This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
v7n98.73 1198.99 597.95 8999.64 1194.20 14098.67 1199.14 2399.08 1099.42 1599.23 2196.53 7599.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3199.69 896.48 5698.54 1899.22 1096.23 9999.71 499.48 798.77 699.93 298.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 7299.68 994.82 11598.10 4299.21 1196.91 7699.75 299.45 995.82 10299.92 498.80 499.96 499.89 1
jajsoiax98.77 998.79 1298.74 3399.66 1096.48 5698.45 2399.12 2595.83 12499.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
v1097.55 8197.97 4096.31 19798.60 12689.64 23297.44 7799.02 4996.60 8498.72 4899.16 2993.48 17399.72 7298.76 699.92 1299.58 27
MVSFormer96.14 15896.36 14595.49 23097.68 23087.81 26798.67 1199.02 4996.50 8894.48 26296.15 25986.90 26899.92 498.73 799.13 18698.74 197
test_djsdf98.73 1198.74 1698.69 3899.63 1296.30 6298.67 1199.02 4996.50 8899.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2398.63 4399.77 396.35 5999.17 699.05 4098.05 3999.61 1199.52 593.72 16999.88 1898.72 999.88 2199.65 22
v897.60 7898.06 3796.23 19998.71 11289.44 23697.43 7998.82 10397.29 7198.74 4699.10 3293.86 16499.68 11098.61 1099.94 899.56 32
anonymousdsp98.72 1498.63 1998.99 1199.62 1397.29 3498.65 1499.19 1595.62 13199.35 1999.37 1297.38 3299.90 1398.59 1199.91 1599.77 8
LTVRE_ROB96.88 199.18 299.34 298.72 3699.71 796.99 4199.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 16398.58 1299.95 599.66 21
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v124096.74 13097.02 11195.91 21598.18 17088.52 25195.39 18398.88 7993.15 21998.46 6598.40 7892.80 18799.71 8798.45 1399.49 10999.49 50
v119296.83 12597.06 10896.15 20498.28 15689.29 23895.36 18598.77 11093.73 19898.11 10098.34 8193.02 18499.67 11598.35 1499.58 7599.50 42
v192192096.72 13396.96 11495.99 20898.21 16588.79 24895.42 17998.79 10593.22 21398.19 9398.26 9692.68 19099.70 9698.34 1599.55 8799.49 50
Anonymous2023121198.55 1798.76 1397.94 9098.79 10294.37 13298.84 899.15 2199.37 399.67 699.43 1195.61 11499.72 7298.12 1699.86 2399.73 15
v14419296.69 13696.90 11896.03 20798.25 16188.92 24395.49 17598.77 11093.05 22198.09 10498.29 9092.51 19999.70 9698.11 1799.56 8199.47 58
v114496.84 12297.08 10696.13 20598.42 14689.28 23995.41 18198.67 13694.21 18497.97 11898.31 8493.06 18099.65 12198.06 1899.62 6299.45 65
SixPastTwentyTwo97.49 8697.57 7597.26 14499.56 1592.33 18798.28 2996.97 26498.30 3299.45 1499.35 1688.43 25499.89 1698.01 1999.76 3799.54 35
WR-MVS_H98.65 1598.62 2198.75 3199.51 2296.61 5298.55 1799.17 1699.05 1399.17 2898.79 4995.47 11999.89 1697.95 2099.91 1599.75 13
RRT_MVS94.90 20694.07 23197.39 13693.18 33993.21 17395.26 19497.49 24693.94 19498.25 8897.85 14372.96 33299.84 2597.90 2199.78 3699.14 130
UA-Net98.88 798.76 1399.22 299.11 8097.89 1099.47 399.32 799.08 1097.87 13099.67 296.47 8099.92 497.88 2299.98 299.85 3
FC-MVSNet-test98.16 3398.37 2797.56 11399.49 2693.10 17698.35 2699.21 1198.43 2798.89 3898.83 4894.30 15499.81 3197.87 2399.91 1599.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8099.33 4295.21 10698.04 4599.46 597.32 6997.82 13599.11 3196.75 6699.86 2097.84 2499.36 14799.15 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 14896.28 14896.95 15799.41 3591.53 20797.65 6590.31 33698.89 1898.93 3799.36 1484.57 28399.92 497.81 2599.56 8199.39 83
v2v48296.78 12997.06 10895.95 21298.57 13088.77 24995.36 18598.26 18495.18 14997.85 13298.23 9992.58 19499.63 12697.80 2699.69 5399.45 65
PS-CasMVS98.73 1198.85 1098.39 5799.55 1795.47 9298.49 2099.13 2499.22 899.22 2698.96 4097.35 3399.92 497.79 2799.93 1099.79 7
nrg03098.54 1898.62 2198.32 6299.22 5695.66 8397.90 5299.08 3498.31 3199.02 3398.74 5397.68 2499.61 14097.77 2899.85 2599.70 18
pmmvs699.07 499.24 498.56 4799.81 296.38 5898.87 799.30 899.01 1699.63 999.66 399.27 299.68 11097.75 2999.89 2099.62 24
ACMH93.61 998.44 2298.76 1397.51 11899.43 3293.54 16598.23 3299.05 4097.40 6799.37 1899.08 3498.79 599.47 17597.74 3099.71 4999.50 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4599.55 1796.12 6798.48 2299.10 2899.36 499.29 2299.06 3597.27 3799.93 297.71 3199.91 1599.70 18
PEN-MVS98.75 1098.85 1098.44 5399.58 1495.67 8298.45 2399.15 2199.33 599.30 2199.00 3697.27 3799.92 497.64 3299.92 1299.75 13
CP-MVSNet98.42 2398.46 2498.30 6599.46 2895.22 10498.27 3198.84 8799.05 1399.01 3498.65 6195.37 12299.90 1397.57 3399.91 1599.77 8
EI-MVSNet-UG-set97.32 10097.40 8497.09 15197.34 25792.01 19995.33 18897.65 23897.74 4798.30 8598.14 10795.04 13299.69 10497.55 3499.52 9899.58 27
ANet_high98.31 2898.94 696.41 19399.33 4289.64 23297.92 5199.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3499.98 299.77 8
EI-MVSNet-Vis-set97.32 10097.39 8597.11 14997.36 25292.08 19795.34 18797.65 23897.74 4798.29 8698.11 11295.05 13099.68 11097.50 3699.50 10599.56 32
EU-MVSNet94.25 23294.47 21893.60 28498.14 17782.60 32297.24 8792.72 31785.08 30898.48 6298.94 4282.59 28998.76 29397.47 3799.53 9399.44 75
Regformer-497.53 8497.47 8397.71 10297.35 25393.91 14895.26 19498.14 20197.97 4198.34 7797.89 13895.49 11799.71 8797.41 3899.42 13399.51 41
V4297.04 10997.16 10196.68 17698.59 12891.05 21296.33 12998.36 17394.60 17097.99 11498.30 8893.32 17599.62 13497.40 3999.53 9399.38 85
lessismore_v097.05 15399.36 4092.12 19584.07 34898.77 4598.98 3885.36 27799.74 6397.34 4099.37 14499.30 100
testing_297.43 9197.71 5696.60 17898.91 9690.85 21696.01 14998.54 15194.78 16498.78 4298.96 4096.35 8899.54 15797.25 4199.82 2899.40 80
FIs97.93 5298.07 3697.48 12599.38 3892.95 17998.03 4799.11 2698.04 4098.62 5098.66 5993.75 16899.78 4097.23 4299.84 2699.73 15
UniMVSNet_ETH3D99.12 399.28 398.65 4199.77 396.34 6099.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4399.92 1299.77 8
MVS_Test96.27 15296.79 12494.73 26096.94 27586.63 28696.18 13898.33 17894.94 15996.07 22098.28 9195.25 12799.26 23797.21 4497.90 26998.30 235
TDRefinement98.90 598.86 899.02 899.54 1998.06 699.34 499.44 698.85 1999.00 3599.20 2397.42 3199.59 14297.21 4499.76 3799.40 80
EG-PatchMatch MVS97.69 7297.79 5097.40 13599.06 8593.52 16695.96 15398.97 6694.55 17498.82 4098.76 5297.31 3599.29 23297.20 4699.44 12399.38 85
VPA-MVSNet98.27 2998.46 2497.70 10499.06 8593.80 15497.76 5999.00 5798.40 2899.07 3298.98 3896.89 5899.75 5697.19 4799.79 3399.55 34
Regformer-397.25 10497.29 9197.11 14997.35 25392.32 18895.26 19497.62 24397.67 5598.17 9497.89 13895.05 13099.56 15197.16 4899.42 13399.46 60
UniMVSNet (Re)97.83 6297.65 6398.35 6198.80 10195.86 7495.92 15799.04 4697.51 6098.22 9197.81 14994.68 14199.78 4097.14 4999.75 4199.41 79
pm-mvs198.47 2198.67 1797.86 9599.52 2194.58 12598.28 2999.00 5797.57 5799.27 2399.22 2298.32 999.50 16897.09 5099.75 4199.50 42
baseline97.44 9097.78 5396.43 19098.52 13590.75 22196.84 10399.03 4796.51 8797.86 13198.02 12396.67 6899.36 21397.09 5099.47 11599.19 120
IterMVS-SCA-FT95.86 17096.19 15194.85 25397.68 23085.53 29792.42 29797.63 24296.99 7398.36 7498.54 6887.94 25899.75 5697.07 5299.08 19499.27 111
UniMVSNet_NR-MVSNet97.83 6297.65 6398.37 5898.72 10995.78 7595.66 16999.02 4998.11 3898.31 8397.69 16294.65 14399.85 2297.02 5399.71 4999.48 55
DU-MVS97.79 6697.60 7298.36 5998.73 10795.78 7595.65 17198.87 8197.57 5798.31 8397.83 14594.69 13999.85 2297.02 5399.71 4999.46 60
RRT_test8_iter0592.46 27192.52 26692.29 31095.33 31777.43 33895.73 16398.55 15094.41 17697.46 15097.72 15957.44 35199.74 6396.92 5599.14 18299.69 20
EI-MVSNet96.63 14096.93 11595.74 21997.26 26288.13 26095.29 19297.65 23896.99 7397.94 12198.19 10492.55 19599.58 14496.91 5699.56 8199.50 42
IterMVS-LS96.92 11797.29 9195.79 21898.51 13688.13 26095.10 20298.66 13896.99 7398.46 6598.68 5892.55 19599.74 6396.91 5699.79 3399.50 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
APDe-MVS98.14 3498.03 3998.47 5298.72 10996.04 6998.07 4499.10 2895.96 11398.59 5498.69 5796.94 5499.81 3196.64 5899.58 7599.57 31
MP-MVS-pluss97.69 7297.36 8798.70 3799.50 2596.84 4495.38 18498.99 6092.45 23498.11 10098.31 8497.25 4099.77 4896.60 5999.62 6299.48 55
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 18996.07 15893.21 29396.29 28881.56 32594.60 22997.66 23693.30 21096.95 17998.91 4593.03 18399.38 20896.60 5997.30 29698.69 203
casdiffmvs97.50 8597.81 4996.56 18498.51 13691.04 21395.83 16199.09 3397.23 7298.33 8098.30 8897.03 5199.37 21196.58 6199.38 14399.28 107
Regformer-297.41 9397.24 9697.93 9197.21 26494.72 11894.85 22098.27 18297.74 4798.11 10097.50 17595.58 11599.69 10496.57 6299.31 16699.37 90
Regformer-197.27 10297.16 10197.61 11197.21 26493.86 15194.85 22098.04 21597.62 5698.03 11297.50 17595.34 12399.63 12696.52 6399.31 16699.35 92
TransMVSNet (Re)98.38 2598.67 1797.51 11899.51 2293.39 16998.20 3798.87 8198.23 3499.48 1299.27 1998.47 899.55 15596.52 6399.53 9399.60 25
HPM-MVS_fast98.32 2798.13 3398.88 2299.54 1997.48 2798.35 2699.03 4795.88 11997.88 12798.22 10298.15 1299.74 6396.50 6599.62 6299.42 77
MIMVSNet198.51 2098.45 2698.67 3999.72 696.71 4798.76 998.89 7498.49 2699.38 1799.14 3095.44 12199.84 2596.47 6699.80 3299.47 58
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5499.07 8495.87 7396.73 11399.05 4098.67 2298.84 3998.45 7497.58 2799.88 1896.45 6799.86 2399.54 35
Gipumacopyleft98.07 3898.31 2997.36 13899.76 596.28 6398.51 1999.10 2898.76 2196.79 18599.34 1796.61 7298.82 28696.38 6899.50 10596.98 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 23693.93 23895.05 24595.83 30586.46 28795.18 20097.65 23892.41 23597.94 12198.00 12772.39 33399.58 14496.36 6999.56 8199.12 138
canonicalmvs97.23 10697.21 9997.30 14197.65 23494.39 13097.84 5599.05 4097.42 6396.68 19193.85 30997.63 2699.33 22196.29 7098.47 24998.18 246
alignmvs96.01 16495.52 17897.50 12197.77 22394.71 11996.07 14396.84 26797.48 6196.78 18994.28 30685.50 27699.40 19996.22 7198.73 23498.40 222
tttt051793.31 25992.56 26595.57 22598.71 11287.86 26497.44 7787.17 34495.79 12597.47 14996.84 22264.12 34699.81 3196.20 7299.32 16499.02 156
DeepC-MVS95.41 497.82 6497.70 5798.16 7398.78 10495.72 7796.23 13699.02 4993.92 19598.62 5098.99 3797.69 2399.62 13496.18 7399.87 2299.15 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
zzz-MVS98.01 4297.66 6199.06 499.44 3097.90 895.66 16998.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
MTAPA98.14 3497.84 4799.06 499.44 3097.90 897.25 8598.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
ZNCC-MVS97.92 5397.62 7098.83 2499.32 4497.24 3697.45 7698.84 8795.76 12696.93 18097.43 18097.26 3999.79 3896.06 7699.53 9399.45 65
Patchmatch-RL test94.66 22094.49 21795.19 24098.54 13388.91 24492.57 29398.74 11691.46 24898.32 8197.75 15477.31 31298.81 28896.06 7699.61 6897.85 268
ACMMP_NAP97.89 5797.63 6898.67 3999.35 4196.84 4496.36 12798.79 10595.07 15497.88 12798.35 8097.24 4199.72 7296.05 7899.58 7599.45 65
v14896.58 14296.97 11295.42 23398.63 12287.57 27195.09 20497.90 21995.91 11898.24 9097.96 12993.42 17499.39 20496.04 7999.52 9899.29 106
ACMM93.33 1198.05 3997.79 5098.85 2399.15 7097.55 2396.68 11598.83 9595.21 14698.36 7498.13 10898.13 1499.62 13496.04 7999.54 9099.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 9697.25 9497.74 10198.69 11694.50 12897.04 9795.61 28998.59 2498.51 5998.72 5492.54 19799.58 14496.02 8199.49 10999.12 138
IterMVS95.42 18795.83 16794.20 27797.52 24283.78 31892.41 29897.47 24995.49 13798.06 10898.49 7187.94 25899.58 14496.02 8199.02 20199.23 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvs96.04 16296.23 14995.46 23297.35 25388.03 26293.42 27499.08 3494.09 19096.66 19296.93 21793.85 16599.29 23296.01 8398.67 23699.06 150
PM-MVS97.36 9897.10 10498.14 7798.91 9696.77 4696.20 13798.63 14493.82 19698.54 5798.33 8293.98 16299.05 26495.99 8499.45 12298.61 211
Baseline_NR-MVSNet97.72 7097.79 5097.50 12199.56 1593.29 17095.44 17798.86 8398.20 3698.37 7299.24 2094.69 13999.55 15595.98 8599.79 3399.65 22
3Dnovator96.53 297.61 7797.64 6697.50 12197.74 22693.65 16398.49 2098.88 7996.86 7897.11 16498.55 6795.82 10299.73 6895.94 8699.42 13399.13 133
PatchT93.75 24793.57 24394.29 27695.05 32087.32 27796.05 14492.98 31397.54 5994.25 26598.72 5475.79 32099.24 24095.92 8795.81 31596.32 315
NR-MVSNet97.96 4497.86 4698.26 6798.73 10795.54 8798.14 4098.73 11897.79 4499.42 1597.83 14594.40 15299.78 4095.91 8899.76 3799.46 60
new-patchmatchnet95.67 17596.58 13292.94 30197.48 24380.21 33092.96 28598.19 19694.83 16298.82 4098.79 4993.31 17699.51 16795.83 8999.04 20099.12 138
FMVSNet197.95 4798.08 3597.56 11399.14 7893.67 15998.23 3298.66 13897.41 6699.00 3599.19 2495.47 11999.73 6895.83 8999.76 3799.30 100
test_0728_THIRD96.62 8398.40 6998.28 9197.10 4499.71 8795.70 9199.62 6299.58 27
RPMNet94.22 23394.03 23494.78 25795.44 31488.15 25896.18 13893.73 30397.43 6294.10 26998.49 7179.40 29999.39 20495.69 9295.81 31596.81 304
TSAR-MVS + MP.97.42 9297.23 9798.00 8799.38 3895.00 11097.63 6798.20 19193.00 22298.16 9598.06 11995.89 9799.72 7295.67 9399.10 19299.28 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
abl_698.42 2398.19 3299.09 399.16 6798.10 597.73 6399.11 2697.76 4698.62 5098.27 9597.88 1999.80 3795.67 9399.50 10599.38 85
XVS97.96 4497.63 6898.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20797.64 16496.49 7899.72 7295.66 9599.37 14499.45 65
X-MVStestdata92.86 26590.83 28998.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20736.50 34896.49 7899.72 7295.66 9599.37 14499.45 65
3Dnovator+96.13 397.73 6997.59 7398.15 7698.11 18295.60 8598.04 4598.70 12898.13 3796.93 18098.45 7495.30 12699.62 13495.64 9798.96 20599.24 115
DELS-MVS96.17 15796.23 14995.99 20897.55 24190.04 22892.38 29998.52 15394.13 18896.55 19897.06 20994.99 13399.58 14495.62 9899.28 17198.37 225
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 4997.64 6698.83 2499.15 7097.50 2597.59 6998.84 8796.05 10697.49 14497.54 17097.07 4799.70 9695.61 9999.46 11899.30 100
ACMMPR97.95 4797.62 7098.94 1699.20 6397.56 2297.59 6998.83 9596.05 10697.46 15097.63 16596.77 6599.76 5295.61 9999.46 11899.49 50
UGNet96.81 12796.56 13497.58 11296.64 28093.84 15397.75 6097.12 25996.47 9193.62 28698.88 4693.22 17899.53 15995.61 9999.69 5399.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 3797.83 4898.92 2099.42 3497.46 2898.57 1599.05 4095.43 14097.41 15397.50 17597.98 1599.79 3895.58 10299.57 7899.50 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Anonymous2024052997.96 4498.04 3897.71 10298.69 11694.28 13797.86 5498.31 18198.79 2099.23 2598.86 4795.76 10999.61 14095.49 10399.36 14799.23 116
MSP-MVS97.78 6797.65 6398.16 7399.24 5195.51 8996.74 10998.23 18795.92 11698.40 6998.28 9197.06 4999.71 8795.48 10499.52 9899.26 112
test_0728_SECOND98.25 6999.23 5395.49 9196.74 10998.89 7499.75 5695.48 10499.52 9899.53 38
region2R97.92 5397.59 7398.92 2099.22 5697.55 2397.60 6898.84 8796.00 11197.22 15797.62 16696.87 6199.76 5295.48 10499.43 13099.46 60
pmmvs-eth3d96.49 14596.18 15297.42 13398.25 16194.29 13494.77 22498.07 21289.81 26297.97 11898.33 8293.11 17999.08 26195.46 10799.84 2698.89 178
SED-MVS97.94 4997.90 4398.07 8099.22 5695.35 9696.79 10698.83 9596.11 10399.08 3098.24 9797.87 2099.72 7295.44 10899.51 10399.14 130
test_241102_TWO98.83 9596.11 10398.62 5098.24 9796.92 5699.72 7295.44 10899.49 10999.49 50
APD-MVS_3200maxsize98.13 3697.90 4398.79 2998.79 10297.31 3397.55 7298.92 7197.72 5098.25 8898.13 10897.10 4499.75 5695.44 10899.24 17699.32 94
xiu_mvs_v1_base_debu95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base_debi95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
cl_fuxian95.20 19595.32 18194.83 25596.19 29486.43 28991.83 30798.35 17793.47 20497.36 15497.26 19888.69 25199.28 23495.41 11499.36 14798.78 192
ACMMPcopyleft98.05 3997.75 5598.93 1999.23 5397.60 1998.09 4398.96 6795.75 12897.91 12398.06 11996.89 5899.76 5295.32 11599.57 7899.43 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
miper_lstm_enhance94.81 21194.80 20394.85 25396.16 29686.45 28891.14 32098.20 19193.49 20397.03 17297.37 19084.97 28099.26 23795.28 11699.56 8198.83 186
MSLP-MVS++96.42 15096.71 12695.57 22597.82 20890.56 22595.71 16498.84 8794.72 16696.71 19097.39 18694.91 13698.10 33295.28 11699.02 20198.05 258
SteuartSystems-ACMMP98.02 4197.76 5498.79 2999.43 3297.21 3897.15 9098.90 7396.58 8698.08 10697.87 14297.02 5299.76 5295.25 11899.59 7399.40 80
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 9697.70 5796.35 19498.14 17795.13 10796.54 11898.92 7195.94 11599.19 2798.08 11497.74 2295.06 34595.24 11999.54 9098.87 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 5695.40 9398.14 20185.77 30098.36 7495.23 12099.51 10399.49 50
CP-MVS97.92 5397.56 7698.99 1198.99 9197.82 1297.93 5098.96 6796.11 10396.89 18397.45 17996.85 6299.78 4095.19 12199.63 6199.38 85
LS3D97.77 6897.50 8098.57 4696.24 29097.58 2198.45 2398.85 8498.58 2597.51 14297.94 13395.74 11099.63 12695.19 12198.97 20498.51 217
SMA-MVS97.48 8797.11 10398.60 4498.83 10096.67 4996.74 10998.73 11891.61 24598.48 6298.36 7996.53 7599.68 11095.17 12399.54 9099.45 65
CR-MVSNet93.29 26092.79 25894.78 25795.44 31488.15 25896.18 13897.20 25484.94 31294.10 26998.57 6477.67 30799.39 20495.17 12395.81 31596.81 304
OPM-MVS97.54 8297.25 9498.41 5599.11 8096.61 5295.24 19798.46 15894.58 17398.10 10398.07 11697.09 4699.39 20495.16 12599.44 12399.21 118
mPP-MVS97.91 5697.53 7799.04 699.22 5697.87 1197.74 6198.78 10996.04 10897.10 16597.73 15796.53 7599.78 4095.16 12599.50 10599.46 60
cl-mvsnet194.73 21394.64 20895.01 24695.86 30387.00 28191.33 31498.08 20893.34 20897.10 16597.34 19284.02 28499.31 22595.15 12799.55 8798.72 200
cl-mvsnet_94.73 21394.64 20895.01 24695.85 30487.00 28191.33 31498.08 20893.34 20897.10 16597.33 19384.01 28599.30 22895.14 12899.56 8198.71 202
DVP-MVS97.45 8996.92 11699.03 799.26 4797.70 1597.66 6498.89 7495.65 12998.51 5996.46 24692.15 20499.81 3195.14 12898.58 24599.58 27
VDDNet96.98 11496.84 11997.41 13499.40 3693.26 17197.94 4995.31 29399.26 798.39 7199.18 2787.85 26399.62 13495.13 13099.09 19399.35 92
CANet95.86 17095.65 17396.49 18796.41 28690.82 21894.36 23598.41 16794.94 15992.62 31296.73 23192.68 19099.71 8795.12 13199.60 7198.94 165
CNVR-MVS96.92 11796.55 13598.03 8698.00 19195.54 8794.87 21898.17 19794.60 17096.38 20497.05 21095.67 11299.36 21395.12 13199.08 19499.19 120
eth_miper_zixun_eth94.89 20794.93 19594.75 25995.99 30186.12 29291.35 31398.49 15693.40 20597.12 16397.25 19986.87 27099.35 21695.08 13398.82 22498.78 192
GST-MVS97.82 6497.49 8198.81 2799.23 5397.25 3597.16 8998.79 10595.96 11397.53 14097.40 18296.93 5599.77 4895.04 13499.35 15299.42 77
DP-MVS97.87 5997.89 4597.81 9898.62 12394.82 11597.13 9398.79 10598.98 1798.74 4698.49 7195.80 10899.49 16995.04 13499.44 12399.11 141
D2MVS95.18 19695.17 18595.21 23997.76 22487.76 26994.15 24797.94 21789.77 26396.99 17597.68 16387.45 26599.14 25295.03 13699.81 2998.74 197
SR-MVS98.00 4397.66 6199.01 998.77 10597.93 797.38 8198.83 9597.32 6998.06 10897.85 14396.65 6999.77 4895.00 13799.11 19099.32 94
FMVSNet296.72 13396.67 12996.87 16397.96 19391.88 20197.15 9098.06 21395.59 13398.50 6198.62 6289.51 24599.65 12194.99 13899.60 7199.07 148
miper_ehance_all_eth94.69 21894.70 20594.64 26195.77 30786.22 29191.32 31698.24 18691.67 24497.05 17096.65 23688.39 25599.22 24494.88 13998.34 25298.49 218
XVG-OURS-SEG-HR97.38 9597.07 10798.30 6599.01 9097.41 3194.66 22799.02 4995.20 14798.15 9797.52 17398.83 498.43 31794.87 14096.41 31099.07 148
MVS_111021_HR96.73 13296.54 13797.27 14298.35 15193.66 16293.42 27498.36 17394.74 16596.58 19496.76 23096.54 7498.99 27194.87 14099.27 17399.15 127
test_040297.84 6197.97 4097.47 12699.19 6594.07 14396.71 11498.73 11898.66 2398.56 5698.41 7696.84 6399.69 10494.82 14299.81 2998.64 206
MVS_111021_LR96.82 12696.55 13597.62 11098.27 15895.34 9893.81 26498.33 17894.59 17296.56 19696.63 23796.61 7298.73 29594.80 14399.34 15598.78 192
WR-MVS96.90 11996.81 12197.16 14698.56 13192.20 19394.33 23698.12 20497.34 6898.20 9297.33 19392.81 18699.75 5694.79 14499.81 2999.54 35
ACMH+93.58 1098.23 3298.31 2997.98 8899.39 3795.22 10497.55 7299.20 1398.21 3599.25 2498.51 7098.21 1199.40 19994.79 14499.72 4699.32 94
thisisatest053092.71 26891.76 27595.56 22798.42 14688.23 25696.03 14687.35 34394.04 19196.56 19695.47 28364.03 34799.77 4894.78 14699.11 19098.68 205
PGM-MVS97.88 5897.52 7898.96 1499.20 6397.62 1897.09 9499.06 3895.45 13897.55 13997.94 13397.11 4399.78 4094.77 14799.46 11899.48 55
TSAR-MVS + GP.96.47 14796.12 15497.49 12497.74 22695.23 10194.15 24796.90 26693.26 21198.04 11196.70 23394.41 15198.89 28194.77 14799.14 18298.37 225
VNet96.84 12296.83 12096.88 16298.06 18392.02 19896.35 12897.57 24597.70 5297.88 12797.80 15092.40 20199.54 15794.73 14998.96 20599.08 146
VPNet97.26 10397.49 8196.59 18099.47 2790.58 22396.27 13198.53 15297.77 4598.46 6598.41 7694.59 14599.68 11094.61 15099.29 17099.52 39
GBi-Net96.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
test196.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
FMVSNet395.26 19494.94 19396.22 20196.53 28390.06 22795.99 15097.66 23694.11 18997.99 11497.91 13780.22 29899.63 12694.60 15199.44 12398.96 162
xxxxxxxxxxxxxcwj97.24 10597.03 11097.89 9398.48 14194.71 11994.53 23299.07 3795.02 15797.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
SF-MVS97.60 7897.39 8598.22 7198.93 9495.69 7997.05 9699.10 2895.32 14397.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
MVS_030495.50 18095.05 19196.84 16596.28 28993.12 17597.00 9996.16 27895.03 15689.22 33497.70 16090.16 23799.48 17294.51 15699.34 15597.93 265
XXY-MVS97.54 8297.70 5797.07 15299.46 2892.21 19197.22 8899.00 5794.93 16198.58 5598.92 4497.31 3599.41 19794.44 15799.43 13099.59 26
UnsupCasMVSNet_eth95.91 16795.73 17196.44 18998.48 14191.52 20895.31 19098.45 15995.76 12697.48 14797.54 17089.53 24498.69 29994.43 15894.61 32699.13 133
LPG-MVS_test97.94 4997.67 6098.74 3399.15 7097.02 3997.09 9499.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
LGP-MVS_train98.74 3399.15 7097.02 3999.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
DeepPCF-MVS94.58 596.90 11996.43 14398.31 6497.48 24397.23 3792.56 29498.60 14692.84 22998.54 5797.40 18296.64 7198.78 29094.40 16199.41 13998.93 169
#test#97.62 7697.22 9898.83 2499.15 7097.50 2596.81 10598.84 8794.25 18397.49 14497.54 17097.07 4799.70 9694.37 16299.46 11899.30 100
XVG-ACMP-BASELINE97.58 8097.28 9398.49 5099.16 6796.90 4396.39 12498.98 6395.05 15598.06 10898.02 12395.86 9899.56 15194.37 16299.64 6099.00 157
RPSCF97.87 5997.51 7998.95 1599.15 7098.43 397.56 7199.06 3896.19 10098.48 6298.70 5694.72 13899.24 24094.37 16299.33 16299.17 123
CSCG97.40 9497.30 9097.69 10698.95 9394.83 11497.28 8498.99 6096.35 9598.13 9995.95 27095.99 9599.66 12094.36 16599.73 4398.59 212
HPM-MVS++copyleft96.99 11196.38 14498.81 2798.64 11897.59 2095.97 15298.20 19195.51 13695.06 24796.53 24294.10 15999.70 9694.29 16699.15 18199.13 133
XVG-OURS97.12 10896.74 12598.26 6798.99 9197.45 2993.82 26299.05 4095.19 14898.32 8197.70 16095.22 12898.41 31894.27 16798.13 26098.93 169
jason94.39 23094.04 23395.41 23598.29 15487.85 26692.74 29196.75 27185.38 30795.29 24396.15 25988.21 25799.65 12194.24 16899.34 15598.74 197
jason: jason.
CVMVSNet92.33 27592.79 25890.95 31797.26 26275.84 34395.29 19292.33 32081.86 32296.27 21198.19 10481.44 29198.46 31694.23 16998.29 25598.55 216
EIA-MVS96.04 16295.77 17096.85 16497.80 21392.98 17896.12 14199.16 1794.65 16893.77 28091.69 33295.68 11199.67 11594.18 17098.85 22197.91 266
ET-MVSNet_ETH3D91.12 28989.67 30095.47 23196.41 28689.15 24291.54 31090.23 33789.07 26786.78 34492.84 31869.39 34199.44 18594.16 17196.61 30797.82 270
cl-mvsnet293.25 26192.84 25794.46 27094.30 32886.00 29391.09 32196.64 27590.74 25395.79 23096.31 25378.24 30498.77 29194.15 17298.34 25298.62 209
MCST-MVS96.24 15395.80 16897.56 11398.75 10694.13 14294.66 22798.17 19790.17 25996.21 21596.10 26495.14 12999.43 18794.13 17398.85 22199.13 133
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4299.21 6297.35 3297.96 4899.16 1798.34 3098.78 4298.52 6997.32 3499.45 18294.08 17499.67 5699.13 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 15195.98 16297.43 13298.25 16193.85 15296.74 10994.41 30097.72 5098.37 7298.03 12287.15 26799.53 15994.06 17599.07 19698.92 173
Effi-MVS+-dtu96.81 12796.09 15698.99 1196.90 27798.69 296.42 12298.09 20695.86 12195.15 24695.54 28194.26 15599.81 3194.06 17598.51 24898.47 219
mvs-test196.20 15595.50 17998.32 6296.90 27798.16 495.07 20798.09 20695.86 12193.63 28594.32 30594.26 15599.71 8794.06 17597.27 29797.07 292
ambc96.56 18498.23 16491.68 20697.88 5398.13 20398.42 6898.56 6694.22 15799.04 26594.05 17899.35 15298.95 163
our_test_394.20 23894.58 21493.07 29596.16 29681.20 32790.42 32796.84 26790.72 25497.14 16197.13 20390.47 22999.11 25794.04 17998.25 25698.91 174
pmmvs594.63 22294.34 22395.50 22997.63 23688.34 25594.02 25397.13 25887.15 28795.22 24597.15 20287.50 26499.27 23693.99 18099.26 17498.88 181
DPE-MVS97.64 7497.35 8898.50 4998.85 9996.18 6495.21 19998.99 6095.84 12398.78 4298.08 11496.84 6399.81 3193.98 18199.57 7899.52 39
ppachtmachnet_test94.49 22794.84 20093.46 28796.16 29682.10 32490.59 32597.48 24890.53 25597.01 17497.59 16891.01 22399.36 21393.97 18299.18 18098.94 165
tfpnnormal97.72 7097.97 4096.94 15899.26 4792.23 19097.83 5698.45 15998.25 3399.13 2998.66 5996.65 6999.69 10493.92 18399.62 6298.91 174
LFMVS95.32 19194.88 19896.62 17798.03 18491.47 20997.65 6590.72 33399.11 997.89 12698.31 8479.20 30099.48 17293.91 18499.12 18998.93 169
EPP-MVSNet96.84 12296.58 13297.65 10899.18 6693.78 15698.68 1096.34 27697.91 4397.30 15598.06 11988.46 25399.85 2293.85 18599.40 14099.32 94
Fast-Effi-MVS+-dtu96.44 14896.12 15497.39 13697.18 26694.39 13095.46 17698.73 11896.03 11094.72 25394.92 29396.28 9199.69 10493.81 18697.98 26598.09 248
PHI-MVS96.96 11596.53 13898.25 6997.48 24396.50 5596.76 10898.85 8493.52 20296.19 21696.85 22195.94 9699.42 18893.79 18799.43 13098.83 186
miper_enhance_ethall93.14 26392.78 26094.20 27793.65 33685.29 30189.97 33197.85 22285.05 30996.15 21994.56 29885.74 27499.14 25293.74 18898.34 25298.17 247
DeepC-MVS_fast94.34 796.74 13096.51 14097.44 13197.69 22994.15 14196.02 14798.43 16293.17 21897.30 15597.38 18895.48 11899.28 23493.74 18899.34 15598.88 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft97.64 7497.18 10099.00 1099.32 4497.77 1497.49 7598.73 11896.27 9695.59 23897.75 15496.30 8999.78 4093.70 19099.48 11399.45 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 16695.80 16896.42 19199.28 4690.62 22295.31 19099.08 3488.40 27696.97 17898.17 10692.11 20699.78 4093.64 19199.21 17798.86 184
lupinMVS93.77 24693.28 24795.24 23897.68 23087.81 26792.12 30296.05 28084.52 31494.48 26295.06 28986.90 26899.63 12693.62 19299.13 18698.27 238
NCCC96.52 14495.99 16198.10 7897.81 20995.68 8195.00 21398.20 19195.39 14195.40 24296.36 25193.81 16699.45 18293.55 19398.42 25099.17 123
ETV-MVS96.13 15995.90 16696.82 16697.76 22493.89 14995.40 18298.95 6995.87 12095.58 23991.00 33796.36 8799.72 7293.36 19498.83 22396.85 302
MDA-MVSNet_test_wron94.73 21394.83 20294.42 27197.48 24385.15 30490.28 32995.87 28592.52 23197.48 14797.76 15191.92 21499.17 25093.32 19596.80 30398.94 165
YYNet194.73 21394.84 20094.41 27297.47 24785.09 30690.29 32895.85 28692.52 23197.53 14097.76 15191.97 21099.18 24693.31 19696.86 30098.95 163
CS-MVS95.86 17095.59 17696.69 17497.85 20193.14 17496.42 12299.25 994.17 18793.56 29090.76 34096.05 9499.72 7293.28 19798.91 21297.21 289
pmmvs494.82 21094.19 22896.70 17397.42 25092.75 18292.09 30496.76 27086.80 29195.73 23597.22 20089.28 24898.89 28193.28 19799.14 18298.46 221
CANet_DTU94.65 22194.21 22795.96 21095.90 30289.68 23193.92 25997.83 22693.19 21490.12 32995.64 27888.52 25299.57 15093.27 19999.47 11598.62 209
ACMP92.54 1397.47 8897.10 10498.55 4899.04 8896.70 4896.24 13598.89 7493.71 19997.97 11897.75 15497.44 2999.63 12693.22 20099.70 5299.32 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 15696.01 15996.71 17297.43 24992.19 19496.12 14199.10 2895.45 13893.33 29994.71 29697.23 4299.56 15193.21 20197.54 28698.37 225
MDA-MVSNet-bldmvs95.69 17395.67 17295.74 21998.48 14188.76 25092.84 28697.25 25296.00 11197.59 13897.95 13291.38 22099.46 17893.16 20296.35 31198.99 160
IS-MVSNet96.93 11696.68 12897.70 10499.25 5094.00 14698.57 1596.74 27298.36 2998.14 9897.98 12888.23 25699.71 8793.10 20399.72 4699.38 85
9.1496.69 12798.53 13496.02 14798.98 6393.23 21297.18 15997.46 17896.47 8099.62 13492.99 20499.32 164
MS-PatchMatch94.83 20994.91 19794.57 26796.81 27987.10 28094.23 24297.34 25188.74 27397.14 16197.11 20691.94 21298.23 32892.99 20497.92 26798.37 225
Patchmtry95.03 20394.59 21396.33 19594.83 32290.82 21896.38 12697.20 25496.59 8597.49 14498.57 6477.67 30799.38 20892.95 20699.62 6298.80 189
ETH3D-3000-0.196.89 12196.46 14298.16 7398.62 12395.69 7995.96 15398.98 6393.36 20797.04 17197.31 19594.93 13599.63 12692.60 20799.34 15599.17 123
Fast-Effi-MVS+95.49 18195.07 18896.75 17097.67 23392.82 18094.22 24398.60 14691.61 24593.42 29792.90 31796.73 6799.70 9692.60 20797.89 27097.74 273
HQP_MVS96.66 13996.33 14797.68 10798.70 11494.29 13496.50 11998.75 11496.36 9396.16 21796.77 22891.91 21599.46 17892.59 20999.20 17899.28 107
plane_prior598.75 11499.46 17892.59 20999.20 17899.28 107
GA-MVS92.83 26692.15 27094.87 25296.97 27287.27 27890.03 33096.12 27991.83 24394.05 27294.57 29776.01 31998.97 27792.46 21197.34 29498.36 230
CPTT-MVS96.69 13696.08 15798.49 5098.89 9896.64 5197.25 8598.77 11092.89 22896.01 22397.13 20392.23 20399.67 11592.24 21299.34 15599.17 123
EPNet93.72 24892.62 26497.03 15587.61 35292.25 18996.27 13191.28 32796.74 8187.65 34097.39 18685.00 27999.64 12492.14 21399.48 11399.20 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
APD-MVScopyleft97.00 11096.53 13898.41 5598.55 13296.31 6196.32 13098.77 11092.96 22797.44 15297.58 16995.84 9999.74 6391.96 21499.35 15299.19 120
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior395.91 16795.39 18097.46 12897.79 21894.26 13893.33 27998.42 16594.21 18494.02 27396.25 25593.64 17099.34 21891.90 21598.96 20598.79 190
test_prior293.33 27994.21 18494.02 27396.25 25593.64 17091.90 21598.96 205
test-LLR89.97 30189.90 29890.16 32194.24 33074.98 34489.89 33289.06 33992.02 23889.97 33090.77 33873.92 32598.57 30891.88 21797.36 29296.92 297
test-mter87.92 31487.17 31490.16 32194.24 33074.98 34489.89 33289.06 33986.44 29389.97 33090.77 33854.96 35598.57 30891.88 21797.36 29296.92 297
MVP-Stereo95.69 17395.28 18296.92 15998.15 17693.03 17795.64 17398.20 19190.39 25696.63 19397.73 15791.63 21899.10 25991.84 21997.31 29598.63 208
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
1112_ss94.12 23993.42 24596.23 19998.59 12890.85 21694.24 24198.85 8485.49 30292.97 30394.94 29186.01 27399.64 12491.78 22097.92 26798.20 244
train_agg95.46 18594.66 20697.88 9497.84 20695.23 10193.62 26898.39 16987.04 28893.78 27895.99 26594.58 14699.52 16391.76 22198.90 21398.89 178
LF4IMVS96.07 16095.63 17497.36 13898.19 16795.55 8695.44 17798.82 10392.29 23695.70 23696.55 24092.63 19398.69 29991.75 22299.33 16297.85 268
agg_prior195.39 18894.60 21297.75 10097.80 21394.96 11193.39 27698.36 17387.20 28693.49 29295.97 26894.65 14399.53 15991.69 22398.86 21998.77 195
N_pmnet95.18 19694.23 22598.06 8297.85 20196.55 5492.49 29591.63 32589.34 26598.09 10497.41 18190.33 23199.06 26391.58 22499.31 16698.56 214
ETH3D cwj APD-0.1696.23 15495.61 17598.09 7997.91 19795.65 8494.94 21598.74 11691.31 24996.02 22297.08 20894.05 16199.69 10491.51 22598.94 20998.93 169
AllTest97.20 10796.92 11698.06 8299.08 8296.16 6597.14 9299.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
TestCases98.06 8299.08 8296.16 6599.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
test9_res91.29 22898.89 21699.00 157
xiu_mvs_v2_base94.22 23394.63 21092.99 29997.32 26084.84 30992.12 30297.84 22491.96 24094.17 26793.43 31096.07 9399.71 8791.27 22997.48 28994.42 332
PS-MVSNAJ94.10 24094.47 21893.00 29897.35 25384.88 30891.86 30697.84 22491.96 24094.17 26792.50 32495.82 10299.71 8791.27 22997.48 28994.40 333
tpm91.08 29190.85 28891.75 31295.33 31778.09 33495.03 21291.27 32888.75 27293.53 29197.40 18271.24 33599.30 22891.25 23193.87 32997.87 267
OPU-MVS97.64 10998.01 18795.27 9996.79 10697.35 19196.97 5398.51 31491.21 23299.25 17599.14 130
tpmrst90.31 29690.61 29389.41 32494.06 33372.37 34995.06 20993.69 30488.01 28092.32 31596.86 22077.45 30998.82 28691.04 23387.01 34397.04 294
sss94.22 23393.72 24195.74 21997.71 22889.95 23093.84 26196.98 26388.38 27793.75 28195.74 27487.94 25898.89 28191.02 23498.10 26198.37 225
ITE_SJBPF97.85 9698.64 11896.66 5098.51 15595.63 13097.22 15797.30 19695.52 11698.55 31190.97 23598.90 21398.34 231
Test_1112_low_res93.53 25592.86 25595.54 22898.60 12688.86 24692.75 28998.69 13182.66 32192.65 31096.92 21984.75 28199.56 15190.94 23697.76 27398.19 245
TESTMET0.1,187.20 31786.57 31889.07 32593.62 33772.84 34889.89 33287.01 34585.46 30489.12 33590.20 34156.00 35497.72 33690.91 23796.92 29896.64 309
FMVSNet593.39 25792.35 26796.50 18695.83 30590.81 22097.31 8298.27 18292.74 23096.27 21198.28 9162.23 34899.67 11590.86 23899.36 14799.03 154
PatchmatchNetpermissive91.98 28191.87 27292.30 30994.60 32579.71 33195.12 20193.59 30889.52 26493.61 28797.02 21277.94 30599.18 24690.84 23994.57 32898.01 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 18495.07 18896.69 17498.27 15892.53 18491.36 31298.67 13691.22 25095.78 23294.12 30795.65 11398.98 27390.81 24099.72 4698.57 213
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 28291.35 27993.51 28694.27 32985.60 29688.86 33898.61 14579.32 33492.16 31691.44 33389.22 24998.12 33190.80 24197.47 29196.82 303
test20.0396.58 14296.61 13096.48 18898.49 13991.72 20595.68 16897.69 23396.81 7998.27 8797.92 13694.18 15898.71 29790.78 24299.66 5899.00 157
test_yl94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
DCV-MVSNet94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
EPMVS89.26 30688.55 30991.39 31492.36 34779.11 33295.65 17179.86 34988.60 27493.12 30196.53 24270.73 33998.10 33290.75 24389.32 34096.98 295
旧先验293.35 27877.95 34095.77 23498.67 30390.74 246
USDC94.56 22594.57 21694.55 26897.78 22286.43 28992.75 28998.65 14385.96 29696.91 18297.93 13590.82 22698.74 29490.71 24799.59 7398.47 219
OpenMVScopyleft94.22 895.48 18395.20 18396.32 19697.16 26791.96 20097.74 6198.84 8787.26 28594.36 26498.01 12593.95 16399.67 11590.70 24898.75 23097.35 288
Patchmatch-test93.60 25393.25 24994.63 26296.14 29987.47 27396.04 14594.50 29993.57 20196.47 20096.97 21476.50 31598.61 30590.67 24998.41 25197.81 272
DWT-MVSNet_test87.92 31486.77 31791.39 31493.18 33978.62 33395.10 20291.42 32685.58 30188.00 33888.73 34360.60 34998.90 27990.60 25087.70 34296.65 308
thisisatest051590.43 29589.18 30694.17 27997.07 27085.44 29889.75 33687.58 34288.28 27893.69 28491.72 33165.27 34599.58 14490.59 25198.67 23697.50 283
DP-MVS Recon95.55 17995.13 18696.80 16798.51 13693.99 14794.60 22998.69 13190.20 25895.78 23296.21 25892.73 18998.98 27390.58 25298.86 21997.42 285
testtj96.69 13696.13 15398.36 5998.46 14596.02 7196.44 12198.70 12894.26 18296.79 18597.13 20394.07 16099.75 5690.53 25398.80 22599.31 99
TinyColmap96.00 16596.34 14694.96 24897.90 19987.91 26394.13 25098.49 15694.41 17698.16 9597.76 15196.29 9098.68 30290.52 25499.42 13398.30 235
BP-MVS90.51 255
HQP-MVS95.17 19894.58 21496.92 15997.85 20192.47 18594.26 23798.43 16293.18 21592.86 30595.08 28790.33 23199.23 24290.51 25598.74 23199.05 152
OMC-MVS96.48 14696.00 16097.91 9298.30 15396.01 7294.86 21998.60 14691.88 24297.18 15997.21 20196.11 9299.04 26590.49 25799.34 15598.69 203
ab-mvs96.59 14196.59 13196.60 17898.64 11892.21 19198.35 2697.67 23494.45 17596.99 17598.79 4994.96 13499.49 16990.39 25899.07 19698.08 249
HyFIR lowres test93.72 24892.65 26296.91 16198.93 9491.81 20491.23 31898.52 15382.69 32096.46 20196.52 24480.38 29799.90 1390.36 25998.79 22699.03 154
agg_prior290.34 26098.90 21399.10 145
LCM-MVSNet-Re97.33 9997.33 8997.32 14098.13 18093.79 15596.99 10099.65 296.74 8199.47 1398.93 4396.91 5799.84 2590.11 26199.06 19998.32 232
CDS-MVSNet94.88 20894.12 23097.14 14897.64 23593.57 16493.96 25897.06 26190.05 26096.30 21096.55 24086.10 27299.47 17590.10 26299.31 16698.40 222
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 18694.65 20797.84 9798.28 15694.96 11193.73 26698.33 17885.03 31095.44 24096.60 23895.31 12599.44 18590.01 26399.13 18699.11 141
baseline193.14 26392.64 26394.62 26397.34 25787.20 27996.67 11693.02 31294.71 16796.51 19995.83 27381.64 29098.60 30790.00 26488.06 34198.07 251
TAPA-MVS93.32 1294.93 20594.23 22597.04 15498.18 17094.51 12695.22 19898.73 11881.22 32796.25 21395.95 27093.80 16798.98 27389.89 26598.87 21797.62 278
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 27291.08 28396.30 19893.12 34292.81 18190.58 32695.96 28379.17 33591.85 31992.27 32590.29 23598.66 30489.85 26696.68 30697.43 284
PVSNet_BlendedMVS95.02 20494.93 19595.27 23797.79 21887.40 27594.14 24998.68 13388.94 27094.51 26098.01 12593.04 18199.30 22889.77 26799.49 10999.11 141
PVSNet_Blended93.96 24493.65 24294.91 24997.79 21887.40 27591.43 31198.68 13384.50 31594.51 26094.48 30293.04 18199.30 22889.77 26798.61 24298.02 261
MSDG95.33 19095.13 18695.94 21497.40 25191.85 20291.02 32298.37 17295.30 14496.31 20995.99 26594.51 14998.38 32189.59 26997.65 28397.60 280
PMVScopyleft89.60 1796.71 13596.97 11295.95 21299.51 2297.81 1397.42 8097.49 24697.93 4295.95 22498.58 6396.88 6096.91 34089.59 26999.36 14793.12 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 21410.37 35276.21 31899.04 26589.47 271
SCA93.38 25893.52 24492.96 30096.24 29081.40 32693.24 28194.00 30291.58 24794.57 25796.97 21487.94 25899.42 18889.47 27197.66 28298.06 255
tpmvs90.79 29490.87 28790.57 32092.75 34676.30 34195.79 16293.64 30791.04 25291.91 31896.26 25477.19 31398.86 28589.38 27389.85 33996.56 312
Anonymous2023120695.27 19395.06 19095.88 21698.72 10989.37 23795.70 16597.85 22288.00 28196.98 17797.62 16691.95 21199.34 21889.21 27499.53 9398.94 165
CHOSEN 1792x268894.10 24093.41 24696.18 20399.16 6790.04 22892.15 30198.68 13379.90 33296.22 21497.83 14587.92 26299.42 18889.18 27599.65 5999.08 146
114514_t93.96 24493.22 25096.19 20299.06 8590.97 21595.99 15098.94 7073.88 34593.43 29696.93 21792.38 20299.37 21189.09 27699.28 17198.25 240
pmmvs390.00 29988.90 30793.32 28894.20 33285.34 29991.25 31792.56 31978.59 33693.82 27795.17 28667.36 34498.69 29989.08 27798.03 26495.92 318
testdata95.70 22298.16 17490.58 22397.72 23180.38 33095.62 23797.02 21292.06 20998.98 27389.06 27898.52 24697.54 281
MDTV_nov1_ep1391.28 28094.31 32773.51 34794.80 22293.16 31186.75 29293.45 29597.40 18276.37 31698.55 31188.85 27996.43 309
PMMVS293.66 25194.07 23192.45 30797.57 23880.67 32986.46 34196.00 28193.99 19297.10 16597.38 18889.90 23997.82 33488.76 28099.47 11598.86 184
QAPM95.88 16995.57 17796.80 16797.90 19991.84 20398.18 3998.73 11888.41 27596.42 20298.13 10894.73 13799.75 5688.72 28198.94 20998.81 188
CHOSEN 280x42089.98 30089.19 30592.37 30895.60 31181.13 32886.22 34297.09 26081.44 32687.44 34193.15 31173.99 32399.47 17588.69 28299.07 19696.52 313
testgi96.07 16096.50 14194.80 25699.26 4787.69 27095.96 15398.58 14995.08 15398.02 11396.25 25597.92 1697.60 33788.68 28398.74 23199.11 141
CostFormer89.75 30389.25 30191.26 31694.69 32478.00 33695.32 18991.98 32281.50 32590.55 32596.96 21671.06 33798.89 28188.59 28492.63 33396.87 300
UnsupCasMVSNet_bld94.72 21794.26 22496.08 20698.62 12390.54 22693.38 27798.05 21490.30 25797.02 17396.80 22789.54 24299.16 25188.44 28596.18 31398.56 214
TAMVS95.49 18194.94 19397.16 14698.31 15293.41 16895.07 20796.82 26991.09 25197.51 14297.82 14889.96 23899.42 18888.42 28699.44 12398.64 206
Vis-MVSNet (Re-imp)95.11 19994.85 19995.87 21799.12 7989.17 24097.54 7494.92 29596.50 8896.58 19497.27 19783.64 28699.48 17288.42 28699.67 5698.97 161
EPNet_dtu91.39 28890.75 29093.31 28990.48 35182.61 32194.80 22292.88 31493.39 20681.74 34894.90 29481.36 29299.11 25788.28 28898.87 21798.21 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 28390.69 29195.11 24293.80 33590.98 21494.16 24691.78 32496.38 9290.30 32899.30 1872.02 33498.90 27988.28 28890.17 33895.45 327
新几何197.25 14598.29 15494.70 12297.73 23077.98 33894.83 25296.67 23592.08 20899.45 18288.17 29098.65 23997.61 279
testdata299.46 17887.84 291
无先验93.20 28297.91 21880.78 32899.40 19987.71 29297.94 264
112194.26 23193.26 24897.27 14298.26 16094.73 11795.86 15897.71 23277.96 33994.53 25996.71 23291.93 21399.40 19987.71 29298.64 24097.69 276
WTY-MVS93.55 25493.00 25395.19 24097.81 20987.86 26493.89 26096.00 28189.02 26894.07 27195.44 28486.27 27199.33 22187.69 29496.82 30198.39 224
原ACMM196.58 18198.16 17492.12 19598.15 20085.90 29893.49 29296.43 24792.47 20099.38 20887.66 29598.62 24198.23 241
BH-untuned94.69 21894.75 20494.52 26997.95 19687.53 27294.07 25297.01 26293.99 19297.10 16595.65 27792.65 19298.95 27887.60 29696.74 30497.09 291
PAPM_NR94.61 22394.17 22995.96 21098.36 15091.23 21095.93 15697.95 21692.98 22393.42 29794.43 30390.53 22898.38 32187.60 29696.29 31298.27 238
DPM-MVS93.68 25092.77 26196.42 19197.91 19792.54 18391.17 31997.47 24984.99 31193.08 30294.74 29589.90 23999.00 26987.54 29898.09 26297.72 274
MG-MVS94.08 24294.00 23594.32 27497.09 26985.89 29493.19 28395.96 28392.52 23194.93 25197.51 17489.54 24298.77 29187.52 29997.71 27798.31 233
F-COLMAP95.30 19294.38 22298.05 8598.64 11896.04 6995.61 17498.66 13889.00 26993.22 30096.40 25092.90 18599.35 21687.45 30097.53 28798.77 195
PatchMatch-RL94.61 22393.81 24097.02 15698.19 16795.72 7793.66 26797.23 25388.17 27994.94 25095.62 27991.43 21998.57 30887.36 30197.68 28096.76 306
IB-MVS85.98 2088.63 30886.95 31693.68 28395.12 31984.82 31090.85 32390.17 33887.55 28488.48 33791.34 33458.01 35099.59 14287.24 30293.80 33096.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 31288.05 31188.16 33092.85 34468.81 35194.17 24592.88 31485.47 30391.38 32196.14 26168.87 34298.81 28886.88 30383.80 34696.87 300
131492.38 27392.30 26892.64 30595.42 31685.15 30495.86 15896.97 26485.40 30690.62 32393.06 31591.12 22297.80 33586.74 30495.49 32294.97 330
CNLPA95.04 20294.47 21896.75 17097.81 20995.25 10094.12 25197.89 22094.41 17694.57 25795.69 27590.30 23498.35 32486.72 30598.76 22996.64 309
ETH3 D test640094.77 21293.87 23997.47 12698.12 18193.73 15794.56 23198.70 12885.45 30594.70 25595.93 27291.77 21799.63 12686.45 30699.14 18299.05 152
baseline289.65 30488.44 31093.25 29195.62 31082.71 32093.82 26285.94 34688.89 27187.35 34292.54 32371.23 33699.33 22186.01 30794.60 32797.72 274
BH-RMVSNet94.56 22594.44 22194.91 24997.57 23887.44 27493.78 26596.26 27793.69 20096.41 20396.50 24592.10 20799.00 26985.96 30897.71 27798.31 233
E-PMN89.52 30589.78 29988.73 32693.14 34177.61 33783.26 34592.02 32194.82 16393.71 28293.11 31275.31 32196.81 34185.81 30996.81 30291.77 341
API-MVS95.09 20195.01 19295.31 23696.61 28194.02 14596.83 10497.18 25695.60 13295.79 23094.33 30494.54 14898.37 32385.70 31098.52 24693.52 335
AdaColmapbinary95.11 19994.62 21196.58 18197.33 25994.45 12994.92 21698.08 20893.15 21993.98 27695.53 28294.34 15399.10 25985.69 31198.61 24296.20 317
ADS-MVSNet291.47 28790.51 29494.36 27395.51 31285.63 29595.05 21095.70 28783.46 31892.69 30896.84 22279.15 30199.41 19785.66 31290.52 33698.04 259
ADS-MVSNet90.95 29390.26 29693.04 29695.51 31282.37 32395.05 21093.41 30983.46 31892.69 30896.84 22279.15 30198.70 29885.66 31290.52 33698.04 259
MDTV_nov1_ep13_2view57.28 35394.89 21780.59 32994.02 27378.66 30385.50 31497.82 270
OpenMVS_ROBcopyleft91.80 1493.64 25293.05 25195.42 23397.31 26191.21 21195.08 20696.68 27481.56 32496.88 18496.41 24890.44 23099.25 23985.39 31597.67 28195.80 321
PVSNet86.72 1991.10 29090.97 28691.49 31397.56 24078.04 33587.17 34094.60 29884.65 31392.34 31492.20 32687.37 26698.47 31585.17 31697.69 27997.96 263
PLCcopyleft91.02 1694.05 24392.90 25497.51 11898.00 19195.12 10894.25 24098.25 18586.17 29491.48 32095.25 28591.01 22399.19 24585.02 31796.69 30598.22 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 34871.40 35081.67 32390.11 34298.99 27184.86 318
CMPMVSbinary73.10 2392.74 26791.39 27896.77 16993.57 33894.67 12394.21 24497.67 23480.36 33193.61 28796.60 23882.85 28897.35 33884.86 31898.78 22798.29 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 27491.69 27694.32 27496.23 29289.16 24192.27 30092.88 31484.39 31795.29 24396.35 25285.66 27596.74 34384.53 32097.56 28597.05 293
tpm cat188.01 31387.33 31390.05 32394.48 32676.28 34294.47 23494.35 30173.84 34689.26 33395.61 28073.64 32798.30 32684.13 32186.20 34495.57 326
MAR-MVS94.21 23693.03 25297.76 9996.94 27597.44 3096.97 10197.15 25787.89 28392.00 31792.73 32192.14 20599.12 25483.92 32297.51 28896.73 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 27791.83 27393.25 29196.18 29583.68 31996.27 13193.68 30676.97 34292.54 31399.18 2789.20 25098.55 31183.88 32398.60 24497.51 282
EMVS89.06 30789.22 30288.61 32793.00 34377.34 33982.91 34690.92 33094.64 16992.63 31191.81 33076.30 31797.02 33983.83 32496.90 29991.48 342
HY-MVS91.43 1592.58 26991.81 27494.90 25196.49 28488.87 24597.31 8294.62 29785.92 29790.50 32696.84 22285.05 27899.40 19983.77 32595.78 31896.43 314
test0.0.03 190.11 29789.21 30392.83 30293.89 33486.87 28491.74 30888.74 34192.02 23894.71 25491.14 33673.92 32594.48 34683.75 32692.94 33197.16 290
tpm288.47 30987.69 31290.79 31894.98 32177.34 33995.09 20491.83 32377.51 34189.40 33296.41 24867.83 34398.73 29583.58 32792.60 33496.29 316
MVS-HIRNet88.40 31090.20 29782.99 33297.01 27160.04 35293.11 28485.61 34784.45 31688.72 33699.09 3384.72 28298.23 32882.52 32896.59 30890.69 344
BH-w/o92.14 27891.94 27192.73 30497.13 26885.30 30092.46 29695.64 28889.33 26694.21 26692.74 32089.60 24198.24 32781.68 32994.66 32594.66 331
MIMVSNet93.42 25692.86 25595.10 24398.17 17288.19 25798.13 4193.69 30492.07 23795.04 24898.21 10380.95 29599.03 26881.42 33098.06 26398.07 251
TR-MVS92.54 27092.20 26993.57 28596.49 28486.66 28593.51 27294.73 29689.96 26194.95 24993.87 30890.24 23698.61 30581.18 33194.88 32395.45 327
thres600view792.03 28091.43 27793.82 28098.19 16784.61 31196.27 13190.39 33496.81 7996.37 20593.11 31273.44 33099.49 16980.32 33297.95 26697.36 286
PAPR92.22 27691.27 28195.07 24495.73 30988.81 24791.97 30597.87 22185.80 29990.91 32292.73 32191.16 22198.33 32579.48 33395.76 31998.08 249
MVS90.02 29889.20 30492.47 30694.71 32386.90 28395.86 15896.74 27264.72 34790.62 32392.77 31992.54 19798.39 32079.30 33495.56 32192.12 339
gg-mvs-nofinetune88.28 31186.96 31592.23 31192.84 34584.44 31398.19 3874.60 35199.08 1087.01 34399.47 856.93 35298.23 32878.91 33595.61 32094.01 334
thres100view90091.76 28491.26 28293.26 29098.21 16584.50 31296.39 12490.39 33496.87 7796.33 20693.08 31473.44 33099.42 18878.85 33697.74 27495.85 319
tfpn200view991.55 28691.00 28493.21 29398.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27495.85 319
thres40091.68 28591.00 28493.71 28298.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27497.36 286
thres20091.00 29290.42 29592.77 30397.47 24783.98 31794.01 25491.18 32995.12 15295.44 24091.21 33573.93 32499.31 22577.76 33997.63 28495.01 329
wuyk23d93.25 26195.20 18387.40 33196.07 30095.38 9497.04 9794.97 29495.33 14299.70 598.11 11298.14 1391.94 34777.76 33999.68 5574.89 346
PCF-MVS89.43 1892.12 27990.64 29296.57 18397.80 21393.48 16789.88 33598.45 15974.46 34496.04 22195.68 27690.71 22799.31 22573.73 34199.01 20396.91 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 31983.21 32188.34 32895.76 30874.97 34683.49 34492.70 31878.47 33787.94 33986.90 34583.38 28796.63 34473.44 34266.86 34893.40 336
GG-mvs-BLEND90.60 31991.00 34984.21 31698.23 3272.63 35482.76 34684.11 34656.14 35396.79 34272.20 34392.09 33590.78 343
FPMVS89.92 30288.63 30893.82 28098.37 14996.94 4291.58 30993.34 31088.00 28190.32 32797.10 20770.87 33891.13 34871.91 34496.16 31493.39 337
MVEpermissive73.61 2286.48 31885.92 31988.18 32996.23 29285.28 30281.78 34775.79 35086.01 29582.53 34791.88 32992.74 18887.47 34971.42 34594.86 32491.78 340
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 32062.50 32241.44 33434.77 35349.21 35483.93 34360.22 35515.31 34971.11 35079.37 34770.09 34044.86 35164.76 34682.93 34730.25 347
PAPM87.64 31685.84 32093.04 29696.54 28284.99 30788.42 33995.57 29079.52 33383.82 34593.05 31680.57 29698.41 31862.29 34792.79 33295.71 322
DeepMVS_CXcopyleft77.17 33390.94 35085.28 30274.08 35352.51 34880.87 34988.03 34475.25 32270.63 35059.23 34884.94 34575.62 345
test12312.59 32215.49 3243.87 3356.07 3542.55 35590.75 3242.59 3572.52 3505.20 35213.02 3504.96 3561.85 3535.20 3499.09 3497.23 348
testmvs12.33 32315.23 3253.64 3365.77 3552.23 35688.99 3373.62 3562.30 3515.29 35113.09 3494.52 3571.95 3525.16 3508.32 3506.75 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.84 870.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k24.22 32132.30 3230.00 3370.00 3560.00 3570.00 34898.10 2050.00 3520.00 35395.06 28997.54 280.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.98 32410.65 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35395.82 1020.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.91 32510.55 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35394.94 2910.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE99.22 5695.35 9698.83 9596.04 10899.08 3098.13 10897.87 2099.33 221
save fliter98.48 14194.71 11994.53 23298.41 16795.02 157
test072699.24 5195.51 8996.89 10298.89 7495.92 11698.64 4998.31 8497.06 49
GSMVS98.06 255
test_part299.03 8996.07 6898.08 106
sam_mvs177.80 30698.06 255
sam_mvs77.38 310
MTGPAbinary98.73 118
test_post10.87 35176.83 31499.07 262
patchmatchnet-post96.84 22277.36 31199.42 188
MTMP96.55 11774.60 351
TEST997.84 20695.23 10193.62 26898.39 16986.81 29093.78 27895.99 26594.68 14199.52 163
test_897.81 20995.07 10993.54 27198.38 17187.04 28893.71 28295.96 26994.58 14699.52 163
agg_prior97.80 21394.96 11198.36 17393.49 29299.53 159
test_prior495.38 9493.61 270
test_prior97.46 12897.79 21894.26 13898.42 16599.34 21898.79 190
新几何293.43 273
旧先验197.80 21393.87 15097.75 22997.04 21193.57 17298.68 23598.72 200
原ACMM292.82 287
test22298.17 17293.24 17292.74 29197.61 24475.17 34394.65 25696.69 23490.96 22598.66 23897.66 277
segment_acmp95.34 123
testdata192.77 28893.78 197
test1297.46 12897.61 23794.07 14397.78 22893.57 28993.31 17699.42 18898.78 22798.89 178
plane_prior798.70 11494.67 123
plane_prior698.38 14894.37 13291.91 215
plane_prior496.77 228
plane_prior394.51 12695.29 14596.16 217
plane_prior296.50 11996.36 93
plane_prior198.49 139
plane_prior94.29 13495.42 17994.31 18198.93 211
n20.00 358
nn0.00 358
door-mid98.17 197
test1198.08 208
door97.81 227
HQP5-MVS92.47 185
HQP-NCC97.85 20194.26 23793.18 21592.86 305
ACMP_Plane97.85 20194.26 23793.18 21592.86 305
HQP4-MVS92.87 30499.23 24299.06 150
HQP3-MVS98.43 16298.74 231
HQP2-MVS90.33 231
NP-MVS98.14 17793.72 15895.08 287
ACMMP++_ref99.52 98
ACMMP++99.55 87
Test By Simon94.51 149