LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 59 | 98.54 18 | 99.22 12 | 96.23 108 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 17 | 96.12 70 | 98.48 22 | 99.10 30 | 99.36 4 | 99.29 23 | 99.06 36 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 17 | 99.70 18 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 82 | 97.89 13 | 99.47 3 | 99.32 9 | 99.08 10 | 97.87 135 | 99.67 2 | 96.47 85 | 99.92 4 | 97.88 23 | 99.98 2 | 99.85 3 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 75 | 99.68 9 | 94.82 122 | 98.10 42 | 99.21 13 | 96.91 82 | 99.75 2 | 99.45 9 | 95.82 105 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 59 | 98.45 23 | 99.12 27 | 95.83 133 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 59 | 99.55 17 | 95.47 98 | 98.49 20 | 99.13 26 | 99.22 8 | 99.22 27 | 98.96 42 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 10 | 99.79 7 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 14 | 95.67 87 | 98.45 23 | 99.15 23 | 99.33 5 | 99.30 21 | 99.00 38 | 97.27 38 | 99.92 4 | 97.64 33 | 99.92 14 | 99.75 13 |
|
MVSFormer | | | 96.14 165 | 96.36 152 | 95.49 240 | 97.68 240 | 87.81 281 | 98.67 11 | 99.02 51 | 96.50 96 | 94.48 276 | 96.15 271 | 86.90 277 | 99.92 4 | 98.73 7 | 99.13 195 | 98.74 205 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 65 | 98.67 11 | 99.02 51 | 96.50 96 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
K. test v3 | | | 96.44 154 | 96.28 155 | 96.95 166 | 99.41 35 | 91.53 217 | 97.65 68 | 90.31 352 | 98.89 18 | 98.93 38 | 99.36 14 | 84.57 292 | 99.92 4 | 97.81 26 | 99.56 85 | 99.39 83 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 92 | 99.64 11 | 94.20 148 | 98.67 11 | 99.14 25 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 80 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 37 | 98.65 14 | 99.19 17 | 95.62 141 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 13 | 98.59 11 | 99.91 17 | 99.77 8 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 67 | 99.46 28 | 95.22 111 | 98.27 31 | 98.84 96 | 99.05 13 | 99.01 35 | 98.65 63 | 95.37 125 | 99.90 13 | 97.57 35 | 99.91 17 | 99.77 8 |
|
HyFIR lowres test | | | 93.72 260 | 92.65 275 | 96.91 170 | 98.93 96 | 91.81 214 | 91.23 329 | 98.52 161 | 82.69 336 | 96.46 212 | 96.52 252 | 80.38 309 | 99.90 13 | 90.36 273 | 98.79 236 | 99.03 161 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 22 | 96.61 55 | 98.55 17 | 99.17 18 | 99.05 13 | 99.17 29 | 98.79 51 | 95.47 122 | 99.89 16 | 97.95 21 | 99.91 17 | 99.75 13 |
|
SixPastTwentyTwo | | | 97.49 90 | 97.57 79 | 97.26 151 | 99.56 15 | 92.33 197 | 98.28 29 | 96.97 274 | 98.30 33 | 99.45 14 | 99.35 16 | 88.43 263 | 99.89 16 | 98.01 20 | 99.76 39 | 99.54 36 |
|
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 56 | 99.07 86 | 95.87 78 | 96.73 122 | 99.05 42 | 98.67 23 | 98.84 41 | 98.45 76 | 97.58 28 | 99.88 18 | 96.45 71 | 99.86 25 | 99.54 36 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 62 | 99.17 6 | 99.05 42 | 98.05 40 | 99.61 11 | 99.52 5 | 93.72 176 | 99.88 18 | 98.72 9 | 99.88 23 | 99.65 23 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 63 | 99.18 5 | 99.20 15 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 45 | 99.92 14 | 99.77 8 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 83 | 99.33 43 | 95.21 113 | 98.04 45 | 99.46 6 | 97.32 73 | 97.82 140 | 99.11 31 | 96.75 68 | 99.86 20 | 97.84 25 | 99.36 153 | 99.15 133 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UniMVSNet_NR-MVSNet | | | 97.83 65 | 97.65 67 | 98.37 60 | 98.72 114 | 95.78 80 | 95.66 177 | 99.02 51 | 98.11 39 | 98.31 85 | 97.69 168 | 94.65 149 | 99.85 22 | 97.02 57 | 99.71 51 | 99.48 56 |
|
DU-MVS | | | 97.79 69 | 97.60 76 | 98.36 61 | 98.73 112 | 95.78 80 | 95.65 180 | 98.87 85 | 97.57 60 | 98.31 85 | 97.83 151 | 94.69 145 | 99.85 22 | 97.02 57 | 99.71 51 | 99.46 61 |
|
EPP-MVSNet | | | 96.84 127 | 96.58 138 | 97.65 114 | 99.18 68 | 93.78 165 | 98.68 10 | 96.34 287 | 97.91 44 | 97.30 162 | 98.06 124 | 88.46 262 | 99.85 22 | 93.85 197 | 99.40 145 | 99.32 96 |
|
RRT_MVS | | | 94.90 216 | 94.07 243 | 97.39 143 | 93.18 353 | 93.21 182 | 95.26 205 | 97.49 255 | 93.94 203 | 98.25 90 | 97.85 149 | 72.96 347 | 99.84 25 | 97.90 22 | 99.78 38 | 99.14 136 |
|
LCM-MVSNet-Re | | | 97.33 103 | 97.33 95 | 97.32 147 | 98.13 188 | 93.79 164 | 96.99 108 | 99.65 2 | 96.74 87 | 99.47 13 | 98.93 44 | 96.91 59 | 99.84 25 | 90.11 275 | 99.06 208 | 98.32 241 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 50 | 98.76 9 | 98.89 78 | 98.49 27 | 99.38 17 | 99.14 30 | 95.44 124 | 99.84 25 | 96.47 70 | 99.80 33 | 99.47 59 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 200 | 99.33 43 | 89.64 245 | 97.92 52 | 99.56 5 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 36 | 99.98 2 | 99.77 8 |
|
zzz-MVS | | | 98.01 44 | 97.66 65 | 99.06 4 | 99.44 30 | 97.90 11 | 95.66 177 | 98.73 126 | 97.69 56 | 97.90 129 | 97.96 134 | 95.81 109 | 99.82 29 | 96.13 79 | 99.61 71 | 99.45 66 |
|
MTAPA | | | 98.14 34 | 97.84 49 | 99.06 4 | 99.44 30 | 97.90 11 | 97.25 92 | 98.73 126 | 97.69 56 | 97.90 129 | 97.96 134 | 95.81 109 | 99.82 29 | 96.13 79 | 99.61 71 | 99.45 66 |
|
tttt0517 | | | 93.31 271 | 92.56 278 | 95.57 235 | 98.71 117 | 87.86 278 | 97.44 83 | 87.17 360 | 95.79 134 | 97.47 156 | 96.84 230 | 64.12 361 | 99.81 31 | 96.20 77 | 99.32 170 | 99.02 163 |
|
DPE-MVS |  | | 97.64 78 | 97.35 94 | 98.50 51 | 98.85 101 | 96.18 67 | 95.21 210 | 98.99 62 | 95.84 132 | 98.78 44 | 98.08 117 | 96.84 65 | 99.81 31 | 93.98 193 | 99.57 81 | 99.52 40 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
Effi-MVS+-dtu | | | 96.81 132 | 96.09 164 | 98.99 13 | 96.90 291 | 98.69 2 | 96.42 131 | 98.09 215 | 95.86 130 | 95.15 258 | 95.54 294 | 94.26 161 | 99.81 31 | 94.06 187 | 98.51 259 | 98.47 228 |
|
MSP-MVS | | | 97.45 93 | 96.92 122 | 99.03 8 | 99.26 48 | 97.70 18 | 97.66 67 | 98.89 78 | 95.65 139 | 98.51 60 | 96.46 255 | 92.15 211 | 99.81 31 | 95.14 139 | 98.58 256 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 119 | 99.49 26 | 93.10 184 | 98.35 26 | 99.21 13 | 98.43 28 | 98.89 39 | 98.83 50 | 94.30 160 | 99.81 31 | 97.87 24 | 99.91 17 | 99.77 8 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 54 | 98.72 114 | 96.04 73 | 98.07 44 | 99.10 30 | 95.96 122 | 98.59 55 | 98.69 59 | 96.94 55 | 99.81 31 | 96.64 62 | 99.58 78 | 99.57 32 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 69 | 98.10 5 | 97.73 66 | 99.11 28 | 97.76 49 | 98.62 51 | 98.27 97 | 97.88 19 | 99.80 37 | 95.67 101 | 99.50 109 | 99.38 85 |
|
Anonymous20240521 | | | 97.07 113 | 97.51 83 | 95.76 228 | 99.35 41 | 88.18 271 | 97.78 58 | 98.40 177 | 97.11 77 | 98.34 78 | 99.04 37 | 89.58 250 | 99.79 38 | 98.09 18 | 99.93 10 | 99.30 102 |
|
ZNCC-MVS | | | 97.92 55 | 97.62 74 | 98.83 26 | 99.32 45 | 97.24 39 | 97.45 82 | 98.84 96 | 95.76 135 | 96.93 189 | 97.43 187 | 97.26 40 | 99.79 38 | 96.06 82 | 99.53 97 | 99.45 66 |
|
test_part1 | | | 96.77 135 | 96.53 144 | 97.47 132 | 98.04 192 | 92.92 188 | 97.93 50 | 98.85 91 | 98.83 20 | 99.30 21 | 99.07 35 | 79.25 312 | 99.79 38 | 97.59 34 | 99.93 10 | 99.69 20 |
|
HPM-MVS |  | | 98.11 38 | 97.83 51 | 98.92 22 | 99.42 34 | 97.46 31 | 98.57 15 | 99.05 42 | 95.43 150 | 97.41 160 | 97.50 182 | 97.98 15 | 99.79 38 | 95.58 110 | 99.57 81 | 99.50 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
hse-mvs3 | | | 96.29 158 | 95.63 182 | 98.26 69 | 98.50 144 | 96.11 71 | 96.90 110 | 97.09 269 | 96.58 92 | 97.21 166 | 98.19 106 | 84.14 293 | 99.78 42 | 95.89 95 | 96.17 327 | 98.89 185 |
|
FIs | | | 97.93 54 | 98.07 36 | 97.48 131 | 99.38 38 | 92.95 187 | 98.03 47 | 99.11 28 | 98.04 41 | 98.62 51 | 98.66 61 | 93.75 175 | 99.78 42 | 97.23 44 | 99.84 28 | 99.73 15 |
|
bset_n11_16_dypcd | | | 94.53 238 | 93.95 249 | 96.25 206 | 97.56 250 | 89.85 242 | 88.52 353 | 91.32 342 | 94.90 172 | 97.51 148 | 96.38 261 | 82.34 301 | 99.78 42 | 97.22 45 | 99.80 33 | 99.12 144 |
|
MP-MVS |  | | 97.64 78 | 97.18 106 | 99.00 12 | 99.32 45 | 97.77 17 | 97.49 81 | 98.73 126 | 96.27 105 | 95.59 249 | 97.75 160 | 96.30 93 | 99.78 42 | 93.70 203 | 99.48 117 | 99.45 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PGM-MVS | | | 97.88 60 | 97.52 82 | 98.96 16 | 99.20 65 | 97.62 21 | 97.09 102 | 99.06 40 | 95.45 148 | 97.55 145 | 97.94 139 | 97.11 44 | 99.78 42 | 94.77 158 | 99.46 122 | 99.48 56 |
|
UniMVSNet (Re) | | | 97.83 65 | 97.65 67 | 98.35 63 | 98.80 105 | 95.86 79 | 95.92 164 | 99.04 48 | 97.51 64 | 98.22 93 | 97.81 155 | 94.68 147 | 99.78 42 | 97.14 52 | 99.75 43 | 99.41 80 |
|
NR-MVSNet | | | 97.96 46 | 97.86 48 | 98.26 69 | 98.73 112 | 95.54 92 | 98.14 40 | 98.73 126 | 97.79 45 | 99.42 15 | 97.83 151 | 94.40 158 | 99.78 42 | 95.91 94 | 99.76 39 | 99.46 61 |
|
mPP-MVS | | | 97.91 58 | 97.53 81 | 99.04 7 | 99.22 57 | 97.87 14 | 97.74 64 | 98.78 117 | 96.04 117 | 97.10 174 | 97.73 163 | 96.53 80 | 99.78 42 | 95.16 136 | 99.50 109 | 99.46 61 |
|
CP-MVS | | | 97.92 55 | 97.56 80 | 98.99 13 | 98.99 93 | 97.82 15 | 97.93 50 | 98.96 70 | 96.11 112 | 96.89 192 | 97.45 186 | 96.85 64 | 99.78 42 | 95.19 132 | 99.63 64 | 99.38 85 |
|
PVSNet_Blended_VisFu | | | 95.95 174 | 95.80 176 | 96.42 198 | 99.28 47 | 90.62 232 | 95.31 201 | 99.08 36 | 88.40 292 | 96.97 187 | 98.17 109 | 92.11 213 | 99.78 42 | 93.64 204 | 99.21 183 | 98.86 192 |
|
DROMVSNet | | | 97.38 98 | 97.44 89 | 97.20 154 | 98.31 159 | 93.89 157 | 97.78 58 | 99.59 3 | 96.36 101 | 95.16 257 | 96.49 254 | 96.54 78 | 99.78 42 | 97.14 52 | 99.57 81 | 97.94 275 |
|
GeoE | | | 97.75 72 | 97.70 60 | 97.89 96 | 98.88 100 | 94.53 133 | 97.10 101 | 98.98 65 | 95.75 137 | 97.62 143 | 97.59 174 | 97.61 27 | 99.77 53 | 96.34 74 | 99.44 127 | 99.36 91 |
|
SR-MVS | | | 98.00 45 | 97.66 65 | 99.01 11 | 98.77 110 | 97.93 10 | 97.38 88 | 98.83 103 | 97.32 73 | 98.06 113 | 97.85 149 | 96.65 71 | 99.77 53 | 95.00 148 | 99.11 199 | 99.32 96 |
|
GST-MVS | | | 97.82 67 | 97.49 86 | 98.81 29 | 99.23 54 | 97.25 38 | 97.16 96 | 98.79 113 | 95.96 122 | 97.53 146 | 97.40 189 | 96.93 57 | 99.77 53 | 95.04 145 | 99.35 158 | 99.42 78 |
|
thisisatest0530 | | | 92.71 280 | 91.76 288 | 95.56 237 | 98.42 153 | 88.23 269 | 96.03 154 | 87.35 359 | 94.04 200 | 96.56 207 | 95.47 296 | 64.03 362 | 99.77 53 | 94.78 157 | 99.11 199 | 98.68 213 |
|
MP-MVS-pluss | | | 97.69 76 | 97.36 93 | 98.70 39 | 99.50 25 | 96.84 47 | 95.38 195 | 98.99 62 | 92.45 246 | 98.11 105 | 98.31 86 | 97.25 41 | 99.77 53 | 96.60 63 | 99.62 65 | 99.48 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test1172 | | | 98.08 39 | 97.76 57 | 99.05 6 | 98.78 108 | 98.07 6 | 97.41 87 | 98.85 91 | 97.57 60 | 98.15 101 | 97.96 134 | 96.60 76 | 99.76 58 | 95.30 126 | 99.18 188 | 99.33 95 |
|
SR-MVS-dyc-post | | | 98.14 34 | 97.84 49 | 99.02 9 | 98.81 103 | 98.05 8 | 97.55 75 | 98.86 87 | 97.77 46 | 98.20 94 | 98.07 119 | 96.60 76 | 99.76 58 | 95.49 111 | 99.20 184 | 99.26 115 |
|
region2R | | | 97.92 55 | 97.59 77 | 98.92 22 | 99.22 57 | 97.55 26 | 97.60 71 | 98.84 96 | 96.00 120 | 97.22 164 | 97.62 172 | 96.87 63 | 99.76 58 | 95.48 114 | 99.43 135 | 99.46 61 |
|
ACMMPR | | | 97.95 49 | 97.62 74 | 98.94 18 | 99.20 65 | 97.56 25 | 97.59 72 | 98.83 103 | 96.05 115 | 97.46 157 | 97.63 171 | 96.77 67 | 99.76 58 | 95.61 107 | 99.46 122 | 99.49 51 |
|
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 57 | 98.79 31 | 99.43 32 | 97.21 41 | 97.15 97 | 98.90 77 | 96.58 92 | 98.08 111 | 97.87 148 | 97.02 53 | 99.76 58 | 95.25 129 | 99.59 76 | 99.40 81 |
Skip Steuart: Steuart Systems R&D Blog. |
RPMNet | | | 94.68 230 | 94.60 223 | 94.90 263 | 95.44 328 | 88.15 272 | 96.18 146 | 98.86 87 | 97.43 66 | 94.10 284 | 98.49 73 | 79.40 311 | 99.76 58 | 95.69 100 | 95.81 329 | 96.81 317 |
|
ACMMP |  | | 98.05 41 | 97.75 59 | 98.93 21 | 99.23 54 | 97.60 22 | 98.09 43 | 98.96 70 | 95.75 137 | 97.91 128 | 98.06 124 | 96.89 60 | 99.76 58 | 95.32 125 | 99.57 81 | 99.43 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
testtj | | | 96.69 142 | 96.13 161 | 98.36 61 | 98.46 151 | 96.02 75 | 96.44 130 | 98.70 136 | 94.26 192 | 96.79 194 | 97.13 210 | 94.07 166 | 99.75 65 | 90.53 267 | 98.80 235 | 99.31 101 |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 54 | 95.49 97 | 96.74 118 | 98.89 78 | | | | | 99.75 65 | 95.48 114 | 99.52 102 | 99.53 39 |
|
IterMVS-SCA-FT | | | 95.86 178 | 96.19 159 | 94.85 266 | 97.68 240 | 85.53 311 | 92.42 308 | 97.63 251 | 96.99 79 | 98.36 75 | 98.54 70 | 87.94 267 | 99.75 65 | 97.07 56 | 99.08 203 | 99.27 114 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 44 | 98.79 31 | 98.79 106 | 97.31 36 | 97.55 75 | 98.92 75 | 97.72 53 | 98.25 90 | 98.13 111 | 97.10 45 | 99.75 65 | 95.44 118 | 99.24 182 | 99.32 96 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 110 | 99.06 87 | 93.80 163 | 97.76 62 | 99.00 59 | 98.40 29 | 99.07 33 | 98.98 40 | 96.89 60 | 99.75 65 | 97.19 50 | 99.79 35 | 99.55 35 |
|
WR-MVS | | | 96.90 124 | 96.81 127 | 97.16 155 | 98.56 136 | 92.20 203 | 94.33 247 | 98.12 213 | 97.34 72 | 98.20 94 | 97.33 200 | 92.81 193 | 99.75 65 | 94.79 155 | 99.81 30 | 99.54 36 |
|
QAPM | | | 95.88 177 | 95.57 185 | 96.80 176 | 97.90 208 | 91.84 213 | 98.18 39 | 98.73 126 | 88.41 291 | 96.42 213 | 98.13 111 | 94.73 143 | 99.75 65 | 88.72 295 | 98.94 219 | 98.81 196 |
|
ZD-MVS | | | | | | 98.43 152 | 95.94 77 | | 98.56 158 | 90.72 269 | 96.66 202 | 97.07 216 | 95.02 137 | 99.74 72 | 91.08 246 | 98.93 221 | |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 19 | 97.48 30 | 98.35 26 | 99.03 49 | 95.88 128 | 97.88 132 | 98.22 104 | 98.15 12 | 99.74 72 | 96.50 69 | 99.62 65 | 99.42 78 |
|
RRT_test8_iter05 | | | 92.46 283 | 92.52 279 | 92.29 324 | 95.33 331 | 77.43 354 | 95.73 171 | 98.55 159 | 94.41 186 | 97.46 157 | 97.72 165 | 57.44 366 | 99.74 72 | 96.92 59 | 99.14 191 | 99.69 20 |
|
lessismore_v0 | | | | | 97.05 162 | 99.36 40 | 92.12 205 | | 84.07 364 | | 98.77 46 | 98.98 40 | 85.36 286 | 99.74 72 | 97.34 43 | 99.37 150 | 99.30 102 |
|
APD-MVS |  | | 97.00 115 | 96.53 144 | 98.41 57 | 98.55 137 | 96.31 64 | 96.32 138 | 98.77 118 | 92.96 238 | 97.44 159 | 97.58 176 | 95.84 102 | 99.74 72 | 91.96 226 | 99.35 158 | 99.19 126 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
IterMVS-LS | | | 96.92 122 | 97.29 97 | 95.79 227 | 98.51 141 | 88.13 274 | 95.10 213 | 98.66 146 | 96.99 79 | 98.46 66 | 98.68 60 | 92.55 202 | 99.74 72 | 96.91 60 | 99.79 35 | 99.50 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
GBi-Net | | | 96.99 116 | 96.80 128 | 97.56 119 | 97.96 202 | 93.67 168 | 98.23 32 | 98.66 146 | 95.59 143 | 97.99 119 | 99.19 24 | 89.51 254 | 99.73 78 | 94.60 162 | 99.44 127 | 99.30 102 |
|
test1 | | | 96.99 116 | 96.80 128 | 97.56 119 | 97.96 202 | 93.67 168 | 98.23 32 | 98.66 146 | 95.59 143 | 97.99 119 | 99.19 24 | 89.51 254 | 99.73 78 | 94.60 162 | 99.44 127 | 99.30 102 |
|
FMVSNet1 | | | 97.95 49 | 98.08 35 | 97.56 119 | 99.14 80 | 93.67 168 | 98.23 32 | 98.66 146 | 97.41 70 | 99.00 36 | 99.19 24 | 95.47 122 | 99.73 78 | 95.83 97 | 99.76 39 | 99.30 102 |
|
3Dnovator | | 96.53 2 | 97.61 81 | 97.64 70 | 97.50 127 | 97.74 236 | 93.65 172 | 98.49 20 | 98.88 83 | 96.86 84 | 97.11 173 | 98.55 69 | 95.82 105 | 99.73 78 | 95.94 92 | 99.42 138 | 99.13 139 |
|
SED-MVS | | | 97.94 51 | 97.90 44 | 98.07 83 | 99.22 57 | 95.35 103 | 96.79 115 | 98.83 103 | 96.11 112 | 99.08 31 | 98.24 99 | 97.87 20 | 99.72 82 | 95.44 118 | 99.51 107 | 99.14 136 |
|
test_241102_TWO | | | | | | | | | 98.83 103 | 96.11 112 | 98.62 51 | 98.24 99 | 96.92 58 | 99.72 82 | 95.44 118 | 99.49 113 | 99.49 51 |
|
xxxxxxxxxxxxxcwj | | | 97.24 109 | 97.03 116 | 97.89 96 | 98.48 147 | 94.71 126 | 94.53 243 | 99.07 39 | 95.02 167 | 97.83 138 | 97.88 146 | 96.44 87 | 99.72 82 | 94.59 166 | 99.39 147 | 99.25 119 |
|
SF-MVS | | | 97.60 82 | 97.39 91 | 98.22 74 | 98.93 96 | 95.69 84 | 97.05 104 | 99.10 30 | 95.32 153 | 97.83 138 | 97.88 146 | 96.44 87 | 99.72 82 | 94.59 166 | 99.39 147 | 99.25 119 |
|
ETV-MVS | | | 96.13 166 | 95.90 174 | 96.82 175 | 97.76 234 | 93.89 157 | 95.40 193 | 98.95 72 | 95.87 129 | 95.58 250 | 91.00 355 | 96.36 92 | 99.72 82 | 93.36 207 | 98.83 233 | 96.85 313 |
|
TSAR-MVS + MP. | | | 97.42 95 | 97.23 103 | 98.00 90 | 99.38 38 | 95.00 117 | 97.63 70 | 98.20 200 | 93.00 233 | 98.16 99 | 98.06 124 | 95.89 100 | 99.72 82 | 95.67 101 | 99.10 201 | 99.28 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xiu_mvs_v1_base_debu | | | 95.62 184 | 95.96 171 | 94.60 276 | 98.01 196 | 88.42 265 | 93.99 266 | 98.21 197 | 92.98 234 | 95.91 236 | 94.53 313 | 96.39 89 | 99.72 82 | 95.43 121 | 98.19 268 | 95.64 337 |
|
ACMMP_NAP | | | 97.89 59 | 97.63 72 | 98.67 41 | 99.35 41 | 96.84 47 | 96.36 135 | 98.79 113 | 95.07 164 | 97.88 132 | 98.35 82 | 97.24 42 | 99.72 82 | 96.05 84 | 99.58 78 | 99.45 66 |
|
xiu_mvs_v1_base | | | 95.62 184 | 95.96 171 | 94.60 276 | 98.01 196 | 88.42 265 | 93.99 266 | 98.21 197 | 92.98 234 | 95.91 236 | 94.53 313 | 96.39 89 | 99.72 82 | 95.43 121 | 98.19 268 | 95.64 337 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 93 | 98.79 106 | 94.37 140 | 98.84 8 | 99.15 23 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 117 | 99.72 82 | 98.12 16 | 99.86 25 | 99.73 15 |
|
xiu_mvs_v1_base_debi | | | 95.62 184 | 95.96 171 | 94.60 276 | 98.01 196 | 88.42 265 | 93.99 266 | 98.21 197 | 92.98 234 | 95.91 236 | 94.53 313 | 96.39 89 | 99.72 82 | 95.43 121 | 98.19 268 | 95.64 337 |
|
XVS | | | 97.96 46 | 97.63 72 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 60 | 98.83 103 | 97.42 67 | 96.32 218 | 97.64 170 | 96.49 83 | 99.72 82 | 95.66 103 | 99.37 150 | 99.45 66 |
|
X-MVStestdata | | | 92.86 277 | 90.83 302 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 60 | 98.83 103 | 97.42 67 | 96.32 218 | 36.50 365 | 96.49 83 | 99.72 82 | 95.66 103 | 99.37 150 | 99.45 66 |
|
v10 | | | 97.55 85 | 97.97 41 | 96.31 204 | 98.60 131 | 89.64 245 | 97.44 83 | 99.02 51 | 96.60 90 | 98.72 49 | 99.16 29 | 93.48 180 | 99.72 82 | 98.76 6 | 99.92 14 | 99.58 28 |
|
DVP-MVS | | | 97.78 70 | 97.65 67 | 98.16 76 | 99.24 52 | 95.51 94 | 96.74 118 | 98.23 196 | 95.92 125 | 98.40 70 | 98.28 93 | 97.06 50 | 99.71 96 | 95.48 114 | 99.52 102 | 99.26 115 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_THIRD | | | | | | | | | | 96.62 89 | 98.40 70 | 98.28 93 | 97.10 45 | 99.71 96 | 95.70 99 | 99.62 65 | 99.58 28 |
|
CANet | | | 95.86 178 | 95.65 181 | 96.49 194 | 96.41 300 | 90.82 228 | 94.36 246 | 98.41 175 | 94.94 169 | 92.62 327 | 96.73 239 | 92.68 197 | 99.71 96 | 95.12 142 | 99.60 74 | 98.94 172 |
|
mvs-test1 | | | 96.20 162 | 95.50 187 | 98.32 64 | 96.90 291 | 98.16 4 | 95.07 218 | 98.09 215 | 95.86 130 | 93.63 300 | 94.32 319 | 94.26 161 | 99.71 96 | 94.06 187 | 97.27 308 | 97.07 303 |
|
xiu_mvs_v2_base | | | 94.22 245 | 94.63 221 | 92.99 311 | 97.32 272 | 84.84 323 | 92.12 313 | 97.84 233 | 91.96 252 | 94.17 282 | 93.43 324 | 96.07 97 | 99.71 96 | 91.27 242 | 97.48 300 | 94.42 347 |
|
PS-MVSNAJ | | | 94.10 251 | 94.47 230 | 93.00 310 | 97.35 265 | 84.88 322 | 91.86 317 | 97.84 233 | 91.96 252 | 94.17 282 | 92.50 341 | 95.82 105 | 99.71 96 | 91.27 242 | 97.48 300 | 94.40 348 |
|
Regformer-4 | | | 97.53 88 | 97.47 88 | 97.71 108 | 97.35 265 | 93.91 156 | 95.26 205 | 98.14 210 | 97.97 42 | 98.34 78 | 97.89 144 | 95.49 120 | 99.71 96 | 97.41 40 | 99.42 138 | 99.51 42 |
|
v1240 | | | 96.74 136 | 97.02 117 | 95.91 223 | 98.18 178 | 88.52 264 | 95.39 194 | 98.88 83 | 93.15 229 | 98.46 66 | 98.40 80 | 92.80 194 | 99.71 96 | 98.45 13 | 99.49 113 | 99.49 51 |
|
IS-MVSNet | | | 96.93 121 | 96.68 134 | 97.70 110 | 99.25 51 | 94.00 154 | 98.57 15 | 96.74 283 | 98.36 30 | 98.14 103 | 97.98 133 | 88.23 265 | 99.71 96 | 93.10 215 | 99.72 48 | 99.38 85 |
|
Fast-Effi-MVS+ | | | 95.49 189 | 95.07 198 | 96.75 179 | 97.67 243 | 92.82 189 | 94.22 254 | 98.60 154 | 91.61 257 | 93.42 311 | 92.90 334 | 96.73 69 | 99.70 105 | 92.60 219 | 97.89 281 | 97.74 285 |
|
v144192 | | | 96.69 142 | 96.90 124 | 96.03 215 | 98.25 169 | 88.92 256 | 95.49 186 | 98.77 118 | 93.05 231 | 98.09 109 | 98.29 92 | 92.51 206 | 99.70 105 | 98.11 17 | 99.56 85 | 99.47 59 |
|
v1921920 | | | 96.72 139 | 96.96 120 | 95.99 216 | 98.21 173 | 88.79 261 | 95.42 190 | 98.79 113 | 93.22 223 | 98.19 97 | 98.26 98 | 92.68 197 | 99.70 105 | 98.34 15 | 99.55 91 | 99.49 51 |
|
HFP-MVS | | | 97.94 51 | 97.64 70 | 98.83 26 | 99.15 72 | 97.50 28 | 97.59 72 | 98.84 96 | 96.05 115 | 97.49 151 | 97.54 177 | 97.07 48 | 99.70 105 | 95.61 107 | 99.46 122 | 99.30 102 |
|
#test# | | | 97.62 80 | 97.22 104 | 98.83 26 | 99.15 72 | 97.50 28 | 96.81 114 | 98.84 96 | 94.25 193 | 97.49 151 | 97.54 177 | 97.07 48 | 99.70 105 | 94.37 174 | 99.46 122 | 99.30 102 |
|
HPM-MVS++ |  | | 96.99 116 | 96.38 151 | 98.81 29 | 98.64 123 | 97.59 23 | 95.97 159 | 98.20 200 | 95.51 146 | 95.06 259 | 96.53 250 | 94.10 165 | 99.70 105 | 94.29 178 | 99.15 190 | 99.13 139 |
|
LPG-MVS_test | | | 97.94 51 | 97.67 64 | 98.74 35 | 99.15 72 | 97.02 42 | 97.09 102 | 99.02 51 | 95.15 160 | 98.34 78 | 98.23 101 | 97.91 17 | 99.70 105 | 94.41 171 | 99.73 45 | 99.50 43 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 72 | 97.02 42 | | 99.02 51 | 95.15 160 | 98.34 78 | 98.23 101 | 97.91 17 | 99.70 105 | 94.41 171 | 99.73 45 | 99.50 43 |
|
ETH3D cwj APD-0.16 | | | 96.23 161 | 95.61 184 | 98.09 82 | 97.91 206 | 95.65 89 | 94.94 226 | 98.74 124 | 91.31 263 | 96.02 233 | 97.08 215 | 94.05 167 | 99.69 113 | 91.51 238 | 98.94 219 | 98.93 176 |
|
tfpnnormal | | | 97.72 74 | 97.97 41 | 96.94 167 | 99.26 48 | 92.23 200 | 97.83 57 | 98.45 167 | 98.25 34 | 99.13 30 | 98.66 61 | 96.65 71 | 99.69 113 | 93.92 195 | 99.62 65 | 98.91 181 |
|
Fast-Effi-MVS+-dtu | | | 96.44 154 | 96.12 162 | 97.39 143 | 97.18 279 | 94.39 138 | 95.46 187 | 98.73 126 | 96.03 119 | 94.72 267 | 94.92 307 | 96.28 95 | 99.69 113 | 93.81 198 | 97.98 276 | 98.09 259 |
|
EI-MVSNet-UG-set | | | 97.32 104 | 97.40 90 | 97.09 160 | 97.34 269 | 92.01 209 | 95.33 199 | 97.65 247 | 97.74 50 | 98.30 87 | 98.14 110 | 95.04 135 | 99.69 113 | 97.55 36 | 99.52 102 | 99.58 28 |
|
Regformer-2 | | | 97.41 96 | 97.24 102 | 97.93 94 | 97.21 277 | 94.72 125 | 94.85 231 | 98.27 191 | 97.74 50 | 98.11 105 | 97.50 182 | 95.58 118 | 99.69 113 | 96.57 66 | 99.31 172 | 99.37 90 |
|
test_0402 | | | 97.84 64 | 97.97 41 | 97.47 132 | 99.19 67 | 94.07 151 | 96.71 123 | 98.73 126 | 98.66 24 | 98.56 57 | 98.41 78 | 96.84 65 | 99.69 113 | 94.82 153 | 99.81 30 | 98.64 214 |
|
SMA-MVS |  | | 97.48 91 | 97.11 109 | 98.60 46 | 98.83 102 | 96.67 52 | 96.74 118 | 98.73 126 | 91.61 257 | 98.48 63 | 98.36 81 | 96.53 80 | 99.68 119 | 95.17 134 | 99.54 94 | 99.45 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 61 | 98.87 7 | 99.30 10 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 119 | 97.75 30 | 99.89 22 | 99.62 25 |
|
EI-MVSNet-Vis-set | | | 97.32 104 | 97.39 91 | 97.11 158 | 97.36 264 | 92.08 207 | 95.34 198 | 97.65 247 | 97.74 50 | 98.29 88 | 98.11 115 | 95.05 133 | 99.68 119 | 97.50 38 | 99.50 109 | 99.56 33 |
|
v8 | | | 97.60 82 | 98.06 38 | 96.23 207 | 98.71 117 | 89.44 249 | 97.43 85 | 98.82 111 | 97.29 75 | 98.74 47 | 99.10 32 | 93.86 170 | 99.68 119 | 98.61 10 | 99.94 8 | 99.56 33 |
|
VPNet | | | 97.26 107 | 97.49 86 | 96.59 187 | 99.47 27 | 90.58 233 | 96.27 139 | 98.53 160 | 97.77 46 | 98.46 66 | 98.41 78 | 94.59 151 | 99.68 119 | 94.61 161 | 99.29 176 | 99.52 40 |
|
DIV-MVS_2432*1600 | | | 97.86 63 | 98.07 36 | 97.25 152 | 99.22 57 | 92.81 190 | 97.55 75 | 98.94 73 | 97.10 78 | 98.85 40 | 98.88 47 | 95.03 136 | 99.67 124 | 97.39 42 | 99.65 61 | 99.26 115 |
|
EIA-MVS | | | 96.04 169 | 95.77 178 | 96.85 173 | 97.80 222 | 92.98 186 | 96.12 149 | 99.16 19 | 94.65 178 | 93.77 295 | 91.69 349 | 95.68 114 | 99.67 124 | 94.18 182 | 98.85 231 | 97.91 278 |
|
v1192 | | | 96.83 130 | 97.06 114 | 96.15 212 | 98.28 164 | 89.29 251 | 95.36 196 | 98.77 118 | 93.73 208 | 98.11 105 | 98.34 83 | 93.02 191 | 99.67 124 | 98.35 14 | 99.58 78 | 99.50 43 |
|
CPTT-MVS | | | 96.69 142 | 96.08 165 | 98.49 52 | 98.89 99 | 96.64 54 | 97.25 92 | 98.77 118 | 92.89 240 | 96.01 234 | 97.13 210 | 92.23 210 | 99.67 124 | 92.24 224 | 99.34 161 | 99.17 129 |
|
FMVSNet5 | | | 93.39 269 | 92.35 280 | 96.50 193 | 95.83 319 | 90.81 230 | 97.31 89 | 98.27 191 | 92.74 242 | 96.27 222 | 98.28 93 | 62.23 363 | 99.67 124 | 90.86 252 | 99.36 153 | 99.03 161 |
|
OpenMVS |  | 94.22 8 | 95.48 191 | 95.20 192 | 96.32 203 | 97.16 280 | 91.96 210 | 97.74 64 | 98.84 96 | 87.26 301 | 94.36 278 | 98.01 130 | 93.95 169 | 99.67 124 | 90.70 262 | 98.75 240 | 97.35 300 |
|
CSCG | | | 97.40 97 | 97.30 96 | 97.69 112 | 98.95 95 | 94.83 121 | 97.28 91 | 98.99 62 | 96.35 104 | 98.13 104 | 95.95 283 | 95.99 98 | 99.66 130 | 94.36 177 | 99.73 45 | 98.59 220 |
|
v1144 | | | 96.84 127 | 97.08 112 | 96.13 213 | 98.42 153 | 89.28 252 | 95.41 192 | 98.67 144 | 94.21 194 | 97.97 123 | 98.31 86 | 93.06 187 | 99.65 131 | 98.06 19 | 99.62 65 | 99.45 66 |
|
jason | | | 94.39 242 | 94.04 245 | 95.41 245 | 98.29 162 | 87.85 280 | 92.74 302 | 96.75 282 | 85.38 323 | 95.29 254 | 96.15 271 | 88.21 266 | 99.65 131 | 94.24 180 | 99.34 161 | 98.74 205 |
jason: jason. |
FMVSNet2 | | | 96.72 139 | 96.67 135 | 96.87 172 | 97.96 202 | 91.88 211 | 97.15 97 | 98.06 222 | 95.59 143 | 98.50 62 | 98.62 64 | 89.51 254 | 99.65 131 | 94.99 149 | 99.60 74 | 99.07 155 |
|
EPNet | | | 93.72 260 | 92.62 277 | 97.03 164 | 87.61 368 | 92.25 199 | 96.27 139 | 91.28 343 | 96.74 87 | 87.65 356 | 97.39 193 | 85.00 288 | 99.64 134 | 92.14 225 | 99.48 117 | 99.20 125 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
1112_ss | | | 94.12 250 | 93.42 257 | 96.23 207 | 98.59 133 | 90.85 227 | 94.24 252 | 98.85 91 | 85.49 318 | 92.97 317 | 94.94 305 | 86.01 282 | 99.64 134 | 91.78 233 | 97.92 278 | 98.20 255 |
|
ETH3 D test6400 | | | 94.77 222 | 93.87 251 | 97.47 132 | 98.12 189 | 93.73 166 | 94.56 242 | 98.70 136 | 85.45 321 | 94.70 269 | 95.93 285 | 91.77 224 | 99.63 136 | 86.45 320 | 99.14 191 | 99.05 159 |
|
ETH3D-3000-0.1 | | | 96.89 126 | 96.46 149 | 98.16 76 | 98.62 128 | 95.69 84 | 95.96 160 | 98.98 65 | 93.36 217 | 97.04 180 | 97.31 202 | 94.93 140 | 99.63 136 | 92.60 219 | 99.34 161 | 99.17 129 |
|
Regformer-1 | | | 97.27 106 | 97.16 107 | 97.61 117 | 97.21 277 | 93.86 160 | 94.85 231 | 98.04 224 | 97.62 59 | 98.03 117 | 97.50 182 | 95.34 126 | 99.63 136 | 96.52 67 | 99.31 172 | 99.35 93 |
|
v2v482 | | | 96.78 134 | 97.06 114 | 95.95 220 | 98.57 135 | 88.77 262 | 95.36 196 | 98.26 193 | 95.18 159 | 97.85 137 | 98.23 101 | 92.58 201 | 99.63 136 | 97.80 27 | 99.69 55 | 99.45 66 |
|
lupinMVS | | | 93.77 258 | 93.28 259 | 95.24 249 | 97.68 240 | 87.81 281 | 92.12 313 | 96.05 291 | 84.52 330 | 94.48 276 | 95.06 303 | 86.90 277 | 99.63 136 | 93.62 205 | 99.13 195 | 98.27 249 |
|
FMVSNet3 | | | 95.26 203 | 94.94 203 | 96.22 209 | 96.53 297 | 90.06 237 | 95.99 157 | 97.66 245 | 94.11 198 | 97.99 119 | 97.91 143 | 80.22 310 | 99.63 136 | 94.60 162 | 99.44 127 | 98.96 169 |
|
ACMP | | 92.54 13 | 97.47 92 | 97.10 110 | 98.55 50 | 99.04 90 | 96.70 51 | 96.24 143 | 98.89 78 | 93.71 209 | 97.97 123 | 97.75 160 | 97.44 30 | 99.63 136 | 93.22 212 | 99.70 54 | 99.32 96 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LS3D | | | 97.77 71 | 97.50 85 | 98.57 48 | 96.24 304 | 97.58 24 | 98.45 23 | 98.85 91 | 98.58 26 | 97.51 148 | 97.94 139 | 95.74 113 | 99.63 136 | 95.19 132 | 98.97 213 | 98.51 225 |
|
9.14 | | | | 96.69 133 | | 98.53 139 | | 96.02 155 | 98.98 65 | 93.23 222 | 97.18 168 | 97.46 185 | 96.47 85 | 99.62 144 | 92.99 216 | 99.32 170 | |
|
CS-MVS | | | 95.98 173 | 96.24 156 | 95.20 251 | 97.26 274 | 89.88 241 | 95.84 168 | 99.39 8 | 93.89 205 | 94.28 279 | 95.15 300 | 94.81 142 | 99.62 144 | 96.11 81 | 99.40 145 | 96.10 331 |
|
VDDNet | | | 96.98 119 | 96.84 125 | 97.41 141 | 99.40 36 | 93.26 180 | 97.94 49 | 95.31 309 | 99.26 7 | 98.39 72 | 99.18 27 | 87.85 272 | 99.62 144 | 95.13 141 | 99.09 202 | 99.35 93 |
|
V42 | | | 97.04 114 | 97.16 107 | 96.68 184 | 98.59 133 | 91.05 223 | 96.33 137 | 98.36 182 | 94.60 180 | 97.99 119 | 98.30 90 | 93.32 182 | 99.62 144 | 97.40 41 | 99.53 97 | 99.38 85 |
|
DeepC-MVS | | 95.41 4 | 97.82 67 | 97.70 60 | 98.16 76 | 98.78 108 | 95.72 82 | 96.23 144 | 99.02 51 | 93.92 204 | 98.62 51 | 98.99 39 | 97.69 23 | 99.62 144 | 96.18 78 | 99.87 24 | 99.15 133 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 96.13 3 | 97.73 73 | 97.59 77 | 98.15 79 | 98.11 190 | 95.60 90 | 98.04 45 | 98.70 136 | 98.13 38 | 96.93 189 | 98.45 76 | 95.30 129 | 99.62 144 | 95.64 105 | 98.96 214 | 99.24 121 |
|
ACMM | | 93.33 11 | 98.05 41 | 97.79 53 | 98.85 25 | 99.15 72 | 97.55 26 | 96.68 124 | 98.83 103 | 95.21 156 | 98.36 75 | 98.13 111 | 98.13 14 | 99.62 144 | 96.04 85 | 99.54 94 | 99.39 83 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 108 | 98.69 121 | 94.28 145 | 97.86 55 | 98.31 190 | 98.79 21 | 99.23 26 | 98.86 49 | 95.76 112 | 99.61 151 | 95.49 111 | 99.36 153 | 99.23 122 |
|
CS-MVS-test | | | 95.30 200 | 95.31 190 | 95.27 247 | 96.97 285 | 91.13 222 | 95.52 185 | 99.28 11 | 92.94 239 | 92.37 329 | 93.42 325 | 93.77 174 | 99.61 151 | 94.60 162 | 98.96 214 | 95.07 343 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 64 | 99.22 57 | 95.66 88 | 97.90 53 | 99.08 36 | 98.31 32 | 99.02 34 | 98.74 55 | 97.68 24 | 99.61 151 | 97.77 29 | 99.85 27 | 99.70 18 |
|
IB-MVS | | 85.98 20 | 88.63 322 | 86.95 331 | 93.68 295 | 95.12 333 | 84.82 324 | 90.85 335 | 90.17 354 | 87.55 300 | 88.48 353 | 91.34 352 | 58.01 365 | 99.59 154 | 87.24 316 | 93.80 346 | 96.63 324 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 19 | 98.06 7 | 99.34 4 | 99.44 7 | 98.85 19 | 99.00 36 | 99.20 23 | 97.42 32 | 99.59 154 | 97.21 47 | 99.76 39 | 99.40 81 |
|
thisisatest0515 | | | 90.43 307 | 89.18 319 | 94.17 291 | 97.07 283 | 85.44 312 | 89.75 348 | 87.58 358 | 88.28 294 | 93.69 299 | 91.72 348 | 65.27 360 | 99.58 156 | 90.59 265 | 98.67 246 | 97.50 295 |
|
VDD-MVS | | | 97.37 100 | 97.25 100 | 97.74 106 | 98.69 121 | 94.50 136 | 97.04 105 | 95.61 303 | 98.59 25 | 98.51 60 | 98.72 56 | 92.54 204 | 99.58 156 | 96.02 87 | 99.49 113 | 99.12 144 |
|
EI-MVSNet | | | 96.63 146 | 96.93 121 | 95.74 229 | 97.26 274 | 88.13 274 | 95.29 203 | 97.65 247 | 96.99 79 | 97.94 126 | 98.19 106 | 92.55 202 | 99.58 156 | 96.91 60 | 99.56 85 | 99.50 43 |
|
DELS-MVS | | | 96.17 164 | 96.23 157 | 95.99 216 | 97.55 252 | 90.04 238 | 92.38 310 | 98.52 161 | 94.13 197 | 96.55 209 | 97.06 217 | 94.99 138 | 99.58 156 | 95.62 106 | 99.28 177 | 98.37 234 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVSTER | | | 94.21 247 | 93.93 250 | 95.05 257 | 95.83 319 | 86.46 301 | 95.18 211 | 97.65 247 | 92.41 247 | 97.94 126 | 98.00 132 | 72.39 348 | 99.58 156 | 96.36 73 | 99.56 85 | 99.12 144 |
|
IterMVS | | | 95.42 195 | 95.83 175 | 94.20 289 | 97.52 253 | 83.78 332 | 92.41 309 | 97.47 258 | 95.49 147 | 98.06 113 | 98.49 73 | 87.94 267 | 99.58 156 | 96.02 87 | 99.02 210 | 99.23 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CANet_DTU | | | 94.65 232 | 94.21 239 | 95.96 218 | 95.90 316 | 89.68 244 | 93.92 270 | 97.83 235 | 93.19 224 | 90.12 345 | 95.64 291 | 88.52 261 | 99.57 162 | 93.27 211 | 99.47 119 | 98.62 217 |
|
Effi-MVS+ | | | 96.19 163 | 96.01 167 | 96.71 181 | 97.43 261 | 92.19 204 | 96.12 149 | 99.10 30 | 95.45 148 | 93.33 313 | 94.71 310 | 97.23 43 | 99.56 163 | 93.21 213 | 97.54 297 | 98.37 234 |
|
Regformer-3 | | | 97.25 108 | 97.29 97 | 97.11 158 | 97.35 265 | 92.32 198 | 95.26 205 | 97.62 252 | 97.67 58 | 98.17 98 | 97.89 144 | 95.05 133 | 99.56 163 | 97.16 51 | 99.42 138 | 99.46 61 |
|
XVG-ACMP-BASELINE | | | 97.58 84 | 97.28 99 | 98.49 52 | 99.16 69 | 96.90 46 | 96.39 132 | 98.98 65 | 95.05 165 | 98.06 113 | 98.02 128 | 95.86 101 | 99.56 163 | 94.37 174 | 99.64 63 | 99.00 164 |
|
Test_1112_low_res | | | 93.53 267 | 92.86 267 | 95.54 238 | 98.60 131 | 88.86 259 | 92.75 300 | 98.69 139 | 82.66 337 | 92.65 324 | 96.92 227 | 84.75 290 | 99.56 163 | 90.94 250 | 97.76 284 | 98.19 256 |
|
AUN-MVS | | | 93.95 257 | 92.69 274 | 97.74 106 | 97.80 222 | 95.38 100 | 95.57 184 | 95.46 307 | 91.26 264 | 92.64 325 | 96.10 276 | 74.67 336 | 99.55 167 | 93.72 202 | 96.97 309 | 98.30 245 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 124 | 99.51 22 | 93.39 178 | 98.20 37 | 98.87 85 | 98.23 35 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 167 | 96.52 67 | 99.53 97 | 99.60 26 |
|
Baseline_NR-MVSNet | | | 97.72 74 | 97.79 53 | 97.50 127 | 99.56 15 | 93.29 179 | 95.44 188 | 98.86 87 | 98.20 37 | 98.37 73 | 99.24 20 | 94.69 145 | 99.55 167 | 95.98 91 | 99.79 35 | 99.65 23 |
|
hse-mvs2 | | | 95.77 180 | 95.09 197 | 97.79 103 | 97.84 214 | 95.51 94 | 95.66 177 | 95.43 308 | 96.58 92 | 97.21 166 | 96.16 270 | 84.14 293 | 99.54 170 | 95.89 95 | 96.92 310 | 98.32 241 |
|
VNet | | | 96.84 127 | 96.83 126 | 96.88 171 | 98.06 191 | 92.02 208 | 96.35 136 | 97.57 254 | 97.70 55 | 97.88 132 | 97.80 156 | 92.40 208 | 99.54 170 | 94.73 160 | 98.96 214 | 99.08 153 |
|
Anonymous202405211 | | | 96.34 157 | 95.98 170 | 97.43 139 | 98.25 169 | 93.85 161 | 96.74 118 | 94.41 316 | 97.72 53 | 98.37 73 | 98.03 127 | 87.15 276 | 99.53 172 | 94.06 187 | 99.07 205 | 98.92 180 |
|
agg_prior1 | | | 95.39 196 | 94.60 223 | 97.75 105 | 97.80 222 | 94.96 118 | 93.39 287 | 98.36 182 | 87.20 302 | 93.49 306 | 95.97 281 | 94.65 149 | 99.53 172 | 91.69 236 | 98.86 229 | 98.77 203 |
|
agg_prior | | | | | | 97.80 222 | 94.96 118 | | 98.36 182 | | 93.49 306 | | | 99.53 172 | | | |
|
UGNet | | | 96.81 132 | 96.56 140 | 97.58 118 | 96.64 294 | 93.84 162 | 97.75 63 | 97.12 268 | 96.47 99 | 93.62 301 | 98.88 47 | 93.22 185 | 99.53 172 | 95.61 107 | 99.69 55 | 99.36 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TEST9 | | | | | | 97.84 214 | 95.23 108 | 93.62 279 | 98.39 178 | 86.81 306 | 93.78 293 | 95.99 278 | 94.68 147 | 99.52 176 | | | |
|
train_agg | | | 95.46 193 | 94.66 217 | 97.88 98 | 97.84 214 | 95.23 108 | 93.62 279 | 98.39 178 | 87.04 304 | 93.78 293 | 95.99 278 | 94.58 152 | 99.52 176 | 91.76 234 | 98.90 223 | 98.89 185 |
|
test_8 | | | | | | 97.81 218 | 95.07 116 | 93.54 282 | 98.38 180 | 87.04 304 | 93.71 297 | 95.96 282 | 94.58 152 | 99.52 176 | | | |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 44 | 99.69 2 | 99.57 4 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 176 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
new-patchmatchnet | | | 95.67 183 | 96.58 138 | 92.94 313 | 97.48 255 | 80.21 346 | 92.96 296 | 98.19 205 | 94.83 173 | 98.82 42 | 98.79 51 | 93.31 183 | 99.51 180 | 95.83 97 | 99.04 209 | 99.12 144 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 99 | 99.52 21 | 94.58 132 | 98.28 29 | 99.00 59 | 97.57 60 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 181 | 97.09 54 | 99.75 43 | 99.50 43 |
|
thres600view7 | | | 92.03 292 | 91.43 290 | 93.82 292 | 98.19 175 | 84.61 325 | 96.27 139 | 90.39 350 | 96.81 85 | 96.37 216 | 93.11 327 | 73.44 345 | 99.49 182 | 80.32 348 | 97.95 277 | 97.36 298 |
|
ab-mvs | | | 96.59 147 | 96.59 137 | 96.60 186 | 98.64 123 | 92.21 201 | 98.35 26 | 97.67 243 | 94.45 185 | 96.99 184 | 98.79 51 | 94.96 139 | 99.49 182 | 90.39 272 | 99.07 205 | 98.08 260 |
|
DP-MVS | | | 97.87 61 | 97.89 46 | 97.81 102 | 98.62 128 | 94.82 122 | 97.13 100 | 98.79 113 | 98.98 17 | 98.74 47 | 98.49 73 | 95.80 111 | 99.49 182 | 95.04 145 | 99.44 127 | 99.11 148 |
|
MVS_0304 | | | 95.50 188 | 95.05 201 | 96.84 174 | 96.28 303 | 93.12 183 | 97.00 107 | 96.16 289 | 95.03 166 | 89.22 350 | 97.70 166 | 90.16 245 | 99.48 185 | 94.51 168 | 99.34 161 | 97.93 277 |
|
LFMVS | | | 95.32 199 | 94.88 208 | 96.62 185 | 98.03 193 | 91.47 219 | 97.65 68 | 90.72 349 | 99.11 9 | 97.89 131 | 98.31 86 | 79.20 313 | 99.48 185 | 93.91 196 | 99.12 198 | 98.93 176 |
|
Vis-MVSNet (Re-imp) | | | 95.11 208 | 94.85 209 | 95.87 225 | 99.12 81 | 89.17 253 | 97.54 80 | 94.92 311 | 96.50 96 | 96.58 205 | 97.27 204 | 83.64 297 | 99.48 185 | 88.42 300 | 99.67 58 | 98.97 168 |
|
CHOSEN 280x420 | | | 89.98 312 | 89.19 318 | 92.37 322 | 95.60 325 | 81.13 344 | 86.22 357 | 97.09 269 | 81.44 342 | 87.44 357 | 93.15 326 | 73.99 337 | 99.47 188 | 88.69 296 | 99.07 205 | 96.52 326 |
|
CDS-MVSNet | | | 94.88 218 | 94.12 242 | 97.14 157 | 97.64 245 | 93.57 173 | 93.96 269 | 97.06 271 | 90.05 276 | 96.30 221 | 96.55 248 | 86.10 281 | 99.47 188 | 90.10 276 | 99.31 172 | 98.40 231 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 124 | 99.43 32 | 93.54 174 | 98.23 32 | 99.05 42 | 97.40 71 | 99.37 18 | 99.08 34 | 98.79 5 | 99.47 188 | 97.74 31 | 99.71 51 | 99.50 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
testdata2 | | | | | | | | | | | | | | 99.46 191 | 87.84 305 | | |
|
MDA-MVSNet-bldmvs | | | 95.69 181 | 95.67 180 | 95.74 229 | 98.48 147 | 88.76 263 | 92.84 297 | 97.25 261 | 96.00 120 | 97.59 144 | 97.95 138 | 91.38 227 | 99.46 191 | 93.16 214 | 96.35 324 | 98.99 167 |
|
HQP_MVS | | | 96.66 145 | 96.33 154 | 97.68 113 | 98.70 119 | 94.29 142 | 96.50 128 | 98.75 122 | 96.36 101 | 96.16 228 | 96.77 236 | 91.91 222 | 99.46 191 | 92.59 221 | 99.20 184 | 99.28 110 |
|
plane_prior5 | | | | | | | | | 98.75 122 | | | | | 99.46 191 | 92.59 221 | 99.20 184 | 99.28 110 |
|
æ–°å‡ ä½•1 | | | | | 97.25 152 | 98.29 162 | 94.70 129 | | 97.73 239 | 77.98 354 | 94.83 266 | 96.67 243 | 92.08 215 | 99.45 195 | 88.17 304 | 98.65 250 | 97.61 291 |
|
NCCC | | | 96.52 150 | 95.99 169 | 98.10 81 | 97.81 218 | 95.68 86 | 95.00 224 | 98.20 200 | 95.39 151 | 95.40 253 | 96.36 262 | 93.81 172 | 99.45 195 | 93.55 206 | 98.42 261 | 99.17 129 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 64 | 97.35 35 | 97.96 48 | 99.16 19 | 98.34 31 | 98.78 44 | 98.52 71 | 97.32 35 | 99.45 195 | 94.08 186 | 99.67 58 | 99.13 139 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ET-MVSNet_ETH3D | | | 91.12 301 | 89.67 313 | 95.47 241 | 96.41 300 | 89.15 255 | 91.54 321 | 90.23 353 | 89.07 283 | 86.78 360 | 92.84 335 | 69.39 356 | 99.44 198 | 94.16 183 | 96.61 320 | 97.82 282 |
|
CDPH-MVS | | | 95.45 194 | 94.65 218 | 97.84 101 | 98.28 164 | 94.96 118 | 93.73 277 | 98.33 187 | 85.03 326 | 95.44 251 | 96.60 246 | 95.31 128 | 99.44 198 | 90.01 277 | 99.13 195 | 99.11 148 |
|
MCST-MVS | | | 96.24 160 | 95.80 176 | 97.56 119 | 98.75 111 | 94.13 150 | 94.66 238 | 98.17 206 | 90.17 275 | 96.21 226 | 96.10 276 | 95.14 132 | 99.43 200 | 94.13 185 | 98.85 231 | 99.13 139 |
|
thres100view900 | | | 91.76 296 | 91.26 295 | 93.26 302 | 98.21 173 | 84.50 326 | 96.39 132 | 90.39 350 | 96.87 83 | 96.33 217 | 93.08 331 | 73.44 345 | 99.42 201 | 78.85 352 | 97.74 285 | 95.85 333 |
|
tfpn200view9 | | | 91.55 298 | 91.00 297 | 93.21 305 | 98.02 194 | 84.35 328 | 95.70 173 | 90.79 347 | 96.26 106 | 95.90 239 | 92.13 344 | 73.62 342 | 99.42 201 | 78.85 352 | 97.74 285 | 95.85 333 |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 230 | 77.36 324 | 99.42 201 | | | |
|
SCA | | | 93.38 270 | 93.52 256 | 92.96 312 | 96.24 304 | 81.40 342 | 93.24 292 | 94.00 318 | 91.58 259 | 94.57 271 | 96.97 222 | 87.94 267 | 99.42 201 | 89.47 285 | 97.66 293 | 98.06 266 |
|
thres400 | | | 91.68 297 | 91.00 297 | 93.71 294 | 98.02 194 | 84.35 328 | 95.70 173 | 90.79 347 | 96.26 106 | 95.90 239 | 92.13 344 | 73.62 342 | 99.42 201 | 78.85 352 | 97.74 285 | 97.36 298 |
|
test12 | | | | | 97.46 135 | 97.61 247 | 94.07 151 | | 97.78 237 | | 93.57 304 | | 93.31 183 | 99.42 201 | | 98.78 237 | 98.89 185 |
|
CHOSEN 1792x2688 | | | 94.10 251 | 93.41 258 | 96.18 211 | 99.16 69 | 90.04 238 | 92.15 312 | 98.68 141 | 79.90 348 | 96.22 225 | 97.83 151 | 87.92 271 | 99.42 201 | 89.18 289 | 99.65 61 | 99.08 153 |
|
TAMVS | | | 95.49 189 | 94.94 203 | 97.16 155 | 98.31 159 | 93.41 177 | 95.07 218 | 96.82 279 | 91.09 266 | 97.51 148 | 97.82 154 | 89.96 246 | 99.42 201 | 88.42 300 | 99.44 127 | 98.64 214 |
|
PHI-MVS | | | 96.96 120 | 96.53 144 | 98.25 72 | 97.48 255 | 96.50 58 | 96.76 117 | 98.85 91 | 93.52 212 | 96.19 227 | 96.85 229 | 95.94 99 | 99.42 201 | 93.79 199 | 99.43 135 | 98.83 194 |
|
ADS-MVSNet2 | | | 91.47 299 | 90.51 307 | 94.36 285 | 95.51 326 | 85.63 309 | 95.05 221 | 95.70 299 | 83.46 334 | 92.69 322 | 96.84 230 | 79.15 314 | 99.41 210 | 85.66 326 | 90.52 352 | 98.04 270 |
|
XXY-MVS | | | 97.54 86 | 97.70 60 | 97.07 161 | 99.46 28 | 92.21 201 | 97.22 95 | 99.00 59 | 94.93 171 | 98.58 56 | 98.92 45 | 97.31 36 | 99.41 210 | 94.44 169 | 99.43 135 | 99.59 27 |
|
alignmvs | | | 96.01 171 | 95.52 186 | 97.50 127 | 97.77 233 | 94.71 126 | 96.07 151 | 96.84 277 | 97.48 65 | 96.78 198 | 94.28 320 | 85.50 285 | 99.40 212 | 96.22 76 | 98.73 244 | 98.40 231 |
|
æ— å…ˆéªŒ | | | | | | | | 93.20 293 | 97.91 227 | 80.78 344 | | | | 99.40 212 | 87.71 306 | | 97.94 275 |
|
1121 | | | 94.26 243 | 93.26 260 | 97.27 149 | 98.26 168 | 94.73 124 | 95.86 165 | 97.71 241 | 77.96 355 | 94.53 273 | 96.71 240 | 91.93 220 | 99.40 212 | 87.71 306 | 98.64 251 | 97.69 288 |
|
HY-MVS | | 91.43 15 | 92.58 281 | 91.81 287 | 94.90 263 | 96.49 298 | 88.87 258 | 97.31 89 | 94.62 313 | 85.92 313 | 90.50 342 | 96.84 230 | 85.05 287 | 99.40 212 | 83.77 341 | 95.78 332 | 96.43 327 |
|
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 91 | 99.39 37 | 95.22 111 | 97.55 75 | 99.20 15 | 98.21 36 | 99.25 25 | 98.51 72 | 98.21 11 | 99.40 212 | 94.79 155 | 99.72 48 | 99.32 96 |
|
OPM-MVS | | | 97.54 86 | 97.25 100 | 98.41 57 | 99.11 82 | 96.61 55 | 95.24 208 | 98.46 166 | 94.58 183 | 98.10 108 | 98.07 119 | 97.09 47 | 99.39 217 | 95.16 136 | 99.44 127 | 99.21 124 |
|
v148 | | | 96.58 148 | 96.97 118 | 95.42 243 | 98.63 127 | 87.57 285 | 95.09 215 | 97.90 228 | 95.91 127 | 98.24 92 | 97.96 134 | 93.42 181 | 99.39 217 | 96.04 85 | 99.52 102 | 99.29 109 |
|
CR-MVSNet | | | 93.29 272 | 92.79 270 | 94.78 270 | 95.44 328 | 88.15 272 | 96.18 146 | 97.20 263 | 84.94 328 | 94.10 284 | 98.57 66 | 77.67 320 | 99.39 217 | 95.17 134 | 95.81 329 | 96.81 317 |
|
原ACMM1 | | | | | 96.58 188 | 98.16 182 | 92.12 205 | | 98.15 209 | 85.90 314 | 93.49 306 | 96.43 256 | 92.47 207 | 99.38 220 | 87.66 309 | 98.62 252 | 98.23 252 |
|
mvs_anonymous | | | 95.36 197 | 96.07 166 | 93.21 305 | 96.29 302 | 81.56 341 | 94.60 240 | 97.66 245 | 93.30 220 | 96.95 188 | 98.91 46 | 93.03 190 | 99.38 220 | 96.60 63 | 97.30 307 | 98.69 211 |
|
Patchmtry | | | 95.03 213 | 94.59 225 | 96.33 202 | 94.83 336 | 90.82 228 | 96.38 134 | 97.20 263 | 96.59 91 | 97.49 151 | 98.57 66 | 77.67 320 | 99.38 220 | 92.95 218 | 99.62 65 | 98.80 197 |
|
casdiffmvs | | | 97.50 89 | 97.81 52 | 96.56 191 | 98.51 141 | 91.04 224 | 95.83 169 | 99.09 35 | 97.23 76 | 98.33 82 | 98.30 90 | 97.03 52 | 99.37 223 | 96.58 65 | 99.38 149 | 99.28 110 |
|
114514_t | | | 93.96 255 | 93.22 262 | 96.19 210 | 99.06 87 | 90.97 226 | 95.99 157 | 98.94 73 | 73.88 361 | 93.43 310 | 96.93 225 | 92.38 209 | 99.37 223 | 89.09 290 | 99.28 177 | 98.25 251 |
|
ppachtmachnet_test | | | 94.49 239 | 94.84 210 | 93.46 299 | 96.16 310 | 82.10 338 | 90.59 337 | 97.48 257 | 90.53 271 | 97.01 183 | 97.59 174 | 91.01 230 | 99.36 225 | 93.97 194 | 99.18 188 | 98.94 172 |
|
baseline | | | 97.44 94 | 97.78 56 | 96.43 197 | 98.52 140 | 90.75 231 | 96.84 112 | 99.03 49 | 96.51 95 | 97.86 136 | 98.02 128 | 96.67 70 | 99.36 225 | 97.09 54 | 99.47 119 | 99.19 126 |
|
CNVR-MVS | | | 96.92 122 | 96.55 141 | 98.03 89 | 98.00 200 | 95.54 92 | 94.87 229 | 98.17 206 | 94.60 180 | 96.38 215 | 97.05 218 | 95.67 115 | 99.36 225 | 95.12 142 | 99.08 203 | 99.19 126 |
|
eth_miper_zixun_eth | | | 94.89 217 | 94.93 205 | 94.75 271 | 95.99 315 | 86.12 306 | 91.35 324 | 98.49 164 | 93.40 215 | 97.12 172 | 97.25 206 | 86.87 279 | 99.35 228 | 95.08 144 | 98.82 234 | 98.78 200 |
|
F-COLMAP | | | 95.30 200 | 94.38 234 | 98.05 88 | 98.64 123 | 96.04 73 | 95.61 183 | 98.66 146 | 89.00 285 | 93.22 314 | 96.40 259 | 92.90 192 | 99.35 228 | 87.45 314 | 97.53 298 | 98.77 203 |
|
Anonymous20231206 | | | 95.27 202 | 95.06 200 | 95.88 224 | 98.72 114 | 89.37 250 | 95.70 173 | 97.85 231 | 88.00 297 | 96.98 186 | 97.62 172 | 91.95 218 | 99.34 230 | 89.21 288 | 99.53 97 | 98.94 172 |
|
test_prior3 | | | 95.91 175 | 95.39 188 | 97.46 135 | 97.79 228 | 94.26 146 | 93.33 290 | 98.42 173 | 94.21 194 | 94.02 288 | 96.25 266 | 93.64 177 | 99.34 230 | 91.90 228 | 98.96 214 | 98.79 198 |
|
test_prior | | | | | 97.46 135 | 97.79 228 | 94.26 146 | | 98.42 173 | | | | | 99.34 230 | | | 98.79 198 |
|
test_241102_ONE | | | | | | 99.22 57 | 95.35 103 | | 98.83 103 | 96.04 117 | 99.08 31 | 98.13 111 | 97.87 20 | 99.33 233 | | | |
|
canonicalmvs | | | 97.23 110 | 97.21 105 | 97.30 148 | 97.65 244 | 94.39 138 | 97.84 56 | 99.05 42 | 97.42 67 | 96.68 201 | 93.85 323 | 97.63 26 | 99.33 233 | 96.29 75 | 98.47 260 | 98.18 257 |
|
baseline2 | | | 89.65 316 | 88.44 323 | 93.25 303 | 95.62 324 | 82.71 334 | 93.82 273 | 85.94 362 | 88.89 287 | 87.35 358 | 92.54 340 | 71.23 351 | 99.33 233 | 86.01 321 | 94.60 343 | 97.72 286 |
|
WTY-MVS | | | 93.55 266 | 93.00 265 | 95.19 252 | 97.81 218 | 87.86 278 | 93.89 271 | 96.00 293 | 89.02 284 | 94.07 286 | 95.44 297 | 86.27 280 | 99.33 233 | 87.69 308 | 96.82 314 | 98.39 233 |
|
cl-mvsnet1 | | | 94.73 223 | 94.64 219 | 95.01 258 | 95.86 317 | 87.00 295 | 91.33 325 | 98.08 217 | 93.34 218 | 97.10 174 | 97.34 199 | 84.02 295 | 99.31 237 | 95.15 138 | 99.55 91 | 98.72 208 |
|
thres200 | | | 91.00 304 | 90.42 308 | 92.77 315 | 97.47 259 | 83.98 331 | 94.01 265 | 91.18 345 | 95.12 162 | 95.44 251 | 91.21 353 | 73.93 338 | 99.31 237 | 77.76 355 | 97.63 295 | 95.01 344 |
|
PCF-MVS | | 89.43 18 | 92.12 291 | 90.64 305 | 96.57 190 | 97.80 222 | 93.48 176 | 89.88 347 | 98.45 167 | 74.46 360 | 96.04 232 | 95.68 289 | 90.71 235 | 99.31 237 | 73.73 358 | 99.01 212 | 96.91 310 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
cl-mvsnet____ | | | 94.73 223 | 94.64 219 | 95.01 258 | 95.85 318 | 87.00 295 | 91.33 325 | 98.08 217 | 93.34 218 | 97.10 174 | 97.33 200 | 84.01 296 | 99.30 240 | 95.14 139 | 99.56 85 | 98.71 210 |
|
tpm | | | 91.08 303 | 90.85 301 | 91.75 326 | 95.33 331 | 78.09 350 | 95.03 223 | 91.27 344 | 88.75 288 | 93.53 305 | 97.40 189 | 71.24 350 | 99.30 240 | 91.25 244 | 93.87 345 | 97.87 279 |
|
PVSNet_BlendedMVS | | | 95.02 214 | 94.93 205 | 95.27 247 | 97.79 228 | 87.40 289 | 94.14 260 | 98.68 141 | 88.94 286 | 94.51 274 | 98.01 130 | 93.04 188 | 99.30 240 | 89.77 281 | 99.49 113 | 99.11 148 |
|
PVSNet_Blended | | | 93.96 255 | 93.65 254 | 94.91 261 | 97.79 228 | 87.40 289 | 91.43 322 | 98.68 141 | 84.50 331 | 94.51 274 | 94.48 316 | 93.04 188 | 99.30 240 | 89.77 281 | 98.61 253 | 98.02 272 |
|
diffmvs | | | 96.04 169 | 96.23 157 | 95.46 242 | 97.35 265 | 88.03 276 | 93.42 285 | 99.08 36 | 94.09 199 | 96.66 202 | 96.93 225 | 93.85 171 | 99.29 244 | 96.01 89 | 98.67 246 | 99.06 157 |
|
EG-PatchMatch MVS | | | 97.69 76 | 97.79 53 | 97.40 142 | 99.06 87 | 93.52 175 | 95.96 160 | 98.97 69 | 94.55 184 | 98.82 42 | 98.76 54 | 97.31 36 | 99.29 244 | 97.20 49 | 99.44 127 | 99.38 85 |
|
cl_fuxian | | | 95.20 204 | 95.32 189 | 94.83 268 | 96.19 308 | 86.43 303 | 91.83 318 | 98.35 186 | 93.47 214 | 97.36 161 | 97.26 205 | 88.69 260 | 99.28 246 | 95.41 124 | 99.36 153 | 98.78 200 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 136 | 96.51 147 | 97.44 138 | 97.69 239 | 94.15 149 | 96.02 155 | 98.43 170 | 93.17 228 | 97.30 162 | 97.38 195 | 95.48 121 | 99.28 246 | 93.74 200 | 99.34 161 | 98.88 189 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
pmmvs5 | | | 94.63 233 | 94.34 235 | 95.50 239 | 97.63 246 | 88.34 268 | 94.02 264 | 97.13 267 | 87.15 303 | 95.22 256 | 97.15 209 | 87.50 273 | 99.27 248 | 93.99 192 | 99.26 180 | 98.88 189 |
|
miper_lstm_enhance | | | 94.81 221 | 94.80 213 | 94.85 266 | 96.16 310 | 86.45 302 | 91.14 331 | 98.20 200 | 93.49 213 | 97.03 181 | 97.37 197 | 84.97 289 | 99.26 249 | 95.28 127 | 99.56 85 | 98.83 194 |
|
MVS_Test | | | 96.27 159 | 96.79 130 | 94.73 272 | 96.94 289 | 86.63 300 | 96.18 146 | 98.33 187 | 94.94 169 | 96.07 231 | 98.28 93 | 95.25 130 | 99.26 249 | 97.21 47 | 97.90 280 | 98.30 245 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 264 | 93.05 263 | 95.42 243 | 97.31 273 | 91.21 221 | 95.08 217 | 96.68 285 | 81.56 340 | 96.88 193 | 96.41 257 | 90.44 238 | 99.25 251 | 85.39 329 | 97.67 292 | 95.80 335 |
|
PatchT | | | 93.75 259 | 93.57 255 | 94.29 288 | 95.05 334 | 87.32 291 | 96.05 152 | 92.98 328 | 97.54 63 | 94.25 280 | 98.72 56 | 75.79 333 | 99.24 252 | 95.92 93 | 95.81 329 | 96.32 328 |
|
RPSCF | | | 97.87 61 | 97.51 83 | 98.95 17 | 99.15 72 | 98.43 3 | 97.56 74 | 99.06 40 | 96.19 109 | 98.48 63 | 98.70 58 | 94.72 144 | 99.24 252 | 94.37 174 | 99.33 168 | 99.17 129 |
|
HQP4-MVS | | | | | | | | | | | 92.87 318 | | | 99.23 254 | | | 99.06 157 |
|
HQP-MVS | | | 95.17 207 | 94.58 226 | 96.92 168 | 97.85 210 | 92.47 195 | 94.26 248 | 98.43 170 | 93.18 225 | 92.86 319 | 95.08 301 | 90.33 239 | 99.23 254 | 90.51 269 | 98.74 241 | 99.05 159 |
|
miper_ehance_all_eth | | | 94.69 228 | 94.70 216 | 94.64 273 | 95.77 321 | 86.22 305 | 91.32 327 | 98.24 195 | 91.67 256 | 97.05 179 | 96.65 244 | 88.39 264 | 99.22 256 | 94.88 150 | 98.34 263 | 98.49 227 |
|
PLC |  | 91.02 16 | 94.05 254 | 92.90 266 | 97.51 124 | 98.00 200 | 95.12 115 | 94.25 251 | 98.25 194 | 86.17 310 | 91.48 336 | 95.25 298 | 91.01 230 | 99.19 257 | 85.02 333 | 96.69 318 | 98.22 253 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
test_yl | | | 94.40 240 | 94.00 246 | 95.59 233 | 96.95 287 | 89.52 247 | 94.75 236 | 95.55 305 | 96.18 110 | 96.79 194 | 96.14 273 | 81.09 305 | 99.18 258 | 90.75 257 | 97.77 282 | 98.07 262 |
|
DCV-MVSNet | | | 94.40 240 | 94.00 246 | 95.59 233 | 96.95 287 | 89.52 247 | 94.75 236 | 95.55 305 | 96.18 110 | 96.79 194 | 96.14 273 | 81.09 305 | 99.18 258 | 90.75 257 | 97.77 282 | 98.07 262 |
|
YYNet1 | | | 94.73 223 | 94.84 210 | 94.41 284 | 97.47 259 | 85.09 320 | 90.29 340 | 95.85 298 | 92.52 243 | 97.53 146 | 97.76 157 | 91.97 217 | 99.18 258 | 93.31 209 | 96.86 313 | 98.95 170 |
|
PatchmatchNet |  | | 91.98 293 | 91.87 285 | 92.30 323 | 94.60 339 | 79.71 347 | 95.12 212 | 93.59 323 | 89.52 280 | 93.61 302 | 97.02 220 | 77.94 318 | 99.18 258 | 90.84 253 | 94.57 344 | 98.01 273 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDA-MVSNet_test_wron | | | 94.73 223 | 94.83 212 | 94.42 283 | 97.48 255 | 85.15 318 | 90.28 341 | 95.87 297 | 92.52 243 | 97.48 154 | 97.76 157 | 91.92 221 | 99.17 262 | 93.32 208 | 96.80 316 | 98.94 172 |
|
CL-MVSNet_2432*1600 | | | 95.04 211 | 94.79 214 | 95.82 226 | 97.51 254 | 89.79 243 | 91.14 331 | 96.82 279 | 93.05 231 | 96.72 199 | 96.40 259 | 90.82 233 | 99.16 263 | 91.95 227 | 98.66 248 | 98.50 226 |
|
UnsupCasMVSNet_bld | | | 94.72 227 | 94.26 236 | 96.08 214 | 98.62 128 | 90.54 236 | 93.38 288 | 98.05 223 | 90.30 273 | 97.02 182 | 96.80 235 | 89.54 251 | 99.16 263 | 88.44 299 | 96.18 326 | 98.56 222 |
|
miper_enhance_ethall | | | 93.14 275 | 92.78 272 | 94.20 289 | 93.65 350 | 85.29 315 | 89.97 343 | 97.85 231 | 85.05 325 | 96.15 230 | 94.56 312 | 85.74 283 | 99.14 265 | 93.74 200 | 98.34 263 | 98.17 258 |
|
D2MVS | | | 95.18 205 | 95.17 194 | 95.21 250 | 97.76 234 | 87.76 283 | 94.15 258 | 97.94 226 | 89.77 279 | 96.99 184 | 97.68 169 | 87.45 274 | 99.14 265 | 95.03 147 | 99.81 30 | 98.74 205 |
|
AllTest | | | 97.20 111 | 96.92 122 | 98.06 85 | 99.08 84 | 96.16 68 | 97.14 99 | 99.16 19 | 94.35 189 | 97.78 141 | 98.07 119 | 95.84 102 | 99.12 267 | 91.41 239 | 99.42 138 | 98.91 181 |
|
TestCases | | | | | 98.06 85 | 99.08 84 | 96.16 68 | | 99.16 19 | 94.35 189 | 97.78 141 | 98.07 119 | 95.84 102 | 99.12 267 | 91.41 239 | 99.42 138 | 98.91 181 |
|
MAR-MVS | | | 94.21 247 | 93.03 264 | 97.76 104 | 96.94 289 | 97.44 33 | 96.97 109 | 97.15 266 | 87.89 299 | 92.00 333 | 92.73 338 | 92.14 212 | 99.12 267 | 83.92 338 | 97.51 299 | 96.73 320 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
our_test_3 | | | 94.20 249 | 94.58 226 | 93.07 307 | 96.16 310 | 81.20 343 | 90.42 339 | 96.84 277 | 90.72 269 | 97.14 170 | 97.13 210 | 90.47 237 | 99.11 270 | 94.04 191 | 98.25 267 | 98.91 181 |
|
EPNet_dtu | | | 91.39 300 | 90.75 303 | 93.31 301 | 90.48 365 | 82.61 335 | 94.80 233 | 92.88 329 | 93.39 216 | 81.74 364 | 94.90 308 | 81.36 304 | 99.11 270 | 88.28 302 | 98.87 227 | 98.21 254 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVP-Stereo | | | 95.69 181 | 95.28 191 | 96.92 168 | 98.15 184 | 93.03 185 | 95.64 182 | 98.20 200 | 90.39 272 | 96.63 204 | 97.73 163 | 91.63 225 | 99.10 272 | 91.84 232 | 97.31 306 | 98.63 216 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
AdaColmap |  | | 95.11 208 | 94.62 222 | 96.58 188 | 97.33 271 | 94.45 137 | 94.92 227 | 98.08 217 | 93.15 229 | 93.98 291 | 95.53 295 | 94.34 159 | 99.10 272 | 85.69 325 | 98.61 253 | 96.20 330 |
|
pmmvs-eth3d | | | 96.49 151 | 96.18 160 | 97.42 140 | 98.25 169 | 94.29 142 | 94.77 235 | 98.07 221 | 89.81 278 | 97.97 123 | 98.33 84 | 93.11 186 | 99.08 274 | 95.46 117 | 99.84 28 | 98.89 185 |
|
test_post | | | | | | | | | | | | 10.87 368 | 76.83 327 | 99.07 275 | | | |
|
N_pmnet | | | 95.18 205 | 94.23 237 | 98.06 85 | 97.85 210 | 96.55 57 | 92.49 306 | 91.63 340 | 89.34 281 | 98.09 109 | 97.41 188 | 90.33 239 | 99.06 276 | 91.58 237 | 99.31 172 | 98.56 222 |
|
PM-MVS | | | 97.36 102 | 97.10 110 | 98.14 80 | 98.91 98 | 96.77 49 | 96.20 145 | 98.63 152 | 93.82 206 | 98.54 58 | 98.33 84 | 93.98 168 | 99.05 277 | 95.99 90 | 99.45 126 | 98.61 219 |
|
ambc | | | | | 96.56 191 | 98.23 172 | 91.68 216 | 97.88 54 | 98.13 212 | | 98.42 69 | 98.56 68 | 94.22 163 | 99.04 278 | 94.05 190 | 99.35 158 | 98.95 170 |
|
test_post1 | | | | | | | | 94.98 225 | | | | 10.37 369 | 76.21 331 | 99.04 278 | 89.47 285 | | |
|
OMC-MVS | | | 96.48 152 | 96.00 168 | 97.91 95 | 98.30 161 | 96.01 76 | 94.86 230 | 98.60 154 | 91.88 254 | 97.18 168 | 97.21 208 | 96.11 96 | 99.04 278 | 90.49 271 | 99.34 161 | 98.69 211 |
|
MIMVSNet | | | 93.42 268 | 92.86 267 | 95.10 255 | 98.17 180 | 88.19 270 | 98.13 41 | 93.69 319 | 92.07 249 | 95.04 262 | 98.21 105 | 80.95 307 | 99.03 281 | 81.42 346 | 98.06 274 | 98.07 262 |
|
DPM-MVS | | | 93.68 262 | 92.77 273 | 96.42 198 | 97.91 206 | 92.54 193 | 91.17 330 | 97.47 258 | 84.99 327 | 93.08 316 | 94.74 309 | 89.90 247 | 99.00 282 | 87.54 312 | 98.09 273 | 97.72 286 |
|
BH-RMVSNet | | | 94.56 236 | 94.44 233 | 94.91 261 | 97.57 248 | 87.44 288 | 93.78 276 | 96.26 288 | 93.69 210 | 96.41 214 | 96.50 253 | 92.10 214 | 99.00 282 | 85.96 322 | 97.71 288 | 98.31 243 |
|
gm-plane-assit | | | | | | 91.79 362 | 71.40 366 | | | 81.67 339 | | 90.11 359 | | 98.99 284 | 84.86 334 | | |
|
MVS_111021_HR | | | 96.73 138 | 96.54 143 | 97.27 149 | 98.35 158 | 93.66 171 | 93.42 285 | 98.36 182 | 94.74 175 | 96.58 205 | 96.76 238 | 96.54 78 | 98.99 284 | 94.87 151 | 99.27 179 | 99.15 133 |
|
testdata | | | | | 95.70 232 | 98.16 182 | 90.58 233 | | 97.72 240 | 80.38 346 | 95.62 248 | 97.02 220 | 92.06 216 | 98.98 286 | 89.06 292 | 98.52 257 | 97.54 293 |
|
DP-MVS Recon | | | 95.55 187 | 95.13 195 | 96.80 176 | 98.51 141 | 93.99 155 | 94.60 240 | 98.69 139 | 90.20 274 | 95.78 243 | 96.21 269 | 92.73 196 | 98.98 286 | 90.58 266 | 98.86 229 | 97.42 297 |
|
TAPA-MVS | | 93.32 12 | 94.93 215 | 94.23 237 | 97.04 163 | 98.18 178 | 94.51 134 | 95.22 209 | 98.73 126 | 81.22 343 | 96.25 224 | 95.95 283 | 93.80 173 | 98.98 286 | 89.89 279 | 98.87 227 | 97.62 290 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CLD-MVS | | | 95.47 192 | 95.07 198 | 96.69 183 | 98.27 166 | 92.53 194 | 91.36 323 | 98.67 144 | 91.22 265 | 95.78 243 | 94.12 321 | 95.65 116 | 98.98 286 | 90.81 254 | 99.72 48 | 98.57 221 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
GA-MVS | | | 92.83 278 | 92.15 283 | 94.87 265 | 96.97 285 | 87.27 292 | 90.03 342 | 96.12 290 | 91.83 255 | 94.05 287 | 94.57 311 | 76.01 332 | 98.97 290 | 92.46 223 | 97.34 305 | 98.36 239 |
|
BH-untuned | | | 94.69 228 | 94.75 215 | 94.52 281 | 97.95 205 | 87.53 286 | 94.07 263 | 97.01 272 | 93.99 201 | 97.10 174 | 95.65 290 | 92.65 199 | 98.95 291 | 87.60 310 | 96.74 317 | 97.09 302 |
|
DWT-MVSNet_test | | | 87.92 328 | 86.77 332 | 91.39 328 | 93.18 353 | 78.62 349 | 95.10 213 | 91.42 341 | 85.58 317 | 88.00 354 | 88.73 360 | 60.60 364 | 98.90 292 | 90.60 264 | 87.70 358 | 96.65 321 |
|
JIA-IIPM | | | 91.79 295 | 90.69 304 | 95.11 254 | 93.80 349 | 90.98 225 | 94.16 257 | 91.78 339 | 96.38 100 | 90.30 344 | 99.30 18 | 72.02 349 | 98.90 292 | 88.28 302 | 90.17 354 | 95.45 341 |
|
pmmvs4 | | | 94.82 220 | 94.19 240 | 96.70 182 | 97.42 262 | 92.75 192 | 92.09 315 | 96.76 281 | 86.80 307 | 95.73 246 | 97.22 207 | 89.28 257 | 98.89 294 | 93.28 210 | 99.14 191 | 98.46 230 |
|
TSAR-MVS + GP. | | | 96.47 153 | 96.12 162 | 97.49 130 | 97.74 236 | 95.23 108 | 94.15 258 | 96.90 276 | 93.26 221 | 98.04 116 | 96.70 241 | 94.41 157 | 98.89 294 | 94.77 158 | 99.14 191 | 98.37 234 |
|
CostFormer | | | 89.75 315 | 89.25 314 | 91.26 330 | 94.69 338 | 78.00 352 | 95.32 200 | 91.98 337 | 81.50 341 | 90.55 341 | 96.96 224 | 71.06 352 | 98.89 294 | 88.59 298 | 92.63 349 | 96.87 311 |
|
sss | | | 94.22 245 | 93.72 253 | 95.74 229 | 97.71 238 | 89.95 240 | 93.84 272 | 96.98 273 | 88.38 293 | 93.75 296 | 95.74 287 | 87.94 267 | 98.89 294 | 91.02 248 | 98.10 272 | 98.37 234 |
|
tpmvs | | | 90.79 306 | 90.87 300 | 90.57 334 | 92.75 360 | 76.30 357 | 95.79 170 | 93.64 322 | 91.04 267 | 91.91 334 | 96.26 265 | 77.19 326 | 98.86 298 | 89.38 287 | 89.85 355 | 96.56 325 |
|
tpmrst | | | 90.31 308 | 90.61 306 | 89.41 338 | 94.06 347 | 72.37 365 | 95.06 220 | 93.69 319 | 88.01 296 | 92.32 331 | 96.86 228 | 77.45 322 | 98.82 299 | 91.04 247 | 87.01 359 | 97.04 305 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 145 | 99.76 5 | 96.28 66 | 98.51 19 | 99.10 30 | 98.76 22 | 96.79 194 | 99.34 17 | 96.61 74 | 98.82 299 | 96.38 72 | 99.50 109 | 96.98 306 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
Patchmatch-RL test | | | 94.66 231 | 94.49 229 | 95.19 252 | 98.54 138 | 88.91 257 | 92.57 304 | 98.74 124 | 91.46 260 | 98.32 83 | 97.75 160 | 77.31 325 | 98.81 301 | 96.06 82 | 99.61 71 | 97.85 280 |
|
dp | | | 88.08 326 | 88.05 324 | 88.16 344 | 92.85 358 | 68.81 367 | 94.17 256 | 92.88 329 | 85.47 319 | 91.38 337 | 96.14 273 | 68.87 357 | 98.81 301 | 86.88 317 | 83.80 362 | 96.87 311 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 124 | 96.43 150 | 98.31 66 | 97.48 255 | 97.23 40 | 92.56 305 | 98.60 154 | 92.84 241 | 98.54 58 | 97.40 189 | 96.64 73 | 98.78 303 | 94.40 173 | 99.41 144 | 98.93 176 |
|
cl-mvsnet2 | | | 93.25 273 | 92.84 269 | 94.46 282 | 94.30 342 | 86.00 307 | 91.09 333 | 96.64 286 | 90.74 268 | 95.79 241 | 96.31 264 | 78.24 317 | 98.77 304 | 94.15 184 | 98.34 263 | 98.62 217 |
|
MG-MVS | | | 94.08 253 | 94.00 246 | 94.32 286 | 97.09 282 | 85.89 308 | 93.19 294 | 95.96 295 | 92.52 243 | 94.93 265 | 97.51 181 | 89.54 251 | 98.77 304 | 87.52 313 | 97.71 288 | 98.31 243 |
|
EU-MVSNet | | | 94.25 244 | 94.47 230 | 93.60 296 | 98.14 185 | 82.60 336 | 97.24 94 | 92.72 332 | 85.08 324 | 98.48 63 | 98.94 43 | 82.59 300 | 98.76 306 | 97.47 39 | 99.53 97 | 99.44 76 |
|
USDC | | | 94.56 236 | 94.57 228 | 94.55 280 | 97.78 232 | 86.43 303 | 92.75 300 | 98.65 151 | 85.96 312 | 96.91 191 | 97.93 141 | 90.82 233 | 98.74 307 | 90.71 261 | 99.59 76 | 98.47 228 |
|
tpm2 | | | 88.47 323 | 87.69 327 | 90.79 332 | 94.98 335 | 77.34 355 | 95.09 215 | 91.83 338 | 77.51 357 | 89.40 348 | 96.41 257 | 67.83 358 | 98.73 308 | 83.58 343 | 92.60 350 | 96.29 329 |
|
MVS_111021_LR | | | 96.82 131 | 96.55 141 | 97.62 116 | 98.27 166 | 95.34 105 | 93.81 275 | 98.33 187 | 94.59 182 | 96.56 207 | 96.63 245 | 96.61 74 | 98.73 308 | 94.80 154 | 99.34 161 | 98.78 200 |
|
test20.03 | | | 96.58 148 | 96.61 136 | 96.48 195 | 98.49 145 | 91.72 215 | 95.68 176 | 97.69 242 | 96.81 85 | 98.27 89 | 97.92 142 | 94.18 164 | 98.71 310 | 90.78 256 | 99.66 60 | 99.00 164 |
|
ADS-MVSNet | | | 90.95 305 | 90.26 309 | 93.04 308 | 95.51 326 | 82.37 337 | 95.05 221 | 93.41 324 | 83.46 334 | 92.69 322 | 96.84 230 | 79.15 314 | 98.70 311 | 85.66 326 | 90.52 352 | 98.04 270 |
|
pmmvs3 | | | 90.00 311 | 88.90 320 | 93.32 300 | 94.20 346 | 85.34 313 | 91.25 328 | 92.56 334 | 78.59 352 | 93.82 292 | 95.17 299 | 67.36 359 | 98.69 312 | 89.08 291 | 98.03 275 | 95.92 332 |
|
UnsupCasMVSNet_eth | | | 95.91 175 | 95.73 179 | 96.44 196 | 98.48 147 | 91.52 218 | 95.31 201 | 98.45 167 | 95.76 135 | 97.48 154 | 97.54 177 | 89.53 253 | 98.69 312 | 94.43 170 | 94.61 342 | 99.13 139 |
|
LF4IMVS | | | 96.07 167 | 95.63 182 | 97.36 145 | 98.19 175 | 95.55 91 | 95.44 188 | 98.82 111 | 92.29 248 | 95.70 247 | 96.55 248 | 92.63 200 | 98.69 312 | 91.75 235 | 99.33 168 | 97.85 280 |
|
TinyColmap | | | 96.00 172 | 96.34 153 | 94.96 260 | 97.90 208 | 87.91 277 | 94.13 261 | 98.49 164 | 94.41 186 | 98.16 99 | 97.76 157 | 96.29 94 | 98.68 315 | 90.52 268 | 99.42 138 | 98.30 245 |
|
旧先验2 | | | | | | | | 93.35 289 | | 77.95 356 | 95.77 245 | | | 98.67 316 | 90.74 260 | | |
|
PMMVS | | | 92.39 284 | 91.08 296 | 96.30 205 | 93.12 356 | 92.81 190 | 90.58 338 | 95.96 295 | 79.17 351 | 91.85 335 | 92.27 342 | 90.29 243 | 98.66 317 | 89.85 280 | 96.68 319 | 97.43 296 |
|
KD-MVS_2432*1600 | | | 88.93 320 | 87.74 325 | 92.49 318 | 88.04 366 | 81.99 339 | 89.63 349 | 95.62 301 | 91.35 261 | 95.06 259 | 93.11 327 | 56.58 368 | 98.63 318 | 85.19 330 | 95.07 337 | 96.85 313 |
|
miper_refine_blended | | | 88.93 320 | 87.74 325 | 92.49 318 | 88.04 366 | 81.99 339 | 89.63 349 | 95.62 301 | 91.35 261 | 95.06 259 | 93.11 327 | 56.58 368 | 98.63 318 | 85.19 330 | 95.07 337 | 96.85 313 |
|
Patchmatch-test | | | 93.60 265 | 93.25 261 | 94.63 274 | 96.14 313 | 87.47 287 | 96.04 153 | 94.50 315 | 93.57 211 | 96.47 211 | 96.97 222 | 76.50 328 | 98.61 320 | 90.67 263 | 98.41 262 | 97.81 284 |
|
TR-MVS | | | 92.54 282 | 92.20 282 | 93.57 297 | 96.49 298 | 86.66 299 | 93.51 283 | 94.73 312 | 89.96 277 | 94.95 263 | 93.87 322 | 90.24 244 | 98.61 320 | 81.18 347 | 94.88 339 | 95.45 341 |
|
baseline1 | | | 93.14 275 | 92.64 276 | 94.62 275 | 97.34 269 | 87.20 293 | 96.67 125 | 93.02 327 | 94.71 177 | 96.51 210 | 95.83 286 | 81.64 302 | 98.60 322 | 90.00 278 | 88.06 357 | 98.07 262 |
|
test-LLR | | | 89.97 313 | 89.90 311 | 90.16 335 | 94.24 344 | 74.98 360 | 89.89 344 | 89.06 355 | 92.02 250 | 89.97 346 | 90.77 356 | 73.92 339 | 98.57 323 | 91.88 230 | 97.36 303 | 96.92 308 |
|
test-mter | | | 87.92 328 | 87.17 329 | 90.16 335 | 94.24 344 | 74.98 360 | 89.89 344 | 89.06 355 | 86.44 309 | 89.97 346 | 90.77 356 | 54.96 372 | 98.57 323 | 91.88 230 | 97.36 303 | 96.92 308 |
|
PatchMatch-RL | | | 94.61 234 | 93.81 252 | 97.02 165 | 98.19 175 | 95.72 82 | 93.66 278 | 97.23 262 | 88.17 295 | 94.94 264 | 95.62 292 | 91.43 226 | 98.57 323 | 87.36 315 | 97.68 291 | 96.76 319 |
|
DSMNet-mixed | | | 92.19 289 | 91.83 286 | 93.25 303 | 96.18 309 | 83.68 333 | 96.27 139 | 93.68 321 | 76.97 358 | 92.54 328 | 99.18 27 | 89.20 259 | 98.55 326 | 83.88 339 | 98.60 255 | 97.51 294 |
|
MDTV_nov1_ep13 | | | | 91.28 293 | | 94.31 341 | 73.51 363 | 94.80 233 | 93.16 326 | 86.75 308 | 93.45 309 | 97.40 189 | 76.37 329 | 98.55 326 | 88.85 293 | 96.43 322 | |
|
ITE_SJBPF | | | | | 97.85 100 | 98.64 123 | 96.66 53 | | 98.51 163 | 95.63 140 | 97.22 164 | 97.30 203 | 95.52 119 | 98.55 326 | 90.97 249 | 98.90 223 | 98.34 240 |
|
OPU-MVS | | | | | 97.64 115 | 98.01 196 | 95.27 106 | 96.79 115 | | | | 97.35 198 | 96.97 54 | 98.51 329 | 91.21 245 | 99.25 181 | 99.14 136 |
|
PVSNet | | 86.72 19 | 91.10 302 | 90.97 299 | 91.49 327 | 97.56 250 | 78.04 351 | 87.17 355 | 94.60 314 | 84.65 329 | 92.34 330 | 92.20 343 | 87.37 275 | 98.47 330 | 85.17 332 | 97.69 290 | 97.96 274 |
|
CVMVSNet | | | 92.33 287 | 92.79 270 | 90.95 331 | 97.26 274 | 75.84 359 | 95.29 203 | 92.33 335 | 81.86 338 | 96.27 222 | 98.19 106 | 81.44 303 | 98.46 331 | 94.23 181 | 98.29 266 | 98.55 224 |
|
XVG-OURS-SEG-HR | | | 97.38 98 | 97.07 113 | 98.30 67 | 99.01 92 | 97.41 34 | 94.66 238 | 99.02 51 | 95.20 157 | 98.15 101 | 97.52 180 | 98.83 4 | 98.43 332 | 94.87 151 | 96.41 323 | 99.07 155 |
|
XVG-OURS | | | 97.12 112 | 96.74 131 | 98.26 69 | 98.99 93 | 97.45 32 | 93.82 273 | 99.05 42 | 95.19 158 | 98.32 83 | 97.70 166 | 95.22 131 | 98.41 333 | 94.27 179 | 98.13 271 | 98.93 176 |
|
PAPM | | | 87.64 330 | 85.84 335 | 93.04 308 | 96.54 296 | 84.99 321 | 88.42 354 | 95.57 304 | 79.52 349 | 83.82 361 | 93.05 333 | 80.57 308 | 98.41 333 | 62.29 364 | 92.79 348 | 95.71 336 |
|
MVS | | | 90.02 310 | 89.20 317 | 92.47 320 | 94.71 337 | 86.90 297 | 95.86 165 | 96.74 283 | 64.72 363 | 90.62 339 | 92.77 336 | 92.54 204 | 98.39 335 | 79.30 350 | 95.56 335 | 92.12 355 |
|
PAPM_NR | | | 94.61 234 | 94.17 241 | 95.96 218 | 98.36 157 | 91.23 220 | 95.93 163 | 97.95 225 | 92.98 234 | 93.42 311 | 94.43 317 | 90.53 236 | 98.38 336 | 87.60 310 | 96.29 325 | 98.27 249 |
|
MSDG | | | 95.33 198 | 95.13 195 | 95.94 222 | 97.40 263 | 91.85 212 | 91.02 334 | 98.37 181 | 95.30 154 | 96.31 220 | 95.99 278 | 94.51 155 | 98.38 336 | 89.59 283 | 97.65 294 | 97.60 292 |
|
API-MVS | | | 95.09 210 | 95.01 202 | 95.31 246 | 96.61 295 | 94.02 153 | 96.83 113 | 97.18 265 | 95.60 142 | 95.79 241 | 94.33 318 | 94.54 154 | 98.37 338 | 85.70 324 | 98.52 257 | 93.52 351 |
|
CNLPA | | | 95.04 211 | 94.47 230 | 96.75 179 | 97.81 218 | 95.25 107 | 94.12 262 | 97.89 229 | 94.41 186 | 94.57 271 | 95.69 288 | 90.30 242 | 98.35 339 | 86.72 319 | 98.76 239 | 96.64 322 |
|
PAPR | | | 92.22 288 | 91.27 294 | 95.07 256 | 95.73 323 | 88.81 260 | 91.97 316 | 97.87 230 | 85.80 315 | 90.91 338 | 92.73 338 | 91.16 228 | 98.33 340 | 79.48 349 | 95.76 333 | 98.08 260 |
|
tpm cat1 | | | 88.01 327 | 87.33 328 | 90.05 337 | 94.48 340 | 76.28 358 | 94.47 245 | 94.35 317 | 73.84 362 | 89.26 349 | 95.61 293 | 73.64 341 | 98.30 341 | 84.13 337 | 86.20 360 | 95.57 340 |
|
BH-w/o | | | 92.14 290 | 91.94 284 | 92.73 316 | 97.13 281 | 85.30 314 | 92.46 307 | 95.64 300 | 89.33 282 | 94.21 281 | 92.74 337 | 89.60 249 | 98.24 342 | 81.68 345 | 94.66 341 | 94.66 346 |
|
gg-mvs-nofinetune | | | 88.28 325 | 86.96 330 | 92.23 325 | 92.84 359 | 84.44 327 | 98.19 38 | 74.60 367 | 99.08 10 | 87.01 359 | 99.47 8 | 56.93 367 | 98.23 343 | 78.91 351 | 95.61 334 | 94.01 349 |
|
MS-PatchMatch | | | 94.83 219 | 94.91 207 | 94.57 279 | 96.81 293 | 87.10 294 | 94.23 253 | 97.34 260 | 88.74 289 | 97.14 170 | 97.11 213 | 91.94 219 | 98.23 343 | 92.99 216 | 97.92 278 | 98.37 234 |
|
MVS-HIRNet | | | 88.40 324 | 90.20 310 | 82.99 346 | 97.01 284 | 60.04 368 | 93.11 295 | 85.61 363 | 84.45 332 | 88.72 352 | 99.09 33 | 84.72 291 | 98.23 343 | 82.52 344 | 96.59 321 | 90.69 360 |
|
cascas | | | 91.89 294 | 91.35 292 | 93.51 298 | 94.27 343 | 85.60 310 | 88.86 352 | 98.61 153 | 79.32 350 | 92.16 332 | 91.44 351 | 89.22 258 | 98.12 346 | 90.80 255 | 97.47 302 | 96.82 316 |
|
MSLP-MVS++ | | | 96.42 156 | 96.71 132 | 95.57 235 | 97.82 217 | 90.56 235 | 95.71 172 | 98.84 96 | 94.72 176 | 96.71 200 | 97.39 193 | 94.91 141 | 98.10 347 | 95.28 127 | 99.02 210 | 98.05 269 |
|
EPMVS | | | 89.26 318 | 88.55 322 | 91.39 328 | 92.36 361 | 79.11 348 | 95.65 180 | 79.86 365 | 88.60 290 | 93.12 315 | 96.53 250 | 70.73 354 | 98.10 347 | 90.75 257 | 89.32 356 | 96.98 306 |
|
PMMVS2 | | | 93.66 263 | 94.07 243 | 92.45 321 | 97.57 248 | 80.67 345 | 86.46 356 | 96.00 293 | 93.99 201 | 97.10 174 | 97.38 195 | 89.90 247 | 97.82 349 | 88.76 294 | 99.47 119 | 98.86 192 |
|
1314 | | | 92.38 285 | 92.30 281 | 92.64 317 | 95.42 330 | 85.15 318 | 95.86 165 | 96.97 274 | 85.40 322 | 90.62 339 | 93.06 332 | 91.12 229 | 97.80 350 | 86.74 318 | 95.49 336 | 94.97 345 |
|
TESTMET0.1,1 | | | 87.20 331 | 86.57 333 | 89.07 339 | 93.62 351 | 72.84 364 | 89.89 344 | 87.01 361 | 85.46 320 | 89.12 351 | 90.20 358 | 56.00 371 | 97.72 351 | 90.91 251 | 96.92 310 | 96.64 322 |
|
testgi | | | 96.07 167 | 96.50 148 | 94.80 269 | 99.26 48 | 87.69 284 | 95.96 160 | 98.58 157 | 95.08 163 | 98.02 118 | 96.25 266 | 97.92 16 | 97.60 352 | 88.68 297 | 98.74 241 | 99.11 148 |
|
CMPMVS |  | 73.10 23 | 92.74 279 | 91.39 291 | 96.77 178 | 93.57 352 | 94.67 130 | 94.21 255 | 97.67 243 | 80.36 347 | 93.61 302 | 96.60 246 | 82.85 299 | 97.35 353 | 84.86 334 | 98.78 237 | 98.29 248 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
EMVS | | | 89.06 319 | 89.22 315 | 88.61 341 | 93.00 357 | 77.34 355 | 82.91 361 | 90.92 346 | 94.64 179 | 92.63 326 | 91.81 347 | 76.30 330 | 97.02 354 | 83.83 340 | 96.90 312 | 91.48 358 |
|
PMVS |  | 89.60 17 | 96.71 141 | 96.97 118 | 95.95 220 | 99.51 22 | 97.81 16 | 97.42 86 | 97.49 255 | 97.93 43 | 95.95 235 | 98.58 65 | 96.88 62 | 96.91 355 | 89.59 283 | 99.36 153 | 93.12 354 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 89.52 317 | 89.78 312 | 88.73 340 | 93.14 355 | 77.61 353 | 83.26 360 | 92.02 336 | 94.82 174 | 93.71 297 | 93.11 327 | 75.31 334 | 96.81 356 | 85.81 323 | 96.81 315 | 91.77 357 |
|
GG-mvs-BLEND | | | | | 90.60 333 | 91.00 363 | 84.21 330 | 98.23 32 | 72.63 370 | | 82.76 362 | 84.11 363 | 56.14 370 | 96.79 357 | 72.20 360 | 92.09 351 | 90.78 359 |
|
new_pmnet | | | 92.34 286 | 91.69 289 | 94.32 286 | 96.23 306 | 89.16 254 | 92.27 311 | 92.88 329 | 84.39 333 | 95.29 254 | 96.35 263 | 85.66 284 | 96.74 358 | 84.53 336 | 97.56 296 | 97.05 304 |
|
PVSNet_0 | | 81.89 21 | 84.49 333 | 83.21 336 | 88.34 342 | 95.76 322 | 74.97 362 | 83.49 359 | 92.70 333 | 78.47 353 | 87.94 355 | 86.90 362 | 83.38 298 | 96.63 359 | 73.44 359 | 66.86 365 | 93.40 352 |
|
SD-MVS | | | 97.37 100 | 97.70 60 | 96.35 201 | 98.14 185 | 95.13 114 | 96.54 127 | 98.92 75 | 95.94 124 | 99.19 28 | 98.08 117 | 97.74 22 | 95.06 360 | 95.24 130 | 99.54 94 | 98.87 191 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test0.0.03 1 | | | 90.11 309 | 89.21 316 | 92.83 314 | 93.89 348 | 86.87 298 | 91.74 319 | 88.74 357 | 92.02 250 | 94.71 268 | 91.14 354 | 73.92 339 | 94.48 361 | 83.75 342 | 92.94 347 | 97.16 301 |
|
wuyk23d | | | 93.25 273 | 95.20 192 | 87.40 345 | 96.07 314 | 95.38 100 | 97.04 105 | 94.97 310 | 95.33 152 | 99.70 5 | 98.11 115 | 98.14 13 | 91.94 362 | 77.76 355 | 99.68 57 | 74.89 362 |
|
FPMVS | | | 89.92 314 | 88.63 321 | 93.82 292 | 98.37 156 | 96.94 45 | 91.58 320 | 93.34 325 | 88.00 297 | 90.32 343 | 97.10 214 | 70.87 353 | 91.13 363 | 71.91 361 | 96.16 328 | 93.39 353 |
|
test_method | | | 66.88 334 | 66.13 337 | 69.11 348 | 62.68 369 | 25.73 371 | 49.76 363 | 96.04 292 | 14.32 366 | 64.27 367 | 91.69 349 | 73.45 344 | 88.05 364 | 76.06 357 | 66.94 364 | 93.54 350 |
|
MVE |  | 73.61 22 | 86.48 332 | 85.92 334 | 88.18 343 | 96.23 306 | 85.28 316 | 81.78 362 | 75.79 366 | 86.01 311 | 82.53 363 | 91.88 346 | 92.74 195 | 87.47 365 | 71.42 362 | 94.86 340 | 91.78 356 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX |  | | | | 77.17 347 | 90.94 364 | 85.28 316 | | 74.08 369 | 52.51 364 | 80.87 365 | 88.03 361 | 75.25 335 | 70.63 366 | 59.23 365 | 84.94 361 | 75.62 361 |
|
tmp_tt | | | 57.23 335 | 62.50 338 | 41.44 349 | 34.77 370 | 49.21 370 | 83.93 358 | 60.22 371 | 15.31 365 | 71.11 366 | 79.37 364 | 70.09 355 | 44.86 367 | 64.76 363 | 82.93 363 | 30.25 363 |
|
testmvs | | | 12.33 338 | 15.23 341 | 3.64 351 | 5.77 372 | 2.23 373 | 88.99 351 | 3.62 372 | 2.30 368 | 5.29 368 | 13.09 366 | 4.52 374 | 1.95 368 | 5.16 367 | 8.32 367 | 6.75 365 |
|
test123 | | | 12.59 337 | 15.49 340 | 3.87 350 | 6.07 371 | 2.55 372 | 90.75 336 | 2.59 373 | 2.52 367 | 5.20 369 | 13.02 367 | 4.96 373 | 1.85 369 | 5.20 366 | 9.09 366 | 7.23 364 |
|
uanet_test | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
cdsmvs_eth3d_5k | | | 24.22 336 | 32.30 339 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 98.10 214 | 0.00 369 | 0.00 370 | 95.06 303 | 97.54 29 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
pcd_1.5k_mvsjas | | | 7.98 339 | 10.65 342 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 95.82 105 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet-low-res | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
sosnet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uncertanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
Regformer | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
ab-mvs-re | | | 7.91 340 | 10.55 343 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 94.94 305 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
uanet | | | 0.00 341 | 0.00 344 | 0.00 352 | 0.00 373 | 0.00 374 | 0.00 364 | 0.00 374 | 0.00 369 | 0.00 370 | 0.00 370 | 0.00 375 | 0.00 370 | 0.00 368 | 0.00 368 | 0.00 366 |
|
eth-test2 | | | | | | 0.00 373 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 373 | | | | | | | | | | | |
|
RE-MVS-def | | | | 97.88 47 | | 98.81 103 | 98.05 8 | 97.55 75 | 98.86 87 | 97.77 46 | 98.20 94 | 98.07 119 | 96.94 55 | | 95.49 111 | 99.20 184 | 99.26 115 |
|
IU-MVS | | | | | | 99.22 57 | 95.40 99 | | 98.14 210 | 85.77 316 | 98.36 75 | | | | 95.23 131 | 99.51 107 | 99.49 51 |
|
save fliter | | | | | | 98.48 147 | 94.71 126 | 94.53 243 | 98.41 175 | 95.02 167 | | | | | | | |
|
test0726 | | | | | | 99.24 52 | 95.51 94 | 96.89 111 | 98.89 78 | 95.92 125 | 98.64 50 | 98.31 86 | 97.06 50 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 266 |
|
test_part2 | | | | | | 99.03 91 | 96.07 72 | | | | 98.08 111 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 319 | | | | 98.06 266 |
|
sam_mvs | | | | | | | | | | | | | 77.38 323 | | | | |
|
MTGPA |  | | | | | | | | 98.73 126 | | | | | | | | |
|
MTMP | | | | | | | | 96.55 126 | 74.60 367 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 241 | 98.89 226 | 99.00 164 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 274 | 98.90 223 | 99.10 152 |
|
test_prior4 | | | | | | | 95.38 100 | 93.61 281 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 290 | | 94.21 194 | 94.02 288 | 96.25 266 | 93.64 177 | | 91.90 228 | 98.96 214 | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.43 284 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 222 | 93.87 159 | | 97.75 238 | | | 97.04 219 | 93.57 179 | | | 98.68 245 | 98.72 208 |
|
原ACMM2 | | | | | | | | 92.82 298 | | | | | | | | | |
|
test222 | | | | | | 98.17 180 | 93.24 181 | 92.74 302 | 97.61 253 | 75.17 359 | 94.65 270 | 96.69 242 | 90.96 232 | | | 98.66 248 | 97.66 289 |
|
segment_acmp | | | | | | | | | | | | | 95.34 126 | | | | |
|
testdata1 | | | | | | | | 92.77 299 | | 93.78 207 | | | | | | | |
|
plane_prior7 | | | | | | 98.70 119 | 94.67 130 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 155 | 94.37 140 | | | | | | 91.91 222 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.77 236 | | | | | |
|
plane_prior3 | | | | | | | 94.51 134 | | | 95.29 155 | 96.16 228 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 128 | | 96.36 101 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 145 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 142 | 95.42 190 | | 94.31 191 | | | | | | 98.93 221 | |
|
n2 | | | | | | | | | 0.00 374 | | | | | | | | |
|
nn | | | | | | | | | 0.00 374 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 206 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 217 | | | | | | | | |
|
door | | | | | | | | | 97.81 236 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 195 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 210 | | 94.26 248 | | 93.18 225 | 92.86 319 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 210 | | 94.26 248 | | 93.18 225 | 92.86 319 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 269 | | |
|
HQP3-MVS | | | | | | | | | 98.43 170 | | | | | | | 98.74 241 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 239 | | | | |
|
NP-MVS | | | | | | 98.14 185 | 93.72 167 | | | | | 95.08 301 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 369 | 94.89 228 | | 80.59 345 | 94.02 288 | | 78.66 316 | | 85.50 328 | | 97.82 282 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 102 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 91 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 155 | | | | |
|