This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3699.71 796.99 4199.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 16398.58 1299.95 599.66 21
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4199.77 396.34 6099.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4399.92 1299.77 8
pmmvs699.07 499.24 498.56 4799.81 296.38 5898.87 799.30 899.01 1699.63 999.66 399.27 299.68 11097.75 2999.89 2099.62 24
v7n98.73 1198.99 597.95 8999.64 1194.20 14098.67 1199.14 2399.08 1099.42 1599.23 2196.53 7599.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3199.69 896.48 5698.54 1899.22 1096.23 9999.71 499.48 798.77 699.93 298.89 399.95 599.84 5
ANet_high98.31 2898.94 696.41 19399.33 4289.64 23297.92 5199.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3499.98 299.77 8
DTE-MVSNet98.79 898.86 898.59 4599.55 1796.12 6798.48 2299.10 2899.36 499.29 2299.06 3597.27 3799.93 297.71 3199.91 1599.70 18
TDRefinement98.90 598.86 899.02 899.54 1998.06 699.34 499.44 698.85 1999.00 3599.20 2397.42 3199.59 14297.21 4499.76 3799.40 80
PS-CasMVS98.73 1198.85 1098.39 5799.55 1795.47 9298.49 2099.13 2499.22 899.22 2698.96 4097.35 3399.92 497.79 2799.93 1099.79 7
PEN-MVS98.75 1098.85 1098.44 5399.58 1495.67 8298.45 2399.15 2199.33 599.30 2199.00 3697.27 3799.92 497.64 3299.92 1299.75 13
jajsoiax98.77 998.79 1298.74 3399.66 1096.48 5698.45 2399.12 2595.83 12499.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
Anonymous2023121198.55 1798.76 1397.94 9098.79 10294.37 13298.84 899.15 2199.37 399.67 699.43 1195.61 11499.72 7298.12 1699.86 2399.73 15
UA-Net98.88 798.76 1399.22 299.11 8097.89 1099.47 399.32 799.08 1097.87 13099.67 296.47 8099.92 497.88 2299.98 299.85 3
ACMH93.61 998.44 2298.76 1397.51 11899.43 3293.54 16598.23 3299.05 4097.40 6799.37 1899.08 3498.79 599.47 17597.74 3099.71 4999.50 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf98.73 1198.74 1698.69 3899.63 1296.30 6298.67 1199.02 4996.50 8899.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
pm-mvs198.47 2198.67 1797.86 9599.52 2194.58 12598.28 2999.00 5797.57 5799.27 2399.22 2298.32 999.50 16897.09 5099.75 4199.50 42
TransMVSNet (Re)98.38 2598.67 1797.51 11899.51 2293.39 16998.20 3798.87 8198.23 3499.48 1299.27 1998.47 899.55 15596.52 6399.53 9399.60 25
anonymousdsp98.72 1498.63 1998.99 1199.62 1397.29 3498.65 1499.19 1595.62 13199.35 1999.37 1297.38 3299.90 1398.59 1199.91 1599.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7299.68 994.82 11598.10 4299.21 1196.91 7699.75 299.45 995.82 10299.92 498.80 499.96 499.89 1
nrg03098.54 1898.62 2198.32 6299.22 5695.66 8397.90 5299.08 3498.31 3199.02 3398.74 5397.68 2499.61 14097.77 2899.85 2599.70 18
WR-MVS_H98.65 1598.62 2198.75 3199.51 2296.61 5298.55 1799.17 1699.05 1399.17 2898.79 4995.47 11999.89 1697.95 2099.91 1599.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4399.77 396.35 5999.17 699.05 4098.05 3999.61 1199.52 593.72 16999.88 1898.72 999.88 2199.65 22
VPA-MVSNet98.27 2998.46 2497.70 10499.06 8593.80 15497.76 5999.00 5798.40 2899.07 3298.98 3896.89 5899.75 5697.19 4799.79 3399.55 34
CP-MVSNet98.42 2398.46 2498.30 6599.46 2895.22 10498.27 3198.84 8799.05 1399.01 3498.65 6195.37 12299.90 1397.57 3399.91 1599.77 8
MIMVSNet198.51 2098.45 2698.67 3999.72 696.71 4798.76 998.89 7498.49 2699.38 1799.14 3095.44 12199.84 2596.47 6699.80 3299.47 58
FC-MVSNet-test98.16 3398.37 2797.56 11399.49 2693.10 17698.35 2699.21 1198.43 2798.89 3898.83 4894.30 15499.81 3197.87 2399.91 1599.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8099.33 4295.21 10698.04 4599.46 597.32 6997.82 13599.11 3196.75 6699.86 2097.84 2499.36 14799.15 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+93.58 1098.23 3298.31 2997.98 8899.39 3795.22 10497.55 7299.20 1398.21 3599.25 2498.51 7098.21 1199.40 19994.79 14499.72 4699.32 94
Gipumacopyleft98.07 3898.31 2997.36 13899.76 596.28 6398.51 1999.10 2898.76 2196.79 18599.34 1796.61 7298.82 28696.38 6899.50 10596.98 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5499.07 8495.87 7396.73 11399.05 4098.67 2298.84 3998.45 7497.58 2799.88 1896.45 6799.86 2399.54 35
abl_698.42 2398.19 3299.09 399.16 6798.10 597.73 6399.11 2697.76 4698.62 5098.27 9597.88 1999.80 3795.67 9399.50 10599.38 85
HPM-MVS_fast98.32 2798.13 3398.88 2299.54 1997.48 2798.35 2699.03 4795.88 11997.88 12798.22 10298.15 1299.74 6396.50 6599.62 6299.42 77
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4299.21 6297.35 3297.96 4899.16 1798.34 3098.78 4298.52 6997.32 3499.45 18294.08 17499.67 5699.13 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet197.95 4798.08 3597.56 11399.14 7893.67 15998.23 3298.66 13897.41 6699.00 3599.19 2495.47 11999.73 6895.83 8999.76 3799.30 100
FIs97.93 5298.07 3697.48 12599.38 3892.95 17998.03 4799.11 2698.04 4098.62 5098.66 5993.75 16899.78 4097.23 4299.84 2699.73 15
v897.60 7898.06 3796.23 19998.71 11289.44 23697.43 7998.82 10397.29 7198.74 4699.10 3293.86 16499.68 11098.61 1099.94 899.56 32
Anonymous2024052997.96 4498.04 3897.71 10298.69 11694.28 13797.86 5498.31 18198.79 2099.23 2598.86 4795.76 10999.61 14095.49 10399.36 14799.23 116
APDe-MVS98.14 3498.03 3998.47 5298.72 10996.04 6998.07 4499.10 2895.96 11398.59 5498.69 5796.94 5499.81 3196.64 5899.58 7599.57 31
tfpnnormal97.72 7097.97 4096.94 15899.26 4792.23 19097.83 5698.45 15998.25 3399.13 2998.66 5996.65 6999.69 10493.92 18399.62 6298.91 174
v1097.55 8197.97 4096.31 19798.60 12689.64 23297.44 7799.02 4996.60 8498.72 4899.16 2993.48 17399.72 7298.76 699.92 1299.58 27
test_040297.84 6197.97 4097.47 12699.19 6594.07 14396.71 11498.73 11898.66 2398.56 5698.41 7696.84 6399.69 10494.82 14299.81 2998.64 206
SED-MVS97.94 4997.90 4398.07 8099.22 5695.35 9696.79 10698.83 9596.11 10399.08 3098.24 9797.87 2099.72 7295.44 10899.51 10399.14 130
APD-MVS_3200maxsize98.13 3697.90 4398.79 2998.79 10297.31 3397.55 7298.92 7197.72 5098.25 8898.13 10897.10 4499.75 5695.44 10899.24 17699.32 94
DP-MVS97.87 5997.89 4597.81 9898.62 12394.82 11597.13 9398.79 10598.98 1798.74 4698.49 7195.80 10899.49 16995.04 13499.44 12399.11 141
NR-MVSNet97.96 4497.86 4698.26 6798.73 10795.54 8798.14 4098.73 11897.79 4499.42 1597.83 14594.40 15299.78 4095.91 8899.76 3799.46 60
MTAPA98.14 3497.84 4799.06 499.44 3097.90 897.25 8598.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
HPM-MVScopyleft98.11 3797.83 4898.92 2099.42 3497.46 2898.57 1599.05 4095.43 14097.41 15397.50 17597.98 1599.79 3895.58 10299.57 7899.50 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs97.50 8597.81 4996.56 18498.51 13691.04 21395.83 16199.09 3397.23 7298.33 8098.30 8897.03 5199.37 21196.58 6199.38 14399.28 107
Baseline_NR-MVSNet97.72 7097.79 5097.50 12199.56 1593.29 17095.44 17798.86 8398.20 3698.37 7299.24 2094.69 13999.55 15595.98 8599.79 3399.65 22
EG-PatchMatch MVS97.69 7297.79 5097.40 13599.06 8593.52 16695.96 15398.97 6694.55 17498.82 4098.76 5297.31 3599.29 23297.20 4699.44 12399.38 85
ACMM93.33 1198.05 3997.79 5098.85 2399.15 7097.55 2396.68 11598.83 9595.21 14698.36 7498.13 10898.13 1499.62 13496.04 7999.54 9099.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline97.44 9097.78 5396.43 19098.52 13590.75 22196.84 10399.03 4796.51 8797.86 13198.02 12396.67 6899.36 21397.09 5099.47 11599.19 120
SteuartSystems-ACMMP98.02 4197.76 5498.79 2999.43 3297.21 3897.15 9098.90 7396.58 8698.08 10697.87 14297.02 5299.76 5295.25 11899.59 7399.40 80
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.05 3997.75 5598.93 1999.23 5397.60 1998.09 4398.96 6795.75 12897.91 12398.06 11996.89 5899.76 5295.32 11599.57 7899.43 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
testing_297.43 9197.71 5696.60 17898.91 9690.85 21696.01 14998.54 15194.78 16498.78 4298.96 4096.35 8899.54 15797.25 4199.82 2899.40 80
SD-MVS97.37 9697.70 5796.35 19498.14 17795.13 10796.54 11898.92 7195.94 11599.19 2798.08 11497.74 2295.06 34595.24 11999.54 9098.87 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS97.54 8297.70 5797.07 15299.46 2892.21 19197.22 8899.00 5794.93 16198.58 5598.92 4497.31 3599.41 19794.44 15799.43 13099.59 26
DeepC-MVS95.41 497.82 6497.70 5798.16 7398.78 10495.72 7796.23 13699.02 4993.92 19598.62 5098.99 3797.69 2399.62 13496.18 7399.87 2299.15 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LPG-MVS_test97.94 4997.67 6098.74 3399.15 7097.02 3997.09 9499.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
SR-MVS98.00 4397.66 6199.01 998.77 10597.93 797.38 8198.83 9597.32 6998.06 10897.85 14396.65 6999.77 4895.00 13799.11 19099.32 94
zzz-MVS98.01 4297.66 6199.06 499.44 3097.90 895.66 16998.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
MSP-MVS97.78 6797.65 6398.16 7399.24 5195.51 8996.74 10998.23 18795.92 11698.40 6998.28 9197.06 4999.71 8795.48 10499.52 9899.26 112
UniMVSNet_NR-MVSNet97.83 6297.65 6398.37 5898.72 10995.78 7595.66 16999.02 4998.11 3898.31 8397.69 16294.65 14399.85 2297.02 5399.71 4999.48 55
UniMVSNet (Re)97.83 6297.65 6398.35 6198.80 10195.86 7495.92 15799.04 4697.51 6098.22 9197.81 14994.68 14199.78 4097.14 4999.75 4199.41 79
HFP-MVS97.94 4997.64 6698.83 2499.15 7097.50 2597.59 6998.84 8796.05 10697.49 14497.54 17097.07 4799.70 9695.61 9999.46 11899.30 100
3Dnovator96.53 297.61 7797.64 6697.50 12197.74 22693.65 16398.49 2098.88 7996.86 7897.11 16498.55 6795.82 10299.73 6895.94 8699.42 13399.13 133
ACMMP_NAP97.89 5797.63 6898.67 3999.35 4196.84 4496.36 12798.79 10595.07 15497.88 12798.35 8097.24 4199.72 7296.05 7899.58 7599.45 65
XVS97.96 4497.63 6898.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20797.64 16496.49 7899.72 7295.66 9599.37 14499.45 65
ZNCC-MVS97.92 5397.62 7098.83 2499.32 4497.24 3697.45 7698.84 8795.76 12696.93 18097.43 18097.26 3999.79 3896.06 7699.53 9399.45 65
ACMMPR97.95 4797.62 7098.94 1699.20 6397.56 2297.59 6998.83 9596.05 10697.46 15097.63 16596.77 6599.76 5295.61 9999.46 11899.49 50
DU-MVS97.79 6697.60 7298.36 5998.73 10795.78 7595.65 17198.87 8197.57 5798.31 8397.83 14594.69 13999.85 2297.02 5399.71 4999.46 60
region2R97.92 5397.59 7398.92 2099.22 5697.55 2397.60 6898.84 8796.00 11197.22 15797.62 16696.87 6199.76 5295.48 10499.43 13099.46 60
3Dnovator+96.13 397.73 6997.59 7398.15 7698.11 18295.60 8598.04 4598.70 12898.13 3796.93 18098.45 7495.30 12699.62 13495.64 9798.96 20599.24 115
SixPastTwentyTwo97.49 8697.57 7597.26 14499.56 1592.33 18798.28 2996.97 26498.30 3299.45 1499.35 1688.43 25499.89 1698.01 1999.76 3799.54 35
CP-MVS97.92 5397.56 7698.99 1198.99 9197.82 1297.93 5098.96 6796.11 10396.89 18397.45 17996.85 6299.78 4095.19 12199.63 6199.38 85
mPP-MVS97.91 5697.53 7799.04 699.22 5697.87 1197.74 6198.78 10996.04 10897.10 16597.73 15796.53 7599.78 4095.16 12599.50 10599.46 60
PGM-MVS97.88 5897.52 7898.96 1499.20 6397.62 1897.09 9499.06 3895.45 13897.55 13997.94 13397.11 4399.78 4094.77 14799.46 11899.48 55
RPSCF97.87 5997.51 7998.95 1599.15 7098.43 397.56 7199.06 3896.19 10098.48 6298.70 5694.72 13899.24 24094.37 16299.33 16299.17 123
LS3D97.77 6897.50 8098.57 4696.24 29097.58 2198.45 2398.85 8498.58 2597.51 14297.94 13395.74 11099.63 12695.19 12198.97 20498.51 217
GST-MVS97.82 6497.49 8198.81 2799.23 5397.25 3597.16 8998.79 10595.96 11397.53 14097.40 18296.93 5599.77 4895.04 13499.35 15299.42 77
VPNet97.26 10397.49 8196.59 18099.47 2790.58 22396.27 13198.53 15297.77 4598.46 6598.41 7694.59 14599.68 11094.61 15099.29 17099.52 39
Regformer-497.53 8497.47 8397.71 10297.35 25393.91 14895.26 19498.14 20197.97 4198.34 7797.89 13895.49 11799.71 8797.41 3899.42 13399.51 41
EI-MVSNet-UG-set97.32 10097.40 8497.09 15197.34 25792.01 19995.33 18897.65 23897.74 4798.30 8598.14 10795.04 13299.69 10497.55 3499.52 9899.58 27
SF-MVS97.60 7897.39 8598.22 7198.93 9495.69 7997.05 9699.10 2895.32 14397.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
EI-MVSNet-Vis-set97.32 10097.39 8597.11 14997.36 25292.08 19795.34 18797.65 23897.74 4798.29 8698.11 11295.05 13099.68 11097.50 3699.50 10599.56 32
MP-MVS-pluss97.69 7297.36 8798.70 3799.50 2596.84 4495.38 18498.99 6092.45 23498.11 10098.31 8497.25 4099.77 4896.60 5999.62 6299.48 55
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DPE-MVS97.64 7497.35 8898.50 4998.85 9996.18 6495.21 19998.99 6095.84 12398.78 4298.08 11496.84 6399.81 3193.98 18199.57 7899.52 39
LCM-MVSNet-Re97.33 9997.33 8997.32 14098.13 18093.79 15596.99 10099.65 296.74 8199.47 1398.93 4396.91 5799.84 2590.11 26199.06 19998.32 232
CSCG97.40 9497.30 9097.69 10698.95 9394.83 11497.28 8498.99 6096.35 9598.13 9995.95 27095.99 9599.66 12094.36 16599.73 4398.59 212
Regformer-397.25 10497.29 9197.11 14997.35 25392.32 18895.26 19497.62 24397.67 5598.17 9497.89 13895.05 13099.56 15197.16 4899.42 13399.46 60
IterMVS-LS96.92 11797.29 9195.79 21898.51 13688.13 26095.10 20298.66 13896.99 7398.46 6598.68 5892.55 19599.74 6396.91 5699.79 3399.50 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-ACMP-BASELINE97.58 8097.28 9398.49 5099.16 6796.90 4396.39 12498.98 6395.05 15598.06 10898.02 12395.86 9899.56 15194.37 16299.64 6099.00 157
OPM-MVS97.54 8297.25 9498.41 5599.11 8096.61 5295.24 19798.46 15894.58 17398.10 10398.07 11697.09 4699.39 20495.16 12599.44 12399.21 118
VDD-MVS97.37 9697.25 9497.74 10198.69 11694.50 12897.04 9795.61 28998.59 2498.51 5998.72 5492.54 19799.58 14496.02 8199.49 10999.12 138
Regformer-297.41 9397.24 9697.93 9197.21 26494.72 11894.85 22098.27 18297.74 4798.11 10097.50 17595.58 11599.69 10496.57 6299.31 16699.37 90
TSAR-MVS + MP.97.42 9297.23 9798.00 8799.38 3895.00 11097.63 6798.20 19193.00 22298.16 9598.06 11995.89 9799.72 7295.67 9399.10 19299.28 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
#test#97.62 7697.22 9898.83 2499.15 7097.50 2596.81 10598.84 8794.25 18397.49 14497.54 17097.07 4799.70 9694.37 16299.46 11899.30 100
canonicalmvs97.23 10697.21 9997.30 14197.65 23494.39 13097.84 5599.05 4097.42 6396.68 19193.85 30997.63 2699.33 22196.29 7098.47 24998.18 246
MP-MVScopyleft97.64 7497.18 10099.00 1099.32 4497.77 1497.49 7598.73 11896.27 9695.59 23897.75 15496.30 8999.78 4093.70 19099.48 11399.45 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Regformer-197.27 10297.16 10197.61 11197.21 26493.86 15194.85 22098.04 21597.62 5698.03 11297.50 17595.34 12399.63 12696.52 6399.31 16699.35 92
V4297.04 10997.16 10196.68 17698.59 12891.05 21296.33 12998.36 17394.60 17097.99 11498.30 8893.32 17599.62 13497.40 3999.53 9399.38 85
SMA-MVS97.48 8797.11 10398.60 4498.83 10096.67 4996.74 10998.73 11891.61 24598.48 6298.36 7996.53 7599.68 11095.17 12399.54 9099.45 65
PM-MVS97.36 9897.10 10498.14 7798.91 9696.77 4696.20 13798.63 14493.82 19698.54 5798.33 8293.98 16299.05 26495.99 8499.45 12298.61 211
ACMP92.54 1397.47 8897.10 10498.55 4899.04 8896.70 4896.24 13598.89 7493.71 19997.97 11897.75 15497.44 2999.63 12693.22 20099.70 5299.32 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v114496.84 12297.08 10696.13 20598.42 14689.28 23995.41 18198.67 13694.21 18497.97 11898.31 8493.06 18099.65 12198.06 1899.62 6299.45 65
XVG-OURS-SEG-HR97.38 9597.07 10798.30 6599.01 9097.41 3194.66 22799.02 4995.20 14798.15 9797.52 17398.83 498.43 31794.87 14096.41 31099.07 148
v119296.83 12597.06 10896.15 20498.28 15689.29 23895.36 18598.77 11093.73 19898.11 10098.34 8193.02 18499.67 11598.35 1499.58 7599.50 42
v2v48296.78 12997.06 10895.95 21298.57 13088.77 24995.36 18598.26 18495.18 14997.85 13298.23 9992.58 19499.63 12697.80 2699.69 5399.45 65
xxxxxxxxxxxxxcwj97.24 10597.03 11097.89 9398.48 14194.71 11994.53 23299.07 3795.02 15797.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
v124096.74 13097.02 11195.91 21598.18 17088.52 25195.39 18398.88 7993.15 21998.46 6598.40 7892.80 18799.71 8798.45 1399.49 10999.49 50
v14896.58 14296.97 11295.42 23398.63 12287.57 27195.09 20497.90 21995.91 11898.24 9097.96 12993.42 17499.39 20496.04 7999.52 9899.29 106
PMVScopyleft89.60 1796.71 13596.97 11295.95 21299.51 2297.81 1397.42 8097.49 24697.93 4295.95 22498.58 6396.88 6096.91 34089.59 26999.36 14793.12 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v192192096.72 13396.96 11495.99 20898.21 16588.79 24895.42 17998.79 10593.22 21398.19 9398.26 9692.68 19099.70 9698.34 1599.55 8799.49 50
EI-MVSNet96.63 14096.93 11595.74 21997.26 26288.13 26095.29 19297.65 23896.99 7397.94 12198.19 10492.55 19599.58 14496.91 5699.56 8199.50 42
DVP-MVS97.45 8996.92 11699.03 799.26 4797.70 1597.66 6498.89 7495.65 12998.51 5996.46 24692.15 20499.81 3195.14 12898.58 24599.58 27
AllTest97.20 10796.92 11698.06 8299.08 8296.16 6597.14 9299.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
v14419296.69 13696.90 11896.03 20798.25 16188.92 24395.49 17598.77 11093.05 22198.09 10498.29 9092.51 19999.70 9698.11 1799.56 8199.47 58
VDDNet96.98 11496.84 11997.41 13499.40 3693.26 17197.94 4995.31 29399.26 798.39 7199.18 2787.85 26399.62 13495.13 13099.09 19399.35 92
VNet96.84 12296.83 12096.88 16298.06 18392.02 19896.35 12897.57 24597.70 5297.88 12797.80 15092.40 20199.54 15794.73 14998.96 20599.08 146
WR-MVS96.90 11996.81 12197.16 14698.56 13192.20 19394.33 23698.12 20497.34 6898.20 9297.33 19392.81 18699.75 5694.79 14499.81 2999.54 35
GBi-Net96.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
test196.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
MVS_Test96.27 15296.79 12494.73 26096.94 27586.63 28696.18 13898.33 17894.94 15996.07 22098.28 9195.25 12799.26 23797.21 4497.90 26998.30 235
XVG-OURS97.12 10896.74 12598.26 6798.99 9197.45 2993.82 26299.05 4095.19 14898.32 8197.70 16095.22 12898.41 31894.27 16798.13 26098.93 169
MSLP-MVS++96.42 15096.71 12695.57 22597.82 20890.56 22595.71 16498.84 8794.72 16696.71 19097.39 18694.91 13698.10 33295.28 11699.02 20198.05 258
9.1496.69 12798.53 13496.02 14798.98 6393.23 21297.18 15997.46 17896.47 8099.62 13492.99 20499.32 164
IS-MVSNet96.93 11696.68 12897.70 10499.25 5094.00 14698.57 1596.74 27298.36 2998.14 9897.98 12888.23 25699.71 8793.10 20399.72 4699.38 85
FMVSNet296.72 13396.67 12996.87 16397.96 19391.88 20197.15 9098.06 21395.59 13398.50 6198.62 6289.51 24599.65 12194.99 13899.60 7199.07 148
test20.0396.58 14296.61 13096.48 18898.49 13991.72 20595.68 16897.69 23396.81 7998.27 8797.92 13694.18 15898.71 29790.78 24299.66 5899.00 157
ab-mvs96.59 14196.59 13196.60 17898.64 11892.21 19198.35 2697.67 23494.45 17596.99 17598.79 4994.96 13499.49 16990.39 25899.07 19698.08 249
new-patchmatchnet95.67 17596.58 13292.94 30197.48 24380.21 33092.96 28598.19 19694.83 16298.82 4098.79 4993.31 17699.51 16795.83 8999.04 20099.12 138
EPP-MVSNet96.84 12296.58 13297.65 10899.18 6693.78 15698.68 1096.34 27697.91 4397.30 15598.06 11988.46 25399.85 2293.85 18599.40 14099.32 94
UGNet96.81 12796.56 13497.58 11296.64 28093.84 15397.75 6097.12 25996.47 9193.62 28698.88 4693.22 17899.53 15995.61 9999.69 5399.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNVR-MVS96.92 11796.55 13598.03 8698.00 19195.54 8794.87 21898.17 19794.60 17096.38 20497.05 21095.67 11299.36 21395.12 13199.08 19499.19 120
MVS_111021_LR96.82 12696.55 13597.62 11098.27 15895.34 9893.81 26498.33 17894.59 17296.56 19696.63 23796.61 7298.73 29594.80 14399.34 15598.78 192
MVS_111021_HR96.73 13296.54 13797.27 14298.35 15193.66 16293.42 27498.36 17394.74 16596.58 19496.76 23096.54 7498.99 27194.87 14099.27 17399.15 127
APD-MVScopyleft97.00 11096.53 13898.41 5598.55 13296.31 6196.32 13098.77 11092.96 22797.44 15297.58 16995.84 9999.74 6391.96 21499.35 15299.19 120
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS96.96 11596.53 13898.25 6997.48 24396.50 5596.76 10898.85 8493.52 20296.19 21696.85 22195.94 9699.42 18893.79 18799.43 13098.83 186
DeepC-MVS_fast94.34 796.74 13096.51 14097.44 13197.69 22994.15 14196.02 14798.43 16293.17 21897.30 15597.38 18895.48 11899.28 23493.74 18899.34 15598.88 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi96.07 16096.50 14194.80 25699.26 4787.69 27095.96 15398.58 14995.08 15398.02 11396.25 25597.92 1697.60 33788.68 28398.74 23199.11 141
ETH3D-3000-0.196.89 12196.46 14298.16 7398.62 12395.69 7995.96 15398.98 6393.36 20797.04 17197.31 19594.93 13599.63 12692.60 20799.34 15599.17 123
DeepPCF-MVS94.58 596.90 11996.43 14398.31 6497.48 24397.23 3792.56 29498.60 14692.84 22998.54 5797.40 18296.64 7198.78 29094.40 16199.41 13998.93 169
HPM-MVS++copyleft96.99 11196.38 14498.81 2798.64 11897.59 2095.97 15298.20 19195.51 13695.06 24796.53 24294.10 15999.70 9694.29 16699.15 18199.13 133
MVSFormer96.14 15896.36 14595.49 23097.68 23087.81 26798.67 1199.02 4996.50 8894.48 26296.15 25986.90 26899.92 498.73 799.13 18698.74 197
TinyColmap96.00 16596.34 14694.96 24897.90 19987.91 26394.13 25098.49 15694.41 17698.16 9597.76 15196.29 9098.68 30290.52 25499.42 13398.30 235
HQP_MVS96.66 13996.33 14797.68 10798.70 11494.29 13496.50 11998.75 11496.36 9396.16 21796.77 22891.91 21599.46 17892.59 20999.20 17899.28 107
K. test v396.44 14896.28 14896.95 15799.41 3591.53 20797.65 6590.31 33698.89 1898.93 3799.36 1484.57 28399.92 497.81 2599.56 8199.39 83
diffmvs96.04 16296.23 14995.46 23297.35 25388.03 26293.42 27499.08 3494.09 19096.66 19296.93 21793.85 16599.29 23296.01 8398.67 23699.06 150
DELS-MVS96.17 15796.23 14995.99 20897.55 24190.04 22892.38 29998.52 15394.13 18896.55 19897.06 20994.99 13399.58 14495.62 9899.28 17198.37 225
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS-SCA-FT95.86 17096.19 15194.85 25397.68 23085.53 29792.42 29797.63 24296.99 7398.36 7498.54 6887.94 25899.75 5697.07 5299.08 19499.27 111
pmmvs-eth3d96.49 14596.18 15297.42 13398.25 16194.29 13494.77 22498.07 21289.81 26297.97 11898.33 8293.11 17999.08 26195.46 10799.84 2698.89 178
testtj96.69 13696.13 15398.36 5998.46 14596.02 7196.44 12198.70 12894.26 18296.79 18597.13 20394.07 16099.75 5690.53 25398.80 22599.31 99
Fast-Effi-MVS+-dtu96.44 14896.12 15497.39 13697.18 26694.39 13095.46 17698.73 11896.03 11094.72 25394.92 29396.28 9199.69 10493.81 18697.98 26598.09 248
TSAR-MVS + GP.96.47 14796.12 15497.49 12497.74 22695.23 10194.15 24796.90 26693.26 21198.04 11196.70 23394.41 15198.89 28194.77 14799.14 18298.37 225
Effi-MVS+-dtu96.81 12796.09 15698.99 1196.90 27798.69 296.42 12298.09 20695.86 12195.15 24695.54 28194.26 15599.81 3194.06 17598.51 24898.47 219
CPTT-MVS96.69 13696.08 15798.49 5098.89 9896.64 5197.25 8598.77 11092.89 22896.01 22397.13 20392.23 20399.67 11592.24 21299.34 15599.17 123
mvs_anonymous95.36 18996.07 15893.21 29396.29 28881.56 32594.60 22997.66 23693.30 21096.95 17998.91 4593.03 18399.38 20896.60 5997.30 29698.69 203
Effi-MVS+96.19 15696.01 15996.71 17297.43 24992.19 19496.12 14199.10 2895.45 13893.33 29994.71 29697.23 4299.56 15193.21 20197.54 28698.37 225
OMC-MVS96.48 14696.00 16097.91 9298.30 15396.01 7294.86 21998.60 14691.88 24297.18 15997.21 20196.11 9299.04 26590.49 25799.34 15598.69 203
NCCC96.52 14495.99 16198.10 7897.81 20995.68 8195.00 21398.20 19195.39 14195.40 24296.36 25193.81 16699.45 18293.55 19398.42 25099.17 123
Anonymous20240521196.34 15195.98 16297.43 13298.25 16193.85 15296.74 10994.41 30097.72 5098.37 7298.03 12287.15 26799.53 15994.06 17599.07 19698.92 173
xiu_mvs_v1_base_debu95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base_debi95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
ETV-MVS96.13 15995.90 16696.82 16697.76 22493.89 14995.40 18298.95 6995.87 12095.58 23991.00 33796.36 8799.72 7293.36 19498.83 22396.85 302
IterMVS95.42 18795.83 16794.20 27797.52 24283.78 31892.41 29897.47 24995.49 13798.06 10898.49 7187.94 25899.58 14496.02 8199.02 20199.23 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS96.24 15395.80 16897.56 11398.75 10694.13 14294.66 22798.17 19790.17 25996.21 21596.10 26495.14 12999.43 18794.13 17398.85 22199.13 133
PVSNet_Blended_VisFu95.95 16695.80 16896.42 19199.28 4690.62 22295.31 19099.08 3488.40 27696.97 17898.17 10692.11 20699.78 4093.64 19199.21 17798.86 184
EIA-MVS96.04 16295.77 17096.85 16497.80 21392.98 17896.12 14199.16 1794.65 16893.77 28091.69 33295.68 11199.67 11594.18 17098.85 22197.91 266
UnsupCasMVSNet_eth95.91 16795.73 17196.44 18998.48 14191.52 20895.31 19098.45 15995.76 12697.48 14797.54 17089.53 24498.69 29994.43 15894.61 32699.13 133
MDA-MVSNet-bldmvs95.69 17395.67 17295.74 21998.48 14188.76 25092.84 28697.25 25296.00 11197.59 13897.95 13291.38 22099.46 17893.16 20296.35 31198.99 160
CANet95.86 17095.65 17396.49 18796.41 28690.82 21894.36 23598.41 16794.94 15992.62 31296.73 23192.68 19099.71 8795.12 13199.60 7198.94 165
LF4IMVS96.07 16095.63 17497.36 13898.19 16795.55 8695.44 17798.82 10392.29 23695.70 23696.55 24092.63 19398.69 29991.75 22299.33 16297.85 268
ETH3D cwj APD-0.1696.23 15495.61 17598.09 7997.91 19795.65 8494.94 21598.74 11691.31 24996.02 22297.08 20894.05 16199.69 10491.51 22598.94 20998.93 169
CS-MVS95.86 17095.59 17696.69 17497.85 20193.14 17496.42 12299.25 994.17 18793.56 29090.76 34096.05 9499.72 7293.28 19798.91 21297.21 289
QAPM95.88 16995.57 17796.80 16797.90 19991.84 20398.18 3998.73 11888.41 27596.42 20298.13 10894.73 13799.75 5688.72 28198.94 20998.81 188
alignmvs96.01 16495.52 17897.50 12197.77 22394.71 11996.07 14396.84 26797.48 6196.78 18994.28 30685.50 27699.40 19996.22 7198.73 23498.40 222
mvs-test196.20 15595.50 17998.32 6296.90 27798.16 495.07 20798.09 20695.86 12193.63 28594.32 30594.26 15599.71 8794.06 17597.27 29797.07 292
test_prior395.91 16795.39 18097.46 12897.79 21894.26 13893.33 27998.42 16594.21 18494.02 27396.25 25593.64 17099.34 21891.90 21598.96 20598.79 190
cl_fuxian95.20 19595.32 18194.83 25596.19 29486.43 28991.83 30798.35 17793.47 20497.36 15497.26 19888.69 25199.28 23495.41 11499.36 14798.78 192
MVP-Stereo95.69 17395.28 18296.92 15998.15 17693.03 17795.64 17398.20 19190.39 25696.63 19397.73 15791.63 21899.10 25991.84 21997.31 29598.63 208
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
wuyk23d93.25 26195.20 18387.40 33196.07 30095.38 9497.04 9794.97 29495.33 14299.70 598.11 11298.14 1391.94 34777.76 33999.68 5574.89 346
OpenMVScopyleft94.22 895.48 18395.20 18396.32 19697.16 26791.96 20097.74 6198.84 8787.26 28594.36 26498.01 12593.95 16399.67 11590.70 24898.75 23097.35 288
D2MVS95.18 19695.17 18595.21 23997.76 22487.76 26994.15 24797.94 21789.77 26396.99 17597.68 16387.45 26599.14 25295.03 13699.81 2998.74 197
DP-MVS Recon95.55 17995.13 18696.80 16798.51 13693.99 14794.60 22998.69 13190.20 25895.78 23296.21 25892.73 18998.98 27390.58 25298.86 21997.42 285
MSDG95.33 19095.13 18695.94 21497.40 25191.85 20291.02 32298.37 17295.30 14496.31 20995.99 26594.51 14998.38 32189.59 26997.65 28397.60 280
Fast-Effi-MVS+95.49 18195.07 18896.75 17097.67 23392.82 18094.22 24398.60 14691.61 24593.42 29792.90 31796.73 6799.70 9692.60 20797.89 27097.74 273
CLD-MVS95.47 18495.07 18896.69 17498.27 15892.53 18491.36 31298.67 13691.22 25095.78 23294.12 30795.65 11398.98 27390.81 24099.72 4698.57 213
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023120695.27 19395.06 19095.88 21698.72 10989.37 23795.70 16597.85 22288.00 28196.98 17797.62 16691.95 21199.34 21889.21 27499.53 9398.94 165
MVS_030495.50 18095.05 19196.84 16596.28 28993.12 17597.00 9996.16 27895.03 15689.22 33497.70 16090.16 23799.48 17294.51 15699.34 15597.93 265
API-MVS95.09 20195.01 19295.31 23696.61 28194.02 14596.83 10497.18 25695.60 13295.79 23094.33 30494.54 14898.37 32385.70 31098.52 24693.52 335
FMVSNet395.26 19494.94 19396.22 20196.53 28390.06 22795.99 15097.66 23694.11 18997.99 11497.91 13780.22 29899.63 12694.60 15199.44 12398.96 162
TAMVS95.49 18194.94 19397.16 14698.31 15293.41 16895.07 20796.82 26991.09 25197.51 14297.82 14889.96 23899.42 18888.42 28699.44 12398.64 206
eth_miper_zixun_eth94.89 20794.93 19594.75 25995.99 30186.12 29291.35 31398.49 15693.40 20597.12 16397.25 19986.87 27099.35 21695.08 13398.82 22498.78 192
PVSNet_BlendedMVS95.02 20494.93 19595.27 23797.79 21887.40 27594.14 24998.68 13388.94 27094.51 26098.01 12593.04 18199.30 22889.77 26799.49 10999.11 141
MS-PatchMatch94.83 20994.91 19794.57 26796.81 27987.10 28094.23 24297.34 25188.74 27397.14 16197.11 20691.94 21298.23 32892.99 20497.92 26798.37 225
LFMVS95.32 19194.88 19896.62 17798.03 18491.47 20997.65 6590.72 33399.11 997.89 12698.31 8479.20 30099.48 17293.91 18499.12 18998.93 169
Vis-MVSNet (Re-imp)95.11 19994.85 19995.87 21799.12 7989.17 24097.54 7494.92 29596.50 8896.58 19497.27 19783.64 28699.48 17288.42 28699.67 5698.97 161
ppachtmachnet_test94.49 22794.84 20093.46 28796.16 29682.10 32490.59 32597.48 24890.53 25597.01 17497.59 16891.01 22399.36 21393.97 18299.18 18098.94 165
YYNet194.73 21394.84 20094.41 27297.47 24785.09 30690.29 32895.85 28692.52 23197.53 14097.76 15191.97 21099.18 24693.31 19696.86 30098.95 163
MDA-MVSNet_test_wron94.73 21394.83 20294.42 27197.48 24385.15 30490.28 32995.87 28592.52 23197.48 14797.76 15191.92 21499.17 25093.32 19596.80 30398.94 165
miper_lstm_enhance94.81 21194.80 20394.85 25396.16 29686.45 28891.14 32098.20 19193.49 20397.03 17297.37 19084.97 28099.26 23795.28 11699.56 8198.83 186
BH-untuned94.69 21894.75 20494.52 26997.95 19687.53 27294.07 25297.01 26293.99 19297.10 16595.65 27792.65 19298.95 27887.60 29696.74 30497.09 291
miper_ehance_all_eth94.69 21894.70 20594.64 26195.77 30786.22 29191.32 31698.24 18691.67 24497.05 17096.65 23688.39 25599.22 24494.88 13998.34 25298.49 218
train_agg95.46 18594.66 20697.88 9497.84 20695.23 10193.62 26898.39 16987.04 28893.78 27895.99 26594.58 14699.52 16391.76 22198.90 21398.89 178
CDPH-MVS95.45 18694.65 20797.84 9798.28 15694.96 11193.73 26698.33 17885.03 31095.44 24096.60 23895.31 12599.44 18590.01 26399.13 18699.11 141
cl-mvsnet_94.73 21394.64 20895.01 24695.85 30487.00 28191.33 31498.08 20893.34 20897.10 16597.33 19384.01 28599.30 22895.14 12899.56 8198.71 202
cl-mvsnet194.73 21394.64 20895.01 24695.86 30387.00 28191.33 31498.08 20893.34 20897.10 16597.34 19284.02 28499.31 22595.15 12799.55 8798.72 200
xiu_mvs_v2_base94.22 23394.63 21092.99 29997.32 26084.84 30992.12 30297.84 22491.96 24094.17 26793.43 31096.07 9399.71 8791.27 22997.48 28994.42 332
AdaColmapbinary95.11 19994.62 21196.58 18197.33 25994.45 12994.92 21698.08 20893.15 21993.98 27695.53 28294.34 15399.10 25985.69 31198.61 24296.20 317
agg_prior195.39 18894.60 21297.75 10097.80 21394.96 11193.39 27698.36 17387.20 28693.49 29295.97 26894.65 14399.53 15991.69 22398.86 21998.77 195
Patchmtry95.03 20394.59 21396.33 19594.83 32290.82 21896.38 12697.20 25496.59 8597.49 14498.57 6477.67 30799.38 20892.95 20699.62 6298.80 189
our_test_394.20 23894.58 21493.07 29596.16 29681.20 32790.42 32796.84 26790.72 25497.14 16197.13 20390.47 22999.11 25794.04 17998.25 25698.91 174
HQP-MVS95.17 19894.58 21496.92 15997.85 20192.47 18594.26 23798.43 16293.18 21592.86 30595.08 28790.33 23199.23 24290.51 25598.74 23199.05 152
USDC94.56 22594.57 21694.55 26897.78 22286.43 28992.75 28998.65 14385.96 29696.91 18297.93 13590.82 22698.74 29490.71 24799.59 7398.47 219
Patchmatch-RL test94.66 22094.49 21795.19 24098.54 13388.91 24492.57 29398.74 11691.46 24898.32 8197.75 15477.31 31298.81 28896.06 7699.61 6897.85 268
PS-MVSNAJ94.10 24094.47 21893.00 29897.35 25384.88 30891.86 30697.84 22491.96 24094.17 26792.50 32495.82 10299.71 8791.27 22997.48 28994.40 333
EU-MVSNet94.25 23294.47 21893.60 28498.14 17782.60 32297.24 8792.72 31785.08 30898.48 6298.94 4282.59 28998.76 29397.47 3799.53 9399.44 75
CNLPA95.04 20294.47 21896.75 17097.81 20995.25 10094.12 25197.89 22094.41 17694.57 25795.69 27590.30 23498.35 32486.72 30598.76 22996.64 309
BH-RMVSNet94.56 22594.44 22194.91 24997.57 23887.44 27493.78 26596.26 27793.69 20096.41 20396.50 24592.10 20799.00 26985.96 30897.71 27798.31 233
F-COLMAP95.30 19294.38 22298.05 8598.64 11896.04 6995.61 17498.66 13889.00 26993.22 30096.40 25092.90 18599.35 21687.45 30097.53 28798.77 195
pmmvs594.63 22294.34 22395.50 22997.63 23688.34 25594.02 25397.13 25887.15 28795.22 24597.15 20287.50 26499.27 23693.99 18099.26 17498.88 181
UnsupCasMVSNet_bld94.72 21794.26 22496.08 20698.62 12390.54 22693.38 27798.05 21490.30 25797.02 17396.80 22789.54 24299.16 25188.44 28596.18 31398.56 214
N_pmnet95.18 19694.23 22598.06 8297.85 20196.55 5492.49 29591.63 32589.34 26598.09 10497.41 18190.33 23199.06 26391.58 22499.31 16698.56 214
TAPA-MVS93.32 1294.93 20594.23 22597.04 15498.18 17094.51 12695.22 19898.73 11881.22 32796.25 21395.95 27093.80 16798.98 27389.89 26598.87 21797.62 278
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU94.65 22194.21 22795.96 21095.90 30289.68 23193.92 25997.83 22693.19 21490.12 32995.64 27888.52 25299.57 15093.27 19999.47 11598.62 209
pmmvs494.82 21094.19 22896.70 17397.42 25092.75 18292.09 30496.76 27086.80 29195.73 23597.22 20089.28 24898.89 28193.28 19799.14 18298.46 221
PAPM_NR94.61 22394.17 22995.96 21098.36 15091.23 21095.93 15697.95 21692.98 22393.42 29794.43 30390.53 22898.38 32187.60 29696.29 31298.27 238
CDS-MVSNet94.88 20894.12 23097.14 14897.64 23593.57 16493.96 25897.06 26190.05 26096.30 21096.55 24086.10 27299.47 17590.10 26299.31 16698.40 222
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS94.90 20694.07 23197.39 13693.18 33993.21 17395.26 19497.49 24693.94 19498.25 8897.85 14372.96 33299.84 2597.90 2199.78 3699.14 130
PMMVS293.66 25194.07 23192.45 30797.57 23880.67 32986.46 34196.00 28193.99 19297.10 16597.38 18889.90 23997.82 33488.76 28099.47 11598.86 184
jason94.39 23094.04 23395.41 23598.29 15487.85 26692.74 29196.75 27185.38 30795.29 24396.15 25988.21 25799.65 12194.24 16899.34 15598.74 197
jason: jason.
RPMNet94.22 23394.03 23494.78 25795.44 31488.15 25896.18 13893.73 30397.43 6294.10 26998.49 7179.40 29999.39 20495.69 9295.81 31596.81 304
test_yl94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
DCV-MVSNet94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
MG-MVS94.08 24294.00 23594.32 27497.09 26985.89 29493.19 28395.96 28392.52 23194.93 25197.51 17489.54 24298.77 29187.52 29997.71 27798.31 233
MVSTER94.21 23693.93 23895.05 24595.83 30586.46 28795.18 20097.65 23892.41 23597.94 12198.00 12772.39 33399.58 14496.36 6999.56 8199.12 138
ETH3 D test640094.77 21293.87 23997.47 12698.12 18193.73 15794.56 23198.70 12885.45 30594.70 25595.93 27291.77 21799.63 12686.45 30699.14 18299.05 152
PatchMatch-RL94.61 22393.81 24097.02 15698.19 16795.72 7793.66 26797.23 25388.17 27994.94 25095.62 27991.43 21998.57 30887.36 30197.68 28096.76 306
sss94.22 23393.72 24195.74 21997.71 22889.95 23093.84 26196.98 26388.38 27793.75 28195.74 27487.94 25898.89 28191.02 23498.10 26198.37 225
PVSNet_Blended93.96 24493.65 24294.91 24997.79 21887.40 27591.43 31198.68 13384.50 31594.51 26094.48 30293.04 18199.30 22889.77 26798.61 24298.02 261
PatchT93.75 24793.57 24394.29 27695.05 32087.32 27796.05 14492.98 31397.54 5994.25 26598.72 5475.79 32099.24 24095.92 8795.81 31596.32 315
SCA93.38 25893.52 24492.96 30096.24 29081.40 32693.24 28194.00 30291.58 24794.57 25796.97 21487.94 25899.42 18889.47 27197.66 28298.06 255
1112_ss94.12 23993.42 24596.23 19998.59 12890.85 21694.24 24198.85 8485.49 30292.97 30394.94 29186.01 27399.64 12491.78 22097.92 26798.20 244
CHOSEN 1792x268894.10 24093.41 24696.18 20399.16 6790.04 22892.15 30198.68 13379.90 33296.22 21497.83 14587.92 26299.42 18889.18 27599.65 5999.08 146
lupinMVS93.77 24693.28 24795.24 23897.68 23087.81 26792.12 30296.05 28084.52 31494.48 26295.06 28986.90 26899.63 12693.62 19299.13 18698.27 238
112194.26 23193.26 24897.27 14298.26 16094.73 11795.86 15897.71 23277.96 33994.53 25996.71 23291.93 21399.40 19987.71 29298.64 24097.69 276
Patchmatch-test93.60 25393.25 24994.63 26296.14 29987.47 27396.04 14594.50 29993.57 20196.47 20096.97 21476.50 31598.61 30590.67 24998.41 25197.81 272
114514_t93.96 24493.22 25096.19 20299.06 8590.97 21595.99 15098.94 7073.88 34593.43 29696.93 21792.38 20299.37 21189.09 27699.28 17198.25 240
OpenMVS_ROBcopyleft91.80 1493.64 25293.05 25195.42 23397.31 26191.21 21195.08 20696.68 27481.56 32496.88 18496.41 24890.44 23099.25 23985.39 31597.67 28195.80 321
MAR-MVS94.21 23693.03 25297.76 9996.94 27597.44 3096.97 10197.15 25787.89 28392.00 31792.73 32192.14 20599.12 25483.92 32297.51 28896.73 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS93.55 25493.00 25395.19 24097.81 20987.86 26493.89 26096.00 28189.02 26894.07 27195.44 28486.27 27199.33 22187.69 29496.82 30198.39 224
PLCcopyleft91.02 1694.05 24392.90 25497.51 11898.00 19195.12 10894.25 24098.25 18586.17 29491.48 32095.25 28591.01 22399.19 24585.02 31796.69 30598.22 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Test_1112_low_res93.53 25592.86 25595.54 22898.60 12688.86 24692.75 28998.69 13182.66 32192.65 31096.92 21984.75 28199.56 15190.94 23697.76 27398.19 245
MIMVSNet93.42 25692.86 25595.10 24398.17 17288.19 25798.13 4193.69 30492.07 23795.04 24898.21 10380.95 29599.03 26881.42 33098.06 26398.07 251
cl-mvsnet293.25 26192.84 25794.46 27094.30 32886.00 29391.09 32196.64 27590.74 25395.79 23096.31 25378.24 30498.77 29194.15 17298.34 25298.62 209
CVMVSNet92.33 27592.79 25890.95 31797.26 26275.84 34395.29 19292.33 32081.86 32296.27 21198.19 10481.44 29198.46 31694.23 16998.29 25598.55 216
CR-MVSNet93.29 26092.79 25894.78 25795.44 31488.15 25896.18 13897.20 25484.94 31294.10 26998.57 6477.67 30799.39 20495.17 12395.81 31596.81 304
miper_enhance_ethall93.14 26392.78 26094.20 27793.65 33685.29 30189.97 33197.85 22285.05 30996.15 21994.56 29885.74 27499.14 25293.74 18898.34 25298.17 247
DPM-MVS93.68 25092.77 26196.42 19197.91 19792.54 18391.17 31997.47 24984.99 31193.08 30294.74 29589.90 23999.00 26987.54 29898.09 26297.72 274
HyFIR lowres test93.72 24892.65 26296.91 16198.93 9491.81 20491.23 31898.52 15382.69 32096.46 20196.52 24480.38 29799.90 1390.36 25998.79 22699.03 154
baseline193.14 26392.64 26394.62 26397.34 25787.20 27996.67 11693.02 31294.71 16796.51 19995.83 27381.64 29098.60 30790.00 26488.06 34198.07 251
EPNet93.72 24892.62 26497.03 15587.61 35292.25 18996.27 13191.28 32796.74 8187.65 34097.39 18685.00 27999.64 12492.14 21399.48 11399.20 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051793.31 25992.56 26595.57 22598.71 11287.86 26497.44 7787.17 34495.79 12597.47 14996.84 22264.12 34699.81 3196.20 7299.32 16499.02 156
RRT_test8_iter0592.46 27192.52 26692.29 31095.33 31777.43 33895.73 16398.55 15094.41 17697.46 15097.72 15957.44 35199.74 6396.92 5599.14 18299.69 20
FMVSNet593.39 25792.35 26796.50 18695.83 30590.81 22097.31 8298.27 18292.74 23096.27 21198.28 9162.23 34899.67 11590.86 23899.36 14799.03 154
131492.38 27392.30 26892.64 30595.42 31685.15 30495.86 15896.97 26485.40 30690.62 32393.06 31591.12 22297.80 33586.74 30495.49 32294.97 330
TR-MVS92.54 27092.20 26993.57 28596.49 28486.66 28593.51 27294.73 29689.96 26194.95 24993.87 30890.24 23698.61 30581.18 33194.88 32395.45 327
GA-MVS92.83 26692.15 27094.87 25296.97 27287.27 27890.03 33096.12 27991.83 24394.05 27294.57 29776.01 31998.97 27792.46 21197.34 29498.36 230
BH-w/o92.14 27891.94 27192.73 30497.13 26885.30 30092.46 29695.64 28889.33 26694.21 26692.74 32089.60 24198.24 32781.68 32994.66 32594.66 331
PatchmatchNetpermissive91.98 28191.87 27292.30 30994.60 32579.71 33195.12 20193.59 30889.52 26493.61 28797.02 21277.94 30599.18 24690.84 23994.57 32898.01 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DSMNet-mixed92.19 27791.83 27393.25 29196.18 29583.68 31996.27 13193.68 30676.97 34292.54 31399.18 2789.20 25098.55 31183.88 32398.60 24497.51 282
HY-MVS91.43 1592.58 26991.81 27494.90 25196.49 28488.87 24597.31 8294.62 29785.92 29790.50 32696.84 22285.05 27899.40 19983.77 32595.78 31896.43 314
thisisatest053092.71 26891.76 27595.56 22798.42 14688.23 25696.03 14687.35 34394.04 19196.56 19695.47 28364.03 34799.77 4894.78 14699.11 19098.68 205
new_pmnet92.34 27491.69 27694.32 27496.23 29289.16 24192.27 30092.88 31484.39 31795.29 24396.35 25285.66 27596.74 34384.53 32097.56 28597.05 293
thres600view792.03 28091.43 27793.82 28098.19 16784.61 31196.27 13190.39 33496.81 7996.37 20593.11 31273.44 33099.49 16980.32 33297.95 26697.36 286
CMPMVSbinary73.10 2392.74 26791.39 27896.77 16993.57 33894.67 12394.21 24497.67 23480.36 33193.61 28796.60 23882.85 28897.35 33884.86 31898.78 22798.29 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cascas91.89 28291.35 27993.51 28694.27 32985.60 29688.86 33898.61 14579.32 33492.16 31691.44 33389.22 24998.12 33190.80 24197.47 29196.82 303
MDTV_nov1_ep1391.28 28094.31 32773.51 34794.80 22293.16 31186.75 29293.45 29597.40 18276.37 31698.55 31188.85 27996.43 309
PAPR92.22 27691.27 28195.07 24495.73 30988.81 24791.97 30597.87 22185.80 29990.91 32292.73 32191.16 22198.33 32579.48 33395.76 31998.08 249
thres100view90091.76 28491.26 28293.26 29098.21 16584.50 31296.39 12490.39 33496.87 7796.33 20693.08 31473.44 33099.42 18878.85 33697.74 27495.85 319
PMMVS92.39 27291.08 28396.30 19893.12 34292.81 18190.58 32695.96 28379.17 33591.85 31992.27 32590.29 23598.66 30489.85 26696.68 30697.43 284
tfpn200view991.55 28691.00 28493.21 29398.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27495.85 319
thres40091.68 28591.00 28493.71 28298.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27497.36 286
PVSNet86.72 1991.10 29090.97 28691.49 31397.56 24078.04 33587.17 34094.60 29884.65 31392.34 31492.20 32687.37 26698.47 31585.17 31697.69 27997.96 263
tpmvs90.79 29490.87 28790.57 32092.75 34676.30 34195.79 16293.64 30791.04 25291.91 31896.26 25477.19 31398.86 28589.38 27389.85 33996.56 312
tpm91.08 29190.85 28891.75 31295.33 31778.09 33495.03 21291.27 32888.75 27293.53 29197.40 18271.24 33599.30 22891.25 23193.87 32997.87 267
X-MVStestdata92.86 26590.83 28998.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20736.50 34896.49 7899.72 7295.66 9599.37 14499.45 65
EPNet_dtu91.39 28890.75 29093.31 28990.48 35182.61 32194.80 22292.88 31493.39 20681.74 34894.90 29481.36 29299.11 25788.28 28898.87 21798.21 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 28390.69 29195.11 24293.80 33590.98 21494.16 24691.78 32496.38 9290.30 32899.30 1872.02 33498.90 27988.28 28890.17 33895.45 327
PCF-MVS89.43 1892.12 27990.64 29296.57 18397.80 21393.48 16789.88 33598.45 15974.46 34496.04 22195.68 27690.71 22799.31 22573.73 34199.01 20396.91 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpmrst90.31 29690.61 29389.41 32494.06 33372.37 34995.06 20993.69 30488.01 28092.32 31596.86 22077.45 30998.82 28691.04 23387.01 34397.04 294
ADS-MVSNet291.47 28790.51 29494.36 27395.51 31285.63 29595.05 21095.70 28783.46 31892.69 30896.84 22279.15 30199.41 19785.66 31290.52 33698.04 259
thres20091.00 29290.42 29592.77 30397.47 24783.98 31794.01 25491.18 32995.12 15295.44 24091.21 33573.93 32499.31 22577.76 33997.63 28495.01 329
ADS-MVSNet90.95 29390.26 29693.04 29695.51 31282.37 32395.05 21093.41 30983.46 31892.69 30896.84 22279.15 30198.70 29885.66 31290.52 33698.04 259
MVS-HIRNet88.40 31090.20 29782.99 33297.01 27160.04 35293.11 28485.61 34784.45 31688.72 33699.09 3384.72 28298.23 32882.52 32896.59 30890.69 344
test-LLR89.97 30189.90 29890.16 32194.24 33074.98 34489.89 33289.06 33992.02 23889.97 33090.77 33873.92 32598.57 30891.88 21797.36 29296.92 297
E-PMN89.52 30589.78 29988.73 32693.14 34177.61 33783.26 34592.02 32194.82 16393.71 28293.11 31275.31 32196.81 34185.81 30996.81 30291.77 341
ET-MVSNet_ETH3D91.12 28989.67 30095.47 23196.41 28689.15 24291.54 31090.23 33789.07 26786.78 34492.84 31869.39 34199.44 18594.16 17196.61 30797.82 270
CostFormer89.75 30389.25 30191.26 31694.69 32478.00 33695.32 18991.98 32281.50 32590.55 32596.96 21671.06 33798.89 28188.59 28492.63 33396.87 300
EMVS89.06 30789.22 30288.61 32793.00 34377.34 33982.91 34690.92 33094.64 16992.63 31191.81 33076.30 31797.02 33983.83 32496.90 29991.48 342
test0.0.03 190.11 29789.21 30392.83 30293.89 33486.87 28491.74 30888.74 34192.02 23894.71 25491.14 33673.92 32594.48 34683.75 32692.94 33197.16 290
MVS90.02 29889.20 30492.47 30694.71 32386.90 28395.86 15896.74 27264.72 34790.62 32392.77 31992.54 19798.39 32079.30 33495.56 32192.12 339
CHOSEN 280x42089.98 30089.19 30592.37 30895.60 31181.13 32886.22 34297.09 26081.44 32687.44 34193.15 31173.99 32399.47 17588.69 28299.07 19696.52 313
thisisatest051590.43 29589.18 30694.17 27997.07 27085.44 29889.75 33687.58 34288.28 27893.69 28491.72 33165.27 34599.58 14490.59 25198.67 23697.50 283
pmmvs390.00 29988.90 30793.32 28894.20 33285.34 29991.25 31792.56 31978.59 33693.82 27795.17 28667.36 34498.69 29989.08 27798.03 26495.92 318
FPMVS89.92 30288.63 30893.82 28098.37 14996.94 4291.58 30993.34 31088.00 28190.32 32797.10 20770.87 33891.13 34871.91 34496.16 31493.39 337
EPMVS89.26 30688.55 30991.39 31492.36 34779.11 33295.65 17179.86 34988.60 27493.12 30196.53 24270.73 33998.10 33290.75 24389.32 34096.98 295
baseline289.65 30488.44 31093.25 29195.62 31082.71 32093.82 26285.94 34688.89 27187.35 34292.54 32371.23 33699.33 22186.01 30794.60 32797.72 274
dp88.08 31288.05 31188.16 33092.85 34468.81 35194.17 24592.88 31485.47 30391.38 32196.14 26168.87 34298.81 28886.88 30383.80 34696.87 300
tpm288.47 30987.69 31290.79 31894.98 32177.34 33995.09 20491.83 32377.51 34189.40 33296.41 24867.83 34398.73 29583.58 32792.60 33496.29 316
tpm cat188.01 31387.33 31390.05 32394.48 32676.28 34294.47 23494.35 30173.84 34689.26 33395.61 28073.64 32798.30 32684.13 32186.20 34495.57 326
test-mter87.92 31487.17 31490.16 32194.24 33074.98 34489.89 33289.06 33986.44 29389.97 33090.77 33854.96 35598.57 30891.88 21797.36 29296.92 297
gg-mvs-nofinetune88.28 31186.96 31592.23 31192.84 34584.44 31398.19 3874.60 35199.08 1087.01 34399.47 856.93 35298.23 32878.91 33595.61 32094.01 334
IB-MVS85.98 2088.63 30886.95 31693.68 28395.12 31984.82 31090.85 32390.17 33887.55 28488.48 33791.34 33458.01 35099.59 14287.24 30293.80 33096.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test87.92 31486.77 31791.39 31493.18 33978.62 33395.10 20291.42 32685.58 30188.00 33888.73 34360.60 34998.90 27990.60 25087.70 34296.65 308
TESTMET0.1,187.20 31786.57 31889.07 32593.62 33772.84 34889.89 33287.01 34585.46 30489.12 33590.20 34156.00 35497.72 33690.91 23796.92 29896.64 309
MVEpermissive73.61 2286.48 31885.92 31988.18 32996.23 29285.28 30281.78 34775.79 35086.01 29582.53 34791.88 32992.74 18887.47 34971.42 34594.86 32491.78 340
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM87.64 31685.84 32093.04 29696.54 28284.99 30788.42 33995.57 29079.52 33383.82 34593.05 31680.57 29698.41 31862.29 34792.79 33295.71 322
PVSNet_081.89 2184.49 31983.21 32188.34 32895.76 30874.97 34683.49 34492.70 31878.47 33787.94 33986.90 34583.38 28796.63 34473.44 34266.86 34893.40 336
tmp_tt57.23 32062.50 32241.44 33434.77 35349.21 35483.93 34360.22 35515.31 34971.11 35079.37 34770.09 34044.86 35164.76 34682.93 34730.25 347
cdsmvs_eth3d_5k24.22 32132.30 3230.00 3370.00 3560.00 3570.00 34898.10 2050.00 3520.00 35395.06 28997.54 280.00 3540.00 3510.00 3510.00 350
test12312.59 32215.49 3243.87 3356.07 3542.55 35590.75 3242.59 3572.52 3505.20 35213.02 3504.96 3561.85 3535.20 3499.09 3497.23 348
testmvs12.33 32315.23 3253.64 3365.77 3552.23 35688.99 3373.62 3562.30 3515.29 35113.09 3494.52 3571.95 3525.16 3508.32 3506.75 349
pcd_1.5k_mvsjas7.98 32410.65 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35395.82 1020.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.91 32510.55 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35394.94 2910.00 3580.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.22 5695.40 9398.14 20185.77 30098.36 7495.23 12099.51 10399.49 50
OPU-MVS97.64 10998.01 18795.27 9996.79 10697.35 19196.97 5398.51 31491.21 23299.25 17599.14 130
test_241102_TWO98.83 9596.11 10398.62 5098.24 9796.92 5699.72 7295.44 10899.49 10999.49 50
test_241102_ONE99.22 5695.35 9698.83 9596.04 10899.08 3098.13 10897.87 2099.33 221
save fliter98.48 14194.71 11994.53 23298.41 16795.02 157
test_0728_THIRD96.62 8398.40 6998.28 9197.10 4499.71 8795.70 9199.62 6299.58 27
test_0728_SECOND98.25 6999.23 5395.49 9196.74 10998.89 7499.75 5695.48 10499.52 9899.53 38
test072699.24 5195.51 8996.89 10298.89 7495.92 11698.64 4998.31 8497.06 49
GSMVS98.06 255
test_part299.03 8996.07 6898.08 106
test_part10.00 3370.00 3570.00 34898.84 870.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs177.80 30698.06 255
sam_mvs77.38 310
ambc96.56 18498.23 16491.68 20697.88 5398.13 20398.42 6898.56 6694.22 15799.04 26594.05 17899.35 15298.95 163
MTGPAbinary98.73 118
test_post194.98 21410.37 35276.21 31899.04 26589.47 271
test_post10.87 35176.83 31499.07 262
patchmatchnet-post96.84 22277.36 31199.42 188
GG-mvs-BLEND90.60 31991.00 34984.21 31698.23 3272.63 35482.76 34684.11 34656.14 35396.79 34272.20 34392.09 33590.78 343
MTMP96.55 11774.60 351
gm-plane-assit91.79 34871.40 35081.67 32390.11 34298.99 27184.86 318
test9_res91.29 22898.89 21699.00 157
TEST997.84 20695.23 10193.62 26898.39 16986.81 29093.78 27895.99 26594.68 14199.52 163
test_897.81 20995.07 10993.54 27198.38 17187.04 28893.71 28295.96 26994.58 14699.52 163
agg_prior290.34 26098.90 21399.10 145
agg_prior97.80 21394.96 11198.36 17393.49 29299.53 159
TestCases98.06 8299.08 8296.16 6599.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
test_prior495.38 9493.61 270
test_prior293.33 27994.21 18494.02 27396.25 25593.64 17091.90 21598.96 205
test_prior97.46 12897.79 21894.26 13898.42 16599.34 21898.79 190
旧先验293.35 27877.95 34095.77 23498.67 30390.74 246
新几何293.43 273
新几何197.25 14598.29 15494.70 12297.73 23077.98 33894.83 25296.67 23592.08 20899.45 18288.17 29098.65 23997.61 279
旧先验197.80 21393.87 15097.75 22997.04 21193.57 17298.68 23598.72 200
无先验93.20 28297.91 21880.78 32899.40 19987.71 29297.94 264
原ACMM292.82 287
原ACMM196.58 18198.16 17492.12 19598.15 20085.90 29893.49 29296.43 24792.47 20099.38 20887.66 29598.62 24198.23 241
test22298.17 17293.24 17292.74 29197.61 24475.17 34394.65 25696.69 23490.96 22598.66 23897.66 277
testdata299.46 17887.84 291
segment_acmp95.34 123
testdata95.70 22298.16 17490.58 22397.72 23180.38 33095.62 23797.02 21292.06 20998.98 27389.06 27898.52 24697.54 281
testdata192.77 28893.78 197
test1297.46 12897.61 23794.07 14397.78 22893.57 28993.31 17699.42 18898.78 22798.89 178
plane_prior798.70 11494.67 123
plane_prior698.38 14894.37 13291.91 215
plane_prior598.75 11499.46 17892.59 20999.20 17899.28 107
plane_prior496.77 228
plane_prior394.51 12695.29 14596.16 217
plane_prior296.50 11996.36 93
plane_prior198.49 139
plane_prior94.29 13495.42 17994.31 18198.93 211
n20.00 358
nn0.00 358
door-mid98.17 197
lessismore_v097.05 15399.36 4092.12 19584.07 34898.77 4598.98 3885.36 27799.74 6397.34 4099.37 14499.30 100
LGP-MVS_train98.74 3399.15 7097.02 3999.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
test1198.08 208
door97.81 227
HQP5-MVS92.47 185
HQP-NCC97.85 20194.26 23793.18 21592.86 305
ACMP_Plane97.85 20194.26 23793.18 21592.86 305
BP-MVS90.51 255
HQP4-MVS92.87 30499.23 24299.06 150
HQP3-MVS98.43 16298.74 231
HQP2-MVS90.33 231
NP-MVS98.14 17793.72 15895.08 287
MDTV_nov1_ep13_2view57.28 35394.89 21780.59 32994.02 27378.66 30385.50 31497.82 270
ACMMP++_ref99.52 98
ACMMP++99.55 87
Test By Simon94.51 149
ITE_SJBPF97.85 9698.64 11896.66 5098.51 15595.63 13097.22 15797.30 19695.52 11698.55 31190.97 23598.90 21398.34 231
DeepMVS_CXcopyleft77.17 33390.94 35085.28 30274.08 35352.51 34880.87 34988.03 34475.25 32270.63 35059.23 34884.94 34575.62 345