Effi-MVS+-dtu | | | 75.43 93 | 72.28 141 | 84.91 2 | 77.05 173 | 83.58 1 | 78.47 92 | 77.70 168 | 57.68 146 | 74.89 181 | 78.13 250 | 64.80 128 | 84.26 72 | 56.46 178 | 85.32 193 | 86.88 61 |
|
PMVS |  | 70.70 6 | 81.70 36 | 83.15 34 | 77.36 80 | 90.35 6 | 82.82 2 | 82.15 55 | 79.22 143 | 74.08 20 | 87.16 29 | 91.97 19 | 84.80 2 | 76.97 196 | 64.98 115 | 93.61 63 | 72.28 272 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
mvs-test1 | | | 73.81 113 | 70.69 162 | 83.18 5 | 77.05 173 | 81.39 3 | 75.39 128 | 77.70 168 | 57.68 146 | 71.19 232 | 74.72 275 | 64.80 128 | 83.66 79 | 56.46 178 | 81.19 242 | 84.50 110 |
|
mPP-MVS | | | 84.01 12 | 84.39 13 | 82.88 8 | 90.65 4 | 81.38 4 | 87.08 11 | 82.79 87 | 72.41 33 | 85.11 53 | 90.85 41 | 76.65 29 | 84.89 60 | 79.30 17 | 94.63 32 | 82.35 164 |
|
TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 32 | 81.19 5 | 88.84 2 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 63 | 74.51 48 | 96.15 2 | 92.88 7 |
|
test1172 | | | 84.85 4 | 85.39 5 | 83.21 3 | 88.34 37 | 80.50 6 | 85.12 28 | 85.22 39 | 81.06 2 | 87.20 27 | 90.28 67 | 79.20 14 | 85.58 46 | 78.04 27 | 94.08 54 | 83.55 129 |
|
CP-MVS | | | 84.12 10 | 84.55 12 | 82.80 12 | 89.42 18 | 79.74 7 | 88.19 3 | 84.43 60 | 71.96 39 | 84.70 59 | 90.56 50 | 77.12 26 | 86.18 25 | 79.24 18 | 95.36 13 | 82.49 161 |
|
abl_6 | | | 84.92 3 | 85.70 3 | 82.57 17 | 86.72 47 | 79.27 8 | 87.56 5 | 86.08 25 | 77.48 12 | 88.12 13 | 91.53 27 | 81.18 8 | 84.31 71 | 78.12 24 | 94.47 35 | 84.15 119 |
|
SR-MVS-dyc-post | | | 84.75 5 | 85.26 7 | 83.21 3 | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 45 | 79.20 14 | 85.58 46 | 78.11 25 | 94.46 36 | 84.89 91 |
|
RE-MVS-def | | | | 85.50 4 | | 86.19 53 | 79.18 9 | 87.23 7 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 45 | 81.38 7 | | 78.11 25 | 94.46 36 | 84.89 91 |
|
MP-MVS |  | | 83.19 20 | 83.54 26 | 82.14 22 | 90.54 5 | 79.00 11 | 86.42 21 | 83.59 78 | 71.31 40 | 81.26 98 | 90.96 38 | 74.57 50 | 84.69 64 | 78.41 22 | 94.78 26 | 82.74 155 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CPTT-MVS | | | 81.51 38 | 81.76 46 | 80.76 40 | 89.20 24 | 78.75 12 | 86.48 20 | 82.03 96 | 68.80 53 | 80.92 103 | 88.52 101 | 72.00 67 | 82.39 102 | 74.80 44 | 93.04 71 | 81.14 181 |
|
HPM-MVS++ |  | | 79.89 56 | 79.80 62 | 80.18 45 | 89.02 26 | 78.44 13 | 83.49 46 | 80.18 132 | 64.71 90 | 78.11 135 | 88.39 103 | 65.46 123 | 83.14 90 | 77.64 32 | 91.20 102 | 78.94 216 |
|
zzz-MVS | | | 83.01 25 | 83.63 25 | 81.13 35 | 91.16 2 | 78.16 14 | 82.72 53 | 80.63 121 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 189 |
|
MTAPA | | | 83.19 20 | 83.87 20 | 81.13 35 | 91.16 2 | 78.16 14 | 84.87 30 | 80.63 121 | 72.08 36 | 84.93 54 | 90.79 42 | 74.65 48 | 84.42 68 | 80.98 4 | 94.75 27 | 80.82 189 |
|
SR-MVS | | | 84.51 7 | 85.27 6 | 82.25 21 | 88.52 34 | 77.71 16 | 86.81 15 | 85.25 38 | 77.42 14 | 86.15 36 | 90.24 68 | 81.69 5 | 85.94 31 | 77.77 29 | 93.58 65 | 83.09 142 |
|
XVS | | | 83.51 17 | 83.73 22 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 26 | 82.87 79 | 90.39 61 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
X-MVStestdata | | | 76.81 82 | 74.79 101 | 82.85 10 | 89.43 16 | 77.61 17 | 86.80 16 | 84.66 54 | 72.71 26 | 82.87 79 | 9.95 357 | 73.86 55 | 86.31 20 | 78.84 20 | 94.03 55 | 84.64 99 |
|
region2R | | | 83.54 16 | 83.86 21 | 82.58 16 | 89.82 10 | 77.53 19 | 87.06 12 | 84.23 68 | 70.19 48 | 83.86 70 | 90.72 47 | 75.20 41 | 86.27 22 | 79.41 15 | 94.25 50 | 83.95 122 |
|
RPSCF | | | 75.76 89 | 74.37 107 | 79.93 46 | 74.81 204 | 77.53 19 | 77.53 104 | 79.30 142 | 59.44 131 | 78.88 124 | 89.80 77 | 71.26 75 | 73.09 233 | 57.45 168 | 80.89 246 | 89.17 30 |
|
ACMMPR | | | 83.62 14 | 83.93 19 | 82.69 13 | 89.78 11 | 77.51 21 | 87.01 13 | 84.19 69 | 70.23 46 | 84.49 61 | 90.67 48 | 75.15 42 | 86.37 19 | 79.58 11 | 94.26 49 | 84.18 118 |
|
MSP-MVS | | | 80.49 49 | 79.67 64 | 82.96 7 | 89.70 12 | 77.46 22 | 87.16 10 | 85.10 42 | 64.94 87 | 81.05 100 | 88.38 104 | 57.10 198 | 87.10 8 | 79.75 8 | 83.87 215 | 84.31 115 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
PGM-MVS | | | 83.07 23 | 83.25 33 | 82.54 18 | 89.57 14 | 77.21 23 | 82.04 57 | 85.40 35 | 67.96 59 | 84.91 57 | 90.88 39 | 75.59 37 | 86.57 15 | 78.16 23 | 94.71 30 | 83.82 123 |
|
DeepPCF-MVS | | 71.07 5 | 78.48 71 | 77.14 85 | 82.52 19 | 84.39 86 | 77.04 24 | 76.35 117 | 84.05 72 | 56.66 160 | 80.27 111 | 85.31 167 | 68.56 93 | 87.03 10 | 67.39 99 | 91.26 100 | 83.50 130 |
|
ACMMP |  | | 84.22 8 | 84.84 10 | 82.35 20 | 89.23 23 | 76.66 25 | 87.65 4 | 85.89 28 | 71.03 42 | 85.85 40 | 90.58 49 | 78.77 17 | 85.78 38 | 79.37 16 | 95.17 17 | 84.62 101 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HPM-MVS_fast | | | 84.59 6 | 85.10 8 | 83.06 6 | 88.60 33 | 75.83 26 | 86.27 23 | 86.89 16 | 73.69 22 | 86.17 35 | 91.70 24 | 78.23 20 | 85.20 56 | 79.45 13 | 94.91 25 | 88.15 45 |
|
HFP-MVS | | | 83.39 19 | 84.03 18 | 81.48 27 | 89.25 21 | 75.69 27 | 87.01 13 | 84.27 64 | 70.23 46 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 79.58 11 | 94.23 51 | 82.82 151 |
|
#test# | | | 82.40 30 | 82.71 40 | 81.48 27 | 89.25 21 | 75.69 27 | 84.47 34 | 84.27 64 | 64.45 91 | 84.47 62 | 90.43 55 | 76.79 27 | 85.94 31 | 76.01 36 | 94.23 51 | 82.82 151 |
|
LTVRE_ROB | | 75.46 1 | 84.22 8 | 84.98 9 | 81.94 23 | 84.82 75 | 75.40 29 | 91.60 1 | 87.80 7 | 73.52 23 | 88.90 10 | 93.06 6 | 71.39 74 | 81.53 115 | 81.53 3 | 92.15 86 | 88.91 37 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
CNLPA | | | 73.44 118 | 73.03 132 | 74.66 106 | 78.27 159 | 75.29 30 | 75.99 123 | 78.49 157 | 65.39 79 | 75.67 172 | 83.22 193 | 61.23 158 | 66.77 287 | 53.70 206 | 85.33 192 | 81.92 173 |
|
PM-MVS | | | 64.49 223 | 63.61 229 | 67.14 220 | 76.68 181 | 75.15 31 | 68.49 213 | 42.85 342 | 51.17 224 | 77.85 136 | 80.51 217 | 45.76 250 | 66.31 290 | 52.83 210 | 76.35 281 | 59.96 336 |
|
XVG-OURS | | | 79.51 58 | 79.82 61 | 78.58 65 | 86.11 60 | 74.96 32 | 76.33 119 | 84.95 46 | 66.89 63 | 82.75 82 | 88.99 96 | 66.82 110 | 78.37 175 | 74.80 44 | 90.76 117 | 82.40 163 |
|
XVG-OURS-SEG-HR | | | 79.62 57 | 79.99 60 | 78.49 66 | 86.46 50 | 74.79 33 | 77.15 110 | 85.39 36 | 66.73 67 | 80.39 110 | 88.85 99 | 74.43 53 | 78.33 177 | 74.73 46 | 85.79 186 | 82.35 164 |
|
HPM-MVS |  | | 84.12 10 | 84.63 11 | 82.60 15 | 88.21 38 | 74.40 34 | 85.24 27 | 87.21 14 | 70.69 45 | 85.14 52 | 90.42 57 | 78.99 16 | 86.62 14 | 80.83 6 | 94.93 24 | 86.79 62 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
COLMAP_ROB |  | 72.78 3 | 83.75 13 | 84.11 17 | 82.68 14 | 82.97 102 | 74.39 35 | 87.18 9 | 88.18 6 | 78.98 6 | 86.11 38 | 91.47 29 | 79.70 12 | 85.76 39 | 66.91 104 | 95.46 11 | 87.89 47 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 78.60 67 | 77.80 79 | 81.00 37 | 78.01 163 | 74.34 36 | 80.09 74 | 76.12 183 | 50.51 230 | 89.19 9 | 90.88 39 | 71.45 73 | 77.78 188 | 73.38 55 | 90.60 119 | 90.90 16 |
|
ACMM | | 69.25 9 | 82.11 33 | 83.31 30 | 78.49 66 | 88.17 39 | 73.96 37 | 83.11 49 | 84.52 59 | 66.40 71 | 87.45 22 | 89.16 91 | 81.02 9 | 80.52 137 | 74.27 50 | 95.73 7 | 80.98 186 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mvs_tets | | | 78.93 64 | 78.67 72 | 79.72 49 | 84.81 76 | 73.93 38 | 80.65 64 | 76.50 181 | 51.98 213 | 87.40 23 | 91.86 21 | 76.09 34 | 78.53 167 | 68.58 84 | 90.20 123 | 86.69 64 |
|
MVS_111021_LR | | | 72.10 143 | 71.82 147 | 72.95 138 | 79.53 142 | 73.90 39 | 70.45 187 | 66.64 255 | 56.87 156 | 76.81 157 | 81.76 205 | 68.78 90 | 71.76 251 | 61.81 135 | 83.74 217 | 73.18 262 |
|
jajsoiax | | | 78.51 69 | 78.16 77 | 79.59 52 | 84.65 79 | 73.83 40 | 80.42 67 | 76.12 183 | 51.33 221 | 87.19 28 | 91.51 28 | 73.79 57 | 78.44 171 | 68.27 87 | 90.13 128 | 86.49 65 |
|
ITE_SJBPF | | | | | 80.35 44 | 76.94 177 | 73.60 41 | | 80.48 125 | 66.87 64 | 83.64 73 | 86.18 151 | 70.25 81 | 79.90 149 | 61.12 143 | 88.95 147 | 87.56 52 |
|
PatchMatch-RL | | | 58.68 270 | 57.72 273 | 61.57 265 | 76.21 186 | 73.59 42 | 61.83 285 | 49.00 331 | 47.30 260 | 61.08 297 | 68.97 326 | 50.16 233 | 59.01 314 | 36.06 315 | 68.84 324 | 52.10 343 |
|
APD-MVS_3200maxsize | | | 83.57 15 | 84.33 14 | 81.31 33 | 82.83 105 | 73.53 43 | 85.50 26 | 87.45 12 | 74.11 19 | 86.45 33 | 90.52 53 | 80.02 11 | 84.48 67 | 77.73 30 | 94.34 47 | 85.93 72 |
|
GST-MVS | | | 82.79 27 | 83.27 32 | 81.34 32 | 88.99 27 | 73.29 44 | 85.94 24 | 85.13 40 | 68.58 57 | 84.14 67 | 90.21 70 | 73.37 60 | 86.41 17 | 79.09 19 | 93.98 58 | 84.30 117 |
|
ZNCC-MVS | | | 83.12 22 | 83.68 23 | 81.45 29 | 89.14 25 | 73.28 45 | 86.32 22 | 85.97 27 | 67.39 61 | 84.02 68 | 90.39 61 | 74.73 47 | 86.46 16 | 80.73 7 | 94.43 40 | 84.60 104 |
|
XVG-ACMP-BASELINE | | | 80.54 48 | 81.06 52 | 78.98 59 | 87.01 41 | 72.91 46 | 80.23 73 | 85.56 30 | 66.56 70 | 85.64 43 | 89.57 80 | 69.12 88 | 80.55 136 | 72.51 62 | 93.37 67 | 83.48 131 |
|
3Dnovator+ | | 73.19 2 | 81.08 43 | 80.48 56 | 82.87 9 | 81.41 125 | 72.03 47 | 84.38 35 | 86.23 23 | 77.28 15 | 80.65 106 | 90.18 71 | 59.80 171 | 87.58 4 | 73.06 57 | 91.34 99 | 89.01 33 |
|
F-COLMAP | | | 75.29 95 | 73.99 112 | 79.18 56 | 81.73 121 | 71.90 48 | 81.86 59 | 82.98 84 | 59.86 129 | 72.27 215 | 84.00 180 | 64.56 131 | 83.07 93 | 51.48 215 | 87.19 172 | 82.56 160 |
|
AUN-MVS | | | 70.22 159 | 67.88 195 | 77.22 82 | 82.96 103 | 71.61 49 | 69.08 201 | 71.39 226 | 49.17 243 | 71.70 221 | 78.07 251 | 37.62 301 | 79.21 155 | 61.81 135 | 89.15 144 | 80.82 189 |
|
FPMVS | | | 59.43 265 | 60.07 256 | 57.51 291 | 77.62 172 | 71.52 50 | 62.33 283 | 50.92 324 | 57.40 152 | 69.40 246 | 80.00 225 | 39.14 292 | 61.92 307 | 37.47 304 | 66.36 330 | 39.09 353 |
|
1121 | | | 69.23 174 | 68.26 187 | 72.12 156 | 88.36 36 | 71.40 51 | 68.59 209 | 62.06 282 | 43.80 278 | 74.75 183 | 86.18 151 | 52.92 218 | 76.85 200 | 54.47 197 | 83.27 221 | 68.12 303 |
|
LS3D | | | 80.99 45 | 80.85 54 | 81.41 30 | 78.37 158 | 71.37 52 | 87.45 6 | 85.87 29 | 77.48 12 | 81.98 88 | 89.95 75 | 69.14 87 | 85.26 52 | 66.15 105 | 91.24 101 | 87.61 51 |
|
新几何1 | | | | | 69.99 180 | 88.37 35 | 71.34 53 | | 62.08 281 | 43.85 277 | 74.99 180 | 86.11 156 | 52.85 219 | 70.57 259 | 50.99 220 | 83.23 222 | 68.05 304 |
|
test_djsdf | | | 78.88 65 | 78.27 75 | 80.70 41 | 81.42 124 | 71.24 54 | 83.98 36 | 75.72 187 | 52.27 208 | 87.37 26 | 92.25 16 | 68.04 100 | 80.56 134 | 72.28 65 | 91.15 104 | 90.32 20 |
|
N_pmnet | | | 52.06 299 | 51.11 307 | 54.92 296 | 59.64 332 | 71.03 55 | 37.42 351 | 61.62 286 | 33.68 332 | 57.12 313 | 72.10 297 | 37.94 298 | 31.03 355 | 29.13 342 | 71.35 309 | 62.70 329 |
|
SteuartSystems-ACMMP | | | 83.07 23 | 83.64 24 | 81.35 31 | 85.14 71 | 71.00 56 | 85.53 25 | 84.78 48 | 70.91 43 | 85.64 43 | 90.41 58 | 75.55 39 | 87.69 3 | 79.75 8 | 95.08 20 | 85.36 81 |
Skip Steuart: Steuart Systems R&D Blog. |
AllTest | | | 77.66 76 | 77.43 81 | 78.35 69 | 79.19 149 | 70.81 57 | 78.60 90 | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 79 | 78.43 172 | 55.60 186 | 90.90 113 | 85.81 74 |
|
TestCases | | | | | 78.35 69 | 79.19 149 | 70.81 57 | | 88.64 2 | 65.37 80 | 80.09 113 | 88.17 109 | 70.33 79 | 78.43 172 | 55.60 186 | 90.90 113 | 85.81 74 |
|
TSAR-MVS + GP. | | | 73.08 125 | 71.60 151 | 77.54 77 | 78.99 155 | 70.73 59 | 74.96 132 | 69.38 244 | 60.73 123 | 74.39 191 | 78.44 246 | 57.72 193 | 82.78 96 | 60.16 150 | 89.60 137 | 79.11 215 |
|
OMC-MVS | | | 79.41 60 | 78.79 69 | 81.28 34 | 80.62 132 | 70.71 60 | 80.91 63 | 84.76 49 | 62.54 110 | 81.77 90 | 86.65 138 | 71.46 72 | 83.53 82 | 67.95 94 | 92.44 82 | 89.60 23 |
|
APD-MVS |  | | 81.13 42 | 81.73 47 | 79.36 55 | 84.47 82 | 70.53 61 | 83.85 38 | 83.70 76 | 69.43 52 | 83.67 72 | 88.96 97 | 75.89 35 | 86.41 17 | 72.62 61 | 92.95 72 | 81.14 181 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
LPG-MVS_test | | | 83.47 18 | 84.33 14 | 80.90 38 | 87.00 42 | 70.41 62 | 82.04 57 | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
LGP-MVS_train | | | | | 80.90 38 | 87.00 42 | 70.41 62 | | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 23 | 77.13 34 | 95.96 5 | 86.08 68 |
|
RRT_MVS | | | 73.80 114 | 71.19 157 | 81.60 24 | 71.04 250 | 70.33 64 | 78.78 88 | 74.91 197 | 56.96 155 | 77.83 137 | 85.56 164 | 32.82 314 | 87.39 5 | 71.16 70 | 91.68 90 | 87.07 60 |
|
test_prior4 | | | | | | | 70.14 65 | 77.57 102 | | | | | | | | | |
|
DeepC-MVS | | 72.44 4 | 81.00 44 | 80.83 55 | 81.50 26 | 86.70 48 | 70.03 66 | 82.06 56 | 87.00 15 | 59.89 128 | 80.91 104 | 90.53 51 | 72.19 64 | 88.56 1 | 73.67 54 | 94.52 34 | 85.92 73 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
testtj | | | 81.19 40 | 81.70 48 | 79.67 51 | 83.95 90 | 69.77 67 | 83.58 45 | 84.63 56 | 72.13 35 | 82.85 81 | 88.36 105 | 75.00 45 | 86.79 12 | 71.99 69 | 92.84 74 | 82.44 162 |
|
SMA-MVS |  | | 82.12 32 | 82.68 41 | 80.43 42 | 88.90 30 | 69.52 68 | 85.12 28 | 84.76 49 | 63.53 101 | 84.23 66 | 91.47 29 | 72.02 66 | 87.16 7 | 79.74 10 | 94.36 45 | 84.61 102 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
NCCC | | | 78.25 74 | 78.04 78 | 78.89 61 | 85.61 65 | 69.45 69 | 79.80 78 | 80.99 118 | 65.77 74 | 75.55 174 | 86.25 150 | 67.42 104 | 85.42 48 | 70.10 76 | 90.88 115 | 81.81 174 |
|
ACMP | | 69.50 8 | 82.64 28 | 83.38 29 | 80.40 43 | 86.50 49 | 69.44 70 | 82.30 54 | 86.08 25 | 66.80 66 | 86.70 31 | 89.99 73 | 81.64 6 | 85.95 30 | 74.35 49 | 96.11 3 | 85.81 74 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
OPM-MVS | | | 80.99 45 | 81.63 50 | 79.07 58 | 86.86 46 | 69.39 71 | 79.41 81 | 84.00 74 | 65.64 75 | 85.54 46 | 89.28 84 | 76.32 32 | 83.47 83 | 74.03 51 | 93.57 66 | 84.35 114 |
|
ZD-MVS | | | | | | 83.91 91 | 69.36 72 | | 81.09 115 | 58.91 138 | 82.73 83 | 89.11 92 | 75.77 36 | 86.63 13 | 72.73 59 | 92.93 73 | |
|
TEST9 | | | | | | 85.47 66 | 69.32 73 | 76.42 115 | 78.69 152 | 53.73 197 | 76.97 148 | 86.74 132 | 66.84 109 | 81.10 122 | | | |
|
train_agg | | | 76.38 85 | 76.55 87 | 75.86 96 | 85.47 66 | 69.32 73 | 76.42 115 | 78.69 152 | 54.00 192 | 76.97 148 | 86.74 132 | 66.60 112 | 81.10 122 | 72.50 63 | 91.56 94 | 77.15 234 |
|
UA-Net | | | 81.56 37 | 82.28 43 | 79.40 54 | 88.91 29 | 69.16 75 | 84.67 33 | 80.01 135 | 75.34 16 | 79.80 115 | 94.91 2 | 69.79 84 | 80.25 142 | 72.63 60 | 94.46 36 | 88.78 41 |
|
test222 | | | | | | 87.30 40 | 69.15 76 | 67.85 219 | 59.59 291 | 41.06 296 | 73.05 207 | 85.72 163 | 48.03 246 | | | 80.65 249 | 66.92 309 |
|
ACMMP_NAP | | | 82.33 31 | 83.28 31 | 79.46 53 | 89.28 19 | 69.09 77 | 83.62 42 | 84.98 44 | 64.77 88 | 83.97 69 | 91.02 37 | 75.53 40 | 85.93 34 | 82.00 2 | 94.36 45 | 83.35 137 |
|
PLC |  | 62.01 16 | 71.79 146 | 70.28 165 | 76.33 90 | 80.31 135 | 68.63 78 | 78.18 99 | 81.24 110 | 54.57 184 | 67.09 266 | 80.63 216 | 59.44 172 | 81.74 114 | 46.91 252 | 84.17 210 | 78.63 218 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MP-MVS-pluss | | | 82.54 29 | 83.46 28 | 79.76 47 | 88.88 31 | 68.44 79 | 81.57 60 | 86.33 19 | 63.17 106 | 85.38 49 | 91.26 33 | 76.33 31 | 84.67 65 | 83.30 1 | 94.96 23 | 86.17 67 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
TAPA-MVS | | 65.27 12 | 75.16 97 | 74.29 109 | 77.77 75 | 74.86 203 | 68.08 80 | 77.89 101 | 84.04 73 | 55.15 174 | 76.19 170 | 83.39 185 | 66.91 108 | 80.11 147 | 60.04 153 | 90.14 127 | 85.13 85 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
DeepC-MVS_fast | | 69.89 7 | 77.17 80 | 76.33 90 | 79.70 50 | 83.90 92 | 67.94 81 | 80.06 76 | 83.75 75 | 56.73 159 | 74.88 182 | 85.32 166 | 65.54 121 | 87.79 2 | 65.61 111 | 91.14 105 | 83.35 137 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_8 | | | | | | 85.09 72 | 67.89 82 | 76.26 120 | 78.66 154 | 54.00 192 | 76.89 153 | 86.72 134 | 66.60 112 | 80.89 132 | | | |
|
SD-MVS | | | 80.28 54 | 81.55 51 | 76.47 89 | 83.57 93 | 67.83 83 | 83.39 48 | 85.35 37 | 64.42 92 | 86.14 37 | 87.07 121 | 74.02 54 | 80.97 127 | 77.70 31 | 92.32 85 | 80.62 196 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 79.05 63 | 78.81 68 | 79.74 48 | 88.94 28 | 67.52 84 | 86.61 18 | 81.38 107 | 51.71 215 | 77.15 145 | 91.42 32 | 65.49 122 | 87.20 6 | 79.44 14 | 87.17 173 | 84.51 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 78.49 70 | 78.59 73 | 78.16 71 | 85.86 64 | 67.40 85 | 78.12 100 | 81.50 103 | 63.92 96 | 77.51 142 | 86.56 142 | 68.43 96 | 84.82 62 | 73.83 52 | 91.61 93 | 82.26 167 |
|
DPE-MVS | | | 82.00 34 | 83.02 36 | 78.95 60 | 85.36 68 | 67.25 86 | 82.91 50 | 84.98 44 | 73.52 23 | 85.43 48 | 90.03 72 | 76.37 30 | 86.97 11 | 74.56 47 | 94.02 57 | 82.62 157 |
|
xxxxxxxxxxxxxcwj | | | 80.31 53 | 80.94 53 | 78.42 68 | 87.00 42 | 67.23 87 | 79.24 82 | 88.61 4 | 56.65 161 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
save fliter | | | | | | 87.00 42 | 67.23 87 | 79.24 82 | 77.94 166 | 56.65 161 | | | | | | | |
|
OPU-MVS | | | | | 78.65 64 | 83.44 97 | 66.85 89 | 83.62 42 | | | | 86.12 155 | 66.82 110 | 86.01 29 | 61.72 137 | 89.79 135 | 83.08 143 |
|
APDe-MVS | | | 82.88 26 | 84.14 16 | 79.08 57 | 84.80 77 | 66.72 90 | 86.54 19 | 85.11 41 | 72.00 38 | 86.65 32 | 91.75 23 | 78.20 21 | 87.04 9 | 77.93 28 | 94.32 48 | 83.47 132 |
|
Regformer-2 | | | 75.32 94 | 74.47 105 | 77.88 74 | 74.22 217 | 66.65 91 | 72.77 154 | 77.54 170 | 68.47 58 | 80.44 108 | 72.08 298 | 70.60 78 | 80.97 127 | 70.08 77 | 84.02 213 | 86.01 71 |
|
test_part2 | | | | | | 85.90 61 | 66.44 92 | | | | 84.61 60 | | | | | | |
|
PS-MVSNAJss | | | 77.54 77 | 77.35 82 | 78.13 73 | 84.88 74 | 66.37 93 | 78.55 91 | 79.59 140 | 53.48 199 | 86.29 34 | 92.43 15 | 62.39 144 | 80.25 142 | 67.90 95 | 90.61 118 | 87.77 48 |
|
plane_prior7 | | | | | | 85.18 69 | 66.21 94 | | | | | | | | | | |
|
ETH3D cwj APD-0.16 | | | 78.38 73 | 78.72 71 | 77.38 79 | 80.09 136 | 66.16 95 | 79.08 85 | 86.13 24 | 57.55 151 | 80.93 102 | 87.76 116 | 71.98 68 | 82.73 98 | 72.11 68 | 92.83 75 | 83.25 139 |
|
agg_prior1 | | | 75.89 87 | 76.41 88 | 74.31 113 | 84.44 84 | 66.02 96 | 76.12 121 | 78.62 155 | 54.40 186 | 76.95 150 | 86.85 126 | 66.44 114 | 80.34 139 | 72.45 64 | 91.42 97 | 76.57 238 |
|
agg_prior | | | | | | 84.44 84 | 66.02 96 | | 78.62 155 | | 76.95 150 | | | 80.34 139 | | | |
|
plane_prior3 | | | | | | | 65.67 98 | | | 63.82 98 | 78.23 132 | | | | | | |
|
MVS_111021_HR | | | 72.98 131 | 72.97 134 | 72.99 136 | 80.82 129 | 65.47 99 | 68.81 205 | 72.77 211 | 57.67 148 | 75.76 171 | 82.38 198 | 71.01 76 | 77.17 194 | 61.38 139 | 86.15 182 | 76.32 239 |
|
DP-MVS | | | 78.44 72 | 79.29 66 | 75.90 95 | 81.86 119 | 65.33 100 | 79.05 86 | 84.63 56 | 74.83 18 | 80.41 109 | 86.27 148 | 71.68 70 | 83.45 84 | 62.45 134 | 92.40 83 | 78.92 217 |
|
plane_prior6 | | | | | | 84.18 88 | 65.31 101 | | | | | | 60.83 162 | | | | |
|
HQP_MVS | | | 78.77 66 | 78.78 70 | 78.72 62 | 85.18 69 | 65.18 102 | 82.74 51 | 85.49 32 | 65.45 77 | 78.23 132 | 89.11 92 | 60.83 162 | 86.15 26 | 71.09 71 | 90.94 109 | 84.82 93 |
|
plane_prior | | | | | | | 65.18 102 | 80.06 76 | | 61.88 115 | | | | | | 89.91 132 | |
|
原ACMM1 | | | | | 73.90 118 | 85.90 61 | 65.15 104 | | 81.67 101 | 50.97 225 | 74.25 192 | 86.16 153 | 61.60 152 | 83.54 81 | 56.75 173 | 91.08 107 | 73.00 263 |
|
MAR-MVS | | | 67.72 195 | 66.16 210 | 72.40 152 | 74.45 214 | 64.99 105 | 74.87 133 | 77.50 172 | 48.67 247 | 65.78 272 | 68.58 331 | 57.01 200 | 77.79 187 | 46.68 254 | 81.92 232 | 74.42 254 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Vis-MVSNet |  | | 74.85 105 | 74.56 103 | 75.72 97 | 81.63 123 | 64.64 106 | 76.35 117 | 79.06 145 | 62.85 108 | 73.33 203 | 88.41 102 | 62.54 142 | 79.59 153 | 63.94 124 | 82.92 223 | 82.94 147 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ETH3D-3000-0.1 | | | 79.14 62 | 79.80 62 | 77.16 83 | 80.67 131 | 64.57 107 | 80.26 71 | 87.60 11 | 60.74 122 | 82.47 85 | 88.03 113 | 71.73 69 | 81.81 111 | 73.12 56 | 93.61 63 | 85.09 86 |
|
Fast-Effi-MVS+-dtu | | | 70.00 162 | 68.74 182 | 73.77 120 | 73.47 226 | 64.53 108 | 71.36 174 | 78.14 163 | 55.81 168 | 68.84 255 | 74.71 276 | 65.36 124 | 75.75 210 | 52.00 212 | 79.00 265 | 81.03 183 |
|
Regformer-4 | | | 74.64 106 | 73.67 117 | 77.55 76 | 74.74 206 | 64.49 109 | 72.91 152 | 75.42 191 | 67.45 60 | 80.24 112 | 72.07 300 | 68.98 89 | 80.19 146 | 70.29 75 | 80.91 244 | 87.98 46 |
|
SF-MVS | | | 80.72 47 | 81.80 45 | 77.48 78 | 82.03 116 | 64.40 110 | 83.41 47 | 88.46 5 | 65.28 82 | 84.29 64 | 89.18 88 | 73.73 58 | 83.22 88 | 76.01 36 | 93.77 60 | 84.81 95 |
|
OurMVSNet-221017-0 | | | 78.57 68 | 78.53 74 | 78.67 63 | 80.48 133 | 64.16 111 | 80.24 72 | 82.06 95 | 61.89 114 | 88.77 11 | 93.32 4 | 57.15 196 | 82.60 100 | 70.08 77 | 92.80 76 | 89.25 27 |
|
Regformer-1 | | | 74.28 108 | 73.63 119 | 76.21 93 | 74.22 217 | 64.12 112 | 72.77 154 | 75.46 190 | 66.86 65 | 79.27 120 | 72.08 298 | 69.29 86 | 78.74 163 | 68.73 83 | 84.02 213 | 85.77 79 |
|
CDPH-MVS | | | 77.33 79 | 77.06 86 | 78.14 72 | 84.21 87 | 63.98 113 | 76.07 122 | 83.45 79 | 54.20 188 | 77.68 141 | 87.18 117 | 69.98 82 | 85.37 49 | 68.01 91 | 92.72 80 | 85.08 88 |
|
UGNet | | | 70.20 160 | 69.05 175 | 73.65 121 | 76.24 185 | 63.64 114 | 75.87 124 | 72.53 214 | 61.48 116 | 60.93 301 | 86.14 154 | 52.37 221 | 77.12 195 | 50.67 222 | 85.21 194 | 80.17 204 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet_Blended_VisFu | | | 70.04 161 | 68.88 178 | 73.53 125 | 82.71 106 | 63.62 115 | 74.81 135 | 81.95 98 | 48.53 249 | 67.16 265 | 79.18 238 | 51.42 227 | 78.38 174 | 54.39 200 | 79.72 261 | 78.60 219 |
|
DP-MVS Recon | | | 73.57 117 | 72.69 136 | 76.23 92 | 82.85 104 | 63.39 116 | 74.32 144 | 82.96 85 | 57.75 145 | 70.35 239 | 81.98 201 | 64.34 133 | 84.41 70 | 49.69 229 | 89.95 131 | 80.89 187 |
|
testdata | | | | | 64.13 241 | 85.87 63 | 63.34 117 | | 61.80 285 | 47.83 255 | 76.42 168 | 86.60 141 | 48.83 240 | 62.31 306 | 54.46 199 | 81.26 241 | 66.74 313 |
|
LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 25 | 91.50 1 | 63.30 118 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 66 | 68.08 89 | 97.05 1 | 96.93 1 |
|
3Dnovator | | 65.95 11 | 71.50 148 | 71.22 156 | 72.34 153 | 73.16 231 | 63.09 119 | 78.37 93 | 78.32 159 | 57.67 148 | 72.22 217 | 84.61 172 | 54.77 209 | 78.47 169 | 60.82 146 | 81.07 243 | 75.45 245 |
|
NP-MVS | | | | | | 83.34 98 | 63.07 120 | | | | | 85.97 159 | | | | | |
|
MSLP-MVS++ | | | 74.48 107 | 75.78 94 | 70.59 167 | 84.66 78 | 62.40 121 | 78.65 89 | 84.24 67 | 60.55 124 | 77.71 140 | 81.98 201 | 63.12 137 | 77.64 190 | 62.95 131 | 88.14 151 | 71.73 277 |
|
ACMH+ | | 66.64 10 | 81.20 39 | 82.48 42 | 77.35 81 | 81.16 128 | 62.39 122 | 80.51 65 | 87.80 7 | 73.02 25 | 87.57 20 | 91.08 36 | 80.28 10 | 82.44 101 | 64.82 116 | 96.10 4 | 87.21 56 |
|
PHI-MVS | | | 74.92 101 | 74.36 108 | 76.61 85 | 76.40 183 | 62.32 123 | 80.38 68 | 83.15 82 | 54.16 190 | 73.23 205 | 80.75 214 | 62.19 147 | 83.86 76 | 68.02 90 | 90.92 112 | 83.65 128 |
|
LF4IMVS | | | 67.50 197 | 67.31 202 | 68.08 208 | 58.86 334 | 61.93 124 | 71.43 172 | 75.90 186 | 44.67 274 | 72.42 214 | 80.20 222 | 57.16 195 | 70.44 261 | 58.99 160 | 86.12 183 | 71.88 275 |
|
xiu_mvs_v1_base_debu | | | 67.87 192 | 67.07 204 | 70.26 172 | 79.13 151 | 61.90 125 | 67.34 226 | 71.25 230 | 47.98 252 | 67.70 260 | 74.19 285 | 61.31 155 | 72.62 238 | 56.51 175 | 78.26 273 | 76.27 240 |
|
xiu_mvs_v1_base | | | 67.87 192 | 67.07 204 | 70.26 172 | 79.13 151 | 61.90 125 | 67.34 226 | 71.25 230 | 47.98 252 | 67.70 260 | 74.19 285 | 61.31 155 | 72.62 238 | 56.51 175 | 78.26 273 | 76.27 240 |
|
xiu_mvs_v1_base_debi | | | 67.87 192 | 67.07 204 | 70.26 172 | 79.13 151 | 61.90 125 | 67.34 226 | 71.25 230 | 47.98 252 | 67.70 260 | 74.19 285 | 61.31 155 | 72.62 238 | 56.51 175 | 78.26 273 | 76.27 240 |
|
CSCG | | | 74.12 110 | 74.39 106 | 73.33 127 | 79.35 144 | 61.66 128 | 77.45 105 | 81.98 97 | 62.47 112 | 79.06 123 | 80.19 223 | 61.83 149 | 78.79 162 | 59.83 155 | 87.35 166 | 79.54 210 |
|
CANet | | | 73.00 129 | 71.84 146 | 76.48 88 | 75.82 191 | 61.28 129 | 74.81 135 | 80.37 129 | 63.17 106 | 62.43 291 | 80.50 218 | 61.10 160 | 85.16 58 | 64.00 121 | 84.34 209 | 83.01 146 |
|
EPNet | | | 69.10 177 | 67.32 201 | 74.46 108 | 68.33 273 | 61.27 130 | 77.56 103 | 63.57 273 | 60.95 120 | 56.62 317 | 82.75 194 | 51.53 226 | 81.24 119 | 54.36 201 | 90.20 123 | 80.88 188 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
SED-MVS | | | 81.78 35 | 83.48 27 | 76.67 84 | 86.12 57 | 61.06 131 | 83.62 42 | 84.72 51 | 72.61 29 | 87.38 24 | 89.70 78 | 77.48 24 | 85.89 36 | 75.29 42 | 94.39 41 | 83.08 143 |
|
test_241102_ONE | | | | | | 86.12 57 | 61.06 131 | | 84.72 51 | 72.64 28 | 87.38 24 | 89.47 81 | 77.48 24 | 85.74 40 | | | |
|
AdaColmap |  | | 74.22 109 | 74.56 103 | 73.20 131 | 81.95 117 | 60.97 133 | 79.43 79 | 80.90 119 | 65.57 76 | 72.54 212 | 81.76 205 | 70.98 77 | 85.26 52 | 47.88 245 | 90.00 129 | 73.37 260 |
|
test12 | | | | | 76.51 87 | 82.28 112 | 60.94 134 | | 81.64 102 | | 73.60 198 | | 64.88 127 | 85.19 57 | | 90.42 121 | 83.38 135 |
|
IU-MVS | | | | | | 86.12 57 | 60.90 135 | | 80.38 128 | 45.49 267 | 81.31 97 | | | | 75.64 41 | 94.39 41 | 84.65 98 |
|
DVP-MVS | | | 81.15 41 | 83.12 35 | 75.24 104 | 86.16 55 | 60.78 136 | 83.77 40 | 80.58 124 | 72.48 31 | 85.83 41 | 90.41 58 | 78.57 18 | 85.69 41 | 75.86 39 | 94.39 41 | 79.24 213 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 86.16 55 | 60.78 136 | 83.81 39 | 85.10 42 | 72.48 31 | 85.27 51 | 89.96 74 | 78.57 18 | | | | |
|
wuyk23d | | | 61.97 246 | 66.25 209 | 49.12 314 | 58.19 338 | 60.77 138 | 66.32 241 | 52.97 319 | 55.93 167 | 90.62 4 | 86.91 124 | 73.07 61 | 35.98 353 | 20.63 355 | 91.63 92 | 50.62 344 |
|
test_0728_SECOND | | | | | 76.57 86 | 86.20 52 | 60.57 139 | 83.77 40 | 85.49 32 | | | | | 85.90 35 | 75.86 39 | 94.39 41 | 83.25 139 |
|
MVP-Stereo | | | 61.56 250 | 59.22 261 | 68.58 202 | 79.28 145 | 60.44 140 | 69.20 200 | 71.57 222 | 43.58 282 | 56.42 318 | 78.37 247 | 39.57 291 | 76.46 205 | 34.86 319 | 60.16 341 | 68.86 302 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
旧先验1 | | | | | | 84.55 81 | 60.36 141 | | 63.69 272 | | | 87.05 122 | 54.65 211 | | | 83.34 220 | 69.66 294 |
|
pmmvs-eth3d | | | 64.41 226 | 63.27 233 | 67.82 212 | 75.81 192 | 60.18 142 | 69.49 195 | 62.05 283 | 38.81 308 | 74.13 193 | 82.23 199 | 43.76 265 | 68.65 271 | 42.53 271 | 80.63 251 | 74.63 252 |
|
Regformer-3 | | | 72.86 134 | 72.28 141 | 74.62 107 | 74.74 206 | 60.18 142 | 72.91 152 | 71.76 219 | 64.74 89 | 78.42 130 | 72.07 300 | 67.00 107 | 76.28 206 | 67.97 93 | 80.91 244 | 87.39 53 |
|
PCF-MVS | | 63.80 13 | 72.70 137 | 71.69 148 | 75.72 97 | 78.10 161 | 60.01 144 | 73.04 151 | 81.50 103 | 45.34 269 | 79.66 116 | 84.35 176 | 65.15 125 | 82.65 99 | 48.70 237 | 89.38 141 | 84.50 110 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_prior3 | | | 76.71 84 | 77.19 83 | 75.27 102 | 82.15 114 | 59.85 145 | 75.57 126 | 84.33 62 | 58.92 136 | 76.53 164 | 86.78 129 | 67.83 102 | 83.39 85 | 69.81 79 | 92.76 78 | 82.58 158 |
|
test_prior | | | | | 75.27 102 | 82.15 114 | 59.85 145 | | 84.33 62 | | | | | 83.39 85 | | | 82.58 158 |
|
TAMVS | | | 65.31 215 | 63.75 227 | 69.97 181 | 82.23 113 | 59.76 147 | 66.78 237 | 63.37 274 | 45.20 270 | 69.79 244 | 79.37 234 | 47.42 249 | 72.17 244 | 34.48 320 | 85.15 196 | 77.99 230 |
|
jason | | | 64.47 224 | 62.84 237 | 69.34 188 | 76.91 178 | 59.20 148 | 67.15 230 | 65.67 258 | 35.29 323 | 65.16 274 | 76.74 261 | 44.67 259 | 70.68 257 | 54.74 194 | 79.28 264 | 78.14 226 |
jason: jason. |
MVSFormer | | | 69.93 164 | 69.03 176 | 72.63 149 | 74.93 199 | 59.19 149 | 83.98 36 | 75.72 187 | 52.27 208 | 63.53 287 | 76.74 261 | 43.19 268 | 80.56 134 | 72.28 65 | 78.67 269 | 78.14 226 |
|
lupinMVS | | | 63.36 232 | 61.49 247 | 68.97 194 | 74.93 199 | 59.19 149 | 65.80 248 | 64.52 269 | 34.68 328 | 63.53 287 | 74.25 283 | 43.19 268 | 70.62 258 | 53.88 205 | 78.67 269 | 77.10 235 |
|
MCST-MVS | | | 73.42 119 | 73.34 125 | 73.63 123 | 81.28 126 | 59.17 151 | 74.80 137 | 83.13 83 | 45.50 265 | 72.84 208 | 83.78 183 | 65.15 125 | 80.99 126 | 64.54 117 | 89.09 146 | 80.73 194 |
|
test_0402 | | | 78.17 75 | 79.48 65 | 74.24 114 | 83.50 94 | 59.15 152 | 72.52 156 | 74.60 200 | 75.34 16 | 88.69 12 | 91.81 22 | 75.06 43 | 82.37 103 | 65.10 113 | 88.68 149 | 81.20 179 |
|
EI-MVSNet-Vis-set | | | 72.78 135 | 71.87 145 | 75.54 99 | 74.77 205 | 59.02 153 | 72.24 158 | 71.56 223 | 63.92 96 | 78.59 126 | 71.59 306 | 66.22 116 | 78.60 165 | 67.58 96 | 80.32 252 | 89.00 34 |
|
DPM-MVS | | | 69.98 163 | 69.22 174 | 72.26 155 | 82.69 107 | 58.82 154 | 70.53 186 | 81.23 111 | 47.79 256 | 64.16 280 | 80.21 221 | 51.32 228 | 83.12 91 | 60.14 151 | 84.95 201 | 74.83 251 |
|
HQP5-MVS | | | | | | | 58.80 155 | | | | | | | | | | |
|
EG-PatchMatch MVS | | | 70.70 155 | 70.88 159 | 70.16 175 | 82.64 108 | 58.80 155 | 71.48 171 | 73.64 204 | 54.98 175 | 76.55 162 | 81.77 204 | 61.10 160 | 78.94 159 | 54.87 193 | 80.84 247 | 72.74 267 |
|
HQP-MVS | | | 75.24 96 | 75.01 100 | 75.94 94 | 82.37 109 | 58.80 155 | 77.32 106 | 84.12 70 | 59.08 132 | 71.58 223 | 85.96 160 | 58.09 186 | 85.30 51 | 67.38 100 | 89.16 142 | 83.73 127 |
|
EI-MVSNet-UG-set | | | 72.63 138 | 71.68 149 | 75.47 100 | 74.67 209 | 58.64 158 | 72.02 161 | 71.50 224 | 63.53 101 | 78.58 128 | 71.39 309 | 65.98 117 | 78.53 167 | 67.30 102 | 80.18 254 | 89.23 28 |
|
CDS-MVSNet | | | 64.33 227 | 62.66 239 | 69.35 187 | 80.44 134 | 58.28 159 | 65.26 254 | 65.66 259 | 44.36 275 | 67.30 264 | 75.54 267 | 43.27 267 | 71.77 250 | 37.68 301 | 84.44 208 | 78.01 229 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
IterMVS-SCA-FT | | | 67.68 196 | 66.07 211 | 72.49 150 | 73.34 229 | 58.20 160 | 63.80 270 | 65.55 261 | 48.10 251 | 76.91 152 | 82.64 195 | 45.20 255 | 78.84 160 | 61.20 141 | 77.89 277 | 80.44 200 |
|
pmmvs4 | | | 60.78 255 | 59.04 263 | 66.00 230 | 73.06 237 | 57.67 161 | 64.53 263 | 60.22 288 | 36.91 317 | 65.96 269 | 77.27 257 | 39.66 290 | 68.54 272 | 38.87 291 | 74.89 293 | 71.80 276 |
|
114514_t | | | 73.40 120 | 73.33 126 | 73.64 122 | 84.15 89 | 57.11 162 | 78.20 98 | 80.02 134 | 43.76 279 | 72.55 211 | 86.07 158 | 64.00 134 | 83.35 87 | 60.14 151 | 91.03 108 | 80.45 199 |
|
ETH3 D test6400 | | | 75.73 90 | 76.00 92 | 74.92 105 | 81.75 120 | 56.93 163 | 78.31 94 | 84.60 58 | 52.83 204 | 77.15 145 | 85.14 169 | 68.59 92 | 84.03 74 | 65.44 112 | 90.20 123 | 83.82 123 |
|
BH-untuned | | | 69.39 172 | 69.46 169 | 69.18 189 | 77.96 164 | 56.88 164 | 68.47 214 | 77.53 171 | 56.77 158 | 77.79 138 | 79.63 230 | 60.30 166 | 80.20 145 | 46.04 256 | 80.65 249 | 70.47 286 |
|
lessismore_v0 | | | | | 72.75 144 | 79.60 141 | 56.83 165 | | 57.37 299 | | 83.80 71 | 89.01 95 | 47.45 248 | 78.74 163 | 64.39 119 | 86.49 181 | 82.69 156 |
|
ACMH | | 63.62 14 | 77.50 78 | 80.11 59 | 69.68 183 | 79.61 140 | 56.28 166 | 78.81 87 | 83.62 77 | 63.41 104 | 87.14 30 | 90.23 69 | 76.11 33 | 73.32 231 | 67.58 96 | 94.44 39 | 79.44 211 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETV-MVS | | | 72.72 136 | 72.16 144 | 74.38 112 | 76.90 179 | 55.95 167 | 73.34 150 | 84.67 53 | 62.04 113 | 72.19 218 | 70.81 310 | 65.90 119 | 85.24 54 | 58.64 161 | 84.96 200 | 81.95 172 |
|
API-MVS | | | 70.97 153 | 71.51 153 | 69.37 185 | 75.20 196 | 55.94 168 | 80.99 62 | 76.84 178 | 62.48 111 | 71.24 230 | 77.51 256 | 61.51 154 | 80.96 131 | 52.04 211 | 85.76 187 | 71.22 281 |
|
v7n | | | 79.37 61 | 80.41 57 | 76.28 91 | 78.67 157 | 55.81 169 | 79.22 84 | 82.51 92 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 101 | 81.34 116 | 72.84 58 | 91.72 88 | 91.69 10 |
|
ET-MVSNet_ETH3D | | | 63.32 233 | 60.69 253 | 71.20 163 | 70.15 261 | 55.66 170 | 65.02 257 | 64.32 270 | 43.28 287 | 68.99 250 | 72.05 304 | 25.46 349 | 78.19 182 | 54.16 203 | 82.80 224 | 79.74 209 |
|
EIA-MVS | | | 68.59 184 | 67.16 203 | 72.90 140 | 75.18 197 | 55.64 171 | 69.39 197 | 81.29 108 | 52.44 207 | 64.53 276 | 70.69 311 | 60.33 165 | 82.30 105 | 54.27 202 | 76.31 282 | 80.75 193 |
|
K. test v3 | | | 73.67 115 | 73.61 120 | 73.87 119 | 79.78 138 | 55.62 172 | 74.69 141 | 62.04 284 | 66.16 73 | 84.76 58 | 93.23 5 | 49.47 236 | 80.97 127 | 65.66 110 | 86.67 179 | 85.02 90 |
|
JIA-IIPM | | | 54.03 289 | 51.62 301 | 61.25 270 | 59.14 333 | 55.21 173 | 59.10 301 | 47.72 334 | 50.85 226 | 50.31 341 | 85.81 162 | 20.10 359 | 63.97 298 | 36.16 314 | 55.41 352 | 64.55 325 |
|
SixPastTwentyTwo | | | 75.77 88 | 76.34 89 | 74.06 117 | 81.69 122 | 54.84 174 | 76.47 114 | 75.49 189 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 232 | 81.30 118 | 67.41 98 | 91.46 96 | 86.04 70 |
|
BH-w/o | | | 64.81 220 | 64.29 224 | 66.36 227 | 76.08 189 | 54.71 175 | 65.61 251 | 75.23 195 | 50.10 234 | 71.05 234 | 71.86 305 | 54.33 213 | 79.02 157 | 38.20 298 | 76.14 283 | 65.36 318 |
|
MSDG | | | 67.47 199 | 67.48 200 | 67.46 215 | 70.70 254 | 54.69 176 | 66.90 235 | 78.17 162 | 60.88 121 | 70.41 238 | 74.76 273 | 61.22 159 | 73.18 232 | 47.38 248 | 76.87 279 | 74.49 253 |
|
Patchmatch-RL test | | | 59.95 261 | 59.12 262 | 62.44 260 | 72.46 241 | 54.61 177 | 59.63 299 | 47.51 335 | 41.05 297 | 74.58 188 | 74.30 281 | 31.06 329 | 65.31 292 | 51.61 214 | 79.85 257 | 67.39 306 |
|
CLD-MVS | | | 72.88 133 | 72.36 140 | 74.43 110 | 77.03 175 | 54.30 178 | 68.77 208 | 83.43 80 | 52.12 210 | 76.79 158 | 74.44 279 | 69.54 85 | 83.91 75 | 55.88 184 | 93.25 70 | 85.09 86 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HyFIR lowres test | | | 63.01 237 | 60.47 254 | 70.61 166 | 83.04 100 | 54.10 179 | 59.93 298 | 72.24 218 | 33.67 333 | 69.00 249 | 75.63 266 | 38.69 294 | 76.93 197 | 36.60 309 | 75.45 289 | 80.81 192 |
|
Gipuma |  | | 69.55 169 | 72.83 135 | 59.70 280 | 63.63 310 | 53.97 180 | 80.08 75 | 75.93 185 | 64.24 94 | 73.49 200 | 88.93 98 | 57.89 192 | 62.46 304 | 59.75 156 | 91.55 95 | 62.67 330 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
OpenMVS |  | 62.51 15 | 68.76 181 | 68.75 181 | 68.78 200 | 70.56 257 | 53.91 181 | 78.29 95 | 77.35 173 | 48.85 246 | 70.22 241 | 83.52 184 | 52.65 220 | 76.93 197 | 55.31 190 | 81.99 231 | 75.49 244 |
|
BH-RMVSNet | | | 68.69 183 | 68.20 191 | 70.14 176 | 76.40 183 | 53.90 182 | 64.62 261 | 73.48 205 | 58.01 142 | 73.91 197 | 81.78 203 | 59.09 176 | 78.22 179 | 48.59 238 | 77.96 276 | 78.31 222 |
|
bset_n11_16_dypcd | | | 66.91 205 | 65.84 212 | 70.12 177 | 72.95 238 | 53.54 183 | 63.64 272 | 68.65 248 | 48.54 248 | 72.54 212 | 74.28 282 | 40.58 285 | 78.54 166 | 63.52 128 | 87.82 158 | 78.29 223 |
|
PAPM_NR | | | 73.91 111 | 74.16 110 | 73.16 132 | 81.90 118 | 53.50 184 | 81.28 61 | 81.40 106 | 66.17 72 | 73.30 204 | 83.31 189 | 59.96 167 | 83.10 92 | 58.45 163 | 81.66 238 | 82.87 149 |
|
PMMVS | | | 44.69 318 | 43.95 325 | 46.92 318 | 50.05 358 | 53.47 185 | 48.08 334 | 42.40 344 | 22.36 356 | 44.01 353 | 53.05 351 | 42.60 273 | 45.49 334 | 31.69 329 | 61.36 339 | 41.79 351 |
|
EPP-MVSNet | | | 73.86 112 | 73.38 123 | 75.31 101 | 78.19 160 | 53.35 186 | 80.45 66 | 77.32 174 | 65.11 85 | 76.47 166 | 86.80 127 | 49.47 236 | 83.77 77 | 53.89 204 | 92.72 80 | 88.81 40 |
|
IterMVS | | | 63.12 236 | 62.48 240 | 65.02 236 | 66.34 290 | 52.86 187 | 63.81 269 | 62.25 278 | 46.57 262 | 71.51 228 | 80.40 219 | 44.60 260 | 66.82 286 | 51.38 217 | 75.47 288 | 75.38 247 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tttt0517 | | | 69.46 170 | 67.79 196 | 74.46 108 | 75.34 194 | 52.72 188 | 75.05 131 | 63.27 275 | 54.69 181 | 78.87 125 | 84.37 175 | 26.63 343 | 81.15 120 | 63.95 122 | 87.93 157 | 89.51 24 |
|
QAPM | | | 69.18 176 | 69.26 172 | 68.94 195 | 71.61 247 | 52.58 189 | 80.37 69 | 78.79 151 | 49.63 239 | 73.51 199 | 85.14 169 | 53.66 215 | 79.12 156 | 55.11 191 | 75.54 287 | 75.11 249 |
|
CS-MVS | | | 71.24 149 | 70.57 163 | 73.26 129 | 74.93 199 | 52.00 190 | 73.59 148 | 85.55 31 | 55.58 170 | 68.88 252 | 70.17 317 | 64.37 132 | 85.62 44 | 57.19 170 | 84.83 202 | 82.17 168 |
|
CHOSEN 280x420 | | | 41.62 323 | 39.89 328 | 46.80 319 | 61.81 316 | 51.59 191 | 33.56 353 | 35.74 356 | 27.48 350 | 37.64 358 | 53.53 350 | 23.24 355 | 42.09 347 | 27.39 344 | 58.64 345 | 46.72 348 |
|
CMPMVS |  | 48.73 20 | 61.54 251 | 60.89 251 | 63.52 248 | 61.08 322 | 51.55 192 | 68.07 218 | 68.00 251 | 33.88 330 | 65.87 270 | 81.25 210 | 37.91 299 | 67.71 276 | 49.32 232 | 82.60 226 | 71.31 280 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
PS-MVSNAJ | | | 64.27 228 | 63.73 228 | 65.90 231 | 77.82 167 | 51.42 193 | 63.33 276 | 72.33 216 | 45.09 272 | 61.60 293 | 68.04 332 | 62.39 144 | 73.95 229 | 49.07 233 | 73.87 300 | 72.34 270 |
|
xiu_mvs_v2_base | | | 64.43 225 | 63.96 225 | 65.85 232 | 77.72 169 | 51.32 194 | 63.63 273 | 72.31 217 | 45.06 273 | 61.70 292 | 69.66 321 | 62.56 140 | 73.93 230 | 49.06 234 | 73.91 299 | 72.31 271 |
|
CHOSEN 1792x2688 | | | 58.09 272 | 56.30 283 | 63.45 249 | 79.95 137 | 50.93 195 | 54.07 320 | 65.59 260 | 28.56 348 | 61.53 294 | 74.33 280 | 41.09 281 | 66.52 289 | 33.91 323 | 67.69 329 | 72.92 264 |
|
TR-MVS | | | 64.59 221 | 63.54 230 | 67.73 214 | 75.75 193 | 50.83 196 | 63.39 275 | 70.29 240 | 49.33 241 | 71.55 227 | 74.55 277 | 50.94 229 | 78.46 170 | 40.43 284 | 75.69 285 | 73.89 258 |
|
thisisatest0530 | | | 67.05 204 | 65.16 214 | 72.73 146 | 73.10 235 | 50.55 197 | 71.26 178 | 63.91 271 | 50.22 232 | 74.46 190 | 80.75 214 | 26.81 342 | 80.25 142 | 59.43 157 | 86.50 180 | 87.37 54 |
|
Effi-MVS+ | | | 72.10 143 | 72.28 141 | 71.58 158 | 74.21 220 | 50.33 198 | 74.72 140 | 82.73 88 | 62.62 109 | 70.77 235 | 76.83 260 | 69.96 83 | 80.97 127 | 60.20 148 | 78.43 271 | 83.45 134 |
|
IB-MVS | | 49.67 18 | 59.69 263 | 56.96 278 | 67.90 209 | 68.19 274 | 50.30 199 | 61.42 288 | 65.18 263 | 47.57 258 | 55.83 321 | 67.15 338 | 23.77 354 | 79.60 152 | 43.56 268 | 79.97 256 | 73.79 259 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ambc | | | | | 70.10 178 | 77.74 168 | 50.21 200 | 74.28 145 | 77.93 167 | | 79.26 121 | 88.29 107 | 54.11 214 | 79.77 150 | 64.43 118 | 91.10 106 | 80.30 201 |
|
cascas | | | 64.59 221 | 62.77 238 | 70.05 179 | 75.27 195 | 50.02 201 | 61.79 286 | 71.61 221 | 42.46 289 | 63.68 285 | 68.89 328 | 49.33 238 | 80.35 138 | 47.82 246 | 84.05 212 | 79.78 208 |
|
EI-MVSNet | | | 69.61 168 | 69.01 177 | 71.41 162 | 73.94 222 | 49.90 202 | 71.31 176 | 71.32 227 | 58.22 140 | 75.40 177 | 70.44 312 | 58.16 184 | 75.85 207 | 62.51 132 | 79.81 258 | 88.48 43 |
|
MDA-MVSNet-bldmvs | | | 62.34 245 | 61.73 242 | 64.16 240 | 61.64 318 | 49.90 202 | 48.11 333 | 57.24 302 | 53.31 200 | 80.95 101 | 79.39 233 | 49.00 239 | 61.55 308 | 45.92 257 | 80.05 255 | 81.03 183 |
|
IterMVS-LS | | | 73.01 128 | 73.12 130 | 72.66 147 | 73.79 224 | 49.90 202 | 71.63 170 | 78.44 158 | 58.22 140 | 80.51 107 | 86.63 139 | 58.15 185 | 79.62 151 | 62.51 132 | 88.20 150 | 88.48 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
nrg030 | | | 74.87 104 | 75.99 93 | 71.52 160 | 74.90 202 | 49.88 205 | 74.10 146 | 82.58 91 | 54.55 185 | 83.50 74 | 89.21 87 | 71.51 71 | 75.74 211 | 61.24 140 | 92.34 84 | 88.94 36 |
|
PVSNet_BlendedMVS | | | 65.38 214 | 64.30 223 | 68.61 201 | 69.81 262 | 49.36 206 | 65.60 252 | 78.96 146 | 45.50 265 | 59.98 304 | 78.61 244 | 51.82 223 | 78.20 180 | 44.30 262 | 84.11 211 | 78.27 224 |
|
PVSNet_Blended | | | 62.90 239 | 61.64 244 | 66.69 225 | 69.81 262 | 49.36 206 | 61.23 290 | 78.96 146 | 42.04 290 | 59.98 304 | 68.86 329 | 51.82 223 | 78.20 180 | 44.30 262 | 77.77 278 | 72.52 268 |
|
MS-PatchMatch | | | 55.59 282 | 54.89 290 | 57.68 290 | 69.18 267 | 49.05 208 | 61.00 292 | 62.93 276 | 35.98 320 | 58.36 311 | 68.93 327 | 36.71 303 | 66.59 288 | 37.62 303 | 63.30 337 | 57.39 339 |
|
v10 | | | 75.69 91 | 76.20 91 | 74.16 115 | 74.44 215 | 48.69 209 | 75.84 125 | 82.93 86 | 59.02 135 | 85.92 39 | 89.17 90 | 58.56 181 | 82.74 97 | 70.73 73 | 89.14 145 | 91.05 13 |
|
v1192 | | | 73.40 120 | 73.42 121 | 73.32 128 | 74.65 212 | 48.67 210 | 72.21 159 | 81.73 100 | 52.76 205 | 81.85 89 | 84.56 173 | 57.12 197 | 82.24 107 | 68.58 84 | 87.33 167 | 89.06 32 |
|
Fast-Effi-MVS+ | | | 68.81 180 | 68.30 186 | 70.35 171 | 74.66 211 | 48.61 211 | 66.06 243 | 78.32 159 | 50.62 229 | 71.48 229 | 75.54 267 | 68.75 91 | 79.59 153 | 50.55 224 | 78.73 268 | 82.86 150 |
|
MVS_0304 | | | 62.51 243 | 62.27 241 | 63.25 251 | 69.39 266 | 48.47 212 | 64.05 268 | 62.48 277 | 59.69 130 | 54.10 329 | 81.04 212 | 45.71 251 | 66.31 290 | 41.38 279 | 82.58 227 | 74.96 250 |
|
DELS-MVS | | | 68.83 179 | 68.31 185 | 70.38 170 | 70.55 258 | 48.31 213 | 63.78 271 | 82.13 94 | 54.00 192 | 68.96 251 | 75.17 271 | 58.95 178 | 80.06 148 | 58.55 162 | 82.74 225 | 82.76 153 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
pmmvs3 | | | 46.71 313 | 45.09 320 | 51.55 306 | 56.76 342 | 48.25 214 | 55.78 315 | 39.53 354 | 24.13 355 | 50.35 340 | 63.40 342 | 15.90 363 | 51.08 324 | 29.29 340 | 70.69 315 | 55.33 342 |
|
CR-MVSNet | | | 58.96 267 | 58.49 268 | 60.36 277 | 66.37 288 | 48.24 215 | 70.93 182 | 56.40 306 | 32.87 336 | 61.35 295 | 86.66 136 | 33.19 312 | 63.22 303 | 48.50 240 | 70.17 317 | 69.62 295 |
|
RPMNet | | | 65.77 212 | 65.08 221 | 67.84 211 | 66.37 288 | 48.24 215 | 70.93 182 | 86.27 20 | 54.66 182 | 61.35 295 | 86.77 131 | 33.29 311 | 85.67 43 | 55.93 183 | 70.17 317 | 69.62 295 |
|
v1144 | | | 73.29 123 | 73.39 122 | 73.01 135 | 74.12 221 | 48.11 217 | 72.01 162 | 81.08 116 | 53.83 196 | 81.77 90 | 84.68 171 | 58.07 189 | 81.91 109 | 68.10 88 | 86.86 175 | 88.99 35 |
|
IS-MVSNet | | | 75.10 98 | 75.42 99 | 74.15 116 | 79.23 147 | 48.05 218 | 79.43 79 | 78.04 164 | 70.09 49 | 79.17 122 | 88.02 114 | 53.04 217 | 83.60 80 | 58.05 166 | 93.76 62 | 90.79 17 |
|
alignmvs | | | 70.54 157 | 71.00 158 | 69.15 190 | 73.50 225 | 48.04 219 | 69.85 193 | 79.62 137 | 53.94 195 | 76.54 163 | 82.00 200 | 59.00 177 | 74.68 223 | 57.32 169 | 87.21 171 | 84.72 97 |
|
D2MVS | | | 62.58 242 | 61.05 250 | 67.20 218 | 63.85 307 | 47.92 220 | 56.29 312 | 69.58 243 | 39.32 303 | 70.07 242 | 78.19 248 | 34.93 307 | 72.68 236 | 53.44 209 | 83.74 217 | 81.00 185 |
|
UniMVSNet (Re) | | | 75.00 100 | 75.48 98 | 73.56 124 | 83.14 99 | 47.92 220 | 70.41 188 | 81.04 117 | 63.67 99 | 79.54 117 | 86.37 147 | 62.83 138 | 81.82 110 | 57.10 172 | 95.25 15 | 90.94 15 |
|
PAPR | | | 69.20 175 | 68.66 184 | 70.82 164 | 75.15 198 | 47.77 222 | 75.31 129 | 81.11 113 | 49.62 240 | 66.33 268 | 79.27 235 | 61.53 153 | 82.96 94 | 48.12 243 | 81.50 240 | 81.74 175 |
|
CVMVSNet | | | 59.21 266 | 58.44 269 | 61.51 266 | 73.94 222 | 47.76 223 | 71.31 176 | 64.56 268 | 26.91 352 | 60.34 303 | 70.44 312 | 36.24 304 | 67.65 277 | 53.57 207 | 68.66 325 | 69.12 300 |
|
EPNet_dtu | | | 58.93 268 | 58.52 267 | 60.16 279 | 67.91 278 | 47.70 224 | 69.97 190 | 58.02 294 | 49.73 237 | 47.28 345 | 73.02 294 | 38.14 296 | 62.34 305 | 36.57 310 | 85.99 185 | 70.43 287 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
v1921920 | | | 72.96 132 | 72.98 133 | 72.89 141 | 74.67 209 | 47.58 225 | 71.92 166 | 80.69 120 | 51.70 216 | 81.69 94 | 83.89 181 | 56.58 203 | 82.25 106 | 68.34 86 | 87.36 165 | 88.82 39 |
|
v144192 | | | 72.99 130 | 73.06 131 | 72.77 143 | 74.58 213 | 47.48 226 | 71.90 167 | 80.44 127 | 51.57 217 | 81.46 96 | 84.11 179 | 58.04 190 | 82.12 108 | 67.98 92 | 87.47 163 | 88.70 42 |
|
v8 | | | 75.07 99 | 75.64 96 | 73.35 126 | 73.42 227 | 47.46 227 | 75.20 130 | 81.45 105 | 60.05 126 | 85.64 43 | 89.26 85 | 58.08 188 | 81.80 112 | 69.71 81 | 87.97 156 | 90.79 17 |
|
canonicalmvs | | | 72.29 142 | 73.38 123 | 69.04 191 | 74.23 216 | 47.37 228 | 73.93 147 | 83.18 81 | 54.36 187 | 76.61 161 | 81.64 207 | 72.03 65 | 75.34 215 | 57.12 171 | 87.28 169 | 84.40 112 |
|
MVS | | | 60.62 257 | 59.97 257 | 62.58 259 | 68.13 275 | 47.28 229 | 68.59 209 | 73.96 203 | 32.19 337 | 59.94 306 | 68.86 329 | 50.48 231 | 77.64 190 | 41.85 276 | 75.74 284 | 62.83 328 |
|
v1240 | | | 73.06 126 | 73.14 128 | 72.84 142 | 74.74 206 | 47.27 230 | 71.88 168 | 81.11 113 | 51.80 214 | 82.28 87 | 84.21 177 | 56.22 205 | 82.34 104 | 68.82 82 | 87.17 173 | 88.91 37 |
|
V42 | | | 71.06 151 | 70.83 160 | 71.72 157 | 67.25 283 | 47.14 231 | 65.94 244 | 80.35 130 | 51.35 220 | 83.40 75 | 83.23 191 | 59.25 175 | 78.80 161 | 65.91 108 | 80.81 248 | 89.23 28 |
|
TinyColmap | | | 67.98 191 | 69.28 171 | 64.08 242 | 67.98 277 | 46.82 232 | 70.04 189 | 75.26 194 | 53.05 201 | 77.36 144 | 86.79 128 | 59.39 173 | 72.59 241 | 45.64 258 | 88.01 155 | 72.83 265 |
|
v2v482 | | | 72.55 141 | 72.58 137 | 72.43 151 | 72.92 239 | 46.72 233 | 71.41 173 | 79.13 144 | 55.27 172 | 81.17 99 | 85.25 168 | 55.41 208 | 81.13 121 | 67.25 103 | 85.46 188 | 89.43 25 |
|
casdiffmvs | | | 73.06 126 | 73.84 114 | 70.72 165 | 71.32 249 | 46.71 234 | 70.93 182 | 84.26 66 | 55.62 169 | 77.46 143 | 87.10 118 | 67.09 106 | 77.81 186 | 63.95 122 | 86.83 176 | 87.64 50 |
|
VDD-MVS | | | 70.81 154 | 71.44 154 | 68.91 197 | 79.07 154 | 46.51 235 | 67.82 220 | 70.83 237 | 61.23 117 | 74.07 195 | 88.69 100 | 59.86 169 | 75.62 212 | 51.11 218 | 90.28 122 | 84.61 102 |
|
eth_miper_zixun_eth | | | 69.42 171 | 68.73 183 | 71.50 161 | 67.99 276 | 46.42 236 | 67.58 222 | 78.81 149 | 50.72 228 | 78.13 134 | 80.34 220 | 50.15 234 | 80.34 139 | 60.18 149 | 84.65 203 | 87.74 49 |
|
thisisatest0515 | | | 60.48 258 | 57.86 272 | 68.34 204 | 67.25 283 | 46.42 236 | 60.58 294 | 62.14 279 | 40.82 298 | 63.58 286 | 69.12 324 | 26.28 345 | 78.34 176 | 48.83 235 | 82.13 230 | 80.26 202 |
|
baseline | | | 73.10 124 | 73.96 113 | 70.51 169 | 71.46 248 | 46.39 238 | 72.08 160 | 84.40 61 | 55.95 166 | 76.62 160 | 86.46 145 | 67.20 105 | 78.03 184 | 64.22 120 | 87.27 170 | 87.11 59 |
|
MVSTER | | | 63.29 234 | 61.60 246 | 68.36 203 | 59.77 331 | 46.21 239 | 60.62 293 | 71.32 227 | 41.83 291 | 75.40 177 | 79.12 239 | 30.25 335 | 75.85 207 | 56.30 180 | 79.81 258 | 83.03 145 |
|
UniMVSNet_NR-MVSNet | | | 74.90 103 | 75.65 95 | 72.64 148 | 83.04 100 | 45.79 240 | 69.26 199 | 78.81 149 | 66.66 69 | 81.74 92 | 86.88 125 | 63.26 136 | 81.07 124 | 56.21 181 | 94.98 21 | 91.05 13 |
|
DU-MVS | | | 74.91 102 | 75.57 97 | 72.93 139 | 83.50 94 | 45.79 240 | 69.47 196 | 80.14 133 | 65.22 83 | 81.74 92 | 87.08 119 | 61.82 150 | 81.07 124 | 56.21 181 | 94.98 21 | 91.93 8 |
|
test_part1 | | | 76.97 81 | 78.21 76 | 73.25 130 | 77.87 165 | 45.76 242 | 78.27 96 | 87.26 13 | 66.69 68 | 85.31 50 | 91.43 31 | 55.95 207 | 84.24 73 | 65.71 109 | 95.43 12 | 89.75 22 |
|
miper_lstm_enhance | | | 61.97 246 | 61.63 245 | 62.98 255 | 60.04 327 | 45.74 243 | 47.53 335 | 70.95 234 | 44.04 276 | 73.06 206 | 78.84 243 | 39.72 289 | 60.33 310 | 55.82 185 | 84.64 204 | 82.88 148 |
|
Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 167 | 77.67 170 | 45.70 244 | 74.73 139 | 80.19 131 | 68.80 53 | 82.95 78 | 92.91 8 | 66.26 115 | 76.76 202 | 58.41 164 | 92.77 77 | 89.30 26 |
|
OpenMVS_ROB |  | 54.93 17 | 63.23 235 | 63.28 232 | 63.07 254 | 69.81 262 | 45.34 245 | 68.52 212 | 67.14 252 | 43.74 280 | 70.61 237 | 79.22 236 | 47.90 247 | 72.66 237 | 48.75 236 | 73.84 301 | 71.21 282 |
|
Anonymous20240529 | | | 72.56 139 | 73.79 116 | 68.86 198 | 76.89 180 | 45.21 246 | 68.80 207 | 77.25 176 | 67.16 62 | 76.89 153 | 90.44 54 | 65.95 118 | 74.19 228 | 50.75 221 | 90.00 129 | 87.18 58 |
|
diffmvs | | | 67.42 200 | 67.50 199 | 67.20 218 | 62.26 315 | 45.21 246 | 64.87 258 | 77.04 177 | 48.21 250 | 71.74 220 | 79.70 229 | 58.40 182 | 71.17 255 | 64.99 114 | 80.27 253 | 85.22 82 |
|
1314 | | | 59.83 262 | 58.86 265 | 62.74 258 | 65.71 295 | 44.78 248 | 68.59 209 | 72.63 213 | 33.54 335 | 61.05 299 | 67.29 337 | 43.62 266 | 71.26 254 | 49.49 231 | 67.84 328 | 72.19 273 |
|
v148 | | | 69.38 173 | 69.39 170 | 69.36 186 | 69.14 269 | 44.56 249 | 68.83 204 | 72.70 212 | 54.79 179 | 78.59 126 | 84.12 178 | 54.69 210 | 76.74 203 | 59.40 158 | 82.20 229 | 86.79 62 |
|
GA-MVS | | | 62.91 238 | 61.66 243 | 66.66 226 | 67.09 285 | 44.49 250 | 61.18 291 | 69.36 245 | 51.33 221 | 69.33 247 | 74.47 278 | 36.83 302 | 74.94 220 | 50.60 223 | 74.72 294 | 80.57 198 |
|
ppachtmachnet_test | | | 60.26 260 | 59.61 260 | 62.20 261 | 67.70 280 | 44.33 251 | 58.18 306 | 60.96 287 | 40.75 299 | 65.80 271 | 72.57 296 | 41.23 278 | 63.92 299 | 46.87 253 | 82.42 228 | 78.33 221 |
|
baseline2 | | | 55.57 283 | 52.74 297 | 64.05 243 | 65.26 297 | 44.11 252 | 62.38 282 | 54.43 312 | 39.03 306 | 51.21 335 | 67.35 336 | 33.66 310 | 72.45 242 | 37.14 306 | 64.22 335 | 75.60 243 |
|
UniMVSNet_ETH3D | | | 76.74 83 | 79.02 67 | 69.92 182 | 89.27 20 | 43.81 253 | 74.47 143 | 71.70 220 | 72.33 34 | 85.50 47 | 93.65 3 | 77.98 22 | 76.88 199 | 54.60 196 | 91.64 91 | 89.08 31 |
|
NR-MVSNet | | | 73.62 116 | 74.05 111 | 72.33 154 | 83.50 94 | 43.71 254 | 65.65 250 | 77.32 174 | 64.32 93 | 75.59 173 | 87.08 119 | 62.45 143 | 81.34 116 | 54.90 192 | 95.63 8 | 91.93 8 |
|
cl-mvsnet_ | | | 68.26 190 | 68.26 187 | 68.29 205 | 64.98 302 | 43.67 255 | 65.89 245 | 74.67 198 | 50.04 235 | 76.86 155 | 82.42 197 | 48.74 241 | 75.38 213 | 60.92 145 | 89.81 133 | 85.80 78 |
|
cl-mvsnet1 | | | 68.27 189 | 68.26 187 | 68.29 205 | 64.98 302 | 43.67 255 | 65.89 245 | 74.67 198 | 50.04 235 | 76.86 155 | 82.43 196 | 48.74 241 | 75.38 213 | 60.94 144 | 89.81 133 | 85.81 74 |
|
cl_fuxian | | | 69.82 166 | 69.89 167 | 69.61 184 | 66.24 291 | 43.48 257 | 68.12 217 | 79.61 139 | 51.43 219 | 77.72 139 | 80.18 224 | 54.61 212 | 78.15 183 | 63.62 127 | 87.50 162 | 87.20 57 |
|
cl-mvsnet2 | | | 67.14 201 | 66.51 208 | 69.03 192 | 63.20 311 | 43.46 258 | 66.88 236 | 76.25 182 | 49.22 242 | 74.48 189 | 77.88 252 | 45.49 254 | 77.40 192 | 60.64 147 | 84.59 205 | 86.24 66 |
|
miper_ehance_all_eth | | | 68.36 186 | 68.16 192 | 68.98 193 | 65.14 301 | 43.34 259 | 67.07 232 | 78.92 148 | 49.11 244 | 76.21 169 | 77.72 253 | 53.48 216 | 77.92 185 | 61.16 142 | 84.59 205 | 85.68 80 |
|
USDC | | | 62.80 240 | 63.10 235 | 61.89 263 | 65.19 298 | 43.30 260 | 67.42 225 | 74.20 202 | 35.80 322 | 72.25 216 | 84.48 174 | 45.67 252 | 71.95 249 | 37.95 300 | 84.97 197 | 70.42 288 |
|
MVS_Test | | | 69.84 165 | 70.71 161 | 67.24 217 | 67.49 282 | 43.25 261 | 69.87 192 | 81.22 112 | 52.69 206 | 71.57 226 | 86.68 135 | 62.09 148 | 74.51 225 | 66.05 106 | 78.74 267 | 83.96 121 |
|
EMVS | | | 44.61 320 | 44.45 324 | 45.10 327 | 48.91 359 | 43.00 262 | 37.92 350 | 41.10 352 | 46.75 261 | 38.00 357 | 48.43 355 | 26.42 344 | 46.27 331 | 37.11 307 | 75.38 290 | 46.03 349 |
|
CANet_DTU | | | 64.04 230 | 63.83 226 | 64.66 237 | 68.39 270 | 42.97 263 | 73.45 149 | 74.50 201 | 52.05 212 | 54.78 324 | 75.44 270 | 43.99 263 | 70.42 262 | 53.49 208 | 78.41 272 | 80.59 197 |
|
E-PMN | | | 45.17 316 | 45.36 319 | 44.60 328 | 50.07 357 | 42.75 264 | 38.66 349 | 42.29 346 | 46.39 263 | 39.55 355 | 51.15 353 | 26.00 346 | 45.37 336 | 37.68 301 | 76.41 280 | 45.69 350 |
|
WR-MVS_H | | | 80.22 55 | 82.17 44 | 74.39 111 | 89.46 15 | 42.69 265 | 78.24 97 | 82.24 93 | 78.21 9 | 89.57 8 | 92.10 18 | 68.05 99 | 85.59 45 | 66.04 107 | 95.62 9 | 94.88 5 |
|
miper_enhance_ethall | | | 65.86 210 | 65.05 222 | 68.28 207 | 61.62 319 | 42.62 266 | 64.74 259 | 77.97 165 | 42.52 288 | 73.42 202 | 72.79 295 | 49.66 235 | 77.68 189 | 58.12 165 | 84.59 205 | 84.54 105 |
|
TranMVSNet+NR-MVSNet | | | 76.13 86 | 77.66 80 | 71.56 159 | 84.61 80 | 42.57 267 | 70.98 181 | 78.29 161 | 68.67 56 | 83.04 76 | 89.26 85 | 72.99 62 | 80.75 133 | 55.58 189 | 95.47 10 | 91.35 11 |
|
1112_ss | | | 59.48 264 | 58.99 264 | 60.96 273 | 77.84 166 | 42.39 268 | 61.42 288 | 68.45 249 | 37.96 312 | 59.93 307 | 67.46 334 | 45.11 257 | 65.07 294 | 40.89 282 | 71.81 308 | 75.41 246 |
|
pmmvs6 | | | 71.82 145 | 73.66 118 | 66.31 228 | 75.94 190 | 42.01 269 | 66.99 233 | 72.53 214 | 63.45 103 | 76.43 167 | 92.78 10 | 72.95 63 | 69.69 265 | 51.41 216 | 90.46 120 | 87.22 55 |
|
test-LLR | | | 50.43 304 | 50.69 309 | 49.64 310 | 60.76 323 | 41.87 270 | 53.18 322 | 45.48 338 | 43.41 284 | 49.41 342 | 60.47 346 | 29.22 340 | 44.73 339 | 42.09 274 | 72.14 306 | 62.33 332 |
|
test-mter | | | 48.56 309 | 48.20 314 | 49.64 310 | 60.76 323 | 41.87 270 | 53.18 322 | 45.48 338 | 31.91 342 | 49.41 342 | 60.47 346 | 18.34 360 | 44.73 339 | 42.09 274 | 72.14 306 | 62.33 332 |
|
PAPM | | | 61.79 249 | 60.37 255 | 66.05 229 | 76.09 188 | 41.87 270 | 69.30 198 | 76.79 180 | 40.64 300 | 53.80 330 | 79.62 231 | 44.38 261 | 82.92 95 | 29.64 338 | 73.11 303 | 73.36 261 |
|
EU-MVSNet | | | 60.82 254 | 60.80 252 | 60.86 274 | 68.37 271 | 41.16 273 | 72.27 157 | 68.27 250 | 26.96 351 | 69.08 248 | 75.71 265 | 32.09 320 | 67.44 279 | 55.59 188 | 78.90 266 | 73.97 256 |
|
VDDNet | | | 71.60 147 | 73.13 129 | 67.02 221 | 86.29 51 | 41.11 274 | 69.97 190 | 66.50 256 | 68.72 55 | 74.74 184 | 91.70 24 | 59.90 168 | 75.81 209 | 48.58 239 | 91.72 88 | 84.15 119 |
|
SCA | | | 58.57 271 | 58.04 271 | 60.17 278 | 70.17 260 | 41.07 275 | 65.19 255 | 53.38 317 | 43.34 286 | 61.00 300 | 73.48 289 | 45.20 255 | 69.38 267 | 40.34 285 | 70.31 316 | 70.05 290 |
|
test_yl | | | 65.11 216 | 65.09 219 | 65.18 234 | 70.59 255 | 40.86 276 | 63.22 279 | 72.79 209 | 57.91 143 | 68.88 252 | 79.07 241 | 42.85 271 | 74.89 221 | 45.50 259 | 84.97 197 | 79.81 206 |
|
DCV-MVSNet | | | 65.11 216 | 65.09 219 | 65.18 234 | 70.59 255 | 40.86 276 | 63.22 279 | 72.79 209 | 57.91 143 | 68.88 252 | 79.07 241 | 42.85 271 | 74.89 221 | 45.50 259 | 84.97 197 | 79.81 206 |
|
RRT_test8_iter05 | | | 65.80 211 | 65.13 217 | 67.80 213 | 67.02 286 | 40.85 278 | 67.13 231 | 75.33 192 | 49.73 237 | 72.69 210 | 81.32 208 | 24.45 353 | 77.37 193 | 61.69 138 | 86.82 177 | 85.18 84 |
|
GBi-Net | | | 68.30 187 | 68.79 179 | 66.81 222 | 73.14 232 | 40.68 279 | 71.96 163 | 73.03 206 | 54.81 176 | 74.72 185 | 90.36 64 | 48.63 243 | 75.20 217 | 47.12 249 | 85.37 189 | 84.54 105 |
|
test1 | | | 68.30 187 | 68.79 179 | 66.81 222 | 73.14 232 | 40.68 279 | 71.96 163 | 73.03 206 | 54.81 176 | 74.72 185 | 90.36 64 | 48.63 243 | 75.20 217 | 47.12 249 | 85.37 189 | 84.54 105 |
|
FMVSNet1 | | | 71.06 151 | 72.48 138 | 66.81 222 | 77.65 171 | 40.68 279 | 71.96 163 | 73.03 206 | 61.14 118 | 79.45 119 | 90.36 64 | 60.44 164 | 75.20 217 | 50.20 226 | 88.05 153 | 84.54 105 |
|
ADS-MVSNet2 | | | 48.76 308 | 47.25 316 | 53.29 301 | 55.90 346 | 40.54 282 | 47.34 336 | 54.99 311 | 31.41 344 | 50.48 338 | 72.06 302 | 31.23 326 | 54.26 322 | 25.93 346 | 55.93 349 | 65.07 320 |
|
MG-MVS | | | 70.47 158 | 71.34 155 | 67.85 210 | 79.26 146 | 40.42 283 | 74.67 142 | 75.15 196 | 58.41 139 | 68.74 256 | 88.14 112 | 56.08 206 | 83.69 78 | 59.90 154 | 81.71 237 | 79.43 212 |
|
PVSNet_0 | | 36.71 22 | 41.12 324 | 40.78 327 | 42.14 332 | 59.97 328 | 40.13 284 | 40.97 345 | 42.24 347 | 30.81 346 | 44.86 350 | 49.41 354 | 40.70 284 | 45.12 337 | 23.15 352 | 34.96 356 | 41.16 352 |
|
pm-mvs1 | | | 68.40 185 | 69.85 168 | 64.04 244 | 73.10 235 | 39.94 285 | 64.61 262 | 70.50 238 | 55.52 171 | 73.97 196 | 89.33 83 | 63.91 135 | 68.38 273 | 49.68 230 | 88.02 154 | 83.81 125 |
|
tpm cat1 | | | 54.02 290 | 52.63 298 | 58.19 289 | 64.85 304 | 39.86 286 | 66.26 242 | 57.28 300 | 32.16 338 | 56.90 315 | 70.39 314 | 32.75 316 | 65.30 293 | 34.29 321 | 58.79 344 | 69.41 297 |
|
our_test_3 | | | 56.46 277 | 56.51 281 | 56.30 293 | 67.70 280 | 39.66 287 | 55.36 317 | 52.34 322 | 40.57 301 | 63.85 282 | 69.91 320 | 40.04 288 | 58.22 316 | 43.49 269 | 75.29 292 | 71.03 285 |
|
PS-CasMVS | | | 80.41 51 | 82.86 39 | 73.07 134 | 89.93 7 | 39.21 288 | 77.15 110 | 81.28 109 | 79.74 5 | 90.87 3 | 92.73 11 | 75.03 44 | 84.93 59 | 63.83 125 | 95.19 16 | 95.07 3 |
|
PatchmatchNet |  | | 54.60 286 | 54.27 292 | 55.59 295 | 65.17 300 | 39.08 289 | 66.92 234 | 51.80 323 | 39.89 302 | 58.39 310 | 73.12 293 | 31.69 323 | 58.33 315 | 43.01 270 | 58.38 347 | 69.38 298 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
CP-MVSNet | | | 79.48 59 | 81.65 49 | 72.98 137 | 89.66 13 | 39.06 290 | 76.76 113 | 80.46 126 | 78.91 7 | 90.32 6 | 91.70 24 | 68.49 94 | 84.89 60 | 63.40 129 | 95.12 19 | 95.01 4 |
|
PEN-MVS | | | 80.46 50 | 82.91 37 | 73.11 133 | 89.83 9 | 39.02 291 | 77.06 112 | 82.61 90 | 80.04 4 | 90.60 5 | 92.85 9 | 74.93 46 | 85.21 55 | 63.15 130 | 95.15 18 | 95.09 2 |
|
FMVSNet2 | | | 67.48 198 | 68.21 190 | 65.29 233 | 73.14 232 | 38.94 292 | 68.81 205 | 71.21 233 | 54.81 176 | 76.73 159 | 86.48 144 | 48.63 243 | 74.60 224 | 47.98 244 | 86.11 184 | 82.35 164 |
|
DWT-MVSNet_test | | | 53.04 293 | 51.12 306 | 58.77 286 | 61.23 320 | 38.67 293 | 62.16 284 | 57.74 295 | 38.24 309 | 51.76 334 | 59.07 348 | 21.36 356 | 67.40 280 | 44.80 261 | 63.76 336 | 70.25 289 |
|
CostFormer | | | 57.35 276 | 56.14 284 | 60.97 272 | 63.76 309 | 38.43 294 | 67.50 223 | 60.22 288 | 37.14 316 | 59.12 309 | 76.34 263 | 32.78 315 | 71.99 248 | 39.12 290 | 69.27 322 | 72.47 269 |
|
TESTMET0.1,1 | | | 45.17 316 | 44.93 321 | 45.89 323 | 56.02 345 | 38.31 295 | 53.18 322 | 41.94 348 | 27.85 349 | 44.86 350 | 56.47 349 | 17.93 361 | 41.50 350 | 38.08 299 | 68.06 326 | 57.85 338 |
|
PVSNet | | 43.83 21 | 51.56 302 | 51.17 305 | 52.73 302 | 68.34 272 | 38.27 296 | 48.22 332 | 53.56 316 | 36.41 318 | 54.29 327 | 64.94 341 | 34.60 308 | 54.20 323 | 30.34 333 | 69.87 319 | 65.71 317 |
|
LFMVS | | | 67.06 203 | 67.89 194 | 64.56 238 | 78.02 162 | 38.25 297 | 70.81 185 | 59.60 290 | 65.18 84 | 71.06 233 | 86.56 142 | 43.85 264 | 75.22 216 | 46.35 255 | 89.63 136 | 80.21 203 |
|
Anonymous202405211 | | | 66.02 209 | 66.89 207 | 63.43 250 | 74.22 217 | 38.14 298 | 59.00 302 | 66.13 257 | 63.33 105 | 69.76 245 | 85.95 161 | 51.88 222 | 70.50 260 | 44.23 264 | 87.52 161 | 81.64 176 |
|
Test_1112_low_res | | | 58.78 269 | 58.69 266 | 59.04 285 | 79.41 143 | 38.13 299 | 57.62 308 | 66.98 254 | 34.74 326 | 59.62 308 | 77.56 255 | 42.92 270 | 63.65 301 | 38.66 293 | 70.73 314 | 75.35 248 |
|
VPA-MVSNet | | | 68.71 182 | 70.37 164 | 63.72 246 | 76.13 187 | 38.06 300 | 64.10 266 | 71.48 225 | 56.60 163 | 74.10 194 | 88.31 106 | 64.78 130 | 69.72 264 | 47.69 247 | 90.15 126 | 83.37 136 |
|
ab-mvs | | | 64.11 229 | 65.13 217 | 61.05 271 | 71.99 245 | 38.03 301 | 67.59 221 | 68.79 246 | 49.08 245 | 65.32 273 | 86.26 149 | 58.02 191 | 66.85 285 | 39.33 288 | 79.79 260 | 78.27 224 |
|
FIs | | | 72.56 139 | 73.80 115 | 68.84 199 | 78.74 156 | 37.74 302 | 71.02 180 | 79.83 136 | 56.12 164 | 80.88 105 | 89.45 82 | 58.18 183 | 78.28 178 | 56.63 174 | 93.36 68 | 90.51 19 |
|
MIMVSNet1 | | | 66.57 206 | 69.23 173 | 58.59 287 | 81.26 127 | 37.73 303 | 64.06 267 | 57.62 296 | 57.02 154 | 78.40 131 | 90.75 44 | 62.65 139 | 58.10 317 | 41.77 277 | 89.58 138 | 79.95 205 |
|
mvs_anonymous | | | 65.08 218 | 65.49 213 | 63.83 245 | 63.79 308 | 37.60 304 | 66.52 240 | 69.82 242 | 43.44 283 | 73.46 201 | 86.08 157 | 58.79 180 | 71.75 252 | 51.90 213 | 75.63 286 | 82.15 169 |
|
FMVSNet3 | | | 65.00 219 | 65.16 214 | 64.52 239 | 69.47 265 | 37.56 305 | 66.63 238 | 70.38 239 | 51.55 218 | 74.72 185 | 83.27 190 | 37.89 300 | 74.44 226 | 47.12 249 | 85.37 189 | 81.57 177 |
|
DTE-MVSNet | | | 80.35 52 | 82.89 38 | 72.74 145 | 89.84 8 | 37.34 306 | 77.16 109 | 81.81 99 | 80.45 3 | 90.92 2 | 92.95 7 | 74.57 50 | 86.12 28 | 63.65 126 | 94.68 31 | 94.76 6 |
|
tfpnnormal | | | 66.48 207 | 67.93 193 | 62.16 262 | 73.40 228 | 36.65 307 | 63.45 274 | 64.99 264 | 55.97 165 | 72.82 209 | 87.80 115 | 57.06 199 | 69.10 270 | 48.31 242 | 87.54 160 | 80.72 195 |
|
FC-MVSNet-test | | | 73.32 122 | 74.78 102 | 68.93 196 | 79.21 148 | 36.57 308 | 71.82 169 | 79.54 141 | 57.63 150 | 82.57 84 | 90.38 63 | 59.38 174 | 78.99 158 | 57.91 167 | 94.56 33 | 91.23 12 |
|
MDA-MVSNet_test_wron | | | 52.57 296 | 53.49 295 | 49.81 309 | 54.24 352 | 36.47 309 | 40.48 347 | 46.58 336 | 38.13 310 | 75.47 176 | 73.32 291 | 41.05 283 | 43.85 343 | 40.98 281 | 71.20 311 | 69.10 301 |
|
YYNet1 | | | 52.58 295 | 53.50 294 | 49.85 308 | 54.15 353 | 36.45 310 | 40.53 346 | 46.55 337 | 38.09 311 | 75.52 175 | 73.31 292 | 41.08 282 | 43.88 342 | 41.10 280 | 71.14 312 | 69.21 299 |
|
HY-MVS | | 49.31 19 | 57.96 273 | 57.59 274 | 59.10 284 | 66.85 287 | 36.17 311 | 65.13 256 | 65.39 262 | 39.24 305 | 54.69 326 | 78.14 249 | 44.28 262 | 67.18 282 | 33.75 324 | 70.79 313 | 73.95 257 |
|
tpm2 | | | 56.12 278 | 54.64 291 | 60.55 276 | 66.24 291 | 36.01 312 | 68.14 216 | 56.77 305 | 33.60 334 | 58.25 312 | 75.52 269 | 30.25 335 | 74.33 227 | 33.27 325 | 69.76 321 | 71.32 279 |
|
Anonymous20231206 | | | 54.13 288 | 55.82 286 | 49.04 315 | 70.89 251 | 35.96 313 | 51.73 325 | 50.87 325 | 34.86 324 | 62.49 290 | 79.22 236 | 42.52 274 | 44.29 341 | 27.95 343 | 81.88 233 | 66.88 310 |
|
TransMVSNet (Re) | | | 69.62 167 | 71.63 150 | 63.57 247 | 76.51 182 | 35.93 314 | 65.75 249 | 71.29 229 | 61.05 119 | 75.02 179 | 89.90 76 | 65.88 120 | 70.41 263 | 49.79 228 | 89.48 139 | 84.38 113 |
|
MVE |  | 27.91 23 | 36.69 327 | 35.64 330 | 39.84 337 | 43.37 360 | 35.85 315 | 19.49 355 | 24.61 361 | 24.68 354 | 39.05 356 | 62.63 344 | 38.67 295 | 27.10 358 | 21.04 354 | 47.25 355 | 56.56 341 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
WR-MVS | | | 71.20 150 | 72.48 138 | 67.36 216 | 84.98 73 | 35.70 316 | 64.43 264 | 68.66 247 | 65.05 86 | 81.49 95 | 86.43 146 | 57.57 194 | 76.48 204 | 50.36 225 | 93.32 69 | 89.90 21 |
|
VNet | | | 64.01 231 | 65.15 216 | 60.57 275 | 73.28 230 | 35.61 317 | 57.60 309 | 67.08 253 | 54.61 183 | 66.76 267 | 83.37 187 | 56.28 204 | 66.87 283 | 42.19 273 | 85.20 195 | 79.23 214 |
|
tfpn200view9 | | | 60.35 259 | 59.97 257 | 61.51 266 | 70.78 252 | 35.35 318 | 63.27 277 | 57.47 297 | 53.00 202 | 68.31 257 | 77.09 258 | 32.45 318 | 72.09 245 | 35.61 316 | 81.73 234 | 77.08 236 |
|
thres400 | | | 60.77 256 | 59.97 257 | 63.15 252 | 70.78 252 | 35.35 318 | 63.27 277 | 57.47 297 | 53.00 202 | 68.31 257 | 77.09 258 | 32.45 318 | 72.09 245 | 35.61 316 | 81.73 234 | 82.02 170 |
|
thres100view900 | | | 61.17 252 | 61.09 249 | 61.39 268 | 72.14 244 | 35.01 320 | 65.42 253 | 56.99 303 | 55.23 173 | 70.71 236 | 79.90 226 | 32.07 321 | 72.09 245 | 35.61 316 | 81.73 234 | 77.08 236 |
|
thres600view7 | | | 61.82 248 | 61.38 248 | 63.12 253 | 71.81 246 | 34.93 321 | 64.64 260 | 56.99 303 | 54.78 180 | 70.33 240 | 79.74 228 | 32.07 321 | 72.42 243 | 38.61 294 | 83.46 219 | 82.02 170 |
|
thres200 | | | 57.55 275 | 57.02 277 | 59.17 283 | 67.89 279 | 34.93 321 | 58.91 304 | 57.25 301 | 50.24 231 | 64.01 281 | 71.46 308 | 32.49 317 | 71.39 253 | 31.31 330 | 79.57 262 | 71.19 283 |
|
XXY-MVS | | | 55.19 284 | 57.40 276 | 48.56 316 | 64.45 305 | 34.84 323 | 51.54 326 | 53.59 315 | 38.99 307 | 63.79 284 | 79.43 232 | 56.59 202 | 45.57 333 | 36.92 308 | 71.29 310 | 65.25 319 |
|
Baseline_NR-MVSNet | | | 70.62 156 | 73.19 127 | 62.92 257 | 76.97 176 | 34.44 324 | 68.84 203 | 70.88 236 | 60.25 125 | 79.50 118 | 90.53 51 | 61.82 150 | 69.11 269 | 54.67 195 | 95.27 14 | 85.22 82 |
|
DIV-MVS_2432*1600 | | | 66.38 208 | 67.51 198 | 62.97 256 | 61.76 317 | 34.39 325 | 58.11 307 | 75.30 193 | 50.84 227 | 77.12 147 | 85.42 165 | 56.84 201 | 69.44 266 | 51.07 219 | 91.16 103 | 85.08 88 |
|
LCM-MVSNet-Re | | | 69.10 177 | 71.57 152 | 61.70 264 | 70.37 259 | 34.30 326 | 61.45 287 | 79.62 137 | 56.81 157 | 89.59 7 | 88.16 111 | 68.44 95 | 72.94 234 | 42.30 272 | 87.33 167 | 77.85 231 |
|
sss | | | 47.59 312 | 48.32 312 | 45.40 325 | 56.73 343 | 33.96 327 | 45.17 341 | 48.51 332 | 32.11 341 | 52.37 333 | 65.79 339 | 40.39 287 | 41.91 349 | 31.85 328 | 61.97 338 | 60.35 335 |
|
gm-plane-assit | | | | | | 62.51 313 | 33.91 328 | | | 37.25 315 | | 62.71 343 | | 72.74 235 | 38.70 292 | | |
|
UnsupCasMVSNet_eth | | | 52.26 298 | 53.29 296 | 49.16 313 | 55.08 349 | 33.67 329 | 50.03 328 | 58.79 293 | 37.67 313 | 63.43 289 | 74.75 274 | 41.82 276 | 45.83 332 | 38.59 295 | 59.42 343 | 67.98 305 |
|
FMVSNet5 | | | 55.08 285 | 55.54 288 | 53.71 298 | 65.80 294 | 33.50 330 | 56.22 313 | 52.50 321 | 43.72 281 | 61.06 298 | 83.38 186 | 25.46 349 | 54.87 320 | 30.11 335 | 81.64 239 | 72.75 266 |
|
tpmvs | | | 55.84 279 | 55.45 289 | 57.01 292 | 60.33 326 | 33.20 331 | 65.89 245 | 59.29 292 | 47.52 259 | 56.04 319 | 73.60 288 | 31.05 330 | 68.06 275 | 40.64 283 | 64.64 333 | 69.77 293 |
|
UnsupCasMVSNet_bld | | | 50.01 306 | 51.03 308 | 46.95 317 | 58.61 335 | 32.64 332 | 48.31 331 | 53.27 318 | 34.27 329 | 60.47 302 | 71.53 307 | 41.40 277 | 47.07 330 | 30.68 332 | 60.78 340 | 61.13 334 |
|
CL-MVSNet_2432*1600 | | | 62.44 244 | 63.40 231 | 59.55 282 | 72.34 242 | 32.38 333 | 56.39 311 | 64.84 265 | 51.21 223 | 67.46 263 | 81.01 213 | 50.75 230 | 63.51 302 | 38.47 296 | 88.12 152 | 82.75 154 |
|
pmmvs5 | | | 52.49 297 | 52.58 299 | 52.21 305 | 54.99 350 | 32.38 333 | 55.45 316 | 53.84 314 | 32.15 339 | 55.49 323 | 74.81 272 | 38.08 297 | 57.37 318 | 34.02 322 | 74.40 297 | 66.88 310 |
|
test20.03 | | | 55.74 281 | 57.51 275 | 50.42 307 | 59.89 330 | 32.09 335 | 50.63 327 | 49.01 330 | 50.11 233 | 65.07 275 | 83.23 191 | 45.61 253 | 48.11 329 | 30.22 334 | 83.82 216 | 71.07 284 |
|
WTY-MVS | | | 49.39 307 | 50.31 310 | 46.62 320 | 61.22 321 | 32.00 336 | 46.61 338 | 49.77 328 | 33.87 331 | 54.12 328 | 69.55 323 | 41.96 275 | 45.40 335 | 31.28 331 | 64.42 334 | 62.47 331 |
|
Vis-MVSNet (Re-imp) | | | 62.74 241 | 63.21 234 | 61.34 269 | 72.19 243 | 31.56 337 | 67.31 229 | 53.87 313 | 53.60 198 | 69.88 243 | 83.37 187 | 40.52 286 | 70.98 256 | 41.40 278 | 86.78 178 | 81.48 178 |
|
KD-MVS_2432*1600 | | | 52.05 300 | 51.58 302 | 53.44 299 | 52.11 355 | 31.20 338 | 44.88 342 | 64.83 266 | 41.53 293 | 64.37 277 | 70.03 318 | 15.61 364 | 64.20 296 | 36.25 311 | 74.61 295 | 64.93 322 |
|
miper_refine_blended | | | 52.05 300 | 51.58 302 | 53.44 299 | 52.11 355 | 31.20 338 | 44.88 342 | 64.83 266 | 41.53 293 | 64.37 277 | 70.03 318 | 15.61 364 | 64.20 296 | 36.25 311 | 74.61 295 | 64.93 322 |
|
MIMVSNet | | | 54.39 287 | 56.12 285 | 49.20 312 | 72.57 240 | 30.91 340 | 59.98 297 | 48.43 333 | 41.66 292 | 55.94 320 | 83.86 182 | 41.19 280 | 50.42 325 | 26.05 345 | 75.38 290 | 66.27 314 |
|
baseline1 | | | 57.82 274 | 58.36 270 | 56.19 294 | 69.17 268 | 30.76 341 | 62.94 281 | 55.21 309 | 46.04 264 | 63.83 283 | 78.47 245 | 41.20 279 | 63.68 300 | 39.44 287 | 68.99 323 | 74.13 255 |
|
VPNet | | | 65.58 213 | 67.56 197 | 59.65 281 | 79.72 139 | 30.17 342 | 60.27 296 | 62.14 279 | 54.19 189 | 71.24 230 | 86.63 139 | 58.80 179 | 67.62 278 | 44.17 265 | 90.87 116 | 81.18 180 |
|
test0.0.03 1 | | | 47.72 311 | 48.31 313 | 45.93 322 | 55.53 348 | 29.39 343 | 46.40 339 | 41.21 351 | 43.41 284 | 55.81 322 | 67.65 333 | 29.22 340 | 43.77 344 | 25.73 348 | 69.87 319 | 64.62 324 |
|
MDTV_nov1_ep13 | | | | 54.05 293 | | 65.54 296 | 29.30 344 | 59.00 302 | 55.22 308 | 35.96 321 | 52.44 332 | 75.98 264 | 30.77 332 | 59.62 312 | 38.21 297 | 73.33 302 | |
|
GG-mvs-BLEND | | | | | 52.24 304 | 60.64 325 | 29.21 345 | 69.73 194 | 42.41 343 | | 45.47 347 | 52.33 352 | 20.43 358 | 68.16 274 | 25.52 349 | 65.42 332 | 59.36 337 |
|
DSMNet-mixed | | | 43.18 322 | 44.66 323 | 38.75 338 | 54.75 351 | 28.88 346 | 57.06 310 | 27.42 360 | 13.47 357 | 47.27 346 | 77.67 254 | 38.83 293 | 39.29 352 | 25.32 350 | 60.12 342 | 48.08 346 |
|
gg-mvs-nofinetune | | | 55.75 280 | 56.75 280 | 52.72 303 | 62.87 312 | 28.04 347 | 68.92 202 | 41.36 350 | 71.09 41 | 50.80 337 | 92.63 12 | 20.74 357 | 66.86 284 | 29.97 336 | 72.41 305 | 63.25 327 |
|
ANet_high | | | 67.08 202 | 69.94 166 | 58.51 288 | 57.55 339 | 27.09 348 | 58.43 305 | 76.80 179 | 63.56 100 | 82.40 86 | 91.93 20 | 59.82 170 | 64.98 295 | 50.10 227 | 88.86 148 | 83.46 133 |
|
MVS-HIRNet | | | 45.53 315 | 47.29 315 | 40.24 336 | 62.29 314 | 26.82 349 | 56.02 314 | 37.41 355 | 29.74 347 | 43.69 354 | 81.27 209 | 33.96 309 | 55.48 319 | 24.46 351 | 56.79 348 | 38.43 354 |
|
tpm | | | 50.60 303 | 52.42 300 | 45.14 326 | 65.18 299 | 26.29 350 | 60.30 295 | 43.50 340 | 37.41 314 | 57.01 314 | 79.09 240 | 30.20 337 | 42.32 346 | 32.77 327 | 66.36 330 | 66.81 312 |
|
Patchmtry | | | 60.91 253 | 63.01 236 | 54.62 297 | 66.10 293 | 26.27 351 | 67.47 224 | 56.40 306 | 54.05 191 | 72.04 219 | 86.66 136 | 33.19 312 | 60.17 311 | 43.69 266 | 87.45 164 | 77.42 232 |
|
testgi | | | 54.00 291 | 56.86 279 | 45.45 324 | 58.20 337 | 25.81 352 | 49.05 329 | 49.50 329 | 45.43 268 | 67.84 259 | 81.17 211 | 51.81 225 | 43.20 345 | 29.30 339 | 79.41 263 | 67.34 308 |
|
tpmrst | | | 50.15 305 | 51.38 304 | 46.45 321 | 56.05 344 | 24.77 353 | 64.40 265 | 49.98 327 | 36.14 319 | 53.32 331 | 69.59 322 | 35.16 306 | 48.69 327 | 39.24 289 | 58.51 346 | 65.89 315 |
|
Patchmatch-test | | | 47.93 310 | 49.96 311 | 41.84 333 | 57.42 340 | 24.26 354 | 48.75 330 | 41.49 349 | 39.30 304 | 56.79 316 | 73.48 289 | 30.48 334 | 33.87 354 | 29.29 340 | 72.61 304 | 67.39 306 |
|
dp | | | 44.09 321 | 44.88 322 | 41.72 335 | 58.53 336 | 23.18 355 | 54.70 319 | 42.38 345 | 34.80 325 | 44.25 352 | 65.61 340 | 24.48 352 | 44.80 338 | 29.77 337 | 49.42 354 | 57.18 340 |
|
EPMVS | | | 45.74 314 | 46.53 317 | 43.39 331 | 54.14 354 | 22.33 356 | 55.02 318 | 35.00 357 | 34.69 327 | 51.09 336 | 70.20 316 | 25.92 347 | 42.04 348 | 37.19 305 | 55.50 351 | 65.78 316 |
|
ADS-MVSNet | | | 44.62 319 | 45.58 318 | 41.73 334 | 55.90 346 | 20.83 357 | 47.34 336 | 39.94 353 | 31.41 344 | 50.48 338 | 72.06 302 | 31.23 326 | 39.31 351 | 25.93 346 | 55.93 349 | 65.07 320 |
|
MDTV_nov1_ep13_2view | | | | | | | 18.41 358 | 53.74 321 | | 31.57 343 | 44.89 349 | | 29.90 339 | | 32.93 326 | | 71.48 278 |
|
PatchT | | | 53.35 292 | 56.47 282 | 43.99 330 | 64.19 306 | 17.46 359 | 59.15 300 | 43.10 341 | 52.11 211 | 54.74 325 | 86.95 123 | 29.97 338 | 49.98 326 | 43.62 267 | 74.40 297 | 64.53 326 |
|
new_pmnet | | | 37.55 326 | 39.80 329 | 30.79 339 | 56.83 341 | 16.46 360 | 39.35 348 | 30.65 358 | 25.59 353 | 45.26 348 | 61.60 345 | 24.54 351 | 28.02 357 | 21.60 353 | 52.80 353 | 47.90 347 |
|
DeepMVS_CX |  | | | | 11.83 341 | 15.51 362 | 13.86 361 | | 11.25 364 | 5.76 358 | 20.85 360 | 26.46 356 | 17.06 362 | 9.22 359 | 9.69 358 | 13.82 358 | 12.42 355 |
|
new-patchmatchnet | | | 52.89 294 | 55.76 287 | 44.26 329 | 59.94 329 | 6.31 362 | 37.36 352 | 50.76 326 | 41.10 295 | 64.28 279 | 79.82 227 | 44.77 258 | 48.43 328 | 36.24 313 | 87.61 159 | 78.03 228 |
|
PMMVS2 | | | 37.74 325 | 40.87 326 | 28.36 340 | 42.41 361 | 5.35 363 | 24.61 354 | 27.75 359 | 32.15 339 | 47.85 344 | 70.27 315 | 35.85 305 | 29.51 356 | 19.08 356 | 67.85 327 | 50.22 345 |
|
tmp_tt | | | 11.98 329 | 14.73 332 | 3.72 342 | 2.28 363 | 4.62 364 | 19.44 356 | 14.50 363 | 0.47 359 | 21.55 359 | 9.58 358 | 25.78 348 | 4.57 360 | 11.61 357 | 27.37 357 | 1.96 356 |
|
test123 | | | 4.43 332 | 5.78 335 | 0.39 344 | 0.97 364 | 0.28 365 | 46.33 340 | 0.45 365 | 0.31 360 | 0.62 361 | 1.50 361 | 0.61 367 | 0.11 362 | 0.56 359 | 0.63 359 | 0.77 358 |
|
testmvs | | | 4.06 333 | 5.28 336 | 0.41 343 | 0.64 365 | 0.16 366 | 42.54 344 | 0.31 366 | 0.26 361 | 0.50 362 | 1.40 362 | 0.77 366 | 0.17 361 | 0.56 359 | 0.55 360 | 0.90 357 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
cdsmvs_eth3d_5k | | | 17.71 328 | 23.62 331 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 70.17 241 | 0.00 362 | 0.00 363 | 74.25 283 | 68.16 98 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 5.20 331 | 6.93 334 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 62.39 144 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ab-mvs-re | | | 5.62 330 | 7.50 333 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 67.46 334 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
test_241102_TWO | | | | | | | | | 84.80 47 | 72.61 29 | 84.93 54 | 89.70 78 | 77.73 23 | 85.89 36 | 75.29 42 | 94.22 53 | 83.25 139 |
|
9.14 | | | | 80.22 58 | | 80.68 130 | | 80.35 70 | 87.69 10 | 59.90 127 | 83.00 77 | 88.20 108 | 74.57 50 | 81.75 113 | 73.75 53 | 93.78 59 | |
|
test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 41 | 90.41 58 | 75.58 38 | 85.69 41 | 77.43 33 | 94.74 29 | 84.31 115 |
|
GSMVS | | | | | | | | | | | | | | | | | 70.05 290 |
|
sam_mvs1 | | | | | | | | | | | | | 31.41 324 | | | | 70.05 290 |
|
sam_mvs | | | | | | | | | | | | | 31.21 328 | | | | |
|
MTGPA |  | | | | | | | | 80.63 121 | | | | | | | | |
|
test_post1 | | | | | | | | 66.63 238 | | | | 2.08 359 | 30.66 333 | 59.33 313 | 40.34 285 | | |
|
test_post | | | | | | | | | | | | 1.99 360 | 30.91 331 | 54.76 321 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 68.99 325 | 31.32 325 | 69.38 267 | | | |
|
MTMP | | | | | | | | 84.83 31 | 19.26 362 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 72.12 67 | 91.37 98 | 77.40 233 |
|
agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 111 | 78.55 220 |
|
test_prior2 | | | | | | | | 75.57 126 | | 58.92 136 | 76.53 164 | 86.78 129 | 67.83 102 | | 69.81 79 | 92.76 78 | |
|
旧先验2 | | | | | | | | 71.17 179 | | 45.11 271 | 78.54 129 | | | 61.28 309 | 59.19 159 | | |
|
新几何2 | | | | | | | | 71.33 175 | | | | | | | | | |
|
无先验 | | | | | | | | 74.82 134 | 70.94 235 | 47.75 257 | | | | 76.85 200 | 54.47 197 | | 72.09 274 |
|
原ACMM2 | | | | | | | | 74.78 138 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 67.30 281 | 48.34 241 | | |
|
segment_acmp | | | | | | | | | | | | | 68.30 97 | | | | |
|
testdata1 | | | | | | | | 68.34 215 | | 57.24 153 | | | | | | | |
|
plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 26 | 71.09 71 | 90.94 109 | 84.82 93 |
|
plane_prior4 | | | | | | | | | | | | 89.11 92 | | | | | |
|
plane_prior2 | | | | | | | | 82.74 51 | | 65.45 77 | | | | | | | |
|
plane_prior1 | | | | | | 84.46 83 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 55.02 310 | | | | | | | | |
|
test11 | | | | | | | | | 82.71 89 | | | | | | | | |
|
door | | | | | | | | | 52.91 320 | | | | | | | | |
|
HQP-NCC | | | | | | 82.37 109 | | 77.32 106 | | 59.08 132 | 71.58 223 | | | | | | |
|
ACMP_Plane | | | | | | 82.37 109 | | 77.32 106 | | 59.08 132 | 71.58 223 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 67.38 100 | | |
|
HQP4-MVS | | | | | | | | | | | 71.59 222 | | | 85.31 50 | | | 83.74 126 |
|
HQP3-MVS | | | | | | | | | 84.12 70 | | | | | | | 89.16 142 | |
|
HQP2-MVS | | | | | | | | | | | | | 58.09 186 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 140 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 91.96 87 | |
|
Test By Simon | | | | | | | | | | | | | 62.56 140 | | | | |
|