This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
v7n98.73 1198.99 597.95 9699.64 1194.20 15598.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3399.69 896.48 6198.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 7899.68 994.82 12998.10 4999.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6198.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
v1097.55 8797.97 4196.31 20998.60 13889.64 25197.44 8999.02 5296.60 9498.72 5099.16 3093.48 18499.72 8698.76 699.92 1499.58 28
MVSFormer96.14 16796.36 15495.49 24597.68 25087.81 28798.67 1399.02 5296.50 10094.48 28396.15 27886.90 28199.92 498.73 799.13 20498.74 212
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6798.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6499.17 699.05 4398.05 4199.61 1199.52 593.72 18099.88 1898.72 999.88 2399.65 23
v897.60 8498.06 3896.23 21298.71 12389.44 25597.43 9198.82 11497.29 7798.74 4899.10 3593.86 17599.68 12598.61 1099.94 899.56 35
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3998.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v124096.74 13797.02 11895.91 22898.18 18488.52 27095.39 20098.88 8593.15 23698.46 6998.40 8492.80 19899.71 10098.45 1399.49 11999.49 53
v119296.83 13197.06 11596.15 21798.28 17089.29 25795.36 20298.77 12193.73 21598.11 11098.34 8793.02 19599.67 13098.35 1499.58 8399.50 45
v192192096.72 14096.96 12195.99 22198.21 17988.79 26795.42 19698.79 11693.22 23098.19 10298.26 10492.68 20199.70 10998.34 1599.55 9599.49 53
Anonymous2023121198.55 1798.76 1397.94 9798.79 11294.37 14798.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
v14419296.69 14396.90 12596.03 22098.25 17588.92 26295.49 19298.77 12193.05 23898.09 11498.29 9892.51 21099.70 10998.11 1799.56 8999.47 62
Anonymous2024052197.07 11497.51 8595.76 23399.35 4388.18 27797.78 6598.40 18197.11 8098.34 8299.04 4089.58 25499.79 3998.09 1899.93 1099.30 107
v114496.84 12897.08 11396.13 21898.42 16089.28 25895.41 19898.67 14794.21 20197.97 12998.31 9093.06 19199.65 13898.06 1999.62 6999.45 69
SixPastTwentyTwo97.49 9297.57 8197.26 15699.56 1792.33 20498.28 3696.97 28098.30 3499.45 1499.35 1688.43 26799.89 1698.01 2099.76 4299.54 38
WR-MVS_H98.65 1598.62 2198.75 3399.51 2496.61 5798.55 1999.17 1999.05 1399.17 2998.79 5595.47 12799.89 1697.95 2199.91 1799.75 13
RRT_MVS94.90 21794.07 24697.39 14893.18 36293.21 18895.26 21197.49 26193.94 21098.25 9497.85 15572.96 35399.84 2597.90 2299.78 4199.14 143
UA-Net98.88 798.76 1399.22 299.11 8497.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
FC-MVSNet-test98.16 3398.37 2797.56 12499.49 2893.10 19198.35 2999.21 1498.43 2998.89 3998.83 5494.30 16599.81 3297.87 2499.91 1799.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8799.33 4595.21 11998.04 5299.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15999.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 15696.28 15796.95 17099.41 3791.53 22497.65 7490.31 35898.89 1998.93 3899.36 1484.57 29699.92 497.81 2699.56 8999.39 86
v2v48296.78 13597.06 11595.95 22598.57 14288.77 26895.36 20298.26 19795.18 16697.85 14398.23 10792.58 20599.63 14397.80 2799.69 5899.45 69
PS-CasMVS98.73 1198.85 1098.39 6099.55 1995.47 10198.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
nrg03098.54 1898.62 2198.32 6599.22 5995.66 9097.90 6099.08 3798.31 3399.02 3498.74 5997.68 2499.61 15897.77 2999.85 2899.70 18
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
ACMH93.61 998.44 2298.76 1397.51 12999.43 3493.54 18098.23 3999.05 4397.40 7399.37 1899.08 3798.79 599.47 19597.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4799.55 1996.12 7298.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
DROMVSNet97.90 6097.94 4497.79 10798.66 12995.14 12098.31 3399.66 297.57 6195.95 24297.01 22996.99 5599.82 2997.66 3399.64 6698.39 241
PEN-MVS98.75 1098.85 1098.44 5699.58 1595.67 8998.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
test_part196.77 13696.53 14697.47 13798.04 19892.92 19597.93 5798.85 9498.83 2199.30 2199.07 3879.25 31899.79 3997.59 3599.93 1099.69 20
CP-MVSNet98.42 2398.46 2498.30 6899.46 3095.22 11798.27 3898.84 9999.05 1399.01 3598.65 6795.37 13099.90 1397.57 3699.91 1799.77 8
EI-MVSNet-UG-set97.32 10597.40 9197.09 16497.34 27992.01 21695.33 20597.65 25397.74 5198.30 9198.14 11695.04 14099.69 11797.55 3799.52 10699.58 28
ANet_high98.31 2898.94 696.41 20599.33 4589.64 25197.92 5999.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16297.36 27492.08 21495.34 20497.65 25397.74 5198.29 9298.11 12195.05 13899.68 12597.50 3999.50 11599.56 35
EU-MVSNet94.25 24794.47 23393.60 30298.14 19182.60 34397.24 10092.72 33885.08 33198.48 6698.94 4682.59 30498.76 31397.47 4099.53 10199.44 79
Regformer-497.53 9097.47 9097.71 11397.35 27593.91 16395.26 21198.14 21697.97 4398.34 8297.89 15095.49 12499.71 10097.41 4199.42 14499.51 44
V4297.04 11597.16 10896.68 18998.59 14091.05 22996.33 14498.36 18694.60 18797.99 12598.30 9493.32 18699.62 15197.40 4299.53 10199.38 88
KD-MVS_self_test97.86 6598.07 3697.25 15799.22 5992.81 19797.55 8198.94 7497.10 8198.85 4198.88 5195.03 14199.67 13097.39 4399.65 6499.26 120
lessismore_v097.05 16699.36 4292.12 21284.07 37098.77 4798.98 4385.36 29099.74 7597.34 4499.37 15699.30 107
FIs97.93 5598.07 3697.48 13699.38 4092.95 19498.03 5499.11 2998.04 4298.62 5298.66 6593.75 17999.78 4397.23 4599.84 2999.73 15
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6599.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
bset_n11_16_dypcd94.53 23993.95 25296.25 21197.56 26089.85 24888.52 35991.32 34894.90 17997.51 15496.38 26882.34 30599.78 4397.22 4699.80 3699.12 151
MVS_Test96.27 16196.79 13194.73 27696.94 29886.63 30696.18 15398.33 19194.94 17696.07 23898.28 9995.25 13599.26 25697.21 4897.90 28898.30 254
TDRefinement98.90 598.86 899.02 999.54 2198.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
EG-PatchMatch MVS97.69 7897.79 5597.40 14799.06 8993.52 18195.96 16798.97 7094.55 19198.82 4398.76 5897.31 3699.29 25197.20 5099.44 13399.38 88
VPA-MVSNet98.27 2998.46 2497.70 11599.06 8993.80 16997.76 6899.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
Regformer-397.25 10997.29 9897.11 16297.35 27592.32 20595.26 21197.62 25897.67 5998.17 10397.89 15095.05 13899.56 16997.16 5299.42 14499.46 64
UniMVSNet (Re)97.83 6797.65 6998.35 6498.80 11195.86 8195.92 17199.04 4997.51 6698.22 9897.81 16194.68 15299.78 4397.14 5399.75 4699.41 83
pm-mvs198.47 2198.67 1797.86 10399.52 2394.58 13998.28 3699.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
baseline97.44 9697.78 5896.43 20298.52 14790.75 23796.84 11999.03 5096.51 9997.86 14298.02 13496.67 7499.36 23297.09 5499.47 12599.19 133
IterMVS-SCA-FT95.86 18096.19 16194.85 27097.68 25085.53 31792.42 31497.63 25796.99 8298.36 7998.54 7487.94 27199.75 6597.07 5699.08 21299.27 119
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6198.72 12095.78 8295.66 18499.02 5298.11 4098.31 8997.69 17494.65 15499.85 2297.02 5799.71 5499.48 59
DU-MVS97.79 7197.60 7898.36 6298.73 11895.78 8295.65 18798.87 8797.57 6198.31 8997.83 15794.69 15099.85 2297.02 5799.71 5499.46 64
RRT_test8_iter0592.46 28692.52 28292.29 33095.33 34077.43 36295.73 17898.55 16394.41 19397.46 16397.72 17157.44 37299.74 7596.92 5999.14 20099.69 20
EI-MVSNet96.63 14796.93 12295.74 23497.26 28488.13 28095.29 20997.65 25396.99 8297.94 13298.19 11292.55 20699.58 16296.91 6099.56 8999.50 45
IterMVS-LS96.92 12397.29 9895.79 23298.51 14888.13 28095.10 21998.66 14996.99 8298.46 6998.68 6492.55 20699.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test111194.53 23994.81 21493.72 29999.06 8981.94 34898.31 3383.87 37196.37 10598.49 6599.17 2981.49 30799.73 8196.64 6299.86 2599.49 53
APDe-MVS98.14 3498.03 4098.47 5598.72 12096.04 7598.07 5199.10 3195.96 12898.59 5798.69 6396.94 5899.81 3296.64 6299.58 8399.57 32
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2796.84 4995.38 20198.99 6392.45 25298.11 11098.31 9097.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 19996.07 16893.21 31196.29 31181.56 34994.60 24697.66 25193.30 22796.95 19598.91 4993.03 19499.38 22796.60 6497.30 31598.69 218
casdiffmvs97.50 9197.81 5496.56 19698.51 14891.04 23095.83 17699.09 3697.23 7898.33 8698.30 9497.03 5299.37 23096.58 6699.38 15599.28 115
Regformer-297.41 9897.24 10397.93 9897.21 28794.72 13294.85 23798.27 19597.74 5198.11 11097.50 18895.58 12299.69 11796.57 6799.31 17899.37 95
Regformer-197.27 10797.16 10897.61 12297.21 28793.86 16694.85 23798.04 23097.62 6098.03 12297.50 18895.34 13199.63 14396.52 6899.31 17899.35 98
TransMVSNet (Re)98.38 2598.67 1797.51 12999.51 2493.39 18498.20 4498.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10199.60 26
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2197.48 3298.35 2999.03 5095.88 13497.88 13898.22 11098.15 1299.74 7596.50 7099.62 6999.42 81
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1198.89 7998.49 2899.38 1799.14 3395.44 12999.84 2596.47 7199.80 3699.47 62
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5799.07 8895.87 8096.73 12999.05 4398.67 2498.84 4298.45 8097.58 2899.88 1896.45 7299.86 2599.54 38
test250689.86 31889.16 32391.97 33298.95 9976.83 36598.54 2061.07 37996.20 11397.07 18599.16 3055.19 37899.69 11796.43 7399.83 3199.38 88
Gipumacopyleft98.07 4098.31 2997.36 15099.76 596.28 6898.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30696.38 7499.50 11596.98 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 25093.93 25395.05 26195.83 32886.46 30795.18 21797.65 25392.41 25397.94 13298.00 13872.39 35499.58 16296.36 7599.56 8999.12 151
GeoE97.75 7497.70 6297.89 10098.88 10694.53 14097.10 10898.98 6695.75 14397.62 14997.59 18097.61 2799.77 5396.34 7699.44 13399.36 96
canonicalmvs97.23 11197.21 10697.30 15397.65 25494.39 14597.84 6399.05 4397.42 6996.68 20893.85 33197.63 2699.33 24096.29 7798.47 26898.18 266
alignmvs96.01 17395.52 18897.50 13297.77 24094.71 13396.07 15896.84 28397.48 6796.78 20594.28 32885.50 28999.40 21996.22 7898.73 25298.40 239
tttt051793.31 27492.56 28195.57 24098.71 12387.86 28497.44 8987.17 36695.79 14097.47 16296.84 23864.12 36799.81 3296.20 7999.32 17699.02 170
DeepC-MVS95.41 497.82 6997.70 6298.16 7998.78 11495.72 8496.23 15199.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.01 4497.66 6799.06 499.44 3297.90 1295.66 18498.73 12997.69 5797.90 13597.96 14095.81 11299.82 2996.13 8199.61 7599.45 69
MTAPA98.14 3497.84 5199.06 499.44 3297.90 1297.25 9898.73 12997.69 5797.90 13597.96 14095.81 11299.82 2996.13 8199.61 7599.45 69
CS-MVS95.98 17596.24 15895.20 25597.26 28489.88 24795.84 17599.39 993.89 21294.28 28695.15 30894.81 14799.62 15196.11 8399.40 15196.10 340
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4797.24 4197.45 8898.84 9995.76 14196.93 19697.43 19497.26 4099.79 3996.06 8499.53 10199.45 69
Patchmatch-RL test94.66 23294.49 23195.19 25698.54 14588.91 26392.57 31098.74 12791.46 26698.32 8797.75 16677.31 33198.81 30896.06 8499.61 7597.85 288
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4396.84 4996.36 14298.79 11695.07 17197.88 13898.35 8697.24 4299.72 8696.05 8699.58 8399.45 69
v14896.58 15096.97 11995.42 24898.63 13487.57 29195.09 22197.90 23495.91 13398.24 9697.96 14093.42 18599.39 22496.04 8799.52 10699.29 114
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7497.55 2796.68 13198.83 10695.21 16398.36 7998.13 11798.13 1499.62 15196.04 8799.54 9899.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 10197.25 10197.74 11198.69 12794.50 14397.04 11295.61 30998.59 2698.51 6298.72 6092.54 20899.58 16296.02 8999.49 11999.12 151
IterMVS95.42 19795.83 17794.20 29397.52 26383.78 33892.41 31597.47 26495.49 15498.06 11898.49 7787.94 27199.58 16296.02 8999.02 21999.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs96.04 17196.23 15995.46 24797.35 27588.03 28293.42 29199.08 3794.09 20696.66 20996.93 23393.85 17699.29 25196.01 9198.67 25499.06 164
PM-MVS97.36 10397.10 11198.14 8398.91 10496.77 5196.20 15298.63 15593.82 21398.54 6098.33 8893.98 17399.05 28495.99 9299.45 13298.61 226
Baseline_NR-MVSNet97.72 7697.79 5597.50 13299.56 1793.29 18595.44 19498.86 9098.20 3898.37 7699.24 2094.69 15099.55 17395.98 9399.79 3899.65 23
ECVR-MVScopyleft94.37 24594.48 23294.05 29698.95 9983.10 34098.31 3382.48 37296.20 11398.23 9799.16 3081.18 31099.66 13695.95 9499.83 3199.38 88
3Dnovator96.53 297.61 8397.64 7297.50 13297.74 24693.65 17898.49 2398.88 8596.86 8797.11 17998.55 7395.82 10899.73 8195.94 9599.42 14499.13 146
PatchT93.75 26293.57 25894.29 29295.05 34387.32 29796.05 15992.98 33497.54 6594.25 28798.72 6075.79 33999.24 25995.92 9695.81 33796.32 337
NR-MVSNet97.96 4697.86 5098.26 7098.73 11895.54 9498.14 4798.73 12997.79 4699.42 1597.83 15794.40 16399.78 4395.91 9799.76 4299.46 64
h-mvs3396.29 16095.63 18498.26 7098.50 15196.11 7396.90 11797.09 27596.58 9697.21 17298.19 11284.14 29799.78 4395.89 9896.17 33598.89 192
hse-mvs295.77 18295.09 19897.79 10797.84 22195.51 9695.66 18495.43 31496.58 9697.21 17296.16 27784.14 29799.54 17695.89 9896.92 31898.32 250
MSC_two_6792asdad98.22 7597.75 24395.34 10998.16 21399.75 6595.87 10099.51 11199.57 32
No_MVS98.22 7597.75 24395.34 10998.16 21399.75 6595.87 10099.51 11199.57 32
new-patchmatchnet95.67 18596.58 14092.94 31997.48 26580.21 35492.96 30298.19 20994.83 18098.82 4398.79 5593.31 18799.51 18695.83 10299.04 21899.12 151
FMVSNet197.95 5098.08 3597.56 12499.14 8293.67 17498.23 3998.66 14997.41 7299.00 3699.19 2495.47 12799.73 8195.83 10299.76 4299.30 107
DVP-MVS++97.96 4697.90 4598.12 8497.75 24395.40 10299.03 798.89 7996.62 9298.62 5298.30 9496.97 5699.75 6595.70 10499.25 18799.21 129
test_0728_THIRD96.62 9298.40 7398.28 9997.10 4599.71 10095.70 10499.62 6999.58 28
EGC-MVSNET83.08 33877.93 34198.53 5199.57 1697.55 2798.33 3298.57 1614.71 37410.38 37598.90 5095.60 12199.50 18795.69 10699.61 7598.55 231
RPMNet94.68 23194.60 22594.90 26795.44 33788.15 27896.18 15398.86 9097.43 6894.10 29198.49 7779.40 31799.76 5895.69 10695.81 33796.81 326
TSAR-MVS + MP.97.42 9797.23 10498.00 9499.38 4095.00 12497.63 7698.20 20493.00 24098.16 10498.06 13095.89 10399.72 8695.67 10899.10 21099.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_698.42 2398.19 3299.09 399.16 7198.10 697.73 7299.11 2997.76 5098.62 5298.27 10397.88 1999.80 3895.67 10899.50 11599.38 88
XVS97.96 4697.63 7498.94 1899.15 7497.66 2097.77 6698.83 10697.42 6996.32 22597.64 17696.49 8699.72 8695.66 11099.37 15699.45 69
X-MVStestdata92.86 28090.83 30598.94 1899.15 7497.66 2097.77 6698.83 10697.42 6996.32 22536.50 37296.49 8699.72 8695.66 11099.37 15699.45 69
3Dnovator+96.13 397.73 7597.59 7998.15 8298.11 19695.60 9298.04 5298.70 13998.13 3996.93 19698.45 8095.30 13499.62 15195.64 11298.96 22399.24 126
DELS-MVS96.17 16696.23 15995.99 22197.55 26290.04 24492.38 31698.52 16594.13 20496.55 21697.06 22494.99 14399.58 16295.62 11399.28 18398.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 5297.64 7298.83 2699.15 7497.50 3097.59 7898.84 9996.05 12197.49 15797.54 18397.07 4899.70 10995.61 11499.46 12899.30 107
ACMMPR97.95 5097.62 7698.94 1899.20 6797.56 2697.59 7898.83 10696.05 12197.46 16397.63 17796.77 7199.76 5895.61 11499.46 12899.49 53
UGNet96.81 13396.56 14297.58 12396.64 30393.84 16897.75 6997.12 27496.47 10393.62 30998.88 5193.22 18999.53 17895.61 11499.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3697.46 3398.57 1799.05 4395.43 15797.41 16697.50 18897.98 1599.79 3995.58 11799.57 8699.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10998.05 997.55 8198.86 9097.77 4798.20 9998.07 12596.60 8099.76 5895.49 11899.20 19299.26 120
RE-MVS-def97.88 4998.81 10998.05 997.55 8198.86 9097.77 4798.20 9998.07 12596.94 5895.49 11899.20 19299.26 120
Anonymous2024052997.96 4698.04 3997.71 11398.69 12794.28 15297.86 6298.31 19498.79 2299.23 2698.86 5395.76 11599.61 15895.49 11899.36 15999.23 127
DVP-MVScopyleft97.78 7297.65 6998.16 7999.24 5495.51 9696.74 12598.23 20095.92 13198.40 7398.28 9997.06 5099.71 10095.48 12199.52 10699.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 5695.49 10096.74 12598.89 7999.75 6595.48 12199.52 10699.53 41
region2R97.92 5697.59 7998.92 2299.22 5997.55 2797.60 7798.84 9996.00 12697.22 17097.62 17896.87 6799.76 5895.48 12199.43 14199.46 64
pmmvs-eth3d96.49 15396.18 16297.42 14598.25 17594.29 14994.77 24198.07 22789.81 28497.97 12998.33 8893.11 19099.08 28195.46 12499.84 2998.89 192
SED-MVS97.94 5297.90 4598.07 8799.22 5995.35 10796.79 12298.83 10696.11 11899.08 3198.24 10597.87 2099.72 8695.44 12599.51 11199.14 143
test_241102_TWO98.83 10696.11 11898.62 5298.24 10596.92 6299.72 8695.44 12599.49 11999.49 53
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11297.31 3897.55 8198.92 7697.72 5498.25 9498.13 11797.10 4599.75 6595.44 12599.24 19099.32 101
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
xiu_mvs_v1_base95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 28098.01 20288.42 27193.99 27298.21 20192.98 24195.91 24494.53 32196.39 9299.72 8695.43 12898.19 27695.64 346
c3_l95.20 20595.32 19194.83 27296.19 31786.43 30991.83 32498.35 19093.47 22197.36 16797.26 21288.69 26499.28 25395.41 13199.36 15998.78 207
CS-MVS-test96.62 14896.59 13896.69 18797.88 21693.16 18997.21 10299.53 695.61 14893.72 30495.33 30595.49 12499.69 11795.37 13299.19 19697.22 309
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5697.60 2398.09 5098.96 7195.75 14397.91 13498.06 13096.89 6499.76 5895.32 13399.57 8699.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117298.08 3997.76 5999.05 698.78 11498.07 797.41 9398.85 9497.57 6198.15 10697.96 14096.60 8099.76 5895.30 13499.18 19799.33 100
miper_lstm_enhance94.81 22294.80 21594.85 27096.16 31986.45 30891.14 33798.20 20493.49 22097.03 18897.37 20484.97 29399.26 25695.28 13599.56 8998.83 201
MSLP-MVS++96.42 15896.71 13395.57 24097.82 22490.56 24195.71 17998.84 9994.72 18396.71 20797.39 20094.91 14698.10 35495.28 13599.02 21998.05 278
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3497.21 4397.15 10498.90 7896.58 9698.08 11697.87 15497.02 5399.76 5895.25 13799.59 8199.40 84
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 10197.70 6296.35 20698.14 19195.13 12196.54 13498.92 7695.94 13099.19 2898.08 12397.74 2295.06 36895.24 13899.54 9898.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 5995.40 10298.14 21685.77 32398.36 7995.23 13999.51 11199.49 53
CP-MVS97.92 5697.56 8298.99 1398.99 9797.82 1697.93 5798.96 7196.11 11896.89 19997.45 19296.85 6899.78 4395.19 14099.63 6899.38 88
LS3D97.77 7397.50 8798.57 4896.24 31397.58 2598.45 2698.85 9498.58 2797.51 15497.94 14595.74 11699.63 14395.19 14098.97 22298.51 233
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10896.67 5496.74 12598.73 12991.61 26398.48 6698.36 8596.53 8399.68 12595.17 14299.54 9899.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 27592.79 27394.78 27495.44 33788.15 27896.18 15397.20 26984.94 33594.10 29198.57 7077.67 32699.39 22495.17 14295.81 33796.81 326
OPM-MVS97.54 8897.25 10198.41 5899.11 8496.61 5795.24 21498.46 17094.58 19098.10 11398.07 12597.09 4799.39 22495.16 14499.44 13399.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 5997.53 8399.04 799.22 5997.87 1597.74 7098.78 12096.04 12397.10 18097.73 16996.53 8399.78 4395.16 14499.50 11599.46 64
DIV-MVS_self_test94.73 22494.64 22195.01 26295.86 32687.00 30191.33 33198.08 22393.34 22597.10 18097.34 20684.02 29999.31 24495.15 14699.55 9598.72 215
cl____94.73 22494.64 22195.01 26295.85 32787.00 30191.33 33198.08 22393.34 22597.10 18097.33 20784.01 30099.30 24795.14 14799.56 8998.71 217
MSP-MVS97.45 9596.92 12399.03 899.26 5097.70 1997.66 7398.89 7995.65 14598.51 6296.46 26292.15 21599.81 3295.14 14798.58 26499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 12096.84 12697.41 14699.40 3893.26 18697.94 5695.31 31599.26 798.39 7599.18 2787.85 27699.62 15195.13 14999.09 21199.35 98
CANet95.86 18095.65 18396.49 19996.41 30990.82 23494.36 25298.41 17994.94 17692.62 33596.73 24792.68 20199.71 10095.12 15099.60 7998.94 179
CNVR-MVS96.92 12396.55 14398.03 9398.00 20695.54 9494.87 23598.17 21094.60 18796.38 22297.05 22595.67 11899.36 23295.12 15099.08 21299.19 133
eth_miper_zixun_eth94.89 21894.93 20694.75 27595.99 32486.12 31291.35 33098.49 16893.40 22297.12 17897.25 21386.87 28399.35 23595.08 15298.82 24298.78 207
GST-MVS97.82 6997.49 8898.81 2999.23 5697.25 4097.16 10398.79 11695.96 12897.53 15297.40 19696.93 6099.77 5395.04 15399.35 16499.42 81
DP-MVS97.87 6397.89 4897.81 10698.62 13594.82 12997.13 10798.79 11698.98 1798.74 4898.49 7795.80 11499.49 18995.04 15399.44 13399.11 155
D2MVS95.18 20695.17 19595.21 25497.76 24187.76 28994.15 26497.94 23289.77 28596.99 19197.68 17587.45 27899.14 27295.03 15599.81 3398.74 212
SR-MVS98.00 4597.66 6799.01 1198.77 11697.93 1197.38 9498.83 10697.32 7598.06 11897.85 15596.65 7599.77 5395.00 15699.11 20899.32 101
FMVSNet296.72 14096.67 13696.87 17697.96 20891.88 21897.15 10498.06 22895.59 15098.50 6498.62 6889.51 25899.65 13894.99 15799.60 7999.07 162
miper_ehance_all_eth94.69 22994.70 21894.64 27795.77 33086.22 31191.32 33398.24 19991.67 26297.05 18696.65 25288.39 26899.22 26394.88 15898.34 27198.49 235
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6899.01 9697.41 3694.66 24499.02 5295.20 16498.15 10697.52 18698.83 498.43 33994.87 15996.41 33199.07 162
MVS_111021_HR96.73 13996.54 14597.27 15498.35 16593.66 17793.42 29198.36 18694.74 18296.58 21296.76 24696.54 8298.99 29194.87 15999.27 18599.15 140
test_040297.84 6697.97 4197.47 13799.19 6994.07 15896.71 13098.73 12998.66 2598.56 5998.41 8296.84 6999.69 11794.82 16199.81 3398.64 221
MVS_111021_LR96.82 13296.55 14397.62 12198.27 17295.34 10993.81 28198.33 19194.59 18996.56 21496.63 25396.61 7898.73 31594.80 16299.34 16798.78 207
WR-MVS96.90 12596.81 12897.16 15998.56 14392.20 21094.33 25398.12 21997.34 7498.20 9997.33 20792.81 19799.75 6594.79 16399.81 3399.54 38
ACMH+93.58 1098.23 3298.31 2997.98 9599.39 3995.22 11797.55 8199.20 1698.21 3799.25 2598.51 7698.21 1199.40 21994.79 16399.72 5199.32 101
thisisatest053092.71 28391.76 29195.56 24298.42 16088.23 27596.03 16187.35 36594.04 20796.56 21495.47 30364.03 36899.77 5394.78 16599.11 20898.68 220
PGM-MVS97.88 6297.52 8498.96 1699.20 6797.62 2297.09 10999.06 4195.45 15597.55 15197.94 14597.11 4499.78 4394.77 16699.46 12899.48 59
TSAR-MVS + GP.96.47 15596.12 16497.49 13597.74 24695.23 11494.15 26496.90 28293.26 22898.04 12196.70 24994.41 16298.89 30194.77 16699.14 20098.37 243
VNet96.84 12896.83 12796.88 17598.06 19792.02 21596.35 14397.57 26097.70 5697.88 13897.80 16292.40 21299.54 17694.73 16898.96 22399.08 160
VPNet97.26 10897.49 8896.59 19299.47 2990.58 23996.27 14698.53 16497.77 4798.46 6998.41 8294.59 15699.68 12594.61 16999.29 18299.52 42
GBi-Net96.99 11796.80 12997.56 12497.96 20893.67 17498.23 3998.66 14995.59 15097.99 12599.19 2489.51 25899.73 8194.60 17099.44 13399.30 107
test196.99 11796.80 12997.56 12497.96 20893.67 17498.23 3998.66 14995.59 15097.99 12599.19 2489.51 25899.73 8194.60 17099.44 13399.30 107
FMVSNet395.26 20494.94 20496.22 21496.53 30690.06 24395.99 16497.66 25194.11 20597.99 12597.91 14980.22 31699.63 14394.60 17099.44 13398.96 176
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 10098.48 15494.71 13394.53 24999.07 4095.02 17497.83 14497.88 15296.44 9099.72 8694.59 17399.39 15399.25 124
SF-MVS97.60 8497.39 9298.22 7598.93 10295.69 8697.05 11199.10 3195.32 16097.83 14497.88 15296.44 9099.72 8694.59 17399.39 15399.25 124
MVS_030495.50 19095.05 20296.84 17896.28 31293.12 19097.00 11496.16 29595.03 17389.22 35797.70 17290.16 24999.48 19294.51 17599.34 16797.93 285
XXY-MVS97.54 8897.70 6297.07 16599.46 3092.21 20897.22 10199.00 6094.93 17898.58 5898.92 4897.31 3699.41 21794.44 17699.43 14199.59 27
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20198.48 15491.52 22595.31 20798.45 17195.76 14197.48 16097.54 18389.53 25798.69 31994.43 17794.61 35099.13 146
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7497.02 4497.09 10999.02 5295.15 16798.34 8298.23 10797.91 1799.70 10994.41 17899.73 4899.50 45
LGP-MVS_train98.74 3599.15 7497.02 4499.02 5295.15 16798.34 8298.23 10797.91 1799.70 10994.41 17899.73 4899.50 45
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6797.48 26597.23 4292.56 31198.60 15792.84 24798.54 6097.40 19696.64 7798.78 31094.40 18099.41 15098.93 183
#test#97.62 8297.22 10598.83 2699.15 7497.50 3096.81 12198.84 9994.25 20097.49 15797.54 18397.07 4899.70 10994.37 18199.46 12899.30 107
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5399.16 7196.90 4896.39 13998.98 6695.05 17298.06 11898.02 13495.86 10499.56 16994.37 18199.64 6699.00 171
RPSCF97.87 6397.51 8598.95 1799.15 7498.43 397.56 8099.06 4196.19 11598.48 6698.70 6294.72 14999.24 25994.37 18199.33 17499.17 136
CSCG97.40 9997.30 9797.69 11798.95 9994.83 12897.28 9798.99 6396.35 10898.13 10995.95 29095.99 10199.66 13694.36 18499.73 4898.59 227
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 13097.59 2495.97 16698.20 20495.51 15395.06 26696.53 25894.10 17099.70 10994.29 18599.15 19999.13 146
XVG-OURS97.12 11396.74 13298.26 7098.99 9797.45 3493.82 27999.05 4395.19 16598.32 8797.70 17295.22 13698.41 34094.27 18698.13 27998.93 183
jason94.39 24494.04 24895.41 25098.29 16887.85 28692.74 30896.75 28885.38 33095.29 26296.15 27888.21 27099.65 13894.24 18799.34 16798.74 212
jason: jason.
CVMVSNet92.33 29092.79 27390.95 33897.26 28475.84 36895.29 20992.33 34181.86 34596.27 22998.19 11281.44 30898.46 33894.23 18898.29 27498.55 231
EIA-MVS96.04 17195.77 18096.85 17797.80 22992.98 19396.12 15699.16 2094.65 18593.77 30291.69 35695.68 11799.67 13094.18 18998.85 23997.91 286
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24696.41 30989.15 26191.54 32790.23 35989.07 28986.78 36792.84 34269.39 36299.44 20594.16 19096.61 32897.82 290
cl2293.25 27692.84 27294.46 28694.30 35186.00 31391.09 33996.64 29290.74 27495.79 24996.31 27178.24 32398.77 31194.15 19198.34 27198.62 224
MCST-MVS96.24 16295.80 17897.56 12498.75 11794.13 15794.66 24498.17 21090.17 28196.21 23396.10 28395.14 13799.43 20794.13 19298.85 23999.13 146
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6697.35 3797.96 5599.16 2098.34 3298.78 4598.52 7597.32 3599.45 20294.08 19399.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 15995.98 17297.43 14498.25 17593.85 16796.74 12594.41 32297.72 5498.37 7698.03 13387.15 28099.53 17894.06 19499.07 21498.92 187
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 30098.69 296.42 13898.09 22195.86 13695.15 26595.54 30194.26 16699.81 3294.06 19498.51 26798.47 236
mvs-test196.20 16495.50 18998.32 6596.90 30098.16 595.07 22498.09 22195.86 13693.63 30894.32 32794.26 16699.71 10094.06 19497.27 31697.07 312
ambc96.56 19698.23 17891.68 22397.88 6198.13 21898.42 7298.56 7294.22 16899.04 28594.05 19799.35 16498.95 177
our_test_394.20 25294.58 22893.07 31396.16 31981.20 35190.42 34596.84 28390.72 27597.14 17697.13 21790.47 24199.11 27794.04 19898.25 27598.91 188
pmmvs594.63 23494.34 23895.50 24497.63 25688.34 27494.02 27097.13 27387.15 31095.22 26497.15 21687.50 27799.27 25593.99 19999.26 18698.88 196
DPE-MVScopyleft97.64 8097.35 9598.50 5298.85 10796.18 6995.21 21698.99 6395.84 13898.78 4598.08 12396.84 6999.81 3293.98 20099.57 8699.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 24194.84 21193.46 30596.16 31982.10 34590.59 34397.48 26390.53 27797.01 19097.59 18091.01 23499.36 23293.97 20199.18 19798.94 179
tfpnnormal97.72 7697.97 4196.94 17199.26 5092.23 20797.83 6498.45 17198.25 3599.13 3098.66 6596.65 7599.69 11793.92 20299.62 6998.91 188
LFMVS95.32 20194.88 20996.62 19098.03 19991.47 22697.65 7490.72 35599.11 997.89 13798.31 9079.20 31999.48 19293.91 20399.12 20798.93 183
EPP-MVSNet96.84 12896.58 14097.65 11999.18 7093.78 17198.68 1296.34 29397.91 4597.30 16898.06 13088.46 26699.85 2293.85 20499.40 15199.32 101
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14897.18 28994.39 14595.46 19398.73 12996.03 12594.72 27494.92 31596.28 9899.69 11793.81 20597.98 28498.09 268
PHI-MVS96.96 12196.53 14698.25 7397.48 26596.50 6096.76 12498.85 9493.52 21996.19 23496.85 23795.94 10299.42 20893.79 20699.43 14198.83 201
miper_enhance_ethall93.14 27892.78 27594.20 29393.65 35985.29 32189.97 34997.85 23785.05 33296.15 23794.56 32085.74 28799.14 27293.74 20798.34 27198.17 267
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14397.69 24994.15 15696.02 16298.43 17493.17 23597.30 16897.38 20295.48 12699.28 25393.74 20799.34 16798.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 26092.69 27797.74 11197.80 22995.38 10495.57 19195.46 31391.26 27092.64 33396.10 28374.67 34299.55 17393.72 20996.97 31798.30 254
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4797.77 1897.49 8798.73 12996.27 10995.59 25797.75 16696.30 9699.78 4393.70 21099.48 12399.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20399.28 4990.62 23895.31 20799.08 3788.40 29896.97 19498.17 11592.11 21799.78 4393.64 21199.21 19198.86 199
lupinMVS93.77 26193.28 26295.24 25397.68 25087.81 28792.12 31996.05 29784.52 33794.48 28395.06 31186.90 28199.63 14393.62 21299.13 20498.27 258
NCCC96.52 15295.99 17198.10 8597.81 22595.68 8895.00 23098.20 20495.39 15895.40 26196.36 26993.81 17799.45 20293.55 21398.42 26999.17 136
ETV-MVS96.13 16895.90 17696.82 17997.76 24193.89 16495.40 19998.95 7395.87 13595.58 25891.00 36296.36 9599.72 8693.36 21498.83 24196.85 322
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28797.48 26585.15 32490.28 34795.87 30392.52 24997.48 16097.76 16391.92 22599.17 26993.32 21596.80 32498.94 179
YYNet194.73 22494.84 21194.41 28897.47 26985.09 32690.29 34695.85 30492.52 24997.53 15297.76 16391.97 22199.18 26593.31 21696.86 32198.95 177
pmmvs494.82 22194.19 24396.70 18697.42 27292.75 19992.09 32196.76 28786.80 31495.73 25497.22 21489.28 26198.89 30193.28 21799.14 20098.46 238
CANet_DTU94.65 23394.21 24295.96 22395.90 32589.68 25093.92 27697.83 24193.19 23190.12 35295.64 29888.52 26599.57 16893.27 21899.47 12598.62 224
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9496.70 5396.24 15098.89 7993.71 21697.97 12997.75 16697.44 3099.63 14393.22 21999.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 16596.01 16996.71 18597.43 27192.19 21196.12 15699.10 3195.45 15593.33 32194.71 31897.23 4399.56 16993.21 22097.54 30598.37 243
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23498.48 15488.76 26992.84 30397.25 26796.00 12697.59 15097.95 14491.38 23199.46 19893.16 22196.35 33298.99 174
IS-MVSNet96.93 12296.68 13597.70 11599.25 5394.00 16198.57 1796.74 28998.36 3198.14 10897.98 13988.23 26999.71 10093.10 22299.72 5199.38 88
9.1496.69 13498.53 14696.02 16298.98 6693.23 22997.18 17497.46 19196.47 8899.62 15192.99 22399.32 176
MS-PatchMatch94.83 22094.91 20894.57 28396.81 30287.10 30094.23 25997.34 26688.74 29597.14 17697.11 22091.94 22398.23 35092.99 22397.92 28698.37 243
Patchmtry95.03 21494.59 22796.33 20794.83 34590.82 23496.38 14197.20 26996.59 9597.49 15798.57 7077.67 32699.38 22792.95 22599.62 6998.80 204
ETH3D-3000-0.196.89 12796.46 15198.16 7998.62 13595.69 8695.96 16798.98 6693.36 22497.04 18797.31 20994.93 14599.63 14392.60 22699.34 16799.17 136
Fast-Effi-MVS+95.49 19195.07 19996.75 18397.67 25392.82 19694.22 26098.60 15791.61 26393.42 31992.90 34196.73 7399.70 10992.60 22697.89 28997.74 293
HQP_MVS96.66 14696.33 15697.68 11898.70 12594.29 14996.50 13598.75 12596.36 10696.16 23596.77 24491.91 22699.46 19892.59 22899.20 19299.28 115
plane_prior598.75 12599.46 19892.59 22899.20 19299.28 115
GA-MVS92.83 28192.15 28694.87 26996.97 29587.27 29890.03 34896.12 29691.83 26194.05 29494.57 31976.01 33898.97 29792.46 23097.34 31398.36 248
CPTT-MVS96.69 14396.08 16798.49 5398.89 10596.64 5697.25 9898.77 12192.89 24696.01 24197.13 21792.23 21499.67 13092.24 23199.34 16799.17 136
EPNet93.72 26392.62 28097.03 16887.61 37792.25 20696.27 14691.28 34996.74 9087.65 36397.39 20085.00 29299.64 14192.14 23299.48 12399.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 30898.37 7697.44 19397.00 5496.78 36592.01 23399.25 18799.21 129
APD-MVScopyleft97.00 11696.53 14698.41 5898.55 14496.31 6696.32 14598.77 12192.96 24597.44 16597.58 18295.84 10599.74 7591.96 23499.35 16499.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 21294.79 21695.82 23197.51 26489.79 24991.14 33796.82 28593.05 23896.72 20696.40 26690.82 23799.16 27091.95 23598.66 25698.50 234
test_prior395.91 17795.39 19097.46 14097.79 23594.26 15393.33 29698.42 17794.21 20194.02 29596.25 27393.64 18199.34 23791.90 23698.96 22398.79 205
test_prior293.33 29694.21 20194.02 29596.25 27393.64 18191.90 23698.96 223
test-LLR89.97 31689.90 31490.16 34294.24 35374.98 36989.89 35089.06 36192.02 25689.97 35390.77 36373.92 34598.57 33091.88 23897.36 31196.92 317
test-mter87.92 33287.17 33390.16 34294.24 35374.98 36989.89 35089.06 36186.44 31689.97 35390.77 36354.96 37998.57 33091.88 23897.36 31196.92 317
MVP-Stereo95.69 18395.28 19296.92 17298.15 19093.03 19295.64 18998.20 20490.39 27896.63 21197.73 16991.63 22999.10 27991.84 24097.31 31498.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
1112_ss94.12 25393.42 26096.23 21298.59 14090.85 23394.24 25898.85 9485.49 32592.97 32594.94 31386.01 28699.64 14191.78 24197.92 28698.20 264
train_agg95.46 19594.66 21997.88 10297.84 22195.23 11493.62 28598.39 18287.04 31193.78 30095.99 28594.58 15799.52 18291.76 24298.90 23198.89 192
LF4IMVS96.07 16995.63 18497.36 15098.19 18195.55 9395.44 19498.82 11492.29 25495.70 25596.55 25692.63 20498.69 31991.75 24399.33 17497.85 288
agg_prior195.39 19894.60 22597.75 11097.80 22994.96 12593.39 29398.36 18687.20 30993.49 31495.97 28894.65 15499.53 17891.69 24498.86 23798.77 210
N_pmnet95.18 20694.23 24098.06 8997.85 21796.55 5992.49 31291.63 34689.34 28798.09 11497.41 19590.33 24399.06 28391.58 24599.31 17898.56 229
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8697.91 21295.65 9194.94 23298.74 12791.31 26996.02 24097.08 22294.05 17299.69 11791.51 24698.94 22798.93 183
AllTest97.20 11296.92 12398.06 8999.08 8696.16 7097.14 10699.16 2094.35 19697.78 14798.07 12595.84 10599.12 27491.41 24799.42 14498.91 188
TestCases98.06 8999.08 8696.16 7099.16 2094.35 19697.78 14798.07 12595.84 10599.12 27491.41 24799.42 14498.91 188
test9_res91.29 24998.89 23499.00 171
xiu_mvs_v2_base94.22 24894.63 22392.99 31797.32 28284.84 32992.12 31997.84 23991.96 25894.17 28993.43 33296.07 10099.71 10091.27 25097.48 30894.42 355
PS-MVSNAJ94.10 25494.47 23393.00 31697.35 27584.88 32891.86 32397.84 23991.96 25894.17 28992.50 34895.82 10899.71 10091.27 25097.48 30894.40 356
tpm91.08 30690.85 30491.75 33395.33 34078.09 35895.03 22991.27 35088.75 29493.53 31397.40 19671.24 35699.30 24791.25 25293.87 35397.87 287
OPU-MVS97.64 12098.01 20295.27 11296.79 12297.35 20596.97 5698.51 33691.21 25399.25 18799.14 143
ZD-MVS98.43 15995.94 7998.56 16290.72 27596.66 20997.07 22395.02 14299.74 7591.08 25498.93 229
tpmrst90.31 31190.61 30989.41 34594.06 35672.37 37495.06 22693.69 32588.01 30292.32 33896.86 23677.45 32898.82 30691.04 25587.01 36797.04 314
sss94.22 24893.72 25695.74 23497.71 24889.95 24693.84 27896.98 27988.38 29993.75 30395.74 29487.94 27198.89 30191.02 25698.10 28098.37 243
ITE_SJBPF97.85 10498.64 13096.66 5598.51 16795.63 14697.22 17097.30 21095.52 12398.55 33390.97 25798.90 23198.34 249
Test_1112_low_res93.53 27092.86 27095.54 24398.60 13888.86 26592.75 30698.69 14282.66 34492.65 33296.92 23584.75 29499.56 16990.94 25897.76 29298.19 265
TESTMET0.1,187.20 33586.57 33789.07 34693.62 36072.84 37389.89 35087.01 36785.46 32789.12 35890.20 36556.00 37797.72 35890.91 25996.92 31896.64 331
FMVSNet593.39 27292.35 28396.50 19895.83 32890.81 23697.31 9598.27 19592.74 24896.27 22998.28 9962.23 36999.67 13090.86 26099.36 15999.03 168
PatchmatchNetpermissive91.98 29691.87 28892.30 32994.60 34879.71 35595.12 21893.59 32989.52 28693.61 31097.02 22777.94 32499.18 26590.84 26194.57 35298.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 19495.07 19996.69 18798.27 17292.53 20191.36 32998.67 14791.22 27195.78 25194.12 32995.65 11998.98 29390.81 26299.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 29791.35 29593.51 30494.27 35285.60 31688.86 35898.61 15679.32 35792.16 33991.44 35889.22 26298.12 35390.80 26397.47 31096.82 325
test20.0396.58 15096.61 13796.48 20098.49 15291.72 22295.68 18397.69 24896.81 8898.27 9397.92 14894.18 16998.71 31790.78 26499.66 6399.00 171
test_yl94.40 24294.00 24995.59 23896.95 29689.52 25394.75 24295.55 31196.18 11696.79 20196.14 28081.09 31199.18 26590.75 26597.77 29098.07 271
DCV-MVSNet94.40 24294.00 24995.59 23896.95 29689.52 25394.75 24295.55 31196.18 11696.79 20196.14 28081.09 31199.18 26590.75 26597.77 29098.07 271
EPMVS89.26 32288.55 32691.39 33592.36 37079.11 35695.65 18779.86 37388.60 29693.12 32396.53 25870.73 36098.10 35490.75 26589.32 36496.98 315
旧先验293.35 29577.95 36395.77 25398.67 32390.74 268
USDC94.56 23794.57 23094.55 28497.78 23986.43 30992.75 30698.65 15485.96 31996.91 19897.93 14790.82 23798.74 31490.71 26999.59 8198.47 236
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20897.16 29091.96 21797.74 7098.84 9987.26 30794.36 28598.01 13693.95 17499.67 13090.70 27098.75 24897.35 308
Patchmatch-test93.60 26893.25 26494.63 27896.14 32287.47 29396.04 16094.50 32193.57 21896.47 21896.97 23076.50 33498.61 32790.67 27198.41 27097.81 292
DWT-MVSNet_test87.92 33286.77 33691.39 33593.18 36278.62 35795.10 21991.42 34785.58 32488.00 36188.73 36760.60 37098.90 29990.60 27287.70 36696.65 330
thisisatest051590.43 31089.18 32294.17 29597.07 29385.44 31889.75 35487.58 36488.28 30093.69 30791.72 35565.27 36699.58 16290.59 27398.67 25497.50 303
DP-MVS Recon95.55 18995.13 19696.80 18098.51 14893.99 16294.60 24698.69 14290.20 28095.78 25196.21 27692.73 20098.98 29390.58 27498.86 23797.42 305
testtj96.69 14396.13 16398.36 6298.46 15896.02 7796.44 13798.70 13994.26 19996.79 20197.13 21794.07 17199.75 6590.53 27598.80 24399.31 106
TinyColmap96.00 17496.34 15594.96 26497.90 21487.91 28394.13 26798.49 16894.41 19398.16 10497.76 16396.29 9798.68 32290.52 27699.42 14498.30 254
BP-MVS90.51 277
HQP-MVS95.17 20894.58 22896.92 17297.85 21792.47 20294.26 25498.43 17493.18 23292.86 32795.08 30990.33 24399.23 26190.51 27798.74 24999.05 166
OMC-MVS96.48 15496.00 17097.91 9998.30 16796.01 7894.86 23698.60 15791.88 26097.18 17497.21 21596.11 9999.04 28590.49 27999.34 16798.69 218
ab-mvs96.59 14996.59 13896.60 19198.64 13092.21 20898.35 2997.67 24994.45 19296.99 19198.79 5594.96 14499.49 18990.39 28099.07 21498.08 269
HyFIR lowres test93.72 26392.65 27896.91 17498.93 10291.81 22191.23 33598.52 16582.69 34396.46 21996.52 26080.38 31599.90 1390.36 28198.79 24499.03 168
agg_prior290.34 28298.90 23199.10 159
LCM-MVSNet-Re97.33 10497.33 9697.32 15298.13 19493.79 17096.99 11599.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28399.06 21798.32 250
CDS-MVSNet94.88 21994.12 24597.14 16197.64 25593.57 17993.96 27597.06 27790.05 28296.30 22896.55 25686.10 28599.47 19590.10 28499.31 17898.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 19694.65 22097.84 10598.28 17094.96 12593.73 28398.33 19185.03 33395.44 25996.60 25495.31 13399.44 20590.01 28599.13 20499.11 155
baseline193.14 27892.64 27994.62 27997.34 27987.20 29996.67 13293.02 33394.71 18496.51 21795.83 29381.64 30698.60 32990.00 28688.06 36598.07 271
TAPA-MVS93.32 1294.93 21694.23 24097.04 16798.18 18494.51 14195.22 21598.73 12981.22 35096.25 23195.95 29093.80 17898.98 29389.89 28798.87 23597.62 298
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 28791.08 29996.30 21093.12 36592.81 19790.58 34495.96 30179.17 35891.85 34292.27 34990.29 24798.66 32489.85 28896.68 32797.43 304
PVSNet_BlendedMVS95.02 21594.93 20695.27 25297.79 23587.40 29594.14 26698.68 14488.94 29294.51 28198.01 13693.04 19299.30 24789.77 28999.49 11999.11 155
PVSNet_Blended93.96 25893.65 25794.91 26597.79 23587.40 29591.43 32898.68 14484.50 33894.51 28194.48 32493.04 19299.30 24789.77 28998.61 26198.02 281
MSDG95.33 20095.13 19695.94 22797.40 27391.85 21991.02 34098.37 18595.30 16196.31 22795.99 28594.51 16098.38 34389.59 29197.65 30297.60 300
PMVScopyleft89.60 1796.71 14296.97 11995.95 22599.51 2497.81 1797.42 9297.49 26197.93 4495.95 24298.58 6996.88 6696.91 36289.59 29199.36 15993.12 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 23110.37 37676.21 33799.04 28589.47 293
SCA93.38 27393.52 25992.96 31896.24 31381.40 35093.24 29894.00 32491.58 26594.57 27896.97 23087.94 27199.42 20889.47 29397.66 30198.06 275
tpmvs90.79 30990.87 30390.57 34192.75 36976.30 36695.79 17793.64 32891.04 27391.91 34196.26 27277.19 33298.86 30589.38 29589.85 36396.56 334
Anonymous2023120695.27 20395.06 20195.88 22998.72 12089.37 25695.70 18097.85 23788.00 30396.98 19397.62 17891.95 22299.34 23789.21 29699.53 10198.94 179
CHOSEN 1792x268894.10 25493.41 26196.18 21699.16 7190.04 24492.15 31898.68 14479.90 35596.22 23297.83 15787.92 27599.42 20889.18 29799.65 6499.08 160
114514_t93.96 25893.22 26596.19 21599.06 8990.97 23295.99 16498.94 7473.88 36893.43 31896.93 23392.38 21399.37 23089.09 29899.28 18398.25 260
pmmvs390.00 31488.90 32493.32 30694.20 35585.34 31991.25 33492.56 34078.59 35993.82 29995.17 30767.36 36598.69 31989.08 29998.03 28395.92 341
testdata95.70 23798.16 18890.58 23997.72 24680.38 35395.62 25697.02 22792.06 22098.98 29389.06 30098.52 26597.54 301
MDTV_nov1_ep1391.28 29694.31 35073.51 37294.80 23993.16 33286.75 31593.45 31797.40 19676.37 33598.55 33388.85 30196.43 330
PMMVS293.66 26694.07 24692.45 32797.57 25880.67 35386.46 36296.00 29993.99 20897.10 18097.38 20289.90 25197.82 35688.76 30299.47 12598.86 199
QAPM95.88 17995.57 18796.80 18097.90 21491.84 22098.18 4698.73 12988.41 29796.42 22098.13 11794.73 14899.75 6588.72 30398.94 22798.81 203
CHOSEN 280x42089.98 31589.19 32192.37 32895.60 33481.13 35286.22 36397.09 27581.44 34987.44 36493.15 33373.99 34399.47 19588.69 30499.07 21496.52 335
testgi96.07 16996.50 15094.80 27399.26 5087.69 29095.96 16798.58 16095.08 17098.02 12496.25 27397.92 1697.60 35988.68 30598.74 24999.11 155
CostFormer89.75 31989.25 31791.26 33794.69 34778.00 36095.32 20691.98 34381.50 34890.55 34896.96 23271.06 35898.89 30188.59 30692.63 35796.87 320
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21998.62 13590.54 24293.38 29498.05 22990.30 27997.02 18996.80 24389.54 25599.16 27088.44 30796.18 33498.56 229
TAMVS95.49 19194.94 20497.16 15998.31 16693.41 18395.07 22496.82 28591.09 27297.51 15497.82 16089.96 25099.42 20888.42 30899.44 13398.64 221
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 23099.12 8389.17 25997.54 8694.92 31796.50 10096.58 21297.27 21183.64 30199.48 19288.42 30899.67 6198.97 175
EPNet_dtu91.39 30390.75 30693.31 30790.48 37482.61 34294.80 23992.88 33593.39 22381.74 37194.90 31681.36 30999.11 27788.28 31098.87 23598.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 29890.69 30795.11 25893.80 35890.98 23194.16 26391.78 34596.38 10490.30 35199.30 1872.02 35598.90 29988.28 31090.17 36295.45 350
新几何197.25 15798.29 16894.70 13697.73 24577.98 36194.83 27396.67 25192.08 21999.45 20288.17 31298.65 25897.61 299
testdata299.46 19887.84 313
无先验93.20 29997.91 23380.78 35199.40 21987.71 31497.94 284
112194.26 24693.26 26397.27 15498.26 17494.73 13195.86 17297.71 24777.96 36294.53 28096.71 24891.93 22499.40 21987.71 31498.64 25997.69 296
WTY-MVS93.55 26993.00 26895.19 25697.81 22587.86 28493.89 27796.00 29989.02 29094.07 29395.44 30486.27 28499.33 24087.69 31696.82 32298.39 241
原ACMM196.58 19398.16 18892.12 21298.15 21585.90 32193.49 31496.43 26392.47 21199.38 22787.66 31798.62 26098.23 261
BH-untuned94.69 22994.75 21794.52 28597.95 21187.53 29294.07 26997.01 27893.99 20897.10 18095.65 29792.65 20398.95 29887.60 31896.74 32597.09 311
PAPM_NR94.61 23594.17 24495.96 22398.36 16491.23 22795.93 17097.95 23192.98 24193.42 31994.43 32590.53 24098.38 34387.60 31896.29 33398.27 258
DPM-MVS93.68 26592.77 27696.42 20397.91 21292.54 20091.17 33697.47 26484.99 33493.08 32494.74 31789.90 25199.00 28987.54 32098.09 28197.72 294
MG-MVS94.08 25694.00 24994.32 29097.09 29285.89 31493.19 30095.96 30192.52 24994.93 27297.51 18789.54 25598.77 31187.52 32197.71 29698.31 252
F-COLMAP95.30 20294.38 23798.05 9298.64 13096.04 7595.61 19098.66 14989.00 29193.22 32296.40 26692.90 19699.35 23587.45 32297.53 30698.77 210
PatchMatch-RL94.61 23593.81 25597.02 16998.19 18195.72 8493.66 28497.23 26888.17 30194.94 27195.62 29991.43 23098.57 33087.36 32397.68 29996.76 328
IB-MVS85.98 2088.63 32686.95 33593.68 30195.12 34284.82 33090.85 34190.17 36087.55 30688.48 36091.34 35958.01 37199.59 16087.24 32493.80 35496.63 333
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 33088.05 32888.16 35192.85 36768.81 37694.17 26292.88 33585.47 32691.38 34496.14 28068.87 36398.81 30886.88 32583.80 37096.87 320
131492.38 28892.30 28492.64 32395.42 33985.15 32495.86 17296.97 28085.40 32990.62 34693.06 33991.12 23397.80 35786.74 32695.49 34494.97 353
CNLPA95.04 21294.47 23396.75 18397.81 22595.25 11394.12 26897.89 23594.41 19394.57 27895.69 29590.30 24698.35 34686.72 32798.76 24796.64 331
ETH3 D test640094.77 22393.87 25497.47 13798.12 19593.73 17294.56 24898.70 13985.45 32894.70 27695.93 29291.77 22899.63 14386.45 32899.14 20099.05 166
baseline289.65 32088.44 32793.25 30995.62 33382.71 34193.82 27985.94 36888.89 29387.35 36592.54 34771.23 35799.33 24086.01 32994.60 35197.72 294
BH-RMVSNet94.56 23794.44 23694.91 26597.57 25887.44 29493.78 28296.26 29493.69 21796.41 22196.50 26192.10 21899.00 28985.96 33097.71 29698.31 252
E-PMN89.52 32189.78 31588.73 34793.14 36477.61 36183.26 36692.02 34294.82 18193.71 30593.11 33475.31 34096.81 36385.81 33196.81 32391.77 365
API-MVS95.09 21195.01 20395.31 25196.61 30494.02 16096.83 12097.18 27195.60 14995.79 24994.33 32694.54 15998.37 34585.70 33298.52 26593.52 359
AdaColmapbinary95.11 20994.62 22496.58 19397.33 28194.45 14494.92 23398.08 22393.15 23693.98 29895.53 30294.34 16499.10 27985.69 33398.61 26196.20 339
ADS-MVSNet291.47 30290.51 31094.36 28995.51 33585.63 31595.05 22795.70 30583.46 34192.69 33096.84 23879.15 32099.41 21785.66 33490.52 36098.04 279
ADS-MVSNet90.95 30890.26 31293.04 31495.51 33582.37 34495.05 22793.41 33083.46 34192.69 33096.84 23879.15 32098.70 31885.66 33490.52 36098.04 279
MDTV_nov1_ep13_2view57.28 37894.89 23480.59 35294.02 29578.66 32285.50 33697.82 290
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24897.31 28391.21 22895.08 22396.68 29181.56 34796.88 20096.41 26490.44 24299.25 25885.39 33797.67 30095.80 344
KD-MVS_2432*160088.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26693.11 33456.58 37498.63 32585.19 33895.07 34596.85 322
miper_refine_blended88.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26693.11 33456.58 37498.63 32585.19 33895.07 34596.85 322
PVSNet86.72 1991.10 30590.97 30291.49 33497.56 26078.04 35987.17 36194.60 32084.65 33692.34 33792.20 35087.37 27998.47 33785.17 34097.69 29897.96 283
PLCcopyleft91.02 1694.05 25792.90 26997.51 12998.00 20695.12 12294.25 25798.25 19886.17 31791.48 34395.25 30691.01 23499.19 26485.02 34196.69 32698.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 37171.40 37581.67 34690.11 36698.99 29184.86 342
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18293.57 36194.67 13794.21 26197.67 24980.36 35493.61 31096.60 25482.85 30397.35 36084.86 34298.78 24598.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 28991.69 29294.32 29096.23 31589.16 26092.27 31792.88 33584.39 34095.29 26296.35 27085.66 28896.74 36684.53 34497.56 30497.05 313
tpm cat188.01 33187.33 33290.05 34494.48 34976.28 36794.47 25194.35 32373.84 36989.26 35695.61 30073.64 34798.30 34884.13 34586.20 36895.57 349
MAR-MVS94.21 25093.03 26797.76 10996.94 29897.44 3596.97 11697.15 27287.89 30592.00 34092.73 34592.14 21699.12 27483.92 34697.51 30796.73 329
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 29291.83 28993.25 30996.18 31883.68 33996.27 14693.68 32776.97 36592.54 33699.18 2789.20 26398.55 33383.88 34798.60 26397.51 302
EMVS89.06 32389.22 31888.61 34893.00 36677.34 36382.91 36790.92 35294.64 18692.63 33491.81 35476.30 33697.02 36183.83 34896.90 32091.48 366
HY-MVS91.43 1592.58 28491.81 29094.90 26796.49 30788.87 26497.31 9594.62 31985.92 32090.50 34996.84 23885.05 29199.40 21983.77 34995.78 34096.43 336
test0.0.03 190.11 31289.21 31992.83 32093.89 35786.87 30491.74 32588.74 36392.02 25694.71 27591.14 36173.92 34594.48 36983.75 35092.94 35597.16 310
tpm288.47 32787.69 33190.79 33994.98 34477.34 36395.09 22191.83 34477.51 36489.40 35596.41 26467.83 36498.73 31583.58 35192.60 35896.29 338
MVS-HIRNet88.40 32890.20 31382.99 35397.01 29460.04 37793.11 30185.61 36984.45 33988.72 35999.09 3684.72 29598.23 35082.52 35296.59 32990.69 368
BH-w/o92.14 29391.94 28792.73 32297.13 29185.30 32092.46 31395.64 30689.33 28894.21 28892.74 34489.60 25398.24 34981.68 35394.66 34994.66 354
MIMVSNet93.42 27192.86 27095.10 25998.17 18688.19 27698.13 4893.69 32592.07 25595.04 26998.21 11180.95 31399.03 28881.42 35498.06 28298.07 271
TR-MVS92.54 28592.20 28593.57 30396.49 30786.66 30593.51 28994.73 31889.96 28394.95 27093.87 33090.24 24898.61 32781.18 35594.88 34795.45 350
thres600view792.03 29591.43 29393.82 29798.19 18184.61 33196.27 14690.39 35696.81 8896.37 22393.11 33473.44 35199.49 18980.32 35697.95 28597.36 306
PAPR92.22 29191.27 29795.07 26095.73 33288.81 26691.97 32297.87 23685.80 32290.91 34592.73 34591.16 23298.33 34779.48 35795.76 34198.08 269
MVS90.02 31389.20 32092.47 32694.71 34686.90 30395.86 17296.74 28964.72 37090.62 34692.77 34392.54 20898.39 34279.30 35895.56 34392.12 363
gg-mvs-nofinetune88.28 32986.96 33492.23 33192.84 36884.44 33398.19 4574.60 37599.08 1087.01 36699.47 856.93 37398.23 35078.91 35995.61 34294.01 357
thres100view90091.76 29991.26 29893.26 30898.21 17984.50 33296.39 13990.39 35696.87 8696.33 22493.08 33873.44 35199.42 20878.85 36097.74 29395.85 342
tfpn200view991.55 30191.00 30093.21 31198.02 20084.35 33495.70 18090.79 35396.26 11095.90 24792.13 35173.62 34899.42 20878.85 36097.74 29395.85 342
thres40091.68 30091.00 30093.71 30098.02 20084.35 33495.70 18090.79 35396.26 11095.90 24792.13 35173.62 34899.42 20878.85 36097.74 29397.36 306
thres20091.00 30790.42 31192.77 32197.47 26983.98 33794.01 27191.18 35195.12 16995.44 25991.21 36073.93 34499.31 24477.76 36397.63 30395.01 352
wuyk23d93.25 27695.20 19387.40 35296.07 32395.38 10497.04 11294.97 31695.33 15999.70 598.11 12198.14 1391.94 37077.76 36399.68 6074.89 370
test_method66.88 33966.13 34269.11 35562.68 37825.73 38049.76 36996.04 29814.32 37364.27 37491.69 35673.45 35088.05 37276.06 36566.94 37293.54 358
PCF-MVS89.43 1892.12 29490.64 30896.57 19597.80 22993.48 18289.88 35398.45 17174.46 36796.04 23995.68 29690.71 23999.31 24473.73 36699.01 22196.91 319
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 33783.21 34088.34 34995.76 33174.97 37183.49 36592.70 33978.47 36087.94 36286.90 36983.38 30296.63 36773.44 36766.86 37393.40 360
GG-mvs-BLEND90.60 34091.00 37284.21 33698.23 3972.63 37882.76 36984.11 37056.14 37696.79 36472.20 36892.09 35990.78 367
FPMVS89.92 31788.63 32593.82 29798.37 16396.94 4791.58 32693.34 33188.00 30390.32 35097.10 22170.87 35991.13 37171.91 36996.16 33693.39 361
MVEpermissive73.61 2286.48 33685.92 33888.18 35096.23 31585.28 32281.78 36875.79 37486.01 31882.53 37091.88 35392.74 19987.47 37371.42 37094.86 34891.78 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 34062.50 34341.44 35634.77 37949.21 37983.93 36460.22 38015.31 37271.11 37379.37 37170.09 36144.86 37564.76 37182.93 37130.25 371
PAPM87.64 33485.84 33993.04 31496.54 30584.99 32788.42 36095.57 31079.52 35683.82 36893.05 34080.57 31498.41 34062.29 37292.79 35695.71 345
DeepMVS_CXcopyleft77.17 35490.94 37385.28 32274.08 37752.51 37180.87 37288.03 36875.25 34170.63 37459.23 37384.94 36975.62 369
test12312.59 34215.49 3453.87 3576.07 3802.55 38190.75 3422.59 3822.52 3755.20 37713.02 3744.96 3801.85 3775.20 3749.09 3747.23 372
testmvs12.33 34315.23 3463.64 3585.77 3812.23 38288.99 3573.62 3812.30 3765.29 37613.09 3734.52 3811.95 3765.16 3758.32 3756.75 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k24.22 34132.30 3440.00 3590.00 3820.00 3830.00 37098.10 2200.00 3770.00 37895.06 31197.54 290.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.98 34410.65 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37795.82 1080.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.91 34510.55 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37894.94 3130.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
test_one_060199.05 9395.50 9998.87 8797.21 7998.03 12298.30 9496.93 60
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.22 5995.35 10798.83 10696.04 12399.08 3198.13 11797.87 2099.33 240
save fliter98.48 15494.71 13394.53 24998.41 17995.02 174
test072699.24 5495.51 9696.89 11898.89 7995.92 13198.64 5198.31 9097.06 50
GSMVS98.06 275
test_part299.03 9596.07 7498.08 116
sam_mvs177.80 32598.06 275
sam_mvs77.38 329
MTGPAbinary98.73 129
test_post10.87 37576.83 33399.07 282
patchmatchnet-post96.84 23877.36 33099.42 208
MTMP96.55 13374.60 375
TEST997.84 22195.23 11493.62 28598.39 18286.81 31393.78 30095.99 28594.68 15299.52 182
test_897.81 22595.07 12393.54 28898.38 18487.04 31193.71 30595.96 28994.58 15799.52 182
agg_prior97.80 22994.96 12598.36 18693.49 31499.53 178
test_prior495.38 10493.61 287
test_prior97.46 14097.79 23594.26 15398.42 17799.34 23798.79 205
新几何293.43 290
旧先验197.80 22993.87 16597.75 24497.04 22693.57 18398.68 25398.72 215
原ACMM292.82 304
test22298.17 18693.24 18792.74 30897.61 25975.17 36694.65 27796.69 25090.96 23698.66 25697.66 297
segment_acmp95.34 131
testdata192.77 30593.78 214
test1297.46 14097.61 25794.07 15897.78 24393.57 31293.31 18799.42 20898.78 24598.89 192
plane_prior798.70 12594.67 137
plane_prior698.38 16294.37 14791.91 226
plane_prior496.77 244
plane_prior394.51 14195.29 16296.16 235
plane_prior296.50 13596.36 106
plane_prior198.49 152
plane_prior94.29 14995.42 19694.31 19898.93 229
n20.00 383
nn0.00 383
door-mid98.17 210
test1198.08 223
door97.81 242
HQP5-MVS92.47 202
HQP-NCC97.85 21794.26 25493.18 23292.86 327
ACMP_Plane97.85 21794.26 25493.18 23292.86 327
HQP4-MVS92.87 32699.23 26199.06 164
HQP3-MVS98.43 17498.74 249
HQP2-MVS90.33 243
NP-MVS98.14 19193.72 17395.08 309
ACMMP++_ref99.52 106
ACMMP++99.55 95
Test By Simon94.51 160