This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
DVP-MVS++97.96 4697.90 4598.12 8397.75 24295.40 10199.03 798.89 7996.62 9298.62 5298.30 9396.97 5699.75 6595.70 10499.25 18699.21 129
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
Anonymous2023121198.55 1798.76 1397.94 9698.79 11194.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3395.44 12899.84 2596.47 7199.80 3699.47 62
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16898.06 12988.46 26599.85 2293.85 20399.40 15099.32 101
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
MVSFormer96.14 16796.36 15495.49 24497.68 24987.81 28698.67 1399.02 5296.50 10094.48 28396.15 27786.90 28099.92 498.73 799.13 20398.74 212
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15797.41 16697.50 18797.98 1599.79 3995.58 11699.57 8599.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10897.98 13888.23 26899.71 10093.10 22199.72 5199.38 88
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5495.47 12699.89 1697.95 2199.91 1799.75 13
test250689.86 31889.16 32391.97 33198.95 9876.83 36498.54 2061.07 37896.20 11397.07 18599.16 3055.19 37799.69 11796.43 7399.83 3199.38 88
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30596.38 7499.50 11496.98 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24593.65 17798.49 2398.88 8596.86 8797.11 17998.55 7295.82 10899.73 8195.94 9599.42 14399.13 146
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
LS3D97.77 7397.50 8798.57 4896.24 31297.58 2598.45 2698.85 9498.58 2797.51 15497.94 14495.74 11699.63 14395.19 13998.97 22198.51 232
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2999.21 1498.43 2998.89 3998.83 5394.30 16499.81 3297.87 2499.91 1799.77 8
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2999.03 5095.88 13497.88 13898.22 10998.15 1299.74 7596.50 7099.62 6999.42 81
ab-mvs96.59 14996.59 13896.60 19098.64 12992.21 20798.35 2997.67 24894.45 19296.99 19198.79 5494.96 14399.49 18890.39 27999.07 21398.08 268
test111194.53 23994.81 21493.72 29899.06 8881.94 34798.31 3283.87 37096.37 10598.49 6599.17 2981.49 30699.73 8196.64 6299.86 2599.49 53
ECVR-MVScopyleft94.37 24594.48 23294.05 29598.95 9883.10 33998.31 3282.48 37196.20 11398.23 9799.16 3081.18 30999.66 13695.95 9499.83 3199.38 88
DROMVSNet97.90 6097.94 4497.79 10698.66 12895.14 11998.31 3299.66 297.57 6195.95 24297.01 22896.99 5599.82 2997.66 3399.64 6698.39 240
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3599.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3596.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 4299.54 38
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3798.84 9999.05 1399.01 3598.65 6695.37 12999.90 1397.57 3699.91 1799.77 8
GG-mvs-BLEND90.60 33991.00 37184.21 33598.23 3872.63 37782.76 36984.11 36956.14 37596.79 36372.20 36792.09 35890.78 366
GBi-Net96.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
test196.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3898.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 10299.76 4299.30 107
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3899.05 4397.40 7399.37 1899.08 3798.79 599.47 19497.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4398.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10099.60 26
gg-mvs-nofinetune88.28 32986.96 33492.23 33092.84 36784.44 33298.19 4474.60 37499.08 1087.01 36699.47 856.93 37298.23 34978.91 35895.61 34194.01 356
QAPM95.88 17995.57 18796.80 17997.90 21391.84 21998.18 4598.73 12988.41 29796.42 22098.13 11694.73 14799.75 6588.72 30298.94 22698.81 203
NR-MVSNet97.96 4697.86 5098.26 6998.73 11795.54 9398.14 4698.73 12997.79 4699.42 1597.83 15694.40 16299.78 4395.91 9799.76 4299.46 64
MIMVSNet93.42 27192.86 27095.10 25898.17 18588.19 27598.13 4793.69 32492.07 25595.04 26998.21 11080.95 31299.03 28781.42 35398.06 28198.07 270
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4899.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4998.96 7195.75 14397.91 13498.06 12996.89 6499.76 5895.32 13299.57 8599.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS98.14 3498.03 4098.47 5498.72 11996.04 7498.07 5099.10 3195.96 12898.59 5798.69 6296.94 5899.81 3296.64 6299.58 8299.57 32
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 5199.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15899.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19595.60 9198.04 5198.70 13998.13 3996.93 19698.45 7995.30 13399.62 15195.64 11198.96 22299.24 126
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5399.11 2998.04 4298.62 5298.66 6493.75 17899.78 4397.23 4599.84 2999.73 15
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5499.16 2098.34 3298.78 4598.52 7497.32 3599.45 20194.08 19299.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5595.31 31499.26 798.39 7599.18 2787.85 27599.62 15195.13 14899.09 21099.35 98
test_part196.77 13696.53 14697.47 13698.04 19792.92 19497.93 5698.85 9498.83 2199.30 2199.07 3879.25 31799.79 3997.59 3599.93 1099.69 20
CP-MVS97.92 5697.56 8298.99 1398.99 9697.82 1697.93 5698.96 7196.11 11896.89 19997.45 19196.85 6899.78 4395.19 13999.63 6899.38 88
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5899.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5999.08 3798.31 3399.02 3498.74 5897.68 2499.61 15897.77 2999.85 2899.70 18
ambc96.56 19598.23 17791.68 22297.88 6098.13 21798.42 7298.56 7194.22 16799.04 28494.05 19699.35 16398.95 177
Anonymous2024052997.96 4698.04 3997.71 11298.69 12694.28 15197.86 6198.31 19398.79 2299.23 2698.86 5295.76 11599.61 15895.49 11799.36 15899.23 127
canonicalmvs97.23 11197.21 10697.30 15297.65 25394.39 14497.84 6299.05 4397.42 6996.68 20893.85 33097.63 2699.33 23996.29 7798.47 26798.18 265
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6398.45 17098.25 3599.13 3098.66 6496.65 7599.69 11793.92 20199.62 6998.91 188
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6498.40 18097.11 8098.34 8299.04 4089.58 25399.79 3998.09 1899.93 1099.30 107
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22597.64 17596.49 8699.72 8695.66 10999.37 15599.45 69
X-MVStestdata92.86 28090.83 30598.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22536.50 37196.49 8699.72 8695.66 10999.37 15599.45 69
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6799.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
UGNet96.81 13396.56 14297.58 12296.64 30293.84 16797.75 6897.12 27396.47 10393.62 30998.88 5093.22 18899.53 17895.61 11399.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6998.78 12096.04 12397.10 18097.73 16896.53 8399.78 4395.16 14399.50 11499.46 64
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28991.96 21697.74 6998.84 9987.26 30794.36 28598.01 13593.95 17399.67 13090.70 26998.75 24797.35 307
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 7199.11 2997.76 5098.62 5298.27 10297.88 1999.80 3895.67 10799.50 11499.38 88
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 7298.89 7995.65 14598.51 6296.46 26192.15 21499.81 3295.14 14698.58 26399.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LFMVS95.32 20194.88 20996.62 18998.03 19891.47 22597.65 7390.72 35499.11 997.89 13798.31 8979.20 31899.48 19193.91 20299.12 20698.93 183
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7390.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8899.39 86
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7598.20 20393.00 24098.16 10498.06 12995.89 10399.72 8695.67 10799.10 20999.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7698.84 9996.00 12697.22 17097.62 17796.87 6799.76 5895.48 12099.43 14099.46 64
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7798.84 9996.05 12197.49 15797.54 18297.07 4899.70 10995.61 11399.46 12799.30 107
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7798.83 10696.05 12197.46 16397.63 17696.77 7199.76 5895.61 11399.46 12799.49 53
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7999.06 4196.19 11598.48 6698.70 6194.72 14899.24 25894.37 18099.33 17399.17 136
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 8098.94 7497.10 8198.85 4198.88 5095.03 14099.67 13097.39 4399.65 6499.26 120
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.60 8099.76 5895.49 11799.20 19199.26 120
RE-MVS-def97.88 4998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.94 5895.49 11799.20 19199.26 120
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11197.31 3797.55 8098.92 7697.72 5498.25 9498.13 11697.10 4599.75 6595.44 12499.24 18999.32 101
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 8099.20 1698.21 3799.25 2598.51 7598.21 1199.40 21894.79 16299.72 5199.32 101
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8594.92 31696.50 10096.58 21297.27 21083.64 30099.48 19188.42 30799.67 6198.97 175
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8698.73 12996.27 10995.59 25797.75 16596.30 9699.78 4393.70 20999.48 12299.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8798.84 9995.76 14196.93 19697.43 19397.26 4099.79 3996.06 8499.53 10099.45 69
tttt051793.31 27492.56 28195.57 23998.71 12287.86 28397.44 8887.17 36595.79 14097.47 16296.84 23764.12 36699.81 3296.20 7999.32 17599.02 170
v1097.55 8797.97 4196.31 20898.60 13789.64 25097.44 8899.02 5296.60 9498.72 5099.16 3093.48 18399.72 8698.76 699.92 1499.58 28
v897.60 8498.06 3896.23 21198.71 12289.44 25497.43 9098.82 11497.29 7798.74 4899.10 3593.86 17499.68 12598.61 1099.94 899.56 35
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 9197.49 26097.93 4495.95 24298.58 6896.88 6696.91 36189.59 29099.36 15893.12 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test117298.08 3997.76 5999.05 698.78 11398.07 797.41 9298.85 9497.57 6198.15 10697.96 13996.60 8099.76 5895.30 13399.18 19699.33 100
SR-MVS98.00 4597.66 6799.01 1198.77 11597.93 1197.38 9398.83 10697.32 7598.06 11897.85 15496.65 7599.77 5395.00 15599.11 20799.32 101
FMVSNet593.39 27292.35 28396.50 19795.83 32790.81 23597.31 9498.27 19492.74 24896.27 22998.28 9862.23 36899.67 13090.86 25999.36 15899.03 168
HY-MVS91.43 1592.58 28491.81 29094.90 26696.49 30688.87 26397.31 9494.62 31885.92 32090.50 34996.84 23785.05 29099.40 21883.77 34895.78 33996.43 335
CSCG97.40 9997.30 9797.69 11698.95 9894.83 12797.28 9698.99 6396.35 10898.13 10995.95 28995.99 10199.66 13694.36 18399.73 4898.59 227
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9798.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
CPTT-MVS96.69 14396.08 16798.49 5298.89 10496.64 5597.25 9798.77 12192.89 24696.01 24197.13 21692.23 21399.67 13092.24 23099.34 16699.17 136
EU-MVSNet94.25 24794.47 23393.60 30198.14 19082.60 34297.24 9992.72 33785.08 33198.48 6698.94 4682.59 30398.76 31297.47 4099.53 10099.44 79
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 10099.00 6094.93 17898.58 5898.92 4897.31 3699.41 21694.44 17599.43 14099.59 27
CS-MVS-test96.62 14896.59 13896.69 18697.88 21593.16 18897.21 10199.53 695.61 14893.72 30495.33 30495.49 12399.69 11795.37 13199.19 19597.22 308
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 10298.79 11695.96 12897.53 15297.40 19596.93 6099.77 5395.04 15299.35 16399.42 81
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10398.90 7896.58 9698.08 11697.87 15397.02 5399.76 5895.25 13699.59 8099.40 84
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet296.72 14096.67 13696.87 17597.96 20791.88 21797.15 10398.06 22795.59 15098.50 6498.62 6789.51 25799.65 13894.99 15699.60 7899.07 162
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10599.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
DP-MVS97.87 6397.89 4897.81 10598.62 13494.82 12897.13 10698.79 11698.98 1798.74 4898.49 7695.80 11499.49 18895.04 15299.44 13299.11 155
GeoE97.75 7497.70 6297.89 9998.88 10594.53 13997.10 10798.98 6695.75 14397.62 14997.59 17997.61 2799.77 5396.34 7699.44 13299.36 96
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10899.06 4195.45 15597.55 15197.94 14497.11 4499.78 4394.77 16599.46 12799.48 59
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10899.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
SF-MVS97.60 8497.39 9298.22 7498.93 10195.69 8597.05 11099.10 3195.32 16097.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
VDD-MVS97.37 10197.25 10197.74 11098.69 12694.50 14297.04 11195.61 30898.59 2698.51 6298.72 5992.54 20799.58 16296.02 8999.49 11899.12 151
wuyk23d93.25 27695.20 19387.40 35196.07 32295.38 10397.04 11194.97 31595.33 15999.70 598.11 12098.14 1391.94 36977.76 36299.68 6074.89 369
MVS_030495.50 19095.05 20296.84 17796.28 31193.12 18997.00 11396.16 29495.03 17389.22 35797.70 17190.16 24899.48 19194.51 17499.34 16697.93 284
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19393.79 16996.99 11499.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28299.06 21698.32 249
MAR-MVS94.21 25093.03 26797.76 10896.94 29797.44 3496.97 11597.15 27187.89 30592.00 34092.73 34492.14 21599.12 27383.92 34597.51 30696.73 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
h-mvs3396.29 16095.63 18498.26 6998.50 15096.11 7296.90 11697.09 27496.58 9697.21 17298.19 11184.14 29699.78 4395.89 9896.17 33498.89 192
test072699.24 5395.51 9596.89 11798.89 7995.92 13198.64 5198.31 8997.06 50
baseline97.44 9697.78 5896.43 20198.52 14690.75 23696.84 11899.03 5096.51 9997.86 14298.02 13396.67 7499.36 23197.09 5499.47 12499.19 133
API-MVS95.09 21195.01 20395.31 25096.61 30394.02 15996.83 11997.18 27095.60 14995.79 24994.33 32594.54 15898.37 34485.70 33198.52 26493.52 358
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 12098.84 9994.25 20097.49 15797.54 18297.07 4899.70 10994.37 18099.46 12799.30 107
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 12198.83 10696.11 11899.08 3198.24 10497.87 2099.72 8695.44 12499.51 11099.14 143
OPU-MVS97.64 11998.01 20195.27 11196.79 12197.35 20496.97 5698.51 33591.21 25299.25 18699.14 143
PHI-MVS96.96 12196.53 14698.25 7297.48 26496.50 5996.76 12398.85 9493.52 21996.19 23496.85 23695.94 10299.42 20793.79 20599.43 14098.83 201
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12498.23 19995.92 13198.40 7398.28 9897.06 5099.71 10095.48 12099.52 10599.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12498.89 7999.75 6595.48 12099.52 10599.53 41
Anonymous20240521196.34 15995.98 17297.43 14398.25 17493.85 16696.74 12494.41 32197.72 5498.37 7698.03 13287.15 27999.53 17894.06 19399.07 21398.92 187
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10796.67 5396.74 12498.73 12991.61 26398.48 6698.36 8496.53 8399.68 12595.17 14199.54 9799.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12899.05 4398.67 2498.84 4298.45 7997.58 2899.88 1896.45 7299.86 2599.54 38
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12998.73 12998.66 2598.56 5998.41 8196.84 6999.69 11794.82 16099.81 3398.64 221
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 13098.83 10695.21 16398.36 7998.13 11698.13 1499.62 15196.04 8799.54 9799.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline193.14 27892.64 27994.62 27897.34 27887.20 29896.67 13193.02 33294.71 18496.51 21795.83 29281.64 30598.60 32890.00 28588.06 36498.07 270
MTMP96.55 13274.60 374
SD-MVS97.37 10197.70 6296.35 20598.14 19095.13 12096.54 13398.92 7695.94 13099.19 2898.08 12297.74 2295.06 36795.24 13799.54 9798.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS96.66 14696.33 15697.68 11798.70 12494.29 14896.50 13498.75 12596.36 10696.16 23596.77 24391.91 22599.46 19792.59 22799.20 19199.28 115
plane_prior296.50 13496.36 106
testtj96.69 14396.13 16398.36 6198.46 15796.02 7696.44 13698.70 13994.26 19996.79 20197.13 21694.07 17099.75 6590.53 27498.80 24299.31 106
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29998.69 296.42 13798.09 22095.86 13695.15 26595.54 30094.26 16599.81 3294.06 19398.51 26698.47 235
thres100view90091.76 29991.26 29893.26 30798.21 17884.50 33196.39 13890.39 35596.87 8696.33 22493.08 33773.44 35099.42 20778.85 35997.74 29295.85 341
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13898.98 6695.05 17298.06 11898.02 13395.86 10499.56 16994.37 18099.64 6699.00 171
Patchmtry95.03 21494.59 22796.33 20694.83 34490.82 23396.38 14097.20 26896.59 9597.49 15798.57 6977.67 32599.38 22692.95 22499.62 6998.80 204
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 14198.79 11695.07 17197.88 13898.35 8597.24 4299.72 8696.05 8699.58 8299.45 69
VNet96.84 12896.83 12796.88 17498.06 19692.02 21496.35 14297.57 25997.70 5697.88 13897.80 16192.40 21199.54 17694.73 16798.96 22299.08 160
V4297.04 11597.16 10896.68 18898.59 13991.05 22896.33 14398.36 18594.60 18797.99 12598.30 9393.32 18599.62 15197.40 4299.53 10099.38 88
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14396.31 6596.32 14498.77 12192.96 24597.44 16597.58 18195.84 10599.74 7591.96 23399.35 16399.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14598.53 16397.77 4798.46 6998.41 8194.59 15599.68 12594.61 16899.29 18199.52 42
thres600view792.03 29591.43 29393.82 29698.19 18084.61 33096.27 14590.39 35596.81 8896.37 22393.11 33373.44 35099.49 18880.32 35597.95 28497.36 305
EPNet93.72 26392.62 28097.03 16787.61 37692.25 20596.27 14591.28 34896.74 9087.65 36397.39 19985.00 29199.64 14192.14 23199.48 12299.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed92.19 29291.83 28993.25 30896.18 31783.68 33896.27 14593.68 32676.97 36592.54 33699.18 2789.20 26298.55 33283.88 34698.60 26297.51 301
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9396.70 5296.24 14998.89 7993.71 21697.97 12997.75 16597.44 3099.63 14393.22 21899.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11395.72 8396.23 15099.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PM-MVS97.36 10397.10 11198.14 8298.91 10396.77 5096.20 15198.63 15593.82 21398.54 6098.33 8793.98 17299.05 28395.99 9299.45 13198.61 226
MVS_Test96.27 16196.79 13194.73 27596.94 29786.63 30596.18 15298.33 19094.94 17696.07 23898.28 9895.25 13499.26 25597.21 4897.90 28798.30 253
CR-MVSNet93.29 27592.79 27394.78 27395.44 33688.15 27796.18 15297.20 26884.94 33594.10 29198.57 6977.67 32599.39 22395.17 14195.81 33696.81 325
RPMNet94.68 23194.60 22594.90 26695.44 33688.15 27796.18 15298.86 9097.43 6894.10 29198.49 7679.40 31699.76 5895.69 10695.81 33696.81 325
EIA-MVS96.04 17195.77 18096.85 17697.80 22892.98 19296.12 15599.16 2094.65 18593.77 30291.69 35595.68 11799.67 13094.18 18898.85 23897.91 285
Effi-MVS+96.19 16596.01 16996.71 18497.43 27092.19 21096.12 15599.10 3195.45 15593.33 32194.71 31797.23 4399.56 16993.21 21997.54 30498.37 242
alignmvs96.01 17395.52 18897.50 13197.77 23994.71 13296.07 15796.84 28297.48 6796.78 20594.28 32785.50 28899.40 21896.22 7898.73 25198.40 238
PatchT93.75 26293.57 25894.29 29195.05 34287.32 29696.05 15892.98 33397.54 6594.25 28798.72 5975.79 33899.24 25895.92 9695.81 33696.32 336
Patchmatch-test93.60 26893.25 26494.63 27796.14 32187.47 29296.04 15994.50 32093.57 21896.47 21896.97 22976.50 33398.61 32690.67 27098.41 26997.81 291
thisisatest053092.71 28391.76 29195.56 24198.42 15988.23 27496.03 16087.35 36494.04 20796.56 21495.47 30264.03 36799.77 5394.78 16499.11 20798.68 220
9.1496.69 13498.53 14596.02 16198.98 6693.23 22997.18 17497.46 19096.47 8899.62 15192.99 22299.32 175
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24894.15 15596.02 16198.43 17393.17 23597.30 16897.38 20195.48 12599.28 25293.74 20699.34 16698.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t93.96 25893.22 26596.19 21499.06 8890.97 23195.99 16398.94 7473.88 36893.43 31896.93 23292.38 21299.37 22989.09 29799.28 18298.25 259
FMVSNet395.26 20494.94 20496.22 21396.53 30590.06 24295.99 16397.66 25094.11 20597.99 12597.91 14880.22 31599.63 14394.60 16999.44 13298.96 176
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12997.59 2495.97 16598.20 20395.51 15395.06 26696.53 25794.10 16999.70 10994.29 18499.15 19899.13 146
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13495.69 8595.96 16698.98 6693.36 22497.04 18797.31 20894.93 14499.63 14392.60 22599.34 16699.17 136
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16698.58 16095.08 17098.02 12496.25 27297.92 1697.60 35888.68 30498.74 24899.11 155
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16698.97 7094.55 19198.82 4398.76 5797.31 3699.29 25097.20 5099.44 13299.38 88
PAPM_NR94.61 23594.17 24495.96 22298.36 16391.23 22695.93 16997.95 23092.98 24193.42 31994.43 32490.53 23998.38 34287.60 31796.29 33298.27 257
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 11095.86 8095.92 17099.04 4997.51 6698.22 9897.81 16094.68 15199.78 4397.14 5399.75 4699.41 83
131492.38 28892.30 28492.64 32295.42 33885.15 32395.86 17196.97 27985.40 32990.62 34693.06 33891.12 23297.80 35686.74 32595.49 34394.97 352
112194.26 24693.26 26397.27 15398.26 17394.73 13095.86 17197.71 24677.96 36294.53 28096.71 24791.93 22399.40 21887.71 31398.64 25897.69 295
MVS90.02 31389.20 32092.47 32594.71 34586.90 30295.86 17196.74 28864.72 37090.62 34692.77 34292.54 20798.39 34179.30 35795.56 34292.12 362
CS-MVS95.98 17596.24 15895.20 25497.26 28389.88 24695.84 17499.39 993.89 21294.28 28695.15 30794.81 14699.62 15196.11 8399.40 15096.10 339
casdiffmvs97.50 9197.81 5496.56 19598.51 14791.04 22995.83 17599.09 3697.23 7898.33 8698.30 9397.03 5299.37 22996.58 6699.38 15499.28 115
tpmvs90.79 30990.87 30390.57 34092.75 36876.30 36595.79 17693.64 32791.04 27391.91 34196.26 27177.19 33198.86 30489.38 29489.85 36296.56 333
RRT_test8_iter0592.46 28692.52 28292.29 32995.33 33977.43 36195.73 17798.55 16294.41 19397.46 16397.72 17057.44 37199.74 7596.92 5999.14 19999.69 20
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22390.56 24095.71 17898.84 9994.72 18396.71 20797.39 19994.91 14598.10 35395.28 13499.02 21898.05 277
tfpn200view991.55 30191.00 30093.21 31098.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29295.85 341
Anonymous2023120695.27 20395.06 20195.88 22898.72 11989.37 25595.70 17997.85 23688.00 30396.98 19397.62 17791.95 22199.34 23689.21 29599.53 10098.94 179
thres40091.68 30091.00 30093.71 29998.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29297.36 305
test20.0396.58 15096.61 13796.48 19998.49 15191.72 22195.68 18297.69 24796.81 8898.27 9397.92 14794.18 16898.71 31690.78 26399.66 6399.00 171
hse-mvs295.77 18295.09 19897.79 10697.84 22095.51 9595.66 18395.43 31396.58 9697.21 17296.16 27684.14 29699.54 17695.89 9896.92 31798.32 249
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18398.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11995.78 8195.66 18399.02 5298.11 4098.31 8997.69 17394.65 15399.85 2297.02 5799.71 5499.48 59
DU-MVS97.79 7197.60 7898.36 6198.73 11795.78 8195.65 18698.87 8797.57 6198.31 8997.83 15694.69 14999.85 2297.02 5799.71 5499.46 64
EPMVS89.26 32288.55 32691.39 33492.36 36979.11 35595.65 18679.86 37288.60 29693.12 32396.53 25770.73 35998.10 35390.75 26489.32 36396.98 314
MVP-Stereo95.69 18395.28 19296.92 17198.15 18993.03 19195.64 18898.20 20390.39 27896.63 21197.73 16891.63 22899.10 27891.84 23997.31 31398.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP95.30 20294.38 23798.05 9198.64 12996.04 7495.61 18998.66 14989.00 29193.22 32296.40 26592.90 19599.35 23487.45 32197.53 30598.77 210
AUN-MVS93.95 26092.69 27797.74 11097.80 22895.38 10395.57 19095.46 31291.26 27092.64 33396.10 28274.67 34199.55 17393.72 20896.97 31698.30 253
v14419296.69 14396.90 12596.03 21998.25 17488.92 26195.49 19198.77 12193.05 23898.09 11498.29 9792.51 20999.70 10998.11 1799.56 8899.47 62
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28894.39 14495.46 19298.73 12996.03 12594.72 27494.92 31496.28 9899.69 11793.81 20497.98 28398.09 267
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19398.86 9098.20 3898.37 7699.24 2094.69 14999.55 17395.98 9399.79 3899.65 23
LF4IMVS96.07 16995.63 18497.36 14998.19 18095.55 9295.44 19398.82 11492.29 25495.70 25596.55 25592.63 20398.69 31891.75 24299.33 17397.85 287
v192192096.72 14096.96 12195.99 22098.21 17888.79 26695.42 19598.79 11693.22 23098.19 10298.26 10392.68 20099.70 10998.34 1599.55 9499.49 53
plane_prior94.29 14895.42 19594.31 19898.93 228
v114496.84 12897.08 11396.13 21798.42 15989.28 25795.41 19798.67 14794.21 20197.97 12998.31 8993.06 19099.65 13898.06 1999.62 6999.45 69
ETV-MVS96.13 16895.90 17696.82 17897.76 24093.89 16395.40 19898.95 7395.87 13595.58 25891.00 36196.36 9599.72 8693.36 21398.83 24096.85 321
v124096.74 13797.02 11895.91 22798.18 18388.52 26995.39 19998.88 8593.15 23698.46 6998.40 8392.80 19799.71 10098.45 1399.49 11899.49 53
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 20098.99 6392.45 25298.11 11098.31 8997.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 13197.06 11596.15 21698.28 16989.29 25695.36 20198.77 12193.73 21598.11 11098.34 8693.02 19499.67 13098.35 1499.58 8299.50 45
v2v48296.78 13597.06 11595.95 22498.57 14188.77 26795.36 20198.26 19695.18 16697.85 14398.23 10692.58 20499.63 14397.80 2799.69 5899.45 69
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27392.08 21395.34 20397.65 25297.74 5198.29 9298.11 12095.05 13799.68 12597.50 3999.50 11499.56 35
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27892.01 21595.33 20497.65 25297.74 5198.30 9198.14 11595.04 13999.69 11797.55 3799.52 10599.58 28
CostFormer89.75 31989.25 31791.26 33694.69 34678.00 35995.32 20591.98 34281.50 34890.55 34896.96 23171.06 35798.89 30088.59 30592.63 35696.87 319
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20699.08 3788.40 29896.97 19498.17 11492.11 21699.78 4393.64 21099.21 19098.86 199
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15391.52 22495.31 20698.45 17095.76 14197.48 16097.54 18289.53 25698.69 31894.43 17694.61 34999.13 146
EI-MVSNet96.63 14796.93 12295.74 23397.26 28388.13 27995.29 20897.65 25296.99 8297.94 13298.19 11192.55 20599.58 16296.91 6099.56 8899.50 45
CVMVSNet92.33 29092.79 27390.95 33797.26 28375.84 36795.29 20892.33 34081.86 34596.27 22998.19 11181.44 30798.46 33794.23 18798.29 27398.55 231
RRT_MVS94.90 21794.07 24697.39 14793.18 36193.21 18795.26 21097.49 26093.94 21098.25 9497.85 15472.96 35299.84 2597.90 2299.78 4199.14 143
Regformer-397.25 10997.29 9897.11 16197.35 27492.32 20495.26 21097.62 25797.67 5998.17 10397.89 14995.05 13799.56 16997.16 5299.42 14399.46 64
Regformer-497.53 9097.47 9097.71 11297.35 27493.91 16295.26 21098.14 21597.97 4398.34 8297.89 14995.49 12399.71 10097.41 4199.42 14399.51 44
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21398.46 16994.58 19098.10 11398.07 12497.09 4799.39 22395.16 14399.44 13299.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAPA-MVS93.32 1294.93 21694.23 24097.04 16698.18 18394.51 14095.22 21498.73 12981.22 35096.25 23195.95 28993.80 17798.98 29289.89 28698.87 23497.62 297
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10696.18 6895.21 21598.99 6395.84 13898.78 4598.08 12296.84 6999.81 3293.98 19999.57 8599.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVSTER94.21 25093.93 25395.05 26095.83 32786.46 30695.18 21697.65 25292.41 25397.94 13298.00 13772.39 35399.58 16296.36 7599.56 8899.12 151
PatchmatchNetpermissive91.98 29691.87 28892.30 32894.60 34779.71 35495.12 21793.59 32889.52 28693.61 31097.02 22677.94 32399.18 26490.84 26094.57 35198.01 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DWT-MVSNet_test87.92 33286.77 33691.39 33493.18 36178.62 35695.10 21891.42 34685.58 32488.00 36188.73 36660.60 36998.90 29890.60 27187.70 36596.65 329
IterMVS-LS96.92 12397.29 9895.79 23198.51 14788.13 27995.10 21898.66 14996.99 8298.46 6998.68 6392.55 20599.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14896.58 15096.97 11995.42 24798.63 13387.57 29095.09 22097.90 23395.91 13398.24 9697.96 13993.42 18499.39 22396.04 8799.52 10599.29 114
tpm288.47 32787.69 33190.79 33894.98 34377.34 36295.09 22091.83 34377.51 36489.40 35596.41 26367.83 36398.73 31483.58 35092.60 35796.29 337
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24797.31 28291.21 22795.08 22296.68 29081.56 34796.88 20096.41 26390.44 24199.25 25785.39 33697.67 29995.80 343
mvs-test196.20 16495.50 18998.32 6496.90 29998.16 595.07 22398.09 22095.86 13693.63 30894.32 32694.26 16599.71 10094.06 19397.27 31597.07 311
TAMVS95.49 19194.94 20497.16 15898.31 16593.41 18295.07 22396.82 28491.09 27297.51 15497.82 15989.96 24999.42 20788.42 30799.44 13298.64 221
tpmrst90.31 31190.61 30989.41 34494.06 35572.37 37395.06 22593.69 32488.01 30292.32 33896.86 23577.45 32798.82 30591.04 25487.01 36697.04 313
ADS-MVSNet291.47 30290.51 31094.36 28895.51 33485.63 31495.05 22695.70 30483.46 34192.69 33096.84 23779.15 31999.41 21685.66 33390.52 35998.04 278
ADS-MVSNet90.95 30890.26 31293.04 31395.51 33482.37 34395.05 22693.41 32983.46 34192.69 33096.84 23779.15 31998.70 31785.66 33390.52 35998.04 278
tpm91.08 30690.85 30491.75 33295.33 33978.09 35795.03 22891.27 34988.75 29493.53 31397.40 19571.24 35599.30 24691.25 25193.87 35297.87 286
NCCC96.52 15295.99 17198.10 8497.81 22495.68 8795.00 22998.20 20395.39 15895.40 26196.36 26893.81 17699.45 20193.55 21298.42 26899.17 136
test_post194.98 23010.37 37576.21 33699.04 28489.47 292
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 21195.65 9094.94 23198.74 12791.31 26996.02 24097.08 22194.05 17199.69 11791.51 24598.94 22698.93 183
AdaColmapbinary95.11 20994.62 22496.58 19297.33 28094.45 14394.92 23298.08 22293.15 23693.98 29895.53 30194.34 16399.10 27885.69 33298.61 26096.20 338
MDTV_nov1_ep13_2view57.28 37794.89 23380.59 35294.02 29578.66 32185.50 33597.82 289
CNVR-MVS96.92 12396.55 14398.03 9298.00 20595.54 9394.87 23498.17 20994.60 18796.38 22297.05 22495.67 11899.36 23195.12 14999.08 21199.19 133
OMC-MVS96.48 15496.00 17097.91 9898.30 16696.01 7794.86 23598.60 15791.88 26097.18 17497.21 21496.11 9999.04 28490.49 27899.34 16698.69 218
Regformer-197.27 10797.16 10897.61 12197.21 28693.86 16594.85 23698.04 22997.62 6098.03 12297.50 18795.34 13099.63 14396.52 6899.31 17799.35 98
Regformer-297.41 9897.24 10397.93 9797.21 28694.72 13194.85 23698.27 19497.74 5198.11 11097.50 18795.58 12199.69 11796.57 6799.31 17799.37 95
EPNet_dtu91.39 30390.75 30693.31 30690.48 37382.61 34194.80 23892.88 33493.39 22381.74 37194.90 31581.36 30899.11 27688.28 30998.87 23498.21 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1391.28 29694.31 34973.51 37194.80 23893.16 33186.75 31593.45 31797.40 19576.37 33498.55 33288.85 30096.43 329
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17494.29 14894.77 24098.07 22689.81 28497.97 12998.33 8793.11 18999.08 28095.46 12399.84 2998.89 192
test_yl94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
DCV-MVSNet94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
MCST-MVS96.24 16295.80 17897.56 12398.75 11694.13 15694.66 24398.17 20990.17 28196.21 23396.10 28295.14 13699.43 20694.13 19198.85 23899.13 146
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9597.41 3594.66 24399.02 5295.20 16498.15 10697.52 18598.83 498.43 33894.87 15896.41 33099.07 162
mvs_anonymous95.36 19996.07 16893.21 31096.29 31081.56 34894.60 24597.66 25093.30 22796.95 19598.91 4993.03 19399.38 22696.60 6497.30 31498.69 218
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14793.99 16194.60 24598.69 14290.20 28095.78 25196.21 27592.73 19998.98 29290.58 27398.86 23697.42 304
ETH3 D test640094.77 22393.87 25497.47 13698.12 19493.73 17194.56 24798.70 13985.45 32894.70 27695.93 29191.77 22799.63 14386.45 32799.14 19999.05 166
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15394.71 13294.53 24899.07 4095.02 17497.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
save fliter98.48 15394.71 13294.53 24898.41 17895.02 174
tpm cat188.01 33187.33 33290.05 34394.48 34876.28 36694.47 25094.35 32273.84 36989.26 35695.61 29973.64 34698.30 34784.13 34486.20 36795.57 348
CANet95.86 18095.65 18396.49 19896.41 30890.82 23394.36 25198.41 17894.94 17692.62 33596.73 24692.68 20099.71 10095.12 14999.60 7898.94 179
WR-MVS96.90 12596.81 12897.16 15898.56 14292.20 20994.33 25298.12 21897.34 7498.20 9997.33 20692.81 19699.75 6594.79 16299.81 3399.54 38
HQP-NCC97.85 21694.26 25393.18 23292.86 327
ACMP_Plane97.85 21694.26 25393.18 23292.86 327
HQP-MVS95.17 20894.58 22896.92 17197.85 21692.47 20194.26 25398.43 17393.18 23292.86 32795.08 30890.33 24299.23 26090.51 27698.74 24899.05 166
PLCcopyleft91.02 1694.05 25792.90 26997.51 12898.00 20595.12 12194.25 25698.25 19786.17 31791.48 34395.25 30591.01 23399.19 26385.02 34096.69 32598.22 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
1112_ss94.12 25393.42 26096.23 21198.59 13990.85 23294.24 25798.85 9485.49 32592.97 32594.94 31286.01 28599.64 14191.78 24097.92 28598.20 263
MS-PatchMatch94.83 22094.91 20894.57 28296.81 30187.10 29994.23 25897.34 26588.74 29597.14 17697.11 21991.94 22298.23 34992.99 22297.92 28598.37 242
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 25292.82 19594.22 25998.60 15791.61 26393.42 31992.90 34096.73 7399.70 10992.60 22597.89 28897.74 292
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18193.57 36094.67 13694.21 26097.67 24880.36 35493.61 31096.60 25382.85 30297.35 35984.86 34198.78 24498.29 256
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dp88.08 33088.05 32888.16 35092.85 36668.81 37594.17 26192.88 33485.47 32691.38 34496.14 27968.87 36298.81 30786.88 32483.80 36996.87 319
JIA-IIPM91.79 29890.69 30795.11 25793.80 35790.98 23094.16 26291.78 34496.38 10490.30 35199.30 1872.02 35498.90 29888.28 30990.17 36195.45 349
D2MVS95.18 20695.17 19595.21 25397.76 24087.76 28894.15 26397.94 23189.77 28596.99 19197.68 17487.45 27799.14 27195.03 15499.81 3398.74 212
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24595.23 11394.15 26396.90 28193.26 22898.04 12196.70 24894.41 16198.89 30094.77 16599.14 19998.37 242
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23487.40 29494.14 26598.68 14488.94 29294.51 28198.01 13593.04 19199.30 24689.77 28899.49 11899.11 155
TinyColmap96.00 17496.34 15594.96 26397.90 21387.91 28294.13 26698.49 16794.41 19398.16 10497.76 16296.29 9798.68 32190.52 27599.42 14398.30 253
CNLPA95.04 21294.47 23396.75 18297.81 22495.25 11294.12 26797.89 23494.41 19394.57 27895.69 29490.30 24598.35 34586.72 32698.76 24696.64 330
BH-untuned94.69 22994.75 21794.52 28497.95 21087.53 29194.07 26897.01 27793.99 20897.10 18095.65 29692.65 20298.95 29787.60 31796.74 32497.09 310
pmmvs594.63 23494.34 23895.50 24397.63 25588.34 27394.02 26997.13 27287.15 31095.22 26497.15 21587.50 27699.27 25493.99 19899.26 18598.88 196
thres20091.00 30790.42 31192.77 32097.47 26883.98 33694.01 27091.18 35095.12 16995.44 25991.21 35973.93 34399.31 24377.76 36297.63 30295.01 351
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
CDS-MVSNet94.88 21994.12 24597.14 16097.64 25493.57 17893.96 27497.06 27690.05 28296.30 22896.55 25586.10 28499.47 19490.10 28399.31 17798.40 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet_DTU94.65 23394.21 24295.96 22295.90 32489.68 24993.92 27597.83 24093.19 23190.12 35295.64 29788.52 26499.57 16893.27 21799.47 12498.62 224
WTY-MVS93.55 26993.00 26895.19 25597.81 22487.86 28393.89 27696.00 29889.02 29094.07 29395.44 30386.27 28399.33 23987.69 31596.82 32198.39 240
sss94.22 24893.72 25695.74 23397.71 24789.95 24593.84 27796.98 27888.38 29993.75 30395.74 29387.94 27098.89 30091.02 25598.10 27998.37 242
baseline289.65 32088.44 32793.25 30895.62 33282.71 34093.82 27885.94 36788.89 29387.35 36592.54 34671.23 35699.33 23986.01 32894.60 35097.72 293
XVG-OURS97.12 11396.74 13298.26 6998.99 9697.45 3393.82 27899.05 4395.19 16598.32 8797.70 17195.22 13598.41 33994.27 18598.13 27898.93 183
MVS_111021_LR96.82 13296.55 14397.62 12098.27 17195.34 10893.81 28098.33 19094.59 18996.56 21496.63 25296.61 7898.73 31494.80 16199.34 16698.78 207
BH-RMVSNet94.56 23794.44 23694.91 26497.57 25787.44 29393.78 28196.26 29393.69 21796.41 22196.50 26092.10 21799.00 28885.96 32997.71 29598.31 251
CDPH-MVS95.45 19694.65 22097.84 10498.28 16994.96 12493.73 28298.33 19085.03 33395.44 25996.60 25395.31 13299.44 20490.01 28499.13 20399.11 155
PatchMatch-RL94.61 23593.81 25597.02 16898.19 18095.72 8393.66 28397.23 26788.17 30194.94 27195.62 29891.43 22998.57 32987.36 32297.68 29896.76 327
TEST997.84 22095.23 11393.62 28498.39 18186.81 31393.78 30095.99 28494.68 15199.52 182
train_agg95.46 19594.66 21997.88 10197.84 22095.23 11393.62 28498.39 18187.04 31193.78 30095.99 28494.58 15699.52 18291.76 24198.90 23098.89 192
test_prior495.38 10393.61 286
test_897.81 22495.07 12293.54 28798.38 18387.04 31193.71 30595.96 28894.58 15699.52 182
TR-MVS92.54 28592.20 28593.57 30296.49 30686.66 30493.51 28894.73 31789.96 28394.95 27093.87 32990.24 24798.61 32681.18 35494.88 34695.45 349
新几何293.43 289
diffmvs96.04 17196.23 15995.46 24697.35 27488.03 28193.42 29099.08 3794.09 20696.66 20996.93 23293.85 17599.29 25096.01 9198.67 25399.06 164
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16493.66 17693.42 29098.36 18594.74 18296.58 21296.76 24596.54 8298.99 29094.87 15899.27 18499.15 140
agg_prior195.39 19894.60 22597.75 10997.80 22894.96 12493.39 29298.36 18587.20 30993.49 31495.97 28794.65 15399.53 17891.69 24398.86 23698.77 210
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21898.62 13490.54 24193.38 29398.05 22890.30 27997.02 18996.80 24289.54 25499.16 26988.44 30696.18 33398.56 229
旧先验293.35 29477.95 36395.77 25398.67 32290.74 267
test_prior395.91 17795.39 19097.46 13997.79 23494.26 15293.33 29598.42 17694.21 20194.02 29596.25 27293.64 18099.34 23691.90 23598.96 22298.79 205
test_prior293.33 29594.21 20194.02 29596.25 27293.64 18091.90 23598.96 222
SCA93.38 27393.52 25992.96 31796.24 31281.40 34993.24 29794.00 32391.58 26594.57 27896.97 22987.94 27099.42 20789.47 29297.66 30098.06 274
无先验93.20 29897.91 23280.78 35199.40 21887.71 31397.94 283
MG-MVS94.08 25694.00 24994.32 28997.09 29185.89 31393.19 29995.96 30092.52 24994.93 27297.51 18689.54 25498.77 31087.52 32097.71 29598.31 251
MVS-HIRNet88.40 32890.20 31382.99 35297.01 29360.04 37693.11 30085.61 36884.45 33988.72 35999.09 3684.72 29498.23 34982.52 35196.59 32890.69 367
new-patchmatchnet95.67 18596.58 14092.94 31897.48 26480.21 35392.96 30198.19 20894.83 18098.82 4398.79 5493.31 18699.51 18695.83 10299.04 21799.12 151
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15388.76 26892.84 30297.25 26696.00 12697.59 15097.95 14391.38 23099.46 19793.16 22096.35 33198.99 174
原ACMM292.82 303
testdata192.77 30493.78 214
Test_1112_low_res93.53 27092.86 27095.54 24298.60 13788.86 26492.75 30598.69 14282.66 34492.65 33296.92 23484.75 29399.56 16990.94 25797.76 29198.19 264
USDC94.56 23794.57 23094.55 28397.78 23886.43 30892.75 30598.65 15485.96 31996.91 19897.93 14690.82 23698.74 31390.71 26899.59 8098.47 235
test22298.17 18593.24 18692.74 30797.61 25875.17 36694.65 27796.69 24990.96 23598.66 25597.66 296
jason94.39 24494.04 24895.41 24998.29 16787.85 28592.74 30796.75 28785.38 33095.29 26296.15 27788.21 26999.65 13894.24 18699.34 16698.74 212
jason: jason.
Patchmatch-RL test94.66 23294.49 23195.19 25598.54 14488.91 26292.57 30998.74 12791.46 26698.32 8797.75 16577.31 33098.81 30796.06 8499.61 7597.85 287
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26497.23 4192.56 31098.60 15792.84 24798.54 6097.40 19596.64 7798.78 30994.40 17999.41 14998.93 183
N_pmnet95.18 20694.23 24098.06 8897.85 21696.55 5892.49 31191.63 34589.34 28798.09 11497.41 19490.33 24299.06 28291.58 24499.31 17798.56 229
BH-w/o92.14 29391.94 28792.73 32197.13 29085.30 31992.46 31295.64 30589.33 28894.21 28892.74 34389.60 25298.24 34881.68 35294.66 34894.66 353
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24985.53 31692.42 31397.63 25696.99 8298.36 7998.54 7387.94 27099.75 6597.07 5699.08 21199.27 119
IterMVS95.42 19795.83 17794.20 29297.52 26283.78 33792.41 31497.47 26395.49 15498.06 11898.49 7687.94 27099.58 16296.02 8999.02 21899.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS96.17 16696.23 15995.99 22097.55 26190.04 24392.38 31598.52 16494.13 20496.55 21697.06 22394.99 14299.58 16295.62 11299.28 18298.37 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
new_pmnet92.34 28991.69 29294.32 28996.23 31489.16 25992.27 31692.88 33484.39 34095.29 26296.35 26985.66 28796.74 36584.53 34397.56 30397.05 312
CHOSEN 1792x268894.10 25493.41 26196.18 21599.16 7090.04 24392.15 31798.68 14479.90 35596.22 23297.83 15687.92 27499.42 20789.18 29699.65 6499.08 160
xiu_mvs_v2_base94.22 24894.63 22392.99 31697.32 28184.84 32892.12 31897.84 23891.96 25894.17 28993.43 33196.07 10099.71 10091.27 24997.48 30794.42 354
lupinMVS93.77 26193.28 26295.24 25297.68 24987.81 28692.12 31896.05 29684.52 33794.48 28395.06 31086.90 28099.63 14393.62 21199.13 20398.27 257
pmmvs494.82 22194.19 24396.70 18597.42 27192.75 19892.09 32096.76 28686.80 31495.73 25497.22 21389.28 26098.89 30093.28 21699.14 19998.46 237
PAPR92.22 29191.27 29795.07 25995.73 33188.81 26591.97 32197.87 23585.80 32290.91 34592.73 34491.16 23198.33 34679.48 35695.76 34098.08 268
PS-MVSNAJ94.10 25494.47 23393.00 31597.35 27484.88 32791.86 32297.84 23891.96 25894.17 28992.50 34795.82 10899.71 10091.27 24997.48 30794.40 355
c3_l95.20 20595.32 19194.83 27196.19 31686.43 30891.83 32398.35 18993.47 22197.36 16797.26 21188.69 26399.28 25295.41 13099.36 15898.78 207
test0.0.03 190.11 31289.21 31992.83 31993.89 35686.87 30391.74 32488.74 36292.02 25694.71 27591.14 36073.92 34494.48 36883.75 34992.94 35497.16 309
FPMVS89.92 31788.63 32593.82 29698.37 16296.94 4691.58 32593.34 33088.00 30390.32 35097.10 22070.87 35891.13 37071.91 36896.16 33593.39 360
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24596.41 30889.15 26091.54 32690.23 35889.07 28986.78 36792.84 34169.39 36199.44 20494.16 18996.61 32797.82 289
PVSNet_Blended93.96 25893.65 25794.91 26497.79 23487.40 29491.43 32798.68 14484.50 33894.51 28194.48 32393.04 19199.30 24689.77 28898.61 26098.02 280
CLD-MVS95.47 19495.07 19996.69 18698.27 17192.53 20091.36 32898.67 14791.22 27195.78 25194.12 32895.65 11998.98 29290.81 26199.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32386.12 31191.35 32998.49 16793.40 22297.12 17897.25 21286.87 28299.35 23495.08 15198.82 24198.78 207
cl____94.73 22494.64 22195.01 26195.85 32687.00 30091.33 33098.08 22293.34 22597.10 18097.33 20684.01 29999.30 24695.14 14699.56 8898.71 217
DIV-MVS_self_test94.73 22494.64 22195.01 26195.86 32587.00 30091.33 33098.08 22293.34 22597.10 18097.34 20584.02 29899.31 24395.15 14599.55 9498.72 215
miper_ehance_all_eth94.69 22994.70 21894.64 27695.77 32986.22 31091.32 33298.24 19891.67 26297.05 18696.65 25188.39 26799.22 26294.88 15798.34 27098.49 234
pmmvs390.00 31488.90 32493.32 30594.20 35485.34 31891.25 33392.56 33978.59 35993.82 29995.17 30667.36 36498.69 31889.08 29898.03 28295.92 340
HyFIR lowres test93.72 26392.65 27896.91 17398.93 10191.81 22091.23 33498.52 16482.69 34396.46 21996.52 25980.38 31499.90 1390.36 28098.79 24399.03 168
DPM-MVS93.68 26592.77 27696.42 20297.91 21192.54 19991.17 33597.47 26384.99 33493.08 32494.74 31689.90 25099.00 28887.54 31998.09 28097.72 293
CL-MVSNet_self_test95.04 21294.79 21695.82 23097.51 26389.79 24891.14 33696.82 28493.05 23896.72 20696.40 26590.82 23699.16 26991.95 23498.66 25598.50 233
miper_lstm_enhance94.81 22294.80 21594.85 26996.16 31886.45 30791.14 33698.20 20393.49 22097.03 18897.37 20384.97 29299.26 25595.28 13499.56 8898.83 201
cl2293.25 27692.84 27294.46 28594.30 35086.00 31291.09 33896.64 29190.74 27495.79 24996.31 27078.24 32298.77 31094.15 19098.34 27098.62 224
MSDG95.33 20095.13 19695.94 22697.40 27291.85 21891.02 33998.37 18495.30 16196.31 22795.99 28494.51 15998.38 34289.59 29097.65 30197.60 299
IB-MVS85.98 2088.63 32686.95 33593.68 30095.12 34184.82 32990.85 34090.17 35987.55 30688.48 36091.34 35858.01 37099.59 16087.24 32393.80 35396.63 332
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12312.59 34115.49 3443.87 3566.07 3792.55 38090.75 3412.59 3812.52 3745.20 37613.02 3734.96 3791.85 3765.20 3739.09 3737.23 371
ppachtmachnet_test94.49 24194.84 21193.46 30496.16 31882.10 34490.59 34297.48 26290.53 27797.01 19097.59 17991.01 23399.36 23193.97 20099.18 19698.94 179
PMMVS92.39 28791.08 29996.30 20993.12 36492.81 19690.58 34395.96 30079.17 35891.85 34292.27 34890.29 24698.66 32389.85 28796.68 32697.43 303
our_test_394.20 25294.58 22893.07 31296.16 31881.20 35090.42 34496.84 28290.72 27597.14 17697.13 21690.47 24099.11 27694.04 19798.25 27498.91 188
YYNet194.73 22494.84 21194.41 28797.47 26885.09 32590.29 34595.85 30392.52 24997.53 15297.76 16291.97 22099.18 26493.31 21596.86 32098.95 177
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26485.15 32390.28 34695.87 30292.52 24997.48 16097.76 16291.92 22499.17 26893.32 21496.80 32398.94 179
GA-MVS92.83 28192.15 28694.87 26896.97 29487.27 29790.03 34796.12 29591.83 26194.05 29494.57 31876.01 33798.97 29692.46 22997.34 31298.36 247
miper_enhance_ethall93.14 27892.78 27594.20 29293.65 35885.29 32089.97 34897.85 23685.05 33296.15 23794.56 31985.74 28699.14 27193.74 20698.34 27098.17 266
test-LLR89.97 31689.90 31490.16 34194.24 35274.98 36889.89 34989.06 36092.02 25689.97 35390.77 36273.92 34498.57 32991.88 23797.36 31096.92 316
TESTMET0.1,187.20 33586.57 33789.07 34593.62 35972.84 37289.89 34987.01 36685.46 32789.12 35890.20 36456.00 37697.72 35790.91 25896.92 31796.64 330
test-mter87.92 33287.17 33390.16 34194.24 35274.98 36889.89 34989.06 36086.44 31689.97 35390.77 36254.96 37898.57 32991.88 23797.36 31096.92 316
PCF-MVS89.43 1892.12 29490.64 30896.57 19497.80 22893.48 18189.88 35298.45 17074.46 36796.04 23995.68 29590.71 23899.31 24373.73 36599.01 22096.91 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thisisatest051590.43 31089.18 32294.17 29497.07 29285.44 31789.75 35387.58 36388.28 30093.69 30791.72 35465.27 36599.58 16290.59 27298.67 25397.50 302
KD-MVS_2432*160088.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
miper_refine_blended88.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
testmvs12.33 34215.23 3453.64 3575.77 3802.23 38188.99 3563.62 3802.30 3755.29 37513.09 3724.52 3801.95 3755.16 3748.32 3746.75 372
cascas91.89 29791.35 29593.51 30394.27 35185.60 31588.86 35798.61 15679.32 35792.16 33991.44 35789.22 26198.12 35290.80 26297.47 30996.82 324
bset_n11_16_dypcd94.53 23993.95 25296.25 21097.56 25989.85 24788.52 35891.32 34794.90 17997.51 15496.38 26782.34 30499.78 4397.22 4699.80 3699.12 151
PAPM87.64 33485.84 33993.04 31396.54 30484.99 32688.42 35995.57 30979.52 35683.82 36893.05 33980.57 31398.41 33962.29 37192.79 35595.71 344
PVSNet86.72 1991.10 30590.97 30291.49 33397.56 25978.04 35887.17 36094.60 31984.65 33692.34 33792.20 34987.37 27898.47 33685.17 33997.69 29797.96 282
PMMVS293.66 26694.07 24692.45 32697.57 25780.67 35286.46 36196.00 29893.99 20897.10 18097.38 20189.90 25097.82 35588.76 30199.47 12498.86 199
CHOSEN 280x42089.98 31589.19 32192.37 32795.60 33381.13 35186.22 36297.09 27481.44 34987.44 36493.15 33273.99 34299.47 19488.69 30399.07 21396.52 334
tmp_tt57.23 33962.50 34241.44 35534.77 37849.21 37883.93 36360.22 37915.31 37271.11 37379.37 37070.09 36044.86 37464.76 37082.93 37030.25 370
PVSNet_081.89 2184.49 33783.21 34088.34 34895.76 33074.97 37083.49 36492.70 33878.47 36087.94 36286.90 36883.38 30196.63 36673.44 36666.86 37293.40 359
E-PMN89.52 32189.78 31588.73 34693.14 36377.61 36083.26 36592.02 34194.82 18193.71 30593.11 33375.31 33996.81 36285.81 33096.81 32291.77 364
EMVS89.06 32389.22 31888.61 34793.00 36577.34 36282.91 36690.92 35194.64 18692.63 33491.81 35376.30 33597.02 36083.83 34796.90 31991.48 365
MVEpermissive73.61 2286.48 33685.92 33888.18 34996.23 31485.28 32181.78 36775.79 37386.01 31882.53 37091.88 35292.74 19887.47 37271.42 36994.86 34791.78 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method66.88 33866.13 34169.11 35462.68 37725.73 37949.76 36896.04 29714.32 37364.27 37491.69 35573.45 34988.05 37176.06 36466.94 37193.54 357
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
cdsmvs_eth3d_5k24.22 34032.30 3430.00 3580.00 3810.00 3820.00 36998.10 2190.00 3760.00 37795.06 31097.54 290.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.98 34310.65 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37695.82 1080.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
ab-mvs-re7.91 34410.55 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37794.94 3120.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
MSC_two_6792asdad98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
PC_three_145287.24 30898.37 7697.44 19297.00 5496.78 36492.01 23299.25 18699.21 129
No_MVS98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
test_one_060199.05 9295.50 9898.87 8797.21 7998.03 12298.30 9396.93 60
eth-test20.00 381
eth-test0.00 381
ZD-MVS98.43 15895.94 7898.56 16190.72 27596.66 20997.07 22295.02 14199.74 7591.08 25398.93 228
IU-MVS99.22 5895.40 10198.14 21585.77 32398.36 7995.23 13899.51 11099.49 53
test_241102_TWO98.83 10696.11 11898.62 5298.24 10496.92 6299.72 8695.44 12499.49 11899.49 53
test_241102_ONE99.22 5895.35 10698.83 10696.04 12399.08 3198.13 11697.87 2099.33 239
test_0728_THIRD96.62 9298.40 7398.28 9897.10 4599.71 10095.70 10499.62 6999.58 28
GSMVS98.06 274
test_part299.03 9496.07 7398.08 116
sam_mvs177.80 32498.06 274
sam_mvs77.38 328
MTGPAbinary98.73 129
test_post10.87 37476.83 33299.07 281
patchmatchnet-post96.84 23777.36 32999.42 207
gm-plane-assit91.79 37071.40 37481.67 34690.11 36598.99 29084.86 341
test9_res91.29 24898.89 23399.00 171
agg_prior290.34 28198.90 23099.10 159
agg_prior97.80 22894.96 12498.36 18593.49 31499.53 178
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
test_prior97.46 13997.79 23494.26 15298.42 17699.34 23698.79 205
新几何197.25 15698.29 16794.70 13597.73 24477.98 36194.83 27396.67 25092.08 21899.45 20188.17 31198.65 25797.61 298
旧先验197.80 22893.87 16497.75 24397.04 22593.57 18298.68 25298.72 215
原ACMM196.58 19298.16 18792.12 21198.15 21485.90 32193.49 31496.43 26292.47 21099.38 22687.66 31698.62 25998.23 260
testdata299.46 19787.84 312
segment_acmp95.34 130
testdata95.70 23698.16 18790.58 23897.72 24580.38 35395.62 25697.02 22692.06 21998.98 29289.06 29998.52 26497.54 300
test1297.46 13997.61 25694.07 15797.78 24293.57 31293.31 18699.42 20798.78 24498.89 192
plane_prior798.70 12494.67 136
plane_prior698.38 16194.37 14691.91 225
plane_prior598.75 12599.46 19792.59 22799.20 19199.28 115
plane_prior496.77 243
plane_prior394.51 14095.29 16296.16 235
plane_prior198.49 151
n20.00 382
nn0.00 382
door-mid98.17 209
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4385.36 28999.74 7597.34 4499.37 15599.30 107
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
BP-MVS90.51 276
HQP4-MVS92.87 32699.23 26099.06 164
HQP3-MVS98.43 17398.74 248
HQP2-MVS90.33 242
NP-MVS98.14 19093.72 17295.08 308
ACMMP++_ref99.52 105
ACMMP++99.55 94
Test By Simon94.51 159
ITE_SJBPF97.85 10398.64 12996.66 5498.51 16695.63 14697.22 17097.30 20995.52 12298.55 33290.97 25698.90 23098.34 248
DeepMVS_CXcopyleft77.17 35390.94 37285.28 32174.08 37652.51 37180.87 37288.03 36775.25 34070.63 37359.23 37284.94 36875.62 368