LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 44 | 99.69 2 | 99.57 3 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 170 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 63 | 99.18 5 | 99.20 13 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 44 | 99.92 13 | 99.77 8 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 61 | 98.87 7 | 99.30 8 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 116 | 97.75 29 | 99.89 21 | 99.62 25 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 91 | 99.64 11 | 94.20 145 | 98.67 11 | 99.14 23 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 78 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 59 | 98.54 18 | 99.22 10 | 96.23 104 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 197 | 99.33 42 | 89.64 240 | 97.92 52 | 99.56 4 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 35 | 99.98 2 | 99.77 8 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 17 | 96.12 70 | 98.48 22 | 99.10 28 | 99.36 4 | 99.29 23 | 99.06 36 | 97.27 37 | 99.93 2 | 97.71 31 | 99.91 16 | 99.70 18 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 19 | 98.06 7 | 99.34 4 | 99.44 6 | 98.85 19 | 99.00 36 | 99.20 23 | 97.42 31 | 99.59 149 | 97.21 46 | 99.76 38 | 99.40 81 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 59 | 99.55 17 | 95.47 96 | 98.49 20 | 99.13 24 | 99.22 8 | 99.22 27 | 98.96 41 | 97.35 33 | 99.92 4 | 97.79 27 | 99.93 10 | 99.79 7 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 14 | 95.67 86 | 98.45 23 | 99.15 21 | 99.33 5 | 99.30 21 | 99.00 37 | 97.27 37 | 99.92 4 | 97.64 32 | 99.92 13 | 99.75 13 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 59 | 98.45 23 | 99.12 25 | 95.83 129 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 92 | 98.79 104 | 94.37 137 | 98.84 8 | 99.15 21 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 116 | 99.72 78 | 98.12 16 | 99.86 24 | 99.73 15 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 81 | 97.89 13 | 99.47 3 | 99.32 7 | 99.08 10 | 97.87 134 | 99.67 2 | 96.47 83 | 99.92 4 | 97.88 22 | 99.98 2 | 99.85 3 |
|
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 121 | 99.43 32 | 93.54 170 | 98.23 32 | 99.05 40 | 97.40 71 | 99.37 18 | 99.08 34 | 98.79 5 | 99.47 182 | 97.74 30 | 99.71 50 | 99.50 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 65 | 98.67 11 | 99.02 49 | 96.50 93 | 99.32 20 | 99.44 10 | 97.43 30 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 97 | 99.52 21 | 94.58 130 | 98.28 29 | 99.00 57 | 97.57 60 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 175 | 97.09 52 | 99.75 42 | 99.50 43 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 121 | 99.51 22 | 93.39 174 | 98.20 37 | 98.87 82 | 98.23 35 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 162 | 96.52 65 | 99.53 95 | 99.60 26 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 37 | 98.65 14 | 99.19 15 | 95.62 136 | 99.35 19 | 99.37 12 | 97.38 32 | 99.90 13 | 98.59 11 | 99.91 16 | 99.77 8 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 74 | 99.68 9 | 94.82 120 | 98.10 42 | 99.21 11 | 96.91 81 | 99.75 2 | 99.45 9 | 95.82 104 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 64 | 99.22 56 | 95.66 87 | 97.90 53 | 99.08 34 | 98.31 32 | 99.02 34 | 98.74 54 | 97.68 24 | 99.61 147 | 97.77 28 | 99.85 26 | 99.70 18 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 22 | 96.61 55 | 98.55 17 | 99.17 16 | 99.05 13 | 99.17 29 | 98.79 50 | 95.47 121 | 99.89 16 | 97.95 20 | 99.91 16 | 99.75 13 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 62 | 99.17 6 | 99.05 40 | 98.05 40 | 99.61 11 | 99.52 5 | 93.72 173 | 99.88 18 | 98.72 9 | 99.88 22 | 99.65 23 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 107 | 99.06 86 | 93.80 159 | 97.76 60 | 99.00 57 | 98.40 29 | 99.07 33 | 98.98 39 | 96.89 59 | 99.75 61 | 97.19 49 | 99.79 34 | 99.55 35 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 67 | 99.46 28 | 95.22 109 | 98.27 31 | 98.84 93 | 99.05 13 | 99.01 35 | 98.65 62 | 95.37 124 | 99.90 13 | 97.57 34 | 99.91 16 | 99.77 8 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 50 | 98.76 9 | 98.89 75 | 98.49 27 | 99.38 17 | 99.14 30 | 95.44 123 | 99.84 25 | 96.47 68 | 99.80 32 | 99.47 59 |
|
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 116 | 99.49 26 | 93.10 181 | 98.35 26 | 99.21 11 | 98.43 28 | 98.89 39 | 98.83 49 | 94.30 158 | 99.81 31 | 97.87 23 | 99.91 16 | 99.77 8 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 82 | 99.33 42 | 95.21 111 | 98.04 45 | 99.46 5 | 97.32 73 | 97.82 139 | 99.11 31 | 96.75 67 | 99.86 20 | 97.84 24 | 99.36 149 | 99.15 131 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 90 | 99.39 37 | 95.22 109 | 97.55 73 | 99.20 13 | 98.21 36 | 99.25 25 | 98.51 71 | 98.21 11 | 99.40 206 | 94.79 149 | 99.72 47 | 99.32 95 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 142 | 99.76 5 | 96.28 66 | 98.51 19 | 99.10 28 | 98.76 22 | 96.79 190 | 99.34 17 | 96.61 73 | 98.82 293 | 96.38 70 | 99.50 107 | 96.98 302 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 56 | 99.07 85 | 95.87 77 | 96.73 118 | 99.05 40 | 98.67 23 | 98.84 41 | 98.45 75 | 97.58 27 | 99.88 18 | 96.45 69 | 99.86 24 | 99.54 36 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 68 | 98.10 5 | 97.73 64 | 99.11 26 | 97.76 49 | 98.62 51 | 98.27 96 | 97.88 19 | 99.80 37 | 95.67 95 | 99.50 107 | 99.38 85 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 19 | 97.48 30 | 98.35 26 | 99.03 47 | 95.88 124 | 97.88 131 | 98.22 103 | 98.15 12 | 99.74 68 | 96.50 67 | 99.62 64 | 99.42 78 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 63 | 97.35 35 | 97.96 48 | 99.16 17 | 98.34 31 | 98.78 44 | 98.52 70 | 97.32 34 | 99.45 189 | 94.08 179 | 99.67 57 | 99.13 137 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
FMVSNet1 | | | 97.95 49 | 98.08 35 | 97.56 116 | 99.14 79 | 93.67 164 | 98.23 32 | 98.66 143 | 97.41 70 | 99.00 36 | 99.19 24 | 95.47 121 | 99.73 74 | 95.83 91 | 99.76 38 | 99.30 101 |
|
DIV-MVS_2432*1600 | | | 97.86 63 | 98.07 36 | 97.25 149 | 99.22 56 | 92.81 187 | 97.55 73 | 98.94 70 | 97.10 77 | 98.85 40 | 98.88 46 | 95.03 135 | 99.67 121 | 97.39 41 | 99.65 60 | 99.26 113 |
|
FIs | | | 97.93 54 | 98.07 36 | 97.48 128 | 99.38 38 | 92.95 184 | 98.03 47 | 99.11 26 | 98.04 41 | 98.62 51 | 98.66 60 | 93.75 172 | 99.78 41 | 97.23 43 | 99.84 27 | 99.73 15 |
|
v8 | | | 97.60 81 | 98.06 38 | 96.23 204 | 98.71 115 | 89.44 244 | 97.43 83 | 98.82 108 | 97.29 75 | 98.74 47 | 99.10 32 | 93.86 168 | 99.68 116 | 98.61 10 | 99.94 8 | 99.56 33 |
|
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 105 | 98.69 119 | 94.28 142 | 97.86 55 | 98.31 186 | 98.79 21 | 99.23 26 | 98.86 48 | 95.76 111 | 99.61 147 | 95.49 105 | 99.36 149 | 99.23 120 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 54 | 98.72 112 | 96.04 72 | 98.07 44 | 99.10 28 | 95.96 118 | 98.59 55 | 98.69 58 | 96.94 54 | 99.81 31 | 96.64 60 | 99.58 77 | 99.57 32 |
|
tfpnnormal | | | 97.72 73 | 97.97 41 | 96.94 163 | 99.26 47 | 92.23 197 | 97.83 57 | 98.45 164 | 98.25 34 | 99.13 30 | 98.66 60 | 96.65 70 | 99.69 110 | 93.92 188 | 99.62 64 | 98.91 179 |
|
v10 | | | 97.55 84 | 97.97 41 | 96.31 201 | 98.60 129 | 89.64 240 | 97.44 81 | 99.02 49 | 96.60 89 | 98.72 49 | 99.16 29 | 93.48 177 | 99.72 78 | 98.76 6 | 99.92 13 | 99.58 28 |
|
test_0402 | | | 97.84 64 | 97.97 41 | 97.47 129 | 99.19 66 | 94.07 148 | 96.71 119 | 98.73 123 | 98.66 24 | 98.56 57 | 98.41 77 | 96.84 64 | 99.69 110 | 94.82 147 | 99.81 29 | 98.64 211 |
|
SED-MVS | | | 97.94 51 | 97.90 44 | 98.07 82 | 99.22 56 | 95.35 101 | 96.79 111 | 98.83 100 | 96.11 108 | 99.08 31 | 98.24 98 | 97.87 20 | 99.72 78 | 95.44 112 | 99.51 105 | 99.14 134 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 44 | 98.79 31 | 98.79 104 | 97.31 36 | 97.55 73 | 98.92 72 | 97.72 53 | 98.25 89 | 98.13 109 | 97.10 44 | 99.75 61 | 95.44 112 | 99.24 178 | 99.32 95 |
|
DP-MVS | | | 97.87 61 | 97.89 46 | 97.81 100 | 98.62 126 | 94.82 120 | 97.13 98 | 98.79 110 | 98.98 17 | 98.74 47 | 98.49 72 | 95.80 110 | 99.49 176 | 95.04 139 | 99.44 125 | 99.11 146 |
|
RE-MVS-def | | | | 97.88 47 | | 98.81 101 | 98.05 8 | 97.55 73 | 98.86 84 | 97.77 46 | 98.20 93 | 98.07 117 | 96.94 54 | | 95.49 105 | 99.20 180 | 99.26 113 |
|
NR-MVSNet | | | 97.96 46 | 97.86 48 | 98.26 69 | 98.73 110 | 95.54 91 | 98.14 40 | 98.73 123 | 97.79 45 | 99.42 15 | 97.83 149 | 94.40 156 | 99.78 41 | 95.91 90 | 99.76 38 | 99.46 61 |
|
SR-MVS-dyc-post | | | 98.14 34 | 97.84 49 | 99.02 9 | 98.81 101 | 98.05 8 | 97.55 73 | 98.86 84 | 97.77 46 | 98.20 93 | 98.07 117 | 96.60 75 | 99.76 54 | 95.49 105 | 99.20 180 | 99.26 113 |
|
MTAPA | | | 98.14 34 | 97.84 49 | 99.06 4 | 99.44 30 | 97.90 11 | 97.25 90 | 98.73 123 | 97.69 56 | 97.90 128 | 97.96 132 | 95.81 108 | 99.82 29 | 96.13 76 | 99.61 70 | 99.45 66 |
|
HPM-MVS |  | | 98.11 38 | 97.83 51 | 98.92 22 | 99.42 34 | 97.46 31 | 98.57 15 | 99.05 40 | 95.43 145 | 97.41 158 | 97.50 179 | 97.98 15 | 99.79 38 | 95.58 104 | 99.57 80 | 99.50 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
casdiffmvs | | | 97.50 88 | 97.81 52 | 96.56 188 | 98.51 139 | 91.04 220 | 95.83 165 | 99.09 33 | 97.23 76 | 98.33 81 | 98.30 89 | 97.03 51 | 99.37 217 | 96.58 63 | 99.38 145 | 99.28 108 |
|
Baseline_NR-MVSNet | | | 97.72 73 | 97.79 53 | 97.50 124 | 99.56 15 | 93.29 175 | 95.44 182 | 98.86 84 | 98.20 37 | 98.37 73 | 99.24 20 | 94.69 143 | 99.55 162 | 95.98 87 | 99.79 34 | 99.65 23 |
|
EG-PatchMatch MVS | | | 97.69 75 | 97.79 53 | 97.40 139 | 99.06 86 | 93.52 171 | 95.96 157 | 98.97 66 | 94.55 179 | 98.82 42 | 98.76 53 | 97.31 35 | 99.29 238 | 97.20 48 | 99.44 125 | 99.38 85 |
|
ACMM | | 93.33 11 | 98.05 41 | 97.79 53 | 98.85 25 | 99.15 71 | 97.55 26 | 96.68 120 | 98.83 100 | 95.21 151 | 98.36 75 | 98.13 109 | 98.13 14 | 99.62 141 | 96.04 81 | 99.54 92 | 99.39 83 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
baseline | | | 97.44 93 | 97.78 56 | 96.43 194 | 98.52 138 | 90.75 227 | 96.84 108 | 99.03 47 | 96.51 92 | 97.86 135 | 98.02 126 | 96.67 69 | 99.36 219 | 97.09 52 | 99.47 117 | 99.19 124 |
|
test1172 | | | 98.08 39 | 97.76 57 | 99.05 6 | 98.78 106 | 98.07 6 | 97.41 85 | 98.85 88 | 97.57 60 | 98.15 100 | 97.96 132 | 96.60 75 | 99.76 54 | 95.30 120 | 99.18 184 | 99.33 94 |
|
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 57 | 98.79 31 | 99.43 32 | 97.21 41 | 97.15 95 | 98.90 74 | 96.58 91 | 98.08 110 | 97.87 146 | 97.02 52 | 99.76 54 | 95.25 123 | 99.59 75 | 99.40 81 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP |  | | 98.05 41 | 97.75 59 | 98.93 21 | 99.23 53 | 97.60 22 | 98.09 43 | 98.96 67 | 95.75 133 | 97.91 127 | 98.06 122 | 96.89 59 | 99.76 54 | 95.32 119 | 99.57 80 | 99.43 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SD-MVS | | | 97.37 98 | 97.70 60 | 96.35 198 | 98.14 181 | 95.13 112 | 96.54 123 | 98.92 72 | 95.94 120 | 99.19 28 | 98.08 115 | 97.74 22 | 95.06 354 | 95.24 124 | 99.54 92 | 98.87 188 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
XXY-MVS | | | 97.54 85 | 97.70 60 | 97.07 157 | 99.46 28 | 92.21 198 | 97.22 93 | 99.00 57 | 94.93 166 | 98.58 56 | 98.92 44 | 97.31 35 | 99.41 204 | 94.44 162 | 99.43 132 | 99.59 27 |
|
DeepC-MVS | | 95.41 4 | 97.82 67 | 97.70 60 | 98.16 75 | 98.78 106 | 95.72 81 | 96.23 141 | 99.02 49 | 93.92 200 | 98.62 51 | 98.99 38 | 97.69 23 | 99.62 141 | 96.18 75 | 99.87 23 | 99.15 131 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LPG-MVS_test | | | 97.94 51 | 97.67 63 | 98.74 35 | 99.15 71 | 97.02 42 | 97.09 99 | 99.02 49 | 95.15 155 | 98.34 78 | 98.23 100 | 97.91 17 | 99.70 102 | 94.41 164 | 99.73 44 | 99.50 43 |
|
SR-MVS | | | 98.00 45 | 97.66 64 | 99.01 11 | 98.77 108 | 97.93 10 | 97.38 86 | 98.83 100 | 97.32 73 | 98.06 112 | 97.85 147 | 96.65 70 | 99.77 50 | 95.00 142 | 99.11 195 | 99.32 95 |
|
zzz-MVS | | | 98.01 44 | 97.66 64 | 99.06 4 | 99.44 30 | 97.90 11 | 95.66 173 | 98.73 123 | 97.69 56 | 97.90 128 | 97.96 132 | 95.81 108 | 99.82 29 | 96.13 76 | 99.61 70 | 99.45 66 |
|
DVP-MVS | | | 97.78 70 | 97.65 66 | 98.16 75 | 99.24 51 | 95.51 93 | 96.74 114 | 98.23 192 | 95.92 121 | 98.40 70 | 98.28 92 | 97.06 49 | 99.71 93 | 95.48 108 | 99.52 100 | 99.26 113 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
UniMVSNet_NR-MVSNet | | | 97.83 65 | 97.65 66 | 98.37 60 | 98.72 112 | 95.78 79 | 95.66 173 | 99.02 49 | 98.11 39 | 98.31 84 | 97.69 166 | 94.65 147 | 99.85 22 | 97.02 55 | 99.71 50 | 99.48 56 |
|
UniMVSNet (Re) | | | 97.83 65 | 97.65 66 | 98.35 63 | 98.80 103 | 95.86 78 | 95.92 161 | 99.04 46 | 97.51 64 | 98.22 92 | 97.81 153 | 94.68 145 | 99.78 41 | 97.14 51 | 99.75 42 | 99.41 80 |
|
HFP-MVS | | | 97.94 51 | 97.64 69 | 98.83 26 | 99.15 71 | 97.50 28 | 97.59 70 | 98.84 93 | 96.05 111 | 97.49 149 | 97.54 174 | 97.07 47 | 99.70 102 | 95.61 101 | 99.46 120 | 99.30 101 |
|
3Dnovator | | 96.53 2 | 97.61 80 | 97.64 69 | 97.50 124 | 97.74 232 | 93.65 168 | 98.49 20 | 98.88 80 | 96.86 83 | 97.11 169 | 98.55 68 | 95.82 104 | 99.73 74 | 95.94 88 | 99.42 135 | 99.13 137 |
|
ACMMP_NAP | | | 97.89 59 | 97.63 71 | 98.67 41 | 99.35 41 | 96.84 47 | 96.36 132 | 98.79 110 | 95.07 159 | 97.88 131 | 98.35 81 | 97.24 41 | 99.72 78 | 96.05 80 | 99.58 77 | 99.45 66 |
|
XVS | | | 97.96 46 | 97.63 71 | 98.94 18 | 99.15 71 | 97.66 19 | 97.77 58 | 98.83 100 | 97.42 67 | 96.32 214 | 97.64 168 | 96.49 81 | 99.72 78 | 95.66 97 | 99.37 146 | 99.45 66 |
|
ZNCC-MVS | | | 97.92 55 | 97.62 73 | 98.83 26 | 99.32 44 | 97.24 39 | 97.45 80 | 98.84 93 | 95.76 131 | 96.93 185 | 97.43 184 | 97.26 39 | 99.79 38 | 96.06 78 | 99.53 95 | 99.45 66 |
|
ACMMPR | | | 97.95 49 | 97.62 73 | 98.94 18 | 99.20 64 | 97.56 25 | 97.59 70 | 98.83 100 | 96.05 111 | 97.46 155 | 97.63 169 | 96.77 66 | 99.76 54 | 95.61 101 | 99.46 120 | 99.49 51 |
|
DU-MVS | | | 97.79 69 | 97.60 75 | 98.36 61 | 98.73 110 | 95.78 79 | 95.65 175 | 98.87 82 | 97.57 60 | 98.31 84 | 97.83 149 | 94.69 143 | 99.85 22 | 97.02 55 | 99.71 50 | 99.46 61 |
|
region2R | | | 97.92 55 | 97.59 76 | 98.92 22 | 99.22 56 | 97.55 26 | 97.60 69 | 98.84 93 | 96.00 116 | 97.22 162 | 97.62 170 | 96.87 62 | 99.76 54 | 95.48 108 | 99.43 132 | 99.46 61 |
|
3Dnovator+ | | 96.13 3 | 97.73 72 | 97.59 76 | 98.15 78 | 98.11 186 | 95.60 89 | 98.04 45 | 98.70 133 | 98.13 38 | 96.93 185 | 98.45 75 | 95.30 128 | 99.62 141 | 95.64 99 | 98.96 210 | 99.24 119 |
|
SixPastTwentyTwo | | | 97.49 89 | 97.57 78 | 97.26 148 | 99.56 15 | 92.33 194 | 98.28 29 | 96.97 269 | 98.30 33 | 99.45 14 | 99.35 16 | 88.43 259 | 99.89 16 | 98.01 19 | 99.76 38 | 99.54 36 |
|
CP-MVS | | | 97.92 55 | 97.56 79 | 98.99 13 | 98.99 92 | 97.82 15 | 97.93 50 | 98.96 67 | 96.11 108 | 96.89 188 | 97.45 183 | 96.85 63 | 99.78 41 | 95.19 126 | 99.63 63 | 99.38 85 |
|
mPP-MVS | | | 97.91 58 | 97.53 80 | 99.04 7 | 99.22 56 | 97.87 14 | 97.74 62 | 98.78 114 | 96.04 113 | 97.10 170 | 97.73 161 | 96.53 78 | 99.78 41 | 95.16 130 | 99.50 107 | 99.46 61 |
|
PGM-MVS | | | 97.88 60 | 97.52 81 | 98.96 16 | 99.20 64 | 97.62 21 | 97.09 99 | 99.06 38 | 95.45 143 | 97.55 143 | 97.94 137 | 97.11 43 | 99.78 41 | 94.77 152 | 99.46 120 | 99.48 56 |
|
RPSCF | | | 97.87 61 | 97.51 82 | 98.95 17 | 99.15 71 | 98.43 3 | 97.56 72 | 99.06 38 | 96.19 105 | 98.48 63 | 98.70 57 | 94.72 142 | 99.24 246 | 94.37 167 | 99.33 164 | 99.17 127 |
|
LS3D | | | 97.77 71 | 97.50 83 | 98.57 48 | 96.24 298 | 97.58 24 | 98.45 23 | 98.85 88 | 98.58 26 | 97.51 146 | 97.94 137 | 95.74 112 | 99.63 133 | 95.19 126 | 98.97 209 | 98.51 222 |
|
GST-MVS | | | 97.82 67 | 97.49 84 | 98.81 29 | 99.23 53 | 97.25 38 | 97.16 94 | 98.79 110 | 95.96 118 | 97.53 144 | 97.40 186 | 96.93 56 | 99.77 50 | 95.04 139 | 99.35 154 | 99.42 78 |
|
VPNet | | | 97.26 105 | 97.49 84 | 96.59 184 | 99.47 27 | 90.58 229 | 96.27 136 | 98.53 157 | 97.77 46 | 98.46 66 | 98.41 77 | 94.59 149 | 99.68 116 | 94.61 155 | 99.29 172 | 99.52 40 |
|
Regformer-4 | | | 97.53 87 | 97.47 86 | 97.71 105 | 97.35 261 | 93.91 153 | 95.26 199 | 98.14 206 | 97.97 42 | 98.34 78 | 97.89 142 | 95.49 119 | 99.71 93 | 97.41 39 | 99.42 135 | 99.51 42 |
|
EI-MVSNet-UG-set | | | 97.32 102 | 97.40 87 | 97.09 156 | 97.34 265 | 92.01 206 | 95.33 193 | 97.65 243 | 97.74 50 | 98.30 86 | 98.14 108 | 95.04 134 | 99.69 110 | 97.55 35 | 99.52 100 | 99.58 28 |
|
SF-MVS | | | 97.60 81 | 97.39 88 | 98.22 73 | 98.93 95 | 95.69 83 | 97.05 101 | 99.10 28 | 95.32 148 | 97.83 137 | 97.88 144 | 96.44 85 | 99.72 78 | 94.59 159 | 99.39 143 | 99.25 117 |
|
EI-MVSNet-Vis-set | | | 97.32 102 | 97.39 88 | 97.11 154 | 97.36 260 | 92.08 204 | 95.34 192 | 97.65 243 | 97.74 50 | 98.29 87 | 98.11 113 | 95.05 132 | 99.68 116 | 97.50 37 | 99.50 107 | 99.56 33 |
|
MP-MVS-pluss | | | 97.69 75 | 97.36 90 | 98.70 39 | 99.50 25 | 96.84 47 | 95.38 189 | 98.99 60 | 92.45 240 | 98.11 104 | 98.31 85 | 97.25 40 | 99.77 50 | 96.60 61 | 99.62 64 | 99.48 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DPE-MVS | | | 97.64 77 | 97.35 91 | 98.50 51 | 98.85 99 | 96.18 67 | 95.21 204 | 98.99 60 | 95.84 128 | 98.78 44 | 98.08 115 | 96.84 64 | 99.81 31 | 93.98 186 | 99.57 80 | 99.52 40 |
|
LCM-MVSNet-Re | | | 97.33 101 | 97.33 92 | 97.32 144 | 98.13 184 | 93.79 160 | 96.99 105 | 99.65 2 | 96.74 86 | 99.47 13 | 98.93 43 | 96.91 58 | 99.84 25 | 90.11 269 | 99.06 204 | 98.32 238 |
|
CSCG | | | 97.40 96 | 97.30 93 | 97.69 109 | 98.95 94 | 94.83 119 | 97.28 89 | 98.99 60 | 96.35 100 | 98.13 103 | 95.95 278 | 95.99 97 | 99.66 127 | 94.36 170 | 99.73 44 | 98.59 217 |
|
Regformer-3 | | | 97.25 106 | 97.29 94 | 97.11 154 | 97.35 261 | 92.32 195 | 95.26 199 | 97.62 248 | 97.67 58 | 98.17 97 | 97.89 142 | 95.05 132 | 99.56 158 | 97.16 50 | 99.42 135 | 99.46 61 |
|
IterMVS-LS | | | 96.92 119 | 97.29 94 | 95.79 224 | 98.51 139 | 88.13 268 | 95.10 207 | 98.66 143 | 96.99 78 | 98.46 66 | 98.68 59 | 92.55 199 | 99.74 68 | 96.91 58 | 99.79 34 | 99.50 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
XVG-ACMP-BASELINE | | | 97.58 83 | 97.28 96 | 98.49 52 | 99.16 68 | 96.90 46 | 96.39 129 | 98.98 63 | 95.05 160 | 98.06 112 | 98.02 126 | 95.86 100 | 99.56 158 | 94.37 167 | 99.64 62 | 99.00 162 |
|
OPM-MVS | | | 97.54 85 | 97.25 97 | 98.41 57 | 99.11 81 | 96.61 55 | 95.24 202 | 98.46 163 | 94.58 178 | 98.10 107 | 98.07 117 | 97.09 46 | 99.39 211 | 95.16 130 | 99.44 125 | 99.21 122 |
|
VDD-MVS | | | 97.37 98 | 97.25 97 | 97.74 103 | 98.69 119 | 94.50 133 | 97.04 102 | 95.61 297 | 98.59 25 | 98.51 60 | 98.72 55 | 92.54 201 | 99.58 151 | 96.02 83 | 99.49 111 | 99.12 142 |
|
Regformer-2 | | | 97.41 95 | 97.24 99 | 97.93 93 | 97.21 272 | 94.72 123 | 94.85 225 | 98.27 187 | 97.74 50 | 98.11 104 | 97.50 179 | 95.58 117 | 99.69 110 | 96.57 64 | 99.31 168 | 99.37 90 |
|
TSAR-MVS + MP. | | | 97.42 94 | 97.23 100 | 98.00 89 | 99.38 38 | 95.00 115 | 97.63 68 | 98.20 196 | 93.00 228 | 98.16 98 | 98.06 122 | 95.89 99 | 99.72 78 | 95.67 95 | 99.10 197 | 99.28 108 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
#test# | | | 97.62 79 | 97.22 101 | 98.83 26 | 99.15 71 | 97.50 28 | 96.81 110 | 98.84 93 | 94.25 188 | 97.49 149 | 97.54 174 | 97.07 47 | 99.70 102 | 94.37 167 | 99.46 120 | 99.30 101 |
|
canonicalmvs | | | 97.23 108 | 97.21 102 | 97.30 145 | 97.65 240 | 94.39 135 | 97.84 56 | 99.05 40 | 97.42 67 | 96.68 197 | 93.85 317 | 97.63 26 | 99.33 227 | 96.29 72 | 98.47 256 | 98.18 253 |
|
MP-MVS |  | | 97.64 77 | 97.18 103 | 99.00 12 | 99.32 44 | 97.77 17 | 97.49 79 | 98.73 123 | 96.27 101 | 95.59 245 | 97.75 158 | 96.30 91 | 99.78 41 | 93.70 196 | 99.48 115 | 99.45 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
Regformer-1 | | | 97.27 104 | 97.16 104 | 97.61 114 | 97.21 272 | 93.86 156 | 94.85 225 | 98.04 220 | 97.62 59 | 98.03 116 | 97.50 179 | 95.34 125 | 99.63 133 | 96.52 65 | 99.31 168 | 99.35 92 |
|
V42 | | | 97.04 111 | 97.16 104 | 96.68 181 | 98.59 131 | 91.05 219 | 96.33 134 | 98.36 178 | 94.60 175 | 97.99 118 | 98.30 89 | 93.32 179 | 99.62 141 | 97.40 40 | 99.53 95 | 99.38 85 |
|
SMA-MVS |  | | 97.48 90 | 97.11 106 | 98.60 46 | 98.83 100 | 96.67 52 | 96.74 114 | 98.73 123 | 91.61 251 | 98.48 63 | 98.36 80 | 96.53 78 | 99.68 116 | 95.17 128 | 99.54 92 | 99.45 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
PM-MVS | | | 97.36 100 | 97.10 107 | 98.14 79 | 98.91 97 | 96.77 49 | 96.20 142 | 98.63 149 | 93.82 201 | 98.54 58 | 98.33 83 | 93.98 166 | 99.05 271 | 95.99 86 | 99.45 124 | 98.61 216 |
|
ACMP | | 92.54 13 | 97.47 91 | 97.10 107 | 98.55 50 | 99.04 89 | 96.70 51 | 96.24 140 | 98.89 75 | 93.71 204 | 97.97 122 | 97.75 158 | 97.44 29 | 99.63 133 | 93.22 206 | 99.70 53 | 99.32 95 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
v1144 | | | 96.84 124 | 97.08 109 | 96.13 210 | 98.42 150 | 89.28 247 | 95.41 186 | 98.67 141 | 94.21 189 | 97.97 122 | 98.31 85 | 93.06 184 | 99.65 128 | 98.06 18 | 99.62 64 | 99.45 66 |
|
XVG-OURS-SEG-HR | | | 97.38 97 | 97.07 110 | 98.30 67 | 99.01 91 | 97.41 34 | 94.66 232 | 99.02 49 | 95.20 152 | 98.15 100 | 97.52 177 | 98.83 4 | 98.43 326 | 94.87 145 | 96.41 318 | 99.07 153 |
|
v1192 | | | 96.83 127 | 97.06 111 | 96.15 209 | 98.28 160 | 89.29 246 | 95.36 190 | 98.77 115 | 93.73 203 | 98.11 104 | 98.34 82 | 93.02 188 | 99.67 121 | 98.35 14 | 99.58 77 | 99.50 43 |
|
v2v482 | | | 96.78 131 | 97.06 111 | 95.95 217 | 98.57 133 | 88.77 257 | 95.36 190 | 98.26 189 | 95.18 154 | 97.85 136 | 98.23 100 | 92.58 198 | 99.63 133 | 97.80 26 | 99.69 54 | 99.45 66 |
|
xxxxxxxxxxxxxcwj | | | 97.24 107 | 97.03 113 | 97.89 95 | 98.48 144 | 94.71 124 | 94.53 237 | 99.07 37 | 95.02 162 | 97.83 137 | 97.88 144 | 96.44 85 | 99.72 78 | 94.59 159 | 99.39 143 | 99.25 117 |
|
v1240 | | | 96.74 133 | 97.02 114 | 95.91 220 | 98.18 174 | 88.52 259 | 95.39 188 | 98.88 80 | 93.15 224 | 98.46 66 | 98.40 79 | 92.80 191 | 99.71 93 | 98.45 13 | 99.49 111 | 99.49 51 |
|
v148 | | | 96.58 145 | 96.97 115 | 95.42 239 | 98.63 125 | 87.57 279 | 95.09 209 | 97.90 224 | 95.91 123 | 98.24 91 | 97.96 132 | 93.42 178 | 99.39 211 | 96.04 81 | 99.52 100 | 99.29 107 |
|
PMVS |  | 89.60 17 | 96.71 138 | 96.97 115 | 95.95 217 | 99.51 22 | 97.81 16 | 97.42 84 | 97.49 251 | 97.93 43 | 95.95 231 | 98.58 64 | 96.88 61 | 96.91 349 | 89.59 277 | 99.36 149 | 93.12 347 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
v1921920 | | | 96.72 136 | 96.96 117 | 95.99 213 | 98.21 169 | 88.79 256 | 95.42 184 | 98.79 110 | 93.22 218 | 98.19 96 | 98.26 97 | 92.68 194 | 99.70 102 | 98.34 15 | 99.55 89 | 99.49 51 |
|
EI-MVSNet | | | 96.63 143 | 96.93 118 | 95.74 225 | 97.26 270 | 88.13 268 | 95.29 197 | 97.65 243 | 96.99 78 | 97.94 125 | 98.19 105 | 92.55 199 | 99.58 151 | 96.91 58 | 99.56 83 | 99.50 43 |
|
MSP-MVS | | | 97.45 92 | 96.92 119 | 99.03 8 | 99.26 47 | 97.70 18 | 97.66 65 | 98.89 75 | 95.65 134 | 98.51 60 | 96.46 251 | 92.15 208 | 99.81 31 | 95.14 133 | 98.58 252 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
AllTest | | | 97.20 109 | 96.92 119 | 98.06 84 | 99.08 83 | 96.16 68 | 97.14 97 | 99.16 17 | 94.35 184 | 97.78 140 | 98.07 117 | 95.84 101 | 99.12 261 | 91.41 233 | 99.42 135 | 98.91 179 |
|
v144192 | | | 96.69 139 | 96.90 121 | 96.03 212 | 98.25 165 | 88.92 251 | 95.49 180 | 98.77 115 | 93.05 226 | 98.09 108 | 98.29 91 | 92.51 203 | 99.70 102 | 98.11 17 | 99.56 83 | 99.47 59 |
|
VDDNet | | | 96.98 116 | 96.84 122 | 97.41 138 | 99.40 36 | 93.26 176 | 97.94 49 | 95.31 302 | 99.26 7 | 98.39 72 | 99.18 27 | 87.85 268 | 99.62 141 | 95.13 135 | 99.09 198 | 99.35 92 |
|
VNet | | | 96.84 124 | 96.83 123 | 96.88 167 | 98.06 187 | 92.02 205 | 96.35 133 | 97.57 250 | 97.70 55 | 97.88 131 | 97.80 154 | 92.40 205 | 99.54 165 | 94.73 154 | 98.96 210 | 99.08 151 |
|
WR-MVS | | | 96.90 121 | 96.81 124 | 97.16 151 | 98.56 134 | 92.20 200 | 94.33 241 | 98.12 209 | 97.34 72 | 98.20 93 | 97.33 197 | 92.81 190 | 99.75 61 | 94.79 149 | 99.81 29 | 99.54 36 |
|
GBi-Net | | | 96.99 113 | 96.80 125 | 97.56 116 | 97.96 198 | 93.67 164 | 98.23 32 | 98.66 143 | 95.59 138 | 97.99 118 | 99.19 24 | 89.51 250 | 99.73 74 | 94.60 156 | 99.44 125 | 99.30 101 |
|
test1 | | | 96.99 113 | 96.80 125 | 97.56 116 | 97.96 198 | 93.67 164 | 98.23 32 | 98.66 143 | 95.59 138 | 97.99 118 | 99.19 24 | 89.51 250 | 99.73 74 | 94.60 156 | 99.44 125 | 99.30 101 |
|
MVS_Test | | | 96.27 155 | 96.79 127 | 94.73 266 | 96.94 283 | 86.63 294 | 96.18 143 | 98.33 183 | 94.94 164 | 96.07 227 | 98.28 92 | 95.25 129 | 99.26 243 | 97.21 46 | 97.90 276 | 98.30 241 |
|
XVG-OURS | | | 97.12 110 | 96.74 128 | 98.26 69 | 98.99 92 | 97.45 32 | 93.82 267 | 99.05 40 | 95.19 153 | 98.32 82 | 97.70 164 | 95.22 130 | 98.41 327 | 94.27 172 | 98.13 267 | 98.93 174 |
|
MSLP-MVS++ | | | 96.42 153 | 96.71 129 | 95.57 231 | 97.82 213 | 90.56 231 | 95.71 168 | 98.84 93 | 94.72 171 | 96.71 196 | 97.39 190 | 94.91 140 | 98.10 341 | 95.28 121 | 99.02 206 | 98.05 265 |
|
9.14 | | | | 96.69 130 | | 98.53 137 | | 96.02 152 | 98.98 63 | 93.23 217 | 97.18 164 | 97.46 182 | 96.47 83 | 99.62 141 | 92.99 210 | 99.32 166 | |
|
IS-MVSNet | | | 96.93 118 | 96.68 131 | 97.70 107 | 99.25 50 | 94.00 151 | 98.57 15 | 96.74 278 | 98.36 30 | 98.14 102 | 97.98 131 | 88.23 261 | 99.71 93 | 93.10 209 | 99.72 47 | 99.38 85 |
|
FMVSNet2 | | | 96.72 136 | 96.67 132 | 96.87 168 | 97.96 198 | 91.88 208 | 97.15 95 | 98.06 218 | 95.59 138 | 98.50 62 | 98.62 63 | 89.51 250 | 99.65 128 | 94.99 143 | 99.60 73 | 99.07 153 |
|
test20.03 | | | 96.58 145 | 96.61 133 | 96.48 192 | 98.49 142 | 91.72 212 | 95.68 172 | 97.69 238 | 96.81 84 | 98.27 88 | 97.92 140 | 94.18 162 | 98.71 304 | 90.78 250 | 99.66 59 | 99.00 162 |
|
ab-mvs | | | 96.59 144 | 96.59 134 | 96.60 183 | 98.64 121 | 92.21 198 | 98.35 26 | 97.67 239 | 94.45 180 | 96.99 180 | 98.79 50 | 94.96 138 | 99.49 176 | 90.39 266 | 99.07 201 | 98.08 256 |
|
new-patchmatchnet | | | 95.67 178 | 96.58 135 | 92.94 307 | 97.48 251 | 80.21 340 | 92.96 290 | 98.19 201 | 94.83 168 | 98.82 42 | 98.79 50 | 93.31 180 | 99.51 174 | 95.83 91 | 99.04 205 | 99.12 142 |
|
EPP-MVSNet | | | 96.84 124 | 96.58 135 | 97.65 111 | 99.18 67 | 93.78 161 | 98.68 10 | 96.34 282 | 97.91 44 | 97.30 160 | 98.06 122 | 88.46 258 | 99.85 22 | 93.85 190 | 99.40 142 | 99.32 95 |
|
UGNet | | | 96.81 129 | 96.56 137 | 97.58 115 | 96.64 288 | 93.84 158 | 97.75 61 | 97.12 264 | 96.47 96 | 93.62 295 | 98.88 46 | 93.22 182 | 99.53 166 | 95.61 101 | 99.69 54 | 99.36 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
CNVR-MVS | | | 96.92 119 | 96.55 138 | 98.03 88 | 98.00 196 | 95.54 91 | 94.87 223 | 98.17 202 | 94.60 175 | 96.38 211 | 97.05 215 | 95.67 114 | 99.36 219 | 95.12 136 | 99.08 199 | 99.19 124 |
|
MVS_111021_LR | | | 96.82 128 | 96.55 138 | 97.62 113 | 98.27 162 | 95.34 103 | 93.81 269 | 98.33 183 | 94.59 177 | 96.56 203 | 96.63 242 | 96.61 73 | 98.73 302 | 94.80 148 | 99.34 157 | 98.78 197 |
|
MVS_111021_HR | | | 96.73 135 | 96.54 140 | 97.27 146 | 98.35 155 | 93.66 167 | 93.42 279 | 98.36 178 | 94.74 170 | 96.58 201 | 96.76 235 | 96.54 77 | 98.99 278 | 94.87 145 | 99.27 175 | 99.15 131 |
|
test_part1 | | | 96.77 132 | 96.53 141 | 97.47 129 | 98.04 188 | 92.92 185 | 97.93 50 | 98.85 88 | 98.83 20 | 99.30 21 | 99.07 35 | 79.25 306 | 99.79 38 | 97.59 33 | 99.93 10 | 99.69 20 |
|
APD-MVS |  | | 97.00 112 | 96.53 141 | 98.41 57 | 98.55 135 | 96.31 64 | 96.32 135 | 98.77 115 | 92.96 233 | 97.44 157 | 97.58 173 | 95.84 101 | 99.74 68 | 91.96 220 | 99.35 154 | 99.19 124 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PHI-MVS | | | 96.96 117 | 96.53 141 | 98.25 71 | 97.48 251 | 96.50 58 | 96.76 113 | 98.85 88 | 93.52 207 | 96.19 223 | 96.85 226 | 95.94 98 | 99.42 195 | 93.79 192 | 99.43 132 | 98.83 191 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 133 | 96.51 144 | 97.44 135 | 97.69 235 | 94.15 146 | 96.02 152 | 98.43 167 | 93.17 223 | 97.30 160 | 97.38 192 | 95.48 120 | 99.28 240 | 93.74 193 | 99.34 157 | 98.88 186 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testgi | | | 96.07 163 | 96.50 145 | 94.80 263 | 99.26 47 | 87.69 278 | 95.96 157 | 98.58 154 | 95.08 158 | 98.02 117 | 96.25 262 | 97.92 16 | 97.60 346 | 88.68 291 | 98.74 237 | 99.11 146 |
|
ETH3D-3000-0.1 | | | 96.89 123 | 96.46 146 | 98.16 75 | 98.62 126 | 95.69 83 | 95.96 157 | 98.98 63 | 93.36 212 | 97.04 176 | 97.31 199 | 94.93 139 | 99.63 133 | 92.60 213 | 99.34 157 | 99.17 127 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 121 | 96.43 147 | 98.31 66 | 97.48 251 | 97.23 40 | 92.56 299 | 98.60 151 | 92.84 235 | 98.54 58 | 97.40 186 | 96.64 72 | 98.78 297 | 94.40 166 | 99.41 141 | 98.93 174 |
|
HPM-MVS++ |  | | 96.99 113 | 96.38 148 | 98.81 29 | 98.64 121 | 97.59 23 | 95.97 156 | 98.20 196 | 95.51 141 | 95.06 254 | 96.53 247 | 94.10 163 | 99.70 102 | 94.29 171 | 99.15 186 | 99.13 137 |
|
MVSFormer | | | 96.14 161 | 96.36 149 | 95.49 236 | 97.68 236 | 87.81 275 | 98.67 11 | 99.02 49 | 96.50 93 | 94.48 271 | 96.15 266 | 86.90 273 | 99.92 4 | 98.73 7 | 99.13 191 | 98.74 202 |
|
TinyColmap | | | 96.00 168 | 96.34 150 | 94.96 254 | 97.90 204 | 87.91 271 | 94.13 255 | 98.49 161 | 94.41 181 | 98.16 98 | 97.76 155 | 96.29 92 | 98.68 309 | 90.52 262 | 99.42 135 | 98.30 241 |
|
HQP_MVS | | | 96.66 142 | 96.33 151 | 97.68 110 | 98.70 117 | 94.29 139 | 96.50 124 | 98.75 119 | 96.36 98 | 96.16 224 | 96.77 233 | 91.91 219 | 99.46 185 | 92.59 215 | 99.20 180 | 99.28 108 |
|
K. test v3 | | | 96.44 151 | 96.28 152 | 96.95 162 | 99.41 35 | 91.53 214 | 97.65 66 | 90.31 345 | 98.89 18 | 98.93 38 | 99.36 14 | 84.57 288 | 99.92 4 | 97.81 25 | 99.56 83 | 99.39 83 |
|
diffmvs | | | 96.04 165 | 96.23 153 | 95.46 238 | 97.35 261 | 88.03 270 | 93.42 279 | 99.08 34 | 94.09 195 | 96.66 198 | 96.93 222 | 93.85 169 | 99.29 238 | 96.01 85 | 98.67 242 | 99.06 155 |
|
DELS-MVS | | | 96.17 160 | 96.23 153 | 95.99 213 | 97.55 248 | 90.04 234 | 92.38 304 | 98.52 158 | 94.13 193 | 96.55 205 | 97.06 214 | 94.99 137 | 99.58 151 | 95.62 100 | 99.28 173 | 98.37 231 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
IterMVS-SCA-FT | | | 95.86 173 | 96.19 155 | 94.85 260 | 97.68 236 | 85.53 305 | 92.42 302 | 97.63 247 | 96.99 78 | 98.36 75 | 98.54 69 | 87.94 263 | 99.75 61 | 97.07 54 | 99.08 199 | 99.27 112 |
|
pmmvs-eth3d | | | 96.49 148 | 96.18 156 | 97.42 137 | 98.25 165 | 94.29 139 | 94.77 229 | 98.07 217 | 89.81 272 | 97.97 122 | 98.33 83 | 93.11 183 | 99.08 268 | 95.46 111 | 99.84 27 | 98.89 183 |
|
testtj | | | 96.69 139 | 96.13 157 | 98.36 61 | 98.46 148 | 96.02 74 | 96.44 126 | 98.70 133 | 94.26 187 | 96.79 190 | 97.13 207 | 94.07 164 | 99.75 61 | 90.53 261 | 98.80 231 | 99.31 100 |
|
Fast-Effi-MVS+-dtu | | | 96.44 151 | 96.12 158 | 97.39 140 | 97.18 274 | 94.39 135 | 95.46 181 | 98.73 123 | 96.03 115 | 94.72 262 | 94.92 301 | 96.28 93 | 99.69 110 | 93.81 191 | 97.98 272 | 98.09 255 |
|
TSAR-MVS + GP. | | | 96.47 150 | 96.12 158 | 97.49 127 | 97.74 232 | 95.23 106 | 94.15 252 | 96.90 271 | 93.26 216 | 98.04 115 | 96.70 238 | 94.41 155 | 98.89 288 | 94.77 152 | 99.14 187 | 98.37 231 |
|
Effi-MVS+-dtu | | | 96.81 129 | 96.09 160 | 98.99 13 | 96.90 285 | 98.69 2 | 96.42 127 | 98.09 211 | 95.86 126 | 95.15 253 | 95.54 289 | 94.26 159 | 99.81 31 | 94.06 180 | 98.51 255 | 98.47 225 |
|
CPTT-MVS | | | 96.69 139 | 96.08 161 | 98.49 52 | 98.89 98 | 96.64 54 | 97.25 90 | 98.77 115 | 92.89 234 | 96.01 230 | 97.13 207 | 92.23 207 | 99.67 121 | 92.24 218 | 99.34 157 | 99.17 127 |
|
mvs_anonymous | | | 95.36 192 | 96.07 162 | 93.21 299 | 96.29 296 | 81.56 335 | 94.60 234 | 97.66 241 | 93.30 215 | 96.95 184 | 98.91 45 | 93.03 187 | 99.38 214 | 96.60 61 | 97.30 303 | 98.69 208 |
|
Effi-MVS+ | | | 96.19 159 | 96.01 163 | 96.71 177 | 97.43 257 | 92.19 201 | 96.12 146 | 99.10 28 | 95.45 143 | 93.33 308 | 94.71 304 | 97.23 42 | 99.56 158 | 93.21 207 | 97.54 293 | 98.37 231 |
|
OMC-MVS | | | 96.48 149 | 96.00 164 | 97.91 94 | 98.30 157 | 96.01 75 | 94.86 224 | 98.60 151 | 91.88 248 | 97.18 164 | 97.21 205 | 96.11 94 | 99.04 272 | 90.49 265 | 99.34 157 | 98.69 208 |
|
NCCC | | | 96.52 147 | 95.99 165 | 98.10 80 | 97.81 214 | 95.68 85 | 95.00 218 | 98.20 196 | 95.39 146 | 95.40 249 | 96.36 258 | 93.81 170 | 99.45 189 | 93.55 199 | 98.42 257 | 99.17 127 |
|
Anonymous202405211 | | | 96.34 154 | 95.98 166 | 97.43 136 | 98.25 165 | 93.85 157 | 96.74 114 | 94.41 309 | 97.72 53 | 98.37 73 | 98.03 125 | 87.15 272 | 99.53 166 | 94.06 180 | 99.07 201 | 98.92 178 |
|
xiu_mvs_v1_base_debu | | | 95.62 179 | 95.96 167 | 94.60 270 | 98.01 192 | 88.42 260 | 93.99 260 | 98.21 193 | 92.98 229 | 95.91 232 | 94.53 307 | 96.39 87 | 99.72 78 | 95.43 115 | 98.19 264 | 95.64 332 |
|
xiu_mvs_v1_base | | | 95.62 179 | 95.96 167 | 94.60 270 | 98.01 192 | 88.42 260 | 93.99 260 | 98.21 193 | 92.98 229 | 95.91 232 | 94.53 307 | 96.39 87 | 99.72 78 | 95.43 115 | 98.19 264 | 95.64 332 |
|
xiu_mvs_v1_base_debi | | | 95.62 179 | 95.96 167 | 94.60 270 | 98.01 192 | 88.42 260 | 93.99 260 | 98.21 193 | 92.98 229 | 95.91 232 | 94.53 307 | 96.39 87 | 99.72 78 | 95.43 115 | 98.19 264 | 95.64 332 |
|
ETV-MVS | | | 96.13 162 | 95.90 170 | 96.82 171 | 97.76 230 | 93.89 154 | 95.40 187 | 98.95 69 | 95.87 125 | 95.58 246 | 91.00 347 | 96.36 90 | 99.72 78 | 93.36 200 | 98.83 229 | 96.85 309 |
|
IterMVS | | | 95.42 190 | 95.83 171 | 94.20 283 | 97.52 249 | 83.78 326 | 92.41 303 | 97.47 254 | 95.49 142 | 98.06 112 | 98.49 72 | 87.94 263 | 99.58 151 | 96.02 83 | 99.02 206 | 99.23 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MCST-MVS | | | 96.24 156 | 95.80 172 | 97.56 116 | 98.75 109 | 94.13 147 | 94.66 232 | 98.17 202 | 90.17 269 | 96.21 222 | 96.10 271 | 95.14 131 | 99.43 194 | 94.13 178 | 98.85 227 | 99.13 137 |
|
PVSNet_Blended_VisFu | | | 95.95 169 | 95.80 172 | 96.42 195 | 99.28 46 | 90.62 228 | 95.31 195 | 99.08 34 | 88.40 286 | 96.97 183 | 98.17 107 | 92.11 210 | 99.78 41 | 93.64 197 | 99.21 179 | 98.86 189 |
|
EIA-MVS | | | 96.04 165 | 95.77 174 | 96.85 169 | 97.80 218 | 92.98 183 | 96.12 146 | 99.16 17 | 94.65 173 | 93.77 289 | 91.69 342 | 95.68 113 | 99.67 121 | 94.18 175 | 98.85 227 | 97.91 273 |
|
UnsupCasMVSNet_eth | | | 95.91 170 | 95.73 175 | 96.44 193 | 98.48 144 | 91.52 215 | 95.31 195 | 98.45 164 | 95.76 131 | 97.48 152 | 97.54 174 | 89.53 249 | 98.69 306 | 94.43 163 | 94.61 336 | 99.13 137 |
|
MDA-MVSNet-bldmvs | | | 95.69 176 | 95.67 176 | 95.74 225 | 98.48 144 | 88.76 258 | 92.84 291 | 97.25 257 | 96.00 116 | 97.59 142 | 97.95 136 | 91.38 224 | 99.46 185 | 93.16 208 | 96.35 319 | 98.99 165 |
|
CANet | | | 95.86 173 | 95.65 177 | 96.49 191 | 96.41 294 | 90.82 224 | 94.36 240 | 98.41 172 | 94.94 164 | 92.62 322 | 96.73 236 | 92.68 194 | 99.71 93 | 95.12 136 | 99.60 73 | 98.94 170 |
|
LF4IMVS | | | 96.07 163 | 95.63 178 | 97.36 142 | 98.19 171 | 95.55 90 | 95.44 182 | 98.82 108 | 92.29 242 | 95.70 243 | 96.55 245 | 92.63 197 | 98.69 306 | 91.75 229 | 99.33 164 | 97.85 275 |
|
ETH3D cwj APD-0.16 | | | 96.23 157 | 95.61 179 | 98.09 81 | 97.91 202 | 95.65 88 | 94.94 220 | 98.74 121 | 91.31 257 | 96.02 229 | 97.08 212 | 94.05 165 | 99.69 110 | 91.51 232 | 98.94 214 | 98.93 174 |
|
CS-MVS | | | 95.86 173 | 95.59 180 | 96.69 179 | 97.85 206 | 93.14 179 | 96.42 127 | 99.25 9 | 94.17 192 | 93.56 299 | 90.76 350 | 96.05 96 | 99.72 78 | 93.28 203 | 98.91 218 | 97.21 296 |
|
QAPM | | | 95.88 172 | 95.57 181 | 96.80 172 | 97.90 204 | 91.84 210 | 98.18 39 | 98.73 123 | 88.41 285 | 96.42 209 | 98.13 109 | 94.73 141 | 99.75 61 | 88.72 289 | 98.94 214 | 98.81 193 |
|
alignmvs | | | 96.01 167 | 95.52 182 | 97.50 124 | 97.77 229 | 94.71 124 | 96.07 148 | 96.84 272 | 97.48 65 | 96.78 194 | 94.28 314 | 85.50 281 | 99.40 206 | 96.22 73 | 98.73 240 | 98.40 228 |
|
mvs-test1 | | | 96.20 158 | 95.50 183 | 98.32 64 | 96.90 285 | 98.16 4 | 95.07 212 | 98.09 211 | 95.86 126 | 93.63 294 | 94.32 313 | 94.26 159 | 99.71 93 | 94.06 180 | 97.27 304 | 97.07 299 |
|
test_prior3 | | | 95.91 170 | 95.39 184 | 97.46 132 | 97.79 224 | 94.26 143 | 93.33 284 | 98.42 170 | 94.21 189 | 94.02 282 | 96.25 262 | 93.64 174 | 99.34 224 | 91.90 222 | 98.96 210 | 98.79 195 |
|
cl_fuxian | | | 95.20 198 | 95.32 185 | 94.83 262 | 96.19 302 | 86.43 297 | 91.83 312 | 98.35 182 | 93.47 209 | 97.36 159 | 97.26 202 | 88.69 256 | 99.28 240 | 95.41 118 | 99.36 149 | 98.78 197 |
|
MVP-Stereo | | | 95.69 176 | 95.28 186 | 96.92 164 | 98.15 180 | 93.03 182 | 95.64 177 | 98.20 196 | 90.39 266 | 96.63 200 | 97.73 161 | 91.63 222 | 99.10 266 | 91.84 226 | 97.31 302 | 98.63 213 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
wuyk23d | | | 93.25 267 | 95.20 187 | 87.40 339 | 96.07 308 | 95.38 98 | 97.04 102 | 94.97 303 | 95.33 147 | 99.70 5 | 98.11 113 | 98.14 13 | 91.94 356 | 77.76 349 | 99.68 56 | 74.89 355 |
|
OpenMVS |  | 94.22 8 | 95.48 186 | 95.20 187 | 96.32 200 | 97.16 275 | 91.96 207 | 97.74 62 | 98.84 93 | 87.26 295 | 94.36 273 | 98.01 128 | 93.95 167 | 99.67 121 | 90.70 256 | 98.75 236 | 97.35 295 |
|
D2MVS | | | 95.18 199 | 95.17 189 | 95.21 245 | 97.76 230 | 87.76 277 | 94.15 252 | 97.94 222 | 89.77 273 | 96.99 180 | 97.68 167 | 87.45 270 | 99.14 259 | 95.03 141 | 99.81 29 | 98.74 202 |
|
DP-MVS Recon | | | 95.55 182 | 95.13 190 | 96.80 172 | 98.51 139 | 93.99 152 | 94.60 234 | 98.69 136 | 90.20 268 | 95.78 239 | 96.21 265 | 92.73 193 | 98.98 280 | 90.58 260 | 98.86 225 | 97.42 292 |
|
MSDG | | | 95.33 193 | 95.13 190 | 95.94 219 | 97.40 259 | 91.85 209 | 91.02 328 | 98.37 177 | 95.30 149 | 96.31 216 | 95.99 273 | 94.51 153 | 98.38 330 | 89.59 277 | 97.65 290 | 97.60 287 |
|
Fast-Effi-MVS+ | | | 95.49 184 | 95.07 192 | 96.75 175 | 97.67 239 | 92.82 186 | 94.22 248 | 98.60 151 | 91.61 251 | 93.42 306 | 92.90 327 | 96.73 68 | 99.70 102 | 92.60 213 | 97.89 277 | 97.74 280 |
|
CLD-MVS | | | 95.47 187 | 95.07 192 | 96.69 179 | 98.27 162 | 92.53 191 | 91.36 317 | 98.67 141 | 91.22 259 | 95.78 239 | 94.12 315 | 95.65 115 | 98.98 280 | 90.81 248 | 99.72 47 | 98.57 218 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Anonymous20231206 | | | 95.27 196 | 95.06 194 | 95.88 221 | 98.72 112 | 89.37 245 | 95.70 169 | 97.85 227 | 88.00 291 | 96.98 182 | 97.62 170 | 91.95 215 | 99.34 224 | 89.21 282 | 99.53 95 | 98.94 170 |
|
MVS_0304 | | | 95.50 183 | 95.05 195 | 96.84 170 | 96.28 297 | 93.12 180 | 97.00 104 | 96.16 284 | 95.03 161 | 89.22 344 | 97.70 164 | 90.16 242 | 99.48 179 | 94.51 161 | 99.34 157 | 97.93 272 |
|
API-MVS | | | 95.09 204 | 95.01 196 | 95.31 242 | 96.61 289 | 94.02 150 | 96.83 109 | 97.18 261 | 95.60 137 | 95.79 237 | 94.33 312 | 94.54 152 | 98.37 332 | 85.70 318 | 98.52 253 | 93.52 344 |
|
FMVSNet3 | | | 95.26 197 | 94.94 197 | 96.22 206 | 96.53 291 | 90.06 233 | 95.99 154 | 97.66 241 | 94.11 194 | 97.99 118 | 97.91 141 | 80.22 304 | 99.63 133 | 94.60 156 | 99.44 125 | 98.96 167 |
|
TAMVS | | | 95.49 184 | 94.94 197 | 97.16 151 | 98.31 156 | 93.41 173 | 95.07 212 | 96.82 274 | 91.09 260 | 97.51 146 | 97.82 152 | 89.96 243 | 99.42 195 | 88.42 294 | 99.44 125 | 98.64 211 |
|
eth_miper_zixun_eth | | | 94.89 211 | 94.93 199 | 94.75 265 | 95.99 309 | 86.12 300 | 91.35 318 | 98.49 161 | 93.40 210 | 97.12 168 | 97.25 203 | 86.87 275 | 99.35 222 | 95.08 138 | 98.82 230 | 98.78 197 |
|
PVSNet_BlendedMVS | | | 95.02 208 | 94.93 199 | 95.27 243 | 97.79 224 | 87.40 283 | 94.14 254 | 98.68 138 | 88.94 280 | 94.51 269 | 98.01 128 | 93.04 185 | 99.30 234 | 89.77 275 | 99.49 111 | 99.11 146 |
|
MS-PatchMatch | | | 94.83 213 | 94.91 201 | 94.57 273 | 96.81 287 | 87.10 288 | 94.23 247 | 97.34 256 | 88.74 283 | 97.14 166 | 97.11 210 | 91.94 216 | 98.23 337 | 92.99 210 | 97.92 274 | 98.37 231 |
|
LFMVS | | | 95.32 194 | 94.88 202 | 96.62 182 | 98.03 189 | 91.47 216 | 97.65 66 | 90.72 342 | 99.11 9 | 97.89 130 | 98.31 85 | 79.20 307 | 99.48 179 | 93.91 189 | 99.12 194 | 98.93 174 |
|
Vis-MVSNet (Re-imp) | | | 95.11 202 | 94.85 203 | 95.87 222 | 99.12 80 | 89.17 248 | 97.54 78 | 94.92 304 | 96.50 93 | 96.58 201 | 97.27 201 | 83.64 291 | 99.48 179 | 88.42 294 | 99.67 57 | 98.97 166 |
|
ppachtmachnet_test | | | 94.49 233 | 94.84 204 | 93.46 293 | 96.16 304 | 82.10 332 | 90.59 331 | 97.48 253 | 90.53 265 | 97.01 179 | 97.59 172 | 91.01 227 | 99.36 219 | 93.97 187 | 99.18 184 | 98.94 170 |
|
YYNet1 | | | 94.73 217 | 94.84 204 | 94.41 278 | 97.47 255 | 85.09 314 | 90.29 334 | 95.85 292 | 92.52 237 | 97.53 144 | 97.76 155 | 91.97 214 | 99.18 252 | 93.31 202 | 96.86 308 | 98.95 168 |
|
MDA-MVSNet_test_wron | | | 94.73 217 | 94.83 206 | 94.42 277 | 97.48 251 | 85.15 312 | 90.28 335 | 95.87 291 | 92.52 237 | 97.48 152 | 97.76 155 | 91.92 218 | 99.17 256 | 93.32 201 | 96.80 311 | 98.94 170 |
|
miper_lstm_enhance | | | 94.81 215 | 94.80 207 | 94.85 260 | 96.16 304 | 86.45 296 | 91.14 325 | 98.20 196 | 93.49 208 | 97.03 177 | 97.37 194 | 84.97 285 | 99.26 243 | 95.28 121 | 99.56 83 | 98.83 191 |
|
CL-MVSNet_2432*1600 | | | 95.04 205 | 94.79 208 | 95.82 223 | 97.51 250 | 89.79 238 | 91.14 325 | 96.82 274 | 93.05 226 | 96.72 195 | 96.40 255 | 90.82 230 | 99.16 257 | 91.95 221 | 98.66 244 | 98.50 223 |
|
BH-untuned | | | 94.69 222 | 94.75 209 | 94.52 275 | 97.95 201 | 87.53 280 | 94.07 257 | 97.01 267 | 93.99 197 | 97.10 170 | 95.65 285 | 92.65 196 | 98.95 285 | 87.60 304 | 96.74 312 | 97.09 298 |
|
miper_ehance_all_eth | | | 94.69 222 | 94.70 210 | 94.64 267 | 95.77 315 | 86.22 299 | 91.32 321 | 98.24 191 | 91.67 250 | 97.05 175 | 96.65 241 | 88.39 260 | 99.22 250 | 94.88 144 | 98.34 259 | 98.49 224 |
|
train_agg | | | 95.46 188 | 94.66 211 | 97.88 96 | 97.84 211 | 95.23 106 | 93.62 273 | 98.39 174 | 87.04 298 | 93.78 287 | 95.99 273 | 94.58 150 | 99.52 170 | 91.76 228 | 98.90 219 | 98.89 183 |
|
CDPH-MVS | | | 95.45 189 | 94.65 212 | 97.84 99 | 98.28 160 | 94.96 116 | 93.73 271 | 98.33 183 | 85.03 320 | 95.44 247 | 96.60 243 | 95.31 127 | 99.44 192 | 90.01 271 | 99.13 191 | 99.11 146 |
|
cl-mvsnet_ | | | 94.73 217 | 94.64 213 | 95.01 252 | 95.85 312 | 87.00 289 | 91.33 319 | 98.08 213 | 93.34 213 | 97.10 170 | 97.33 197 | 84.01 290 | 99.30 234 | 95.14 133 | 99.56 83 | 98.71 207 |
|
cl-mvsnet1 | | | 94.73 217 | 94.64 213 | 95.01 252 | 95.86 311 | 87.00 289 | 91.33 319 | 98.08 213 | 93.34 213 | 97.10 170 | 97.34 196 | 84.02 289 | 99.31 231 | 95.15 132 | 99.55 89 | 98.72 205 |
|
xiu_mvs_v2_base | | | 94.22 239 | 94.63 215 | 92.99 305 | 97.32 268 | 84.84 317 | 92.12 307 | 97.84 229 | 91.96 246 | 94.17 276 | 93.43 318 | 96.07 95 | 99.71 93 | 91.27 236 | 97.48 296 | 94.42 341 |
|
AdaColmap |  | | 95.11 202 | 94.62 216 | 96.58 185 | 97.33 267 | 94.45 134 | 94.92 221 | 98.08 213 | 93.15 224 | 93.98 285 | 95.53 290 | 94.34 157 | 99.10 266 | 85.69 319 | 98.61 249 | 96.20 326 |
|
agg_prior1 | | | 95.39 191 | 94.60 217 | 97.75 102 | 97.80 218 | 94.96 116 | 93.39 281 | 98.36 178 | 87.20 296 | 93.49 301 | 95.97 276 | 94.65 147 | 99.53 166 | 91.69 230 | 98.86 225 | 98.77 200 |
|
RPMNet | | | 94.68 224 | 94.60 217 | 94.90 257 | 95.44 322 | 88.15 266 | 96.18 143 | 98.86 84 | 97.43 66 | 94.10 278 | 98.49 72 | 79.40 305 | 99.76 54 | 95.69 94 | 95.81 323 | 96.81 313 |
|
Patchmtry | | | 95.03 207 | 94.59 219 | 96.33 199 | 94.83 330 | 90.82 224 | 96.38 131 | 97.20 259 | 96.59 90 | 97.49 149 | 98.57 65 | 77.67 314 | 99.38 214 | 92.95 212 | 99.62 64 | 98.80 194 |
|
our_test_3 | | | 94.20 243 | 94.58 220 | 93.07 301 | 96.16 304 | 81.20 337 | 90.42 333 | 96.84 272 | 90.72 263 | 97.14 166 | 97.13 207 | 90.47 234 | 99.11 264 | 94.04 184 | 98.25 263 | 98.91 179 |
|
HQP-MVS | | | 95.17 201 | 94.58 220 | 96.92 164 | 97.85 206 | 92.47 192 | 94.26 242 | 98.43 167 | 93.18 220 | 92.86 314 | 95.08 295 | 90.33 236 | 99.23 248 | 90.51 263 | 98.74 237 | 99.05 157 |
|
USDC | | | 94.56 230 | 94.57 222 | 94.55 274 | 97.78 228 | 86.43 297 | 92.75 294 | 98.65 148 | 85.96 306 | 96.91 187 | 97.93 139 | 90.82 230 | 98.74 301 | 90.71 255 | 99.59 75 | 98.47 225 |
|
Patchmatch-RL test | | | 94.66 225 | 94.49 223 | 95.19 246 | 98.54 136 | 88.91 252 | 92.57 298 | 98.74 121 | 91.46 254 | 98.32 82 | 97.75 158 | 77.31 319 | 98.81 295 | 96.06 78 | 99.61 70 | 97.85 275 |
|
PS-MVSNAJ | | | 94.10 245 | 94.47 224 | 93.00 304 | 97.35 261 | 84.88 316 | 91.86 311 | 97.84 229 | 91.96 246 | 94.17 276 | 92.50 334 | 95.82 104 | 99.71 93 | 91.27 236 | 97.48 296 | 94.40 342 |
|
EU-MVSNet | | | 94.25 238 | 94.47 224 | 93.60 290 | 98.14 181 | 82.60 330 | 97.24 92 | 92.72 325 | 85.08 318 | 98.48 63 | 98.94 42 | 82.59 294 | 98.76 300 | 97.47 38 | 99.53 95 | 99.44 76 |
|
CNLPA | | | 95.04 205 | 94.47 224 | 96.75 175 | 97.81 214 | 95.25 105 | 94.12 256 | 97.89 225 | 94.41 181 | 94.57 266 | 95.69 283 | 90.30 239 | 98.35 333 | 86.72 313 | 98.76 235 | 96.64 318 |
|
BH-RMVSNet | | | 94.56 230 | 94.44 227 | 94.91 255 | 97.57 244 | 87.44 282 | 93.78 270 | 96.26 283 | 93.69 205 | 96.41 210 | 96.50 250 | 92.10 211 | 99.00 276 | 85.96 316 | 97.71 284 | 98.31 239 |
|
F-COLMAP | | | 95.30 195 | 94.38 228 | 98.05 87 | 98.64 121 | 96.04 72 | 95.61 178 | 98.66 143 | 89.00 279 | 93.22 309 | 96.40 255 | 92.90 189 | 99.35 222 | 87.45 308 | 97.53 294 | 98.77 200 |
|
pmmvs5 | | | 94.63 227 | 94.34 229 | 95.50 235 | 97.63 242 | 88.34 263 | 94.02 258 | 97.13 263 | 87.15 297 | 95.22 252 | 97.15 206 | 87.50 269 | 99.27 242 | 93.99 185 | 99.26 176 | 98.88 186 |
|
UnsupCasMVSNet_bld | | | 94.72 221 | 94.26 230 | 96.08 211 | 98.62 126 | 90.54 232 | 93.38 282 | 98.05 219 | 90.30 267 | 97.02 178 | 96.80 232 | 89.54 247 | 99.16 257 | 88.44 293 | 96.18 321 | 98.56 219 |
|
N_pmnet | | | 95.18 199 | 94.23 231 | 98.06 84 | 97.85 206 | 96.55 57 | 92.49 300 | 91.63 333 | 89.34 275 | 98.09 108 | 97.41 185 | 90.33 236 | 99.06 270 | 91.58 231 | 99.31 168 | 98.56 219 |
|
TAPA-MVS | | 93.32 12 | 94.93 209 | 94.23 231 | 97.04 159 | 98.18 174 | 94.51 131 | 95.22 203 | 98.73 123 | 81.22 337 | 96.25 220 | 95.95 278 | 93.80 171 | 98.98 280 | 89.89 273 | 98.87 223 | 97.62 285 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CANet_DTU | | | 94.65 226 | 94.21 233 | 95.96 215 | 95.90 310 | 89.68 239 | 93.92 264 | 97.83 231 | 93.19 219 | 90.12 339 | 95.64 286 | 88.52 257 | 99.57 157 | 93.27 205 | 99.47 117 | 98.62 214 |
|
pmmvs4 | | | 94.82 214 | 94.19 234 | 96.70 178 | 97.42 258 | 92.75 189 | 92.09 309 | 96.76 276 | 86.80 301 | 95.73 242 | 97.22 204 | 89.28 253 | 98.89 288 | 93.28 203 | 99.14 187 | 98.46 227 |
|
PAPM_NR | | | 94.61 228 | 94.17 235 | 95.96 215 | 98.36 154 | 91.23 217 | 95.93 160 | 97.95 221 | 92.98 229 | 93.42 306 | 94.43 311 | 90.53 233 | 98.38 330 | 87.60 304 | 96.29 320 | 98.27 245 |
|
CDS-MVSNet | | | 94.88 212 | 94.12 236 | 97.14 153 | 97.64 241 | 93.57 169 | 93.96 263 | 97.06 266 | 90.05 270 | 96.30 217 | 96.55 245 | 86.10 277 | 99.47 182 | 90.10 270 | 99.31 168 | 98.40 228 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
RRT_MVS | | | 94.90 210 | 94.07 237 | 97.39 140 | 93.18 347 | 93.21 178 | 95.26 199 | 97.49 251 | 93.94 199 | 98.25 89 | 97.85 147 | 72.96 340 | 99.84 25 | 97.90 21 | 99.78 37 | 99.14 134 |
|
PMMVS2 | | | 93.66 257 | 94.07 237 | 92.45 315 | 97.57 244 | 80.67 339 | 86.46 350 | 96.00 287 | 93.99 197 | 97.10 170 | 97.38 192 | 89.90 244 | 97.82 343 | 88.76 288 | 99.47 117 | 98.86 189 |
|
jason | | | 94.39 236 | 94.04 239 | 95.41 241 | 98.29 158 | 87.85 274 | 92.74 296 | 96.75 277 | 85.38 317 | 95.29 250 | 96.15 266 | 88.21 262 | 99.65 128 | 94.24 173 | 99.34 157 | 98.74 202 |
jason: jason. |
test_yl | | | 94.40 234 | 94.00 240 | 95.59 229 | 96.95 281 | 89.52 242 | 94.75 230 | 95.55 299 | 96.18 106 | 96.79 190 | 96.14 268 | 81.09 299 | 99.18 252 | 90.75 251 | 97.77 278 | 98.07 258 |
|
DCV-MVSNet | | | 94.40 234 | 94.00 240 | 95.59 229 | 96.95 281 | 89.52 242 | 94.75 230 | 95.55 299 | 96.18 106 | 96.79 190 | 96.14 268 | 81.09 299 | 99.18 252 | 90.75 251 | 97.77 278 | 98.07 258 |
|
MG-MVS | | | 94.08 247 | 94.00 240 | 94.32 280 | 97.09 277 | 85.89 302 | 93.19 288 | 95.96 289 | 92.52 237 | 94.93 260 | 97.51 178 | 89.54 247 | 98.77 298 | 87.52 307 | 97.71 284 | 98.31 239 |
|
bset_n11_16_dypcd | | | 94.53 232 | 93.95 243 | 96.25 203 | 97.56 246 | 89.85 237 | 88.52 347 | 91.32 335 | 94.90 167 | 97.51 146 | 96.38 257 | 82.34 295 | 99.78 41 | 97.22 44 | 99.80 32 | 99.12 142 |
|
MVSTER | | | 94.21 241 | 93.93 244 | 95.05 251 | 95.83 313 | 86.46 295 | 95.18 205 | 97.65 243 | 92.41 241 | 97.94 125 | 98.00 130 | 72.39 341 | 99.58 151 | 96.36 71 | 99.56 83 | 99.12 142 |
|
ETH3 D test6400 | | | 94.77 216 | 93.87 245 | 97.47 129 | 98.12 185 | 93.73 162 | 94.56 236 | 98.70 133 | 85.45 315 | 94.70 264 | 95.93 280 | 91.77 221 | 99.63 133 | 86.45 314 | 99.14 187 | 99.05 157 |
|
PatchMatch-RL | | | 94.61 228 | 93.81 246 | 97.02 161 | 98.19 171 | 95.72 81 | 93.66 272 | 97.23 258 | 88.17 289 | 94.94 259 | 95.62 287 | 91.43 223 | 98.57 317 | 87.36 309 | 97.68 287 | 96.76 315 |
|
sss | | | 94.22 239 | 93.72 247 | 95.74 225 | 97.71 234 | 89.95 236 | 93.84 266 | 96.98 268 | 88.38 287 | 93.75 290 | 95.74 282 | 87.94 263 | 98.89 288 | 91.02 242 | 98.10 268 | 98.37 231 |
|
PVSNet_Blended | | | 93.96 249 | 93.65 248 | 94.91 255 | 97.79 224 | 87.40 283 | 91.43 316 | 98.68 138 | 84.50 325 | 94.51 269 | 94.48 310 | 93.04 185 | 99.30 234 | 89.77 275 | 98.61 249 | 98.02 268 |
|
PatchT | | | 93.75 253 | 93.57 249 | 94.29 282 | 95.05 328 | 87.32 285 | 96.05 149 | 92.98 321 | 97.54 63 | 94.25 274 | 98.72 55 | 75.79 327 | 99.24 246 | 95.92 89 | 95.81 323 | 96.32 324 |
|
SCA | | | 93.38 264 | 93.52 250 | 92.96 306 | 96.24 298 | 81.40 336 | 93.24 286 | 94.00 311 | 91.58 253 | 94.57 266 | 96.97 219 | 87.94 263 | 99.42 195 | 89.47 279 | 97.66 289 | 98.06 262 |
|
1112_ss | | | 94.12 244 | 93.42 251 | 96.23 204 | 98.59 131 | 90.85 223 | 94.24 246 | 98.85 88 | 85.49 312 | 92.97 312 | 94.94 299 | 86.01 278 | 99.64 131 | 91.78 227 | 97.92 274 | 98.20 251 |
|
CHOSEN 1792x2688 | | | 94.10 245 | 93.41 252 | 96.18 208 | 99.16 68 | 90.04 234 | 92.15 306 | 98.68 138 | 79.90 342 | 96.22 221 | 97.83 149 | 87.92 267 | 99.42 195 | 89.18 283 | 99.65 60 | 99.08 151 |
|
lupinMVS | | | 93.77 252 | 93.28 253 | 95.24 244 | 97.68 236 | 87.81 275 | 92.12 307 | 96.05 286 | 84.52 324 | 94.48 271 | 95.06 297 | 86.90 273 | 99.63 133 | 93.62 198 | 99.13 191 | 98.27 245 |
|
1121 | | | 94.26 237 | 93.26 254 | 97.27 146 | 98.26 164 | 94.73 122 | 95.86 162 | 97.71 237 | 77.96 349 | 94.53 268 | 96.71 237 | 91.93 217 | 99.40 206 | 87.71 300 | 98.64 247 | 97.69 283 |
|
Patchmatch-test | | | 93.60 259 | 93.25 255 | 94.63 268 | 96.14 307 | 87.47 281 | 96.04 150 | 94.50 308 | 93.57 206 | 96.47 207 | 96.97 219 | 76.50 322 | 98.61 314 | 90.67 257 | 98.41 258 | 97.81 279 |
|
114514_t | | | 93.96 249 | 93.22 256 | 96.19 207 | 99.06 86 | 90.97 222 | 95.99 154 | 98.94 70 | 73.88 355 | 93.43 305 | 96.93 222 | 92.38 206 | 99.37 217 | 89.09 284 | 99.28 173 | 98.25 247 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 258 | 93.05 257 | 95.42 239 | 97.31 269 | 91.21 218 | 95.08 211 | 96.68 280 | 81.56 334 | 96.88 189 | 96.41 253 | 90.44 235 | 99.25 245 | 85.39 323 | 97.67 288 | 95.80 330 |
|
MAR-MVS | | | 94.21 241 | 93.03 258 | 97.76 101 | 96.94 283 | 97.44 33 | 96.97 106 | 97.15 262 | 87.89 293 | 92.00 327 | 92.73 331 | 92.14 209 | 99.12 261 | 83.92 332 | 97.51 295 | 96.73 316 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
WTY-MVS | | | 93.55 260 | 93.00 259 | 95.19 246 | 97.81 214 | 87.86 272 | 93.89 265 | 96.00 287 | 89.02 278 | 94.07 280 | 95.44 292 | 86.27 276 | 99.33 227 | 87.69 302 | 96.82 309 | 98.39 230 |
|
PLC |  | 91.02 16 | 94.05 248 | 92.90 260 | 97.51 121 | 98.00 196 | 95.12 113 | 94.25 245 | 98.25 190 | 86.17 304 | 91.48 330 | 95.25 293 | 91.01 227 | 99.19 251 | 85.02 327 | 96.69 313 | 98.22 249 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Test_1112_low_res | | | 93.53 261 | 92.86 261 | 95.54 234 | 98.60 129 | 88.86 254 | 92.75 294 | 98.69 136 | 82.66 331 | 92.65 319 | 96.92 224 | 84.75 286 | 99.56 158 | 90.94 244 | 97.76 280 | 98.19 252 |
|
MIMVSNet | | | 93.42 262 | 92.86 261 | 95.10 249 | 98.17 176 | 88.19 265 | 98.13 41 | 93.69 312 | 92.07 243 | 95.04 257 | 98.21 104 | 80.95 301 | 99.03 275 | 81.42 340 | 98.06 270 | 98.07 258 |
|
cl-mvsnet2 | | | 93.25 267 | 92.84 263 | 94.46 276 | 94.30 336 | 86.00 301 | 91.09 327 | 96.64 281 | 90.74 262 | 95.79 237 | 96.31 260 | 78.24 311 | 98.77 298 | 94.15 177 | 98.34 259 | 98.62 214 |
|
CVMVSNet | | | 92.33 281 | 92.79 264 | 90.95 325 | 97.26 270 | 75.84 353 | 95.29 197 | 92.33 328 | 81.86 332 | 96.27 218 | 98.19 105 | 81.44 297 | 98.46 325 | 94.23 174 | 98.29 262 | 98.55 221 |
|
CR-MVSNet | | | 93.29 266 | 92.79 264 | 94.78 264 | 95.44 322 | 88.15 266 | 96.18 143 | 97.20 259 | 84.94 322 | 94.10 278 | 98.57 65 | 77.67 314 | 99.39 211 | 95.17 128 | 95.81 323 | 96.81 313 |
|
miper_enhance_ethall | | | 93.14 269 | 92.78 266 | 94.20 283 | 93.65 344 | 85.29 309 | 89.97 337 | 97.85 227 | 85.05 319 | 96.15 226 | 94.56 306 | 85.74 279 | 99.14 259 | 93.74 193 | 98.34 259 | 98.17 254 |
|
DPM-MVS | | | 93.68 256 | 92.77 267 | 96.42 195 | 97.91 202 | 92.54 190 | 91.17 324 | 97.47 254 | 84.99 321 | 93.08 311 | 94.74 303 | 89.90 244 | 99.00 276 | 87.54 306 | 98.09 269 | 97.72 281 |
|
AUN-MVS | | | 93.95 251 | 92.69 268 | 97.74 103 | 97.80 218 | 95.38 98 | 95.57 179 | 95.46 301 | 91.26 258 | 92.64 320 | 96.10 271 | 74.67 330 | 99.55 162 | 93.72 195 | 96.97 305 | 98.30 241 |
|
HyFIR lowres test | | | 93.72 254 | 92.65 269 | 96.91 166 | 98.93 95 | 91.81 211 | 91.23 323 | 98.52 158 | 82.69 330 | 96.46 208 | 96.52 249 | 80.38 303 | 99.90 13 | 90.36 267 | 98.79 232 | 99.03 159 |
|
baseline1 | | | 93.14 269 | 92.64 270 | 94.62 269 | 97.34 265 | 87.20 287 | 96.67 121 | 93.02 320 | 94.71 172 | 96.51 206 | 95.83 281 | 81.64 296 | 98.60 316 | 90.00 272 | 88.06 351 | 98.07 258 |
|
EPNet | | | 93.72 254 | 92.62 271 | 97.03 160 | 87.61 362 | 92.25 196 | 96.27 136 | 91.28 336 | 96.74 86 | 87.65 350 | 97.39 190 | 85.00 284 | 99.64 131 | 92.14 219 | 99.48 115 | 99.20 123 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tttt0517 | | | 93.31 265 | 92.56 272 | 95.57 231 | 98.71 115 | 87.86 272 | 97.44 81 | 87.17 353 | 95.79 130 | 97.47 154 | 96.84 227 | 64.12 354 | 99.81 31 | 96.20 74 | 99.32 166 | 99.02 161 |
|
RRT_test8_iter05 | | | 92.46 277 | 92.52 273 | 92.29 318 | 95.33 325 | 77.43 348 | 95.73 167 | 98.55 156 | 94.41 181 | 97.46 155 | 97.72 163 | 57.44 359 | 99.74 68 | 96.92 57 | 99.14 187 | 99.69 20 |
|
FMVSNet5 | | | 93.39 263 | 92.35 274 | 96.50 190 | 95.83 313 | 90.81 226 | 97.31 87 | 98.27 187 | 92.74 236 | 96.27 218 | 98.28 92 | 62.23 356 | 99.67 121 | 90.86 246 | 99.36 149 | 99.03 159 |
|
1314 | | | 92.38 279 | 92.30 275 | 92.64 311 | 95.42 324 | 85.15 312 | 95.86 162 | 96.97 269 | 85.40 316 | 90.62 333 | 93.06 325 | 91.12 226 | 97.80 344 | 86.74 312 | 95.49 330 | 94.97 339 |
|
TR-MVS | | | 92.54 276 | 92.20 276 | 93.57 291 | 96.49 292 | 86.66 293 | 93.51 277 | 94.73 305 | 89.96 271 | 94.95 258 | 93.87 316 | 90.24 241 | 98.61 314 | 81.18 341 | 94.88 333 | 95.45 336 |
|
GA-MVS | | | 92.83 272 | 92.15 277 | 94.87 259 | 96.97 280 | 87.27 286 | 90.03 336 | 96.12 285 | 91.83 249 | 94.05 281 | 94.57 305 | 76.01 326 | 98.97 284 | 92.46 217 | 97.34 301 | 98.36 236 |
|
BH-w/o | | | 92.14 284 | 91.94 278 | 92.73 310 | 97.13 276 | 85.30 308 | 92.46 301 | 95.64 294 | 89.33 276 | 94.21 275 | 92.74 330 | 89.60 246 | 98.24 336 | 81.68 339 | 94.66 335 | 94.66 340 |
|
PatchmatchNet |  | | 91.98 287 | 91.87 279 | 92.30 317 | 94.60 333 | 79.71 341 | 95.12 206 | 93.59 316 | 89.52 274 | 93.61 296 | 97.02 217 | 77.94 312 | 99.18 252 | 90.84 247 | 94.57 338 | 98.01 269 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
DSMNet-mixed | | | 92.19 283 | 91.83 280 | 93.25 297 | 96.18 303 | 83.68 327 | 96.27 136 | 93.68 314 | 76.97 352 | 92.54 323 | 99.18 27 | 89.20 255 | 98.55 320 | 83.88 333 | 98.60 251 | 97.51 289 |
|
HY-MVS | | 91.43 15 | 92.58 275 | 91.81 281 | 94.90 257 | 96.49 292 | 88.87 253 | 97.31 87 | 94.62 306 | 85.92 307 | 90.50 336 | 96.84 227 | 85.05 283 | 99.40 206 | 83.77 335 | 95.78 326 | 96.43 323 |
|
thisisatest0530 | | | 92.71 274 | 91.76 282 | 95.56 233 | 98.42 150 | 88.23 264 | 96.03 151 | 87.35 352 | 94.04 196 | 96.56 203 | 95.47 291 | 64.03 355 | 99.77 50 | 94.78 151 | 99.11 195 | 98.68 210 |
|
new_pmnet | | | 92.34 280 | 91.69 283 | 94.32 280 | 96.23 300 | 89.16 249 | 92.27 305 | 92.88 322 | 84.39 327 | 95.29 250 | 96.35 259 | 85.66 280 | 96.74 352 | 84.53 330 | 97.56 292 | 97.05 300 |
|
thres600view7 | | | 92.03 286 | 91.43 284 | 93.82 286 | 98.19 171 | 84.61 319 | 96.27 136 | 90.39 343 | 96.81 84 | 96.37 212 | 93.11 320 | 73.44 338 | 99.49 176 | 80.32 342 | 97.95 273 | 97.36 293 |
|
CMPMVS |  | 73.10 23 | 92.74 273 | 91.39 285 | 96.77 174 | 93.57 346 | 94.67 128 | 94.21 249 | 97.67 239 | 80.36 341 | 93.61 296 | 96.60 243 | 82.85 293 | 97.35 347 | 84.86 328 | 98.78 233 | 98.29 244 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
cascas | | | 91.89 288 | 91.35 286 | 93.51 292 | 94.27 337 | 85.60 304 | 88.86 346 | 98.61 150 | 79.32 344 | 92.16 326 | 91.44 343 | 89.22 254 | 98.12 340 | 90.80 249 | 97.47 298 | 96.82 312 |
|
MDTV_nov1_ep13 | | | | 91.28 287 | | 94.31 335 | 73.51 357 | 94.80 227 | 93.16 319 | 86.75 302 | 93.45 304 | 97.40 186 | 76.37 323 | 98.55 320 | 88.85 287 | 96.43 317 | |
|
PAPR | | | 92.22 282 | 91.27 288 | 95.07 250 | 95.73 317 | 88.81 255 | 91.97 310 | 97.87 226 | 85.80 309 | 90.91 332 | 92.73 331 | 91.16 225 | 98.33 334 | 79.48 343 | 95.76 327 | 98.08 256 |
|
thres100view900 | | | 91.76 290 | 91.26 289 | 93.26 296 | 98.21 169 | 84.50 320 | 96.39 129 | 90.39 343 | 96.87 82 | 96.33 213 | 93.08 324 | 73.44 338 | 99.42 195 | 78.85 346 | 97.74 281 | 95.85 328 |
|
PMMVS | | | 92.39 278 | 91.08 290 | 96.30 202 | 93.12 350 | 92.81 187 | 90.58 332 | 95.96 289 | 79.17 345 | 91.85 329 | 92.27 335 | 90.29 240 | 98.66 311 | 89.85 274 | 96.68 314 | 97.43 291 |
|
tfpn200view9 | | | 91.55 292 | 91.00 291 | 93.21 299 | 98.02 190 | 84.35 322 | 95.70 169 | 90.79 340 | 96.26 102 | 95.90 235 | 92.13 337 | 73.62 336 | 99.42 195 | 78.85 346 | 97.74 281 | 95.85 328 |
|
thres400 | | | 91.68 291 | 91.00 291 | 93.71 288 | 98.02 190 | 84.35 322 | 95.70 169 | 90.79 340 | 96.26 102 | 95.90 235 | 92.13 337 | 73.62 336 | 99.42 195 | 78.85 346 | 97.74 281 | 97.36 293 |
|
PVSNet | | 86.72 19 | 91.10 296 | 90.97 293 | 91.49 321 | 97.56 246 | 78.04 345 | 87.17 349 | 94.60 307 | 84.65 323 | 92.34 324 | 92.20 336 | 87.37 271 | 98.47 324 | 85.17 326 | 97.69 286 | 97.96 270 |
|
tpmvs | | | 90.79 300 | 90.87 294 | 90.57 328 | 92.75 354 | 76.30 351 | 95.79 166 | 93.64 315 | 91.04 261 | 91.91 328 | 96.26 261 | 77.19 320 | 98.86 292 | 89.38 281 | 89.85 349 | 96.56 321 |
|
tpm | | | 91.08 297 | 90.85 295 | 91.75 320 | 95.33 325 | 78.09 344 | 95.03 217 | 91.27 337 | 88.75 282 | 93.53 300 | 97.40 186 | 71.24 343 | 99.30 234 | 91.25 238 | 93.87 339 | 97.87 274 |
|
X-MVStestdata | | | 92.86 271 | 90.83 296 | 98.94 18 | 99.15 71 | 97.66 19 | 97.77 58 | 98.83 100 | 97.42 67 | 96.32 214 | 36.50 358 | 96.49 81 | 99.72 78 | 95.66 97 | 99.37 146 | 99.45 66 |
|
EPNet_dtu | | | 91.39 294 | 90.75 297 | 93.31 295 | 90.48 359 | 82.61 329 | 94.80 227 | 92.88 322 | 93.39 211 | 81.74 358 | 94.90 302 | 81.36 298 | 99.11 264 | 88.28 296 | 98.87 223 | 98.21 250 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
JIA-IIPM | | | 91.79 289 | 90.69 298 | 95.11 248 | 93.80 343 | 90.98 221 | 94.16 251 | 91.78 332 | 96.38 97 | 90.30 338 | 99.30 18 | 72.02 342 | 98.90 286 | 88.28 296 | 90.17 348 | 95.45 336 |
|
PCF-MVS | | 89.43 18 | 92.12 285 | 90.64 299 | 96.57 187 | 97.80 218 | 93.48 172 | 89.88 341 | 98.45 164 | 74.46 354 | 96.04 228 | 95.68 284 | 90.71 232 | 99.31 231 | 73.73 351 | 99.01 208 | 96.91 306 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
tpmrst | | | 90.31 302 | 90.61 300 | 89.41 332 | 94.06 341 | 72.37 359 | 95.06 214 | 93.69 312 | 88.01 290 | 92.32 325 | 96.86 225 | 77.45 316 | 98.82 293 | 91.04 241 | 87.01 353 | 97.04 301 |
|
ADS-MVSNet2 | | | 91.47 293 | 90.51 301 | 94.36 279 | 95.51 320 | 85.63 303 | 95.05 215 | 95.70 293 | 83.46 328 | 92.69 317 | 96.84 227 | 79.15 308 | 99.41 204 | 85.66 320 | 90.52 346 | 98.04 266 |
|
thres200 | | | 91.00 298 | 90.42 302 | 92.77 309 | 97.47 255 | 83.98 325 | 94.01 259 | 91.18 338 | 95.12 157 | 95.44 247 | 91.21 345 | 73.93 332 | 99.31 231 | 77.76 349 | 97.63 291 | 95.01 338 |
|
ADS-MVSNet | | | 90.95 299 | 90.26 303 | 93.04 302 | 95.51 320 | 82.37 331 | 95.05 215 | 93.41 317 | 83.46 328 | 92.69 317 | 96.84 227 | 79.15 308 | 98.70 305 | 85.66 320 | 90.52 346 | 98.04 266 |
|
MVS-HIRNet | | | 88.40 318 | 90.20 304 | 82.99 340 | 97.01 279 | 60.04 362 | 93.11 289 | 85.61 356 | 84.45 326 | 88.72 346 | 99.09 33 | 84.72 287 | 98.23 337 | 82.52 338 | 96.59 316 | 90.69 353 |
|
test-LLR | | | 89.97 307 | 89.90 305 | 90.16 329 | 94.24 338 | 74.98 354 | 89.89 338 | 89.06 348 | 92.02 244 | 89.97 340 | 90.77 348 | 73.92 333 | 98.57 317 | 91.88 224 | 97.36 299 | 96.92 304 |
|
E-PMN | | | 89.52 311 | 89.78 306 | 88.73 334 | 93.14 349 | 77.61 347 | 83.26 354 | 92.02 329 | 94.82 169 | 93.71 291 | 93.11 320 | 75.31 328 | 96.81 350 | 85.81 317 | 96.81 310 | 91.77 350 |
|
ET-MVSNet_ETH3D | | | 91.12 295 | 89.67 307 | 95.47 237 | 96.41 294 | 89.15 250 | 91.54 315 | 90.23 346 | 89.07 277 | 86.78 354 | 92.84 328 | 69.39 349 | 99.44 192 | 94.16 176 | 96.61 315 | 97.82 277 |
|
CostFormer | | | 89.75 309 | 89.25 308 | 91.26 324 | 94.69 332 | 78.00 346 | 95.32 194 | 91.98 330 | 81.50 335 | 90.55 335 | 96.96 221 | 71.06 345 | 98.89 288 | 88.59 292 | 92.63 343 | 96.87 307 |
|
EMVS | | | 89.06 313 | 89.22 309 | 88.61 335 | 93.00 351 | 77.34 349 | 82.91 355 | 90.92 339 | 94.64 174 | 92.63 321 | 91.81 340 | 76.30 324 | 97.02 348 | 83.83 334 | 96.90 307 | 91.48 351 |
|
test0.0.03 1 | | | 90.11 303 | 89.21 310 | 92.83 308 | 93.89 342 | 86.87 292 | 91.74 313 | 88.74 350 | 92.02 244 | 94.71 263 | 91.14 346 | 73.92 333 | 94.48 355 | 83.75 336 | 92.94 341 | 97.16 297 |
|
MVS | | | 90.02 304 | 89.20 311 | 92.47 314 | 94.71 331 | 86.90 291 | 95.86 162 | 96.74 278 | 64.72 357 | 90.62 333 | 92.77 329 | 92.54 201 | 98.39 329 | 79.30 344 | 95.56 329 | 92.12 348 |
|
CHOSEN 280x420 | | | 89.98 306 | 89.19 312 | 92.37 316 | 95.60 319 | 81.13 338 | 86.22 351 | 97.09 265 | 81.44 336 | 87.44 351 | 93.15 319 | 73.99 331 | 99.47 182 | 88.69 290 | 99.07 201 | 96.52 322 |
|
thisisatest0515 | | | 90.43 301 | 89.18 313 | 94.17 285 | 97.07 278 | 85.44 306 | 89.75 342 | 87.58 351 | 88.28 288 | 93.69 293 | 91.72 341 | 65.27 353 | 99.58 151 | 90.59 259 | 98.67 242 | 97.50 290 |
|
pmmvs3 | | | 90.00 305 | 88.90 314 | 93.32 294 | 94.20 340 | 85.34 307 | 91.25 322 | 92.56 327 | 78.59 346 | 93.82 286 | 95.17 294 | 67.36 352 | 98.69 306 | 89.08 285 | 98.03 271 | 95.92 327 |
|
FPMVS | | | 89.92 308 | 88.63 315 | 93.82 286 | 98.37 153 | 96.94 45 | 91.58 314 | 93.34 318 | 88.00 291 | 90.32 337 | 97.10 211 | 70.87 346 | 91.13 357 | 71.91 354 | 96.16 322 | 93.39 346 |
|
EPMVS | | | 89.26 312 | 88.55 316 | 91.39 322 | 92.36 355 | 79.11 342 | 95.65 175 | 79.86 358 | 88.60 284 | 93.12 310 | 96.53 247 | 70.73 347 | 98.10 341 | 90.75 251 | 89.32 350 | 96.98 302 |
|
baseline2 | | | 89.65 310 | 88.44 317 | 93.25 297 | 95.62 318 | 82.71 328 | 93.82 267 | 85.94 355 | 88.89 281 | 87.35 352 | 92.54 333 | 71.23 344 | 99.33 227 | 86.01 315 | 94.60 337 | 97.72 281 |
|
dp | | | 88.08 320 | 88.05 318 | 88.16 338 | 92.85 352 | 68.81 361 | 94.17 250 | 92.88 322 | 85.47 313 | 91.38 331 | 96.14 268 | 68.87 350 | 98.81 295 | 86.88 311 | 83.80 356 | 96.87 307 |
|
KD-MVS_2432*1600 | | | 88.93 314 | 87.74 319 | 92.49 312 | 88.04 360 | 81.99 333 | 89.63 343 | 95.62 295 | 91.35 255 | 95.06 254 | 93.11 320 | 56.58 361 | 98.63 312 | 85.19 324 | 95.07 331 | 96.85 309 |
|
miper_refine_blended | | | 88.93 314 | 87.74 319 | 92.49 312 | 88.04 360 | 81.99 333 | 89.63 343 | 95.62 295 | 91.35 255 | 95.06 254 | 93.11 320 | 56.58 361 | 98.63 312 | 85.19 324 | 95.07 331 | 96.85 309 |
|
tpm2 | | | 88.47 317 | 87.69 321 | 90.79 326 | 94.98 329 | 77.34 349 | 95.09 209 | 91.83 331 | 77.51 351 | 89.40 342 | 96.41 253 | 67.83 351 | 98.73 302 | 83.58 337 | 92.60 344 | 96.29 325 |
|
tpm cat1 | | | 88.01 321 | 87.33 322 | 90.05 331 | 94.48 334 | 76.28 352 | 94.47 239 | 94.35 310 | 73.84 356 | 89.26 343 | 95.61 288 | 73.64 335 | 98.30 335 | 84.13 331 | 86.20 354 | 95.57 335 |
|
test-mter | | | 87.92 322 | 87.17 323 | 90.16 329 | 94.24 338 | 74.98 354 | 89.89 338 | 89.06 348 | 86.44 303 | 89.97 340 | 90.77 348 | 54.96 365 | 98.57 317 | 91.88 224 | 97.36 299 | 96.92 304 |
|
gg-mvs-nofinetune | | | 88.28 319 | 86.96 324 | 92.23 319 | 92.84 353 | 84.44 321 | 98.19 38 | 74.60 360 | 99.08 10 | 87.01 353 | 99.47 8 | 56.93 360 | 98.23 337 | 78.91 345 | 95.61 328 | 94.01 343 |
|
IB-MVS | | 85.98 20 | 88.63 316 | 86.95 325 | 93.68 289 | 95.12 327 | 84.82 318 | 90.85 329 | 90.17 347 | 87.55 294 | 88.48 347 | 91.34 344 | 58.01 358 | 99.59 149 | 87.24 310 | 93.80 340 | 96.63 320 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
DWT-MVSNet_test | | | 87.92 322 | 86.77 326 | 91.39 322 | 93.18 347 | 78.62 343 | 95.10 207 | 91.42 334 | 85.58 311 | 88.00 348 | 88.73 353 | 60.60 357 | 98.90 286 | 90.60 258 | 87.70 352 | 96.65 317 |
|
TESTMET0.1,1 | | | 87.20 325 | 86.57 327 | 89.07 333 | 93.62 345 | 72.84 358 | 89.89 338 | 87.01 354 | 85.46 314 | 89.12 345 | 90.20 351 | 56.00 364 | 97.72 345 | 90.91 245 | 96.92 306 | 96.64 318 |
|
MVE |  | 73.61 22 | 86.48 326 | 85.92 328 | 88.18 337 | 96.23 300 | 85.28 310 | 81.78 356 | 75.79 359 | 86.01 305 | 82.53 357 | 91.88 339 | 92.74 192 | 87.47 358 | 71.42 355 | 94.86 334 | 91.78 349 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
PAPM | | | 87.64 324 | 85.84 329 | 93.04 302 | 96.54 290 | 84.99 315 | 88.42 348 | 95.57 298 | 79.52 343 | 83.82 355 | 93.05 326 | 80.57 302 | 98.41 327 | 62.29 357 | 92.79 342 | 95.71 331 |
|
PVSNet_0 | | 81.89 21 | 84.49 327 | 83.21 330 | 88.34 336 | 95.76 316 | 74.97 356 | 83.49 353 | 92.70 326 | 78.47 347 | 87.94 349 | 86.90 355 | 83.38 292 | 96.63 353 | 73.44 352 | 66.86 358 | 93.40 345 |
|
tmp_tt | | | 57.23 328 | 62.50 331 | 41.44 342 | 34.77 363 | 49.21 364 | 83.93 352 | 60.22 364 | 15.31 359 | 71.11 360 | 79.37 357 | 70.09 348 | 44.86 360 | 64.76 356 | 82.93 357 | 30.25 356 |
|
cdsmvs_eth3d_5k | | | 24.22 329 | 32.30 332 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 98.10 210 | 0.00 362 | 0.00 363 | 95.06 297 | 97.54 28 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
test123 | | | 12.59 330 | 15.49 333 | 3.87 343 | 6.07 364 | 2.55 365 | 90.75 330 | 2.59 366 | 2.52 360 | 5.20 362 | 13.02 360 | 4.96 366 | 1.85 362 | 5.20 359 | 9.09 359 | 7.23 357 |
|
testmvs | | | 12.33 331 | 15.23 334 | 3.64 344 | 5.77 365 | 2.23 366 | 88.99 345 | 3.62 365 | 2.30 361 | 5.29 361 | 13.09 359 | 4.52 367 | 1.95 361 | 5.16 360 | 8.32 360 | 6.75 358 |
|
pcd_1.5k_mvsjas | | | 7.98 332 | 10.65 335 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 95.82 104 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ab-mvs-re | | | 7.91 333 | 10.55 336 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 94.94 299 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ZD-MVS | | | | | | 98.43 149 | 95.94 76 | | 98.56 155 | 90.72 263 | 96.66 198 | 97.07 213 | 95.02 136 | 99.74 68 | 91.08 240 | 98.93 216 | |
|
IU-MVS | | | | | | 99.22 56 | 95.40 97 | | 98.14 206 | 85.77 310 | 98.36 75 | | | | 95.23 125 | 99.51 105 | 99.49 51 |
|
OPU-MVS | | | | | 97.64 112 | 98.01 192 | 95.27 104 | 96.79 111 | | | | 97.35 195 | 96.97 53 | 98.51 323 | 91.21 239 | 99.25 177 | 99.14 134 |
|
test_241102_TWO | | | | | | | | | 98.83 100 | 96.11 108 | 98.62 51 | 98.24 98 | 96.92 57 | 99.72 78 | 95.44 112 | 99.49 111 | 99.49 51 |
|
test_241102_ONE | | | | | | 99.22 56 | 95.35 101 | | 98.83 100 | 96.04 113 | 99.08 31 | 98.13 109 | 97.87 20 | 99.33 227 | | | |
|
save fliter | | | | | | 98.48 144 | 94.71 124 | 94.53 237 | 98.41 172 | 95.02 162 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.62 88 | 98.40 70 | 98.28 92 | 97.10 44 | 99.71 93 | 95.70 93 | 99.62 64 | 99.58 28 |
|
test_0728_SECOND | | | | | 98.25 71 | 99.23 53 | 95.49 95 | 96.74 114 | 98.89 75 | | | | | 99.75 61 | 95.48 108 | 99.52 100 | 99.53 39 |
|
test0726 | | | | | | 99.24 51 | 95.51 93 | 96.89 107 | 98.89 75 | 95.92 121 | 98.64 50 | 98.31 85 | 97.06 49 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 262 |
|
test_part2 | | | | | | 99.03 90 | 96.07 71 | | | | 98.08 110 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 313 | | | | 98.06 262 |
|
sam_mvs | | | | | | | | | | | | | 77.38 317 | | | | |
|
ambc | | | | | 96.56 188 | 98.23 168 | 91.68 213 | 97.88 54 | 98.13 208 | | 98.42 69 | 98.56 67 | 94.22 161 | 99.04 272 | 94.05 183 | 99.35 154 | 98.95 168 |
|
MTGPA |  | | | | | | | | 98.73 123 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 219 | | | | 10.37 362 | 76.21 325 | 99.04 272 | 89.47 279 | | |
|
test_post | | | | | | | | | | | | 10.87 361 | 76.83 321 | 99.07 269 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 227 | 77.36 318 | 99.42 195 | | | |
|
GG-mvs-BLEND | | | | | 90.60 327 | 91.00 357 | 84.21 324 | 98.23 32 | 72.63 363 | | 82.76 356 | 84.11 356 | 56.14 363 | 96.79 351 | 72.20 353 | 92.09 345 | 90.78 352 |
|
MTMP | | | | | | | | 96.55 122 | 74.60 360 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 356 | 71.40 360 | | | 81.67 333 | | 90.11 352 | | 98.99 278 | 84.86 328 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 235 | 98.89 222 | 99.00 162 |
|
TEST9 | | | | | | 97.84 211 | 95.23 106 | 93.62 273 | 98.39 174 | 86.81 300 | 93.78 287 | 95.99 273 | 94.68 145 | 99.52 170 | | | |
|
test_8 | | | | | | 97.81 214 | 95.07 114 | 93.54 276 | 98.38 176 | 87.04 298 | 93.71 291 | 95.96 277 | 94.58 150 | 99.52 170 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 268 | 98.90 219 | 99.10 150 |
|
agg_prior | | | | | | 97.80 218 | 94.96 116 | | 98.36 178 | | 93.49 301 | | | 99.53 166 | | | |
|
TestCases | | | | | 98.06 84 | 99.08 83 | 96.16 68 | | 99.16 17 | 94.35 184 | 97.78 140 | 98.07 117 | 95.84 101 | 99.12 261 | 91.41 233 | 99.42 135 | 98.91 179 |
|
test_prior4 | | | | | | | 95.38 98 | 93.61 275 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 284 | | 94.21 189 | 94.02 282 | 96.25 262 | 93.64 174 | | 91.90 222 | 98.96 210 | |
|
test_prior | | | | | 97.46 132 | 97.79 224 | 94.26 143 | | 98.42 170 | | | | | 99.34 224 | | | 98.79 195 |
|
旧先验2 | | | | | | | | 93.35 283 | | 77.95 350 | 95.77 241 | | | 98.67 310 | 90.74 254 | | |
|
新几何2 | | | | | | | | 93.43 278 | | | | | | | | | |
|
新几何1 | | | | | 97.25 149 | 98.29 158 | 94.70 127 | | 97.73 235 | 77.98 348 | 94.83 261 | 96.67 240 | 92.08 212 | 99.45 189 | 88.17 298 | 98.65 246 | 97.61 286 |
|
旧先验1 | | | | | | 97.80 218 | 93.87 155 | | 97.75 234 | | | 97.04 216 | 93.57 176 | | | 98.68 241 | 98.72 205 |
|
无先验 | | | | | | | | 93.20 287 | 97.91 223 | 80.78 338 | | | | 99.40 206 | 87.71 300 | | 97.94 271 |
|
原ACMM2 | | | | | | | | 92.82 292 | | | | | | | | | |
|
原ACMM1 | | | | | 96.58 185 | 98.16 178 | 92.12 202 | | 98.15 205 | 85.90 308 | 93.49 301 | 96.43 252 | 92.47 204 | 99.38 214 | 87.66 303 | 98.62 248 | 98.23 248 |
|
test222 | | | | | | 98.17 176 | 93.24 177 | 92.74 296 | 97.61 249 | 75.17 353 | 94.65 265 | 96.69 239 | 90.96 229 | | | 98.66 244 | 97.66 284 |
|
testdata2 | | | | | | | | | | | | | | 99.46 185 | 87.84 299 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 125 | | | | |
|
testdata | | | | | 95.70 228 | 98.16 178 | 90.58 229 | | 97.72 236 | 80.38 340 | 95.62 244 | 97.02 217 | 92.06 213 | 98.98 280 | 89.06 286 | 98.52 253 | 97.54 288 |
|
testdata1 | | | | | | | | 92.77 293 | | 93.78 202 | | | | | | | |
|
test12 | | | | | 97.46 132 | 97.61 243 | 94.07 148 | | 97.78 233 | | 93.57 298 | | 93.31 180 | 99.42 195 | | 98.78 233 | 98.89 183 |
|
plane_prior7 | | | | | | 98.70 117 | 94.67 128 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 152 | 94.37 137 | | | | | | 91.91 219 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 119 | | | | | 99.46 185 | 92.59 215 | 99.20 180 | 99.28 108 |
|
plane_prior4 | | | | | | | | | | | | 96.77 233 | | | | | |
|
plane_prior3 | | | | | | | 94.51 131 | | | 95.29 150 | 96.16 224 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 124 | | 96.36 98 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 142 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 139 | 95.42 184 | | 94.31 186 | | | | | | 98.93 216 | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 202 | | | | | | | | |
|
lessismore_v0 | | | | | 97.05 158 | 99.36 40 | 92.12 202 | | 84.07 357 | | 98.77 46 | 98.98 39 | 85.36 282 | 99.74 68 | 97.34 42 | 99.37 146 | 99.30 101 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 71 | 97.02 42 | | 99.02 49 | 95.15 155 | 98.34 78 | 98.23 100 | 97.91 17 | 99.70 102 | 94.41 164 | 99.73 44 | 99.50 43 |
|
test11 | | | | | | | | | 98.08 213 | | | | | | | | |
|
door | | | | | | | | | 97.81 232 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 192 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 206 | | 94.26 242 | | 93.18 220 | 92.86 314 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 206 | | 94.26 242 | | 93.18 220 | 92.86 314 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 263 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 313 | | | 99.23 248 | | | 99.06 155 |
|
HQP3-MVS | | | | | | | | | 98.43 167 | | | | | | | 98.74 237 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 236 | | | | |
|
NP-MVS | | | | | | 98.14 181 | 93.72 163 | | | | | 95.08 295 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 363 | 94.89 222 | | 80.59 339 | 94.02 282 | | 78.66 310 | | 85.50 322 | | 97.82 277 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 100 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 89 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 153 | | | | |
|
ITE_SJBPF | | | | | 97.85 98 | 98.64 121 | 96.66 53 | | 98.51 160 | 95.63 135 | 97.22 162 | 97.30 200 | 95.52 118 | 98.55 320 | 90.97 243 | 98.90 219 | 98.34 237 |
|
DeepMVS_CX |  | | | | 77.17 341 | 90.94 358 | 85.28 310 | | 74.08 362 | 52.51 358 | 80.87 359 | 88.03 354 | 75.25 329 | 70.63 359 | 59.23 358 | 84.94 355 | 75.62 354 |
|