This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17098.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4499.92 1399.77 8
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 899.01 1699.63 999.66 399.27 299.68 11697.75 2999.89 2199.62 25
v7n98.73 1198.99 597.95 9199.64 1194.20 14598.67 1199.14 2399.08 1099.42 1599.23 2196.53 7899.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10499.71 499.48 798.77 699.93 298.89 399.95 599.84 5
ANet_high98.31 2898.94 696.41 19799.33 4289.64 24097.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3599.98 299.77 8
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3799.93 297.71 3199.91 1699.70 18
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 698.85 1999.00 3699.20 2397.42 3199.59 14997.21 4699.76 3899.40 81
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9698.49 2099.13 2499.22 899.22 2798.96 4197.35 3399.92 497.79 2799.93 1099.79 7
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8698.45 2399.15 2199.33 599.30 2199.00 3797.27 3799.92 497.64 3299.92 1399.75 13
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 12999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
Anonymous2023121198.55 1798.76 1397.94 9298.79 10494.37 13798.84 899.15 2199.37 399.67 699.43 1195.61 11699.72 7898.12 1699.86 2499.73 15
UA-Net98.88 798.76 1399.22 299.11 8197.89 1399.47 399.32 799.08 1097.87 13499.67 296.47 8399.92 497.88 2299.98 299.85 3
ACMH93.61 998.44 2298.76 1397.51 12199.43 3293.54 17098.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18297.74 3099.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9399.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
pm-mvs198.47 2198.67 1797.86 9799.52 2194.58 13098.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17597.09 5299.75 4299.50 43
TransMVSNet (Re)98.38 2598.67 1797.51 12199.51 2293.39 17498.20 3798.87 8298.23 3599.48 1299.27 1998.47 899.55 16296.52 6599.53 9599.60 26
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 13699.35 1999.37 1297.38 3299.90 1398.59 1199.91 1699.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7499.68 994.82 12098.10 4299.21 1196.91 8199.75 299.45 995.82 10499.92 498.80 499.96 499.89 1
nrg03098.54 1898.62 2198.32 6499.22 5695.66 8797.90 5399.08 3498.31 3299.02 3498.74 5497.68 2499.61 14797.77 2899.85 2699.70 18
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5095.47 12199.89 1697.95 2099.91 1699.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17399.88 1898.72 999.88 2299.65 23
VPA-MVSNet98.27 2998.46 2497.70 10799.06 8693.80 15997.76 6099.00 5798.40 2999.07 3398.98 3996.89 5999.75 6197.19 4999.79 3499.55 35
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 10998.27 3198.84 9399.05 1399.01 3598.65 6295.37 12499.90 1397.57 3499.91 1699.77 8
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7598.49 2799.38 1799.14 3095.44 12399.84 2596.47 6899.80 3299.47 59
FC-MVSNet-test98.16 3398.37 2797.56 11699.49 2693.10 18198.35 2699.21 1198.43 2898.89 3998.83 4994.30 15899.81 3197.87 2399.91 1699.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8299.33 4295.21 11198.04 4599.46 597.32 7397.82 13999.11 3196.75 6799.86 2097.84 2499.36 14999.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+93.58 1098.23 3298.31 2997.98 9099.39 3795.22 10997.55 7399.20 1398.21 3699.25 2598.51 7198.21 1199.40 20694.79 14999.72 4799.32 95
Gipumacopyleft98.07 4098.31 2997.36 14299.76 596.28 6698.51 1999.10 2898.76 2296.79 19099.34 1796.61 7398.82 29396.38 7099.50 10796.98 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8595.87 7796.73 11899.05 4098.67 2398.84 4198.45 7597.58 2799.88 1896.45 6999.86 2499.54 36
abl_698.42 2398.19 3299.09 399.16 6898.10 597.73 6499.11 2697.76 4998.62 5198.27 9697.88 1999.80 3795.67 9599.50 10799.38 85
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12497.88 13198.22 10398.15 1299.74 6896.50 6799.62 6499.42 78
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6397.35 3597.96 4899.16 1798.34 3198.78 4498.52 7097.32 3499.45 18994.08 17999.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet197.95 4998.08 3597.56 11699.14 7993.67 16498.23 3298.66 14397.41 7099.00 3699.19 2495.47 12199.73 7495.83 9199.76 3899.30 101
DIV-MVS_2432*160097.86 6398.07 3697.25 14999.22 5692.81 18797.55 7398.94 7097.10 7798.85 4098.88 4695.03 13599.67 12197.39 4199.65 6099.26 113
FIs97.93 5498.07 3697.48 12899.38 3892.95 18498.03 4799.11 2698.04 4198.62 5198.66 6093.75 17299.78 4197.23 4399.84 2799.73 15
v897.60 8198.06 3896.23 20498.71 11589.44 24497.43 8398.82 10897.29 7598.74 4799.10 3293.86 16899.68 11698.61 1099.94 899.56 33
Anonymous2024052997.96 4698.04 3997.71 10598.69 11994.28 14297.86 5598.31 18698.79 2199.23 2698.86 4895.76 11199.61 14795.49 10599.36 14999.23 120
APDe-MVS98.14 3498.03 4098.47 5498.72 11296.04 7298.07 4499.10 2895.96 11898.59 5598.69 5896.94 5499.81 3196.64 6099.58 7799.57 32
tfpnnormal97.72 7397.97 4196.94 16399.26 4792.23 19797.83 5798.45 16498.25 3499.13 3098.66 6096.65 7099.69 11093.92 18899.62 6498.91 179
v1097.55 8497.97 4196.31 20198.60 12989.64 24097.44 8199.02 4996.60 8998.72 4999.16 2993.48 17799.72 7898.76 699.92 1399.58 28
test_040297.84 6497.97 4197.47 12999.19 6694.07 14896.71 11998.73 12398.66 2498.56 5798.41 7796.84 6499.69 11094.82 14799.81 2998.64 211
SED-MVS97.94 5197.90 4498.07 8299.22 5695.35 10196.79 11198.83 10096.11 10899.08 3198.24 9897.87 2099.72 7895.44 11299.51 10599.14 134
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10497.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4499.75 6195.44 11299.24 17899.32 95
DP-MVS97.87 6197.89 4697.81 10098.62 12694.82 12097.13 9898.79 11098.98 1798.74 4798.49 7295.80 11099.49 17695.04 13999.44 12599.11 146
RE-MVS-def97.88 4798.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5495.49 10599.20 18099.26 113
NR-MVSNet97.96 4697.86 4898.26 6998.73 11095.54 9198.14 4098.73 12397.79 4599.42 1597.83 14994.40 15699.78 4195.91 9099.76 3899.46 61
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7599.76 5495.49 10599.20 18099.26 113
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9098.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 14597.41 15897.50 17997.98 1599.79 3895.58 10499.57 8099.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs97.50 8897.81 5296.56 18898.51 13991.04 22095.83 16599.09 3397.23 7698.33 8198.30 8997.03 5199.37 21796.58 6399.38 14599.28 108
Baseline_NR-MVSNet97.72 7397.79 5397.50 12499.56 1593.29 17595.44 18298.86 8498.20 3798.37 7399.24 2094.69 14399.55 16295.98 8799.79 3499.65 23
EG-PatchMatch MVS97.69 7597.79 5397.40 13999.06 8693.52 17195.96 15798.97 6694.55 17998.82 4298.76 5397.31 3599.29 23897.20 4899.44 12599.38 85
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7197.55 2696.68 12098.83 10095.21 15198.36 7598.13 10998.13 1499.62 14196.04 8199.54 9299.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline97.44 9397.78 5696.43 19498.52 13890.75 22796.84 10899.03 4796.51 9297.86 13598.02 12696.67 6999.36 21997.09 5299.47 11799.19 124
test117298.08 3997.76 5799.05 698.78 10698.07 697.41 8598.85 8897.57 6098.15 10097.96 13296.60 7599.76 5495.30 12099.18 18499.33 94
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9598.90 7496.58 9198.08 11097.87 14697.02 5299.76 5495.25 12399.59 7599.40 81
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5397.60 2298.09 4398.96 6795.75 13397.91 12798.06 12296.89 5999.76 5495.32 11999.57 8099.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SD-MVS97.37 9897.70 6096.35 19898.14 18195.13 11296.54 12398.92 7295.94 12099.19 2898.08 11597.74 2295.06 35495.24 12499.54 9298.87 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS97.54 8597.70 6097.07 15799.46 2892.21 19897.22 9399.00 5794.93 16698.58 5698.92 4497.31 3599.41 20494.44 16299.43 13299.59 27
DeepC-MVS95.41 497.82 6797.70 6098.16 7598.78 10695.72 8196.23 14199.02 4993.92 20098.62 5198.99 3897.69 2399.62 14196.18 7599.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LPG-MVS_test97.94 5197.67 6398.74 3599.15 7197.02 4297.09 9999.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
SR-MVS98.00 4597.66 6499.01 1198.77 10897.93 1097.38 8698.83 10097.32 7398.06 11297.85 14796.65 7099.77 5095.00 14299.11 19599.32 95
zzz-MVS98.01 4497.66 6499.06 499.44 3097.90 1195.66 17398.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
DVP-MVS97.78 7097.65 6698.16 7599.24 5195.51 9396.74 11498.23 19295.92 12198.40 7098.28 9297.06 4999.71 9395.48 10899.52 10099.26 113
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet97.83 6597.65 6698.37 6098.72 11295.78 7995.66 17399.02 4998.11 3998.31 8497.69 16694.65 14799.85 2297.02 5599.71 5099.48 56
UniMVSNet (Re)97.83 6597.65 6698.35 6398.80 10395.86 7895.92 16199.04 4697.51 6498.22 9297.81 15394.68 14599.78 4197.14 5199.75 4299.41 80
HFP-MVS97.94 5197.64 6998.83 2699.15 7197.50 2897.59 7098.84 9396.05 11197.49 14997.54 17497.07 4799.70 10295.61 10199.46 12099.30 101
3Dnovator96.53 297.61 8097.64 6997.50 12497.74 23293.65 16898.49 2098.88 8096.86 8397.11 16998.55 6895.82 10499.73 7495.94 8899.42 13599.13 137
ACMMP_NAP97.89 5997.63 7198.67 4199.35 4196.84 4796.36 13298.79 11095.07 15997.88 13198.35 8197.24 4199.72 7896.05 8099.58 7799.45 66
XVS97.96 4697.63 7198.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21497.64 16896.49 8199.72 7895.66 9799.37 14699.45 66
ZNCC-MVS97.92 5597.62 7398.83 2699.32 4497.24 3997.45 8098.84 9395.76 13196.93 18597.43 18497.26 3999.79 3896.06 7899.53 9599.45 66
ACMMPR97.95 4997.62 7398.94 1899.20 6497.56 2597.59 7098.83 10096.05 11197.46 15597.63 16996.77 6699.76 5495.61 10199.46 12099.49 51
DU-MVS97.79 6997.60 7598.36 6198.73 11095.78 7995.65 17598.87 8297.57 6098.31 8497.83 14994.69 14399.85 2297.02 5599.71 5099.46 61
region2R97.92 5597.59 7698.92 2299.22 5697.55 2697.60 6998.84 9396.00 11697.22 16297.62 17096.87 6299.76 5495.48 10899.43 13299.46 61
3Dnovator+96.13 397.73 7297.59 7698.15 7898.11 18695.60 8998.04 4598.70 13398.13 3896.93 18598.45 7595.30 12899.62 14195.64 9998.96 21099.24 119
SixPastTwentyTwo97.49 8997.57 7897.26 14899.56 1592.33 19498.28 2996.97 26998.30 3399.45 1499.35 1688.43 25999.89 1698.01 1999.76 3899.54 36
CP-MVS97.92 5597.56 7998.99 1398.99 9297.82 1597.93 5098.96 6796.11 10896.89 18897.45 18396.85 6399.78 4195.19 12699.63 6399.38 85
mPP-MVS97.91 5897.53 8099.04 799.22 5697.87 1497.74 6298.78 11496.04 11397.10 17097.73 16196.53 7899.78 4195.16 13099.50 10799.46 61
PGM-MVS97.88 6097.52 8198.96 1699.20 6497.62 2197.09 9999.06 3895.45 14397.55 14397.94 13797.11 4399.78 4194.77 15299.46 12099.48 56
RPSCF97.87 6197.51 8298.95 1799.15 7198.43 397.56 7299.06 3896.19 10598.48 6398.70 5794.72 14299.24 24694.37 16799.33 16499.17 127
LS3D97.77 7197.50 8398.57 4896.24 29897.58 2498.45 2398.85 8898.58 2697.51 14697.94 13795.74 11299.63 13395.19 12698.97 20998.51 222
GST-MVS97.82 6797.49 8498.81 2999.23 5397.25 3897.16 9498.79 11095.96 11897.53 14497.40 18696.93 5699.77 5095.04 13999.35 15499.42 78
VPNet97.26 10597.49 8496.59 18499.47 2790.58 22996.27 13698.53 15797.77 4698.46 6698.41 7794.59 14999.68 11694.61 15599.29 17299.52 40
Regformer-497.53 8797.47 8697.71 10597.35 26193.91 15395.26 19998.14 20697.97 4298.34 7897.89 14295.49 11999.71 9397.41 3999.42 13599.51 42
EI-MVSNet-UG-set97.32 10297.40 8797.09 15697.34 26592.01 20695.33 19397.65 24397.74 5098.30 8698.14 10895.04 13499.69 11097.55 3599.52 10099.58 28
SF-MVS97.60 8197.39 8898.22 7398.93 9595.69 8397.05 10199.10 2895.32 14897.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
EI-MVSNet-Vis-set97.32 10297.39 8897.11 15497.36 26092.08 20495.34 19297.65 24397.74 5098.29 8798.11 11395.05 13299.68 11697.50 3799.50 10799.56 33
MP-MVS-pluss97.69 7597.36 9098.70 3999.50 2596.84 4795.38 18998.99 6092.45 24098.11 10498.31 8597.25 4099.77 5096.60 6199.62 6499.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DPE-MVS97.64 7797.35 9198.50 5198.85 9996.18 6795.21 20498.99 6095.84 12898.78 4498.08 11596.84 6499.81 3193.98 18699.57 8099.52 40
LCM-MVSNet-Re97.33 10197.33 9297.32 14498.13 18493.79 16096.99 10599.65 296.74 8699.47 1398.93 4396.91 5899.84 2590.11 26999.06 20498.32 238
CSCG97.40 9697.30 9397.69 10998.95 9494.83 11997.28 8998.99 6096.35 10098.13 10395.95 27895.99 9799.66 12794.36 17099.73 4498.59 217
Regformer-397.25 10697.29 9497.11 15497.35 26192.32 19595.26 19997.62 24897.67 5898.17 9797.89 14295.05 13299.56 15897.16 5099.42 13599.46 61
IterMVS-LS96.92 11997.29 9495.79 22498.51 13988.13 26895.10 20798.66 14396.99 7898.46 6698.68 5992.55 19999.74 6896.91 5899.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-ACMP-BASELINE97.58 8397.28 9698.49 5299.16 6896.90 4696.39 12998.98 6395.05 16098.06 11298.02 12695.86 10099.56 15894.37 16799.64 6299.00 162
OPM-MVS97.54 8597.25 9798.41 5799.11 8196.61 5595.24 20298.46 16394.58 17898.10 10798.07 11797.09 4699.39 21195.16 13099.44 12599.21 122
VDD-MVS97.37 9897.25 9797.74 10398.69 11994.50 13397.04 10295.61 29798.59 2598.51 6098.72 5592.54 20199.58 15196.02 8399.49 11199.12 142
Regformer-297.41 9597.24 9997.93 9397.21 27294.72 12394.85 22598.27 18797.74 5098.11 10497.50 17995.58 11799.69 11096.57 6499.31 16899.37 90
TSAR-MVS + MP.97.42 9497.23 10098.00 8999.38 3895.00 11597.63 6898.20 19693.00 22898.16 9898.06 12295.89 9999.72 7895.67 9599.10 19799.28 108
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
#test#97.62 7997.22 10198.83 2699.15 7197.50 2896.81 11098.84 9394.25 18897.49 14997.54 17497.07 4799.70 10294.37 16799.46 12099.30 101
canonicalmvs97.23 10897.21 10297.30 14597.65 24094.39 13597.84 5699.05 4097.42 6796.68 19793.85 31797.63 2699.33 22796.29 7298.47 25698.18 253
MP-MVScopyleft97.64 7797.18 10399.00 1299.32 4497.77 1797.49 7998.73 12396.27 10195.59 24597.75 15896.30 9199.78 4193.70 19699.48 11599.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Regformer-197.27 10497.16 10497.61 11497.21 27293.86 15694.85 22598.04 22097.62 5998.03 11697.50 17995.34 12599.63 13396.52 6599.31 16899.35 92
V4297.04 11197.16 10496.68 18198.59 13191.05 21996.33 13498.36 17894.60 17597.99 11898.30 8993.32 17999.62 14197.40 4099.53 9599.38 85
SMA-MVScopyleft97.48 9097.11 10698.60 4698.83 10096.67 5296.74 11498.73 12391.61 25198.48 6398.36 8096.53 7899.68 11695.17 12899.54 9299.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PM-MVS97.36 10097.10 10798.14 7998.91 9796.77 4996.20 14298.63 14993.82 20198.54 5898.33 8393.98 16699.05 27195.99 8699.45 12498.61 216
ACMP92.54 1397.47 9197.10 10798.55 5099.04 8996.70 5196.24 14098.89 7593.71 20497.97 12297.75 15897.44 2999.63 13393.22 20699.70 5399.32 95
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v114496.84 12497.08 10996.13 21098.42 15089.28 24795.41 18698.67 14194.21 18997.97 12298.31 8593.06 18499.65 12898.06 1899.62 6499.45 66
XVG-OURS-SEG-HR97.38 9797.07 11098.30 6799.01 9197.41 3494.66 23299.02 4995.20 15298.15 10097.52 17798.83 498.43 32694.87 14596.41 31899.07 153
v119296.83 12797.06 11196.15 20998.28 16089.29 24695.36 19098.77 11593.73 20398.11 10498.34 8293.02 18899.67 12198.35 1499.58 7799.50 43
v2v48296.78 13197.06 11195.95 21798.57 13388.77 25795.36 19098.26 18995.18 15497.85 13698.23 10092.58 19899.63 13397.80 2699.69 5499.45 66
xxxxxxxxxxxxxcwj97.24 10797.03 11397.89 9598.48 14494.71 12494.53 23799.07 3795.02 16297.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
v124096.74 13397.02 11495.91 22098.18 17488.52 25995.39 18898.88 8093.15 22498.46 6698.40 7992.80 19199.71 9398.45 1399.49 11199.49 51
v14896.58 14596.97 11595.42 23998.63 12587.57 27995.09 20997.90 22495.91 12398.24 9197.96 13293.42 17899.39 21196.04 8199.52 10099.29 107
PMVScopyleft89.60 1796.71 13896.97 11595.95 21799.51 2297.81 1697.42 8497.49 25197.93 4395.95 23198.58 6496.88 6196.91 34989.59 27799.36 14993.12 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v192192096.72 13696.96 11795.99 21398.21 16988.79 25695.42 18498.79 11093.22 21898.19 9698.26 9792.68 19499.70 10298.34 1599.55 8999.49 51
EI-MVSNet96.63 14396.93 11895.74 22597.26 27088.13 26895.29 19797.65 24396.99 7897.94 12598.19 10592.55 19999.58 15196.91 5899.56 8399.50 43
MSP-MVS97.45 9296.92 11999.03 899.26 4797.70 1897.66 6598.89 7595.65 13498.51 6096.46 25192.15 20899.81 3195.14 13398.58 25299.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AllTest97.20 10996.92 11998.06 8499.08 8396.16 6897.14 9799.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
v14419296.69 13996.90 12196.03 21298.25 16588.92 25195.49 18098.77 11593.05 22698.09 10898.29 9192.51 20399.70 10298.11 1799.56 8399.47 59
VDDNet96.98 11696.84 12297.41 13899.40 3693.26 17697.94 4995.31 30299.26 798.39 7299.18 2787.85 26899.62 14195.13 13599.09 19899.35 92
VNet96.84 12496.83 12396.88 16798.06 18792.02 20596.35 13397.57 25097.70 5597.88 13197.80 15492.40 20599.54 16594.73 15498.96 21099.08 151
WR-MVS96.90 12196.81 12497.16 15198.56 13492.20 20094.33 24198.12 20997.34 7298.20 9397.33 19792.81 19099.75 6194.79 14999.81 2999.54 36
GBi-Net96.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
test196.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
MVS_Test96.27 15596.79 12794.73 26696.94 28386.63 29496.18 14398.33 18394.94 16496.07 22798.28 9295.25 12999.26 24397.21 4697.90 27698.30 241
XVG-OURS97.12 11096.74 12898.26 6998.99 9297.45 3293.82 26799.05 4095.19 15398.32 8297.70 16495.22 13098.41 32794.27 17298.13 26798.93 174
MSLP-MVS++96.42 15396.71 12995.57 23197.82 21390.56 23195.71 16898.84 9394.72 17196.71 19697.39 19094.91 14098.10 34195.28 12199.02 20698.05 265
9.1496.69 13098.53 13796.02 15298.98 6393.23 21797.18 16497.46 18296.47 8399.62 14192.99 21099.32 166
IS-MVSNet96.93 11896.68 13197.70 10799.25 5094.00 15198.57 1596.74 27898.36 3098.14 10297.98 13188.23 26199.71 9393.10 20999.72 4799.38 85
FMVSNet296.72 13696.67 13296.87 16897.96 19891.88 20897.15 9598.06 21895.59 13898.50 6298.62 6389.51 25099.65 12894.99 14399.60 7399.07 153
test20.0396.58 14596.61 13396.48 19298.49 14291.72 21295.68 17297.69 23896.81 8498.27 8897.92 14094.18 16298.71 30490.78 25099.66 5999.00 162
ab-mvs96.59 14496.59 13496.60 18398.64 12192.21 19898.35 2697.67 23994.45 18096.99 18098.79 5094.96 13899.49 17690.39 26699.07 20198.08 256
new-patchmatchnet95.67 17896.58 13592.94 30797.48 25180.21 34092.96 29098.19 20194.83 16898.82 4298.79 5093.31 18099.51 17495.83 9199.04 20599.12 142
EPP-MVSNet96.84 12496.58 13597.65 11199.18 6793.78 16198.68 1096.34 28297.91 4497.30 16098.06 12288.46 25899.85 2293.85 19099.40 14299.32 95
UGNet96.81 12996.56 13797.58 11596.64 28893.84 15897.75 6197.12 26496.47 9693.62 29598.88 4693.22 18299.53 16695.61 10199.69 5499.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNVR-MVS96.92 11996.55 13898.03 8898.00 19695.54 9194.87 22398.17 20294.60 17596.38 21197.05 21595.67 11499.36 21995.12 13699.08 19999.19 124
MVS_111021_LR96.82 12896.55 13897.62 11398.27 16295.34 10393.81 26998.33 18394.59 17796.56 20396.63 24296.61 7398.73 30294.80 14899.34 15798.78 197
MVS_111021_HR96.73 13596.54 14097.27 14698.35 15593.66 16793.42 27998.36 17894.74 17096.58 20196.76 23596.54 7798.99 27894.87 14599.27 17599.15 131
test_part196.77 13296.53 14197.47 12998.04 18892.92 18597.93 5098.85 8898.83 2099.30 2199.07 3579.25 30699.79 3897.59 3399.93 1099.69 20
APD-MVScopyleft97.00 11296.53 14198.41 5798.55 13596.31 6496.32 13598.77 11592.96 23397.44 15797.58 17395.84 10199.74 6891.96 22099.35 15499.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS96.96 11796.53 14198.25 7197.48 25196.50 5896.76 11398.85 8893.52 20796.19 22396.85 22695.94 9899.42 19593.79 19299.43 13298.83 191
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13597.69 23594.15 14696.02 15298.43 16793.17 22397.30 16097.38 19295.48 12099.28 24093.74 19399.34 15798.88 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi96.07 16396.50 14594.80 26399.26 4787.69 27895.96 15798.58 15495.08 15898.02 11796.25 26297.92 1697.60 34688.68 29198.74 23799.11 146
ETH3D-3000-0.196.89 12396.46 14698.16 7598.62 12695.69 8395.96 15798.98 6393.36 21297.04 17697.31 19994.93 13999.63 13392.60 21399.34 15799.17 127
DeepPCF-MVS94.58 596.90 12196.43 14798.31 6697.48 25197.23 4092.56 29998.60 15192.84 23598.54 5897.40 18696.64 7298.78 29794.40 16699.41 14198.93 174
HPM-MVS++copyleft96.99 11396.38 14898.81 2998.64 12197.59 2395.97 15698.20 19695.51 14195.06 25496.53 24794.10 16399.70 10294.29 17199.15 18699.13 137
MVSFormer96.14 16196.36 14995.49 23697.68 23687.81 27598.67 1199.02 4996.50 9394.48 27196.15 26686.90 27399.92 498.73 799.13 19198.74 202
TinyColmap96.00 16896.34 15094.96 25497.90 20487.91 27194.13 25598.49 16194.41 18198.16 9897.76 15596.29 9298.68 30990.52 26299.42 13598.30 241
HQP_MVS96.66 14296.33 15197.68 11098.70 11794.29 13996.50 12498.75 11996.36 9896.16 22496.77 23391.91 21999.46 18592.59 21599.20 18099.28 108
K. test v396.44 15196.28 15296.95 16299.41 3591.53 21497.65 6690.31 34598.89 1898.93 3899.36 1484.57 28899.92 497.81 2599.56 8399.39 83
diffmvs96.04 16596.23 15395.46 23897.35 26188.03 27093.42 27999.08 3494.09 19596.66 19896.93 22293.85 16999.29 23896.01 8598.67 24299.06 155
DELS-MVS96.17 16096.23 15395.99 21397.55 24890.04 23492.38 30498.52 15894.13 19396.55 20597.06 21494.99 13799.58 15195.62 10099.28 17398.37 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS-SCA-FT95.86 17396.19 15594.85 26097.68 23685.53 30592.42 30297.63 24796.99 7898.36 7598.54 6987.94 26399.75 6197.07 5499.08 19999.27 112
pmmvs-eth3d96.49 14896.18 15697.42 13798.25 16594.29 13994.77 22998.07 21789.81 27297.97 12298.33 8393.11 18399.08 26895.46 11199.84 2798.89 183
testtj96.69 13996.13 15798.36 6198.46 14896.02 7496.44 12698.70 13394.26 18796.79 19097.13 20794.07 16499.75 6190.53 26198.80 23199.31 100
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 14097.18 27494.39 13595.46 18198.73 12396.03 11594.72 26294.92 30196.28 9399.69 11093.81 19197.98 27298.09 255
TSAR-MVS + GP.96.47 15096.12 15897.49 12797.74 23295.23 10694.15 25296.90 27193.26 21698.04 11596.70 23894.41 15598.89 28894.77 15299.14 18798.37 231
Effi-MVS+-dtu96.81 12996.09 16098.99 1396.90 28598.69 296.42 12798.09 21195.86 12695.15 25395.54 28994.26 15999.81 3194.06 18098.51 25598.47 225
CPTT-MVS96.69 13996.08 16198.49 5298.89 9896.64 5497.25 9098.77 11592.89 23496.01 23097.13 20792.23 20799.67 12192.24 21899.34 15799.17 127
mvs_anonymous95.36 19296.07 16293.21 29996.29 29681.56 33594.60 23497.66 24193.30 21596.95 18498.91 4593.03 18799.38 21496.60 6197.30 30398.69 208
Effi-MVS+96.19 15996.01 16396.71 17797.43 25792.19 20196.12 14699.10 2895.45 14393.33 30894.71 30497.23 4299.56 15893.21 20797.54 29398.37 231
OMC-MVS96.48 14996.00 16497.91 9498.30 15796.01 7594.86 22498.60 15191.88 24897.18 16497.21 20596.11 9499.04 27290.49 26599.34 15798.69 208
NCCC96.52 14795.99 16598.10 8097.81 21495.68 8595.00 21898.20 19695.39 14695.40 24996.36 25893.81 17099.45 18993.55 19998.42 25799.17 127
Anonymous20240521196.34 15495.98 16697.43 13698.25 16593.85 15796.74 11494.41 30997.72 5398.37 7398.03 12587.15 27299.53 16694.06 18099.07 20198.92 178
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
ETV-MVS96.13 16295.90 17096.82 17197.76 23093.89 15495.40 18798.95 6995.87 12595.58 24691.00 34796.36 9099.72 7893.36 20098.83 22996.85 309
IterMVS95.42 19095.83 17194.20 28397.52 24983.78 32692.41 30397.47 25495.49 14298.06 11298.49 7287.94 26399.58 15196.02 8399.02 20699.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS96.24 15695.80 17297.56 11698.75 10994.13 14794.66 23298.17 20290.17 26996.21 22296.10 27195.14 13199.43 19494.13 17898.85 22799.13 137
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19599.28 4690.62 22895.31 19599.08 3488.40 28696.97 18398.17 10792.11 21099.78 4193.64 19799.21 17998.86 189
EIA-MVS96.04 16595.77 17496.85 16997.80 21892.98 18396.12 14699.16 1794.65 17393.77 28991.69 34295.68 11399.67 12194.18 17598.85 22797.91 273
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19398.48 14491.52 21595.31 19598.45 16495.76 13197.48 15297.54 17489.53 24998.69 30694.43 16394.61 33699.13 137
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22598.48 14488.76 25892.84 29197.25 25796.00 11697.59 14297.95 13691.38 22499.46 18593.16 20896.35 31998.99 165
CANet95.86 17395.65 17796.49 19196.41 29490.82 22494.36 24098.41 17294.94 16492.62 32296.73 23692.68 19499.71 9395.12 13699.60 7398.94 170
LF4IMVS96.07 16395.63 17897.36 14298.19 17195.55 9095.44 18298.82 10892.29 24295.70 24396.55 24592.63 19798.69 30691.75 22999.33 16497.85 275
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8197.91 20295.65 8894.94 22098.74 12191.31 25796.02 22997.08 21294.05 16599.69 11091.51 23298.94 21498.93 174
CS-MVS95.86 17395.59 18096.69 17997.85 20693.14 17996.42 12799.25 994.17 19293.56 29990.76 35096.05 9699.72 7893.28 20398.91 21897.21 296
QAPM95.88 17295.57 18196.80 17297.90 20491.84 21098.18 3998.73 12388.41 28596.42 20998.13 10994.73 14199.75 6188.72 28998.94 21498.81 193
alignmvs96.01 16795.52 18297.50 12497.77 22994.71 12496.07 14896.84 27297.48 6596.78 19494.28 31485.50 28199.40 20696.22 7398.73 24098.40 228
mvs-test196.20 15895.50 18398.32 6496.90 28598.16 495.07 21298.09 21195.86 12693.63 29494.32 31394.26 15999.71 9394.06 18097.27 30497.07 299
test_prior395.91 17095.39 18497.46 13297.79 22494.26 14393.33 28498.42 17094.21 18994.02 28296.25 26293.64 17499.34 22491.90 22298.96 21098.79 195
cl_fuxian95.20 19895.32 18594.83 26296.19 30286.43 29791.83 31298.35 18293.47 20997.36 15997.26 20288.69 25699.28 24095.41 11899.36 14998.78 197
MVP-Stereo95.69 17695.28 18696.92 16498.15 18093.03 18295.64 17798.20 19690.39 26696.63 20097.73 16191.63 22299.10 26691.84 22697.31 30298.63 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
wuyk23d93.25 26795.20 18787.40 33996.07 30895.38 9897.04 10294.97 30395.33 14799.70 598.11 11398.14 1391.94 35677.76 34999.68 5674.89 355
OpenMVScopyleft94.22 895.48 18695.20 18796.32 20097.16 27591.96 20797.74 6298.84 9387.26 29594.36 27398.01 12893.95 16799.67 12190.70 25698.75 23697.35 295
D2MVS95.18 19995.17 18995.21 24597.76 23087.76 27794.15 25297.94 22289.77 27396.99 18097.68 16787.45 27099.14 25995.03 14199.81 2998.74 202
DP-MVS Recon95.55 18295.13 19096.80 17298.51 13993.99 15294.60 23498.69 13690.20 26895.78 23996.21 26592.73 19398.98 28090.58 26098.86 22597.42 292
MSDG95.33 19395.13 19095.94 21997.40 25991.85 20991.02 32898.37 17795.30 14996.31 21695.99 27394.51 15398.38 33089.59 27797.65 29097.60 287
Fast-Effi-MVS+95.49 18495.07 19296.75 17597.67 23992.82 18694.22 24898.60 15191.61 25193.42 30692.90 32796.73 6899.70 10292.60 21397.89 27797.74 280
CLD-MVS95.47 18795.07 19296.69 17998.27 16292.53 19191.36 31798.67 14191.22 25995.78 23994.12 31595.65 11598.98 28090.81 24899.72 4798.57 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023120695.27 19695.06 19495.88 22198.72 11289.37 24595.70 16997.85 22788.00 29196.98 18297.62 17091.95 21599.34 22489.21 28299.53 9598.94 170
MVS_030495.50 18395.05 19596.84 17096.28 29793.12 18097.00 10496.16 28495.03 16189.22 34497.70 16490.16 24299.48 17994.51 16199.34 15797.93 272
API-MVS95.09 20495.01 19695.31 24296.61 28994.02 15096.83 10997.18 26195.60 13795.79 23794.33 31294.54 15298.37 33285.70 31898.52 25393.52 344
FMVSNet395.26 19794.94 19796.22 20696.53 29190.06 23395.99 15497.66 24194.11 19497.99 11897.91 14180.22 30499.63 13394.60 15699.44 12598.96 167
TAMVS95.49 18494.94 19797.16 15198.31 15693.41 17395.07 21296.82 27491.09 26097.51 14697.82 15289.96 24399.42 19588.42 29499.44 12598.64 211
eth_miper_zixun_eth94.89 21194.93 19994.75 26595.99 30986.12 30091.35 31898.49 16193.40 21097.12 16897.25 20386.87 27599.35 22295.08 13898.82 23098.78 197
PVSNet_BlendedMVS95.02 20894.93 19995.27 24397.79 22487.40 28394.14 25498.68 13888.94 28094.51 26998.01 12893.04 18599.30 23489.77 27599.49 11199.11 146
MS-PatchMatch94.83 21394.91 20194.57 27396.81 28787.10 28894.23 24797.34 25688.74 28397.14 16697.11 21091.94 21698.23 33792.99 21097.92 27498.37 231
LFMVS95.32 19494.88 20296.62 18298.03 18991.47 21697.65 6690.72 34299.11 997.89 13098.31 8579.20 30799.48 17993.91 18999.12 19498.93 174
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22299.12 8089.17 24897.54 7894.92 30496.50 9396.58 20197.27 20183.64 29199.48 17988.42 29499.67 5798.97 166
ppachtmachnet_test94.49 23394.84 20493.46 29396.16 30482.10 33290.59 33197.48 25390.53 26597.01 17997.59 17291.01 22799.36 21993.97 18799.18 18498.94 170
YYNet194.73 21794.84 20494.41 27897.47 25585.09 31490.29 33495.85 29292.52 23797.53 14497.76 15591.97 21499.18 25293.31 20296.86 30898.95 168
MDA-MVSNet_test_wron94.73 21794.83 20694.42 27797.48 25185.15 31290.28 33595.87 29192.52 23797.48 15297.76 15591.92 21899.17 25693.32 20196.80 31198.94 170
miper_lstm_enhance94.81 21594.80 20794.85 26096.16 30486.45 29691.14 32598.20 19693.49 20897.03 17797.37 19484.97 28599.26 24395.28 12199.56 8398.83 191
CL-MVSNet_2432*160095.04 20594.79 20895.82 22397.51 25089.79 23891.14 32596.82 27493.05 22696.72 19596.40 25590.82 23099.16 25791.95 22198.66 24498.50 223
BH-untuned94.69 22294.75 20994.52 27597.95 20187.53 28094.07 25797.01 26793.99 19797.10 17095.65 28592.65 19698.95 28587.60 30496.74 31297.09 298
miper_ehance_all_eth94.69 22294.70 21094.64 26795.77 31586.22 29991.32 32198.24 19191.67 25097.05 17596.65 24188.39 26099.22 25094.88 14498.34 25998.49 224
train_agg95.46 18894.66 21197.88 9697.84 21195.23 10693.62 27398.39 17487.04 29893.78 28795.99 27394.58 15099.52 17091.76 22898.90 21998.89 183
CDPH-MVS95.45 18994.65 21297.84 9998.28 16094.96 11693.73 27198.33 18385.03 32095.44 24796.60 24395.31 12799.44 19290.01 27199.13 19199.11 146
cl-mvsnet_94.73 21794.64 21395.01 25295.85 31287.00 28991.33 31998.08 21393.34 21397.10 17097.33 19784.01 29099.30 23495.14 13399.56 8398.71 207
cl-mvsnet194.73 21794.64 21395.01 25295.86 31187.00 28991.33 31998.08 21393.34 21397.10 17097.34 19684.02 28999.31 23195.15 13299.55 8998.72 205
xiu_mvs_v2_base94.22 23994.63 21592.99 30597.32 26884.84 31792.12 30797.84 22991.96 24694.17 27693.43 31896.07 9599.71 9391.27 23697.48 29694.42 341
AdaColmapbinary95.11 20294.62 21696.58 18597.33 26794.45 13494.92 22198.08 21393.15 22493.98 28595.53 29094.34 15799.10 26685.69 31998.61 24996.20 326
agg_prior195.39 19194.60 21797.75 10297.80 21894.96 11693.39 28198.36 17887.20 29693.49 30195.97 27694.65 14799.53 16691.69 23098.86 22598.77 200
RPMNet94.68 22494.60 21794.90 25795.44 32288.15 26696.18 14398.86 8497.43 6694.10 27898.49 7279.40 30599.76 5495.69 9495.81 32396.81 313
Patchmtry95.03 20794.59 21996.33 19994.83 33090.82 22496.38 13197.20 25996.59 9097.49 14998.57 6577.67 31499.38 21492.95 21299.62 6498.80 194
our_test_394.20 24394.58 22093.07 30196.16 30481.20 33790.42 33396.84 27290.72 26397.14 16697.13 20790.47 23499.11 26494.04 18498.25 26398.91 179
HQP-MVS95.17 20194.58 22096.92 16497.85 20692.47 19294.26 24298.43 16793.18 22092.86 31495.08 29590.33 23699.23 24890.51 26398.74 23799.05 157
USDC94.56 23094.57 22294.55 27497.78 22886.43 29792.75 29498.65 14885.96 30696.91 18797.93 13990.82 23098.74 30190.71 25599.59 7598.47 225
Patchmatch-RL test94.66 22594.49 22395.19 24698.54 13688.91 25292.57 29898.74 12191.46 25498.32 8297.75 15877.31 31998.81 29596.06 7899.61 7097.85 275
PS-MVSNAJ94.10 24594.47 22493.00 30497.35 26184.88 31691.86 31197.84 22991.96 24694.17 27692.50 33495.82 10499.71 9391.27 23697.48 29694.40 342
EU-MVSNet94.25 23894.47 22493.60 29098.14 18182.60 33097.24 9292.72 32585.08 31898.48 6398.94 4282.59 29498.76 30097.47 3899.53 9599.44 76
CNLPA95.04 20594.47 22496.75 17597.81 21495.25 10594.12 25697.89 22594.41 18194.57 26695.69 28390.30 23998.35 33386.72 31398.76 23596.64 318
BH-RMVSNet94.56 23094.44 22794.91 25597.57 24487.44 28293.78 27096.26 28393.69 20596.41 21096.50 25092.10 21199.00 27685.96 31697.71 28498.31 239
F-COLMAP95.30 19594.38 22898.05 8798.64 12196.04 7295.61 17898.66 14389.00 27993.22 30996.40 25592.90 18999.35 22287.45 30897.53 29498.77 200
pmmvs594.63 22794.34 22995.50 23597.63 24288.34 26394.02 25897.13 26387.15 29795.22 25297.15 20687.50 26999.27 24293.99 18599.26 17698.88 186
UnsupCasMVSNet_bld94.72 22194.26 23096.08 21198.62 12690.54 23293.38 28298.05 21990.30 26797.02 17896.80 23289.54 24799.16 25788.44 29396.18 32198.56 219
N_pmnet95.18 19994.23 23198.06 8497.85 20696.55 5792.49 30091.63 33389.34 27598.09 10897.41 18590.33 23699.06 27091.58 23199.31 16898.56 219
TAPA-MVS93.32 1294.93 20994.23 23197.04 15998.18 17494.51 13195.22 20398.73 12381.22 33796.25 22095.95 27893.80 17198.98 28089.89 27398.87 22397.62 285
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU94.65 22694.21 23395.96 21595.90 31089.68 23993.92 26497.83 23193.19 21990.12 33995.64 28688.52 25799.57 15793.27 20599.47 11798.62 214
pmmvs494.82 21494.19 23496.70 17897.42 25892.75 18992.09 30996.76 27686.80 30195.73 24297.22 20489.28 25398.89 28893.28 20399.14 18798.46 227
PAPM_NR94.61 22894.17 23595.96 21598.36 15491.23 21795.93 16097.95 22192.98 22993.42 30694.43 31190.53 23398.38 33087.60 30496.29 32098.27 245
CDS-MVSNet94.88 21294.12 23697.14 15397.64 24193.57 16993.96 26397.06 26690.05 27096.30 21796.55 24586.10 27799.47 18290.10 27099.31 16898.40 228
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS94.90 21094.07 23797.39 14093.18 34793.21 17895.26 19997.49 25193.94 19998.25 8997.85 14772.96 34099.84 2597.90 2199.78 3799.14 134
PMMVS293.66 25794.07 23792.45 31597.57 24480.67 33986.46 35096.00 28793.99 19797.10 17097.38 19289.90 24497.82 34388.76 28899.47 11798.86 189
jason94.39 23694.04 23995.41 24198.29 15887.85 27492.74 29696.75 27785.38 31795.29 25096.15 26688.21 26299.65 12894.24 17399.34 15798.74 202
jason: jason.
test_yl94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
DCV-MVSNet94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
MG-MVS94.08 24794.00 24094.32 28097.09 27785.89 30293.19 28895.96 28992.52 23794.93 26097.51 17889.54 24798.77 29887.52 30797.71 28498.31 239
bset_n11_16_dypcd94.53 23293.95 24396.25 20397.56 24689.85 23788.52 34791.32 33594.90 16797.51 14696.38 25782.34 29599.78 4197.22 4499.80 3299.12 142
MVSTER94.21 24193.93 24495.05 25195.83 31386.46 29595.18 20597.65 24392.41 24197.94 12598.00 13072.39 34199.58 15196.36 7199.56 8399.12 142
ETH3 D test640094.77 21693.87 24597.47 12998.12 18593.73 16294.56 23698.70 13385.45 31594.70 26495.93 28091.77 22199.63 13386.45 31499.14 18799.05 157
PatchMatch-RL94.61 22893.81 24697.02 16198.19 17195.72 8193.66 27297.23 25888.17 28994.94 25995.62 28791.43 22398.57 31787.36 30997.68 28796.76 315
sss94.22 23993.72 24795.74 22597.71 23489.95 23693.84 26696.98 26888.38 28793.75 29095.74 28287.94 26398.89 28891.02 24298.10 26898.37 231
PVSNet_Blended93.96 24993.65 24894.91 25597.79 22487.40 28391.43 31698.68 13884.50 32594.51 26994.48 31093.04 18599.30 23489.77 27598.61 24998.02 268
PatchT93.75 25393.57 24994.29 28295.05 32887.32 28596.05 14992.98 32197.54 6394.25 27498.72 5575.79 32799.24 24695.92 8995.81 32396.32 324
SCA93.38 26493.52 25092.96 30696.24 29881.40 33693.24 28694.00 31191.58 25394.57 26696.97 21987.94 26399.42 19589.47 27997.66 28998.06 262
1112_ss94.12 24493.42 25196.23 20498.59 13190.85 22394.24 24698.85 8885.49 31292.97 31294.94 29986.01 27899.64 13191.78 22797.92 27498.20 251
CHOSEN 1792x268894.10 24593.41 25296.18 20899.16 6890.04 23492.15 30698.68 13879.90 34296.22 22197.83 14987.92 26799.42 19589.18 28399.65 6099.08 151
lupinMVS93.77 25293.28 25395.24 24497.68 23687.81 27592.12 30796.05 28684.52 32494.48 27195.06 29786.90 27399.63 13393.62 19899.13 19198.27 245
112194.26 23793.26 25497.27 14698.26 16494.73 12295.86 16297.71 23777.96 34994.53 26896.71 23791.93 21799.40 20687.71 30098.64 24797.69 283
Patchmatch-test93.60 25993.25 25594.63 26896.14 30787.47 28196.04 15094.50 30893.57 20696.47 20796.97 21976.50 32298.61 31490.67 25798.41 25897.81 279
114514_t93.96 24993.22 25696.19 20799.06 8690.97 22295.99 15498.94 7073.88 35593.43 30596.93 22292.38 20699.37 21789.09 28499.28 17398.25 247
OpenMVS_ROBcopyleft91.80 1493.64 25893.05 25795.42 23997.31 26991.21 21895.08 21196.68 28081.56 33496.88 18996.41 25390.44 23599.25 24585.39 32397.67 28895.80 330
MAR-MVS94.21 24193.03 25897.76 10196.94 28397.44 3396.97 10697.15 26287.89 29392.00 32792.73 33192.14 20999.12 26183.92 33297.51 29596.73 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS93.55 26093.00 25995.19 24697.81 21487.86 27293.89 26596.00 28789.02 27894.07 28095.44 29286.27 27699.33 22787.69 30296.82 30998.39 230
PLCcopyleft91.02 1694.05 24892.90 26097.51 12198.00 19695.12 11394.25 24598.25 19086.17 30491.48 33095.25 29391.01 22799.19 25185.02 32796.69 31398.22 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Test_1112_low_res93.53 26192.86 26195.54 23498.60 12988.86 25492.75 29498.69 13682.66 33192.65 31996.92 22484.75 28699.56 15890.94 24497.76 28098.19 252
MIMVSNet93.42 26292.86 26195.10 24998.17 17688.19 26598.13 4193.69 31292.07 24395.04 25798.21 10480.95 30199.03 27581.42 34098.06 27098.07 258
cl-mvsnet293.25 26792.84 26394.46 27694.30 33686.00 30191.09 32796.64 28190.74 26295.79 23796.31 26078.24 31198.77 29894.15 17798.34 25998.62 214
CVMVSNet92.33 28192.79 26490.95 32597.26 27075.84 35395.29 19792.33 32881.86 33296.27 21898.19 10581.44 29798.46 32594.23 17498.29 26298.55 221
CR-MVSNet93.29 26692.79 26494.78 26495.44 32288.15 26696.18 14397.20 25984.94 32294.10 27898.57 6577.67 31499.39 21195.17 12895.81 32396.81 313
miper_enhance_ethall93.14 26992.78 26694.20 28393.65 34485.29 30989.97 33797.85 22785.05 31996.15 22694.56 30685.74 27999.14 25993.74 19398.34 25998.17 254
DPM-MVS93.68 25692.77 26796.42 19597.91 20292.54 19091.17 32497.47 25484.99 32193.08 31194.74 30389.90 24499.00 27687.54 30698.09 26997.72 281
AUN-MVS93.95 25192.69 26897.74 10397.80 21895.38 9895.57 17995.46 30191.26 25892.64 32096.10 27174.67 33099.55 16293.72 19596.97 30598.30 241
HyFIR lowres test93.72 25492.65 26996.91 16698.93 9591.81 21191.23 32398.52 15882.69 33096.46 20896.52 24980.38 30399.90 1390.36 26798.79 23299.03 159
baseline193.14 26992.64 27094.62 26997.34 26587.20 28796.67 12193.02 32094.71 17296.51 20695.83 28181.64 29698.60 31690.00 27288.06 35198.07 258
EPNet93.72 25492.62 27197.03 16087.61 36292.25 19696.27 13691.28 33696.74 8687.65 35097.39 19085.00 28499.64 13192.14 21999.48 11599.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051793.31 26592.56 27295.57 23198.71 11587.86 27297.44 8187.17 35395.79 13097.47 15496.84 22764.12 35499.81 3196.20 7499.32 16699.02 161
RRT_test8_iter0592.46 27792.52 27392.29 31895.33 32577.43 34895.73 16798.55 15694.41 18197.46 15597.72 16357.44 35999.74 6896.92 5799.14 18799.69 20
FMVSNet593.39 26392.35 27496.50 19095.83 31390.81 22697.31 8798.27 18792.74 23696.27 21898.28 9262.23 35699.67 12190.86 24699.36 14999.03 159
131492.38 27992.30 27592.64 31195.42 32485.15 31295.86 16296.97 26985.40 31690.62 33393.06 32591.12 22697.80 34486.74 31295.49 33094.97 339
TR-MVS92.54 27692.20 27693.57 29196.49 29286.66 29393.51 27794.73 30589.96 27194.95 25893.87 31690.24 24198.61 31481.18 34194.88 33395.45 336
GA-MVS92.83 27292.15 27794.87 25996.97 28087.27 28690.03 33696.12 28591.83 24994.05 28194.57 30576.01 32698.97 28492.46 21797.34 30198.36 236
BH-w/o92.14 28491.94 27892.73 31097.13 27685.30 30892.46 30195.64 29489.33 27694.21 27592.74 33089.60 24698.24 33681.68 33994.66 33594.66 340
PatchmatchNetpermissive91.98 28791.87 27992.30 31794.60 33379.71 34195.12 20693.59 31689.52 27493.61 29697.02 21777.94 31299.18 25290.84 24794.57 33898.01 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DSMNet-mixed92.19 28391.83 28093.25 29796.18 30383.68 32796.27 13693.68 31476.97 35292.54 32399.18 2789.20 25598.55 32083.88 33398.60 25197.51 289
HY-MVS91.43 1592.58 27591.81 28194.90 25796.49 29288.87 25397.31 8794.62 30685.92 30790.50 33696.84 22785.05 28399.40 20683.77 33595.78 32696.43 323
thisisatest053092.71 27491.76 28295.56 23398.42 15088.23 26496.03 15187.35 35294.04 19696.56 20395.47 29164.03 35599.77 5094.78 15199.11 19598.68 210
new_pmnet92.34 28091.69 28394.32 28096.23 30089.16 24992.27 30592.88 32284.39 32795.29 25096.35 25985.66 28096.74 35284.53 33097.56 29297.05 300
thres600view792.03 28691.43 28493.82 28698.19 17184.61 31996.27 13690.39 34396.81 8496.37 21293.11 32073.44 33899.49 17680.32 34297.95 27397.36 293
CMPMVSbinary73.10 2392.74 27391.39 28596.77 17493.57 34694.67 12894.21 24997.67 23980.36 34193.61 29696.60 24382.85 29397.35 34784.86 32898.78 23398.29 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cascas91.89 28891.35 28693.51 29294.27 33785.60 30488.86 34698.61 15079.32 34492.16 32691.44 34389.22 25498.12 34090.80 24997.47 29896.82 312
MDTV_nov1_ep1391.28 28794.31 33573.51 35794.80 22793.16 31986.75 30293.45 30497.40 18676.37 32398.55 32088.85 28796.43 317
PAPR92.22 28291.27 28895.07 25095.73 31788.81 25591.97 31097.87 22685.80 30990.91 33292.73 33191.16 22598.33 33479.48 34395.76 32798.08 256
thres100view90091.76 29091.26 28993.26 29698.21 16984.50 32096.39 12990.39 34396.87 8296.33 21393.08 32473.44 33899.42 19578.85 34697.74 28195.85 328
PMMVS92.39 27891.08 29096.30 20293.12 35092.81 18790.58 33295.96 28979.17 34591.85 32992.27 33590.29 24098.66 31189.85 27496.68 31497.43 291
tfpn200view991.55 29291.00 29193.21 29998.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28195.85 328
thres40091.68 29191.00 29193.71 28898.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28197.36 293
PVSNet86.72 1991.10 29690.97 29391.49 32197.56 24678.04 34587.17 34994.60 30784.65 32392.34 32492.20 33687.37 27198.47 32485.17 32697.69 28697.96 270
tpmvs90.79 30090.87 29490.57 32892.75 35476.30 35195.79 16693.64 31591.04 26191.91 32896.26 26177.19 32098.86 29289.38 28189.85 34996.56 321
tpm91.08 29790.85 29591.75 32095.33 32578.09 34495.03 21791.27 33788.75 28293.53 30097.40 18671.24 34399.30 23491.25 23893.87 33997.87 274
X-MVStestdata92.86 27190.83 29698.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21436.50 35896.49 8199.72 7895.66 9799.37 14699.45 66
EPNet_dtu91.39 29490.75 29793.31 29590.48 35982.61 32994.80 22792.88 32293.39 21181.74 35894.90 30281.36 29899.11 26488.28 29698.87 22398.21 250
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 28990.69 29895.11 24893.80 34390.98 22194.16 25191.78 33296.38 9790.30 33899.30 1872.02 34298.90 28688.28 29690.17 34895.45 336
PCF-MVS89.43 1892.12 28590.64 29996.57 18797.80 21893.48 17289.88 34198.45 16474.46 35496.04 22895.68 28490.71 23299.31 23173.73 35199.01 20896.91 306
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpmrst90.31 30290.61 30089.41 33294.06 34172.37 35995.06 21493.69 31288.01 29092.32 32596.86 22577.45 31698.82 29391.04 24187.01 35397.04 301
ADS-MVSNet291.47 29390.51 30194.36 27995.51 32085.63 30395.05 21595.70 29383.46 32892.69 31796.84 22779.15 30899.41 20485.66 32090.52 34698.04 266
thres20091.00 29890.42 30292.77 30997.47 25583.98 32594.01 25991.18 33895.12 15795.44 24791.21 34573.93 33299.31 23177.76 34997.63 29195.01 338
ADS-MVSNet90.95 29990.26 30393.04 30295.51 32082.37 33195.05 21593.41 31783.46 32892.69 31796.84 22779.15 30898.70 30585.66 32090.52 34698.04 266
MVS-HIRNet88.40 31890.20 30482.99 34097.01 27960.04 36293.11 28985.61 35684.45 32688.72 34699.09 3384.72 28798.23 33782.52 33896.59 31690.69 353
test-LLR89.97 30789.90 30590.16 32994.24 33874.98 35489.89 33889.06 34892.02 24489.97 34090.77 34873.92 33398.57 31791.88 22497.36 29996.92 304
E-PMN89.52 31189.78 30688.73 33493.14 34977.61 34783.26 35492.02 32994.82 16993.71 29193.11 32075.31 32896.81 35085.81 31796.81 31091.77 350
ET-MVSNet_ETH3D91.12 29589.67 30795.47 23796.41 29489.15 25091.54 31590.23 34689.07 27786.78 35492.84 32869.39 34999.44 19294.16 17696.61 31597.82 277
CostFormer89.75 30989.25 30891.26 32494.69 33278.00 34695.32 19491.98 33081.50 33590.55 33596.96 22171.06 34598.89 28888.59 29292.63 34396.87 307
EMVS89.06 31389.22 30988.61 33593.00 35177.34 34982.91 35590.92 33994.64 17492.63 32191.81 34076.30 32497.02 34883.83 33496.90 30791.48 351
test0.0.03 190.11 30389.21 31092.83 30893.89 34286.87 29291.74 31388.74 35092.02 24494.71 26391.14 34673.92 33394.48 35583.75 33692.94 34197.16 297
MVS90.02 30489.20 31192.47 31494.71 33186.90 29195.86 16296.74 27864.72 35790.62 33392.77 32992.54 20198.39 32979.30 34495.56 32992.12 348
CHOSEN 280x42089.98 30689.19 31292.37 31695.60 31981.13 33886.22 35197.09 26581.44 33687.44 35193.15 31973.99 33199.47 18288.69 29099.07 20196.52 322
thisisatest051590.43 30189.18 31394.17 28597.07 27885.44 30689.75 34287.58 35188.28 28893.69 29391.72 34165.27 35399.58 15190.59 25998.67 24297.50 290
pmmvs390.00 30588.90 31493.32 29494.20 34085.34 30791.25 32292.56 32778.59 34693.82 28695.17 29467.36 35298.69 30689.08 28598.03 27195.92 327
FPMVS89.92 30888.63 31593.82 28698.37 15396.94 4591.58 31493.34 31888.00 29190.32 33797.10 21170.87 34691.13 35771.91 35496.16 32293.39 346
EPMVS89.26 31288.55 31691.39 32292.36 35579.11 34295.65 17579.86 35888.60 28493.12 31096.53 24770.73 34798.10 34190.75 25189.32 35096.98 302
baseline289.65 31088.44 31793.25 29795.62 31882.71 32893.82 26785.94 35588.89 28187.35 35292.54 33371.23 34499.33 22786.01 31594.60 33797.72 281
dp88.08 32088.05 31888.16 33892.85 35268.81 36194.17 25092.88 32285.47 31391.38 33196.14 26868.87 35098.81 29586.88 31183.80 35696.87 307
KD-MVS_2432*160088.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
miper_refine_blended88.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
tpm288.47 31787.69 32190.79 32694.98 32977.34 34995.09 20991.83 33177.51 35189.40 34296.41 25367.83 35198.73 30283.58 33792.60 34496.29 325
tpm cat188.01 32187.33 32290.05 33194.48 33476.28 35294.47 23994.35 31073.84 35689.26 34395.61 28873.64 33598.30 33584.13 33186.20 35495.57 335
test-mter87.92 32287.17 32390.16 32994.24 33874.98 35489.89 33889.06 34886.44 30389.97 34090.77 34854.96 36598.57 31791.88 22497.36 29996.92 304
gg-mvs-nofinetune88.28 31986.96 32492.23 31992.84 35384.44 32198.19 3874.60 36099.08 1087.01 35399.47 856.93 36098.23 33778.91 34595.61 32894.01 343
IB-MVS85.98 2088.63 31686.95 32593.68 28995.12 32784.82 31890.85 32990.17 34787.55 29488.48 34791.34 34458.01 35899.59 14987.24 31093.80 34096.63 320
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test87.92 32286.77 32691.39 32293.18 34778.62 34395.10 20791.42 33485.58 31188.00 34888.73 35360.60 35798.90 28690.60 25887.70 35296.65 317
TESTMET0.1,187.20 32586.57 32789.07 33393.62 34572.84 35889.89 33887.01 35485.46 31489.12 34590.20 35156.00 36497.72 34590.91 24596.92 30696.64 318
MVEpermissive73.61 2286.48 32685.92 32888.18 33796.23 30085.28 31081.78 35675.79 35986.01 30582.53 35791.88 33992.74 19287.47 35871.42 35594.86 33491.78 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM87.64 32485.84 32993.04 30296.54 29084.99 31588.42 34895.57 29879.52 34383.82 35593.05 32680.57 30298.41 32762.29 35792.79 34295.71 331
PVSNet_081.89 2184.49 32783.21 33088.34 33695.76 31674.97 35683.49 35392.70 32678.47 34787.94 34986.90 35583.38 29296.63 35373.44 35266.86 35893.40 345
tmp_tt57.23 32862.50 33141.44 34234.77 36349.21 36483.93 35260.22 36415.31 35971.11 36079.37 35770.09 34844.86 36064.76 35682.93 35730.25 356
cdsmvs_eth3d_5k24.22 32932.30 3320.00 3450.00 3660.00 3670.00 35798.10 2100.00 3620.00 36395.06 29797.54 280.00 3630.00 3610.00 3610.00 359
test12312.59 33015.49 3333.87 3436.07 3642.55 36590.75 3302.59 3662.52 3605.20 36213.02 3604.96 3661.85 3625.20 3599.09 3597.23 357
testmvs12.33 33115.23 3343.64 3445.77 3652.23 36688.99 3453.62 3652.30 3615.29 36113.09 3594.52 3671.95 3615.16 3608.32 3606.75 358
pcd_1.5k_mvsjas7.98 33210.65 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36395.82 1040.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.91 33310.55 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36394.94 2990.00 3680.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS98.43 14995.94 7698.56 15590.72 26396.66 19897.07 21395.02 13699.74 6891.08 24098.93 216
IU-MVS99.22 5695.40 9798.14 20685.77 31098.36 7595.23 12599.51 10599.49 51
OPU-MVS97.64 11298.01 19295.27 10496.79 11197.35 19596.97 5398.51 32391.21 23999.25 17799.14 134
test_241102_TWO98.83 10096.11 10898.62 5198.24 9896.92 5799.72 7895.44 11299.49 11199.49 51
test_241102_ONE99.22 5695.35 10198.83 10096.04 11399.08 3198.13 10997.87 2099.33 227
save fliter98.48 14494.71 12494.53 23798.41 17295.02 162
test_0728_THIRD96.62 8898.40 7098.28 9297.10 4499.71 9395.70 9399.62 6499.58 28
test_0728_SECOND98.25 7199.23 5395.49 9596.74 11498.89 7599.75 6195.48 10899.52 10099.53 39
test072699.24 5195.51 9396.89 10798.89 7595.92 12198.64 5098.31 8597.06 49
GSMVS98.06 262
test_part299.03 9096.07 7198.08 110
sam_mvs177.80 31398.06 262
sam_mvs77.38 317
ambc96.56 18898.23 16891.68 21397.88 5498.13 20898.42 6998.56 6794.22 16199.04 27294.05 18399.35 15498.95 168
MTGPAbinary98.73 123
test_post194.98 21910.37 36276.21 32599.04 27289.47 279
test_post10.87 36176.83 32199.07 269
patchmatchnet-post96.84 22777.36 31899.42 195
GG-mvs-BLEND90.60 32791.00 35784.21 32498.23 3272.63 36382.76 35684.11 35656.14 36396.79 35172.20 35392.09 34590.78 352
MTMP96.55 12274.60 360
gm-plane-assit91.79 35671.40 36081.67 33390.11 35298.99 27884.86 328
test9_res91.29 23598.89 22299.00 162
TEST997.84 21195.23 10693.62 27398.39 17486.81 30093.78 28795.99 27394.68 14599.52 170
test_897.81 21495.07 11493.54 27698.38 17687.04 29893.71 29195.96 27794.58 15099.52 170
agg_prior290.34 26898.90 21999.10 150
agg_prior97.80 21894.96 11698.36 17893.49 30199.53 166
TestCases98.06 8499.08 8396.16 6899.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
test_prior495.38 9893.61 275
test_prior293.33 28494.21 18994.02 28296.25 26293.64 17491.90 22298.96 210
test_prior97.46 13297.79 22494.26 14398.42 17099.34 22498.79 195
旧先验293.35 28377.95 35095.77 24198.67 31090.74 254
新几何293.43 278
新几何197.25 14998.29 15894.70 12797.73 23577.98 34894.83 26196.67 24092.08 21299.45 18988.17 29898.65 24697.61 286
旧先验197.80 21893.87 15597.75 23497.04 21693.57 17698.68 24198.72 205
无先验93.20 28797.91 22380.78 33899.40 20687.71 30097.94 271
原ACMM292.82 292
原ACMM196.58 18598.16 17892.12 20298.15 20585.90 30893.49 30196.43 25292.47 20499.38 21487.66 30398.62 24898.23 248
test22298.17 17693.24 17792.74 29697.61 24975.17 35394.65 26596.69 23990.96 22998.66 24497.66 284
testdata299.46 18587.84 299
segment_acmp95.34 125
testdata95.70 22898.16 17890.58 22997.72 23680.38 34095.62 24497.02 21792.06 21398.98 28089.06 28698.52 25397.54 288
testdata192.77 29393.78 202
test1297.46 13297.61 24394.07 14897.78 23393.57 29893.31 18099.42 19598.78 23398.89 183
plane_prior798.70 11794.67 128
plane_prior698.38 15294.37 13791.91 219
plane_prior598.75 11999.46 18592.59 21599.20 18099.28 108
plane_prior496.77 233
plane_prior394.51 13195.29 15096.16 224
plane_prior296.50 12496.36 98
plane_prior198.49 142
plane_prior94.29 13995.42 18494.31 18698.93 216
n20.00 367
nn0.00 367
door-mid98.17 202
lessismore_v097.05 15899.36 4092.12 20284.07 35798.77 4698.98 3985.36 28299.74 6897.34 4299.37 14699.30 101
LGP-MVS_train98.74 3599.15 7197.02 4299.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
test1198.08 213
door97.81 232
HQP5-MVS92.47 192
HQP-NCC97.85 20694.26 24293.18 22092.86 314
ACMP_Plane97.85 20694.26 24293.18 22092.86 314
BP-MVS90.51 263
HQP4-MVS92.87 31399.23 24899.06 155
HQP3-MVS98.43 16798.74 237
HQP2-MVS90.33 236
NP-MVS98.14 18193.72 16395.08 295
MDTV_nov1_ep13_2view57.28 36394.89 22280.59 33994.02 28278.66 31085.50 32297.82 277
ACMMP++_ref99.52 100
ACMMP++99.55 89
Test By Simon94.51 153
ITE_SJBPF97.85 9898.64 12196.66 5398.51 16095.63 13597.22 16297.30 20095.52 11898.55 32090.97 24398.90 21998.34 237
DeepMVS_CXcopyleft77.17 34190.94 35885.28 31074.08 36252.51 35880.87 35988.03 35475.25 32970.63 35959.23 35884.94 35575.62 354