This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 8
Effi-MVS+-dtu98.26 14097.90 16399.35 6998.02 30099.49 298.02 13899.16 18398.29 10897.64 24297.99 26396.44 17499.95 1596.66 16898.93 27698.60 279
test_part199.79 299.79 299.78 299.85 1399.46 399.79 499.81 499.98 199.97 299.87 299.27 999.97 399.60 499.99 599.91 2
abl_698.99 3898.78 5299.61 1099.45 9899.46 398.60 7599.50 5698.59 9199.24 7999.04 11098.54 3499.89 5596.45 18799.62 15099.50 100
RPSCF98.62 9498.36 11499.42 5799.65 4399.42 598.55 8199.57 3497.72 14698.90 13499.26 6896.12 18599.52 29395.72 22499.71 11599.32 176
SR-MVS-dyc-post98.81 6198.55 8199.57 1999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.49 11399.86 8696.56 17799.39 20899.45 124
RE-MVS-def98.58 7999.20 13899.38 698.48 9399.30 13698.64 8598.95 12598.96 13297.75 8896.56 17799.39 20899.45 124
LS3D98.63 9298.38 11299.36 6497.25 33299.38 699.12 4499.32 12299.21 4398.44 19198.88 15397.31 12299.80 16396.58 17299.34 21798.92 249
test117298.76 6998.49 9199.57 1999.18 14899.37 998.39 10199.31 12798.43 9998.90 13498.88 15397.49 11399.86 8696.43 18999.37 21299.48 110
zzz-MVS98.79 6398.52 8499.61 1099.67 4099.36 1097.33 20599.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
MTAPA98.88 5498.64 7099.61 1099.67 4099.36 1098.43 9899.20 16598.83 8198.89 13798.90 14496.98 14399.92 3397.16 12399.70 11999.56 70
SR-MVS98.71 7698.43 10399.57 1999.18 14899.35 1298.36 10499.29 14398.29 10898.88 14198.85 16097.53 10699.87 7996.14 20699.31 22199.48 110
MP-MVS-pluss98.57 10198.23 13099.60 1499.69 3899.35 1297.16 22299.38 9694.87 27098.97 12298.99 12398.01 7099.88 6397.29 11799.70 11999.58 60
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVS_fast99.01 3698.82 4899.57 1999.71 3099.35 1299.00 5199.50 5697.33 18398.94 13198.86 15798.75 2499.82 14197.53 10799.71 11599.56 70
UniMVSNet_ETH3D99.69 399.69 599.69 499.84 1599.34 1599.69 599.58 2799.90 399.86 899.78 699.58 399.95 1599.00 3299.95 1699.78 15
TDRefinement99.42 1799.38 1699.55 2799.76 2299.33 1699.68 699.71 1099.38 3399.53 3299.61 2498.64 2899.80 16398.24 7099.84 5599.52 92
DTE-MVSNet99.43 1699.35 1899.66 599.71 3099.30 1799.31 1999.51 5499.64 1299.56 2799.46 4198.23 5299.97 398.78 4399.93 2599.72 25
ACMMP_NAP98.75 7198.48 9399.57 1999.58 5099.29 1897.82 16099.25 15496.94 21398.78 15599.12 9398.02 6999.84 11697.13 12799.67 13699.59 54
UA-Net99.47 1299.40 1599.70 399.49 8499.29 1899.80 399.72 999.82 499.04 11099.81 498.05 6899.96 998.85 3999.99 599.86 7
HPM-MVScopyleft98.79 6398.53 8399.59 1899.65 4399.29 1899.16 3999.43 8596.74 22198.61 17498.38 23498.62 2999.87 7996.47 18599.67 13699.59 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs699.67 499.70 499.60 1499.90 499.27 2199.53 899.76 799.64 1299.84 999.83 399.50 599.87 7999.36 1599.92 3499.64 39
APD-MVS_3200maxsize98.84 5898.61 7599.53 3799.19 14199.27 2198.49 9099.33 12098.64 8599.03 11398.98 12797.89 7899.85 9996.54 18199.42 20499.46 120
MSP-MVS98.40 12598.00 15599.61 1099.57 5499.25 2398.57 7999.35 10997.55 16099.31 6997.71 27894.61 23599.88 6396.14 20699.19 24299.70 29
WR-MVS_H99.33 2499.22 2899.65 699.71 3099.24 2499.32 1699.55 4499.46 2799.50 3899.34 5997.30 12399.93 2798.90 3699.93 2599.77 17
test_0728_SECOND99.60 1499.50 7799.23 2598.02 13899.32 12299.88 6396.99 13599.63 14799.68 31
MP-MVScopyleft98.46 11898.09 14699.54 3099.57 5499.22 2698.50 8999.19 17097.61 15497.58 24798.66 19597.40 11999.88 6394.72 25099.60 15899.54 82
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS98.68 8498.40 10799.54 3099.57 5499.21 2798.46 9599.29 14397.28 18998.11 21398.39 23298.00 7199.87 7996.86 15199.64 14499.55 78
DVP-MVS98.77 6898.52 8499.52 4299.50 7799.21 2798.02 13898.84 24497.97 12999.08 10099.02 11497.61 9999.88 6396.99 13599.63 14799.48 110
test072699.50 7799.21 2798.17 12099.35 10997.97 12999.26 7699.06 10097.61 99
SMA-MVScopyleft98.40 12598.03 15399.51 4699.16 15299.21 2798.05 13399.22 16294.16 28698.98 11999.10 9797.52 10899.79 17696.45 18799.64 14499.53 88
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS98.72 7598.45 9999.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25198.63 20497.50 11099.83 13196.79 15499.53 18299.56 70
X-MVStestdata94.32 29692.59 31499.53 3799.46 9599.21 2798.65 7099.34 11598.62 8997.54 25145.85 35397.50 11099.83 13196.79 15499.53 18299.56 70
GST-MVS98.61 9598.30 12299.52 4299.51 7499.20 3398.26 10999.25 15497.44 17498.67 16698.39 23297.68 9199.85 9996.00 20999.51 18899.52 92
mvs-test197.83 17997.48 19498.89 13898.02 30099.20 3397.20 21699.16 18398.29 10896.46 30297.17 30496.44 17499.92 3396.66 16897.90 31497.54 324
MIMVSNet199.38 2199.32 2299.55 2799.86 1199.19 3599.41 1199.59 2599.59 2099.71 1599.57 2897.12 13499.90 4699.21 2299.87 5199.54 82
PGM-MVS98.66 8798.37 11399.55 2799.53 7099.18 3698.23 11199.49 6497.01 21198.69 16498.88 15398.00 7199.89 5595.87 21799.59 16099.58 60
SED-MVS98.91 5198.72 5899.49 4999.49 8499.17 3798.10 12699.31 12798.03 12699.66 2199.02 11498.36 4399.88 6396.91 14199.62 15099.41 138
test_241102_ONE99.49 8499.17 3799.31 12797.98 12899.66 2198.90 14498.36 4399.48 302
region2R98.69 8198.40 10799.54 3099.53 7099.17 3798.52 8499.31 12797.46 17198.44 19198.51 21897.83 8199.88 6396.46 18699.58 16699.58 60
mPP-MVS98.64 9098.34 11799.54 3099.54 6899.17 3798.63 7299.24 15997.47 16698.09 21598.68 19097.62 9899.89 5596.22 20099.62 15099.57 65
HFP-MVS98.71 7698.44 10199.51 4699.49 8499.16 4198.52 8499.31 12797.47 16698.58 17998.50 22197.97 7599.85 9996.57 17499.59 16099.53 88
#test#98.50 11498.16 13999.51 4699.49 8499.16 4198.03 13699.31 12796.30 23798.58 17998.50 22197.97 7599.85 9995.68 22799.59 16099.53 88
SteuartSystems-ACMMP98.79 6398.54 8299.54 3099.73 2499.16 4198.23 11199.31 12797.92 13398.90 13498.90 14498.00 7199.88 6396.15 20599.72 11199.58 60
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.75 7198.50 8899.52 4299.56 6299.16 4198.87 6099.37 10097.16 20398.82 15299.01 12097.71 9099.87 7996.29 19799.69 12599.54 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PHI-MVS98.29 13797.95 15899.34 7298.44 27799.16 4198.12 12399.38 9696.01 24698.06 21798.43 22897.80 8599.67 24295.69 22699.58 16699.20 203
IU-MVS99.49 8499.15 4698.87 23792.97 30099.41 4996.76 15899.62 15099.66 34
DPE-MVS98.59 10098.26 12699.57 1999.27 12399.15 4697.01 22799.39 9497.67 14899.44 4598.99 12397.53 10699.89 5595.40 23799.68 13099.66 34
APDe-MVS98.99 3898.79 5199.60 1499.21 13599.15 4698.87 6099.48 6697.57 15799.35 5999.24 7197.83 8199.89 5597.88 9099.70 11999.75 23
ACMMPR98.70 7998.42 10599.54 3099.52 7299.14 4998.52 8499.31 12797.47 16698.56 18198.54 21597.75 8899.88 6396.57 17499.59 16099.58 60
PEN-MVS99.41 1899.34 2099.62 799.73 2499.14 4999.29 2499.54 4899.62 1799.56 2799.42 4898.16 6199.96 998.78 4399.93 2599.77 17
ACMM96.08 1298.91 5198.73 5699.48 5199.55 6599.14 4998.07 12999.37 10097.62 15299.04 11098.96 13298.84 2099.79 17697.43 11199.65 14299.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03099.40 1999.35 1899.54 3099.58 5099.13 5298.98 5499.48 6699.68 999.46 4299.26 6898.62 2999.73 21599.17 2599.92 3499.76 21
HPM-MVS++copyleft98.10 15297.64 18199.48 5199.09 16799.13 5297.52 19298.75 25997.46 17196.90 28297.83 27296.01 18999.84 11695.82 22199.35 21599.46 120
CP-MVS98.70 7998.42 10599.52 4299.36 11099.12 5498.72 6899.36 10497.54 16198.30 20198.40 23097.86 8099.89 5596.53 18299.72 11199.56 70
MAR-MVS96.47 25895.70 26598.79 15297.92 30599.12 5498.28 10798.60 27092.16 31295.54 32496.17 32194.77 23499.52 29389.62 33198.23 29997.72 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LTVRE_ROB98.40 199.67 499.71 399.56 2599.85 1399.11 5699.90 199.78 599.63 1499.78 1199.67 1799.48 699.81 15499.30 1899.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_part299.36 11099.10 5799.05 108
PS-CasMVS99.40 1999.33 2199.62 799.71 3099.10 5799.29 2499.53 5099.53 2399.46 4299.41 5098.23 5299.95 1598.89 3899.95 1699.81 12
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4699.41 6099.58 5099.10 5798.74 6699.56 4199.09 6199.33 6299.19 7798.40 4199.72 22395.98 21199.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
anonymousdsp99.51 1199.47 1399.62 799.88 799.08 6099.34 1499.69 1398.93 7599.65 2399.72 1298.93 1999.95 1599.11 26100.00 199.82 10
OurMVSNet-221017-099.37 2299.31 2399.53 3799.91 398.98 6199.63 799.58 2799.44 2999.78 1199.76 796.39 17699.92 3399.44 1499.92 3499.68 31
LPG-MVS_test98.71 7698.46 9799.47 5499.57 5498.97 6298.23 11199.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23399.78 8599.62 43
LGP-MVS_train99.47 5499.57 5498.97 6299.48 6696.60 22699.10 9799.06 10098.71 2699.83 13195.58 23399.78 8599.62 43
DeepPCF-MVS96.93 598.32 13298.01 15499.23 8898.39 28098.97 6295.03 31599.18 17496.88 21699.33 6298.78 17498.16 6199.28 32896.74 16099.62 15099.44 129
CP-MVSNet99.21 2999.09 3499.56 2599.65 4398.96 6599.13 4299.34 11599.42 3099.33 6299.26 6897.01 14199.94 2398.74 4799.93 2599.79 14
APD-MVScopyleft98.10 15297.67 17699.42 5799.11 16098.93 6697.76 16799.28 14594.97 26798.72 16398.77 17697.04 13799.85 9993.79 28199.54 17899.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5699.37 10998.87 6798.39 10199.42 8899.42 3099.36 5899.06 10098.38 4299.95 1598.34 6799.90 4399.57 65
testtj97.79 18297.25 20599.42 5799.03 18198.85 6897.78 16299.18 17495.83 25198.12 21298.50 22195.50 21299.86 8692.23 31199.07 25999.54 82
ZD-MVS99.01 18598.84 6999.07 20094.10 28798.05 21998.12 25496.36 18099.86 8692.70 30599.19 242
XVG-OURS-SEG-HR98.49 11598.28 12499.14 9899.49 8498.83 7096.54 25499.48 6697.32 18599.11 9498.61 20999.33 899.30 32596.23 19998.38 29699.28 188
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7599.58 2799.11 5499.53 3299.18 7998.81 2299.67 24296.71 16599.77 8999.50 100
XVG-OURS98.53 11198.34 11799.11 10299.50 7798.82 7295.97 28099.50 5697.30 18799.05 10898.98 12799.35 799.32 32295.72 22499.68 13099.18 210
ETH3D-3000-0.198.03 15697.62 18399.29 7799.11 16098.80 7397.47 19899.32 12295.54 25698.43 19498.62 20696.61 16699.77 19293.95 27599.49 19699.30 183
ACMP95.32 1598.41 12398.09 14699.36 6499.51 7498.79 7497.68 17499.38 9695.76 25398.81 15498.82 16998.36 4399.82 14194.75 24799.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SF-MVS98.53 11198.27 12599.32 7699.31 11798.75 7598.19 11699.41 8996.77 22098.83 14898.90 14497.80 8599.82 14195.68 22799.52 18599.38 153
UniMVSNet_NR-MVSNet98.86 5798.68 6599.40 6299.17 15098.74 7697.68 17499.40 9299.14 5299.06 10398.59 21196.71 16299.93 2798.57 5599.77 8999.53 88
DU-MVS98.82 5998.63 7199.39 6399.16 15298.74 7697.54 19099.25 15498.84 8099.06 10398.76 17896.76 15899.93 2798.57 5599.77 8999.50 100
test_djsdf99.52 1099.51 1099.53 3799.86 1198.74 7699.39 1299.56 4199.11 5499.70 1699.73 1199.00 1699.97 399.26 1999.98 1099.89 3
OPM-MVS98.56 10298.32 12199.25 8699.41 10598.73 7997.13 22499.18 17497.10 20698.75 16098.92 14098.18 5999.65 25596.68 16799.56 17599.37 156
UniMVSNet (Re)98.87 5598.71 6099.35 6999.24 12898.73 7997.73 17099.38 9698.93 7599.12 9298.73 18196.77 15699.86 8698.63 5299.80 7699.46 120
NR-MVSNet98.95 4698.82 4899.36 6499.16 15298.72 8199.22 3299.20 16599.10 5899.72 1498.76 17896.38 17899.86 8698.00 8499.82 6499.50 100
CMPMVSbinary75.91 2396.29 26295.44 27498.84 14496.25 34898.69 8297.02 22699.12 19388.90 33697.83 23098.86 15789.51 28998.90 34391.92 31299.51 18898.92 249
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETH3D cwj APD-0.1697.55 19597.00 21799.19 9198.51 27198.64 8396.85 23999.13 19094.19 28597.65 24198.40 23095.78 20299.81 15493.37 29299.16 24699.12 219
pm-mvs199.44 1499.48 1299.33 7499.80 1898.63 8499.29 2499.63 1999.30 3999.65 2399.60 2699.16 1599.82 14199.07 2899.83 6199.56 70
CSCG98.68 8498.50 8899.20 9099.45 9898.63 8498.56 8099.57 3497.87 13798.85 14598.04 26197.66 9399.84 11696.72 16399.81 6899.13 218
OMC-MVS97.88 16997.49 19199.04 11998.89 21198.63 8496.94 23199.25 15495.02 26598.53 18698.51 21897.27 12699.47 30493.50 28999.51 18899.01 233
jajsoiax99.58 799.61 899.48 5199.87 1098.61 8799.28 2899.66 1799.09 6199.89 799.68 1599.53 499.97 399.50 1199.99 599.87 5
mvs_tets99.63 699.67 699.49 4999.88 798.61 8799.34 1499.71 1099.27 4199.90 599.74 999.68 299.97 399.55 999.99 599.88 4
XVG-ACMP-BASELINE98.56 10298.34 11799.22 8999.54 6898.59 8997.71 17199.46 7497.25 19298.98 11998.99 12397.54 10499.84 11695.88 21499.74 10299.23 198
TransMVSNet (Re)99.44 1499.47 1399.36 6499.80 1898.58 9099.27 3099.57 3499.39 3299.75 1399.62 2299.17 1399.83 13199.06 2999.62 15099.66 34
wuyk23d96.06 26697.62 18391.38 33598.65 25898.57 9198.85 6396.95 31396.86 21799.90 599.16 8599.18 1298.40 34889.23 33299.77 8977.18 351
AllTest98.44 12098.20 13299.16 9599.50 7798.55 9298.25 11099.58 2796.80 21898.88 14199.06 10097.65 9499.57 27894.45 25799.61 15699.37 156
TestCases99.16 9599.50 7798.55 9299.58 2796.80 21898.88 14199.06 10097.65 9499.57 27894.45 25799.61 15699.37 156
Baseline_NR-MVSNet98.98 4298.86 4599.36 6499.82 1798.55 9297.47 19899.57 3499.37 3499.21 8399.61 2496.76 15899.83 13198.06 7999.83 6199.71 26
v7n99.53 999.57 999.41 6099.88 798.54 9599.45 1099.61 2299.66 1199.68 2099.66 1898.44 3999.95 1599.73 299.96 1599.75 23
PM-MVS98.82 5998.72 5899.12 10099.64 4698.54 9597.98 14499.68 1497.62 15299.34 6199.18 7997.54 10499.77 19297.79 9399.74 10299.04 229
LCM-MVSNet-Re98.64 9098.48 9399.11 10298.85 21798.51 9798.49 9099.83 398.37 10099.69 1899.46 4198.21 5799.92 3394.13 27099.30 22498.91 252
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1699.75 899.58 2298.60 17699.62 2298.22 5599.51 29797.70 10199.73 10597.89 304
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ITE_SJBPF98.87 14099.22 13398.48 9999.35 10997.50 16398.28 20398.60 21097.64 9799.35 31893.86 27999.27 22898.79 266
CPTT-MVS97.84 17797.36 20099.27 8299.31 11798.46 10098.29 10699.27 14894.90 26997.83 23098.37 23594.90 22599.84 11693.85 28099.54 17899.51 95
DP-MVS98.93 4898.81 5099.28 7999.21 13598.45 10198.46 9599.33 12099.63 1499.48 3999.15 8997.23 13199.75 20697.17 12299.66 14199.63 42
3Dnovator+97.89 398.69 8198.51 8699.24 8798.81 22798.40 10299.02 4899.19 17098.99 6798.07 21699.28 6497.11 13699.84 11696.84 15299.32 21999.47 118
F-COLMAP97.30 21296.68 23799.14 9899.19 14198.39 10397.27 21199.30 13692.93 30196.62 29398.00 26295.73 20499.68 23992.62 30698.46 29599.35 166
ACMH96.65 799.25 2899.24 2799.26 8499.72 2998.38 10499.07 4699.55 4498.30 10599.65 2399.45 4599.22 1099.76 19998.44 6299.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FC-MVSNet-test99.27 2699.25 2699.34 7299.77 2198.37 10599.30 2399.57 3499.61 1999.40 5299.50 3597.12 13499.85 9999.02 3199.94 2099.80 13
VPA-MVSNet99.30 2599.30 2499.28 7999.49 8498.36 10699.00 5199.45 7799.63 1499.52 3499.44 4698.25 5099.88 6399.09 2799.84 5599.62 43
OPU-MVS98.82 14698.59 26398.30 10798.10 12698.52 21798.18 5998.75 34694.62 25199.48 19899.41 138
FIs99.14 3299.09 3499.29 7799.70 3698.28 10899.13 4299.52 5399.48 2499.24 7999.41 5096.79 15599.82 14198.69 5099.88 4899.76 21
Vis-MVSNetpermissive99.34 2399.36 1799.27 8299.73 2498.26 10999.17 3899.78 599.11 5499.27 7299.48 3998.82 2199.95 1598.94 3499.93 2599.59 54
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous20240521197.90 16597.50 19099.08 10798.90 20698.25 11098.53 8396.16 32398.87 7799.11 9498.86 15790.40 28499.78 18697.36 11499.31 22199.19 208
CNVR-MVS98.17 15097.87 16599.07 11098.67 25298.24 11197.01 22798.93 22697.25 19297.62 24398.34 23897.27 12699.57 27896.42 19099.33 21899.39 147
GBi-Net98.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
test198.65 8898.47 9599.17 9298.90 20698.24 11199.20 3399.44 8098.59 9198.95 12599.55 3094.14 24599.86 8697.77 9599.69 12599.41 138
FMVSNet199.17 3099.17 2999.17 9299.55 6598.24 11199.20 3399.44 8099.21 4399.43 4799.55 3097.82 8499.86 8698.42 6499.89 4799.41 138
API-MVS97.04 23496.91 22497.42 26297.88 30798.23 11598.18 11798.50 27497.57 15797.39 26396.75 31296.77 15699.15 33590.16 32999.02 26794.88 347
Anonymous2024052998.93 4898.87 4499.12 10099.19 14198.22 11699.01 4998.99 22199.25 4299.54 2999.37 5397.04 13799.80 16397.89 8799.52 18599.35 166
ETH3 D test640096.46 25995.59 27099.08 10798.88 21298.21 11796.53 25599.18 17488.87 33797.08 27097.79 27393.64 25699.77 19288.92 33399.40 20799.28 188
Anonymous2023121199.27 2699.27 2599.26 8499.29 12198.18 11899.49 999.51 5499.70 899.80 1099.68 1596.84 14999.83 13199.21 2299.91 3999.77 17
MCST-MVS98.00 16097.63 18299.10 10499.24 12898.17 11996.89 23898.73 26295.66 25497.92 22397.70 27997.17 13399.66 25096.18 20499.23 23499.47 118
PS-MVSNAJss99.46 1399.49 1199.35 6999.90 498.15 12099.20 3399.65 1899.48 2499.92 499.71 1398.07 6599.96 999.53 10100.00 199.93 1
CDPH-MVS97.26 21596.66 24099.07 11099.00 18698.15 12096.03 27899.01 21791.21 32397.79 23397.85 27196.89 14799.69 23092.75 30399.38 21199.39 147
test_040298.76 6998.71 6098.93 13299.56 6298.14 12298.45 9799.34 11599.28 4098.95 12598.91 14198.34 4799.79 17695.63 23099.91 3998.86 257
Fast-Effi-MVS+-dtu98.27 13898.09 14698.81 14898.43 27898.11 12397.61 18299.50 5698.64 8597.39 26397.52 28998.12 6499.95 1596.90 14698.71 28598.38 290
EIA-MVS98.00 16097.74 17298.80 15098.72 23798.09 12498.05 13399.60 2497.39 17896.63 29295.55 33097.68 9199.80 16396.73 16299.27 22898.52 282
alignmvs97.35 20896.88 22598.78 15598.54 26898.09 12497.71 17197.69 29999.20 4697.59 24695.90 32588.12 29799.55 28498.18 7498.96 27498.70 274
ANet_high99.57 899.67 699.28 7999.89 698.09 12499.14 4199.93 199.82 499.93 399.81 499.17 1399.94 2399.31 17100.00 199.82 10
TAPA-MVS96.21 1196.63 25295.95 26098.65 16798.93 19898.09 12496.93 23399.28 14583.58 34898.13 21197.78 27496.13 18499.40 31293.52 28799.29 22698.45 286
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST998.71 24098.08 12895.96 28299.03 21091.40 32095.85 31497.53 28796.52 16999.76 199
train_agg97.10 22796.45 24999.07 11098.71 24098.08 12895.96 28299.03 21091.64 31595.85 31497.53 28796.47 17299.76 19993.67 28399.16 24699.36 162
ETV-MVS98.03 15697.86 16698.56 18398.69 24798.07 13097.51 19499.50 5698.10 12397.50 25595.51 33198.41 4099.88 6396.27 19899.24 23397.71 317
VDD-MVS98.56 10298.39 11099.07 11099.13 15998.07 13098.59 7797.01 31199.59 2099.11 9499.27 6694.82 22999.79 17698.34 6799.63 14799.34 168
NCCC97.86 17197.47 19599.05 11798.61 25998.07 13096.98 22998.90 23297.63 15197.04 27397.93 26795.99 19399.66 25095.31 23898.82 27999.43 133
CNLPA97.17 22496.71 23598.55 18498.56 26698.05 13396.33 26798.93 22696.91 21597.06 27297.39 29794.38 24199.45 30891.66 31599.18 24498.14 298
CS-MVS97.82 18197.59 18798.52 18898.76 23198.04 13498.20 11599.61 2297.10 20696.02 31394.87 34398.27 4999.84 11696.31 19599.17 24597.69 318
MVS_111021_LR98.30 13498.12 14498.83 14599.16 15298.03 13596.09 27799.30 13697.58 15698.10 21498.24 24598.25 5099.34 31996.69 16699.65 14299.12 219
test_898.67 25298.01 13695.91 28799.02 21491.64 31595.79 31697.50 29096.47 17299.76 199
agg_prior197.06 23196.40 25099.03 12098.68 25097.99 13795.76 29299.01 21791.73 31495.59 31797.50 29096.49 17199.77 19293.71 28299.14 25099.34 168
agg_prior98.68 25097.99 13799.01 21795.59 31799.77 192
SD-MVS98.40 12598.68 6597.54 25598.96 19397.99 13797.88 15299.36 10498.20 11799.63 2699.04 11098.76 2395.33 35396.56 17799.74 10299.31 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon97.33 21096.92 22298.57 17999.09 16797.99 13796.79 24299.35 10993.18 29897.71 23798.07 26095.00 22499.31 32393.97 27399.13 25398.42 289
DeepC-MVS97.60 498.97 4398.93 4299.10 10499.35 11497.98 14198.01 14199.46 7497.56 15999.54 2999.50 3598.97 1799.84 11698.06 7999.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xxxxxxxxxxxxxcwj98.44 12098.24 12899.06 11599.11 16097.97 14296.53 25599.54 4898.24 11198.83 14898.90 14497.80 8599.82 14195.68 22799.52 18599.38 153
save fliter99.11 16097.97 14296.53 25599.02 21498.24 111
test_prior497.97 14295.86 288
IS-MVSNet98.19 14797.90 16399.08 10799.57 5497.97 14299.31 1998.32 28099.01 6698.98 11999.03 11391.59 27899.79 17695.49 23599.80 7699.48 110
SixPastTwentyTwo98.75 7198.62 7299.16 9599.83 1697.96 14699.28 2898.20 28599.37 3499.70 1699.65 2092.65 27099.93 2799.04 3099.84 5599.60 48
test_prior397.48 20197.00 21798.95 12998.69 24797.95 14795.74 29499.03 21096.48 22996.11 30797.63 28395.92 19899.59 27294.16 26599.20 23899.30 183
test_prior98.95 12998.69 24797.95 14799.03 21099.59 27299.30 183
PMVScopyleft91.26 2097.86 17197.94 16097.65 24499.71 3097.94 14998.52 8498.68 26598.99 6797.52 25399.35 5797.41 11898.18 34991.59 31899.67 13696.82 333
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft94.65 1696.51 25595.73 26498.85 14398.75 23497.91 15096.42 26399.06 20190.94 32695.59 31797.38 29894.41 23999.59 27290.93 32498.04 31299.05 225
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + MP.98.63 9298.49 9199.06 11599.64 4697.90 15198.51 8898.94 22496.96 21299.24 7998.89 15297.83 8199.81 15496.88 14899.49 19699.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TSAR-MVS + GP.98.18 14897.98 15698.77 15798.71 24097.88 15296.32 26898.66 26696.33 23499.23 8298.51 21897.48 11599.40 31297.16 12399.46 20099.02 232
plane_prior799.19 14197.87 153
N_pmnet97.63 19197.17 20998.99 12699.27 12397.86 15495.98 27993.41 34195.25 26399.47 4198.90 14495.63 20699.85 9996.91 14199.73 10599.27 190
FPMVS93.44 31192.23 31697.08 27499.25 12797.86 15495.61 29897.16 30992.90 30293.76 34298.65 19775.94 34995.66 35179.30 35197.49 31897.73 315
test1298.93 13298.58 26497.83 15698.66 26696.53 29695.51 21199.69 23099.13 25399.27 190
PatchMatch-RL97.24 21896.78 23198.61 17499.03 18197.83 15696.36 26699.06 20193.49 29797.36 26597.78 27495.75 20399.49 29993.44 29098.77 28098.52 282
EPP-MVSNet98.30 13498.04 15299.07 11099.56 6297.83 15699.29 2498.07 28999.03 6498.59 17799.13 9292.16 27499.90 4696.87 14999.68 13099.49 104
tfpnnormal98.90 5398.90 4398.91 13599.67 4097.82 15999.00 5199.44 8099.45 2899.51 3799.24 7198.20 5899.86 8695.92 21399.69 12599.04 229
canonicalmvs98.34 13198.26 12698.58 17698.46 27597.82 15998.96 5599.46 7499.19 5097.46 25895.46 33398.59 3199.46 30698.08 7898.71 28598.46 284
3Dnovator98.27 298.81 6198.73 5699.05 11798.76 23197.81 16199.25 3199.30 13698.57 9598.55 18399.33 6197.95 7799.90 4697.16 12399.67 13699.44 129
AdaColmapbinary97.14 22696.71 23598.46 19698.34 28297.80 16296.95 23098.93 22695.58 25596.92 27797.66 28095.87 20099.53 28990.97 32399.14 25098.04 301
plane_prior397.78 16397.41 17697.79 233
pmmvs-eth3d98.47 11798.34 11798.86 14299.30 12097.76 16497.16 22299.28 14595.54 25699.42 4899.19 7797.27 12699.63 25997.89 8799.97 1299.20 203
新几何198.91 13598.94 19697.76 16498.76 25687.58 34296.75 28998.10 25694.80 23299.78 18692.73 30499.00 27099.20 203
112196.73 24796.00 25898.91 13598.95 19597.76 16498.07 12998.73 26287.65 34196.54 29598.13 25194.52 23799.73 21592.38 30999.02 26799.24 197
VDDNet98.21 14597.95 15899.01 12499.58 5097.74 16799.01 4997.29 30799.67 1098.97 12299.50 3590.45 28399.80 16397.88 9099.20 23899.48 110
XXY-MVS99.14 3299.15 3299.10 10499.76 2297.74 16798.85 6399.62 2098.48 9799.37 5699.49 3898.75 2499.86 8698.20 7399.80 7699.71 26
Regformer-298.60 9798.46 9799.02 12398.85 21797.71 16996.91 23699.09 19798.98 6999.01 11498.64 20097.37 12199.84 11697.75 10099.57 17099.52 92
plane_prior698.99 18997.70 17094.90 225
LF4IMVS97.90 16597.69 17598.52 18899.17 15097.66 17197.19 21999.47 7296.31 23697.85 22998.20 24996.71 16299.52 29394.62 25199.72 11198.38 290
HQP_MVS97.99 16397.67 17698.93 13299.19 14197.65 17297.77 16599.27 14898.20 11797.79 23397.98 26494.90 22599.70 22694.42 25999.51 18899.45 124
plane_prior97.65 17297.07 22596.72 22299.36 213
WR-MVS98.40 12598.19 13499.03 12099.00 18697.65 17296.85 23998.94 22498.57 9598.89 13798.50 22195.60 20799.85 9997.54 10699.85 5399.59 54
VPNet98.87 5598.83 4799.01 12499.70 3697.62 17598.43 9899.35 10999.47 2699.28 7099.05 10796.72 16199.82 14198.09 7799.36 21399.59 54
K. test v398.00 16097.66 17999.03 12099.79 2097.56 17699.19 3792.47 34499.62 1799.52 3499.66 1889.61 28899.96 999.25 2199.81 6899.56 70
PCF-MVS92.86 1894.36 29593.00 31298.42 19998.70 24497.56 17693.16 34499.11 19579.59 35197.55 25097.43 29592.19 27399.73 21579.85 35099.45 20297.97 303
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
lessismore_v098.97 12799.73 2497.53 17886.71 35499.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
QAPM97.31 21196.81 23098.82 14698.80 22997.49 17999.06 4799.19 17090.22 32997.69 23999.16 8596.91 14699.90 4690.89 32699.41 20599.07 223
EG-PatchMatch MVS98.99 3899.01 3898.94 13199.50 7797.47 18098.04 13599.59 2598.15 12299.40 5299.36 5698.58 3299.76 19998.78 4399.68 13099.59 54
MVS_111021_HR98.25 14298.08 14998.75 16199.09 16797.46 18195.97 28099.27 14897.60 15597.99 22298.25 24498.15 6399.38 31696.87 14999.57 17099.42 136
旧先验198.82 22597.45 18298.76 25698.34 23895.50 21299.01 26999.23 198
Fast-Effi-MVS+97.67 18797.38 19898.57 17998.71 24097.43 18397.23 21299.45 7794.82 27196.13 30696.51 31598.52 3599.91 4396.19 20298.83 27898.37 292
114514_t96.50 25795.77 26298.69 16599.48 9297.43 18397.84 15899.55 4481.42 35096.51 29898.58 21295.53 20999.67 24293.41 29199.58 16698.98 238
NP-MVS98.84 22097.39 18596.84 310
casdiffmvs98.95 4699.00 3998.81 14899.38 10797.33 18697.82 16099.57 3499.17 5199.35 5999.17 8398.35 4699.69 23098.46 6199.73 10599.41 138
Regformer-198.55 10698.44 10198.87 14098.85 21797.29 18796.91 23698.99 22198.97 7098.99 11798.64 20097.26 12999.81 15497.79 9399.57 17099.51 95
VNet98.42 12298.30 12298.79 15298.79 23097.29 18798.23 11198.66 26699.31 3898.85 14598.80 17194.80 23299.78 18698.13 7599.13 25399.31 180
HyFIR lowres test97.19 22296.60 24398.96 12899.62 4997.28 18995.17 31199.50 5694.21 28499.01 11498.32 24186.61 30199.99 297.10 12999.84 5599.60 48
baseline98.96 4599.02 3798.76 15899.38 10797.26 19098.49 9099.50 5698.86 7899.19 8599.06 10098.23 5299.69 23098.71 4999.76 9899.33 174
ab-mvs98.41 12398.36 11498.59 17599.19 14197.23 19199.32 1698.81 25097.66 14998.62 17299.40 5296.82 15299.80 16395.88 21499.51 18898.75 270
DeepC-MVS_fast96.85 698.30 13498.15 14198.75 16198.61 25997.23 19197.76 16799.09 19797.31 18698.75 16098.66 19597.56 10399.64 25796.10 20899.55 17799.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Regformer-498.73 7498.68 6598.89 13899.02 18397.22 19397.17 22099.06 20199.21 4399.17 9098.85 16097.45 11699.86 8698.48 6099.70 11999.60 48
DPM-MVS96.32 26195.59 27098.51 19198.76 23197.21 19494.54 33198.26 28291.94 31396.37 30397.25 30293.06 26399.43 31091.42 32098.74 28198.89 253
test20.0398.78 6698.77 5498.78 15599.46 9597.20 19597.78 16299.24 15999.04 6399.41 4998.90 14497.65 9499.76 19997.70 10199.79 8199.39 147
Effi-MVS+98.02 15897.82 16898.62 17298.53 27097.19 19697.33 20599.68 1497.30 18796.68 29097.46 29498.56 3399.80 16396.63 17098.20 30198.86 257
TAMVS98.24 14398.05 15198.80 15099.07 17197.18 19797.88 15298.81 25096.66 22599.17 9099.21 7494.81 23199.77 19296.96 13999.88 4899.44 129
UnsupCasMVSNet_eth97.89 16797.60 18598.75 16199.31 11797.17 19897.62 18099.35 10998.72 8498.76 15998.68 19092.57 27199.74 21097.76 9995.60 34099.34 168
OpenMVScopyleft96.65 797.09 22896.68 23798.32 20798.32 28397.16 19998.86 6299.37 10089.48 33396.29 30599.15 8996.56 16799.90 4692.90 29799.20 23897.89 304
OpenMVS_ROBcopyleft95.38 1495.84 27295.18 28397.81 23598.41 27997.15 20097.37 20298.62 26983.86 34798.65 16898.37 23594.29 24399.68 23988.41 33498.62 29196.60 336
FMVSNet298.49 11598.40 10798.75 16198.90 20697.14 20198.61 7499.13 19098.59 9199.19 8599.28 6494.14 24599.82 14197.97 8599.80 7699.29 187
V4298.78 6698.78 5298.76 15899.44 10097.04 20298.27 10899.19 17097.87 13799.25 7899.16 8596.84 14999.78 18699.21 2299.84 5599.46 120
testing_298.93 4898.99 4198.76 15899.57 5497.03 20397.85 15799.13 19098.46 9899.44 4599.44 4698.22 5599.74 21098.85 3999.94 2099.51 95
CLD-MVS97.49 19997.16 21098.48 19499.07 17197.03 20394.71 32299.21 16394.46 27798.06 21797.16 30597.57 10299.48 30294.46 25699.78 8598.95 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23697.02 20596.92 23598.75 25995.89 24998.59 17798.67 19292.08 27699.74 21096.72 16399.81 6899.32 176
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet98.53 11198.45 9998.79 15297.94 30496.96 20699.08 4598.54 27199.10 5896.82 28799.47 4096.55 16899.84 11698.56 5899.94 2099.55 78
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS97.20 22196.72 23498.64 16898.72 23796.95 20798.93 5794.14 33999.74 798.78 15599.01 12084.45 31899.73 21597.44 11099.27 22899.25 194
test22298.92 20296.93 20895.54 30098.78 25485.72 34596.86 28598.11 25594.43 23899.10 25899.23 198
pmmvs497.58 19497.28 20498.51 19198.84 22096.93 20895.40 30798.52 27393.60 29498.61 17498.65 19795.10 22299.60 26896.97 13899.79 8198.99 237
MSDG97.71 18497.52 18998.28 21298.91 20596.82 21094.42 33299.37 10097.65 15098.37 20098.29 24397.40 11999.33 32194.09 27199.22 23598.68 278
MVP-Stereo98.08 15497.92 16198.57 17998.96 19396.79 21197.90 15199.18 17496.41 23298.46 18998.95 13695.93 19799.60 26896.51 18398.98 27399.31 180
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP5-MVS96.79 211
HQP-MVS97.00 23896.49 24898.55 18498.67 25296.79 21196.29 26999.04 20896.05 24395.55 32196.84 31093.84 24999.54 28792.82 30099.26 23199.32 176
UnsupCasMVSNet_bld97.30 21296.92 22298.45 19799.28 12296.78 21496.20 27499.27 14895.42 26198.28 20398.30 24293.16 25999.71 22494.99 24297.37 32198.87 256
DELS-MVS98.27 13898.20 13298.48 19498.86 21596.70 21595.60 29999.20 16597.73 14598.45 19098.71 18497.50 11099.82 14198.21 7299.59 16098.93 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.64 18997.35 20198.52 18897.87 30896.69 21698.59 7798.05 29197.44 17493.74 34398.85 16093.69 25599.88 6398.11 7699.81 6898.98 238
PAPM_NR96.82 24596.32 25398.30 21099.07 17196.69 21697.48 19698.76 25695.81 25296.61 29496.47 31894.12 24899.17 33390.82 32797.78 31599.06 224
Regformer-398.61 9598.61 7598.63 17099.02 18396.53 21897.17 22098.84 24499.13 5399.10 9798.85 16097.24 13099.79 17698.41 6599.70 11999.57 65
Patchmtry97.35 20896.97 21998.50 19397.31 33196.47 21998.18 11798.92 22998.95 7498.78 15599.37 5385.44 31399.85 9995.96 21299.83 6199.17 214
EI-MVSNet-Vis-set98.68 8498.70 6398.63 17099.09 16796.40 22097.23 21298.86 24299.20 4699.18 8998.97 12997.29 12599.85 9998.72 4899.78 8599.64 39
EI-MVSNet-UG-set98.69 8198.71 6098.62 17299.10 16496.37 22197.23 21298.87 23799.20 4699.19 8598.99 12397.30 12399.85 9998.77 4699.79 8199.65 38
RRT_MVS97.07 23096.57 24598.58 17695.89 35296.33 22297.36 20398.77 25597.85 13999.08 10099.12 9382.30 33199.96 998.82 4299.90 4399.45 124
1112_ss97.29 21496.86 22698.58 17699.34 11696.32 22396.75 24699.58 2793.14 29996.89 28397.48 29292.11 27599.86 8696.91 14199.54 17899.57 65
v899.01 3699.16 3098.57 17999.47 9496.31 22498.90 5899.47 7299.03 6499.52 3499.57 2896.93 14599.81 15499.60 499.98 1099.60 48
原ACMM198.35 20598.90 20696.25 22598.83 24992.48 30796.07 31098.10 25695.39 21699.71 22492.61 30798.99 27199.08 222
v1098.97 4399.11 3398.55 18499.44 10096.21 22698.90 5899.55 4498.73 8399.48 3999.60 2696.63 16599.83 13199.70 399.99 599.61 47
FMVSNet596.01 26795.20 28298.41 20097.53 32296.10 22798.74 6699.50 5697.22 20198.03 22199.04 11069.80 35499.88 6397.27 11899.71 11599.25 194
Vis-MVSNet (Re-imp)97.46 20297.16 21098.34 20699.55 6596.10 22798.94 5698.44 27698.32 10498.16 20898.62 20688.76 29399.73 21593.88 27899.79 8199.18 210
CHOSEN 1792x268897.49 19997.14 21398.54 18799.68 3996.09 22996.50 25899.62 2091.58 31798.84 14798.97 12992.36 27299.88 6396.76 15899.95 1699.67 33
v14419298.54 10998.57 8098.45 19799.21 13595.98 23097.63 17999.36 10497.15 20599.32 6799.18 7995.84 20199.84 11699.50 1199.91 3999.54 82
ambc98.24 21498.82 22595.97 23198.62 7399.00 22099.27 7299.21 7496.99 14299.50 29896.55 18099.50 19599.26 193
v114498.60 9798.66 6898.41 20099.36 11095.90 23297.58 18699.34 11597.51 16299.27 7299.15 8996.34 18199.80 16399.47 1399.93 2599.51 95
v119298.60 9798.66 6898.41 20099.27 12395.88 23397.52 19299.36 10497.41 17699.33 6299.20 7696.37 17999.82 14199.57 799.92 3499.55 78
PMMVS96.51 25595.98 25998.09 22097.53 32295.84 23494.92 31898.84 24491.58 31796.05 31195.58 32995.68 20599.66 25095.59 23298.09 30898.76 269
FMVSNet397.50 19797.24 20798.29 21198.08 29895.83 23597.86 15598.91 23197.89 13698.95 12598.95 13687.06 29899.81 15497.77 9599.69 12599.23 198
v2v48298.56 10298.62 7298.37 20499.42 10495.81 23697.58 18699.16 18397.90 13599.28 7099.01 12095.98 19499.79 17699.33 1699.90 4399.51 95
v192192098.54 10998.60 7798.38 20399.20 13895.76 23797.56 18899.36 10497.23 19899.38 5499.17 8396.02 18899.84 11699.57 799.90 4399.54 82
v124098.55 10698.62 7298.32 20799.22 13395.58 23897.51 19499.45 7797.16 20399.45 4499.24 7196.12 18599.85 9999.60 499.88 4899.55 78
testgi98.32 13298.39 11098.13 21999.57 5495.54 23997.78 16299.49 6497.37 18099.19 8597.65 28198.96 1899.49 29996.50 18498.99 27199.34 168
Patchmatch-RL test97.26 21597.02 21697.99 22999.52 7295.53 24096.13 27699.71 1097.47 16699.27 7299.16 8584.30 32199.62 26197.89 8799.77 8998.81 262
CANet97.87 17097.76 17098.19 21797.75 31295.51 24196.76 24599.05 20597.74 14496.93 27698.21 24895.59 20899.89 5597.86 9299.93 2599.19 208
EPNet96.14 26595.44 27498.25 21390.76 35795.50 24297.92 14894.65 33298.97 7092.98 34498.85 16089.12 29299.87 7995.99 21099.68 13099.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res96.99 23996.55 24698.31 20999.35 11495.47 24395.84 29199.53 5091.51 31996.80 28898.48 22691.36 27999.83 13196.58 17299.53 18299.62 43
diffmvs98.22 14498.24 12898.17 21899.00 18695.44 24496.38 26599.58 2797.79 14398.53 18698.50 22196.76 15899.74 21097.95 8699.64 14499.34 168
Anonymous2023120698.21 14598.21 13198.20 21699.51 7495.43 24598.13 12199.32 12296.16 24098.93 13298.82 16996.00 19099.83 13197.32 11699.73 10599.36 162
testdata98.09 22098.93 19895.40 24698.80 25290.08 33197.45 25998.37 23595.26 21899.70 22693.58 28698.95 27599.17 214
PatchT96.65 25196.35 25197.54 25597.40 32795.32 24797.98 14496.64 31999.33 3796.89 28399.42 4884.32 32099.81 15497.69 10397.49 31897.48 325
test_yl96.69 24896.29 25497.90 23098.28 28595.24 24897.29 20897.36 30398.21 11498.17 20697.86 26986.27 30399.55 28494.87 24598.32 29798.89 253
DCV-MVSNet96.69 24896.29 25497.90 23098.28 28595.24 24897.29 20897.36 30398.21 11498.17 20697.86 26986.27 30399.55 28494.87 24598.32 29798.89 253
sss97.21 22096.93 22098.06 22498.83 22295.22 25096.75 24698.48 27594.49 27597.27 26697.90 26892.77 26899.80 16396.57 17499.32 21999.16 217
MSLP-MVS++98.02 15898.14 14397.64 24698.58 26495.19 25197.48 19699.23 16197.47 16697.90 22598.62 20697.04 13798.81 34597.55 10499.41 20598.94 247
PVSNet_Blended_VisFu98.17 15098.15 14198.22 21599.73 2495.15 25297.36 20399.68 1494.45 27998.99 11799.27 6696.87 14899.94 2397.13 12799.91 3999.57 65
PAPR95.29 28294.47 29297.75 23997.50 32695.14 25394.89 31998.71 26491.39 32195.35 32795.48 33294.57 23699.14 33684.95 34197.37 32198.97 242
pmmvs597.64 18997.49 19198.08 22399.14 15795.12 25496.70 24999.05 20593.77 29298.62 17298.83 16693.23 25799.75 20698.33 6999.76 9899.36 162
v14898.45 11998.60 7798.00 22899.44 10094.98 25597.44 20099.06 20198.30 10599.32 6798.97 12996.65 16499.62 26198.37 6699.85 5399.39 147
MDA-MVSNet-bldmvs97.94 16497.91 16298.06 22499.44 10094.96 25696.63 25299.15 18998.35 10198.83 14899.11 9594.31 24299.85 9996.60 17198.72 28399.37 156
new_pmnet96.99 23996.76 23297.67 24298.72 23794.89 25795.95 28498.20 28592.62 30698.55 18398.54 21594.88 22899.52 29393.96 27499.44 20398.59 281
HY-MVS95.94 1395.90 27095.35 27897.55 25497.95 30394.79 25898.81 6596.94 31492.28 31095.17 32898.57 21389.90 28799.75 20691.20 32197.33 32598.10 299
D2MVS97.84 17797.84 16797.83 23499.14 15794.74 25996.94 23198.88 23595.84 25098.89 13798.96 13294.40 24099.69 23097.55 10499.95 1699.05 225
EI-MVSNet98.40 12598.51 8698.04 22699.10 16494.73 26097.20 21698.87 23798.97 7099.06 10399.02 11496.00 19099.80 16398.58 5399.82 6499.60 48
MVS_Test98.18 14898.36 11497.67 24298.48 27394.73 26098.18 11799.02 21497.69 14798.04 22099.11 9597.22 13299.56 28198.57 5598.90 27798.71 272
IterMVS-LS98.55 10698.70 6398.09 22099.48 9294.73 26097.22 21599.39 9498.97 7099.38 5499.31 6396.00 19099.93 2798.58 5399.97 1299.60 48
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MIMVSNet96.62 25396.25 25797.71 24199.04 17894.66 26399.16 3996.92 31597.23 19897.87 22799.10 9786.11 30799.65 25591.65 31699.21 23798.82 260
CANet_DTU97.26 21597.06 21497.84 23397.57 31994.65 26496.19 27598.79 25397.23 19895.14 32998.24 24593.22 25899.84 11697.34 11599.84 5599.04 229
WTY-MVS96.67 25096.27 25697.87 23298.81 22794.61 26596.77 24497.92 29494.94 26897.12 26797.74 27791.11 28099.82 14193.89 27798.15 30599.18 210
PMMVS298.07 15598.08 14998.04 22699.41 10594.59 26694.59 32999.40 9297.50 16398.82 15298.83 16696.83 15199.84 11697.50 10999.81 6899.71 26
ET-MVSNet_ETH3D94.30 29893.21 30897.58 25098.14 29494.47 26794.78 32193.24 34394.72 27289.56 35195.87 32678.57 34599.81 15496.91 14197.11 32898.46 284
thisisatest053095.27 28394.45 29397.74 24099.19 14194.37 26897.86 15590.20 35197.17 20298.22 20597.65 28173.53 35299.90 4696.90 14699.35 21598.95 243
TinyColmap97.89 16797.98 15697.60 24898.86 21594.35 26996.21 27399.44 8097.45 17399.06 10398.88 15397.99 7499.28 32894.38 26399.58 16699.18 210
CR-MVSNet96.28 26395.95 26097.28 26797.71 31494.22 27098.11 12498.92 22992.31 30996.91 27999.37 5385.44 31399.81 15497.39 11397.36 32397.81 310
RPMNet97.02 23596.93 22097.30 26697.71 31494.22 27098.11 12499.30 13699.37 3496.91 27999.34 5986.72 30099.87 7997.53 10797.36 32397.81 310
MVSTER96.86 24296.55 24697.79 23697.91 30694.21 27297.56 18898.87 23797.49 16599.06 10399.05 10780.72 33499.80 16398.44 6299.82 6499.37 156
DeepMVS_CXcopyleft93.44 33198.24 28894.21 27294.34 33464.28 35391.34 34994.87 34389.45 29192.77 35477.54 35293.14 34993.35 349
GA-MVS95.86 27195.32 27997.49 25898.60 26194.15 27493.83 33997.93 29395.49 25996.68 29097.42 29683.21 32699.30 32596.22 20098.55 29499.01 233
BH-RMVSNet96.83 24396.58 24497.58 25098.47 27494.05 27596.67 25097.36 30396.70 22497.87 22797.98 26495.14 22199.44 30990.47 32898.58 29399.25 194
cl-mvsnet_97.02 23596.83 22997.58 25097.82 31094.04 27694.66 32599.16 18397.04 20998.63 17098.71 18488.68 29599.69 23097.00 13399.81 6899.00 236
cl-mvsnet197.02 23596.84 22897.58 25097.82 31094.03 27794.66 32599.16 18397.04 20998.63 17098.71 18488.69 29499.69 23097.00 13399.81 6899.01 233
MVS93.19 31392.09 31796.50 29396.91 33694.03 27798.07 12998.06 29068.01 35294.56 33496.48 31795.96 19699.30 32583.84 34396.89 33196.17 339
JIA-IIPM95.52 27995.03 28697.00 27696.85 33894.03 27796.93 23395.82 32799.20 4694.63 33399.71 1383.09 32799.60 26894.42 25994.64 34497.36 327
baseline195.96 26995.44 27497.52 25798.51 27193.99 28098.39 10196.09 32598.21 11498.40 19997.76 27686.88 29999.63 25995.42 23689.27 35298.95 243
TR-MVS95.55 27895.12 28596.86 28797.54 32193.94 28196.49 25996.53 32094.36 28297.03 27496.61 31494.26 24499.16 33486.91 33896.31 33697.47 326
jason97.45 20397.35 20197.76 23899.24 12893.93 28295.86 28898.42 27794.24 28398.50 18898.13 25194.82 22999.91 4397.22 12099.73 10599.43 133
jason: jason.
xiu_mvs_v1_base_debu97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
xiu_mvs_v1_base97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
xiu_mvs_v1_base_debi97.86 17198.17 13696.92 28198.98 19093.91 28396.45 26099.17 18097.85 13998.41 19597.14 30798.47 3699.92 3398.02 8199.05 26096.92 330
MVSFormer98.26 14098.43 10397.77 23798.88 21293.89 28699.39 1299.56 4199.11 5498.16 20898.13 25193.81 25199.97 399.26 1999.57 17099.43 133
lupinMVS97.06 23196.86 22697.65 24498.88 21293.89 28695.48 30497.97 29293.53 29598.16 20897.58 28593.81 25199.91 4396.77 15799.57 17099.17 214
tttt051795.64 27694.98 28797.64 24699.36 11093.81 28898.72 6890.47 35098.08 12498.67 16698.34 23873.88 35199.92 3397.77 9599.51 18899.20 203
MS-PatchMatch97.68 18697.75 17197.45 26098.23 29093.78 28997.29 20898.84 24496.10 24298.64 16998.65 19796.04 18799.36 31796.84 15299.14 25099.20 203
PVSNet_BlendedMVS97.55 19597.53 18897.60 24898.92 20293.77 29096.64 25199.43 8594.49 27597.62 24399.18 7996.82 15299.67 24294.73 24899.93 2599.36 162
PVSNet_Blended96.88 24196.68 23797.47 25998.92 20293.77 29094.71 32299.43 8590.98 32597.62 24397.36 30096.82 15299.67 24294.73 24899.56 17598.98 238
USDC97.41 20597.40 19697.44 26198.94 19693.67 29295.17 31199.53 5094.03 28998.97 12299.10 9795.29 21799.34 31995.84 22099.73 10599.30 183
test0.0.03 194.51 29393.69 30296.99 27796.05 34993.61 29394.97 31793.49 34096.17 23897.57 24994.88 34182.30 33199.01 34093.60 28594.17 34898.37 292
BH-untuned96.83 24396.75 23397.08 27498.74 23593.33 29496.71 24898.26 28296.72 22298.44 19197.37 29995.20 21999.47 30491.89 31397.43 32098.44 287
cl_fuxian97.36 20797.37 19997.31 26598.09 29793.25 29595.01 31699.16 18397.05 20898.77 15898.72 18392.88 26699.64 25796.93 14099.76 9899.05 225
MDA-MVSNet_test_wron97.60 19297.66 17997.41 26399.04 17893.09 29695.27 30898.42 27797.26 19198.88 14198.95 13695.43 21599.73 21597.02 13298.72 28399.41 138
miper_ehance_all_eth97.06 23197.03 21597.16 27397.83 30993.06 29794.66 32599.09 19795.99 24798.69 16498.45 22792.73 26999.61 26796.79 15499.03 26498.82 260
Patchmatch-test96.55 25496.34 25297.17 27198.35 28193.06 29798.40 10097.79 29597.33 18398.41 19598.67 19283.68 32599.69 23095.16 23999.31 22198.77 268
MG-MVS96.77 24696.61 24297.26 26898.31 28493.06 29795.93 28598.12 28896.45 23197.92 22398.73 18193.77 25399.39 31491.19 32299.04 26399.33 174
YYNet197.60 19297.67 17697.39 26499.04 17893.04 30095.27 30898.38 27997.25 19298.92 13398.95 13695.48 21499.73 21596.99 13598.74 28199.41 138
thisisatest051594.12 30293.16 30996.97 27998.60 26192.90 30193.77 34090.61 34994.10 28796.91 27995.87 32674.99 35099.80 16394.52 25499.12 25698.20 295
miper_lstm_enhance97.18 22397.16 21097.25 26998.16 29392.85 30295.15 31399.31 12797.25 19298.74 16298.78 17490.07 28599.78 18697.19 12199.80 7699.11 221
cl-mvsnet295.79 27395.39 27796.98 27896.77 34092.79 30394.40 33398.53 27294.59 27497.89 22698.17 25082.82 33099.24 33096.37 19199.03 26498.92 249
eth_miper_zixun_eth97.23 21997.25 20597.17 27198.00 30292.77 30494.71 32299.18 17497.27 19098.56 18198.74 18091.89 27799.69 23097.06 13199.81 6899.05 225
131495.74 27495.60 26996.17 30097.53 32292.75 30598.07 12998.31 28191.22 32294.25 33596.68 31395.53 20999.03 33791.64 31797.18 32696.74 334
PAPM91.88 32190.34 32496.51 29298.06 29992.56 30692.44 34797.17 30886.35 34390.38 35096.01 32286.61 30199.21 33170.65 35395.43 34197.75 314
pmmvs395.03 28894.40 29496.93 28097.70 31692.53 30795.08 31497.71 29888.57 33897.71 23798.08 25979.39 34199.82 14196.19 20299.11 25798.43 288
xiu_mvs_v2_base97.16 22597.49 19196.17 30098.54 26892.46 30895.45 30598.84 24497.25 19297.48 25796.49 31698.31 4899.90 4696.34 19498.68 28796.15 341
PS-MVSNAJ97.08 22997.39 19796.16 30298.56 26692.46 30895.24 31098.85 24397.25 19297.49 25695.99 32398.07 6599.90 4696.37 19198.67 28896.12 342
gg-mvs-nofinetune92.37 31791.20 32295.85 30595.80 35392.38 31099.31 1981.84 35799.75 691.83 34899.74 968.29 35599.02 33887.15 33797.12 32796.16 340
cascas94.79 29194.33 29796.15 30396.02 35192.36 31192.34 34899.26 15385.34 34695.08 33094.96 34092.96 26598.53 34794.41 26298.59 29297.56 323
miper_enhance_ethall96.01 26795.74 26396.81 28896.41 34692.27 31293.69 34198.89 23491.14 32498.30 20197.35 30190.58 28299.58 27796.31 19599.03 26498.60 279
new-patchmatchnet98.35 13098.74 5597.18 27099.24 12892.23 31396.42 26399.48 6698.30 10599.69 1899.53 3397.44 11799.82 14198.84 4199.77 8999.49 104
GG-mvs-BLEND94.76 31994.54 35592.13 31499.31 1980.47 35888.73 35391.01 35267.59 35698.16 35082.30 34894.53 34693.98 348
mvs_anonymous97.83 17998.16 13996.87 28498.18 29291.89 31597.31 20798.90 23297.37 18098.83 14899.46 4196.28 18299.79 17698.90 3698.16 30498.95 243
ADS-MVSNet295.43 28194.98 28796.76 29098.14 29491.74 31697.92 14897.76 29690.23 32796.51 29898.91 14185.61 31099.85 9992.88 29896.90 32998.69 275
MVEpermissive83.40 2292.50 31691.92 31994.25 32398.83 22291.64 31792.71 34583.52 35695.92 24886.46 35595.46 33395.20 21995.40 35280.51 34998.64 28995.73 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres600view794.45 29493.83 30096.29 29699.06 17591.53 31897.99 14294.24 33798.34 10297.44 26095.01 33779.84 33799.67 24284.33 34298.23 29997.66 319
DSMNet-mixed97.42 20497.60 18596.87 28499.15 15691.46 31998.54 8299.12 19392.87 30397.58 24799.63 2196.21 18399.90 4695.74 22399.54 17899.27 190
tfpn200view994.03 30393.44 30595.78 30698.93 19891.44 32097.60 18394.29 33597.94 13197.10 26894.31 34679.67 33999.62 26183.05 34498.08 30996.29 337
thres40094.14 30193.44 30596.24 29898.93 19891.44 32097.60 18394.29 33597.94 13197.10 26894.31 34679.67 33999.62 26183.05 34498.08 30997.66 319
thres100view90094.19 29993.67 30395.75 30799.06 17591.35 32298.03 13694.24 33798.33 10397.40 26294.98 33979.84 33799.62 26183.05 34498.08 30996.29 337
BH-w/o95.13 28694.89 29095.86 30498.20 29191.31 32395.65 29797.37 30293.64 29396.52 29795.70 32893.04 26499.02 33888.10 33595.82 33997.24 328
thres20093.72 30893.14 31095.46 31398.66 25791.29 32496.61 25394.63 33397.39 17896.83 28693.71 34979.88 33699.56 28182.40 34798.13 30695.54 346
baseline293.73 30792.83 31396.42 29497.70 31691.28 32596.84 24189.77 35293.96 29192.44 34695.93 32479.14 34299.77 19292.94 29696.76 33398.21 294
IB-MVS91.63 1992.24 31990.90 32396.27 29797.22 33391.24 32694.36 33493.33 34292.37 30892.24 34794.58 34566.20 35999.89 5593.16 29594.63 34597.66 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ppachtmachnet_test97.50 19797.74 17296.78 28998.70 24491.23 32794.55 33099.05 20596.36 23399.21 8398.79 17396.39 17699.78 18696.74 16099.82 6499.34 168
IterMVS-SCA-FT97.85 17698.18 13596.87 28499.27 12391.16 32895.53 30199.25 15499.10 5899.41 4999.35 5793.10 26199.96 998.65 5199.94 2099.49 104
IterMVS97.73 18398.11 14596.57 29199.24 12890.28 32995.52 30399.21 16398.86 7899.33 6299.33 6193.11 26099.94 2398.49 5999.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet95.24 28494.93 28996.18 29998.14 29490.10 33097.92 14897.32 30690.23 32796.51 29898.91 14185.61 31099.74 21092.88 29896.90 32998.69 275
our_test_397.39 20697.73 17496.34 29598.70 24489.78 33194.61 32898.97 22396.50 22899.04 11098.85 16095.98 19499.84 11697.26 11999.67 13699.41 138
PVSNet93.40 1795.67 27595.70 26595.57 31198.83 22288.57 33292.50 34697.72 29792.69 30596.49 30196.44 31993.72 25499.43 31093.61 28499.28 22798.71 272
tpm94.67 29294.34 29695.66 30997.68 31888.42 33397.88 15294.90 33194.46 27796.03 31298.56 21478.66 34399.79 17695.88 21495.01 34398.78 267
SCA96.41 26096.66 24095.67 30898.24 28888.35 33495.85 29096.88 31696.11 24197.67 24098.67 19293.10 26199.85 9994.16 26599.22 23598.81 262
CHOSEN 280x42095.51 28095.47 27295.65 31098.25 28788.27 33593.25 34398.88 23593.53 29594.65 33297.15 30686.17 30599.93 2797.41 11299.93 2598.73 271
EPMVS93.72 30893.27 30795.09 31796.04 35087.76 33698.13 12185.01 35594.69 27396.92 27798.64 20078.47 34799.31 32395.04 24096.46 33598.20 295
EPNet_dtu94.93 29094.78 29195.38 31493.58 35687.68 33796.78 24395.69 32997.35 18289.14 35298.09 25888.15 29699.49 29994.95 24499.30 22498.98 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 27795.67 26795.30 31597.34 32987.32 33897.65 17896.65 31895.30 26297.07 27198.69 18884.77 31599.75 20694.97 24398.64 28998.83 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DWT-MVSNet_test92.75 31592.05 31894.85 31896.48 34487.21 33997.83 15994.99 33092.22 31192.72 34594.11 34870.75 35399.46 30695.01 24194.33 34797.87 306
RRT_test8_iter0595.24 28495.13 28495.57 31197.32 33087.02 34097.99 14299.41 8998.06 12599.12 9299.05 10766.85 35799.85 9998.93 3599.47 19999.84 9
tpm293.09 31492.58 31594.62 32097.56 32086.53 34197.66 17695.79 32886.15 34494.07 33998.23 24775.95 34899.53 28990.91 32596.86 33297.81 310
tpmvs95.02 28995.25 28094.33 32296.39 34785.87 34298.08 12896.83 31795.46 26095.51 32598.69 18885.91 30899.53 28994.16 26596.23 33797.58 322
EU-MVSNet97.66 18898.50 8895.13 31699.63 4885.84 34398.35 10598.21 28498.23 11399.54 2999.46 4195.02 22399.68 23998.24 7099.87 5199.87 5
CostFormer93.97 30493.78 30194.51 32197.53 32285.83 34497.98 14495.96 32689.29 33594.99 33198.63 20478.63 34499.62 26194.54 25396.50 33498.09 300
E-PMN94.17 30094.37 29593.58 32996.86 33785.71 34590.11 35097.07 31098.17 12097.82 23297.19 30384.62 31798.94 34189.77 33097.68 31796.09 343
EMVS93.83 30694.02 29893.23 33396.83 33984.96 34689.77 35196.32 32297.92 13397.43 26196.36 32086.17 30598.93 34287.68 33697.73 31695.81 344
tpm cat193.29 31293.13 31193.75 32797.39 32884.74 34797.39 20197.65 30083.39 34994.16 33698.41 22982.86 32999.39 31491.56 31995.35 34297.14 329
test-LLR93.90 30593.85 29994.04 32496.53 34284.62 34894.05 33692.39 34596.17 23894.12 33795.07 33582.30 33199.67 24295.87 21798.18 30297.82 308
test-mter92.33 31891.76 32194.04 32496.53 34284.62 34894.05 33692.39 34594.00 29094.12 33795.07 33565.63 36099.67 24295.87 21798.18 30297.82 308
tpmrst95.07 28795.46 27393.91 32697.11 33484.36 35097.62 18096.96 31294.98 26696.35 30498.80 17185.46 31299.59 27295.60 23196.23 33797.79 313
PVSNet_089.98 2191.15 32290.30 32593.70 32897.72 31384.34 35190.24 34997.42 30190.20 33093.79 34193.09 35090.90 28198.89 34486.57 33972.76 35397.87 306
MDTV_nov1_ep1395.22 28197.06 33583.20 35297.74 16996.16 32394.37 28196.99 27598.83 16683.95 32399.53 28993.90 27697.95 313
TESTMET0.1,192.19 32091.77 32093.46 33096.48 34482.80 35394.05 33691.52 34894.45 27994.00 34094.88 34166.65 35899.56 28195.78 22298.11 30798.02 302
gm-plane-assit94.83 35481.97 35488.07 34094.99 33899.60 26891.76 314
dp93.47 31093.59 30493.13 33496.64 34181.62 35597.66 17696.42 32192.80 30496.11 30798.64 20078.55 34699.59 27293.31 29392.18 35198.16 297
CVMVSNet96.25 26497.21 20893.38 33299.10 16480.56 35697.20 21698.19 28796.94 21399.00 11699.02 11489.50 29099.80 16396.36 19399.59 16099.78 15
MVS-HIRNet94.32 29695.62 26890.42 33698.46 27575.36 35796.29 26989.13 35395.25 26395.38 32699.75 892.88 26699.19 33294.07 27299.39 20896.72 335
MDTV_nov1_ep13_2view74.92 35897.69 17390.06 33297.75 23685.78 30993.52 28798.69 275
tmp_tt78.77 32378.73 32678.90 33758.45 35874.76 35994.20 33578.26 35939.16 35486.71 35492.82 35180.50 33575.19 35586.16 34092.29 35086.74 350
test12317.04 32620.11 3297.82 33810.25 3604.91 36094.80 3204.47 3614.93 35510.00 35724.28 3559.69 3613.64 35610.14 35412.43 35514.92 352
testmvs17.12 32520.53 3286.87 33912.05 3594.20 36193.62 3426.73 3604.62 35610.41 35624.33 3548.28 3623.56 3579.69 35515.07 35412.86 353
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
cdsmvs_eth3d_5k24.66 32432.88 3270.00 3400.00 3610.00 3620.00 35299.10 1960.00 3570.00 35897.58 28599.21 110.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas8.17 32710.90 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35898.07 650.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ab-mvs-re8.12 32810.83 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35897.48 2920.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
test_241102_TWO99.30 13698.03 12699.26 7699.02 11497.51 10999.88 6396.91 14199.60 15899.66 34
9.1497.78 16999.07 17197.53 19199.32 12295.53 25898.54 18598.70 18797.58 10199.76 19994.32 26499.46 200
test_0728_THIRD98.17 12099.08 10099.02 11497.89 7899.88 6397.07 13099.71 11599.70 29
GSMVS98.81 262
sam_mvs184.74 31698.81 262
sam_mvs84.29 322
MTGPAbinary99.20 165
test_post197.59 18520.48 35783.07 32899.66 25094.16 265
test_post21.25 35683.86 32499.70 226
patchmatchnet-post98.77 17684.37 31999.85 99
MTMP97.93 14791.91 347
test9_res93.28 29499.15 24999.38 153
agg_prior292.50 30899.16 24699.37 156
test_prior295.74 29496.48 22996.11 30797.63 28395.92 19894.16 26599.20 238
旧先验295.76 29288.56 33997.52 25399.66 25094.48 255
新几何295.93 285
无先验95.74 29498.74 26189.38 33499.73 21592.38 30999.22 202
原ACMM295.53 301
testdata299.79 17692.80 302
segment_acmp97.02 140
testdata195.44 30696.32 235
plane_prior599.27 14899.70 22694.42 25999.51 18899.45 124
plane_prior497.98 264
plane_prior297.77 16598.20 117
plane_prior199.05 177
n20.00 362
nn0.00 362
door-mid99.57 34
test1198.87 237
door99.41 89
HQP-NCC98.67 25296.29 26996.05 24395.55 321
ACMP_Plane98.67 25296.29 26996.05 24395.55 321
BP-MVS92.82 300
HQP4-MVS95.56 32099.54 28799.32 176
HQP3-MVS99.04 20899.26 231
HQP2-MVS93.84 249
ACMMP++_ref99.77 89
ACMMP++99.68 130
Test By Simon96.52 169