This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 4
LTVRE_ROB96.88 199.18 399.34 398.72 3999.71 896.99 4499.69 299.57 499.02 1699.62 1199.36 1598.53 899.52 16898.58 1399.95 699.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part199.41 299.62 298.80 3199.76 596.58 5799.49 399.65 299.89 299.94 299.77 299.03 499.92 499.05 399.99 299.90 1
UA-Net98.88 898.76 1499.22 299.11 8197.89 1399.47 499.32 899.08 1197.87 13499.67 396.47 8499.92 497.88 2399.98 399.85 4
TDRefinement98.90 698.86 999.02 999.54 2098.06 799.34 599.44 798.85 2099.00 3699.20 2497.42 3299.59 14797.21 4599.76 3899.40 81
UniMVSNet_ETH3D99.12 499.28 498.65 4499.77 396.34 6499.18 699.20 1499.67 399.73 499.65 599.15 399.86 2197.22 4499.92 1399.77 9
OurMVSNet-221017-098.61 1798.61 2498.63 4699.77 396.35 6399.17 799.05 4198.05 4099.61 1299.52 693.72 17499.88 1998.72 1099.88 2299.65 23
pmmvs699.07 599.24 598.56 5099.81 296.38 6298.87 899.30 999.01 1799.63 1099.66 499.27 299.68 11597.75 3099.89 2199.62 25
Anonymous2023121198.55 1898.76 1497.94 9398.79 10594.37 13798.84 999.15 2299.37 499.67 799.43 1295.61 11899.72 7798.12 1799.86 2499.73 16
MIMVSNet198.51 2198.45 2798.67 4299.72 796.71 5098.76 1098.89 7598.49 2799.38 1899.14 3195.44 12599.84 2696.47 6799.80 3399.47 59
EPP-MVSNet96.84 12596.58 13697.65 11199.18 6793.78 16198.68 1196.34 28197.91 4497.30 15998.06 12288.46 25899.85 2393.85 18999.40 14199.32 96
v7n98.73 1298.99 697.95 9299.64 1294.20 14598.67 1299.14 2499.08 1199.42 1699.23 2296.53 7999.91 1399.27 299.93 1199.73 16
MVSFormer96.14 16196.36 14995.49 23397.68 23587.81 27298.67 1299.02 5096.50 9294.48 26796.15 26486.90 27399.92 498.73 899.13 19098.74 201
test_djsdf98.73 1298.74 1798.69 4199.63 1396.30 6698.67 1299.02 5096.50 9299.32 2199.44 1197.43 3199.92 498.73 899.95 699.86 3
anonymousdsp98.72 1598.63 2098.99 1399.62 1497.29 3798.65 1599.19 1695.62 13599.35 2099.37 1397.38 3399.90 1498.59 1299.91 1699.77 9
HPM-MVScopyleft98.11 3997.83 5198.92 2299.42 3597.46 3198.57 1699.05 4195.43 14497.41 15797.50 17997.98 1699.79 3995.58 10399.57 7999.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IS-MVSNet96.93 11996.68 13297.70 10799.25 5194.00 15198.57 1696.74 27798.36 3098.14 10297.98 13188.23 26199.71 9293.10 20799.72 4799.38 86
WR-MVS_H98.65 1698.62 2298.75 3499.51 2396.61 5598.55 1899.17 1799.05 1499.17 2998.79 5095.47 12399.89 1797.95 2199.91 1699.75 14
mvs_tets98.90 698.94 798.75 3499.69 996.48 6098.54 1999.22 1196.23 10399.71 599.48 898.77 799.93 298.89 499.95 699.84 6
Gipumacopyleft98.07 4198.31 3097.36 14199.76 596.28 6798.51 2099.10 2998.76 2296.79 18999.34 1896.61 7498.82 29096.38 6999.50 10696.98 299
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS98.73 1298.85 1198.39 6099.55 1895.47 9798.49 2199.13 2599.22 999.22 2798.96 4197.35 3499.92 497.79 2899.93 1199.79 8
3Dnovator96.53 297.61 8097.64 7097.50 12497.74 23193.65 16898.49 2198.88 8096.86 8297.11 16898.55 6895.82 10699.73 7395.94 8799.42 13499.13 137
DTE-MVSNet98.79 998.86 998.59 4899.55 1896.12 7198.48 2399.10 2999.36 599.29 2399.06 3697.27 3899.93 297.71 3299.91 1699.70 19
jajsoiax98.77 1098.79 1398.74 3699.66 1196.48 6098.45 2499.12 2695.83 12899.67 799.37 1398.25 1199.92 498.77 699.94 999.82 7
PEN-MVS98.75 1198.85 1198.44 5699.58 1595.67 8798.45 2499.15 2299.33 699.30 2299.00 3797.27 3899.92 497.64 3399.92 1399.75 14
LS3D97.77 7197.50 8498.57 4996.24 29597.58 2498.45 2498.85 8898.58 2697.51 14697.94 13795.74 11499.63 13195.19 12598.97 20898.51 221
FC-MVSNet-test98.16 3498.37 2897.56 11699.49 2793.10 18198.35 2799.21 1298.43 2898.89 3998.83 4994.30 15999.81 3297.87 2499.91 1699.77 9
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2097.48 3098.35 2799.03 4895.88 12397.88 13198.22 10398.15 1399.74 6796.50 6699.62 6399.42 78
ab-mvs96.59 14496.59 13596.60 18198.64 12292.21 19698.35 2797.67 23994.45 17996.99 17998.79 5094.96 13999.49 17490.39 26399.07 20098.08 253
pm-mvs198.47 2298.67 1897.86 9899.52 2294.58 13098.28 3099.00 5897.57 6099.27 2499.22 2398.32 1099.50 17397.09 5199.75 4299.50 43
SixPastTwentyTwo97.49 8997.57 7997.26 14799.56 1692.33 19298.28 3096.97 26998.30 3399.45 1599.35 1788.43 25999.89 1798.01 2099.76 3899.54 36
CP-MVSNet98.42 2498.46 2598.30 6899.46 2995.22 10998.27 3298.84 9299.05 1499.01 3598.65 6295.37 12699.90 1497.57 3499.91 1699.77 9
GG-mvs-BLEND90.60 32291.00 35484.21 32198.23 3372.63 35882.76 35184.11 35156.14 35896.79 34672.20 34892.09 34090.78 347
GBi-Net96.99 11496.80 12697.56 11697.96 19893.67 16498.23 3398.66 14295.59 13797.99 11899.19 2589.51 25099.73 7394.60 15599.44 12499.30 102
test196.99 11496.80 12697.56 11697.96 19893.67 16498.23 3398.66 14295.59 13797.99 11899.19 2589.51 25099.73 7394.60 15599.44 12499.30 102
FMVSNet197.95 5098.08 3697.56 11699.14 7993.67 16498.23 3398.66 14297.41 7099.00 3699.19 2595.47 12399.73 7395.83 9099.76 3899.30 102
ACMH93.61 998.44 2398.76 1497.51 12199.43 3393.54 17098.23 3399.05 4197.40 7199.37 1999.08 3598.79 699.47 18097.74 3199.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)98.38 2698.67 1897.51 12199.51 2393.39 17498.20 3898.87 8298.23 3599.48 1399.27 2098.47 999.55 16096.52 6499.53 9499.60 26
gg-mvs-nofinetune88.28 31486.96 31992.23 31492.84 35084.44 31898.19 3974.60 35599.08 1187.01 34899.47 956.93 35798.23 33278.91 34095.61 32594.01 338
QAPM95.88 17295.57 18196.80 17097.90 20491.84 20898.18 4098.73 12288.41 28096.42 20798.13 10994.73 14299.75 6088.72 28698.94 21398.81 192
NR-MVSNet97.96 4797.86 4898.26 7098.73 11195.54 9298.14 4198.73 12297.79 4599.42 1697.83 14994.40 15799.78 4195.91 8999.76 3899.46 61
MIMVSNet93.42 25992.86 25995.10 24698.17 17788.19 26298.13 4293.69 30892.07 24195.04 25398.21 10480.95 30099.03 27281.42 33598.06 26898.07 255
PS-MVSNAJss98.53 2098.63 2098.21 7599.68 1094.82 12098.10 4399.21 1296.91 8099.75 399.45 1095.82 10699.92 498.80 599.96 599.89 2
ACMMPcopyleft98.05 4297.75 5998.93 2199.23 5497.60 2298.09 4498.96 6895.75 13297.91 12798.06 12296.89 6099.76 5395.32 11899.57 7999.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS98.14 3598.03 4098.47 5598.72 11396.04 7398.07 4599.10 2995.96 11798.59 5598.69 5896.94 5599.81 3296.64 5999.58 7699.57 32
Vis-MVSNetpermissive98.27 3098.34 2998.07 8399.33 4395.21 11198.04 4699.46 697.32 7397.82 13999.11 3296.75 6899.86 2197.84 2599.36 14899.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+96.13 397.73 7297.59 7798.15 7998.11 18795.60 9098.04 4698.70 13298.13 3896.93 18498.45 7595.30 13099.62 13995.64 9898.96 20999.24 119
FIs97.93 5598.07 3797.48 12899.38 3992.95 18498.03 4899.11 2798.04 4198.62 5198.66 6093.75 17399.78 4197.23 4399.84 2799.73 16
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4599.21 6397.35 3597.96 4999.16 1898.34 3198.78 4398.52 7097.32 3599.45 18794.08 17899.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet96.98 11796.84 12397.41 13799.40 3793.26 17697.94 5095.31 29899.26 898.39 7299.18 2887.85 26899.62 13995.13 13499.09 19799.35 93
CP-MVS97.92 5697.56 8098.99 1398.99 9297.82 1597.93 5198.96 6896.11 10796.89 18797.45 18396.85 6499.78 4195.19 12599.63 6299.38 86
ANet_high98.31 2998.94 796.41 19699.33 4389.64 23797.92 5299.56 599.27 799.66 999.50 797.67 2699.83 2997.55 3599.98 399.77 9
nrg03098.54 1998.62 2298.32 6599.22 5795.66 8897.90 5399.08 3598.31 3299.02 3498.74 5497.68 2599.61 14597.77 2999.85 2699.70 19
ambc96.56 18798.23 16991.68 21197.88 5498.13 20898.42 6998.56 6794.22 16299.04 26994.05 18299.35 15398.95 167
Anonymous2024052997.96 4798.04 3997.71 10598.69 12094.28 14297.86 5598.31 18698.79 2199.23 2698.86 4895.76 11399.61 14595.49 10499.36 14899.23 120
canonicalmvs97.23 10997.21 10397.30 14497.65 23994.39 13597.84 5699.05 4197.42 6796.68 19593.85 31497.63 2799.33 22596.29 7198.47 25498.18 250
tfpnnormal97.72 7397.97 4196.94 16199.26 4892.23 19597.83 5798.45 16498.25 3499.13 3098.66 6096.65 7199.69 10993.92 18799.62 6398.91 178
XVS97.96 4797.63 7298.94 1899.15 7197.66 1997.77 5898.83 9997.42 6796.32 21297.64 16896.49 8299.72 7795.66 9699.37 14599.45 66
X-MVStestdata92.86 26890.83 29398.94 1899.15 7197.66 1997.77 5898.83 9997.42 6796.32 21236.50 35396.49 8299.72 7795.66 9699.37 14599.45 66
VPA-MVSNet98.27 3098.46 2597.70 10799.06 8693.80 15997.76 6099.00 5898.40 2999.07 3398.98 3996.89 6099.75 6097.19 4899.79 3499.55 35
UGNet96.81 13096.56 13897.58 11596.64 28593.84 15897.75 6197.12 26496.47 9593.62 29198.88 4793.22 18399.53 16495.61 10099.69 5499.36 92
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS97.91 5997.53 8199.04 799.22 5797.87 1497.74 6298.78 11396.04 11297.10 16997.73 16196.53 7999.78 4195.16 12999.50 10699.46 61
OpenMVScopyleft94.22 895.48 18695.20 18796.32 19997.16 27291.96 20597.74 6298.84 9287.26 29094.36 26998.01 12893.95 16899.67 12090.70 25398.75 23597.35 292
abl_698.42 2498.19 3399.09 399.16 6898.10 597.73 6499.11 2797.76 4998.62 5198.27 9697.88 2099.80 3895.67 9499.50 10699.38 86
MSP-MVS97.45 9296.92 12099.03 899.26 4897.70 1897.66 6598.89 7595.65 13398.51 6096.46 25192.15 20999.81 3295.14 13298.58 25099.58 28
LFMVS95.32 19494.88 20296.62 18098.03 18991.47 21497.65 6690.72 33799.11 1097.89 13098.31 8579.20 30599.48 17793.91 18899.12 19398.93 173
K. test v396.44 15196.28 15296.95 16099.41 3691.53 21297.65 6690.31 34098.89 1998.93 3899.36 1584.57 28899.92 497.81 2699.56 8299.39 84
TSAR-MVS + MP.97.42 9597.23 10198.00 9099.38 3995.00 11597.63 6898.20 19693.00 22698.16 9898.06 12295.89 10199.72 7795.67 9499.10 19699.28 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R97.92 5697.59 7798.92 2299.22 5797.55 2697.60 6998.84 9296.00 11597.22 16197.62 17096.87 6399.76 5395.48 10799.43 13199.46 61
HFP-MVS97.94 5297.64 7098.83 2699.15 7197.50 2897.59 7098.84 9296.05 11097.49 14897.54 17497.07 4899.70 10195.61 10099.46 11999.30 102
ACMMPR97.95 5097.62 7498.94 1899.20 6497.56 2597.59 7098.83 9996.05 11097.46 15497.63 16996.77 6799.76 5395.61 10099.46 11999.49 51
RPSCF97.87 6297.51 8398.95 1799.15 7198.43 397.56 7299.06 3996.19 10498.48 6398.70 5794.72 14399.24 24494.37 16699.33 16399.17 127
SR-MVS-dyc-post98.14 3597.84 4999.02 998.81 10298.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7699.76 5395.49 10499.20 17999.26 114
RE-MVS-def97.88 4798.81 10298.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5595.49 10499.20 17999.26 114
APD-MVS_3200maxsize98.13 3897.90 4498.79 3298.79 10597.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4599.75 6095.44 11199.24 17799.32 96
ACMH+93.58 1098.23 3398.31 3097.98 9199.39 3895.22 10997.55 7399.20 1498.21 3699.25 2598.51 7198.21 1299.40 20494.79 14899.72 4799.32 96
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22099.12 8089.17 24597.54 7794.92 30096.50 9296.58 19997.27 20183.64 29199.48 17788.42 29199.67 5798.97 165
MP-MVScopyleft97.64 7797.18 10499.00 1299.32 4597.77 1797.49 7898.73 12296.27 10095.59 24397.75 15896.30 9399.78 4193.70 19499.48 11499.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS97.92 5697.62 7498.83 2699.32 4597.24 3997.45 7998.84 9295.76 13096.93 18497.43 18497.26 4099.79 3996.06 7799.53 9499.45 66
tttt051793.31 26292.56 26995.57 22898.71 11687.86 26997.44 8087.17 34895.79 12997.47 15396.84 22764.12 35199.81 3296.20 7399.32 16599.02 160
v1097.55 8497.97 4196.31 20098.60 13089.64 23797.44 8099.02 5096.60 8898.72 4999.16 3093.48 17899.72 7798.76 799.92 1399.58 28
v897.60 8198.06 3896.23 20298.71 11689.44 24197.43 8298.82 10797.29 7598.74 4799.10 3393.86 16999.68 11598.61 1199.94 999.56 33
PMVScopyleft89.60 1796.71 13896.97 11695.95 21599.51 2397.81 1697.42 8397.49 25197.93 4395.95 22998.58 6496.88 6296.91 34489.59 27499.36 14893.12 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test117298.08 4097.76 5799.05 698.78 10798.07 697.41 8498.85 8897.57 6098.15 10097.96 13296.60 7699.76 5395.30 11999.18 18399.33 95
SR-MVS98.00 4697.66 6599.01 1198.77 10997.93 1097.38 8598.83 9997.32 7398.06 11297.85 14796.65 7199.77 4995.00 14199.11 19499.32 96
FMVSNet593.39 26092.35 27196.50 18995.83 31090.81 22597.31 8698.27 18792.74 23496.27 21698.28 9262.23 35399.67 12090.86 24399.36 14899.03 158
HY-MVS91.43 1592.58 27291.81 27894.90 25496.49 28988.87 25097.31 8694.62 30285.92 30290.50 33196.84 22785.05 28399.40 20483.77 33095.78 32396.43 318
CSCG97.40 9797.30 9497.69 10998.95 9494.83 11997.28 8898.99 6196.35 9998.13 10395.95 27595.99 9999.66 12594.36 16999.73 4498.59 216
MTAPA98.14 3597.84 4999.06 499.44 3197.90 1197.25 8998.73 12297.69 5697.90 12897.96 13295.81 11099.82 3096.13 7599.61 6999.45 66
CPTT-MVS96.69 13996.08 16198.49 5398.89 9996.64 5497.25 8998.77 11492.89 23296.01 22897.13 20792.23 20899.67 12092.24 21699.34 15699.17 127
EU-MVSNet94.25 23694.47 22393.60 28798.14 18282.60 32797.24 9192.72 32185.08 31398.48 6398.94 4382.59 29498.76 29797.47 3899.53 9499.44 76
XXY-MVS97.54 8597.70 6197.07 15599.46 2992.21 19697.22 9299.00 5894.93 16598.58 5698.92 4597.31 3699.41 20294.44 16199.43 13199.59 27
GST-MVS97.82 6797.49 8598.81 2999.23 5497.25 3897.16 9398.79 10995.96 11797.53 14497.40 18696.93 5799.77 4995.04 13899.35 15399.42 78
SteuartSystems-ACMMP98.02 4497.76 5798.79 3299.43 3397.21 4197.15 9498.90 7496.58 9098.08 11097.87 14697.02 5399.76 5395.25 12299.59 7499.40 81
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet296.72 13696.67 13396.87 16697.96 19891.88 20697.15 9498.06 21895.59 13798.50 6298.62 6389.51 25099.65 12694.99 14299.60 7299.07 152
AllTest97.20 11096.92 12098.06 8599.08 8396.16 6997.14 9699.16 1894.35 18397.78 14098.07 11795.84 10399.12 25891.41 23099.42 13498.91 178
DP-MVS97.87 6297.89 4697.81 10198.62 12794.82 12097.13 9798.79 10998.98 1898.74 4798.49 7295.80 11299.49 17495.04 13899.44 12499.11 145
PGM-MVS97.88 6197.52 8298.96 1699.20 6497.62 2197.09 9899.06 3995.45 14297.55 14397.94 13797.11 4499.78 4194.77 15199.46 11999.48 56
LPG-MVS_test97.94 5297.67 6498.74 3699.15 7197.02 4297.09 9899.02 5095.15 15498.34 7898.23 10097.91 1899.70 10194.41 16399.73 4499.50 43
SF-MVS97.60 8197.39 8998.22 7498.93 9595.69 8497.05 10099.10 2995.32 14797.83 13797.88 14496.44 8699.72 7794.59 15899.39 14299.25 117
VDD-MVS97.37 9997.25 9897.74 10498.69 12094.50 13397.04 10195.61 29498.59 2598.51 6098.72 5592.54 20299.58 14996.02 8299.49 11099.12 142
wuyk23d93.25 26495.20 18787.40 33496.07 30595.38 9997.04 10194.97 29995.33 14699.70 698.11 11398.14 1491.94 35177.76 34499.68 5674.89 350
MVS_030495.50 18395.05 19596.84 16896.28 29493.12 18097.00 10396.16 28395.03 16089.22 33997.70 16490.16 24299.48 17794.51 16099.34 15697.93 269
LCM-MVSNet-Re97.33 10297.33 9397.32 14398.13 18593.79 16096.99 10499.65 296.74 8599.47 1498.93 4496.91 5999.84 2690.11 26699.06 20398.32 236
MAR-MVS94.21 23993.03 25697.76 10296.94 28097.44 3396.97 10597.15 26287.89 28892.00 32292.73 32692.14 21099.12 25883.92 32797.51 29396.73 311
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test072699.24 5295.51 9496.89 10698.89 7595.92 12098.64 5098.31 8597.06 50
baseline97.44 9397.78 5696.43 19398.52 13990.75 22696.84 10799.03 4896.51 9197.86 13598.02 12696.67 7099.36 21797.09 5199.47 11699.19 124
API-MVS95.09 20495.01 19695.31 23996.61 28694.02 15096.83 10897.18 26195.60 13695.79 23594.33 30994.54 15398.37 32785.70 31598.52 25193.52 339
#test#97.62 7997.22 10298.83 2699.15 7197.50 2896.81 10998.84 9294.25 18797.49 14897.54 17497.07 4899.70 10194.37 16699.46 11999.30 102
SED-MVS97.94 5297.90 4498.07 8399.22 5795.35 10196.79 11098.83 9996.11 10799.08 3198.24 9897.87 2199.72 7795.44 11199.51 10499.14 134
OPU-MVS97.64 11298.01 19295.27 10496.79 11097.35 19596.97 5498.51 31891.21 23699.25 17699.14 134
PHI-MVS96.96 11896.53 14298.25 7297.48 24896.50 5996.76 11298.85 8893.52 20696.19 22196.85 22695.94 10099.42 19393.79 19199.43 13198.83 190
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11398.23 19295.92 12098.40 7098.28 9297.06 5099.71 9295.48 10799.52 9999.26 114
test_0728_SECOND98.25 7299.23 5495.49 9696.74 11398.89 7599.75 6095.48 10799.52 9999.53 39
Anonymous20240521196.34 15495.98 16697.43 13598.25 16693.85 15796.74 11394.41 30597.72 5398.37 7398.03 12587.15 27299.53 16494.06 17999.07 20098.92 177
SMA-MVScopyleft97.48 9097.11 10798.60 4798.83 10196.67 5296.74 11398.73 12291.61 24998.48 6398.36 8096.53 7999.68 11595.17 12799.54 9199.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 5799.07 8595.87 7896.73 11799.05 4198.67 2398.84 4098.45 7597.58 2899.88 1996.45 6899.86 2499.54 36
test_040297.84 6497.97 4197.47 12999.19 6694.07 14896.71 11898.73 12298.66 2498.56 5798.41 7796.84 6599.69 10994.82 14699.81 3098.64 210
ACMM93.33 1198.05 4297.79 5398.85 2599.15 7197.55 2696.68 11998.83 9995.21 15098.36 7598.13 10998.13 1599.62 13996.04 8099.54 9199.39 84
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline193.14 26692.64 26794.62 26697.34 26287.20 28496.67 12093.02 31694.71 17196.51 20495.83 27881.64 29598.60 31190.00 26988.06 34698.07 255
MTMP96.55 12174.60 355
SD-MVS97.37 9997.70 6196.35 19798.14 18295.13 11296.54 12298.92 7295.94 11999.19 2898.08 11597.74 2395.06 34995.24 12399.54 9198.87 187
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS96.66 14296.33 15197.68 11098.70 11894.29 13996.50 12398.75 11896.36 9796.16 22296.77 23391.91 22099.46 18392.59 21399.20 17999.28 109
plane_prior296.50 12396.36 97
testtj96.69 13996.13 15798.36 6298.46 14996.02 7596.44 12598.70 13294.26 18696.79 18997.13 20794.07 16599.75 6090.53 25898.80 23099.31 101
CS-MVS95.86 17395.59 18096.69 17797.85 20693.14 17996.42 12699.25 1094.17 19193.56 29590.76 34596.05 9899.72 7793.28 20198.91 21797.21 293
Effi-MVS+-dtu96.81 13096.09 16098.99 1396.90 28298.69 296.42 12698.09 21195.86 12595.15 25195.54 28694.26 16099.81 3294.06 17998.51 25398.47 223
thres100view90091.76 28791.26 28693.26 29398.21 17084.50 31796.39 12890.39 33896.87 8196.33 21193.08 31973.44 33599.42 19378.85 34197.74 27995.85 323
XVG-ACMP-BASELINE97.58 8397.28 9798.49 5399.16 6896.90 4696.39 12898.98 6495.05 15998.06 11298.02 12695.86 10299.56 15694.37 16699.64 6199.00 161
Patchmtry95.03 20694.59 21896.33 19894.83 32790.82 22396.38 13097.20 25996.59 8997.49 14898.57 6577.67 31299.38 21292.95 21099.62 6398.80 193
ACMMP_NAP97.89 6097.63 7298.67 4299.35 4296.84 4796.36 13198.79 10995.07 15897.88 13198.35 8197.24 4299.72 7796.05 7999.58 7699.45 66
VNet96.84 12596.83 12496.88 16598.06 18892.02 20396.35 13297.57 25097.70 5597.88 13197.80 15492.40 20699.54 16294.73 15398.96 20999.08 150
V4297.04 11297.16 10596.68 17998.59 13291.05 21796.33 13398.36 17894.60 17497.99 11898.30 8993.32 18099.62 13997.40 4099.53 9499.38 86
APD-MVScopyleft97.00 11396.53 14298.41 5898.55 13696.31 6596.32 13498.77 11492.96 23197.44 15697.58 17395.84 10399.74 6791.96 21899.35 15399.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet97.26 10697.49 8596.59 18399.47 2890.58 22896.27 13598.53 15797.77 4698.46 6698.41 7794.59 15099.68 11594.61 15499.29 17199.52 40
thres600view792.03 28391.43 28193.82 28398.19 17284.61 31696.27 13590.39 33896.81 8396.37 21093.11 31773.44 33599.49 17480.32 33797.95 27197.36 290
EPNet93.72 25192.62 26897.03 15887.61 35792.25 19496.27 13591.28 33196.74 8587.65 34597.39 19085.00 28499.64 12992.14 21799.48 11499.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed92.19 28091.83 27793.25 29496.18 30083.68 32496.27 13593.68 31076.97 34792.54 31899.18 2889.20 25598.55 31583.88 32898.60 24997.51 286
ACMP92.54 1397.47 9197.10 10898.55 5199.04 8996.70 5196.24 13998.89 7593.71 20397.97 12297.75 15897.44 3099.63 13193.22 20499.70 5399.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS95.41 497.82 6797.70 6198.16 7698.78 10795.72 8296.23 14099.02 5093.92 19998.62 5198.99 3897.69 2499.62 13996.18 7499.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 10197.10 10898.14 8098.91 9796.77 4996.20 14198.63 14893.82 20098.54 5898.33 8393.98 16799.05 26895.99 8599.45 12398.61 215
MVS_Test96.27 15596.79 12894.73 26396.94 28086.63 29196.18 14298.33 18394.94 16396.07 22598.28 9295.25 13199.26 24197.21 4597.90 27498.30 239
CR-MVSNet93.29 26392.79 26294.78 26195.44 31988.15 26396.18 14297.20 25984.94 31794.10 27498.57 6577.67 31299.39 20995.17 12795.81 32096.81 308
RPMNet94.68 22394.60 21694.90 25495.44 31988.15 26396.18 14298.86 8497.43 6694.10 27498.49 7279.40 30499.76 5395.69 9395.81 32096.81 308
EIA-MVS96.04 16595.77 17496.85 16797.80 21892.98 18396.12 14599.16 1894.65 17293.77 28591.69 33795.68 11599.67 12094.18 17498.85 22697.91 270
Effi-MVS+96.19 15996.01 16396.71 17597.43 25492.19 19996.12 14599.10 2995.45 14293.33 30494.71 30197.23 4399.56 15693.21 20597.54 29198.37 229
alignmvs96.01 16795.52 18297.50 12497.77 22894.71 12496.07 14796.84 27297.48 6596.78 19394.28 31185.50 28199.40 20496.22 7298.73 23998.40 226
PatchT93.75 25093.57 24794.29 27995.05 32587.32 28296.05 14892.98 31797.54 6394.25 27098.72 5575.79 32599.24 24495.92 8895.81 32096.32 319
Patchmatch-test93.60 25693.25 25394.63 26596.14 30487.47 27896.04 14994.50 30493.57 20596.47 20596.97 21976.50 32098.61 30990.67 25498.41 25697.81 276
thisisatest053092.71 27191.76 27995.56 23098.42 15188.23 26196.03 15087.35 34794.04 19596.56 20195.47 28864.03 35299.77 4994.78 15099.11 19498.68 209
9.1496.69 13198.53 13896.02 15198.98 6493.23 21697.18 16397.46 18296.47 8499.62 13992.99 20899.32 165
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13497.69 23494.15 14696.02 15198.43 16793.17 22297.30 15997.38 19295.48 12299.28 23893.74 19299.34 15698.88 185
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing_297.43 9497.71 6096.60 18198.91 9790.85 22196.01 15398.54 15694.78 16898.78 4398.96 4196.35 9299.54 16297.25 4299.82 2999.40 81
114514_t93.96 24793.22 25496.19 20599.06 8690.97 22095.99 15498.94 7173.88 35093.43 30196.93 22292.38 20799.37 21589.09 28199.28 17298.25 244
FMVSNet395.26 19794.94 19796.22 20496.53 28890.06 23295.99 15497.66 24194.11 19397.99 11897.91 14180.22 30399.63 13194.60 15599.44 12498.96 166
HPM-MVS++copyleft96.99 11496.38 14898.81 2998.64 12297.59 2395.97 15698.20 19695.51 14095.06 25296.53 24794.10 16499.70 10194.29 17099.15 18599.13 137
ETH3D-3000-0.196.89 12496.46 14698.16 7698.62 12795.69 8495.96 15798.98 6493.36 21197.04 17597.31 19994.93 14099.63 13192.60 21199.34 15699.17 127
testgi96.07 16396.50 14594.80 26099.26 4887.69 27595.96 15798.58 15395.08 15798.02 11796.25 26097.92 1797.60 34188.68 28898.74 23699.11 145
EG-PatchMatch MVS97.69 7597.79 5397.40 13899.06 8693.52 17195.96 15798.97 6794.55 17898.82 4198.76 5397.31 3699.29 23697.20 4799.44 12499.38 86
PAPM_NR94.61 22794.17 23495.96 21398.36 15591.23 21595.93 16097.95 22192.98 22793.42 30294.43 30890.53 23398.38 32587.60 30196.29 31798.27 242
UniMVSNet (Re)97.83 6597.65 6798.35 6498.80 10495.86 7995.92 16199.04 4797.51 6498.22 9297.81 15394.68 14699.78 4197.14 5099.75 4299.41 80
131492.38 27692.30 27292.64 30895.42 32185.15 30995.86 16296.97 26985.40 31190.62 32893.06 32091.12 22797.80 33986.74 30995.49 32794.97 334
112194.26 23593.26 25297.27 14598.26 16594.73 12295.86 16297.71 23777.96 34494.53 26496.71 23791.93 21899.40 20487.71 29798.64 24597.69 280
MVS90.02 30189.20 30892.47 30994.71 32886.90 28895.86 16296.74 27764.72 35290.62 32892.77 32492.54 20298.39 32479.30 33995.56 32692.12 343
casdiffmvs97.50 8897.81 5296.56 18798.51 14091.04 21895.83 16599.09 3497.23 7698.33 8198.30 8997.03 5299.37 21596.58 6299.38 14499.28 109
tpmvs90.79 29790.87 29190.57 32392.75 35176.30 34695.79 16693.64 31191.04 25691.91 32396.26 25977.19 31898.86 28989.38 27889.85 34496.56 316
RRT_test8_iter0592.46 27492.52 27092.29 31395.33 32277.43 34395.73 16798.55 15594.41 18097.46 15497.72 16357.44 35699.74 6796.92 5699.14 18699.69 21
MSLP-MVS++96.42 15396.71 13095.57 22897.82 21390.56 23095.71 16898.84 9294.72 17096.71 19497.39 19094.91 14198.10 33695.28 12099.02 20598.05 262
tfpn200view991.55 28991.00 28893.21 29698.02 19084.35 31995.70 16990.79 33596.26 10195.90 23392.13 33273.62 33399.42 19378.85 34197.74 27995.85 323
Anonymous2023120695.27 19695.06 19495.88 21998.72 11389.37 24295.70 16997.85 22788.00 28696.98 18197.62 17091.95 21699.34 22289.21 27999.53 9498.94 169
thres40091.68 28891.00 28893.71 28598.02 19084.35 31995.70 16990.79 33596.26 10195.90 23392.13 33273.62 33399.42 19378.85 34197.74 27997.36 290
test20.0396.58 14596.61 13496.48 19198.49 14391.72 21095.68 17297.69 23896.81 8398.27 8897.92 14094.18 16398.71 30190.78 24799.66 5999.00 161
zzz-MVS98.01 4597.66 6599.06 499.44 3197.90 1195.66 17398.73 12297.69 5697.90 12897.96 13295.81 11099.82 3096.13 7599.61 6999.45 66
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6198.72 11395.78 8095.66 17399.02 5098.11 3998.31 8497.69 16694.65 14899.85 2397.02 5499.71 5099.48 56
DU-MVS97.79 6997.60 7698.36 6298.73 11195.78 8095.65 17598.87 8297.57 6098.31 8497.83 14994.69 14499.85 2397.02 5499.71 5099.46 61
EPMVS89.26 30988.55 31391.39 31792.36 35279.11 33795.65 17579.86 35388.60 27993.12 30696.53 24770.73 34498.10 33690.75 24889.32 34596.98 299
MVP-Stereo95.69 17695.28 18696.92 16298.15 18193.03 18295.64 17798.20 19690.39 26196.63 19897.73 16191.63 22399.10 26391.84 22397.31 30098.63 212
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP95.30 19594.38 22798.05 8898.64 12296.04 7395.61 17898.66 14289.00 27493.22 30596.40 25592.90 19099.35 22087.45 30597.53 29298.77 199
v14419296.69 13996.90 12296.03 21098.25 16688.92 24895.49 17998.77 11493.05 22598.09 10898.29 9192.51 20499.70 10198.11 1899.56 8299.47 59
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 13997.18 27194.39 13595.46 18098.73 12296.03 11494.72 25894.92 29896.28 9599.69 10993.81 19097.98 27098.09 252
Baseline_NR-MVSNet97.72 7397.79 5397.50 12499.56 1693.29 17595.44 18198.86 8498.20 3798.37 7399.24 2194.69 14499.55 16095.98 8699.79 3499.65 23
LF4IMVS96.07 16395.63 17897.36 14198.19 17295.55 9195.44 18198.82 10792.29 24095.70 24196.55 24592.63 19898.69 30391.75 22699.33 16397.85 272
v192192096.72 13696.96 11895.99 21198.21 17088.79 25395.42 18398.79 10993.22 21798.19 9698.26 9792.68 19599.70 10198.34 1699.55 8899.49 51
plane_prior94.29 13995.42 18394.31 18598.93 215
v114496.84 12597.08 11096.13 20898.42 15189.28 24495.41 18598.67 14094.21 18897.97 12298.31 8593.06 18599.65 12698.06 1999.62 6399.45 66
ETV-MVS96.13 16295.90 17096.82 16997.76 22993.89 15495.40 18698.95 7095.87 12495.58 24491.00 34296.36 9199.72 7793.36 19898.83 22896.85 306
v124096.74 13397.02 11595.91 21898.18 17588.52 25695.39 18798.88 8093.15 22398.46 6698.40 7992.80 19299.71 9298.45 1499.49 11099.49 51
MP-MVS-pluss97.69 7597.36 9198.70 4099.50 2696.84 4795.38 18898.99 6192.45 23898.11 10498.31 8597.25 4199.77 4996.60 6099.62 6399.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 12897.06 11296.15 20798.28 16189.29 24395.36 18998.77 11493.73 20298.11 10498.34 8293.02 18999.67 12098.35 1599.58 7699.50 43
v2v48296.78 13297.06 11295.95 21598.57 13488.77 25495.36 18998.26 18995.18 15397.85 13698.23 10092.58 19999.63 13197.80 2799.69 5499.45 66
EI-MVSNet-Vis-set97.32 10397.39 8997.11 15297.36 25792.08 20295.34 19197.65 24397.74 5098.29 8798.11 11395.05 13499.68 11597.50 3799.50 10699.56 33
EI-MVSNet-UG-set97.32 10397.40 8897.09 15497.34 26292.01 20495.33 19297.65 24397.74 5098.30 8698.14 10895.04 13699.69 10997.55 3599.52 9999.58 28
CostFormer89.75 30689.25 30591.26 31994.69 32978.00 34195.32 19391.98 32681.50 33090.55 33096.96 22171.06 34298.89 28588.59 28992.63 33896.87 304
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19499.28 4790.62 22795.31 19499.08 3588.40 28196.97 18298.17 10792.11 21199.78 4193.64 19599.21 17898.86 188
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19298.48 14591.52 21395.31 19498.45 16495.76 13097.48 15197.54 17489.53 24998.69 30394.43 16294.61 33199.13 137
EI-MVSNet96.63 14396.93 11995.74 22297.26 26788.13 26595.29 19697.65 24396.99 7797.94 12598.19 10592.55 20099.58 14996.91 5799.56 8299.50 43
CVMVSNet92.33 27892.79 26290.95 32097.26 26775.84 34895.29 19692.33 32481.86 32796.27 21698.19 10581.44 29698.46 32094.23 17398.29 26098.55 220
RRT_MVS94.90 20994.07 23697.39 13993.18 34493.21 17895.26 19897.49 25193.94 19898.25 8997.85 14772.96 33799.84 2697.90 2299.78 3799.14 134
Regformer-397.25 10797.29 9597.11 15297.35 25892.32 19395.26 19897.62 24897.67 5898.17 9797.89 14295.05 13499.56 15697.16 4999.42 13499.46 61
Regformer-497.53 8797.47 8797.71 10597.35 25893.91 15395.26 19898.14 20697.97 4298.34 7897.89 14295.49 12199.71 9297.41 3999.42 13499.51 42
OPM-MVS97.54 8597.25 9898.41 5899.11 8196.61 5595.24 20198.46 16394.58 17798.10 10798.07 11797.09 4799.39 20995.16 12999.44 12499.21 122
TAPA-MVS93.32 1294.93 20894.23 23097.04 15798.18 17594.51 13195.22 20298.73 12281.22 33296.25 21895.95 27593.80 17298.98 27789.89 27098.87 22297.62 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPE-MVS97.64 7797.35 9298.50 5298.85 10096.18 6895.21 20398.99 6195.84 12798.78 4398.08 11596.84 6599.81 3293.98 18599.57 7999.52 40
MVSTER94.21 23993.93 24295.05 24895.83 31086.46 29295.18 20497.65 24392.41 23997.94 12598.00 13072.39 33899.58 14996.36 7099.56 8299.12 142
PatchmatchNetpermissive91.98 28491.87 27692.30 31294.60 33079.71 33695.12 20593.59 31289.52 26993.61 29297.02 21777.94 31099.18 25090.84 24494.57 33398.01 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DWT-MVSNet_test87.92 31786.77 32191.39 31793.18 34478.62 33895.10 20691.42 33085.58 30688.00 34388.73 34860.60 35498.90 28390.60 25587.70 34796.65 312
IterMVS-LS96.92 12097.29 9595.79 22198.51 14088.13 26595.10 20698.66 14296.99 7798.46 6698.68 5992.55 20099.74 6796.91 5799.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14896.58 14596.97 11695.42 23698.63 12687.57 27695.09 20897.90 22495.91 12298.24 9197.96 13293.42 17999.39 20996.04 8099.52 9999.29 108
tpm288.47 31287.69 31690.79 32194.98 32677.34 34495.09 20891.83 32777.51 34689.40 33796.41 25367.83 34898.73 29983.58 33292.60 33996.29 320
OpenMVS_ROBcopyleft91.80 1493.64 25593.05 25595.42 23697.31 26691.21 21695.08 21096.68 27981.56 32996.88 18896.41 25390.44 23599.25 24385.39 32097.67 28695.80 325
mvs-test196.20 15895.50 18398.32 6596.90 28298.16 495.07 21198.09 21195.86 12593.63 29094.32 31094.26 16099.71 9294.06 17997.27 30297.07 296
TAMVS95.49 18494.94 19797.16 14998.31 15793.41 17395.07 21196.82 27491.09 25597.51 14697.82 15289.96 24399.42 19388.42 29199.44 12498.64 210
tpmrst90.31 29990.61 29789.41 32794.06 33872.37 35495.06 21393.69 30888.01 28592.32 32096.86 22577.45 31498.82 29091.04 23887.01 34897.04 298
ADS-MVSNet291.47 29090.51 29894.36 27695.51 31785.63 30095.05 21495.70 29283.46 32392.69 31396.84 22779.15 30699.41 20285.66 31790.52 34198.04 263
ADS-MVSNet90.95 29690.26 30093.04 29995.51 31782.37 32895.05 21493.41 31383.46 32392.69 31396.84 22779.15 30698.70 30285.66 31790.52 34198.04 263
tpm91.08 29490.85 29291.75 31595.33 32278.09 33995.03 21691.27 33288.75 27793.53 29697.40 18671.24 34099.30 23291.25 23593.87 33497.87 271
NCCC96.52 14795.99 16598.10 8197.81 21495.68 8695.00 21798.20 19695.39 14595.40 24796.36 25693.81 17199.45 18793.55 19798.42 25599.17 127
test_post194.98 21810.37 35776.21 32399.04 26989.47 276
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8297.91 20295.65 8994.94 21998.74 12091.31 25396.02 22797.08 21294.05 16699.69 10991.51 22998.94 21398.93 173
AdaColmapbinary95.11 20294.62 21596.58 18497.33 26494.45 13494.92 22098.08 21393.15 22393.98 28195.53 28794.34 15899.10 26385.69 31698.61 24796.20 321
MDTV_nov1_ep13_2view57.28 35894.89 22180.59 33494.02 27878.66 30885.50 31997.82 274
CNVR-MVS96.92 12096.55 13998.03 8998.00 19695.54 9294.87 22298.17 20294.60 17496.38 20997.05 21595.67 11699.36 21795.12 13599.08 19899.19 124
OMC-MVS96.48 14996.00 16497.91 9598.30 15896.01 7694.86 22398.60 15091.88 24697.18 16397.21 20596.11 9699.04 26990.49 26299.34 15698.69 207
Regformer-197.27 10597.16 10597.61 11497.21 26993.86 15694.85 22498.04 22097.62 5998.03 11697.50 17995.34 12799.63 13196.52 6499.31 16799.35 93
Regformer-297.41 9697.24 10097.93 9497.21 26994.72 12394.85 22498.27 18797.74 5098.11 10497.50 17995.58 11999.69 10996.57 6399.31 16799.37 91
EPNet_dtu91.39 29190.75 29493.31 29290.48 35682.61 32694.80 22692.88 31893.39 21081.74 35394.90 29981.36 29799.11 26188.28 29398.87 22298.21 247
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1391.28 28494.31 33273.51 35294.80 22693.16 31586.75 29793.45 30097.40 18676.37 32198.55 31588.85 28496.43 314
pmmvs-eth3d96.49 14896.18 15697.42 13698.25 16694.29 13994.77 22898.07 21789.81 26797.97 12298.33 8393.11 18499.08 26595.46 11099.84 2798.89 182
test_yl94.40 23294.00 23995.59 22696.95 27889.52 23994.75 22995.55 29696.18 10596.79 18996.14 26681.09 29899.18 25090.75 24897.77 27698.07 255
DCV-MVSNet94.40 23294.00 23995.59 22696.95 27889.52 23994.75 22995.55 29696.18 10596.79 18996.14 26681.09 29899.18 25090.75 24897.77 27698.07 255
MCST-MVS96.24 15695.80 17297.56 11698.75 11094.13 14794.66 23198.17 20290.17 26496.21 22096.10 26995.14 13399.43 19294.13 17798.85 22699.13 137
XVG-OURS-SEG-HR97.38 9897.07 11198.30 6899.01 9197.41 3494.66 23199.02 5095.20 15198.15 10097.52 17798.83 598.43 32194.87 14496.41 31599.07 152
mvs_anonymous95.36 19296.07 16293.21 29696.29 29381.56 33094.60 23397.66 24193.30 21496.95 18398.91 4693.03 18899.38 21296.60 6097.30 30198.69 207
DP-MVS Recon95.55 18295.13 19096.80 17098.51 14093.99 15294.60 23398.69 13590.20 26395.78 23796.21 26392.73 19498.98 27790.58 25798.86 22497.42 289
ETH3 D test640094.77 21593.87 24397.47 12998.12 18693.73 16294.56 23598.70 13285.45 31094.70 26095.93 27791.77 22299.63 13186.45 31199.14 18699.05 156
xxxxxxxxxxxxxcwj97.24 10897.03 11497.89 9698.48 14594.71 12494.53 23699.07 3895.02 16197.83 13797.88 14496.44 8699.72 7794.59 15899.39 14299.25 117
save fliter98.48 14594.71 12494.53 23698.41 17295.02 161
tpm cat188.01 31687.33 31790.05 32694.48 33176.28 34794.47 23894.35 30673.84 35189.26 33895.61 28573.64 33298.30 33084.13 32686.20 34995.57 330
CANet95.86 17395.65 17796.49 19096.41 29190.82 22394.36 23998.41 17294.94 16392.62 31796.73 23692.68 19599.71 9295.12 13599.60 7298.94 169
WR-MVS96.90 12296.81 12597.16 14998.56 13592.20 19894.33 24098.12 20997.34 7298.20 9397.33 19792.81 19199.75 6094.79 14899.81 3099.54 36
HQP-NCC97.85 20694.26 24193.18 21992.86 310
ACMP_Plane97.85 20694.26 24193.18 21992.86 310
HQP-MVS95.17 20194.58 21996.92 16297.85 20692.47 19094.26 24198.43 16793.18 21992.86 31095.08 29290.33 23699.23 24690.51 26098.74 23699.05 156
PLCcopyleft91.02 1694.05 24692.90 25897.51 12198.00 19695.12 11394.25 24498.25 19086.17 29991.48 32595.25 29091.01 22899.19 24985.02 32296.69 31098.22 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
1112_ss94.12 24293.42 24996.23 20298.59 13290.85 22194.24 24598.85 8885.49 30792.97 30894.94 29686.01 27899.64 12991.78 22497.92 27298.20 248
MS-PatchMatch94.83 21294.91 20194.57 27096.81 28487.10 28594.23 24697.34 25688.74 27897.14 16597.11 21091.94 21798.23 33292.99 20897.92 27298.37 229
Fast-Effi-MVS+95.49 18495.07 19296.75 17397.67 23892.82 18594.22 24798.60 15091.61 24993.42 30292.90 32296.73 6999.70 10192.60 21197.89 27597.74 277
CMPMVSbinary73.10 2392.74 27091.39 28296.77 17293.57 34394.67 12894.21 24897.67 23980.36 33693.61 29296.60 24382.85 29397.35 34284.86 32398.78 23298.29 241
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp88.08 31588.05 31588.16 33392.85 34968.81 35694.17 24992.88 31885.47 30891.38 32696.14 26668.87 34798.81 29286.88 30883.80 35196.87 304
JIA-IIPM91.79 28690.69 29595.11 24593.80 34090.98 21994.16 25091.78 32896.38 9690.30 33399.30 1972.02 33998.90 28388.28 29390.17 34395.45 331
D2MVS95.18 19995.17 18995.21 24297.76 22987.76 27494.15 25197.94 22289.77 26896.99 17997.68 16787.45 27099.14 25695.03 14099.81 3098.74 201
TSAR-MVS + GP.96.47 15096.12 15897.49 12797.74 23195.23 10694.15 25196.90 27193.26 21598.04 11596.70 23894.41 15698.89 28594.77 15199.14 18698.37 229
PVSNet_BlendedMVS95.02 20794.93 19995.27 24097.79 22387.40 28094.14 25398.68 13788.94 27594.51 26598.01 12893.04 18699.30 23289.77 27299.49 11099.11 145
TinyColmap96.00 16896.34 15094.96 25197.90 20487.91 26894.13 25498.49 16194.41 18098.16 9897.76 15596.29 9498.68 30690.52 25999.42 13498.30 239
CNLPA95.04 20594.47 22396.75 17397.81 21495.25 10594.12 25597.89 22594.41 18094.57 26295.69 28090.30 23998.35 32886.72 31098.76 23496.64 313
BH-untuned94.69 22194.75 20894.52 27297.95 20187.53 27794.07 25697.01 26793.99 19697.10 16995.65 28292.65 19798.95 28287.60 30196.74 30997.09 295
pmmvs594.63 22694.34 22895.50 23297.63 24188.34 26094.02 25797.13 26387.15 29295.22 25097.15 20687.50 26999.27 24093.99 18499.26 17598.88 185
thres20091.00 29590.42 29992.77 30697.47 25283.98 32294.01 25891.18 33395.12 15695.44 24591.21 34073.93 32999.31 22977.76 34497.63 28995.01 333
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 26798.01 19288.42 25793.99 25998.21 19392.98 22795.91 23094.53 30496.39 8899.72 7795.43 11498.19 26295.64 327
xiu_mvs_v1_base95.62 17995.96 16794.60 26798.01 19288.42 25793.99 25998.21 19392.98 22795.91 23094.53 30496.39 8899.72 7795.43 11498.19 26295.64 327
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 26798.01 19288.42 25793.99 25998.21 19392.98 22795.91 23094.53 30496.39 8899.72 7795.43 11498.19 26295.64 327
CDS-MVSNet94.88 21194.12 23597.14 15197.64 24093.57 16993.96 26297.06 26690.05 26596.30 21596.55 24586.10 27799.47 18090.10 26799.31 16798.40 226
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.65 22594.21 23295.96 21395.90 30789.68 23693.92 26397.83 23193.19 21890.12 33495.64 28388.52 25799.57 15593.27 20399.47 11698.62 213
WTY-MVS93.55 25793.00 25795.19 24397.81 21487.86 26993.89 26496.00 28689.02 27394.07 27695.44 28986.27 27699.33 22587.69 29996.82 30698.39 228
sss94.22 23793.72 24595.74 22297.71 23389.95 23593.84 26596.98 26888.38 28293.75 28695.74 27987.94 26398.89 28591.02 23998.10 26698.37 229
baseline289.65 30788.44 31493.25 29495.62 31582.71 32593.82 26685.94 35088.89 27687.35 34792.54 32871.23 34199.33 22586.01 31294.60 33297.72 278
XVG-OURS97.12 11196.74 12998.26 7098.99 9297.45 3293.82 26699.05 4195.19 15298.32 8297.70 16495.22 13298.41 32294.27 17198.13 26598.93 173
MVS_111021_LR96.82 12996.55 13997.62 11398.27 16395.34 10393.81 26898.33 18394.59 17696.56 20196.63 24296.61 7498.73 29994.80 14799.34 15698.78 196
BH-RMVSNet94.56 22994.44 22694.91 25297.57 24387.44 27993.78 26996.26 28293.69 20496.41 20896.50 25092.10 21299.00 27385.96 31397.71 28298.31 237
CDPH-MVS95.45 18994.65 21197.84 10098.28 16194.96 11693.73 27098.33 18385.03 31595.44 24596.60 24395.31 12999.44 19090.01 26899.13 19099.11 145
PatchMatch-RL94.61 22793.81 24497.02 15998.19 17295.72 8293.66 27197.23 25888.17 28494.94 25595.62 28491.43 22498.57 31287.36 30697.68 28596.76 310
TEST997.84 21195.23 10693.62 27298.39 17486.81 29593.78 28395.99 27094.68 14699.52 168
train_agg95.46 18894.66 21097.88 9797.84 21195.23 10693.62 27298.39 17487.04 29393.78 28395.99 27094.58 15199.52 16891.76 22598.90 21898.89 182
test_prior495.38 9993.61 274
test_897.81 21495.07 11493.54 27598.38 17687.04 29393.71 28795.96 27494.58 15199.52 168
TR-MVS92.54 27392.20 27393.57 28896.49 28986.66 29093.51 27694.73 30189.96 26694.95 25493.87 31390.24 24198.61 30981.18 33694.88 32895.45 331
新几何293.43 277
diffmvs96.04 16596.23 15395.46 23597.35 25888.03 26793.42 27899.08 3594.09 19496.66 19696.93 22293.85 17099.29 23696.01 8498.67 24199.06 154
MVS_111021_HR96.73 13596.54 14197.27 14598.35 15693.66 16793.42 27898.36 17894.74 16996.58 19996.76 23596.54 7898.99 27594.87 14499.27 17499.15 131
agg_prior195.39 19194.60 21697.75 10397.80 21894.96 11693.39 28098.36 17887.20 29193.49 29795.97 27394.65 14899.53 16491.69 22798.86 22498.77 199
UnsupCasMVSNet_bld94.72 22094.26 22996.08 20998.62 12790.54 23193.38 28198.05 21990.30 26297.02 17796.80 23289.54 24799.16 25588.44 29096.18 31898.56 218
旧先验293.35 28277.95 34595.77 23998.67 30790.74 251
test_prior395.91 17095.39 18497.46 13197.79 22394.26 14393.33 28398.42 17094.21 18894.02 27896.25 26093.64 17599.34 22291.90 21998.96 20998.79 194
test_prior293.33 28394.21 18894.02 27896.25 26093.64 17591.90 21998.96 209
SCA93.38 26193.52 24892.96 30396.24 29581.40 33193.24 28594.00 30791.58 25194.57 26296.97 21987.94 26399.42 19389.47 27697.66 28798.06 259
无先验93.20 28697.91 22380.78 33399.40 20487.71 29797.94 268
MG-MVS94.08 24594.00 23994.32 27797.09 27485.89 29993.19 28795.96 28892.52 23594.93 25697.51 17889.54 24798.77 29587.52 30497.71 28298.31 237
MVS-HIRNet88.40 31390.20 30182.99 33597.01 27660.04 35793.11 28885.61 35184.45 32188.72 34199.09 3484.72 28798.23 33282.52 33396.59 31390.69 348
new-patchmatchnet95.67 17896.58 13692.94 30497.48 24880.21 33592.96 28998.19 20194.83 16698.82 4198.79 5093.31 18199.51 17295.83 9099.04 20499.12 142
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22298.48 14588.76 25592.84 29097.25 25796.00 11597.59 14297.95 13691.38 22599.46 18393.16 20696.35 31698.99 164
原ACMM292.82 291
testdata192.77 29293.78 201
Test_1112_low_res93.53 25892.86 25995.54 23198.60 13088.86 25192.75 29398.69 13582.66 32692.65 31596.92 22484.75 28699.56 15690.94 24197.76 27898.19 249
USDC94.56 22994.57 22194.55 27197.78 22786.43 29492.75 29398.65 14785.96 30196.91 18697.93 13990.82 23198.74 29890.71 25299.59 7498.47 223
test22298.17 17793.24 17792.74 29597.61 24975.17 34894.65 26196.69 23990.96 23098.66 24397.66 281
jason94.39 23494.04 23895.41 23898.29 15987.85 27192.74 29596.75 27685.38 31295.29 24896.15 26488.21 26299.65 12694.24 17299.34 15698.74 201
jason: jason.
Patchmatch-RL test94.66 22494.49 22295.19 24398.54 13788.91 24992.57 29798.74 12091.46 25298.32 8297.75 15877.31 31798.81 29296.06 7799.61 6997.85 272
DeepPCF-MVS94.58 596.90 12296.43 14798.31 6797.48 24897.23 4092.56 29898.60 15092.84 23398.54 5897.40 18696.64 7398.78 29494.40 16599.41 14098.93 173
N_pmnet95.18 19994.23 23098.06 8597.85 20696.55 5892.49 29991.63 32989.34 27098.09 10897.41 18590.33 23699.06 26791.58 22899.31 16798.56 218
BH-w/o92.14 28191.94 27592.73 30797.13 27385.30 30592.46 30095.64 29389.33 27194.21 27192.74 32589.60 24698.24 33181.68 33494.66 33094.66 335
IterMVS-SCA-FT95.86 17396.19 15594.85 25797.68 23585.53 30292.42 30197.63 24796.99 7798.36 7598.54 6987.94 26399.75 6097.07 5399.08 19899.27 113
IterMVS95.42 19095.83 17194.20 28097.52 24783.78 32392.41 30297.47 25495.49 14198.06 11298.49 7287.94 26399.58 14996.02 8299.02 20599.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS96.17 16096.23 15395.99 21197.55 24690.04 23392.38 30398.52 15894.13 19296.55 20397.06 21494.99 13899.58 14995.62 9999.28 17298.37 229
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet92.34 27791.69 28094.32 27796.23 29789.16 24692.27 30492.88 31884.39 32295.29 24896.35 25785.66 28096.74 34784.53 32597.56 29097.05 297
CHOSEN 1792x268894.10 24393.41 25096.18 20699.16 6890.04 23392.15 30598.68 13779.90 33796.22 21997.83 14987.92 26799.42 19389.18 28099.65 6099.08 150
xiu_mvs_v2_base94.22 23794.63 21492.99 30297.32 26584.84 31492.12 30697.84 22991.96 24494.17 27293.43 31596.07 9799.71 9291.27 23397.48 29494.42 336
lupinMVS93.77 24993.28 25195.24 24197.68 23587.81 27292.12 30696.05 28584.52 31994.48 26795.06 29486.90 27399.63 13193.62 19699.13 19098.27 242
pmmvs494.82 21394.19 23396.70 17697.42 25592.75 18792.09 30896.76 27586.80 29695.73 24097.22 20489.28 25398.89 28593.28 20199.14 18698.46 225
PAPR92.22 27991.27 28595.07 24795.73 31488.81 25291.97 30997.87 22685.80 30490.91 32792.73 32691.16 22698.33 32979.48 33895.76 32498.08 253
PS-MVSNAJ94.10 24394.47 22393.00 30197.35 25884.88 31391.86 31097.84 22991.96 24494.17 27292.50 32995.82 10699.71 9291.27 23397.48 29494.40 337
cl_fuxian95.20 19895.32 18594.83 25996.19 29986.43 29491.83 31198.35 18293.47 20897.36 15897.26 20288.69 25699.28 23895.41 11799.36 14898.78 196
test0.0.03 190.11 30089.21 30792.83 30593.89 33986.87 28991.74 31288.74 34592.02 24294.71 25991.14 34173.92 33094.48 35083.75 33192.94 33697.16 294
FPMVS89.92 30588.63 31293.82 28398.37 15496.94 4591.58 31393.34 31488.00 28690.32 33297.10 21170.87 34391.13 35271.91 34996.16 31993.39 341
ET-MVSNet_ETH3D91.12 29289.67 30495.47 23496.41 29189.15 24791.54 31490.23 34189.07 27286.78 34992.84 32369.39 34699.44 19094.16 17596.61 31297.82 274
PVSNet_Blended93.96 24793.65 24694.91 25297.79 22387.40 28091.43 31598.68 13784.50 32094.51 26594.48 30793.04 18699.30 23289.77 27298.61 24798.02 265
CLD-MVS95.47 18795.07 19296.69 17798.27 16392.53 18991.36 31698.67 14091.22 25495.78 23794.12 31295.65 11798.98 27790.81 24599.72 4798.57 217
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth94.89 21094.93 19994.75 26295.99 30686.12 29791.35 31798.49 16193.40 20997.12 16797.25 20386.87 27599.35 22095.08 13798.82 22998.78 196
cl-mvsnet_94.73 21694.64 21295.01 24995.85 30987.00 28691.33 31898.08 21393.34 21297.10 16997.33 19784.01 29099.30 23295.14 13299.56 8298.71 206
cl-mvsnet194.73 21694.64 21295.01 24995.86 30887.00 28691.33 31898.08 21393.34 21297.10 16997.34 19684.02 28999.31 22995.15 13199.55 8898.72 204
miper_ehance_all_eth94.69 22194.70 20994.64 26495.77 31286.22 29691.32 32098.24 19191.67 24897.05 17496.65 24188.39 26099.22 24894.88 14398.34 25798.49 222
pmmvs390.00 30288.90 31193.32 29194.20 33785.34 30491.25 32192.56 32378.59 34193.82 28295.17 29167.36 34998.69 30389.08 28298.03 26995.92 322
HyFIR lowres test93.72 25192.65 26696.91 16498.93 9591.81 20991.23 32298.52 15882.69 32596.46 20696.52 24980.38 30299.90 1490.36 26498.79 23199.03 158
DPM-MVS93.68 25392.77 26596.42 19497.91 20292.54 18891.17 32397.47 25484.99 31693.08 30794.74 30089.90 24499.00 27387.54 30398.09 26797.72 278
miper_lstm_enhance94.81 21494.80 20794.85 25796.16 30186.45 29391.14 32498.20 19693.49 20797.03 17697.37 19484.97 28599.26 24195.28 12099.56 8298.83 190
cl-mvsnet293.25 26492.84 26194.46 27394.30 33386.00 29891.09 32596.64 28090.74 25795.79 23596.31 25878.24 30998.77 29594.15 17698.34 25798.62 213
MSDG95.33 19395.13 19095.94 21797.40 25691.85 20791.02 32698.37 17795.30 14896.31 21495.99 27094.51 15498.38 32589.59 27497.65 28897.60 284
IB-MVS85.98 2088.63 31186.95 32093.68 28695.12 32484.82 31590.85 32790.17 34287.55 28988.48 34291.34 33958.01 35599.59 14787.24 30793.80 33596.63 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12312.59 32515.49 3283.87 3386.07 3592.55 36090.75 3282.59 3612.52 3555.20 35713.02 3554.96 3611.85 3575.20 3549.09 3547.23 352
ppachtmachnet_test94.49 23194.84 20493.46 29096.16 30182.10 32990.59 32997.48 25390.53 26097.01 17897.59 17291.01 22899.36 21793.97 18699.18 18398.94 169
PMMVS92.39 27591.08 28796.30 20193.12 34792.81 18690.58 33095.96 28879.17 34091.85 32492.27 33090.29 24098.66 30889.85 27196.68 31197.43 288
our_test_394.20 24194.58 21993.07 29896.16 30181.20 33290.42 33196.84 27290.72 25897.14 16597.13 20790.47 23499.11 26194.04 18398.25 26198.91 178
YYNet194.73 21694.84 20494.41 27597.47 25285.09 31190.29 33295.85 29192.52 23597.53 14497.76 15591.97 21599.18 25093.31 20096.86 30598.95 167
MDA-MVSNet_test_wron94.73 21694.83 20694.42 27497.48 24885.15 30990.28 33395.87 29092.52 23597.48 15197.76 15591.92 21999.17 25493.32 19996.80 30898.94 169
GA-MVS92.83 26992.15 27494.87 25696.97 27787.27 28390.03 33496.12 28491.83 24794.05 27794.57 30276.01 32498.97 28192.46 21597.34 29998.36 234
miper_enhance_ethall93.14 26692.78 26494.20 28093.65 34185.29 30689.97 33597.85 22785.05 31496.15 22494.56 30385.74 27999.14 25693.74 19298.34 25798.17 251
test-LLR89.97 30489.90 30290.16 32494.24 33574.98 34989.89 33689.06 34392.02 24289.97 33590.77 34373.92 33098.57 31291.88 22197.36 29796.92 301
TESTMET0.1,187.20 32086.57 32289.07 32893.62 34272.84 35389.89 33687.01 34985.46 30989.12 34090.20 34656.00 35997.72 34090.91 24296.92 30396.64 313
test-mter87.92 31787.17 31890.16 32494.24 33574.98 34989.89 33689.06 34386.44 29889.97 33590.77 34354.96 36098.57 31291.88 22197.36 29796.92 301
PCF-MVS89.43 1892.12 28290.64 29696.57 18697.80 21893.48 17289.88 33998.45 16474.46 34996.04 22695.68 28190.71 23299.31 22973.73 34699.01 20796.91 303
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051590.43 29889.18 31094.17 28297.07 27585.44 30389.75 34087.58 34688.28 28393.69 28991.72 33665.27 35099.58 14990.59 25698.67 24197.50 287
testmvs12.33 32615.23 3293.64 3395.77 3602.23 36188.99 3413.62 3602.30 3565.29 35613.09 3544.52 3621.95 3565.16 3558.32 3556.75 353
cascas91.89 28591.35 28393.51 28994.27 33485.60 30188.86 34298.61 14979.32 33992.16 32191.44 33889.22 25498.12 33590.80 24697.47 29696.82 307
PAPM87.64 31985.84 32493.04 29996.54 28784.99 31288.42 34395.57 29579.52 33883.82 35093.05 32180.57 30198.41 32262.29 35292.79 33795.71 326
PVSNet86.72 1991.10 29390.97 29091.49 31697.56 24578.04 34087.17 34494.60 30384.65 31892.34 31992.20 33187.37 27198.47 31985.17 32197.69 28497.96 267
PMMVS293.66 25494.07 23692.45 31097.57 24380.67 33486.46 34596.00 28693.99 19697.10 16997.38 19289.90 24497.82 33888.76 28599.47 11698.86 188
CHOSEN 280x42089.98 30389.19 30992.37 31195.60 31681.13 33386.22 34697.09 26581.44 33187.44 34693.15 31673.99 32899.47 18088.69 28799.07 20096.52 317
tmp_tt57.23 32362.50 32641.44 33734.77 35849.21 35983.93 34760.22 35915.31 35471.11 35579.37 35270.09 34544.86 35564.76 35182.93 35230.25 351
PVSNet_081.89 2184.49 32283.21 32588.34 33195.76 31374.97 35183.49 34892.70 32278.47 34287.94 34486.90 35083.38 29296.63 34873.44 34766.86 35393.40 340
E-PMN89.52 30889.78 30388.73 32993.14 34677.61 34283.26 34992.02 32594.82 16793.71 28793.11 31775.31 32696.81 34585.81 31496.81 30791.77 345
EMVS89.06 31089.22 30688.61 33093.00 34877.34 34482.91 35090.92 33494.64 17392.63 31691.81 33576.30 32297.02 34383.83 32996.90 30491.48 346
MVEpermissive73.61 2286.48 32185.92 32388.18 33296.23 29785.28 30781.78 35175.79 35486.01 30082.53 35291.88 33492.74 19387.47 35371.42 35094.86 32991.78 344
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.22 32432.30 3270.00 3400.00 3610.00 3620.00 35298.10 2100.00 3570.00 35895.06 29497.54 290.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.98 32710.65 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35895.82 1060.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re7.91 32810.55 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35894.94 2960.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS98.43 15095.94 7798.56 15490.72 25896.66 19697.07 21395.02 13799.74 6791.08 23798.93 215
IU-MVS99.22 5795.40 9898.14 20685.77 30598.36 7595.23 12499.51 10499.49 51
test_241102_TWO98.83 9996.11 10798.62 5198.24 9896.92 5899.72 7795.44 11199.49 11099.49 51
test_241102_ONE99.22 5795.35 10198.83 9996.04 11299.08 3198.13 10997.87 2199.33 225
test_0728_THIRD96.62 8798.40 7098.28 9297.10 4599.71 9295.70 9299.62 6399.58 28
GSMVS98.06 259
test_part299.03 9096.07 7298.08 110
sam_mvs177.80 31198.06 259
sam_mvs77.38 315
MTGPAbinary98.73 122
test_post10.87 35676.83 31999.07 266
patchmatchnet-post96.84 22777.36 31699.42 193
gm-plane-assit91.79 35371.40 35581.67 32890.11 34798.99 27584.86 323
test9_res91.29 23298.89 22199.00 161
agg_prior290.34 26598.90 21899.10 149
agg_prior97.80 21894.96 11698.36 17893.49 29799.53 164
TestCases98.06 8599.08 8396.16 6999.16 1894.35 18397.78 14098.07 11795.84 10399.12 25891.41 23099.42 13498.91 178
test_prior97.46 13197.79 22394.26 14398.42 17099.34 22298.79 194
新几何197.25 14898.29 15994.70 12797.73 23577.98 34394.83 25796.67 24092.08 21399.45 18788.17 29598.65 24497.61 283
旧先验197.80 21893.87 15597.75 23497.04 21693.57 17798.68 24098.72 204
原ACMM196.58 18498.16 17992.12 20098.15 20585.90 30393.49 29796.43 25292.47 20599.38 21287.66 30098.62 24698.23 245
testdata299.46 18387.84 296
segment_acmp95.34 127
testdata95.70 22598.16 17990.58 22897.72 23680.38 33595.62 24297.02 21792.06 21498.98 27789.06 28398.52 25197.54 285
test1297.46 13197.61 24294.07 14897.78 23393.57 29493.31 18199.42 19398.78 23298.89 182
plane_prior798.70 11894.67 128
plane_prior698.38 15394.37 13791.91 220
plane_prior598.75 11899.46 18392.59 21399.20 17999.28 109
plane_prior496.77 233
plane_prior394.51 13195.29 14996.16 222
plane_prior198.49 143
n20.00 362
nn0.00 362
door-mid98.17 202
lessismore_v097.05 15699.36 4192.12 20084.07 35298.77 4698.98 3985.36 28299.74 6797.34 4199.37 14599.30 102
LGP-MVS_train98.74 3699.15 7197.02 4299.02 5095.15 15498.34 7898.23 10097.91 1899.70 10194.41 16399.73 4499.50 43
test1198.08 213
door97.81 232
HQP5-MVS92.47 190
BP-MVS90.51 260
HQP4-MVS92.87 30999.23 24699.06 154
HQP3-MVS98.43 16798.74 236
HQP2-MVS90.33 236
NP-MVS98.14 18293.72 16395.08 292
ACMMP++_ref99.52 99
ACMMP++99.55 88
Test By Simon94.51 154
ITE_SJBPF97.85 9998.64 12296.66 5398.51 16095.63 13497.22 16197.30 20095.52 12098.55 31590.97 24098.90 21898.34 235
DeepMVS_CXcopyleft77.17 33690.94 35585.28 30774.08 35752.51 35380.87 35488.03 34975.25 32770.63 35459.23 35384.94 35075.62 349