LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 75 | 75.40 29 | 91.60 1 | 87.80 7 | 73.52 23 | 88.90 10 | 93.06 6 | 71.39 74 | 81.53 115 | 81.53 3 | 92.15 87 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 63 | 74.51 48 | 96.15 2 | 92.88 7 |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 3 | 84.43 60 | 71.96 39 | 84.70 59 | 90.56 50 | 77.12 26 | 86.18 25 | 79.24 18 | 95.36 13 | 82.49 161 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 25 | 87.65 4 | 85.89 28 | 71.03 42 | 85.85 40 | 90.58 49 | 78.77 17 | 85.78 38 | 79.37 16 | 95.17 17 | 84.62 101 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 47 | 79.27 8 | 87.56 5 | 86.08 25 | 77.48 12 | 88.12 13 | 91.53 27 | 81.18 8 | 84.31 71 | 78.12 24 | 94.47 35 | 84.15 119 |
|
LS3D | | | 80.99 45 | 80.85 54 | 81.41 30 | 78.37 159 | 71.37 53 | 87.45 6 | 85.87 29 | 77.48 12 | 81.98 88 | 89.95 75 | 69.14 87 | 85.26 52 | 66.15 105 | 91.24 102 | 87.61 51 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 45 | 79.20 14 | 85.58 46 | 78.11 25 | 94.46 36 | 84.89 91 |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 45 | 81.38 7 | | 78.11 25 | 94.46 36 | 84.89 91 |
|
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 103 | 74.39 35 | 87.18 9 | 88.18 6 | 78.98 6 | 86.11 38 | 91.47 29 | 79.70 12 | 85.76 39 | 66.91 104 | 95.46 11 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MSP-MVS | | | 80.49 49 | 79.67 64 | 82.96 7 | 89.70 12 | 77.46 22 | 87.16 10 | 85.10 42 | 64.94 87 | 81.05 100 | 88.38 104 | 57.10 198 | 87.10 8 | 79.75 8 | 83.87 217 | 84.31 115 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 11 | 82.79 87 | 72.41 33 | 85.11 53 | 90.85 41 | 76.65 29 | 84.89 60 | 79.30 17 | 94.63 32 | 82.35 164 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 19 | 87.06 12 | 84.23 68 | 70.19 48 | 83.86 70 | 90.72 47 | 75.20 41 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 122 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 27 | 89.25 21 | 75.69 27 | 87.01 13 | 84.27 64 | 70.23 46 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 79.58 11 | 94.23 51 | 82.82 151 |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 21 | 87.01 13 | 84.19 69 | 70.23 46 | 84.49 61 | 90.67 48 | 75.15 42 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 118 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 34 | 77.71 16 | 86.81 15 | 85.25 38 | 77.42 14 | 86.15 36 | 90.24 68 | 81.69 5 | 85.94 31 | 77.77 29 | 93.58 65 | 83.09 142 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 26 | 82.87 79 | 90.39 61 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
X-MVStestdata | | | 76.81 82 | 74.79 101 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 26 | 82.87 79 | 9.95 359 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
TSAR-MVS + MP. | | | 79.05 63 | 78.81 68 | 79.74 48 | 88.94 28 | 67.52 85 | 86.61 18 | 81.38 107 | 51.71 216 | 77.15 146 | 91.42 32 | 65.49 122 | 87.20 6 | 79.44 14 | 87.17 175 | 84.51 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 57 | 84.80 77 | 66.72 91 | 86.54 19 | 85.11 41 | 72.00 38 | 86.65 32 | 91.75 23 | 78.20 21 | 87.04 9 | 77.93 28 | 94.32 48 | 83.47 132 |
|
CPTT-MVS | | | 81.51 38 | 81.76 46 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 20 | 82.03 96 | 68.80 53 | 80.92 103 | 88.52 101 | 72.00 67 | 82.39 102 | 74.80 44 | 93.04 71 | 81.14 181 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 21 | 83.59 78 | 71.31 40 | 81.26 98 | 90.96 38 | 74.57 50 | 84.69 64 | 78.41 22 | 94.78 26 | 82.74 155 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 29 | 89.14 25 | 73.28 45 | 86.32 22 | 85.97 27 | 67.39 61 | 84.02 68 | 90.39 61 | 74.73 47 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 104 |
|
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 33 | 75.83 26 | 86.27 23 | 86.89 16 | 73.69 22 | 86.17 35 | 91.70 24 | 78.23 20 | 85.20 56 | 79.45 13 | 94.91 25 | 88.15 45 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 32 | 88.99 27 | 73.29 44 | 85.94 24 | 85.13 40 | 68.58 57 | 84.14 67 | 90.21 70 | 73.37 60 | 86.41 17 | 79.09 19 | 93.98 58 | 84.30 117 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 31 | 85.14 71 | 71.00 57 | 85.53 25 | 84.78 48 | 70.91 43 | 85.64 43 | 90.41 58 | 75.55 39 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 81 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 33 | 82.83 106 | 73.53 43 | 85.50 26 | 87.45 12 | 74.11 19 | 86.45 33 | 90.52 53 | 80.02 11 | 84.48 67 | 77.73 30 | 94.34 47 | 85.93 72 |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 38 | 74.40 34 | 85.24 27 | 87.21 14 | 70.69 45 | 85.14 52 | 90.42 57 | 78.99 16 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 37 | 80.50 6 | 85.12 28 | 85.22 39 | 81.06 2 | 87.20 27 | 90.28 67 | 79.20 14 | 85.58 46 | 78.04 27 | 94.08 54 | 83.55 129 |
|
SMA-MVS |  | | 82.12 32 | 82.68 41 | 80.43 42 | 88.90 30 | 69.52 69 | 85.12 28 | 84.76 49 | 63.53 101 | 84.23 66 | 91.47 29 | 72.02 66 | 87.16 7 | 79.74 10 | 94.36 45 | 84.61 102 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 30 | 80.63 121 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 189 |
|
MTMP | | | | | | | | 84.83 31 | 19.26 364 | | | | | | | | |
|
LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 119 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 66 | 68.08 89 | 97.05 1 | 96.93 1 |
|
UA-Net | | | 81.56 37 | 82.28 43 | 79.40 54 | 88.91 29 | 69.16 76 | 84.67 33 | 80.01 135 | 75.34 16 | 79.80 115 | 94.91 2 | 69.79 84 | 80.25 143 | 72.63 60 | 94.46 36 | 88.78 41 |
|
#test# | | | 82.40 30 | 82.71 40 | 81.48 27 | 89.25 21 | 75.69 27 | 84.47 34 | 84.27 64 | 64.45 91 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 76.01 36 | 94.23 51 | 82.82 151 |
|
3Dnovator+ | | 73.19 2 | 81.08 43 | 80.48 56 | 82.87 9 | 81.41 126 | 72.03 48 | 84.38 35 | 86.23 23 | 77.28 15 | 80.65 106 | 90.18 71 | 59.80 171 | 87.58 4 | 73.06 57 | 91.34 100 | 89.01 33 |
|
MVSFormer | | | 69.93 165 | 69.03 177 | 72.63 150 | 74.93 200 | 59.19 150 | 83.98 36 | 75.72 187 | 52.27 209 | 63.53 289 | 76.74 263 | 43.19 269 | 80.56 135 | 72.28 65 | 78.67 271 | 78.14 227 |
|
test_djsdf | | | 78.88 65 | 78.27 75 | 80.70 41 | 81.42 125 | 71.24 55 | 83.98 36 | 75.72 187 | 52.27 209 | 87.37 26 | 92.25 16 | 68.04 100 | 80.56 135 | 72.28 65 | 91.15 105 | 90.32 20 |
|
APD-MVS |  | | 81.13 42 | 81.73 47 | 79.36 55 | 84.47 82 | 70.53 62 | 83.85 38 | 83.70 76 | 69.43 52 | 83.67 72 | 88.96 97 | 75.89 35 | 86.41 17 | 72.62 61 | 92.95 72 | 81.14 181 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
test0726 | | | | | | 86.16 55 | 60.78 137 | 83.81 39 | 85.10 42 | 72.48 31 | 85.27 51 | 89.96 74 | 78.57 18 | | | | |
|
DVP-MVS | | | 81.15 41 | 83.12 35 | 75.24 105 | 86.16 55 | 60.78 137 | 83.77 40 | 80.58 124 | 72.48 31 | 85.83 41 | 90.41 58 | 78.57 18 | 85.69 41 | 75.86 39 | 94.39 41 | 79.24 213 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 76.57 87 | 86.20 52 | 60.57 140 | 83.77 40 | 85.49 32 | | | | | 85.90 35 | 75.86 39 | 94.39 41 | 83.25 139 |
|
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 85 | 86.12 57 | 61.06 132 | 83.62 42 | 84.72 51 | 72.61 29 | 87.38 24 | 89.70 78 | 77.48 24 | 85.89 36 | 75.29 42 | 94.39 41 | 83.08 143 |
|
OPU-MVS | | | | | 78.65 64 | 83.44 98 | 66.85 90 | 83.62 42 | | | | 86.12 155 | 66.82 110 | 86.01 29 | 61.72 138 | 89.79 137 | 83.08 143 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 53 | 89.28 19 | 69.09 78 | 83.62 42 | 84.98 44 | 64.77 88 | 83.97 69 | 91.02 37 | 75.53 40 | 85.93 34 | 82.00 2 | 94.36 45 | 83.35 137 |
|
testtj | | | 81.19 40 | 81.70 48 | 79.67 51 | 83.95 90 | 69.77 68 | 83.58 45 | 84.63 56 | 72.13 35 | 82.85 81 | 88.36 105 | 75.00 45 | 86.79 12 | 71.99 69 | 92.84 74 | 82.44 162 |
|
HPM-MVS++ |  | | 79.89 56 | 79.80 62 | 80.18 45 | 89.02 26 | 78.44 13 | 83.49 46 | 80.18 132 | 64.71 90 | 78.11 135 | 88.39 103 | 65.46 123 | 83.14 90 | 77.64 32 | 91.20 103 | 78.94 216 |
|
SF-MVS | | | 80.72 47 | 81.80 45 | 77.48 78 | 82.03 117 | 64.40 111 | 83.41 47 | 88.46 5 | 65.28 82 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
SD-MVS | | | 80.28 54 | 81.55 51 | 76.47 90 | 83.57 94 | 67.83 84 | 83.39 48 | 85.35 37 | 64.42 92 | 86.14 37 | 87.07 121 | 74.02 54 | 80.97 128 | 77.70 31 | 92.32 85 | 80.62 196 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 66 | 88.17 39 | 73.96 37 | 83.11 49 | 84.52 59 | 66.40 71 | 87.45 22 | 89.16 91 | 81.02 9 | 80.52 138 | 74.27 50 | 95.73 7 | 80.98 186 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DPE-MVS |  | | 82.00 34 | 83.02 36 | 78.95 60 | 85.36 68 | 67.25 87 | 82.91 50 | 84.98 44 | 73.52 23 | 85.43 48 | 90.03 72 | 76.37 30 | 86.97 11 | 74.56 47 | 94.02 57 | 82.62 157 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
HQP_MVS | | | 78.77 66 | 78.78 70 | 78.72 62 | 85.18 69 | 65.18 103 | 82.74 51 | 85.49 32 | 65.45 77 | 78.23 132 | 89.11 92 | 60.83 162 | 86.15 26 | 71.09 71 | 90.94 110 | 84.82 93 |
|
plane_prior2 | | | | | | | | 82.74 51 | | 65.45 77 | | | | | | | |
|
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 53 | 80.63 121 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 189 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 43 | 86.50 49 | 69.44 71 | 82.30 54 | 86.08 25 | 66.80 66 | 86.70 31 | 89.99 73 | 81.64 6 | 85.95 30 | 74.35 49 | 96.11 3 | 85.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 81 | 90.35 6 | 82.82 2 | 82.15 55 | 79.22 143 | 74.08 20 | 87.16 29 | 91.97 19 | 84.80 2 | 76.97 197 | 64.98 115 | 93.61 63 | 72.28 274 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
DeepC-MVS | | 72.44 4 | 81.00 44 | 80.83 55 | 81.50 26 | 86.70 48 | 70.03 67 | 82.06 56 | 87.00 15 | 59.89 128 | 80.91 104 | 90.53 51 | 72.19 64 | 88.56 1 | 73.67 54 | 94.52 34 | 85.92 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 23 | 82.04 57 | 85.40 35 | 67.96 59 | 84.91 57 | 90.88 39 | 75.59 37 | 86.57 15 | 78.16 23 | 94.71 30 | 83.82 123 |
|
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 38 | 87.00 42 | 70.41 63 | 82.04 57 | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
F-COLMAP | | | 75.29 95 | 73.99 112 | 79.18 56 | 81.73 122 | 71.90 49 | 81.86 59 | 82.98 84 | 59.86 129 | 72.27 217 | 84.00 181 | 64.56 131 | 83.07 93 | 51.48 217 | 87.19 174 | 82.56 160 |
|
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 31 | 68.44 80 | 81.57 60 | 86.33 19 | 63.17 106 | 85.38 49 | 91.26 33 | 76.33 31 | 84.67 65 | 83.30 1 | 94.96 23 | 86.17 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
PAPM_NR | | | 73.91 111 | 74.16 110 | 73.16 133 | 81.90 119 | 53.50 185 | 81.28 61 | 81.40 106 | 66.17 72 | 73.30 205 | 83.31 191 | 59.96 167 | 83.10 92 | 58.45 164 | 81.66 240 | 82.87 149 |
|
API-MVS | | | 70.97 154 | 71.51 154 | 69.37 186 | 75.20 197 | 55.94 169 | 80.99 62 | 76.84 178 | 62.48 111 | 71.24 232 | 77.51 258 | 61.51 154 | 80.96 132 | 52.04 213 | 85.76 189 | 71.22 283 |
|
OMC-MVS | | | 79.41 60 | 78.79 69 | 81.28 34 | 80.62 133 | 70.71 61 | 80.91 63 | 84.76 49 | 62.54 110 | 81.77 90 | 86.65 138 | 71.46 72 | 83.53 82 | 67.95 94 | 92.44 82 | 89.60 23 |
|
mvs_tets | | | 78.93 64 | 78.67 72 | 79.72 49 | 84.81 76 | 73.93 38 | 80.65 64 | 76.50 181 | 51.98 214 | 87.40 23 | 91.86 21 | 76.09 34 | 78.53 168 | 68.58 84 | 90.20 125 | 86.69 64 |
|
ACMH+ | | 66.64 10 | 81.20 39 | 82.48 42 | 77.35 82 | 81.16 129 | 62.39 123 | 80.51 65 | 87.80 7 | 73.02 25 | 87.57 20 | 91.08 36 | 80.28 10 | 82.44 101 | 64.82 116 | 96.10 4 | 87.21 56 |
|
EPP-MVSNet | | | 73.86 112 | 73.38 123 | 75.31 102 | 78.19 161 | 53.35 187 | 80.45 66 | 77.32 174 | 65.11 85 | 76.47 167 | 86.80 127 | 49.47 236 | 83.77 77 | 53.89 205 | 92.72 80 | 88.81 40 |
|
jajsoiax | | | 78.51 69 | 78.16 77 | 79.59 52 | 84.65 79 | 73.83 40 | 80.42 67 | 76.12 183 | 51.33 222 | 87.19 28 | 91.51 28 | 73.79 57 | 78.44 172 | 68.27 87 | 90.13 130 | 86.49 65 |
|
PHI-MVS | | | 74.92 101 | 74.36 108 | 76.61 86 | 76.40 184 | 62.32 124 | 80.38 68 | 83.15 82 | 54.16 191 | 73.23 206 | 80.75 216 | 62.19 147 | 83.86 76 | 68.02 90 | 90.92 113 | 83.65 128 |
|
QAPM | | | 69.18 177 | 69.26 173 | 68.94 196 | 71.61 248 | 52.58 190 | 80.37 69 | 78.79 151 | 49.63 240 | 73.51 200 | 85.14 170 | 53.66 215 | 79.12 157 | 55.11 192 | 75.54 289 | 75.11 250 |
|
9.14 | | | | 80.22 58 | | 80.68 131 | | 80.35 70 | 87.69 10 | 59.90 127 | 83.00 77 | 88.20 108 | 74.57 50 | 81.75 113 | 73.75 53 | 93.78 59 | |
|
ETH3D-3000-0.1 | | | 79.14 62 | 79.80 62 | 77.16 84 | 80.67 132 | 64.57 108 | 80.26 71 | 87.60 11 | 60.74 122 | 82.47 85 | 88.03 113 | 71.73 69 | 81.81 111 | 73.12 56 | 93.61 63 | 85.09 86 |
|
OurMVSNet-221017-0 | | | 78.57 68 | 78.53 74 | 78.67 63 | 80.48 134 | 64.16 112 | 80.24 72 | 82.06 95 | 61.89 114 | 88.77 11 | 93.32 4 | 57.15 196 | 82.60 100 | 70.08 77 | 92.80 76 | 89.25 27 |
|
XVG-ACMP-BASELINE | | | 80.54 48 | 81.06 52 | 78.98 59 | 87.01 41 | 72.91 46 | 80.23 73 | 85.56 30 | 66.56 70 | 85.64 43 | 89.57 80 | 69.12 88 | 80.55 137 | 72.51 62 | 93.37 67 | 83.48 131 |
|
anonymousdsp | | | 78.60 67 | 77.80 79 | 81.00 37 | 78.01 164 | 74.34 36 | 80.09 74 | 76.12 183 | 50.51 231 | 89.19 9 | 90.88 39 | 71.45 73 | 77.78 189 | 73.38 55 | 90.60 121 | 90.90 16 |
|
Gipuma |  | | 69.55 170 | 72.83 135 | 59.70 281 | 63.63 312 | 53.97 181 | 80.08 75 | 75.93 185 | 64.24 94 | 73.49 201 | 88.93 98 | 57.89 192 | 62.46 305 | 59.75 157 | 91.55 96 | 62.67 332 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
plane_prior | | | | | | | 65.18 103 | 80.06 76 | | 61.88 115 | | | | | | 89.91 134 | |
|
DeepC-MVS_fast | | 69.89 7 | 77.17 80 | 76.33 90 | 79.70 50 | 83.90 92 | 67.94 82 | 80.06 76 | 83.75 75 | 56.73 159 | 74.88 183 | 85.32 167 | 65.54 121 | 87.79 2 | 65.61 111 | 91.14 106 | 83.35 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
NCCC | | | 78.25 74 | 78.04 78 | 78.89 61 | 85.61 65 | 69.45 70 | 79.80 78 | 80.99 118 | 65.77 74 | 75.55 175 | 86.25 150 | 67.42 104 | 85.42 48 | 70.10 76 | 90.88 116 | 81.81 174 |
|
IS-MVSNet | | | 75.10 98 | 75.42 99 | 74.15 117 | 79.23 148 | 48.05 219 | 79.43 79 | 78.04 164 | 70.09 49 | 79.17 122 | 88.02 114 | 53.04 217 | 83.60 80 | 58.05 167 | 93.76 62 | 90.79 17 |
|
AdaColmap |  | | 74.22 109 | 74.56 103 | 73.20 132 | 81.95 118 | 60.97 134 | 79.43 79 | 80.90 119 | 65.57 76 | 72.54 214 | 81.76 207 | 70.98 77 | 85.26 52 | 47.88 247 | 90.00 131 | 73.37 262 |
|
OPM-MVS | | | 80.99 45 | 81.63 50 | 79.07 58 | 86.86 46 | 69.39 72 | 79.41 81 | 84.00 74 | 65.64 75 | 85.54 46 | 89.28 84 | 76.32 32 | 83.47 83 | 74.03 51 | 93.57 66 | 84.35 114 |
|
xxxxxxxxxxxxxcwj | | | 80.31 53 | 80.94 53 | 78.42 68 | 87.00 42 | 67.23 88 | 79.24 82 | 88.61 4 | 56.65 161 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
save fliter | | | | | | 87.00 42 | 67.23 88 | 79.24 82 | 77.94 166 | 56.65 161 | | | | | | | |
|
v7n | | | 79.37 61 | 80.41 57 | 76.28 92 | 78.67 158 | 55.81 170 | 79.22 84 | 82.51 92 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 101 | 81.34 116 | 72.84 58 | 91.72 89 | 91.69 10 |
|
ETH3D cwj APD-0.16 | | | 78.38 73 | 78.72 71 | 77.38 80 | 80.09 137 | 66.16 96 | 79.08 85 | 86.13 24 | 57.55 151 | 80.93 102 | 87.76 116 | 71.98 68 | 82.73 98 | 72.11 68 | 92.83 75 | 83.25 139 |
|
DP-MVS | | | 78.44 72 | 79.29 66 | 75.90 96 | 81.86 120 | 65.33 101 | 79.05 86 | 84.63 56 | 74.83 18 | 80.41 109 | 86.27 148 | 71.68 70 | 83.45 84 | 62.45 135 | 92.40 83 | 78.92 217 |
|
ACMH | | 63.62 14 | 77.50 78 | 80.11 59 | 69.68 184 | 79.61 141 | 56.28 167 | 78.81 87 | 83.62 77 | 63.41 104 | 87.14 30 | 90.23 69 | 76.11 33 | 73.32 232 | 67.58 96 | 94.44 39 | 79.44 211 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RRT_MVS | | | 73.80 114 | 71.19 158 | 81.60 24 | 71.04 251 | 70.33 65 | 78.78 88 | 74.91 197 | 56.96 155 | 77.83 138 | 85.56 165 | 32.82 316 | 87.39 5 | 71.16 70 | 91.68 91 | 87.07 60 |
|
MSLP-MVS++ | | | 74.48 107 | 75.78 94 | 70.59 168 | 84.66 78 | 62.40 122 | 78.65 89 | 84.24 67 | 60.55 124 | 77.71 141 | 81.98 203 | 63.12 137 | 77.64 191 | 62.95 132 | 88.14 153 | 71.73 279 |
|
AllTest | | | 77.66 76 | 77.43 81 | 78.35 69 | 79.19 150 | 70.81 58 | 78.60 90 | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 79 | 78.43 173 | 55.60 187 | 90.90 114 | 85.81 74 |
|
PS-MVSNAJss | | | 77.54 77 | 77.35 82 | 78.13 73 | 84.88 74 | 66.37 94 | 78.55 91 | 79.59 140 | 53.48 200 | 86.29 34 | 92.43 15 | 62.39 144 | 80.25 143 | 67.90 95 | 90.61 120 | 87.77 48 |
|
Effi-MVS+-dtu | | | 75.43 93 | 72.28 141 | 84.91 2 | 77.05 174 | 83.58 1 | 78.47 92 | 77.70 168 | 57.68 146 | 74.89 182 | 78.13 252 | 64.80 128 | 84.26 72 | 56.46 179 | 85.32 195 | 86.88 61 |
|
3Dnovator | | 65.95 11 | 71.50 149 | 71.22 157 | 72.34 154 | 73.16 232 | 63.09 120 | 78.37 93 | 78.32 159 | 57.67 148 | 72.22 219 | 84.61 173 | 54.77 209 | 78.47 170 | 60.82 147 | 81.07 245 | 75.45 246 |
|
ETH3 D test6400 | | | 75.73 90 | 76.00 92 | 74.92 106 | 81.75 121 | 56.93 164 | 78.31 94 | 84.60 58 | 52.83 205 | 77.15 146 | 85.14 170 | 68.59 92 | 84.03 74 | 65.44 112 | 90.20 125 | 83.82 123 |
|
OpenMVS |  | 62.51 15 | 68.76 182 | 68.75 182 | 68.78 201 | 70.56 258 | 53.91 182 | 78.29 95 | 77.35 173 | 48.85 247 | 70.22 243 | 83.52 185 | 52.65 220 | 76.93 198 | 55.31 191 | 81.99 233 | 75.49 245 |
|
test_part1 | | | 76.97 81 | 78.21 76 | 73.25 131 | 77.87 166 | 45.76 243 | 78.27 96 | 87.26 13 | 66.69 68 | 85.31 50 | 91.43 31 | 55.95 207 | 84.24 73 | 65.71 109 | 95.43 12 | 89.75 22 |
|
WR-MVS_H | | | 80.22 55 | 82.17 44 | 74.39 112 | 89.46 15 | 42.69 267 | 78.24 97 | 82.24 93 | 78.21 9 | 89.57 8 | 92.10 18 | 68.05 99 | 85.59 45 | 66.04 107 | 95.62 9 | 94.88 5 |
|
114514_t | | | 73.40 120 | 73.33 126 | 73.64 123 | 84.15 89 | 57.11 163 | 78.20 98 | 80.02 134 | 43.76 281 | 72.55 213 | 86.07 158 | 64.00 134 | 83.35 87 | 60.14 152 | 91.03 109 | 80.45 199 |
|
PLC |  | 62.01 16 | 71.79 147 | 70.28 166 | 76.33 91 | 80.31 136 | 68.63 79 | 78.18 99 | 81.24 110 | 54.57 184 | 67.09 268 | 80.63 218 | 59.44 172 | 81.74 114 | 46.91 254 | 84.17 212 | 78.63 218 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CNVR-MVS | | | 78.49 70 | 78.59 73 | 78.16 71 | 85.86 64 | 67.40 86 | 78.12 100 | 81.50 103 | 63.92 96 | 77.51 143 | 86.56 142 | 68.43 96 | 84.82 62 | 73.83 52 | 91.61 94 | 82.26 167 |
|
TAPA-MVS | | 65.27 12 | 75.16 97 | 74.29 109 | 77.77 75 | 74.86 204 | 68.08 81 | 77.89 101 | 84.04 73 | 55.15 174 | 76.19 171 | 83.39 187 | 66.91 108 | 80.11 148 | 60.04 154 | 90.14 129 | 85.13 85 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test_prior4 | | | | | | | 70.14 66 | 77.57 102 | | | | | | | | | |
|
EPNet | | | 69.10 178 | 67.32 202 | 74.46 109 | 68.33 274 | 61.27 131 | 77.56 103 | 63.57 275 | 60.95 120 | 56.62 319 | 82.75 196 | 51.53 226 | 81.24 119 | 54.36 202 | 90.20 125 | 80.88 188 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
RPSCF | | | 75.76 89 | 74.37 107 | 79.93 46 | 74.81 205 | 77.53 19 | 77.53 104 | 79.30 142 | 59.44 131 | 78.88 124 | 89.80 77 | 71.26 75 | 73.09 234 | 57.45 169 | 80.89 248 | 89.17 30 |
|
CSCG | | | 74.12 110 | 74.39 106 | 73.33 128 | 79.35 145 | 61.66 129 | 77.45 105 | 81.98 97 | 62.47 112 | 79.06 123 | 80.19 225 | 61.83 149 | 78.79 163 | 59.83 156 | 87.35 168 | 79.54 210 |
|
HQP-NCC | | | | | | 82.37 110 | | 77.32 106 | | 59.08 132 | 71.58 225 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 110 | | 77.32 106 | | 59.08 132 | 71.58 225 | | | | | | |
|
HQP-MVS | | | 75.24 96 | 75.01 100 | 75.94 95 | 82.37 110 | 58.80 156 | 77.32 106 | 84.12 70 | 59.08 132 | 71.58 225 | 85.96 160 | 58.09 186 | 85.30 51 | 67.38 100 | 89.16 144 | 83.73 127 |
|
DTE-MVSNet | | | 80.35 52 | 82.89 38 | 72.74 146 | 89.84 8 | 37.34 308 | 77.16 109 | 81.81 99 | 80.45 3 | 90.92 2 | 92.95 7 | 74.57 50 | 86.12 28 | 63.65 126 | 94.68 31 | 94.76 6 |
|
PS-CasMVS | | | 80.41 51 | 82.86 39 | 73.07 135 | 89.93 7 | 39.21 290 | 77.15 110 | 81.28 109 | 79.74 5 | 90.87 3 | 92.73 11 | 75.03 44 | 84.93 59 | 63.83 125 | 95.19 16 | 95.07 3 |
|
XVG-OURS-SEG-HR | | | 79.62 57 | 79.99 60 | 78.49 66 | 86.46 50 | 74.79 33 | 77.15 110 | 85.39 36 | 66.73 67 | 80.39 110 | 88.85 99 | 74.43 53 | 78.33 178 | 74.73 46 | 85.79 188 | 82.35 164 |
|
PEN-MVS | | | 80.46 50 | 82.91 37 | 73.11 134 | 89.83 9 | 39.02 293 | 77.06 112 | 82.61 90 | 80.04 4 | 90.60 5 | 92.85 9 | 74.93 46 | 85.21 55 | 63.15 131 | 95.15 18 | 95.09 2 |
|
CP-MVSNet | | | 79.48 59 | 81.65 49 | 72.98 138 | 89.66 13 | 39.06 292 | 76.76 113 | 80.46 126 | 78.91 7 | 90.32 6 | 91.70 24 | 68.49 94 | 84.89 60 | 63.40 130 | 95.12 19 | 95.01 4 |
|
SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 118 | 81.69 123 | 54.84 175 | 76.47 114 | 75.49 189 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 232 | 81.30 118 | 67.41 98 | 91.46 97 | 86.04 70 |
|
TEST9 | | | | | | 85.47 66 | 69.32 74 | 76.42 115 | 78.69 152 | 53.73 198 | 76.97 149 | 86.74 132 | 66.84 109 | 81.10 122 | | | |
|
train_agg | | | 76.38 85 | 76.55 87 | 75.86 97 | 85.47 66 | 69.32 74 | 76.42 115 | 78.69 152 | 54.00 193 | 76.97 149 | 86.74 132 | 66.60 112 | 81.10 122 | 72.50 63 | 91.56 95 | 77.15 235 |
|
Vis-MVSNet |  | | 74.85 105 | 74.56 103 | 75.72 98 | 81.63 124 | 64.64 107 | 76.35 117 | 79.06 145 | 62.85 108 | 73.33 204 | 88.41 102 | 62.54 142 | 79.59 154 | 63.94 124 | 82.92 225 | 82.94 147 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
DeepPCF-MVS | | 71.07 5 | 78.48 71 | 77.14 85 | 82.52 19 | 84.39 86 | 77.04 24 | 76.35 117 | 84.05 72 | 56.66 160 | 80.27 111 | 85.31 168 | 68.56 93 | 87.03 10 | 67.39 99 | 91.26 101 | 83.50 130 |
|
XVG-OURS | | | 79.51 58 | 79.82 61 | 78.58 65 | 86.11 60 | 74.96 32 | 76.33 119 | 84.95 46 | 66.89 63 | 82.75 82 | 88.99 96 | 66.82 110 | 78.37 176 | 74.80 44 | 90.76 119 | 82.40 163 |
|
test_8 | | | | | | 85.09 72 | 67.89 83 | 76.26 120 | 78.66 154 | 54.00 193 | 76.89 154 | 86.72 134 | 66.60 112 | 80.89 133 | | | |
|
agg_prior1 | | | 75.89 87 | 76.41 88 | 74.31 114 | 84.44 84 | 66.02 97 | 76.12 121 | 78.62 155 | 54.40 186 | 76.95 151 | 86.85 126 | 66.44 114 | 80.34 140 | 72.45 64 | 91.42 98 | 76.57 239 |
|
CDPH-MVS | | | 77.33 79 | 77.06 86 | 78.14 72 | 84.21 87 | 63.98 114 | 76.07 122 | 83.45 79 | 54.20 189 | 77.68 142 | 87.18 117 | 69.98 82 | 85.37 49 | 68.01 91 | 92.72 80 | 85.08 88 |
|
CNLPA | | | 73.44 118 | 73.03 132 | 74.66 107 | 78.27 160 | 75.29 30 | 75.99 123 | 78.49 157 | 65.39 79 | 75.67 173 | 83.22 195 | 61.23 158 | 66.77 288 | 53.70 207 | 85.33 194 | 81.92 173 |
|
UGNet | | | 70.20 161 | 69.05 176 | 73.65 122 | 76.24 186 | 63.64 115 | 75.87 124 | 72.53 214 | 61.48 116 | 60.93 303 | 86.14 154 | 52.37 221 | 77.12 196 | 50.67 224 | 85.21 196 | 80.17 204 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v10 | | | 75.69 91 | 76.20 91 | 74.16 116 | 74.44 216 | 48.69 210 | 75.84 125 | 82.93 86 | 59.02 135 | 85.92 39 | 89.17 90 | 58.56 181 | 82.74 97 | 70.73 73 | 89.14 147 | 91.05 13 |
|
test_prior3 | | | 76.71 84 | 77.19 83 | 75.27 103 | 82.15 115 | 59.85 146 | 75.57 126 | 84.33 62 | 58.92 136 | 76.53 165 | 86.78 129 | 67.83 102 | 83.39 85 | 69.81 79 | 92.76 78 | 82.58 158 |
|
test_prior2 | | | | | | | | 75.57 126 | | 58.92 136 | 76.53 165 | 86.78 129 | 67.83 102 | | 69.81 79 | 92.76 78 | |
|
mvs-test1 | | | 73.81 113 | 70.69 163 | 83.18 5 | 77.05 174 | 81.39 3 | 75.39 128 | 77.70 168 | 57.68 146 | 71.19 234 | 74.72 277 | 64.80 128 | 83.66 79 | 56.46 179 | 81.19 244 | 84.50 110 |
|
PAPR | | | 69.20 176 | 68.66 185 | 70.82 165 | 75.15 199 | 47.77 223 | 75.31 129 | 81.11 113 | 49.62 241 | 66.33 270 | 79.27 237 | 61.53 153 | 82.96 94 | 48.12 245 | 81.50 242 | 81.74 175 |
|
v8 | | | 75.07 99 | 75.64 96 | 73.35 127 | 73.42 228 | 47.46 228 | 75.20 130 | 81.45 105 | 60.05 126 | 85.64 43 | 89.26 85 | 58.08 188 | 81.80 112 | 69.71 81 | 87.97 158 | 90.79 17 |
|
tttt0517 | | | 69.46 171 | 67.79 197 | 74.46 109 | 75.34 195 | 52.72 189 | 75.05 131 | 63.27 277 | 54.69 181 | 78.87 125 | 84.37 176 | 26.63 345 | 81.15 120 | 63.95 122 | 87.93 159 | 89.51 24 |
|
TSAR-MVS + GP. | | | 73.08 125 | 71.60 152 | 77.54 77 | 78.99 156 | 70.73 60 | 74.96 132 | 69.38 245 | 60.73 123 | 74.39 192 | 78.44 248 | 57.72 193 | 82.78 96 | 60.16 151 | 89.60 139 | 79.11 215 |
|
MAR-MVS | | | 67.72 196 | 66.16 211 | 72.40 153 | 74.45 215 | 64.99 106 | 74.87 133 | 77.50 172 | 48.67 248 | 65.78 274 | 68.58 333 | 57.01 200 | 77.79 188 | 46.68 256 | 81.92 234 | 74.42 255 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
无先验 | | | | | | | | 74.82 134 | 70.94 236 | 47.75 258 | | | | 76.85 201 | 54.47 198 | | 72.09 276 |
|
CANet | | | 73.00 130 | 71.84 146 | 76.48 89 | 75.82 192 | 61.28 130 | 74.81 135 | 80.37 129 | 63.17 106 | 62.43 293 | 80.50 220 | 61.10 160 | 85.16 58 | 64.00 121 | 84.34 211 | 83.01 146 |
|
PVSNet_Blended_VisFu | | | 70.04 162 | 68.88 179 | 73.53 126 | 82.71 107 | 63.62 116 | 74.81 135 | 81.95 98 | 48.53 250 | 67.16 267 | 79.18 240 | 51.42 227 | 78.38 175 | 54.39 201 | 79.72 263 | 78.60 219 |
|
MCST-MVS | | | 73.42 119 | 73.34 125 | 73.63 124 | 81.28 127 | 59.17 152 | 74.80 137 | 83.13 83 | 45.50 267 | 72.84 209 | 83.78 184 | 65.15 125 | 80.99 126 | 64.54 117 | 89.09 148 | 80.73 194 |
|
原ACMM2 | | | | | | | | 74.78 138 | | | | | | | | | |
|
Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 168 | 77.67 171 | 45.70 245 | 74.73 139 | 80.19 131 | 68.80 53 | 82.95 78 | 92.91 8 | 66.26 115 | 76.76 203 | 58.41 165 | 92.77 77 | 89.30 26 |
|
Effi-MVS+ | | | 72.10 144 | 72.28 141 | 71.58 159 | 74.21 221 | 50.33 199 | 74.72 140 | 82.73 88 | 62.62 109 | 70.77 237 | 76.83 262 | 69.96 83 | 80.97 128 | 60.20 149 | 78.43 273 | 83.45 134 |
|
K. test v3 | | | 73.67 115 | 73.61 120 | 73.87 120 | 79.78 139 | 55.62 173 | 74.69 141 | 62.04 286 | 66.16 73 | 84.76 58 | 93.23 5 | 49.47 236 | 80.97 128 | 65.66 110 | 86.67 181 | 85.02 90 |
|
MG-MVS | | | 70.47 159 | 71.34 156 | 67.85 211 | 79.26 147 | 40.42 285 | 74.67 142 | 75.15 196 | 58.41 139 | 68.74 258 | 88.14 112 | 56.08 206 | 83.69 78 | 59.90 155 | 81.71 239 | 79.43 212 |
|
UniMVSNet_ETH3D | | | 76.74 83 | 79.02 67 | 69.92 183 | 89.27 20 | 43.81 255 | 74.47 143 | 71.70 220 | 72.33 34 | 85.50 47 | 93.65 3 | 77.98 22 | 76.88 200 | 54.60 197 | 91.64 92 | 89.08 31 |
|
DP-MVS Recon | | | 73.57 117 | 72.69 136 | 76.23 93 | 82.85 105 | 63.39 117 | 74.32 144 | 82.96 85 | 57.75 145 | 70.35 241 | 81.98 203 | 64.34 133 | 84.41 70 | 49.69 231 | 89.95 133 | 80.89 187 |
|
ambc | | | | | 70.10 179 | 77.74 169 | 50.21 201 | 74.28 145 | 77.93 167 | | 79.26 121 | 88.29 107 | 54.11 214 | 79.77 151 | 64.43 118 | 91.10 107 | 80.30 201 |
|
nrg030 | | | 74.87 104 | 75.99 93 | 71.52 161 | 74.90 203 | 49.88 206 | 74.10 146 | 82.58 91 | 54.55 185 | 83.50 74 | 89.21 87 | 71.51 71 | 75.74 212 | 61.24 141 | 92.34 84 | 88.94 36 |
|
canonicalmvs | | | 72.29 143 | 73.38 123 | 69.04 192 | 74.23 217 | 47.37 229 | 73.93 147 | 83.18 81 | 54.36 187 | 76.61 162 | 81.64 209 | 72.03 65 | 75.34 216 | 57.12 172 | 87.28 171 | 84.40 112 |
|
CS-MVS | | | 71.24 150 | 70.57 164 | 73.26 130 | 74.93 200 | 52.00 191 | 73.59 148 | 85.55 31 | 55.58 170 | 68.88 254 | 70.17 319 | 64.37 132 | 85.62 44 | 57.19 171 | 84.83 204 | 82.17 168 |
|
CANet_DTU | | | 64.04 231 | 63.83 228 | 64.66 238 | 68.39 271 | 42.97 265 | 73.45 149 | 74.50 201 | 52.05 213 | 54.78 326 | 75.44 272 | 43.99 264 | 70.42 263 | 53.49 209 | 78.41 274 | 80.59 197 |
|
ETV-MVS | | | 72.72 137 | 72.16 144 | 74.38 113 | 76.90 180 | 55.95 168 | 73.34 150 | 84.67 53 | 62.04 113 | 72.19 220 | 70.81 312 | 65.90 119 | 85.24 54 | 58.64 162 | 84.96 202 | 81.95 172 |
|
PCF-MVS | | 63.80 13 | 72.70 138 | 71.69 148 | 75.72 98 | 78.10 162 | 60.01 145 | 73.04 151 | 81.50 103 | 45.34 271 | 79.66 116 | 84.35 177 | 65.15 125 | 82.65 99 | 48.70 239 | 89.38 143 | 84.50 110 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
Regformer-3 | | | 72.86 135 | 72.28 141 | 74.62 108 | 74.74 207 | 60.18 143 | 72.91 152 | 71.76 219 | 64.74 89 | 78.42 130 | 72.07 302 | 67.00 107 | 76.28 207 | 67.97 93 | 80.91 246 | 87.39 53 |
|
Regformer-4 | | | 74.64 106 | 73.67 117 | 77.55 76 | 74.74 207 | 64.49 110 | 72.91 152 | 75.42 191 | 67.45 60 | 80.24 112 | 72.07 302 | 68.98 89 | 80.19 147 | 70.29 75 | 80.91 246 | 87.98 46 |
|
Regformer-1 | | | 74.28 108 | 73.63 119 | 76.21 94 | 74.22 218 | 64.12 113 | 72.77 154 | 75.46 190 | 66.86 65 | 79.27 120 | 72.08 300 | 69.29 86 | 78.74 164 | 68.73 83 | 84.02 215 | 85.77 79 |
|
Regformer-2 | | | 75.32 94 | 74.47 105 | 77.88 74 | 74.22 218 | 66.65 92 | 72.77 154 | 77.54 170 | 68.47 58 | 80.44 108 | 72.08 300 | 70.60 78 | 80.97 128 | 70.08 77 | 84.02 215 | 86.01 71 |
|
test_0402 | | | 78.17 75 | 79.48 65 | 74.24 115 | 83.50 95 | 59.15 153 | 72.52 156 | 74.60 200 | 75.34 16 | 88.69 12 | 91.81 22 | 75.06 43 | 82.37 103 | 65.10 113 | 88.68 151 | 81.20 179 |
|
EU-MVSNet | | | 60.82 256 | 60.80 254 | 60.86 275 | 68.37 272 | 41.16 275 | 72.27 157 | 68.27 252 | 26.96 353 | 69.08 250 | 75.71 267 | 32.09 322 | 67.44 280 | 55.59 189 | 78.90 268 | 73.97 257 |
|
EI-MVSNet-Vis-set | | | 72.78 136 | 71.87 145 | 75.54 100 | 74.77 206 | 59.02 154 | 72.24 158 | 71.56 223 | 63.92 96 | 78.59 126 | 71.59 308 | 66.22 116 | 78.60 166 | 67.58 96 | 80.32 254 | 89.00 34 |
|
v1192 | | | 73.40 120 | 73.42 121 | 73.32 129 | 74.65 213 | 48.67 211 | 72.21 159 | 81.73 100 | 52.76 206 | 81.85 89 | 84.56 174 | 57.12 197 | 82.24 107 | 68.58 84 | 87.33 169 | 89.06 32 |
|
baseline | | | 73.10 124 | 73.96 113 | 70.51 170 | 71.46 249 | 46.39 239 | 72.08 160 | 84.40 61 | 55.95 166 | 76.62 161 | 86.46 145 | 67.20 105 | 78.03 185 | 64.22 120 | 87.27 172 | 87.11 59 |
|
EI-MVSNet-UG-set | | | 72.63 139 | 71.68 149 | 75.47 101 | 74.67 210 | 58.64 159 | 72.02 161 | 71.50 224 | 63.53 101 | 78.58 128 | 71.39 311 | 65.98 117 | 78.53 168 | 67.30 102 | 80.18 256 | 89.23 28 |
|
v1144 | | | 73.29 123 | 73.39 122 | 73.01 136 | 74.12 222 | 48.11 218 | 72.01 162 | 81.08 116 | 53.83 197 | 81.77 90 | 84.68 172 | 58.07 189 | 81.91 109 | 68.10 88 | 86.86 177 | 88.99 35 |
|
GBi-Net | | | 68.30 188 | 68.79 180 | 66.81 223 | 73.14 233 | 40.68 281 | 71.96 163 | 73.03 206 | 54.81 176 | 74.72 186 | 90.36 64 | 48.63 244 | 75.20 218 | 47.12 251 | 85.37 191 | 84.54 105 |
|
test1 | | | 68.30 188 | 68.79 180 | 66.81 223 | 73.14 233 | 40.68 281 | 71.96 163 | 73.03 206 | 54.81 176 | 74.72 186 | 90.36 64 | 48.63 244 | 75.20 218 | 47.12 251 | 85.37 191 | 84.54 105 |
|
FMVSNet1 | | | 71.06 152 | 72.48 138 | 66.81 223 | 77.65 172 | 40.68 281 | 71.96 163 | 73.03 206 | 61.14 118 | 79.45 119 | 90.36 64 | 60.44 164 | 75.20 218 | 50.20 228 | 88.05 155 | 84.54 105 |
|
v1921920 | | | 72.96 133 | 72.98 133 | 72.89 142 | 74.67 210 | 47.58 226 | 71.92 166 | 80.69 120 | 51.70 217 | 81.69 94 | 83.89 182 | 56.58 203 | 82.25 106 | 68.34 86 | 87.36 167 | 88.82 39 |
|
v144192 | | | 72.99 131 | 73.06 131 | 72.77 144 | 74.58 214 | 47.48 227 | 71.90 167 | 80.44 127 | 51.57 218 | 81.46 96 | 84.11 180 | 58.04 190 | 82.12 108 | 67.98 92 | 87.47 165 | 88.70 42 |
|
v1240 | | | 73.06 127 | 73.14 128 | 72.84 143 | 74.74 207 | 47.27 231 | 71.88 168 | 81.11 113 | 51.80 215 | 82.28 87 | 84.21 178 | 56.22 205 | 82.34 104 | 68.82 82 | 87.17 175 | 88.91 37 |
|
FC-MVSNet-test | | | 73.32 122 | 74.78 102 | 68.93 197 | 79.21 149 | 36.57 310 | 71.82 169 | 79.54 141 | 57.63 150 | 82.57 84 | 90.38 63 | 59.38 174 | 78.99 159 | 57.91 168 | 94.56 33 | 91.23 12 |
|
IterMVS-LS | | | 73.01 129 | 73.12 130 | 72.66 148 | 73.79 225 | 49.90 203 | 71.63 170 | 78.44 158 | 58.22 140 | 80.51 107 | 86.63 139 | 58.15 185 | 79.62 152 | 62.51 133 | 88.20 152 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EG-PatchMatch MVS | | | 70.70 156 | 70.88 160 | 70.16 176 | 82.64 109 | 58.80 156 | 71.48 171 | 73.64 204 | 54.98 175 | 76.55 163 | 81.77 206 | 61.10 160 | 78.94 160 | 54.87 194 | 80.84 249 | 72.74 269 |
|
LF4IMVS | | | 67.50 198 | 67.31 203 | 68.08 209 | 58.86 336 | 61.93 125 | 71.43 172 | 75.90 186 | 44.67 276 | 72.42 216 | 80.20 224 | 57.16 195 | 70.44 262 | 58.99 161 | 86.12 185 | 71.88 277 |
|
v2v482 | | | 72.55 142 | 72.58 137 | 72.43 152 | 72.92 240 | 46.72 234 | 71.41 173 | 79.13 144 | 55.27 172 | 81.17 99 | 85.25 169 | 55.41 208 | 81.13 121 | 67.25 103 | 85.46 190 | 89.43 25 |
|
Fast-Effi-MVS+-dtu | | | 70.00 163 | 68.74 183 | 73.77 121 | 73.47 227 | 64.53 109 | 71.36 174 | 78.14 163 | 55.81 168 | 68.84 257 | 74.71 278 | 65.36 124 | 75.75 211 | 52.00 214 | 79.00 267 | 81.03 183 |
|
新几何2 | | | | | | | | 71.33 175 | | | | | | | | | |
|
EI-MVSNet | | | 69.61 169 | 69.01 178 | 71.41 163 | 73.94 223 | 49.90 203 | 71.31 176 | 71.32 227 | 58.22 140 | 75.40 178 | 70.44 314 | 58.16 184 | 75.85 208 | 62.51 133 | 79.81 260 | 88.48 43 |
|
CVMVSNet | | | 59.21 268 | 58.44 271 | 61.51 267 | 73.94 223 | 47.76 224 | 71.31 176 | 64.56 270 | 26.91 354 | 60.34 305 | 70.44 314 | 36.24 306 | 67.65 278 | 53.57 208 | 68.66 327 | 69.12 302 |
|
thisisatest0530 | | | 67.05 205 | 65.16 216 | 72.73 147 | 73.10 236 | 50.55 198 | 71.26 178 | 63.91 273 | 50.22 233 | 74.46 191 | 80.75 216 | 26.81 344 | 80.25 143 | 59.43 158 | 86.50 182 | 87.37 54 |
|
旧先验2 | | | | | | | | 71.17 179 | | 45.11 273 | 78.54 129 | | | 61.28 310 | 59.19 160 | | |
|
FIs | | | 72.56 140 | 73.80 115 | 68.84 200 | 78.74 157 | 37.74 304 | 71.02 180 | 79.83 136 | 56.12 164 | 80.88 105 | 89.45 82 | 58.18 183 | 78.28 179 | 56.63 175 | 93.36 68 | 90.51 19 |
|
TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 80 | 71.56 160 | 84.61 80 | 42.57 269 | 70.98 181 | 78.29 161 | 68.67 56 | 83.04 76 | 89.26 85 | 72.99 62 | 80.75 134 | 55.58 190 | 95.47 10 | 91.35 11 |
|
casdiffmvs | | | 73.06 127 | 73.84 114 | 70.72 166 | 71.32 250 | 46.71 235 | 70.93 182 | 84.26 66 | 55.62 169 | 77.46 144 | 87.10 118 | 67.09 106 | 77.81 187 | 63.95 122 | 86.83 178 | 87.64 50 |
|
CR-MVSNet | | | 58.96 269 | 58.49 270 | 60.36 278 | 66.37 289 | 48.24 216 | 70.93 182 | 56.40 308 | 32.87 338 | 61.35 297 | 86.66 136 | 33.19 314 | 63.22 304 | 48.50 242 | 70.17 319 | 69.62 297 |
|
RPMNet | | | 65.77 213 | 65.08 223 | 67.84 212 | 66.37 289 | 48.24 216 | 70.93 182 | 86.27 20 | 54.66 182 | 61.35 297 | 86.77 131 | 33.29 313 | 85.67 43 | 55.93 184 | 70.17 319 | 69.62 297 |
|
LFMVS | | | 67.06 204 | 67.89 195 | 64.56 239 | 78.02 163 | 38.25 299 | 70.81 185 | 59.60 292 | 65.18 84 | 71.06 235 | 86.56 142 | 43.85 265 | 75.22 217 | 46.35 257 | 89.63 138 | 80.21 203 |
|
DPM-MVS | | | 69.98 164 | 69.22 175 | 72.26 156 | 82.69 108 | 58.82 155 | 70.53 186 | 81.23 111 | 47.79 257 | 64.16 282 | 80.21 223 | 51.32 228 | 83.12 91 | 60.14 152 | 84.95 203 | 74.83 252 |
|
hse-mvs3 | | | 73.08 125 | 71.61 151 | 77.48 78 | 83.89 93 | 72.89 47 | 70.47 187 | 71.12 234 | 54.28 188 | 77.89 136 | 83.41 186 | 49.04 239 | 80.98 127 | 63.62 127 | 90.77 118 | 78.58 220 |
|
MVS_111021_LR | | | 72.10 144 | 71.82 147 | 72.95 139 | 79.53 143 | 73.90 39 | 70.45 188 | 66.64 257 | 56.87 156 | 76.81 158 | 81.76 207 | 68.78 90 | 71.76 252 | 61.81 136 | 83.74 219 | 73.18 264 |
|
UniMVSNet (Re) | | | 75.00 100 | 75.48 98 | 73.56 125 | 83.14 100 | 47.92 221 | 70.41 189 | 81.04 117 | 63.67 99 | 79.54 117 | 86.37 147 | 62.83 138 | 81.82 110 | 57.10 173 | 95.25 15 | 90.94 15 |
|
TinyColmap | | | 67.98 192 | 69.28 172 | 64.08 243 | 67.98 278 | 46.82 233 | 70.04 190 | 75.26 194 | 53.05 202 | 77.36 145 | 86.79 128 | 59.39 173 | 72.59 242 | 45.64 260 | 88.01 157 | 72.83 267 |
|
VDDNet | | | 71.60 148 | 73.13 129 | 67.02 222 | 86.29 51 | 41.11 276 | 69.97 191 | 66.50 258 | 68.72 55 | 74.74 185 | 91.70 24 | 59.90 168 | 75.81 210 | 48.58 241 | 91.72 89 | 84.15 119 |
|
EPNet_dtu | | | 58.93 270 | 58.52 269 | 60.16 280 | 67.91 279 | 47.70 225 | 69.97 191 | 58.02 296 | 49.73 238 | 47.28 347 | 73.02 296 | 38.14 298 | 62.34 306 | 36.57 312 | 85.99 187 | 70.43 289 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_Test | | | 69.84 166 | 70.71 162 | 67.24 218 | 67.49 283 | 43.25 263 | 69.87 193 | 81.22 112 | 52.69 207 | 71.57 228 | 86.68 135 | 62.09 148 | 74.51 226 | 66.05 106 | 78.74 269 | 83.96 121 |
|
alignmvs | | | 70.54 158 | 71.00 159 | 69.15 191 | 73.50 226 | 48.04 220 | 69.85 194 | 79.62 137 | 53.94 196 | 76.54 164 | 82.00 202 | 59.00 177 | 74.68 224 | 57.32 170 | 87.21 173 | 84.72 97 |
|
GG-mvs-BLEND | | | | | 52.24 306 | 60.64 327 | 29.21 347 | 69.73 195 | 42.41 345 | | 45.47 349 | 52.33 354 | 20.43 360 | 68.16 275 | 25.52 351 | 65.42 334 | 59.36 339 |
|
pmmvs-eth3d | | | 64.41 227 | 63.27 235 | 67.82 213 | 75.81 193 | 60.18 143 | 69.49 196 | 62.05 285 | 38.81 310 | 74.13 194 | 82.23 201 | 43.76 266 | 68.65 272 | 42.53 273 | 80.63 253 | 74.63 253 |
|
DU-MVS | | | 74.91 102 | 75.57 97 | 72.93 140 | 83.50 95 | 45.79 241 | 69.47 197 | 80.14 133 | 65.22 83 | 81.74 92 | 87.08 119 | 61.82 150 | 81.07 124 | 56.21 182 | 94.98 21 | 91.93 8 |
|
EIA-MVS | | | 68.59 185 | 67.16 204 | 72.90 141 | 75.18 198 | 55.64 172 | 69.39 198 | 81.29 108 | 52.44 208 | 64.53 278 | 70.69 313 | 60.33 165 | 82.30 105 | 54.27 203 | 76.31 284 | 80.75 193 |
|
PAPM | | | 61.79 251 | 60.37 257 | 66.05 230 | 76.09 189 | 41.87 272 | 69.30 199 | 76.79 180 | 40.64 302 | 53.80 332 | 79.62 233 | 44.38 262 | 82.92 95 | 29.64 340 | 73.11 305 | 73.36 263 |
|
UniMVSNet_NR-MVSNet | | | 74.90 103 | 75.65 95 | 72.64 149 | 83.04 101 | 45.79 241 | 69.26 200 | 78.81 149 | 66.66 69 | 81.74 92 | 86.88 125 | 63.26 136 | 81.07 124 | 56.21 182 | 94.98 21 | 91.05 13 |
|
MVP-Stereo | | | 61.56 252 | 59.22 263 | 68.58 203 | 79.28 146 | 60.44 141 | 69.20 201 | 71.57 222 | 43.58 284 | 56.42 320 | 78.37 249 | 39.57 293 | 76.46 206 | 34.86 321 | 60.16 343 | 68.86 304 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
AUN-MVS | | | 70.22 160 | 67.88 196 | 77.22 83 | 82.96 104 | 71.61 50 | 69.08 202 | 71.39 226 | 49.17 244 | 71.70 223 | 78.07 253 | 37.62 303 | 79.21 156 | 61.81 136 | 89.15 146 | 80.82 189 |
|
gg-mvs-nofinetune | | | 55.75 282 | 56.75 282 | 52.72 305 | 62.87 314 | 28.04 349 | 68.92 203 | 41.36 352 | 71.09 41 | 50.80 339 | 92.63 12 | 20.74 359 | 66.86 285 | 29.97 338 | 72.41 307 | 63.25 329 |
|
Baseline_NR-MVSNet | | | 70.62 157 | 73.19 127 | 62.92 258 | 76.97 177 | 34.44 326 | 68.84 204 | 70.88 237 | 60.25 125 | 79.50 118 | 90.53 51 | 61.82 150 | 69.11 270 | 54.67 196 | 95.27 14 | 85.22 82 |
|
v148 | | | 69.38 174 | 69.39 171 | 69.36 187 | 69.14 270 | 44.56 250 | 68.83 205 | 72.70 212 | 54.79 179 | 78.59 126 | 84.12 179 | 54.69 210 | 76.74 204 | 59.40 159 | 82.20 231 | 86.79 62 |
|
FMVSNet2 | | | 67.48 199 | 68.21 191 | 65.29 234 | 73.14 233 | 38.94 294 | 68.81 206 | 71.21 233 | 54.81 176 | 76.73 160 | 86.48 144 | 48.63 244 | 74.60 225 | 47.98 246 | 86.11 186 | 82.35 164 |
|
MVS_111021_HR | | | 72.98 132 | 72.97 134 | 72.99 137 | 80.82 130 | 65.47 100 | 68.81 206 | 72.77 211 | 57.67 148 | 75.76 172 | 82.38 200 | 71.01 76 | 77.17 195 | 61.38 140 | 86.15 184 | 76.32 240 |
|
Anonymous20240529 | | | 72.56 140 | 73.79 116 | 68.86 199 | 76.89 181 | 45.21 247 | 68.80 208 | 77.25 176 | 67.16 62 | 76.89 154 | 90.44 54 | 65.95 118 | 74.19 229 | 50.75 223 | 90.00 131 | 87.18 58 |
|
Anonymous20240521 | | | 63.55 233 | 66.07 212 | 55.99 296 | 66.18 294 | 44.04 254 | 68.77 209 | 68.80 247 | 46.99 262 | 72.57 212 | 85.84 162 | 39.87 290 | 50.22 327 | 53.40 211 | 92.23 86 | 73.71 261 |
|
CLD-MVS | | | 72.88 134 | 72.36 140 | 74.43 111 | 77.03 176 | 54.30 179 | 68.77 209 | 83.43 80 | 52.12 211 | 76.79 159 | 74.44 281 | 69.54 85 | 83.91 75 | 55.88 185 | 93.25 70 | 85.09 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
1314 | | | 59.83 264 | 58.86 267 | 62.74 259 | 65.71 297 | 44.78 249 | 68.59 211 | 72.63 213 | 33.54 337 | 61.05 301 | 67.29 339 | 43.62 267 | 71.26 255 | 49.49 233 | 67.84 330 | 72.19 275 |
|
1121 | | | 69.23 175 | 68.26 188 | 72.12 157 | 88.36 36 | 71.40 52 | 68.59 211 | 62.06 284 | 43.80 280 | 74.75 184 | 86.18 151 | 52.92 218 | 76.85 201 | 54.47 198 | 83.27 223 | 68.12 305 |
|
MVS | | | 60.62 259 | 59.97 259 | 62.58 260 | 68.13 276 | 47.28 230 | 68.59 211 | 73.96 203 | 32.19 339 | 59.94 308 | 68.86 331 | 50.48 231 | 77.64 191 | 41.85 278 | 75.74 286 | 62.83 330 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 237 | 63.28 234 | 63.07 255 | 69.81 263 | 45.34 246 | 68.52 214 | 67.14 254 | 43.74 282 | 70.61 239 | 79.22 238 | 47.90 248 | 72.66 238 | 48.75 238 | 73.84 303 | 71.21 284 |
|
PM-MVS | | | 64.49 224 | 63.61 231 | 67.14 221 | 76.68 182 | 75.15 31 | 68.49 215 | 42.85 344 | 51.17 225 | 77.85 137 | 80.51 219 | 45.76 251 | 66.31 291 | 52.83 212 | 76.35 283 | 59.96 338 |
|
BH-untuned | | | 69.39 173 | 69.46 170 | 69.18 190 | 77.96 165 | 56.88 165 | 68.47 216 | 77.53 171 | 56.77 158 | 77.79 139 | 79.63 232 | 60.30 166 | 80.20 146 | 46.04 258 | 80.65 251 | 70.47 288 |
|
testdata1 | | | | | | | | 68.34 217 | | 57.24 153 | | | | | | | |
|
tpm2 | | | 56.12 280 | 54.64 293 | 60.55 277 | 66.24 292 | 36.01 314 | 68.14 218 | 56.77 307 | 33.60 336 | 58.25 314 | 75.52 271 | 30.25 337 | 74.33 228 | 33.27 327 | 69.76 323 | 71.32 281 |
|
cl_fuxian | | | 69.82 167 | 69.89 168 | 69.61 185 | 66.24 292 | 43.48 259 | 68.12 219 | 79.61 139 | 51.43 220 | 77.72 140 | 80.18 226 | 54.61 212 | 78.15 184 | 63.62 127 | 87.50 164 | 87.20 57 |
|
CMPMVS |  | 48.73 20 | 61.54 253 | 60.89 253 | 63.52 249 | 61.08 324 | 51.55 193 | 68.07 220 | 68.00 253 | 33.88 332 | 65.87 272 | 81.25 212 | 37.91 301 | 67.71 277 | 49.32 234 | 82.60 228 | 71.31 282 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
test222 | | | | | | 87.30 40 | 69.15 77 | 67.85 221 | 59.59 293 | 41.06 298 | 73.05 208 | 85.72 164 | 48.03 247 | | | 80.65 251 | 66.92 311 |
|
VDD-MVS | | | 70.81 155 | 71.44 155 | 68.91 198 | 79.07 155 | 46.51 236 | 67.82 222 | 70.83 238 | 61.23 117 | 74.07 196 | 88.69 100 | 59.86 169 | 75.62 213 | 51.11 220 | 90.28 124 | 84.61 102 |
|
ab-mvs | | | 64.11 230 | 65.13 219 | 61.05 272 | 71.99 246 | 38.03 303 | 67.59 223 | 68.79 248 | 49.08 246 | 65.32 275 | 86.26 149 | 58.02 191 | 66.85 286 | 39.33 290 | 79.79 262 | 78.27 225 |
|
eth_miper_zixun_eth | | | 69.42 172 | 68.73 184 | 71.50 162 | 67.99 277 | 46.42 237 | 67.58 224 | 78.81 149 | 50.72 229 | 78.13 134 | 80.34 222 | 50.15 234 | 80.34 140 | 60.18 150 | 84.65 205 | 87.74 49 |
|
CostFormer | | | 57.35 278 | 56.14 286 | 60.97 273 | 63.76 311 | 38.43 296 | 67.50 225 | 60.22 290 | 37.14 318 | 59.12 311 | 76.34 265 | 32.78 317 | 71.99 249 | 39.12 292 | 69.27 324 | 72.47 271 |
|
Patchmtry | | | 60.91 255 | 63.01 238 | 54.62 299 | 66.10 295 | 26.27 353 | 67.47 226 | 56.40 308 | 54.05 192 | 72.04 221 | 86.66 136 | 33.19 314 | 60.17 312 | 43.69 268 | 87.45 166 | 77.42 233 |
|
USDC | | | 62.80 242 | 63.10 237 | 61.89 264 | 65.19 300 | 43.30 262 | 67.42 227 | 74.20 202 | 35.80 324 | 72.25 218 | 84.48 175 | 45.67 253 | 71.95 250 | 37.95 302 | 84.97 199 | 70.42 290 |
|
xiu_mvs_v1_base_debu | | | 67.87 193 | 67.07 205 | 70.26 173 | 79.13 152 | 61.90 126 | 67.34 228 | 71.25 230 | 47.98 253 | 67.70 262 | 74.19 287 | 61.31 155 | 72.62 239 | 56.51 176 | 78.26 275 | 76.27 241 |
|
xiu_mvs_v1_base | | | 67.87 193 | 67.07 205 | 70.26 173 | 79.13 152 | 61.90 126 | 67.34 228 | 71.25 230 | 47.98 253 | 67.70 262 | 74.19 287 | 61.31 155 | 72.62 239 | 56.51 176 | 78.26 275 | 76.27 241 |
|
xiu_mvs_v1_base_debi | | | 67.87 193 | 67.07 205 | 70.26 173 | 79.13 152 | 61.90 126 | 67.34 228 | 71.25 230 | 47.98 253 | 67.70 262 | 74.19 287 | 61.31 155 | 72.62 239 | 56.51 176 | 78.26 275 | 76.27 241 |
|
Vis-MVSNet (Re-imp) | | | 62.74 243 | 63.21 236 | 61.34 270 | 72.19 244 | 31.56 339 | 67.31 231 | 53.87 315 | 53.60 199 | 69.88 245 | 83.37 189 | 40.52 287 | 70.98 257 | 41.40 280 | 86.78 180 | 81.48 178 |
|
jason | | | 64.47 225 | 62.84 239 | 69.34 189 | 76.91 179 | 59.20 149 | 67.15 232 | 65.67 260 | 35.29 325 | 65.16 276 | 76.74 263 | 44.67 260 | 70.68 258 | 54.74 195 | 79.28 266 | 78.14 227 |
jason: jason. |
RRT_test8_iter05 | | | 65.80 212 | 65.13 219 | 67.80 214 | 67.02 287 | 40.85 280 | 67.13 233 | 75.33 192 | 49.73 238 | 72.69 211 | 81.32 210 | 24.45 355 | 77.37 194 | 61.69 139 | 86.82 179 | 85.18 84 |
|
miper_ehance_all_eth | | | 68.36 187 | 68.16 193 | 68.98 194 | 65.14 303 | 43.34 261 | 67.07 234 | 78.92 148 | 49.11 245 | 76.21 170 | 77.72 255 | 53.48 216 | 77.92 186 | 61.16 143 | 84.59 207 | 85.68 80 |
|
pmmvs6 | | | 71.82 146 | 73.66 118 | 66.31 229 | 75.94 191 | 42.01 271 | 66.99 235 | 72.53 214 | 63.45 103 | 76.43 168 | 92.78 10 | 72.95 63 | 69.69 266 | 51.41 218 | 90.46 122 | 87.22 55 |
|
PatchmatchNet |  | | 54.60 288 | 54.27 294 | 55.59 297 | 65.17 302 | 39.08 291 | 66.92 236 | 51.80 325 | 39.89 304 | 58.39 312 | 73.12 295 | 31.69 325 | 58.33 316 | 43.01 272 | 58.38 349 | 69.38 300 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MSDG | | | 67.47 200 | 67.48 201 | 67.46 216 | 70.70 255 | 54.69 177 | 66.90 237 | 78.17 162 | 60.88 121 | 70.41 240 | 74.76 275 | 61.22 159 | 73.18 233 | 47.38 250 | 76.87 281 | 74.49 254 |
|
cl-mvsnet2 | | | 67.14 202 | 66.51 209 | 69.03 193 | 63.20 313 | 43.46 260 | 66.88 238 | 76.25 182 | 49.22 243 | 74.48 190 | 77.88 254 | 45.49 255 | 77.40 193 | 60.64 148 | 84.59 207 | 86.24 66 |
|
TAMVS | | | 65.31 216 | 63.75 229 | 69.97 182 | 82.23 114 | 59.76 148 | 66.78 239 | 63.37 276 | 45.20 272 | 69.79 246 | 79.37 236 | 47.42 250 | 72.17 245 | 34.48 322 | 85.15 198 | 77.99 231 |
|
test_post1 | | | | | | | | 66.63 240 | | | | 2.08 361 | 30.66 335 | 59.33 314 | 40.34 287 | | |
|
FMVSNet3 | | | 65.00 220 | 65.16 216 | 64.52 240 | 69.47 266 | 37.56 307 | 66.63 240 | 70.38 240 | 51.55 219 | 74.72 186 | 83.27 192 | 37.89 302 | 74.44 227 | 47.12 251 | 85.37 191 | 81.57 177 |
|
mvs_anonymous | | | 65.08 219 | 65.49 215 | 63.83 246 | 63.79 310 | 37.60 306 | 66.52 242 | 69.82 243 | 43.44 285 | 73.46 202 | 86.08 157 | 58.79 180 | 71.75 253 | 51.90 215 | 75.63 288 | 82.15 169 |
|
wuyk23d | | | 61.97 248 | 66.25 210 | 49.12 316 | 58.19 340 | 60.77 139 | 66.32 243 | 52.97 321 | 55.93 167 | 90.62 4 | 86.91 124 | 73.07 61 | 35.98 355 | 20.63 357 | 91.63 93 | 50.62 346 |
|
tpm cat1 | | | 54.02 292 | 52.63 300 | 58.19 290 | 64.85 306 | 39.86 288 | 66.26 244 | 57.28 302 | 32.16 340 | 56.90 317 | 70.39 316 | 32.75 318 | 65.30 294 | 34.29 323 | 58.79 346 | 69.41 299 |
|
Fast-Effi-MVS+ | | | 68.81 181 | 68.30 187 | 70.35 172 | 74.66 212 | 48.61 212 | 66.06 245 | 78.32 159 | 50.62 230 | 71.48 231 | 75.54 269 | 68.75 91 | 79.59 154 | 50.55 226 | 78.73 270 | 82.86 150 |
|
V42 | | | 71.06 152 | 70.83 161 | 71.72 158 | 67.25 284 | 47.14 232 | 65.94 246 | 80.35 130 | 51.35 221 | 83.40 75 | 83.23 193 | 59.25 175 | 78.80 162 | 65.91 108 | 80.81 250 | 89.23 28 |
|
cl-mvsnet_ | | | 68.26 191 | 68.26 188 | 68.29 206 | 64.98 304 | 43.67 257 | 65.89 247 | 74.67 198 | 50.04 236 | 76.86 156 | 82.42 199 | 48.74 242 | 75.38 214 | 60.92 146 | 89.81 135 | 85.80 78 |
|
cl-mvsnet1 | | | 68.27 190 | 68.26 188 | 68.29 206 | 64.98 304 | 43.67 257 | 65.89 247 | 74.67 198 | 50.04 236 | 76.86 156 | 82.43 198 | 48.74 242 | 75.38 214 | 60.94 145 | 89.81 135 | 85.81 74 |
|
tpmvs | | | 55.84 281 | 55.45 291 | 57.01 293 | 60.33 328 | 33.20 333 | 65.89 247 | 59.29 294 | 47.52 260 | 56.04 321 | 73.60 290 | 31.05 332 | 68.06 276 | 40.64 285 | 64.64 335 | 69.77 295 |
|
lupinMVS | | | 63.36 234 | 61.49 249 | 68.97 195 | 74.93 200 | 59.19 150 | 65.80 250 | 64.52 271 | 34.68 330 | 63.53 289 | 74.25 285 | 43.19 269 | 70.62 259 | 53.88 206 | 78.67 271 | 77.10 236 |
|
TransMVSNet (Re) | | | 69.62 168 | 71.63 150 | 63.57 248 | 76.51 183 | 35.93 316 | 65.75 251 | 71.29 229 | 61.05 119 | 75.02 180 | 89.90 76 | 65.88 120 | 70.41 264 | 49.79 230 | 89.48 141 | 84.38 113 |
|
NR-MVSNet | | | 73.62 116 | 74.05 111 | 72.33 155 | 83.50 95 | 43.71 256 | 65.65 252 | 77.32 174 | 64.32 93 | 75.59 174 | 87.08 119 | 62.45 143 | 81.34 116 | 54.90 193 | 95.63 8 | 91.93 8 |
|
BH-w/o | | | 64.81 221 | 64.29 226 | 66.36 228 | 76.08 190 | 54.71 176 | 65.61 253 | 75.23 195 | 50.10 235 | 71.05 236 | 71.86 307 | 54.33 213 | 79.02 158 | 38.20 300 | 76.14 285 | 65.36 320 |
|
PVSNet_BlendedMVS | | | 65.38 215 | 64.30 225 | 68.61 202 | 69.81 263 | 49.36 207 | 65.60 254 | 78.96 146 | 45.50 267 | 59.98 306 | 78.61 246 | 51.82 223 | 78.20 181 | 44.30 264 | 84.11 213 | 78.27 225 |
|
thres100view900 | | | 61.17 254 | 61.09 251 | 61.39 269 | 72.14 245 | 35.01 322 | 65.42 255 | 56.99 305 | 55.23 173 | 70.71 238 | 79.90 228 | 32.07 323 | 72.09 246 | 35.61 318 | 81.73 236 | 77.08 237 |
|
CDS-MVSNet | | | 64.33 228 | 62.66 241 | 69.35 188 | 80.44 135 | 58.28 160 | 65.26 256 | 65.66 261 | 44.36 277 | 67.30 266 | 75.54 269 | 43.27 268 | 71.77 251 | 37.68 303 | 84.44 210 | 78.01 230 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SCA | | | 58.57 273 | 58.04 273 | 60.17 279 | 70.17 261 | 41.07 277 | 65.19 257 | 53.38 319 | 43.34 288 | 61.00 302 | 73.48 291 | 45.20 256 | 69.38 268 | 40.34 287 | 70.31 318 | 70.05 292 |
|
HY-MVS | | 49.31 19 | 57.96 275 | 57.59 276 | 59.10 285 | 66.85 288 | 36.17 313 | 65.13 258 | 65.39 264 | 39.24 307 | 54.69 328 | 78.14 251 | 44.28 263 | 67.18 283 | 33.75 326 | 70.79 315 | 73.95 258 |
|
ET-MVSNet_ETH3D | | | 63.32 235 | 60.69 255 | 71.20 164 | 70.15 262 | 55.66 171 | 65.02 259 | 64.32 272 | 43.28 289 | 68.99 252 | 72.05 306 | 25.46 351 | 78.19 183 | 54.16 204 | 82.80 226 | 79.74 209 |
|
diffmvs | | | 67.42 201 | 67.50 200 | 67.20 219 | 62.26 317 | 45.21 247 | 64.87 260 | 77.04 177 | 48.21 251 | 71.74 222 | 79.70 231 | 58.40 182 | 71.17 256 | 64.99 114 | 80.27 255 | 85.22 82 |
|
miper_enhance_ethall | | | 65.86 211 | 65.05 224 | 68.28 208 | 61.62 321 | 42.62 268 | 64.74 261 | 77.97 165 | 42.52 290 | 73.42 203 | 72.79 297 | 49.66 235 | 77.68 190 | 58.12 166 | 84.59 207 | 84.54 105 |
|
thres600view7 | | | 61.82 250 | 61.38 250 | 63.12 254 | 71.81 247 | 34.93 323 | 64.64 262 | 56.99 305 | 54.78 180 | 70.33 242 | 79.74 230 | 32.07 323 | 72.42 244 | 38.61 296 | 83.46 221 | 82.02 170 |
|
BH-RMVSNet | | | 68.69 184 | 68.20 192 | 70.14 177 | 76.40 184 | 53.90 183 | 64.62 263 | 73.48 205 | 58.01 142 | 73.91 198 | 81.78 205 | 59.09 176 | 78.22 180 | 48.59 240 | 77.96 278 | 78.31 223 |
|
pm-mvs1 | | | 68.40 186 | 69.85 169 | 64.04 245 | 73.10 236 | 39.94 287 | 64.61 264 | 70.50 239 | 55.52 171 | 73.97 197 | 89.33 83 | 63.91 135 | 68.38 274 | 49.68 232 | 88.02 156 | 83.81 125 |
|
pmmvs4 | | | 60.78 257 | 59.04 265 | 66.00 231 | 73.06 238 | 57.67 162 | 64.53 265 | 60.22 290 | 36.91 319 | 65.96 271 | 77.27 259 | 39.66 292 | 68.54 273 | 38.87 293 | 74.89 295 | 71.80 278 |
|
WR-MVS | | | 71.20 151 | 72.48 138 | 67.36 217 | 84.98 73 | 35.70 318 | 64.43 266 | 68.66 249 | 65.05 86 | 81.49 95 | 86.43 146 | 57.57 194 | 76.48 205 | 50.36 227 | 93.32 69 | 89.90 21 |
|
tpmrst | | | 50.15 307 | 51.38 306 | 46.45 323 | 56.05 346 | 24.77 355 | 64.40 267 | 49.98 329 | 36.14 321 | 53.32 333 | 69.59 324 | 35.16 308 | 48.69 329 | 39.24 291 | 58.51 348 | 65.89 317 |
|
VPA-MVSNet | | | 68.71 183 | 70.37 165 | 63.72 247 | 76.13 188 | 38.06 302 | 64.10 268 | 71.48 225 | 56.60 163 | 74.10 195 | 88.31 106 | 64.78 130 | 69.72 265 | 47.69 249 | 90.15 128 | 83.37 136 |
|
MIMVSNet1 | | | 66.57 207 | 69.23 174 | 58.59 288 | 81.26 128 | 37.73 305 | 64.06 269 | 57.62 298 | 57.02 154 | 78.40 131 | 90.75 44 | 62.65 139 | 58.10 318 | 41.77 279 | 89.58 140 | 79.95 205 |
|
MVS_0304 | | | 62.51 245 | 62.27 243 | 63.25 252 | 69.39 267 | 48.47 213 | 64.05 270 | 62.48 279 | 59.69 130 | 54.10 331 | 81.04 214 | 45.71 252 | 66.31 291 | 41.38 281 | 82.58 229 | 74.96 251 |
|
IterMVS | | | 63.12 238 | 62.48 242 | 65.02 237 | 66.34 291 | 52.86 188 | 63.81 271 | 62.25 280 | 46.57 264 | 71.51 230 | 80.40 221 | 44.60 261 | 66.82 287 | 51.38 219 | 75.47 290 | 75.38 248 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 67.68 197 | 66.07 212 | 72.49 151 | 73.34 230 | 58.20 161 | 63.80 272 | 65.55 263 | 48.10 252 | 76.91 153 | 82.64 197 | 45.20 256 | 78.84 161 | 61.20 142 | 77.89 279 | 80.44 200 |
|
DELS-MVS | | | 68.83 180 | 68.31 186 | 70.38 171 | 70.55 259 | 48.31 214 | 63.78 273 | 82.13 94 | 54.00 193 | 68.96 253 | 75.17 273 | 58.95 178 | 80.06 149 | 58.55 163 | 82.74 227 | 82.76 153 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
bset_n11_16_dypcd | | | 66.91 206 | 65.84 214 | 70.12 178 | 72.95 239 | 53.54 184 | 63.64 274 | 68.65 250 | 48.54 249 | 72.54 214 | 74.28 284 | 40.58 286 | 78.54 167 | 63.52 129 | 87.82 160 | 78.29 224 |
|
xiu_mvs_v2_base | | | 64.43 226 | 63.96 227 | 65.85 233 | 77.72 170 | 51.32 195 | 63.63 275 | 72.31 217 | 45.06 275 | 61.70 294 | 69.66 323 | 62.56 140 | 73.93 231 | 49.06 236 | 73.91 301 | 72.31 273 |
|
tfpnnormal | | | 66.48 208 | 67.93 194 | 62.16 263 | 73.40 229 | 36.65 309 | 63.45 276 | 64.99 266 | 55.97 165 | 72.82 210 | 87.80 115 | 57.06 199 | 69.10 271 | 48.31 244 | 87.54 162 | 80.72 195 |
|
TR-MVS | | | 64.59 222 | 63.54 232 | 67.73 215 | 75.75 194 | 50.83 197 | 63.39 277 | 70.29 241 | 49.33 242 | 71.55 229 | 74.55 279 | 50.94 229 | 78.46 171 | 40.43 286 | 75.69 287 | 73.89 259 |
|
PS-MVSNAJ | | | 64.27 229 | 63.73 230 | 65.90 232 | 77.82 168 | 51.42 194 | 63.33 278 | 72.33 216 | 45.09 274 | 61.60 295 | 68.04 334 | 62.39 144 | 73.95 230 | 49.07 235 | 73.87 302 | 72.34 272 |
|
tfpn200view9 | | | 60.35 261 | 59.97 259 | 61.51 267 | 70.78 253 | 35.35 320 | 63.27 279 | 57.47 299 | 53.00 203 | 68.31 259 | 77.09 260 | 32.45 320 | 72.09 246 | 35.61 318 | 81.73 236 | 77.08 237 |
|
thres400 | | | 60.77 258 | 59.97 259 | 63.15 253 | 70.78 253 | 35.35 320 | 63.27 279 | 57.47 299 | 53.00 203 | 68.31 259 | 77.09 260 | 32.45 320 | 72.09 246 | 35.61 318 | 81.73 236 | 82.02 170 |
|
test_yl | | | 65.11 217 | 65.09 221 | 65.18 235 | 70.59 256 | 40.86 278 | 63.22 281 | 72.79 209 | 57.91 143 | 68.88 254 | 79.07 243 | 42.85 272 | 74.89 222 | 45.50 261 | 84.97 199 | 79.81 206 |
|
DCV-MVSNet | | | 65.11 217 | 65.09 221 | 65.18 235 | 70.59 256 | 40.86 278 | 63.22 281 | 72.79 209 | 57.91 143 | 68.88 254 | 79.07 243 | 42.85 272 | 74.89 222 | 45.50 261 | 84.97 199 | 79.81 206 |
|
baseline1 | | | 57.82 276 | 58.36 272 | 56.19 295 | 69.17 269 | 30.76 343 | 62.94 283 | 55.21 311 | 46.04 266 | 63.83 285 | 78.47 247 | 41.20 280 | 63.68 301 | 39.44 289 | 68.99 325 | 74.13 256 |
|
baseline2 | | | 55.57 285 | 52.74 299 | 64.05 244 | 65.26 299 | 44.11 253 | 62.38 284 | 54.43 314 | 39.03 308 | 51.21 337 | 67.35 338 | 33.66 312 | 72.45 243 | 37.14 308 | 64.22 337 | 75.60 244 |
|
FPMVS | | | 59.43 267 | 60.07 258 | 57.51 292 | 77.62 173 | 71.52 51 | 62.33 285 | 50.92 326 | 57.40 152 | 69.40 248 | 80.00 227 | 39.14 294 | 61.92 308 | 37.47 306 | 66.36 332 | 39.09 355 |
|
DWT-MVSNet_test | | | 53.04 295 | 51.12 308 | 58.77 287 | 61.23 322 | 38.67 295 | 62.16 286 | 57.74 297 | 38.24 311 | 51.76 336 | 59.07 350 | 21.36 358 | 67.40 281 | 44.80 263 | 63.76 338 | 70.25 291 |
|
PatchMatch-RL | | | 58.68 272 | 57.72 275 | 61.57 266 | 76.21 187 | 73.59 42 | 61.83 287 | 49.00 333 | 47.30 261 | 61.08 299 | 68.97 328 | 50.16 233 | 59.01 315 | 36.06 317 | 68.84 326 | 52.10 345 |
|
cascas | | | 64.59 222 | 62.77 240 | 70.05 180 | 75.27 196 | 50.02 202 | 61.79 288 | 71.61 221 | 42.46 291 | 63.68 287 | 68.89 330 | 49.33 238 | 80.35 139 | 47.82 248 | 84.05 214 | 79.78 208 |
|
LCM-MVSNet-Re | | | 69.10 178 | 71.57 153 | 61.70 265 | 70.37 260 | 34.30 328 | 61.45 289 | 79.62 137 | 56.81 157 | 89.59 7 | 88.16 111 | 68.44 95 | 72.94 235 | 42.30 274 | 87.33 169 | 77.85 232 |
|
1112_ss | | | 59.48 266 | 58.99 266 | 60.96 274 | 77.84 167 | 42.39 270 | 61.42 290 | 68.45 251 | 37.96 314 | 59.93 309 | 67.46 336 | 45.11 258 | 65.07 295 | 40.89 284 | 71.81 310 | 75.41 247 |
|
IB-MVS | | 49.67 18 | 59.69 265 | 56.96 280 | 67.90 210 | 68.19 275 | 50.30 200 | 61.42 290 | 65.18 265 | 47.57 259 | 55.83 323 | 67.15 340 | 23.77 356 | 79.60 153 | 43.56 270 | 79.97 258 | 73.79 260 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PVSNet_Blended | | | 62.90 241 | 61.64 246 | 66.69 226 | 69.81 263 | 49.36 207 | 61.23 292 | 78.96 146 | 42.04 292 | 59.98 306 | 68.86 331 | 51.82 223 | 78.20 181 | 44.30 264 | 77.77 280 | 72.52 270 |
|
GA-MVS | | | 62.91 240 | 61.66 245 | 66.66 227 | 67.09 286 | 44.49 251 | 61.18 293 | 69.36 246 | 51.33 222 | 69.33 249 | 74.47 280 | 36.83 304 | 74.94 221 | 50.60 225 | 74.72 296 | 80.57 198 |
|
MS-PatchMatch | | | 55.59 284 | 54.89 292 | 57.68 291 | 69.18 268 | 49.05 209 | 61.00 294 | 62.93 278 | 35.98 322 | 58.36 313 | 68.93 329 | 36.71 305 | 66.59 289 | 37.62 305 | 63.30 339 | 57.39 341 |
|
MVSTER | | | 63.29 236 | 61.60 248 | 68.36 204 | 59.77 333 | 46.21 240 | 60.62 295 | 71.32 227 | 41.83 293 | 75.40 178 | 79.12 241 | 30.25 337 | 75.85 208 | 56.30 181 | 79.81 260 | 83.03 145 |
|
thisisatest0515 | | | 60.48 260 | 57.86 274 | 68.34 205 | 67.25 284 | 46.42 237 | 60.58 296 | 62.14 281 | 40.82 300 | 63.58 288 | 69.12 326 | 26.28 347 | 78.34 177 | 48.83 237 | 82.13 232 | 80.26 202 |
|
tpm | | | 50.60 305 | 52.42 302 | 45.14 328 | 65.18 301 | 26.29 352 | 60.30 297 | 43.50 342 | 37.41 316 | 57.01 316 | 79.09 242 | 30.20 339 | 42.32 348 | 32.77 329 | 66.36 332 | 66.81 314 |
|
VPNet | | | 65.58 214 | 67.56 198 | 59.65 282 | 79.72 140 | 30.17 344 | 60.27 298 | 62.14 281 | 54.19 190 | 71.24 232 | 86.63 139 | 58.80 179 | 67.62 279 | 44.17 267 | 90.87 117 | 81.18 180 |
|
MIMVSNet | | | 54.39 289 | 56.12 287 | 49.20 314 | 72.57 241 | 30.91 342 | 59.98 299 | 48.43 335 | 41.66 294 | 55.94 322 | 83.86 183 | 41.19 281 | 50.42 326 | 26.05 347 | 75.38 292 | 66.27 316 |
|
HyFIR lowres test | | | 63.01 239 | 60.47 256 | 70.61 167 | 83.04 101 | 54.10 180 | 59.93 300 | 72.24 218 | 33.67 335 | 69.00 251 | 75.63 268 | 38.69 296 | 76.93 198 | 36.60 311 | 75.45 291 | 80.81 192 |
|
Patchmatch-RL test | | | 59.95 263 | 59.12 264 | 62.44 261 | 72.46 242 | 54.61 178 | 59.63 301 | 47.51 337 | 41.05 299 | 74.58 189 | 74.30 283 | 31.06 331 | 65.31 293 | 51.61 216 | 79.85 259 | 67.39 308 |
|
PatchT | | | 53.35 294 | 56.47 284 | 43.99 332 | 64.19 308 | 17.46 361 | 59.15 302 | 43.10 343 | 52.11 212 | 54.74 327 | 86.95 123 | 29.97 340 | 49.98 328 | 43.62 269 | 74.40 299 | 64.53 328 |
|
JIA-IIPM | | | 54.03 291 | 51.62 303 | 61.25 271 | 59.14 335 | 55.21 174 | 59.10 303 | 47.72 336 | 50.85 227 | 50.31 343 | 85.81 163 | 20.10 361 | 63.97 299 | 36.16 316 | 55.41 354 | 64.55 327 |
|
Anonymous202405211 | | | 66.02 210 | 66.89 208 | 63.43 251 | 74.22 218 | 38.14 300 | 59.00 304 | 66.13 259 | 63.33 105 | 69.76 247 | 85.95 161 | 51.88 222 | 70.50 261 | 44.23 266 | 87.52 163 | 81.64 176 |
|
MDTV_nov1_ep13 | | | | 54.05 295 | | 65.54 298 | 29.30 346 | 59.00 304 | 55.22 310 | 35.96 323 | 52.44 334 | 75.98 266 | 30.77 334 | 59.62 313 | 38.21 299 | 73.33 304 | |
|
thres200 | | | 57.55 277 | 57.02 279 | 59.17 284 | 67.89 280 | 34.93 323 | 58.91 306 | 57.25 303 | 50.24 232 | 64.01 283 | 71.46 310 | 32.49 319 | 71.39 254 | 31.31 332 | 79.57 264 | 71.19 285 |
|
ANet_high | | | 67.08 203 | 69.94 167 | 58.51 289 | 57.55 341 | 27.09 350 | 58.43 307 | 76.80 179 | 63.56 100 | 82.40 86 | 91.93 20 | 59.82 170 | 64.98 296 | 50.10 229 | 88.86 150 | 83.46 133 |
|
ppachtmachnet_test | | | 60.26 262 | 59.61 262 | 62.20 262 | 67.70 281 | 44.33 252 | 58.18 308 | 60.96 289 | 40.75 301 | 65.80 273 | 72.57 298 | 41.23 279 | 63.92 300 | 46.87 255 | 82.42 230 | 78.33 222 |
|
DIV-MVS_2432*1600 | | | 66.38 209 | 67.51 199 | 62.97 257 | 61.76 319 | 34.39 327 | 58.11 309 | 75.30 193 | 50.84 228 | 77.12 148 | 85.42 166 | 56.84 201 | 69.44 267 | 51.07 221 | 91.16 104 | 85.08 88 |
|
Test_1112_low_res | | | 58.78 271 | 58.69 268 | 59.04 286 | 79.41 144 | 38.13 301 | 57.62 310 | 66.98 256 | 34.74 328 | 59.62 310 | 77.56 257 | 42.92 271 | 63.65 302 | 38.66 295 | 70.73 316 | 75.35 249 |
|
VNet | | | 64.01 232 | 65.15 218 | 60.57 276 | 73.28 231 | 35.61 319 | 57.60 311 | 67.08 255 | 54.61 183 | 66.76 269 | 83.37 189 | 56.28 204 | 66.87 284 | 42.19 275 | 85.20 197 | 79.23 214 |
|
DSMNet-mixed | | | 43.18 324 | 44.66 325 | 38.75 340 | 54.75 353 | 28.88 348 | 57.06 312 | 27.42 362 | 13.47 359 | 47.27 348 | 77.67 256 | 38.83 295 | 39.29 354 | 25.32 352 | 60.12 344 | 48.08 348 |
|
CL-MVSNet_2432*1600 | | | 62.44 246 | 63.40 233 | 59.55 283 | 72.34 243 | 32.38 335 | 56.39 313 | 64.84 267 | 51.21 224 | 67.46 265 | 81.01 215 | 50.75 230 | 63.51 303 | 38.47 298 | 88.12 154 | 82.75 154 |
|
D2MVS | | | 62.58 244 | 61.05 252 | 67.20 219 | 63.85 309 | 47.92 221 | 56.29 314 | 69.58 244 | 39.32 305 | 70.07 244 | 78.19 250 | 34.93 309 | 72.68 237 | 53.44 210 | 83.74 219 | 81.00 185 |
|
FMVSNet5 | | | 55.08 287 | 55.54 290 | 53.71 300 | 65.80 296 | 33.50 332 | 56.22 315 | 52.50 323 | 43.72 283 | 61.06 300 | 83.38 188 | 25.46 351 | 54.87 321 | 30.11 337 | 81.64 241 | 72.75 268 |
|
MVS-HIRNet | | | 45.53 317 | 47.29 317 | 40.24 338 | 62.29 316 | 26.82 351 | 56.02 316 | 37.41 357 | 29.74 349 | 43.69 356 | 81.27 211 | 33.96 311 | 55.48 320 | 24.46 353 | 56.79 350 | 38.43 356 |
|
pmmvs3 | | | 46.71 315 | 45.09 322 | 51.55 308 | 56.76 344 | 48.25 215 | 55.78 317 | 39.53 356 | 24.13 357 | 50.35 342 | 63.40 344 | 15.90 365 | 51.08 325 | 29.29 342 | 70.69 317 | 55.33 344 |
|
pmmvs5 | | | 52.49 299 | 52.58 301 | 52.21 307 | 54.99 352 | 32.38 335 | 55.45 318 | 53.84 316 | 32.15 341 | 55.49 325 | 74.81 274 | 38.08 299 | 57.37 319 | 34.02 324 | 74.40 299 | 66.88 312 |
|
our_test_3 | | | 56.46 279 | 56.51 283 | 56.30 294 | 67.70 281 | 39.66 289 | 55.36 319 | 52.34 324 | 40.57 303 | 63.85 284 | 69.91 322 | 40.04 289 | 58.22 317 | 43.49 271 | 75.29 294 | 71.03 287 |
|
EPMVS | | | 45.74 316 | 46.53 319 | 43.39 333 | 54.14 356 | 22.33 358 | 55.02 320 | 35.00 359 | 34.69 329 | 51.09 338 | 70.20 318 | 25.92 349 | 42.04 350 | 37.19 307 | 55.50 353 | 65.78 318 |
|
dp | | | 44.09 323 | 44.88 324 | 41.72 337 | 58.53 338 | 23.18 357 | 54.70 321 | 42.38 347 | 34.80 327 | 44.25 354 | 65.61 342 | 24.48 354 | 44.80 340 | 29.77 339 | 49.42 356 | 57.18 342 |
|
CHOSEN 1792x2688 | | | 58.09 274 | 56.30 285 | 63.45 250 | 79.95 138 | 50.93 196 | 54.07 322 | 65.59 262 | 28.56 350 | 61.53 296 | 74.33 282 | 41.09 282 | 66.52 290 | 33.91 325 | 67.69 331 | 72.92 266 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 360 | 53.74 323 | | 31.57 345 | 44.89 351 | | 29.90 341 | | 32.93 328 | | 71.48 280 |
|
test-LLR | | | 50.43 306 | 50.69 311 | 49.64 312 | 60.76 325 | 41.87 272 | 53.18 324 | 45.48 340 | 43.41 286 | 49.41 344 | 60.47 348 | 29.22 342 | 44.73 341 | 42.09 276 | 72.14 308 | 62.33 334 |
|
TESTMET0.1,1 | | | 45.17 318 | 44.93 323 | 45.89 325 | 56.02 347 | 38.31 297 | 53.18 324 | 41.94 350 | 27.85 351 | 44.86 352 | 56.47 351 | 17.93 363 | 41.50 352 | 38.08 301 | 68.06 328 | 57.85 340 |
|
test-mter | | | 48.56 311 | 48.20 316 | 49.64 312 | 60.76 325 | 41.87 272 | 53.18 324 | 45.48 340 | 31.91 344 | 49.41 344 | 60.47 348 | 18.34 362 | 44.73 341 | 42.09 276 | 72.14 308 | 62.33 334 |
|
Anonymous20231206 | | | 54.13 290 | 55.82 288 | 49.04 317 | 70.89 252 | 35.96 315 | 51.73 327 | 50.87 327 | 34.86 326 | 62.49 292 | 79.22 238 | 42.52 275 | 44.29 343 | 27.95 345 | 81.88 235 | 66.88 312 |
|
XXY-MVS | | | 55.19 286 | 57.40 278 | 48.56 318 | 64.45 307 | 34.84 325 | 51.54 328 | 53.59 317 | 38.99 309 | 63.79 286 | 79.43 234 | 56.59 202 | 45.57 335 | 36.92 310 | 71.29 312 | 65.25 321 |
|
test20.03 | | | 55.74 283 | 57.51 277 | 50.42 309 | 59.89 332 | 32.09 337 | 50.63 329 | 49.01 332 | 50.11 234 | 65.07 277 | 83.23 193 | 45.61 254 | 48.11 331 | 30.22 336 | 83.82 218 | 71.07 286 |
|
UnsupCasMVSNet_eth | | | 52.26 300 | 53.29 298 | 49.16 315 | 55.08 351 | 33.67 331 | 50.03 330 | 58.79 295 | 37.67 315 | 63.43 291 | 74.75 276 | 41.82 277 | 45.83 334 | 38.59 297 | 59.42 345 | 67.98 307 |
|
testgi | | | 54.00 293 | 56.86 281 | 45.45 326 | 58.20 339 | 25.81 354 | 49.05 331 | 49.50 331 | 45.43 270 | 67.84 261 | 81.17 213 | 51.81 225 | 43.20 347 | 29.30 341 | 79.41 265 | 67.34 310 |
|
Patchmatch-test | | | 47.93 312 | 49.96 313 | 41.84 335 | 57.42 342 | 24.26 356 | 48.75 332 | 41.49 351 | 39.30 306 | 56.79 318 | 73.48 291 | 30.48 336 | 33.87 356 | 29.29 342 | 72.61 306 | 67.39 308 |
|
UnsupCasMVSNet_bld | | | 50.01 308 | 51.03 310 | 46.95 319 | 58.61 337 | 32.64 334 | 48.31 333 | 53.27 320 | 34.27 331 | 60.47 304 | 71.53 309 | 41.40 278 | 47.07 332 | 30.68 334 | 60.78 342 | 61.13 336 |
|
PVSNet | | 43.83 21 | 51.56 304 | 51.17 307 | 52.73 304 | 68.34 273 | 38.27 298 | 48.22 334 | 53.56 318 | 36.41 320 | 54.29 329 | 64.94 343 | 34.60 310 | 54.20 324 | 30.34 335 | 69.87 321 | 65.71 319 |
|
MDA-MVSNet-bldmvs | | | 62.34 247 | 61.73 244 | 64.16 241 | 61.64 320 | 49.90 203 | 48.11 335 | 57.24 304 | 53.31 201 | 80.95 101 | 79.39 235 | 49.00 240 | 61.55 309 | 45.92 259 | 80.05 257 | 81.03 183 |
|
PMMVS | | | 44.69 320 | 43.95 327 | 46.92 320 | 50.05 360 | 53.47 186 | 48.08 336 | 42.40 346 | 22.36 358 | 44.01 355 | 53.05 353 | 42.60 274 | 45.49 336 | 31.69 331 | 61.36 341 | 41.79 353 |
|
miper_lstm_enhance | | | 61.97 248 | 61.63 247 | 62.98 256 | 60.04 329 | 45.74 244 | 47.53 337 | 70.95 235 | 44.04 278 | 73.06 207 | 78.84 245 | 39.72 291 | 60.33 311 | 55.82 186 | 84.64 206 | 82.88 148 |
|
ADS-MVSNet2 | | | 48.76 310 | 47.25 318 | 53.29 303 | 55.90 348 | 40.54 284 | 47.34 338 | 54.99 313 | 31.41 346 | 50.48 340 | 72.06 304 | 31.23 328 | 54.26 323 | 25.93 348 | 55.93 351 | 65.07 322 |
|
ADS-MVSNet | | | 44.62 321 | 45.58 320 | 41.73 336 | 55.90 348 | 20.83 359 | 47.34 338 | 39.94 355 | 31.41 346 | 50.48 340 | 72.06 304 | 31.23 328 | 39.31 353 | 25.93 348 | 55.93 351 | 65.07 322 |
|
WTY-MVS | | | 49.39 309 | 50.31 312 | 46.62 322 | 61.22 323 | 32.00 338 | 46.61 340 | 49.77 330 | 33.87 333 | 54.12 330 | 69.55 325 | 41.96 276 | 45.40 337 | 31.28 333 | 64.42 336 | 62.47 333 |
|
test0.0.03 1 | | | 47.72 313 | 48.31 315 | 45.93 324 | 55.53 350 | 29.39 345 | 46.40 341 | 41.21 353 | 43.41 286 | 55.81 324 | 67.65 335 | 29.22 342 | 43.77 346 | 25.73 350 | 69.87 321 | 64.62 326 |
|
test123 | | | 4.43 334 | 5.78 337 | 0.39 346 | 0.97 366 | 0.28 367 | 46.33 342 | 0.45 367 | 0.31 362 | 0.62 363 | 1.50 363 | 0.61 369 | 0.11 364 | 0.56 361 | 0.63 361 | 0.77 360 |
|
sss | | | 47.59 314 | 48.32 314 | 45.40 327 | 56.73 345 | 33.96 329 | 45.17 343 | 48.51 334 | 32.11 343 | 52.37 335 | 65.79 341 | 40.39 288 | 41.91 351 | 31.85 330 | 61.97 340 | 60.35 337 |
|
KD-MVS_2432*1600 | | | 52.05 302 | 51.58 304 | 53.44 301 | 52.11 357 | 31.20 340 | 44.88 344 | 64.83 268 | 41.53 295 | 64.37 279 | 70.03 320 | 15.61 366 | 64.20 297 | 36.25 313 | 74.61 297 | 64.93 324 |
|
miper_refine_blended | | | 52.05 302 | 51.58 304 | 53.44 301 | 52.11 357 | 31.20 340 | 44.88 344 | 64.83 268 | 41.53 295 | 64.37 279 | 70.03 320 | 15.61 366 | 64.20 297 | 36.25 313 | 74.61 297 | 64.93 324 |
|
testmvs | | | 4.06 335 | 5.28 338 | 0.41 345 | 0.64 367 | 0.16 368 | 42.54 346 | 0.31 368 | 0.26 363 | 0.50 364 | 1.40 364 | 0.77 368 | 0.17 363 | 0.56 361 | 0.55 362 | 0.90 359 |
|
PVSNet_0 | | 36.71 22 | 41.12 326 | 40.78 329 | 42.14 334 | 59.97 330 | 40.13 286 | 40.97 347 | 42.24 349 | 30.81 348 | 44.86 352 | 49.41 356 | 40.70 285 | 45.12 339 | 23.15 354 | 34.96 358 | 41.16 354 |
|
YYNet1 | | | 52.58 297 | 53.50 296 | 49.85 310 | 54.15 355 | 36.45 312 | 40.53 348 | 46.55 339 | 38.09 313 | 75.52 176 | 73.31 294 | 41.08 283 | 43.88 344 | 41.10 282 | 71.14 314 | 69.21 301 |
|
MDA-MVSNet_test_wron | | | 52.57 298 | 53.49 297 | 49.81 311 | 54.24 354 | 36.47 311 | 40.48 349 | 46.58 338 | 38.13 312 | 75.47 177 | 73.32 293 | 41.05 284 | 43.85 345 | 40.98 283 | 71.20 313 | 69.10 303 |
|
new_pmnet | | | 37.55 328 | 39.80 331 | 30.79 341 | 56.83 343 | 16.46 362 | 39.35 350 | 30.65 360 | 25.59 355 | 45.26 350 | 61.60 347 | 24.54 353 | 28.02 359 | 21.60 355 | 52.80 355 | 47.90 349 |
|
E-PMN | | | 45.17 318 | 45.36 321 | 44.60 330 | 50.07 359 | 42.75 266 | 38.66 351 | 42.29 348 | 46.39 265 | 39.55 357 | 51.15 355 | 26.00 348 | 45.37 338 | 37.68 303 | 76.41 282 | 45.69 352 |
|
EMVS | | | 44.61 322 | 44.45 326 | 45.10 329 | 48.91 361 | 43.00 264 | 37.92 352 | 41.10 354 | 46.75 263 | 38.00 359 | 48.43 357 | 26.42 346 | 46.27 333 | 37.11 309 | 75.38 292 | 46.03 351 |
|
N_pmnet | | | 52.06 301 | 51.11 309 | 54.92 298 | 59.64 334 | 71.03 56 | 37.42 353 | 61.62 288 | 33.68 334 | 57.12 315 | 72.10 299 | 37.94 300 | 31.03 357 | 29.13 344 | 71.35 311 | 62.70 331 |
|
new-patchmatchnet | | | 52.89 296 | 55.76 289 | 44.26 331 | 59.94 331 | 6.31 364 | 37.36 354 | 50.76 328 | 41.10 297 | 64.28 281 | 79.82 229 | 44.77 259 | 48.43 330 | 36.24 315 | 87.61 161 | 78.03 229 |
|
CHOSEN 280x420 | | | 41.62 325 | 39.89 330 | 46.80 321 | 61.81 318 | 51.59 192 | 33.56 355 | 35.74 358 | 27.48 352 | 37.64 360 | 53.53 352 | 23.24 357 | 42.09 349 | 27.39 346 | 58.64 347 | 46.72 350 |
|
PMMVS2 | | | 37.74 327 | 40.87 328 | 28.36 342 | 42.41 363 | 5.35 365 | 24.61 356 | 27.75 361 | 32.15 341 | 47.85 346 | 70.27 317 | 35.85 307 | 29.51 358 | 19.08 358 | 67.85 329 | 50.22 347 |
|
MVE |  | 27.91 23 | 36.69 329 | 35.64 332 | 39.84 339 | 43.37 362 | 35.85 317 | 19.49 357 | 24.61 363 | 24.68 356 | 39.05 358 | 62.63 346 | 38.67 297 | 27.10 360 | 21.04 356 | 47.25 357 | 56.56 343 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 11.98 331 | 14.73 334 | 3.72 344 | 2.28 365 | 4.62 366 | 19.44 358 | 14.50 365 | 0.47 361 | 21.55 361 | 9.58 360 | 25.78 350 | 4.57 362 | 11.61 359 | 27.37 359 | 1.96 358 |
|
uanet_test | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
cdsmvs_eth3d_5k | | | 17.71 330 | 23.62 333 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 70.17 242 | 0.00 364 | 0.00 365 | 74.25 285 | 68.16 98 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
pcd_1.5k_mvsjas | | | 5.20 333 | 6.93 336 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 62.39 144 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet-low-res | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
sosnet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uncertanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
Regformer | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ab-mvs-re | | | 5.62 332 | 7.50 335 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 67.46 336 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
uanet | | | 0.00 336 | 0.00 339 | 0.00 347 | 0.00 368 | 0.00 369 | 0.00 359 | 0.00 369 | 0.00 364 | 0.00 365 | 0.00 365 | 0.00 370 | 0.00 365 | 0.00 363 | 0.00 363 | 0.00 361 |
|
ZD-MVS | | | | | | 83.91 91 | 69.36 73 | | 81.09 115 | 58.91 138 | 82.73 83 | 89.11 92 | 75.77 36 | 86.63 13 | 72.73 59 | 92.93 73 | |
|
IU-MVS | | | | | | 86.12 57 | 60.90 136 | | 80.38 128 | 45.49 269 | 81.31 97 | | | | 75.64 41 | 94.39 41 | 84.65 98 |
|
test_241102_TWO | | | | | | | | | 84.80 47 | 72.61 29 | 84.93 54 | 89.70 78 | 77.73 23 | 85.89 36 | 75.29 42 | 94.22 53 | 83.25 139 |
|
test_241102_ONE | | | | | | 86.12 57 | 61.06 132 | | 84.72 51 | 72.64 28 | 87.38 24 | 89.47 81 | 77.48 24 | 85.74 40 | | | |
|
test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 41 | 90.41 58 | 75.58 38 | 85.69 41 | 77.43 33 | 94.74 29 | 84.31 115 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 292 |
|
test_part2 | | | | | | 85.90 61 | 66.44 93 | | | | 84.61 60 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 326 | | | | 70.05 292 |
|
sam_mvs | | | | | | | | | | | | | 31.21 330 | | | | |
|
MTGPA |  | | | | | | | | 80.63 121 | | | | | | | | |
|
test_post | | | | | | | | | | | | 1.99 362 | 30.91 333 | 54.76 322 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 327 | 31.32 327 | 69.38 268 | | | |
|
gm-plane-assit | | | | | | 62.51 315 | 33.91 330 | | | 37.25 317 | | 62.71 345 | | 72.74 236 | 38.70 294 | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 67 | 91.37 99 | 77.40 234 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 112 | 78.55 221 |
|
agg_prior | | | | | | 84.44 84 | 66.02 97 | | 78.62 155 | | 76.95 151 | | | 80.34 140 | | | |
|
TestCases | | | | | 78.35 69 | 79.19 150 | 70.81 58 | | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 79 | 78.43 173 | 55.60 187 | 90.90 114 | 85.81 74 |
|
test_prior | | | | | 75.27 103 | 82.15 115 | 59.85 146 | | 84.33 62 | | | | | 83.39 85 | | | 82.58 158 |
|
新几何1 | | | | | 69.99 181 | 88.37 35 | 71.34 54 | | 62.08 283 | 43.85 279 | 74.99 181 | 86.11 156 | 52.85 219 | 70.57 260 | 50.99 222 | 83.23 224 | 68.05 306 |
|
旧先验1 | | | | | | 84.55 81 | 60.36 142 | | 63.69 274 | | | 87.05 122 | 54.65 211 | | | 83.34 222 | 69.66 296 |
|
原ACMM1 | | | | | 73.90 119 | 85.90 61 | 65.15 105 | | 81.67 101 | 50.97 226 | 74.25 193 | 86.16 153 | 61.60 152 | 83.54 81 | 56.75 174 | 91.08 108 | 73.00 265 |
|
testdata2 | | | | | | | | | | | | | | 67.30 282 | 48.34 243 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 97 | | | | |
|
testdata | | | | | 64.13 242 | 85.87 63 | 63.34 118 | | 61.80 287 | 47.83 256 | 76.42 169 | 86.60 141 | 48.83 241 | 62.31 307 | 54.46 200 | 81.26 243 | 66.74 315 |
|
test12 | | | | | 76.51 88 | 82.28 113 | 60.94 135 | | 81.64 102 | | 73.60 199 | | 64.88 127 | 85.19 57 | | 90.42 123 | 83.38 135 |
|
plane_prior7 | | | | | | 85.18 69 | 66.21 95 | | | | | | | | | | |
|
plane_prior6 | | | | | | 84.18 88 | 65.31 102 | | | | | | 60.83 162 | | | | |
|
plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 26 | 71.09 71 | 90.94 110 | 84.82 93 |
|
plane_prior4 | | | | | | | | | | | | 89.11 92 | | | | | |
|
plane_prior3 | | | | | | | 65.67 99 | | | 63.82 98 | 78.23 132 | | | | | | |
|
plane_prior1 | | | | | | 84.46 83 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 369 | | | | | | | | |
|
nn | | | | | | | | | 0.00 369 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 312 | | | | | | | | |
|
lessismore_v0 | | | | | 72.75 145 | 79.60 142 | 56.83 166 | | 57.37 301 | | 83.80 71 | 89.01 95 | 47.45 249 | 78.74 164 | 64.39 119 | 86.49 183 | 82.69 156 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 42 | 70.41 63 | | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
test11 | | | | | | | | | 82.71 89 | | | | | | | | |
|
door | | | | | | | | | 52.91 322 | | | | | | | | |
|
HQP5-MVS | | | | | | | 58.80 156 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 100 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 224 | | | 85.31 50 | | | 83.74 126 |
|
HQP3-MVS | | | | | | | | | 84.12 70 | | | | | | | 89.16 144 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 186 | | | | |
|
NP-MVS | | | | | | 83.34 99 | 63.07 121 | | | | | 85.97 159 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 88 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 140 | | | | |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 178 | 73.60 41 | | 80.48 125 | 66.87 64 | 83.64 73 | 86.18 151 | 70.25 81 | 79.90 150 | 61.12 144 | 88.95 149 | 87.56 52 |
|
DeepMVS_CX |  | | | | 11.83 343 | 15.51 364 | 13.86 363 | | 11.25 366 | 5.76 360 | 20.85 362 | 26.46 358 | 17.06 364 | 9.22 361 | 9.69 360 | 13.82 360 | 12.42 357 |
|