVScopyleft41.42 2345.67 33642.50 33955.17 35234.28 37832.37 37766.24 36678.71 37430.72 36822.04 37359.59 3654.59 37777.85 36927.49 36958.84 35655.29 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 33840.93 34041.29 35461.97 37133.83 37684.00 35965.17 37727.17 36927.56 36946.72 37017.63 37360.41 37319.32 37118.82 36929.61 369
EMVS39.96 33939.88 34140.18 35559.57 37432.12 37884.79 35664.57 37826.27 37026.14 37144.18 37318.73 37159.29 37417.03 37217.67 37129.12 370
MVEpermissive44.00 2241.70 33737.64 34253.90 35349.46 37643.37 37365.09 36766.66 37626.19 37125.77 37248.53 3693.58 37963.35 37226.15 37027.28 36854.97 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k22.52 34030.03 3430.00 3590.00 3820.00 3830.00 37097.17 1660.00 3770.00 37898.77 8674.35 2370.00 3780.00 3760.00 3760.00 374
testmvs18.81 34123.05 3446.10 3584.48 3802.29 38297.78 2233.00 3813.27 37418.60 37462.71 3631.53 3812.49 37714.26 3741.80 37413.50 372
test12316.58 34319.47 3457.91 3573.59 3815.37 38194.32 3101.39 3822.49 37513.98 37544.60 3722.91 3802.65 37611.35 3750.57 37515.70 371
wuyk23d16.71 34216.73 34616.65 35660.15 37225.22 38041.24 3695.17 3806.56 3735.48 3763.61 3763.64 37822.72 37515.20 3739.52 3731.99 373
ab-mvs-re8.21 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.50 1070.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.87 3459.16 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37782.48 1780.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.50 4788.94 17399.55 3497.47 13391.32 9498.12 37
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
No_MVS99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
test_one_060199.59 3194.89 3597.64 9393.14 5098.93 1599.45 1693.45 17
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.67 1393.28 7497.61 10187.78 19797.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
IU-MVS99.63 2195.38 2197.73 7395.54 1599.54 199.69 599.81 2399.99 1
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
test_241102_TWO97.72 7594.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
test_241102_ONE99.63 2195.24 2497.72 7594.16 2799.30 599.49 1093.32 1899.98 10
save fliter99.34 5893.85 6399.65 2397.63 9895.69 11
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8499.98 1099.64 699.82 1999.96 10
test072699.66 1595.20 2999.77 997.70 8093.95 3099.35 499.54 393.18 21
GSMVS98.84 141
test_part299.54 4095.42 1998.13 35
sam_mvs188.39 7398.84 141
sam_mvs87.08 99
ambc79.60 34172.76 36856.61 36776.20 36392.01 34868.25 34580.23 35523.34 36994.73 32373.78 31460.81 35287.48 340
MTGPAbinary97.45 136
test_post190.74 34241.37 37485.38 13796.36 26583.16 243
test_post46.00 37187.37 9297.11 229
patchmatchnet-post84.86 34488.73 6796.81 241
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34697.74 6993.91 12896.40 18996.56 296.94 23795.08 9998.95 9299.20 111
MTMP99.21 7491.09 356
gm-plane-assit94.69 23488.14 19088.22 18597.20 16098.29 16790.79 156
test9_res98.60 2399.87 999.90 24
TEST999.57 3793.17 7699.38 6197.66 8789.57 14298.39 3099.18 3790.88 3599.66 84
test_899.55 3993.07 8099.37 6497.64 9390.18 12298.36 3299.19 3490.94 3399.64 90
agg_prior297.84 4599.87 999.91 22
agg_prior99.54 4092.66 8897.64 9397.98 4499.61 93
TestCases90.52 25996.82 15178.84 32492.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
test_prior492.00 9999.41 58
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
test_prior97.01 6599.58 3391.77 10097.57 11299.49 10899.79 38
旧先验298.67 14085.75 23498.96 1498.97 14693.84 121
新几何298.26 189
新几何197.40 5198.92 8992.51 9597.77 6685.52 23696.69 7899.06 5688.08 7999.89 4784.88 22299.62 5199.79 38
旧先验198.97 8592.90 8797.74 6999.15 4391.05 3299.33 7499.60 77
无先验98.52 15897.82 5687.20 21199.90 4487.64 19499.85 33
原ACMM298.69 136
原ACMM196.18 11399.03 8390.08 14797.63 9888.98 15797.00 6498.97 6688.14 7899.71 7788.23 18799.62 5198.76 152
test22298.32 10691.21 11498.08 20797.58 10983.74 26595.87 9499.02 6086.74 10799.64 4799.81 35
testdata299.88 4884.16 231
segment_acmp90.56 42
testdata95.26 14598.20 10987.28 21297.60 10385.21 24198.48 2899.15 4388.15 7798.72 15590.29 16199.45 6699.78 42
testdata197.89 21692.43 65
test1297.83 3499.33 6494.45 5197.55 11597.56 5188.60 6899.50 10799.71 3899.55 81
plane_prior793.84 25585.73 251
plane_prior693.92 25286.02 24572.92 249
plane_prior596.30 21797.75 20193.46 12886.17 22992.67 238
plane_prior496.52 185
plane_prior385.91 24693.65 4286.99 208
plane_prior299.02 10293.38 47
plane_prior193.90 254
plane_prior86.07 24399.14 8993.81 4086.26 228
n20.00 383
nn0.00 383
door-mid84.90 370
lessismore_v085.08 32385.59 34969.28 35890.56 35867.68 34890.21 31054.21 34195.46 30673.88 31162.64 34990.50 307
LGP-MVS_train90.06 27093.35 26880.95 31495.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
test1197.68 84
door85.30 369
HQP5-MVS86.39 231
HQP-NCC93.95 24899.16 8093.92 3287.57 201
ACMP_Plane93.95 24899.16 8093.92 3287.57 201
BP-MVS93.82 123
HQP4-MVS87.57 20197.77 19692.72 236
HQP3-MVS96.37 21386.29 226
HQP2-MVS73.34 245
NP-MVS93.94 25186.22 23796.67 183
MDTV_nov1_ep13_2view91.17 11891.38 33587.45 20893.08 13986.67 11087.02 19898.95 133
ACMMP++_ref82.64 257
ACMMP++83.83 245
Test By Simon83.62 154
ITE_SJBPF87.93 30592.26 28176.44 33593.47 33387.67 20479.95 28795.49 20656.50 33097.38 22375.24 30182.33 25989.98 319
DeepMVS_CXcopyleft76.08 34390.74 30351.65 37190.84 35786.47 22757.89 36087.98 32535.88 36692.60 34265.77 34265.06 34683.97 357