This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
v7n98.73 1198.99 597.95 9199.64 1194.20 14598.67 1199.14 2399.08 1099.42 1599.23 2196.53 7899.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10499.71 499.48 798.77 699.93 298.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 7499.68 994.82 12098.10 4299.21 1196.91 8199.75 299.45 995.82 10499.92 498.80 499.96 499.89 1
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 12999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
v1097.55 8497.97 4196.31 20198.60 12989.64 24097.44 8199.02 4996.60 8998.72 4999.16 2993.48 17799.72 7898.76 699.92 1399.58 28
MVSFormer96.14 16196.36 14995.49 23697.68 23687.81 27598.67 1199.02 4996.50 9394.48 27196.15 26686.90 27399.92 498.73 799.13 19198.74 202
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9399.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17399.88 1898.72 999.88 2299.65 23
v897.60 8198.06 3896.23 20498.71 11589.44 24497.43 8398.82 10897.29 7598.74 4799.10 3293.86 16899.68 11698.61 1099.94 899.56 33
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 13699.35 1999.37 1297.38 3299.90 1398.59 1199.91 1699.77 8
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17098.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v124096.74 13397.02 11495.91 22098.18 17488.52 25995.39 18898.88 8093.15 22498.46 6698.40 7992.80 19199.71 9398.45 1399.49 11199.49 51
v119296.83 12797.06 11196.15 20998.28 16089.29 24695.36 19098.77 11593.73 20398.11 10498.34 8293.02 18899.67 12198.35 1499.58 7799.50 43
v192192096.72 13696.96 11795.99 21398.21 16988.79 25695.42 18498.79 11093.22 21898.19 9698.26 9792.68 19499.70 10298.34 1599.55 8999.49 51
Anonymous2023121198.55 1798.76 1397.94 9298.79 10494.37 13798.84 899.15 2199.37 399.67 699.43 1195.61 11699.72 7898.12 1699.86 2499.73 15
v14419296.69 13996.90 12196.03 21298.25 16588.92 25195.49 18098.77 11593.05 22698.09 10898.29 9192.51 20399.70 10298.11 1799.56 8399.47 59
v114496.84 12497.08 10996.13 21098.42 15089.28 24795.41 18698.67 14194.21 18997.97 12298.31 8593.06 18499.65 12898.06 1899.62 6499.45 66
SixPastTwentyTwo97.49 8997.57 7897.26 14899.56 1592.33 19498.28 2996.97 26998.30 3399.45 1499.35 1688.43 25999.89 1698.01 1999.76 3899.54 36
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5095.47 12199.89 1697.95 2099.91 1699.75 13
RRT_MVS94.90 21094.07 23797.39 14093.18 34793.21 17895.26 19997.49 25193.94 19998.25 8997.85 14772.96 34099.84 2597.90 2199.78 3799.14 134
UA-Net98.88 798.76 1399.22 299.11 8197.89 1399.47 399.32 799.08 1097.87 13499.67 296.47 8399.92 497.88 2299.98 299.85 3
FC-MVSNet-test98.16 3398.37 2797.56 11699.49 2693.10 18198.35 2699.21 1198.43 2898.89 3998.83 4994.30 15899.81 3197.87 2399.91 1699.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8299.33 4295.21 11198.04 4599.46 597.32 7397.82 13999.11 3196.75 6799.86 2097.84 2499.36 14999.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 15196.28 15296.95 16299.41 3591.53 21497.65 6690.31 34598.89 1898.93 3899.36 1484.57 28899.92 497.81 2599.56 8399.39 83
v2v48296.78 13197.06 11195.95 21798.57 13388.77 25795.36 19098.26 18995.18 15497.85 13698.23 10092.58 19899.63 13397.80 2699.69 5499.45 66
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9698.49 2099.13 2499.22 899.22 2798.96 4197.35 3399.92 497.79 2799.93 1099.79 7
nrg03098.54 1898.62 2198.32 6499.22 5695.66 8797.90 5399.08 3498.31 3299.02 3498.74 5497.68 2499.61 14797.77 2899.85 2699.70 18
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 899.01 1699.63 999.66 399.27 299.68 11697.75 2999.89 2199.62 25
ACMH93.61 998.44 2298.76 1397.51 12199.43 3293.54 17098.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18297.74 3099.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3799.93 297.71 3199.91 1699.70 18
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8698.45 2399.15 2199.33 599.30 2199.00 3797.27 3799.92 497.64 3299.92 1399.75 13
test_part196.77 13296.53 14197.47 12998.04 18892.92 18597.93 5098.85 8898.83 2099.30 2199.07 3579.25 30699.79 3897.59 3399.93 1099.69 20
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 10998.27 3198.84 9399.05 1399.01 3598.65 6295.37 12499.90 1397.57 3499.91 1699.77 8
EI-MVSNet-UG-set97.32 10297.40 8797.09 15697.34 26592.01 20695.33 19397.65 24397.74 5098.30 8698.14 10895.04 13499.69 11097.55 3599.52 10099.58 28
ANet_high98.31 2898.94 696.41 19799.33 4289.64 24097.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3599.98 299.77 8
EI-MVSNet-Vis-set97.32 10297.39 8897.11 15497.36 26092.08 20495.34 19297.65 24397.74 5098.29 8798.11 11395.05 13299.68 11697.50 3799.50 10799.56 33
EU-MVSNet94.25 23894.47 22493.60 29098.14 18182.60 33097.24 9292.72 32585.08 31898.48 6398.94 4282.59 29498.76 30097.47 3899.53 9599.44 76
Regformer-497.53 8797.47 8697.71 10597.35 26193.91 15395.26 19998.14 20697.97 4298.34 7897.89 14295.49 11999.71 9397.41 3999.42 13599.51 42
V4297.04 11197.16 10496.68 18198.59 13191.05 21996.33 13498.36 17894.60 17597.99 11898.30 8993.32 17999.62 14197.40 4099.53 9599.38 85
DIV-MVS_2432*160097.86 6398.07 3697.25 14999.22 5692.81 18797.55 7398.94 7097.10 7798.85 4098.88 4695.03 13599.67 12197.39 4199.65 6099.26 113
lessismore_v097.05 15899.36 4092.12 20284.07 35798.77 4698.98 3985.36 28299.74 6897.34 4299.37 14699.30 101
FIs97.93 5498.07 3697.48 12899.38 3892.95 18498.03 4799.11 2698.04 4198.62 5198.66 6093.75 17299.78 4197.23 4399.84 2799.73 15
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4499.92 1399.77 8
bset_n11_16_dypcd94.53 23293.95 24396.25 20397.56 24689.85 23788.52 34791.32 33594.90 16797.51 14696.38 25782.34 29599.78 4197.22 4499.80 3299.12 142
MVS_Test96.27 15596.79 12794.73 26696.94 28386.63 29496.18 14398.33 18394.94 16496.07 22798.28 9295.25 12999.26 24397.21 4697.90 27698.30 241
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 698.85 1999.00 3699.20 2397.42 3199.59 14997.21 4699.76 3899.40 81
EG-PatchMatch MVS97.69 7597.79 5397.40 13999.06 8693.52 17195.96 15798.97 6694.55 17998.82 4298.76 5397.31 3599.29 23897.20 4899.44 12599.38 85
VPA-MVSNet98.27 2998.46 2497.70 10799.06 8693.80 15997.76 6099.00 5798.40 2999.07 3398.98 3996.89 5999.75 6197.19 4999.79 3499.55 35
Regformer-397.25 10697.29 9497.11 15497.35 26192.32 19595.26 19997.62 24897.67 5898.17 9797.89 14295.05 13299.56 15897.16 5099.42 13599.46 61
UniMVSNet (Re)97.83 6597.65 6698.35 6398.80 10395.86 7895.92 16199.04 4697.51 6498.22 9297.81 15394.68 14599.78 4197.14 5199.75 4299.41 80
pm-mvs198.47 2198.67 1797.86 9799.52 2194.58 13098.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17597.09 5299.75 4299.50 43
baseline97.44 9397.78 5696.43 19498.52 13890.75 22796.84 10899.03 4796.51 9297.86 13598.02 12696.67 6999.36 21997.09 5299.47 11799.19 124
IterMVS-SCA-FT95.86 17396.19 15594.85 26097.68 23685.53 30592.42 30297.63 24796.99 7898.36 7598.54 6987.94 26399.75 6197.07 5499.08 19999.27 112
UniMVSNet_NR-MVSNet97.83 6597.65 6698.37 6098.72 11295.78 7995.66 17399.02 4998.11 3998.31 8497.69 16694.65 14799.85 2297.02 5599.71 5099.48 56
DU-MVS97.79 6997.60 7598.36 6198.73 11095.78 7995.65 17598.87 8297.57 6098.31 8497.83 14994.69 14399.85 2297.02 5599.71 5099.46 61
RRT_test8_iter0592.46 27792.52 27392.29 31895.33 32577.43 34895.73 16798.55 15694.41 18197.46 15597.72 16357.44 35999.74 6896.92 5799.14 18799.69 20
EI-MVSNet96.63 14396.93 11895.74 22597.26 27088.13 26895.29 19797.65 24396.99 7897.94 12598.19 10592.55 19999.58 15196.91 5899.56 8399.50 43
IterMVS-LS96.92 11997.29 9495.79 22498.51 13988.13 26895.10 20798.66 14396.99 7898.46 6698.68 5992.55 19999.74 6896.91 5899.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
APDe-MVS98.14 3498.03 4098.47 5498.72 11296.04 7298.07 4499.10 2895.96 11898.59 5598.69 5896.94 5499.81 3196.64 6099.58 7799.57 32
MP-MVS-pluss97.69 7597.36 9098.70 3999.50 2596.84 4795.38 18998.99 6092.45 24098.11 10498.31 8597.25 4099.77 5096.60 6199.62 6499.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 19296.07 16293.21 29996.29 29681.56 33594.60 23497.66 24193.30 21596.95 18498.91 4593.03 18799.38 21496.60 6197.30 30398.69 208
casdiffmvs97.50 8897.81 5296.56 18898.51 13991.04 22095.83 16599.09 3397.23 7698.33 8198.30 8997.03 5199.37 21796.58 6399.38 14599.28 108
Regformer-297.41 9597.24 9997.93 9397.21 27294.72 12394.85 22598.27 18797.74 5098.11 10497.50 17995.58 11799.69 11096.57 6499.31 16899.37 90
Regformer-197.27 10497.16 10497.61 11497.21 27293.86 15694.85 22598.04 22097.62 5998.03 11697.50 17995.34 12599.63 13396.52 6599.31 16899.35 92
TransMVSNet (Re)98.38 2598.67 1797.51 12199.51 2293.39 17498.20 3798.87 8298.23 3599.48 1299.27 1998.47 899.55 16296.52 6599.53 9599.60 26
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12497.88 13198.22 10398.15 1299.74 6896.50 6799.62 6499.42 78
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7598.49 2799.38 1799.14 3095.44 12399.84 2596.47 6899.80 3299.47 59
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8595.87 7796.73 11899.05 4098.67 2398.84 4198.45 7597.58 2799.88 1896.45 6999.86 2499.54 36
Gipumacopyleft98.07 4098.31 2997.36 14299.76 596.28 6698.51 1999.10 2898.76 2296.79 19099.34 1796.61 7398.82 29396.38 7099.50 10796.98 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 24193.93 24495.05 25195.83 31386.46 29595.18 20597.65 24392.41 24197.94 12598.00 13072.39 34199.58 15196.36 7199.56 8399.12 142
canonicalmvs97.23 10897.21 10297.30 14597.65 24094.39 13597.84 5699.05 4097.42 6796.68 19793.85 31797.63 2699.33 22796.29 7298.47 25698.18 253
alignmvs96.01 16795.52 18297.50 12497.77 22994.71 12496.07 14896.84 27297.48 6596.78 19494.28 31485.50 28199.40 20696.22 7398.73 24098.40 228
tttt051793.31 26592.56 27295.57 23198.71 11587.86 27297.44 8187.17 35395.79 13097.47 15496.84 22764.12 35499.81 3196.20 7499.32 16699.02 161
DeepC-MVS95.41 497.82 6797.70 6098.16 7598.78 10695.72 8196.23 14199.02 4993.92 20098.62 5198.99 3897.69 2399.62 14196.18 7599.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.01 4497.66 6499.06 499.44 3097.90 1195.66 17398.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9098.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
ZNCC-MVS97.92 5597.62 7398.83 2699.32 4497.24 3997.45 8098.84 9395.76 13196.93 18597.43 18497.26 3999.79 3896.06 7899.53 9599.45 66
Patchmatch-RL test94.66 22594.49 22395.19 24698.54 13688.91 25292.57 29898.74 12191.46 25498.32 8297.75 15877.31 31998.81 29596.06 7899.61 7097.85 275
ACMMP_NAP97.89 5997.63 7198.67 4199.35 4196.84 4796.36 13298.79 11095.07 15997.88 13198.35 8197.24 4199.72 7896.05 8099.58 7799.45 66
v14896.58 14596.97 11595.42 23998.63 12587.57 27995.09 20997.90 22495.91 12398.24 9197.96 13293.42 17899.39 21196.04 8199.52 10099.29 107
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7197.55 2696.68 12098.83 10095.21 15198.36 7598.13 10998.13 1499.62 14196.04 8199.54 9299.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 9897.25 9797.74 10398.69 11994.50 13397.04 10295.61 29798.59 2598.51 6098.72 5592.54 20199.58 15196.02 8399.49 11199.12 142
IterMVS95.42 19095.83 17194.20 28397.52 24983.78 32692.41 30397.47 25495.49 14298.06 11298.49 7287.94 26399.58 15196.02 8399.02 20699.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs96.04 16596.23 15395.46 23897.35 26188.03 27093.42 27999.08 3494.09 19596.66 19896.93 22293.85 16999.29 23896.01 8598.67 24299.06 155
PM-MVS97.36 10097.10 10798.14 7998.91 9796.77 4996.20 14298.63 14993.82 20198.54 5898.33 8393.98 16699.05 27195.99 8699.45 12498.61 216
Baseline_NR-MVSNet97.72 7397.79 5397.50 12499.56 1593.29 17595.44 18298.86 8498.20 3798.37 7399.24 2094.69 14399.55 16295.98 8799.79 3499.65 23
3Dnovator96.53 297.61 8097.64 6997.50 12497.74 23293.65 16898.49 2098.88 8096.86 8397.11 16998.55 6895.82 10499.73 7495.94 8899.42 13599.13 137
PatchT93.75 25393.57 24994.29 28295.05 32887.32 28596.05 14992.98 32197.54 6394.25 27498.72 5575.79 32799.24 24695.92 8995.81 32396.32 324
NR-MVSNet97.96 4697.86 4898.26 6998.73 11095.54 9198.14 4098.73 12397.79 4599.42 1597.83 14994.40 15699.78 4195.91 9099.76 3899.46 61
new-patchmatchnet95.67 17896.58 13592.94 30797.48 25180.21 34092.96 29098.19 20194.83 16898.82 4298.79 5093.31 18099.51 17495.83 9199.04 20599.12 142
FMVSNet197.95 4998.08 3597.56 11699.14 7993.67 16498.23 3298.66 14397.41 7099.00 3699.19 2495.47 12199.73 7495.83 9199.76 3899.30 101
test_0728_THIRD96.62 8898.40 7098.28 9297.10 4499.71 9395.70 9399.62 6499.58 28
RPMNet94.68 22494.60 21794.90 25795.44 32288.15 26696.18 14398.86 8497.43 6694.10 27898.49 7279.40 30599.76 5495.69 9495.81 32396.81 313
TSAR-MVS + MP.97.42 9497.23 10098.00 8999.38 3895.00 11597.63 6898.20 19693.00 22898.16 9898.06 12295.89 9999.72 7895.67 9599.10 19799.28 108
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_698.42 2398.19 3299.09 399.16 6898.10 597.73 6499.11 2697.76 4998.62 5198.27 9697.88 1999.80 3795.67 9599.50 10799.38 85
XVS97.96 4697.63 7198.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21497.64 16896.49 8199.72 7895.66 9799.37 14699.45 66
X-MVStestdata92.86 27190.83 29698.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21436.50 35896.49 8199.72 7895.66 9799.37 14699.45 66
3Dnovator+96.13 397.73 7297.59 7698.15 7898.11 18695.60 8998.04 4598.70 13398.13 3896.93 18598.45 7595.30 12899.62 14195.64 9998.96 21099.24 119
DELS-MVS96.17 16096.23 15395.99 21397.55 24890.04 23492.38 30498.52 15894.13 19396.55 20597.06 21494.99 13799.58 15195.62 10099.28 17398.37 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 5197.64 6998.83 2699.15 7197.50 2897.59 7098.84 9396.05 11197.49 14997.54 17497.07 4799.70 10295.61 10199.46 12099.30 101
ACMMPR97.95 4997.62 7398.94 1899.20 6497.56 2597.59 7098.83 10096.05 11197.46 15597.63 16996.77 6699.76 5495.61 10199.46 12099.49 51
UGNet96.81 12996.56 13797.58 11596.64 28893.84 15897.75 6197.12 26496.47 9693.62 29598.88 4693.22 18299.53 16695.61 10199.69 5499.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 14597.41 15897.50 17997.98 1599.79 3895.58 10499.57 8099.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7599.76 5495.49 10599.20 18099.26 113
RE-MVS-def97.88 4798.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5495.49 10599.20 18099.26 113
Anonymous2024052997.96 4698.04 3997.71 10598.69 11994.28 14297.86 5598.31 18698.79 2199.23 2698.86 4895.76 11199.61 14795.49 10599.36 14999.23 120
DVP-MVS97.78 7097.65 6698.16 7599.24 5195.51 9396.74 11498.23 19295.92 12198.40 7098.28 9297.06 4999.71 9395.48 10899.52 10099.26 113
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7199.23 5395.49 9596.74 11498.89 7599.75 6195.48 10899.52 10099.53 39
region2R97.92 5597.59 7698.92 2299.22 5697.55 2697.60 6998.84 9396.00 11697.22 16297.62 17096.87 6299.76 5495.48 10899.43 13299.46 61
pmmvs-eth3d96.49 14896.18 15697.42 13798.25 16594.29 13994.77 22998.07 21789.81 27297.97 12298.33 8393.11 18399.08 26895.46 11199.84 2798.89 183
SED-MVS97.94 5197.90 4498.07 8299.22 5695.35 10196.79 11198.83 10096.11 10899.08 3198.24 9897.87 2099.72 7895.44 11299.51 10599.14 134
test_241102_TWO98.83 10096.11 10898.62 5198.24 9896.92 5799.72 7895.44 11299.49 11199.49 51
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10497.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4499.75 6195.44 11299.24 17899.32 95
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
cl_fuxian95.20 19895.32 18594.83 26296.19 30286.43 29791.83 31298.35 18293.47 20997.36 15997.26 20288.69 25699.28 24095.41 11899.36 14998.78 197
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5397.60 2298.09 4398.96 6795.75 13397.91 12798.06 12296.89 5999.76 5495.32 11999.57 8099.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117298.08 3997.76 5799.05 698.78 10698.07 697.41 8598.85 8897.57 6098.15 10097.96 13296.60 7599.76 5495.30 12099.18 18499.33 94
miper_lstm_enhance94.81 21594.80 20794.85 26096.16 30486.45 29691.14 32598.20 19693.49 20897.03 17797.37 19484.97 28599.26 24395.28 12199.56 8398.83 191
MSLP-MVS++96.42 15396.71 12995.57 23197.82 21390.56 23195.71 16898.84 9394.72 17196.71 19697.39 19094.91 14098.10 34195.28 12199.02 20698.05 265
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9598.90 7496.58 9198.08 11097.87 14697.02 5299.76 5495.25 12399.59 7599.40 81
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 9897.70 6096.35 19898.14 18195.13 11296.54 12398.92 7295.94 12099.19 2898.08 11597.74 2295.06 35495.24 12499.54 9298.87 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 5695.40 9798.14 20685.77 31098.36 7595.23 12599.51 10599.49 51
CP-MVS97.92 5597.56 7998.99 1398.99 9297.82 1597.93 5098.96 6796.11 10896.89 18897.45 18396.85 6399.78 4195.19 12699.63 6399.38 85
LS3D97.77 7197.50 8398.57 4896.24 29897.58 2498.45 2398.85 8898.58 2697.51 14697.94 13795.74 11299.63 13395.19 12698.97 20998.51 222
SMA-MVScopyleft97.48 9097.11 10698.60 4698.83 10096.67 5296.74 11498.73 12391.61 25198.48 6398.36 8096.53 7899.68 11695.17 12899.54 9299.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 26692.79 26494.78 26495.44 32288.15 26696.18 14397.20 25984.94 32294.10 27898.57 6577.67 31499.39 21195.17 12895.81 32396.81 313
OPM-MVS97.54 8597.25 9798.41 5799.11 8196.61 5595.24 20298.46 16394.58 17898.10 10798.07 11797.09 4699.39 21195.16 13099.44 12599.21 122
mPP-MVS97.91 5897.53 8099.04 799.22 5697.87 1497.74 6298.78 11496.04 11397.10 17097.73 16196.53 7899.78 4195.16 13099.50 10799.46 61
cl-mvsnet194.73 21794.64 21395.01 25295.86 31187.00 28991.33 31998.08 21393.34 21397.10 17097.34 19684.02 28999.31 23195.15 13299.55 8998.72 205
cl-mvsnet_94.73 21794.64 21395.01 25295.85 31287.00 28991.33 31998.08 21393.34 21397.10 17097.33 19784.01 29099.30 23495.14 13399.56 8398.71 207
MSP-MVS97.45 9296.92 11999.03 899.26 4797.70 1897.66 6598.89 7595.65 13498.51 6096.46 25192.15 20899.81 3195.14 13398.58 25299.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 11696.84 12297.41 13899.40 3693.26 17697.94 4995.31 30299.26 798.39 7299.18 2787.85 26899.62 14195.13 13599.09 19899.35 92
CANet95.86 17395.65 17796.49 19196.41 29490.82 22494.36 24098.41 17294.94 16492.62 32296.73 23692.68 19499.71 9395.12 13699.60 7398.94 170
CNVR-MVS96.92 11996.55 13898.03 8898.00 19695.54 9194.87 22398.17 20294.60 17596.38 21197.05 21595.67 11499.36 21995.12 13699.08 19999.19 124
eth_miper_zixun_eth94.89 21194.93 19994.75 26595.99 30986.12 30091.35 31898.49 16193.40 21097.12 16897.25 20386.87 27599.35 22295.08 13898.82 23098.78 197
GST-MVS97.82 6797.49 8498.81 2999.23 5397.25 3897.16 9498.79 11095.96 11897.53 14497.40 18696.93 5699.77 5095.04 13999.35 15499.42 78
DP-MVS97.87 6197.89 4697.81 10098.62 12694.82 12097.13 9898.79 11098.98 1798.74 4798.49 7295.80 11099.49 17695.04 13999.44 12599.11 146
D2MVS95.18 19995.17 18995.21 24597.76 23087.76 27794.15 25297.94 22289.77 27396.99 18097.68 16787.45 27099.14 25995.03 14199.81 2998.74 202
SR-MVS98.00 4597.66 6499.01 1198.77 10897.93 1097.38 8698.83 10097.32 7398.06 11297.85 14796.65 7099.77 5095.00 14299.11 19599.32 95
FMVSNet296.72 13696.67 13296.87 16897.96 19891.88 20897.15 9598.06 21895.59 13898.50 6298.62 6389.51 25099.65 12894.99 14399.60 7399.07 153
miper_ehance_all_eth94.69 22294.70 21094.64 26795.77 31586.22 29991.32 32198.24 19191.67 25097.05 17596.65 24188.39 26099.22 25094.88 14498.34 25998.49 224
XVG-OURS-SEG-HR97.38 9797.07 11098.30 6799.01 9197.41 3494.66 23299.02 4995.20 15298.15 10097.52 17798.83 498.43 32694.87 14596.41 31899.07 153
MVS_111021_HR96.73 13596.54 14097.27 14698.35 15593.66 16793.42 27998.36 17894.74 17096.58 20196.76 23596.54 7798.99 27894.87 14599.27 17599.15 131
test_040297.84 6497.97 4197.47 12999.19 6694.07 14896.71 11998.73 12398.66 2498.56 5798.41 7796.84 6499.69 11094.82 14799.81 2998.64 211
MVS_111021_LR96.82 12896.55 13897.62 11398.27 16295.34 10393.81 26998.33 18394.59 17796.56 20396.63 24296.61 7398.73 30294.80 14899.34 15798.78 197
WR-MVS96.90 12196.81 12497.16 15198.56 13492.20 20094.33 24198.12 20997.34 7298.20 9397.33 19792.81 19099.75 6194.79 14999.81 2999.54 36
ACMH+93.58 1098.23 3298.31 2997.98 9099.39 3795.22 10997.55 7399.20 1398.21 3699.25 2598.51 7198.21 1199.40 20694.79 14999.72 4799.32 95
thisisatest053092.71 27491.76 28295.56 23398.42 15088.23 26496.03 15187.35 35294.04 19696.56 20395.47 29164.03 35599.77 5094.78 15199.11 19598.68 210
PGM-MVS97.88 6097.52 8198.96 1699.20 6497.62 2197.09 9999.06 3895.45 14397.55 14397.94 13797.11 4399.78 4194.77 15299.46 12099.48 56
TSAR-MVS + GP.96.47 15096.12 15897.49 12797.74 23295.23 10694.15 25296.90 27193.26 21698.04 11596.70 23894.41 15598.89 28894.77 15299.14 18798.37 231
VNet96.84 12496.83 12396.88 16798.06 18792.02 20596.35 13397.57 25097.70 5597.88 13197.80 15492.40 20599.54 16594.73 15498.96 21099.08 151
VPNet97.26 10597.49 8496.59 18499.47 2790.58 22996.27 13698.53 15797.77 4698.46 6698.41 7794.59 14999.68 11694.61 15599.29 17299.52 40
GBi-Net96.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
test196.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
FMVSNet395.26 19794.94 19796.22 20696.53 29190.06 23395.99 15497.66 24194.11 19497.99 11897.91 14180.22 30499.63 13394.60 15699.44 12598.96 167
xxxxxxxxxxxxxcwj97.24 10797.03 11397.89 9598.48 14494.71 12494.53 23799.07 3795.02 16297.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
SF-MVS97.60 8197.39 8898.22 7398.93 9595.69 8397.05 10199.10 2895.32 14897.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
MVS_030495.50 18395.05 19596.84 17096.28 29793.12 18097.00 10496.16 28495.03 16189.22 34497.70 16490.16 24299.48 17994.51 16199.34 15797.93 272
XXY-MVS97.54 8597.70 6097.07 15799.46 2892.21 19897.22 9399.00 5794.93 16698.58 5698.92 4497.31 3599.41 20494.44 16299.43 13299.59 27
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19398.48 14491.52 21595.31 19598.45 16495.76 13197.48 15297.54 17489.53 24998.69 30694.43 16394.61 33699.13 137
LPG-MVS_test97.94 5197.67 6398.74 3599.15 7197.02 4297.09 9999.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
LGP-MVS_train98.74 3599.15 7197.02 4299.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
DeepPCF-MVS94.58 596.90 12196.43 14798.31 6697.48 25197.23 4092.56 29998.60 15192.84 23598.54 5897.40 18696.64 7298.78 29794.40 16699.41 14198.93 174
#test#97.62 7997.22 10198.83 2699.15 7197.50 2896.81 11098.84 9394.25 18897.49 14997.54 17497.07 4799.70 10294.37 16799.46 12099.30 101
XVG-ACMP-BASELINE97.58 8397.28 9698.49 5299.16 6896.90 4696.39 12998.98 6395.05 16098.06 11298.02 12695.86 10099.56 15894.37 16799.64 6299.00 162
RPSCF97.87 6197.51 8298.95 1799.15 7198.43 397.56 7299.06 3896.19 10598.48 6398.70 5794.72 14299.24 24694.37 16799.33 16499.17 127
CSCG97.40 9697.30 9397.69 10998.95 9494.83 11997.28 8998.99 6096.35 10098.13 10395.95 27895.99 9799.66 12794.36 17099.73 4498.59 217
HPM-MVS++copyleft96.99 11396.38 14898.81 2998.64 12197.59 2395.97 15698.20 19695.51 14195.06 25496.53 24794.10 16399.70 10294.29 17199.15 18699.13 137
XVG-OURS97.12 11096.74 12898.26 6998.99 9297.45 3293.82 26799.05 4095.19 15398.32 8297.70 16495.22 13098.41 32794.27 17298.13 26798.93 174
jason94.39 23694.04 23995.41 24198.29 15887.85 27492.74 29696.75 27785.38 31795.29 25096.15 26688.21 26299.65 12894.24 17399.34 15798.74 202
jason: jason.
CVMVSNet92.33 28192.79 26490.95 32597.26 27075.84 35395.29 19792.33 32881.86 33296.27 21898.19 10581.44 29798.46 32594.23 17498.29 26298.55 221
EIA-MVS96.04 16595.77 17496.85 16997.80 21892.98 18396.12 14699.16 1794.65 17393.77 28991.69 34295.68 11399.67 12194.18 17598.85 22797.91 273
ET-MVSNet_ETH3D91.12 29589.67 30795.47 23796.41 29489.15 25091.54 31590.23 34689.07 27786.78 35492.84 32869.39 34999.44 19294.16 17696.61 31597.82 277
cl-mvsnet293.25 26792.84 26394.46 27694.30 33686.00 30191.09 32796.64 28190.74 26295.79 23796.31 26078.24 31198.77 29894.15 17798.34 25998.62 214
MCST-MVS96.24 15695.80 17297.56 11698.75 10994.13 14794.66 23298.17 20290.17 26996.21 22296.10 27195.14 13199.43 19494.13 17898.85 22799.13 137
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6397.35 3597.96 4899.16 1798.34 3198.78 4498.52 7097.32 3499.45 18994.08 17999.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 15495.98 16697.43 13698.25 16593.85 15796.74 11494.41 30997.72 5398.37 7398.03 12587.15 27299.53 16694.06 18099.07 20198.92 178
Effi-MVS+-dtu96.81 12996.09 16098.99 1396.90 28598.69 296.42 12798.09 21195.86 12695.15 25395.54 28994.26 15999.81 3194.06 18098.51 25598.47 225
mvs-test196.20 15895.50 18398.32 6496.90 28598.16 495.07 21298.09 21195.86 12693.63 29494.32 31394.26 15999.71 9394.06 18097.27 30497.07 299
ambc96.56 18898.23 16891.68 21397.88 5498.13 20898.42 6998.56 6794.22 16199.04 27294.05 18399.35 15498.95 168
our_test_394.20 24394.58 22093.07 30196.16 30481.20 33790.42 33396.84 27290.72 26397.14 16697.13 20790.47 23499.11 26494.04 18498.25 26398.91 179
pmmvs594.63 22794.34 22995.50 23597.63 24288.34 26394.02 25897.13 26387.15 29795.22 25297.15 20687.50 26999.27 24293.99 18599.26 17698.88 186
DPE-MVS97.64 7797.35 9198.50 5198.85 9996.18 6795.21 20498.99 6095.84 12898.78 4498.08 11596.84 6499.81 3193.98 18699.57 8099.52 40
ppachtmachnet_test94.49 23394.84 20493.46 29396.16 30482.10 33290.59 33197.48 25390.53 26597.01 17997.59 17291.01 22799.36 21993.97 18799.18 18498.94 170
tfpnnormal97.72 7397.97 4196.94 16399.26 4792.23 19797.83 5798.45 16498.25 3499.13 3098.66 6096.65 7099.69 11093.92 18899.62 6498.91 179
LFMVS95.32 19494.88 20296.62 18298.03 18991.47 21697.65 6690.72 34299.11 997.89 13098.31 8579.20 30799.48 17993.91 18999.12 19498.93 174
EPP-MVSNet96.84 12496.58 13597.65 11199.18 6793.78 16198.68 1096.34 28297.91 4497.30 16098.06 12288.46 25899.85 2293.85 19099.40 14299.32 95
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 14097.18 27494.39 13595.46 18198.73 12396.03 11594.72 26294.92 30196.28 9399.69 11093.81 19197.98 27298.09 255
PHI-MVS96.96 11796.53 14198.25 7197.48 25196.50 5896.76 11398.85 8893.52 20796.19 22396.85 22695.94 9899.42 19593.79 19299.43 13298.83 191
miper_enhance_ethall93.14 26992.78 26694.20 28393.65 34485.29 30989.97 33797.85 22785.05 31996.15 22694.56 30685.74 27999.14 25993.74 19398.34 25998.17 254
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13597.69 23594.15 14696.02 15298.43 16793.17 22397.30 16097.38 19295.48 12099.28 24093.74 19399.34 15798.88 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 25192.69 26897.74 10397.80 21895.38 9895.57 17995.46 30191.26 25892.64 32096.10 27174.67 33099.55 16293.72 19596.97 30598.30 241
MP-MVScopyleft97.64 7797.18 10399.00 1299.32 4497.77 1797.49 7998.73 12396.27 10195.59 24597.75 15896.30 9199.78 4193.70 19699.48 11599.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19599.28 4690.62 22895.31 19599.08 3488.40 28696.97 18398.17 10792.11 21099.78 4193.64 19799.21 17998.86 189
lupinMVS93.77 25293.28 25395.24 24497.68 23687.81 27592.12 30796.05 28684.52 32494.48 27195.06 29786.90 27399.63 13393.62 19899.13 19198.27 245
NCCC96.52 14795.99 16598.10 8097.81 21495.68 8595.00 21898.20 19695.39 14695.40 24996.36 25893.81 17099.45 18993.55 19998.42 25799.17 127
ETV-MVS96.13 16295.90 17096.82 17197.76 23093.89 15495.40 18798.95 6995.87 12595.58 24691.00 34796.36 9099.72 7893.36 20098.83 22996.85 309
MDA-MVSNet_test_wron94.73 21794.83 20694.42 27797.48 25185.15 31290.28 33595.87 29192.52 23797.48 15297.76 15591.92 21899.17 25693.32 20196.80 31198.94 170
YYNet194.73 21794.84 20494.41 27897.47 25585.09 31490.29 33495.85 29292.52 23797.53 14497.76 15591.97 21499.18 25293.31 20296.86 30898.95 168
CS-MVS95.86 17395.59 18096.69 17997.85 20693.14 17996.42 12799.25 994.17 19293.56 29990.76 35096.05 9699.72 7893.28 20398.91 21897.21 296
pmmvs494.82 21494.19 23496.70 17897.42 25892.75 18992.09 30996.76 27686.80 30195.73 24297.22 20489.28 25398.89 28893.28 20399.14 18798.46 227
CANet_DTU94.65 22694.21 23395.96 21595.90 31089.68 23993.92 26497.83 23193.19 21990.12 33995.64 28688.52 25799.57 15793.27 20599.47 11798.62 214
ACMP92.54 1397.47 9197.10 10798.55 5099.04 8996.70 5196.24 14098.89 7593.71 20497.97 12297.75 15897.44 2999.63 13393.22 20699.70 5399.32 95
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 15996.01 16396.71 17797.43 25792.19 20196.12 14699.10 2895.45 14393.33 30894.71 30497.23 4299.56 15893.21 20797.54 29398.37 231
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22598.48 14488.76 25892.84 29197.25 25796.00 11697.59 14297.95 13691.38 22499.46 18593.16 20896.35 31998.99 165
IS-MVSNet96.93 11896.68 13197.70 10799.25 5094.00 15198.57 1596.74 27898.36 3098.14 10297.98 13188.23 26199.71 9393.10 20999.72 4799.38 85
9.1496.69 13098.53 13796.02 15298.98 6393.23 21797.18 16497.46 18296.47 8399.62 14192.99 21099.32 166
MS-PatchMatch94.83 21394.91 20194.57 27396.81 28787.10 28894.23 24797.34 25688.74 28397.14 16697.11 21091.94 21698.23 33792.99 21097.92 27498.37 231
Patchmtry95.03 20794.59 21996.33 19994.83 33090.82 22496.38 13197.20 25996.59 9097.49 14998.57 6577.67 31499.38 21492.95 21299.62 6498.80 194
ETH3D-3000-0.196.89 12396.46 14698.16 7598.62 12695.69 8395.96 15798.98 6393.36 21297.04 17697.31 19994.93 13999.63 13392.60 21399.34 15799.17 127
Fast-Effi-MVS+95.49 18495.07 19296.75 17597.67 23992.82 18694.22 24898.60 15191.61 25193.42 30692.90 32796.73 6899.70 10292.60 21397.89 27797.74 280
HQP_MVS96.66 14296.33 15197.68 11098.70 11794.29 13996.50 12498.75 11996.36 9896.16 22496.77 23391.91 21999.46 18592.59 21599.20 18099.28 108
plane_prior598.75 11999.46 18592.59 21599.20 18099.28 108
GA-MVS92.83 27292.15 27794.87 25996.97 28087.27 28690.03 33696.12 28591.83 24994.05 28194.57 30576.01 32698.97 28492.46 21797.34 30198.36 236
CPTT-MVS96.69 13996.08 16198.49 5298.89 9896.64 5497.25 9098.77 11592.89 23496.01 23097.13 20792.23 20799.67 12192.24 21899.34 15799.17 127
EPNet93.72 25492.62 27197.03 16087.61 36292.25 19696.27 13691.28 33696.74 8687.65 35097.39 19085.00 28499.64 13192.14 21999.48 11599.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft97.00 11296.53 14198.41 5798.55 13596.31 6496.32 13598.77 11592.96 23397.44 15797.58 17395.84 10199.74 6891.96 22099.35 15499.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_2432*160095.04 20594.79 20895.82 22397.51 25089.79 23891.14 32596.82 27493.05 22696.72 19596.40 25590.82 23099.16 25791.95 22198.66 24498.50 223
test_prior395.91 17095.39 18497.46 13297.79 22494.26 14393.33 28498.42 17094.21 18994.02 28296.25 26293.64 17499.34 22491.90 22298.96 21098.79 195
test_prior293.33 28494.21 18994.02 28296.25 26293.64 17491.90 22298.96 210
test-LLR89.97 30789.90 30590.16 32994.24 33874.98 35489.89 33889.06 34892.02 24489.97 34090.77 34873.92 33398.57 31791.88 22497.36 29996.92 304
test-mter87.92 32287.17 32390.16 32994.24 33874.98 35489.89 33889.06 34886.44 30389.97 34090.77 34854.96 36598.57 31791.88 22497.36 29996.92 304
MVP-Stereo95.69 17695.28 18696.92 16498.15 18093.03 18295.64 17798.20 19690.39 26696.63 20097.73 16191.63 22299.10 26691.84 22697.31 30298.63 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
1112_ss94.12 24493.42 25196.23 20498.59 13190.85 22394.24 24698.85 8885.49 31292.97 31294.94 29986.01 27899.64 13191.78 22797.92 27498.20 251
train_agg95.46 18894.66 21197.88 9697.84 21195.23 10693.62 27398.39 17487.04 29893.78 28795.99 27394.58 15099.52 17091.76 22898.90 21998.89 183
LF4IMVS96.07 16395.63 17897.36 14298.19 17195.55 9095.44 18298.82 10892.29 24295.70 24396.55 24592.63 19798.69 30691.75 22999.33 16497.85 275
agg_prior195.39 19194.60 21797.75 10297.80 21894.96 11693.39 28198.36 17887.20 29693.49 30195.97 27694.65 14799.53 16691.69 23098.86 22598.77 200
N_pmnet95.18 19994.23 23198.06 8497.85 20696.55 5792.49 30091.63 33389.34 27598.09 10897.41 18590.33 23699.06 27091.58 23199.31 16898.56 219
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8197.91 20295.65 8894.94 22098.74 12191.31 25796.02 22997.08 21294.05 16599.69 11091.51 23298.94 21498.93 174
AllTest97.20 10996.92 11998.06 8499.08 8396.16 6897.14 9799.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
TestCases98.06 8499.08 8396.16 6899.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
test9_res91.29 23598.89 22299.00 162
xiu_mvs_v2_base94.22 23994.63 21592.99 30597.32 26884.84 31792.12 30797.84 22991.96 24694.17 27693.43 31896.07 9599.71 9391.27 23697.48 29694.42 341
PS-MVSNAJ94.10 24594.47 22493.00 30497.35 26184.88 31691.86 31197.84 22991.96 24694.17 27692.50 33495.82 10499.71 9391.27 23697.48 29694.40 342
tpm91.08 29790.85 29591.75 32095.33 32578.09 34495.03 21791.27 33788.75 28293.53 30097.40 18671.24 34399.30 23491.25 23893.87 33997.87 274
OPU-MVS97.64 11298.01 19295.27 10496.79 11197.35 19596.97 5398.51 32391.21 23999.25 17799.14 134
ZD-MVS98.43 14995.94 7698.56 15590.72 26396.66 19897.07 21395.02 13699.74 6891.08 24098.93 216
tpmrst90.31 30290.61 30089.41 33294.06 34172.37 35995.06 21493.69 31288.01 29092.32 32596.86 22577.45 31698.82 29391.04 24187.01 35397.04 301
sss94.22 23993.72 24795.74 22597.71 23489.95 23693.84 26696.98 26888.38 28793.75 29095.74 28287.94 26398.89 28891.02 24298.10 26898.37 231
ITE_SJBPF97.85 9898.64 12196.66 5398.51 16095.63 13597.22 16297.30 20095.52 11898.55 32090.97 24398.90 21998.34 237
Test_1112_low_res93.53 26192.86 26195.54 23498.60 12988.86 25492.75 29498.69 13682.66 33192.65 31996.92 22484.75 28699.56 15890.94 24497.76 28098.19 252
TESTMET0.1,187.20 32586.57 32789.07 33393.62 34572.84 35889.89 33887.01 35485.46 31489.12 34590.20 35156.00 36497.72 34590.91 24596.92 30696.64 318
FMVSNet593.39 26392.35 27496.50 19095.83 31390.81 22697.31 8798.27 18792.74 23696.27 21898.28 9262.23 35699.67 12190.86 24699.36 14999.03 159
PatchmatchNetpermissive91.98 28791.87 27992.30 31794.60 33379.71 34195.12 20693.59 31689.52 27493.61 29697.02 21777.94 31299.18 25290.84 24794.57 33898.01 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 18795.07 19296.69 17998.27 16292.53 19191.36 31798.67 14191.22 25995.78 23994.12 31595.65 11598.98 28090.81 24899.72 4798.57 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 28891.35 28693.51 29294.27 33785.60 30488.86 34698.61 15079.32 34492.16 32691.44 34389.22 25498.12 34090.80 24997.47 29896.82 312
test20.0396.58 14596.61 13396.48 19298.49 14291.72 21295.68 17297.69 23896.81 8498.27 8897.92 14094.18 16298.71 30490.78 25099.66 5999.00 162
test_yl94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
DCV-MVSNet94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
EPMVS89.26 31288.55 31691.39 32292.36 35579.11 34295.65 17579.86 35888.60 28493.12 31096.53 24770.73 34798.10 34190.75 25189.32 35096.98 302
旧先验293.35 28377.95 35095.77 24198.67 31090.74 254
USDC94.56 23094.57 22294.55 27497.78 22886.43 29792.75 29498.65 14885.96 30696.91 18797.93 13990.82 23098.74 30190.71 25599.59 7598.47 225
OpenMVScopyleft94.22 895.48 18695.20 18796.32 20097.16 27591.96 20797.74 6298.84 9387.26 29594.36 27398.01 12893.95 16799.67 12190.70 25698.75 23697.35 295
Patchmatch-test93.60 25993.25 25594.63 26896.14 30787.47 28196.04 15094.50 30893.57 20696.47 20796.97 21976.50 32298.61 31490.67 25798.41 25897.81 279
DWT-MVSNet_test87.92 32286.77 32691.39 32293.18 34778.62 34395.10 20791.42 33485.58 31188.00 34888.73 35360.60 35798.90 28690.60 25887.70 35296.65 317
thisisatest051590.43 30189.18 31394.17 28597.07 27885.44 30689.75 34287.58 35188.28 28893.69 29391.72 34165.27 35399.58 15190.59 25998.67 24297.50 290
DP-MVS Recon95.55 18295.13 19096.80 17298.51 13993.99 15294.60 23498.69 13690.20 26895.78 23996.21 26592.73 19398.98 28090.58 26098.86 22597.42 292
testtj96.69 13996.13 15798.36 6198.46 14896.02 7496.44 12698.70 13394.26 18796.79 19097.13 20794.07 16499.75 6190.53 26198.80 23199.31 100
TinyColmap96.00 16896.34 15094.96 25497.90 20487.91 27194.13 25598.49 16194.41 18198.16 9897.76 15596.29 9298.68 30990.52 26299.42 13598.30 241
BP-MVS90.51 263
HQP-MVS95.17 20194.58 22096.92 16497.85 20692.47 19294.26 24298.43 16793.18 22092.86 31495.08 29590.33 23699.23 24890.51 26398.74 23799.05 157
OMC-MVS96.48 14996.00 16497.91 9498.30 15796.01 7594.86 22498.60 15191.88 24897.18 16497.21 20596.11 9499.04 27290.49 26599.34 15798.69 208
ab-mvs96.59 14496.59 13496.60 18398.64 12192.21 19898.35 2697.67 23994.45 18096.99 18098.79 5094.96 13899.49 17690.39 26699.07 20198.08 256
HyFIR lowres test93.72 25492.65 26996.91 16698.93 9591.81 21191.23 32398.52 15882.69 33096.46 20896.52 24980.38 30399.90 1390.36 26798.79 23299.03 159
agg_prior290.34 26898.90 21999.10 150
LCM-MVSNet-Re97.33 10197.33 9297.32 14498.13 18493.79 16096.99 10599.65 296.74 8699.47 1398.93 4396.91 5899.84 2590.11 26999.06 20498.32 238
CDS-MVSNet94.88 21294.12 23697.14 15397.64 24193.57 16993.96 26397.06 26690.05 27096.30 21796.55 24586.10 27799.47 18290.10 27099.31 16898.40 228
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 18994.65 21297.84 9998.28 16094.96 11693.73 27198.33 18385.03 32095.44 24796.60 24395.31 12799.44 19290.01 27199.13 19199.11 146
baseline193.14 26992.64 27094.62 26997.34 26587.20 28796.67 12193.02 32094.71 17296.51 20695.83 28181.64 29698.60 31690.00 27288.06 35198.07 258
TAPA-MVS93.32 1294.93 20994.23 23197.04 15998.18 17494.51 13195.22 20398.73 12381.22 33796.25 22095.95 27893.80 17198.98 28089.89 27398.87 22397.62 285
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 27891.08 29096.30 20293.12 35092.81 18790.58 33295.96 28979.17 34591.85 32992.27 33590.29 24098.66 31189.85 27496.68 31497.43 291
PVSNet_BlendedMVS95.02 20894.93 19995.27 24397.79 22487.40 28394.14 25498.68 13888.94 28094.51 26998.01 12893.04 18599.30 23489.77 27599.49 11199.11 146
PVSNet_Blended93.96 24993.65 24894.91 25597.79 22487.40 28391.43 31698.68 13884.50 32594.51 26994.48 31093.04 18599.30 23489.77 27598.61 24998.02 268
MSDG95.33 19395.13 19095.94 21997.40 25991.85 20991.02 32898.37 17795.30 14996.31 21695.99 27394.51 15398.38 33089.59 27797.65 29097.60 287
PMVScopyleft89.60 1796.71 13896.97 11595.95 21799.51 2297.81 1697.42 8497.49 25197.93 4395.95 23198.58 6496.88 6196.91 34989.59 27799.36 14993.12 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 21910.37 36276.21 32599.04 27289.47 279
SCA93.38 26493.52 25092.96 30696.24 29881.40 33693.24 28694.00 31191.58 25394.57 26696.97 21987.94 26399.42 19589.47 27997.66 28998.06 262
tpmvs90.79 30090.87 29490.57 32892.75 35476.30 35195.79 16693.64 31591.04 26191.91 32896.26 26177.19 32098.86 29289.38 28189.85 34996.56 321
Anonymous2023120695.27 19695.06 19495.88 22198.72 11289.37 24595.70 16997.85 22788.00 29196.98 18297.62 17091.95 21599.34 22489.21 28299.53 9598.94 170
CHOSEN 1792x268894.10 24593.41 25296.18 20899.16 6890.04 23492.15 30698.68 13879.90 34296.22 22197.83 14987.92 26799.42 19589.18 28399.65 6099.08 151
114514_t93.96 24993.22 25696.19 20799.06 8690.97 22295.99 15498.94 7073.88 35593.43 30596.93 22292.38 20699.37 21789.09 28499.28 17398.25 247
pmmvs390.00 30588.90 31493.32 29494.20 34085.34 30791.25 32292.56 32778.59 34693.82 28695.17 29467.36 35298.69 30689.08 28598.03 27195.92 327
testdata95.70 22898.16 17890.58 22997.72 23680.38 34095.62 24497.02 21792.06 21398.98 28089.06 28698.52 25397.54 288
MDTV_nov1_ep1391.28 28794.31 33573.51 35794.80 22793.16 31986.75 30293.45 30497.40 18676.37 32398.55 32088.85 28796.43 317
PMMVS293.66 25794.07 23792.45 31597.57 24480.67 33986.46 35096.00 28793.99 19797.10 17097.38 19289.90 24497.82 34388.76 28899.47 11798.86 189
QAPM95.88 17295.57 18196.80 17297.90 20491.84 21098.18 3998.73 12388.41 28596.42 20998.13 10994.73 14199.75 6188.72 28998.94 21498.81 193
CHOSEN 280x42089.98 30689.19 31292.37 31695.60 31981.13 33886.22 35197.09 26581.44 33687.44 35193.15 31973.99 33199.47 18288.69 29099.07 20196.52 322
testgi96.07 16396.50 14594.80 26399.26 4787.69 27895.96 15798.58 15495.08 15898.02 11796.25 26297.92 1697.60 34688.68 29198.74 23799.11 146
CostFormer89.75 30989.25 30891.26 32494.69 33278.00 34695.32 19491.98 33081.50 33590.55 33596.96 22171.06 34598.89 28888.59 29292.63 34396.87 307
UnsupCasMVSNet_bld94.72 22194.26 23096.08 21198.62 12690.54 23293.38 28298.05 21990.30 26797.02 17896.80 23289.54 24799.16 25788.44 29396.18 32198.56 219
TAMVS95.49 18494.94 19797.16 15198.31 15693.41 17395.07 21296.82 27491.09 26097.51 14697.82 15289.96 24399.42 19588.42 29499.44 12598.64 211
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22299.12 8089.17 24897.54 7894.92 30496.50 9396.58 20197.27 20183.64 29199.48 17988.42 29499.67 5798.97 166
EPNet_dtu91.39 29490.75 29793.31 29590.48 35982.61 32994.80 22792.88 32293.39 21181.74 35894.90 30281.36 29899.11 26488.28 29698.87 22398.21 250
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 28990.69 29895.11 24893.80 34390.98 22194.16 25191.78 33296.38 9790.30 33899.30 1872.02 34298.90 28688.28 29690.17 34895.45 336
新几何197.25 14998.29 15894.70 12797.73 23577.98 34894.83 26196.67 24092.08 21299.45 18988.17 29898.65 24697.61 286
testdata299.46 18587.84 299
无先验93.20 28797.91 22380.78 33899.40 20687.71 30097.94 271
112194.26 23793.26 25497.27 14698.26 16494.73 12295.86 16297.71 23777.96 34994.53 26896.71 23791.93 21799.40 20687.71 30098.64 24797.69 283
WTY-MVS93.55 26093.00 25995.19 24697.81 21487.86 27293.89 26596.00 28789.02 27894.07 28095.44 29286.27 27699.33 22787.69 30296.82 30998.39 230
原ACMM196.58 18598.16 17892.12 20298.15 20585.90 30893.49 30196.43 25292.47 20499.38 21487.66 30398.62 24898.23 248
BH-untuned94.69 22294.75 20994.52 27597.95 20187.53 28094.07 25797.01 26793.99 19797.10 17095.65 28592.65 19698.95 28587.60 30496.74 31297.09 298
PAPM_NR94.61 22894.17 23595.96 21598.36 15491.23 21795.93 16097.95 22192.98 22993.42 30694.43 31190.53 23398.38 33087.60 30496.29 32098.27 245
DPM-MVS93.68 25692.77 26796.42 19597.91 20292.54 19091.17 32497.47 25484.99 32193.08 31194.74 30389.90 24499.00 27687.54 30698.09 26997.72 281
MG-MVS94.08 24794.00 24094.32 28097.09 27785.89 30293.19 28895.96 28992.52 23794.93 26097.51 17889.54 24798.77 29887.52 30797.71 28498.31 239
F-COLMAP95.30 19594.38 22898.05 8798.64 12196.04 7295.61 17898.66 14389.00 27993.22 30996.40 25592.90 18999.35 22287.45 30897.53 29498.77 200
PatchMatch-RL94.61 22893.81 24697.02 16198.19 17195.72 8193.66 27297.23 25888.17 28994.94 25995.62 28791.43 22398.57 31787.36 30997.68 28796.76 315
IB-MVS85.98 2088.63 31686.95 32593.68 28995.12 32784.82 31890.85 32990.17 34787.55 29488.48 34791.34 34458.01 35899.59 14987.24 31093.80 34096.63 320
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 32088.05 31888.16 33892.85 35268.81 36194.17 25092.88 32285.47 31391.38 33196.14 26868.87 35098.81 29586.88 31183.80 35696.87 307
131492.38 27992.30 27592.64 31195.42 32485.15 31295.86 16296.97 26985.40 31690.62 33393.06 32591.12 22697.80 34486.74 31295.49 33094.97 339
CNLPA95.04 20594.47 22496.75 17597.81 21495.25 10594.12 25697.89 22594.41 18194.57 26695.69 28390.30 23998.35 33386.72 31398.76 23596.64 318
ETH3 D test640094.77 21693.87 24597.47 12998.12 18593.73 16294.56 23698.70 13385.45 31594.70 26495.93 28091.77 22199.63 13386.45 31499.14 18799.05 157
baseline289.65 31088.44 31793.25 29795.62 31882.71 32893.82 26785.94 35588.89 28187.35 35292.54 33371.23 34499.33 22786.01 31594.60 33797.72 281
BH-RMVSNet94.56 23094.44 22794.91 25597.57 24487.44 28293.78 27096.26 28393.69 20596.41 21096.50 25092.10 21199.00 27685.96 31697.71 28498.31 239
E-PMN89.52 31189.78 30688.73 33493.14 34977.61 34783.26 35492.02 32994.82 16993.71 29193.11 32075.31 32896.81 35085.81 31796.81 31091.77 350
API-MVS95.09 20495.01 19695.31 24296.61 28994.02 15096.83 10997.18 26195.60 13795.79 23794.33 31294.54 15298.37 33285.70 31898.52 25393.52 344
AdaColmapbinary95.11 20294.62 21696.58 18597.33 26794.45 13494.92 22198.08 21393.15 22493.98 28595.53 29094.34 15799.10 26685.69 31998.61 24996.20 326
ADS-MVSNet291.47 29390.51 30194.36 27995.51 32085.63 30395.05 21595.70 29383.46 32892.69 31796.84 22779.15 30899.41 20485.66 32090.52 34698.04 266
ADS-MVSNet90.95 29990.26 30393.04 30295.51 32082.37 33195.05 21593.41 31783.46 32892.69 31796.84 22779.15 30898.70 30585.66 32090.52 34698.04 266
MDTV_nov1_ep13_2view57.28 36394.89 22280.59 33994.02 28278.66 31085.50 32297.82 277
OpenMVS_ROBcopyleft91.80 1493.64 25893.05 25795.42 23997.31 26991.21 21895.08 21196.68 28081.56 33496.88 18996.41 25390.44 23599.25 24585.39 32397.67 28895.80 330
KD-MVS_2432*160088.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
miper_refine_blended88.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
PVSNet86.72 1991.10 29690.97 29391.49 32197.56 24678.04 34587.17 34994.60 30784.65 32392.34 32492.20 33687.37 27198.47 32485.17 32697.69 28697.96 270
PLCcopyleft91.02 1694.05 24892.90 26097.51 12198.00 19695.12 11394.25 24598.25 19086.17 30491.48 33095.25 29391.01 22799.19 25185.02 32796.69 31398.22 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 35671.40 36081.67 33390.11 35298.99 27884.86 328
CMPMVSbinary73.10 2392.74 27391.39 28596.77 17493.57 34694.67 12894.21 24997.67 23980.36 34193.61 29696.60 24382.85 29397.35 34784.86 32898.78 23398.29 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 28091.69 28394.32 28096.23 30089.16 24992.27 30592.88 32284.39 32795.29 25096.35 25985.66 28096.74 35284.53 33097.56 29297.05 300
tpm cat188.01 32187.33 32290.05 33194.48 33476.28 35294.47 23994.35 31073.84 35689.26 34395.61 28873.64 33598.30 33584.13 33186.20 35495.57 335
MAR-MVS94.21 24193.03 25897.76 10196.94 28397.44 3396.97 10697.15 26287.89 29392.00 32792.73 33192.14 20999.12 26183.92 33297.51 29596.73 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 28391.83 28093.25 29796.18 30383.68 32796.27 13693.68 31476.97 35292.54 32399.18 2789.20 25598.55 32083.88 33398.60 25197.51 289
EMVS89.06 31389.22 30988.61 33593.00 35177.34 34982.91 35590.92 33994.64 17492.63 32191.81 34076.30 32497.02 34883.83 33496.90 30791.48 351
HY-MVS91.43 1592.58 27591.81 28194.90 25796.49 29288.87 25397.31 8794.62 30685.92 30790.50 33696.84 22785.05 28399.40 20683.77 33595.78 32696.43 323
test0.0.03 190.11 30389.21 31092.83 30893.89 34286.87 29291.74 31388.74 35092.02 24494.71 26391.14 34673.92 33394.48 35583.75 33692.94 34197.16 297
tpm288.47 31787.69 32190.79 32694.98 32977.34 34995.09 20991.83 33177.51 35189.40 34296.41 25367.83 35198.73 30283.58 33792.60 34496.29 325
MVS-HIRNet88.40 31890.20 30482.99 34097.01 27960.04 36293.11 28985.61 35684.45 32688.72 34699.09 3384.72 28798.23 33782.52 33896.59 31690.69 353
BH-w/o92.14 28491.94 27892.73 31097.13 27685.30 30892.46 30195.64 29489.33 27694.21 27592.74 33089.60 24698.24 33681.68 33994.66 33594.66 340
MIMVSNet93.42 26292.86 26195.10 24998.17 17688.19 26598.13 4193.69 31292.07 24395.04 25798.21 10480.95 30199.03 27581.42 34098.06 27098.07 258
TR-MVS92.54 27692.20 27693.57 29196.49 29286.66 29393.51 27794.73 30589.96 27194.95 25893.87 31690.24 24198.61 31481.18 34194.88 33395.45 336
thres600view792.03 28691.43 28493.82 28698.19 17184.61 31996.27 13690.39 34396.81 8496.37 21293.11 32073.44 33899.49 17680.32 34297.95 27397.36 293
PAPR92.22 28291.27 28895.07 25095.73 31788.81 25591.97 31097.87 22685.80 30990.91 33292.73 33191.16 22598.33 33479.48 34395.76 32798.08 256
MVS90.02 30489.20 31192.47 31494.71 33186.90 29195.86 16296.74 27864.72 35790.62 33392.77 32992.54 20198.39 32979.30 34495.56 32992.12 348
gg-mvs-nofinetune88.28 31986.96 32492.23 31992.84 35384.44 32198.19 3874.60 36099.08 1087.01 35399.47 856.93 36098.23 33778.91 34595.61 32894.01 343
thres100view90091.76 29091.26 28993.26 29698.21 16984.50 32096.39 12990.39 34396.87 8296.33 21393.08 32473.44 33899.42 19578.85 34697.74 28195.85 328
tfpn200view991.55 29291.00 29193.21 29998.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28195.85 328
thres40091.68 29191.00 29193.71 28898.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28197.36 293
thres20091.00 29890.42 30292.77 30997.47 25583.98 32594.01 25991.18 33895.12 15795.44 24791.21 34573.93 33299.31 23177.76 34997.63 29195.01 338
wuyk23d93.25 26795.20 18787.40 33996.07 30895.38 9897.04 10294.97 30395.33 14799.70 598.11 11398.14 1391.94 35677.76 34999.68 5674.89 355
PCF-MVS89.43 1892.12 28590.64 29996.57 18797.80 21893.48 17289.88 34198.45 16474.46 35496.04 22895.68 28490.71 23299.31 23173.73 35199.01 20896.91 306
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 32783.21 33088.34 33695.76 31674.97 35683.49 35392.70 32678.47 34787.94 34986.90 35583.38 29296.63 35373.44 35266.86 35893.40 345
GG-mvs-BLEND90.60 32791.00 35784.21 32498.23 3272.63 36382.76 35684.11 35656.14 36396.79 35172.20 35392.09 34590.78 352
FPMVS89.92 30888.63 31593.82 28698.37 15396.94 4591.58 31493.34 31888.00 29190.32 33797.10 21170.87 34691.13 35771.91 35496.16 32293.39 346
MVEpermissive73.61 2286.48 32685.92 32888.18 33796.23 30085.28 31081.78 35675.79 35986.01 30582.53 35791.88 33992.74 19287.47 35871.42 35594.86 33491.78 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 32862.50 33141.44 34234.77 36349.21 36483.93 35260.22 36415.31 35971.11 36079.37 35770.09 34844.86 36064.76 35682.93 35730.25 356
PAPM87.64 32485.84 32993.04 30296.54 29084.99 31588.42 34895.57 29879.52 34383.82 35593.05 32680.57 30298.41 32762.29 35792.79 34295.71 331
DeepMVS_CXcopyleft77.17 34190.94 35885.28 31074.08 36252.51 35880.87 35988.03 35475.25 32970.63 35959.23 35884.94 35575.62 354
test12312.59 33015.49 3333.87 3436.07 3642.55 36590.75 3302.59 3662.52 3605.20 36213.02 3604.96 3661.85 3625.20 3599.09 3597.23 357
testmvs12.33 33115.23 3343.64 3445.77 3652.23 36688.99 3453.62 3652.30 3615.29 36113.09 3594.52 3671.95 3615.16 3608.32 3606.75 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k24.22 32932.30 3320.00 3450.00 3660.00 3670.00 35798.10 2100.00 3620.00 36395.06 29797.54 280.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.98 33210.65 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36395.82 1040.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.91 33310.55 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36394.94 2990.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
test_241102_ONE99.22 5695.35 10198.83 10096.04 11399.08 3198.13 10997.87 2099.33 227
save fliter98.48 14494.71 12494.53 23798.41 17295.02 162
test072699.24 5195.51 9396.89 10798.89 7595.92 12198.64 5098.31 8597.06 49
GSMVS98.06 262
test_part299.03 9096.07 7198.08 110
sam_mvs177.80 31398.06 262
sam_mvs77.38 317
MTGPAbinary98.73 123
test_post10.87 36176.83 32199.07 269
patchmatchnet-post96.84 22777.36 31899.42 195
MTMP96.55 12274.60 360
TEST997.84 21195.23 10693.62 27398.39 17486.81 30093.78 28795.99 27394.68 14599.52 170
test_897.81 21495.07 11493.54 27698.38 17687.04 29893.71 29195.96 27794.58 15099.52 170
agg_prior97.80 21894.96 11698.36 17893.49 30199.53 166
test_prior495.38 9893.61 275
test_prior97.46 13297.79 22494.26 14398.42 17099.34 22498.79 195
新几何293.43 278
旧先验197.80 21893.87 15597.75 23497.04 21693.57 17698.68 24198.72 205
原ACMM292.82 292
test22298.17 17693.24 17792.74 29697.61 24975.17 35394.65 26596.69 23990.96 22998.66 24497.66 284
segment_acmp95.34 125
testdata192.77 29393.78 202
test1297.46 13297.61 24394.07 14897.78 23393.57 29893.31 18099.42 19598.78 23398.89 183
plane_prior798.70 11794.67 128
plane_prior698.38 15294.37 13791.91 219
plane_prior496.77 233
plane_prior394.51 13195.29 15096.16 224
plane_prior296.50 12496.36 98
plane_prior198.49 142
plane_prior94.29 13995.42 18494.31 18698.93 216
n20.00 367
nn0.00 367
door-mid98.17 202
test1198.08 213
door97.81 232
HQP5-MVS92.47 192
HQP-NCC97.85 20694.26 24293.18 22092.86 314
ACMP_Plane97.85 20694.26 24293.18 22092.86 314
HQP4-MVS92.87 31399.23 24899.06 155
HQP3-MVS98.43 16798.74 237
HQP2-MVS90.33 236
NP-MVS98.14 18193.72 16395.08 295
ACMMP++_ref99.52 100
ACMMP++99.55 89
Test By Simon94.51 153