LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 8 |
|
Effi-MVS+-dtu | | | 98.26 140 | 97.90 163 | 99.35 69 | 98.02 300 | 99.49 2 | 98.02 138 | 99.16 183 | 98.29 108 | 97.64 242 | 97.99 263 | 96.44 174 | 99.95 15 | 96.66 168 | 98.93 276 | 98.60 279 |
|
test_part1 | | | 99.79 2 | 99.79 2 | 99.78 2 | 99.85 13 | 99.46 3 | 99.79 4 | 99.81 4 | 99.98 1 | 99.97 2 | 99.87 2 | 99.27 9 | 99.97 3 | 99.60 4 | 99.99 5 | 99.91 2 |
|
abl_6 | | | 98.99 38 | 98.78 52 | 99.61 10 | 99.45 98 | 99.46 3 | 98.60 75 | 99.50 56 | 98.59 91 | 99.24 79 | 99.04 110 | 98.54 34 | 99.89 55 | 96.45 187 | 99.62 150 | 99.50 100 |
|
RPSCF | | | 98.62 94 | 98.36 114 | 99.42 57 | 99.65 43 | 99.42 5 | 98.55 81 | 99.57 34 | 97.72 146 | 98.90 134 | 99.26 68 | 96.12 185 | 99.52 293 | 95.72 224 | 99.71 115 | 99.32 176 |
|
SR-MVS-dyc-post | | | 98.81 61 | 98.55 81 | 99.57 19 | 99.20 138 | 99.38 6 | 98.48 93 | 99.30 136 | 98.64 85 | 98.95 125 | 98.96 132 | 97.49 113 | 99.86 86 | 96.56 177 | 99.39 208 | 99.45 124 |
|
RE-MVS-def | | | | 98.58 79 | | 99.20 138 | 99.38 6 | 98.48 93 | 99.30 136 | 98.64 85 | 98.95 125 | 98.96 132 | 97.75 88 | | 96.56 177 | 99.39 208 | 99.45 124 |
|
LS3D | | | 98.63 92 | 98.38 112 | 99.36 64 | 97.25 332 | 99.38 6 | 99.12 44 | 99.32 122 | 99.21 43 | 98.44 191 | 98.88 153 | 97.31 122 | 99.80 163 | 96.58 172 | 99.34 217 | 98.92 249 |
|
test1172 | | | 98.76 69 | 98.49 91 | 99.57 19 | 99.18 148 | 99.37 9 | 98.39 101 | 99.31 127 | 98.43 99 | 98.90 134 | 98.88 153 | 97.49 113 | 99.86 86 | 96.43 189 | 99.37 212 | 99.48 110 |
|
zzz-MVS | | | 98.79 63 | 98.52 84 | 99.61 10 | 99.67 40 | 99.36 10 | 97.33 205 | 99.20 165 | 98.83 81 | 98.89 137 | 98.90 144 | 96.98 143 | 99.92 33 | 97.16 123 | 99.70 119 | 99.56 70 |
|
MTAPA | | | 98.88 54 | 98.64 70 | 99.61 10 | 99.67 40 | 99.36 10 | 98.43 98 | 99.20 165 | 98.83 81 | 98.89 137 | 98.90 144 | 96.98 143 | 99.92 33 | 97.16 123 | 99.70 119 | 99.56 70 |
|
SR-MVS | | | 98.71 76 | 98.43 103 | 99.57 19 | 99.18 148 | 99.35 12 | 98.36 104 | 99.29 143 | 98.29 108 | 98.88 141 | 98.85 160 | 97.53 106 | 99.87 79 | 96.14 206 | 99.31 221 | 99.48 110 |
|
MP-MVS-pluss | | | 98.57 101 | 98.23 130 | 99.60 14 | 99.69 38 | 99.35 12 | 97.16 222 | 99.38 96 | 94.87 270 | 98.97 122 | 98.99 123 | 98.01 70 | 99.88 63 | 97.29 117 | 99.70 119 | 99.58 60 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HPM-MVS_fast | | | 99.01 36 | 98.82 48 | 99.57 19 | 99.71 30 | 99.35 12 | 99.00 51 | 99.50 56 | 97.33 183 | 98.94 131 | 98.86 157 | 98.75 24 | 99.82 141 | 97.53 107 | 99.71 115 | 99.56 70 |
|
UniMVSNet_ETH3D | | | 99.69 3 | 99.69 5 | 99.69 4 | 99.84 15 | 99.34 15 | 99.69 5 | 99.58 27 | 99.90 3 | 99.86 8 | 99.78 6 | 99.58 3 | 99.95 15 | 99.00 32 | 99.95 16 | 99.78 15 |
|
TDRefinement | | | 99.42 17 | 99.38 16 | 99.55 27 | 99.76 22 | 99.33 16 | 99.68 6 | 99.71 10 | 99.38 33 | 99.53 32 | 99.61 24 | 98.64 28 | 99.80 163 | 98.24 70 | 99.84 55 | 99.52 92 |
|
DTE-MVSNet | | | 99.43 16 | 99.35 18 | 99.66 5 | 99.71 30 | 99.30 17 | 99.31 19 | 99.51 54 | 99.64 12 | 99.56 27 | 99.46 41 | 98.23 52 | 99.97 3 | 98.78 43 | 99.93 25 | 99.72 25 |
|
ACMMP_NAP | | | 98.75 71 | 98.48 93 | 99.57 19 | 99.58 50 | 99.29 18 | 97.82 160 | 99.25 154 | 96.94 213 | 98.78 155 | 99.12 93 | 98.02 69 | 99.84 116 | 97.13 127 | 99.67 136 | 99.59 54 |
|
UA-Net | | | 99.47 12 | 99.40 15 | 99.70 3 | 99.49 84 | 99.29 18 | 99.80 3 | 99.72 9 | 99.82 4 | 99.04 110 | 99.81 4 | 98.05 68 | 99.96 9 | 98.85 39 | 99.99 5 | 99.86 7 |
|
HPM-MVS | | | 98.79 63 | 98.53 83 | 99.59 18 | 99.65 43 | 99.29 18 | 99.16 39 | 99.43 85 | 96.74 221 | 98.61 174 | 98.38 234 | 98.62 29 | 99.87 79 | 96.47 185 | 99.67 136 | 99.59 54 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 99.67 4 | 99.70 4 | 99.60 14 | 99.90 4 | 99.27 21 | 99.53 8 | 99.76 7 | 99.64 12 | 99.84 9 | 99.83 3 | 99.50 5 | 99.87 79 | 99.36 15 | 99.92 34 | 99.64 39 |
|
APD-MVS_3200maxsize | | | 98.84 58 | 98.61 75 | 99.53 37 | 99.19 141 | 99.27 21 | 98.49 90 | 99.33 120 | 98.64 85 | 99.03 113 | 98.98 127 | 97.89 78 | 99.85 99 | 96.54 181 | 99.42 204 | 99.46 120 |
|
MSP-MVS | | | 98.40 125 | 98.00 155 | 99.61 10 | 99.57 54 | 99.25 23 | 98.57 79 | 99.35 109 | 97.55 160 | 99.31 69 | 97.71 278 | 94.61 235 | 99.88 63 | 96.14 206 | 99.19 242 | 99.70 29 |
|
WR-MVS_H | | | 99.33 24 | 99.22 28 | 99.65 6 | 99.71 30 | 99.24 24 | 99.32 16 | 99.55 44 | 99.46 27 | 99.50 38 | 99.34 59 | 97.30 123 | 99.93 27 | 98.90 36 | 99.93 25 | 99.77 17 |
|
test_0728_SECOND | | | | | 99.60 14 | 99.50 77 | 99.23 25 | 98.02 138 | 99.32 122 | | | | | 99.88 63 | 96.99 135 | 99.63 147 | 99.68 31 |
|
MP-MVS | | | 98.46 118 | 98.09 146 | 99.54 30 | 99.57 54 | 99.22 26 | 98.50 89 | 99.19 170 | 97.61 154 | 97.58 247 | 98.66 195 | 97.40 119 | 99.88 63 | 94.72 250 | 99.60 158 | 99.54 82 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 98.68 84 | 98.40 107 | 99.54 30 | 99.57 54 | 99.21 27 | 98.46 95 | 99.29 143 | 97.28 189 | 98.11 213 | 98.39 232 | 98.00 71 | 99.87 79 | 96.86 151 | 99.64 144 | 99.55 78 |
|
DVP-MVS | | | 98.77 68 | 98.52 84 | 99.52 42 | 99.50 77 | 99.21 27 | 98.02 138 | 98.84 244 | 97.97 129 | 99.08 100 | 99.02 114 | 97.61 99 | 99.88 63 | 96.99 135 | 99.63 147 | 99.48 110 |
|
test0726 | | | | | | 99.50 77 | 99.21 27 | 98.17 120 | 99.35 109 | 97.97 129 | 99.26 76 | 99.06 100 | 97.61 99 | | | | |
|
SMA-MVS | | | 98.40 125 | 98.03 153 | 99.51 46 | 99.16 152 | 99.21 27 | 98.05 133 | 99.22 162 | 94.16 286 | 98.98 119 | 99.10 97 | 97.52 108 | 99.79 176 | 96.45 187 | 99.64 144 | 99.53 88 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
XVS | | | 98.72 75 | 98.45 99 | 99.53 37 | 99.46 95 | 99.21 27 | 98.65 70 | 99.34 115 | 98.62 89 | 97.54 251 | 98.63 204 | 97.50 110 | 99.83 131 | 96.79 154 | 99.53 182 | 99.56 70 |
|
X-MVStestdata | | | 94.32 296 | 92.59 314 | 99.53 37 | 99.46 95 | 99.21 27 | 98.65 70 | 99.34 115 | 98.62 89 | 97.54 251 | 45.85 353 | 97.50 110 | 99.83 131 | 96.79 154 | 99.53 182 | 99.56 70 |
|
GST-MVS | | | 98.61 95 | 98.30 122 | 99.52 42 | 99.51 74 | 99.20 33 | 98.26 109 | 99.25 154 | 97.44 174 | 98.67 166 | 98.39 232 | 97.68 91 | 99.85 99 | 96.00 209 | 99.51 188 | 99.52 92 |
|
mvs-test1 | | | 97.83 179 | 97.48 194 | 98.89 138 | 98.02 300 | 99.20 33 | 97.20 216 | 99.16 183 | 98.29 108 | 96.46 302 | 97.17 304 | 96.44 174 | 99.92 33 | 96.66 168 | 97.90 314 | 97.54 324 |
|
MIMVSNet1 | | | 99.38 21 | 99.32 22 | 99.55 27 | 99.86 11 | 99.19 35 | 99.41 11 | 99.59 25 | 99.59 20 | 99.71 15 | 99.57 28 | 97.12 134 | 99.90 46 | 99.21 22 | 99.87 51 | 99.54 82 |
|
PGM-MVS | | | 98.66 87 | 98.37 113 | 99.55 27 | 99.53 70 | 99.18 36 | 98.23 111 | 99.49 64 | 97.01 211 | 98.69 164 | 98.88 153 | 98.00 71 | 99.89 55 | 95.87 217 | 99.59 160 | 99.58 60 |
|
SED-MVS | | | 98.91 51 | 98.72 58 | 99.49 49 | 99.49 84 | 99.17 37 | 98.10 126 | 99.31 127 | 98.03 126 | 99.66 21 | 99.02 114 | 98.36 43 | 99.88 63 | 96.91 141 | 99.62 150 | 99.41 138 |
|
test_241102_ONE | | | | | | 99.49 84 | 99.17 37 | | 99.31 127 | 97.98 128 | 99.66 21 | 98.90 144 | 98.36 43 | 99.48 302 | | | |
|
region2R | | | 98.69 81 | 98.40 107 | 99.54 30 | 99.53 70 | 99.17 37 | 98.52 84 | 99.31 127 | 97.46 171 | 98.44 191 | 98.51 218 | 97.83 81 | 99.88 63 | 96.46 186 | 99.58 166 | 99.58 60 |
|
mPP-MVS | | | 98.64 90 | 98.34 117 | 99.54 30 | 99.54 68 | 99.17 37 | 98.63 72 | 99.24 159 | 97.47 166 | 98.09 215 | 98.68 190 | 97.62 98 | 99.89 55 | 96.22 200 | 99.62 150 | 99.57 65 |
|
HFP-MVS | | | 98.71 76 | 98.44 101 | 99.51 46 | 99.49 84 | 99.16 41 | 98.52 84 | 99.31 127 | 97.47 166 | 98.58 179 | 98.50 221 | 97.97 75 | 99.85 99 | 96.57 174 | 99.59 160 | 99.53 88 |
|
#test# | | | 98.50 114 | 98.16 139 | 99.51 46 | 99.49 84 | 99.16 41 | 98.03 136 | 99.31 127 | 96.30 237 | 98.58 179 | 98.50 221 | 97.97 75 | 99.85 99 | 95.68 227 | 99.59 160 | 99.53 88 |
|
SteuartSystems-ACMMP | | | 98.79 63 | 98.54 82 | 99.54 30 | 99.73 24 | 99.16 41 | 98.23 111 | 99.31 127 | 97.92 133 | 98.90 134 | 98.90 144 | 98.00 71 | 99.88 63 | 96.15 205 | 99.72 111 | 99.58 60 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP | | | 98.75 71 | 98.50 88 | 99.52 42 | 99.56 62 | 99.16 41 | 98.87 60 | 99.37 100 | 97.16 203 | 98.82 152 | 99.01 120 | 97.71 90 | 99.87 79 | 96.29 197 | 99.69 125 | 99.54 82 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PHI-MVS | | | 98.29 137 | 97.95 158 | 99.34 72 | 98.44 277 | 99.16 41 | 98.12 123 | 99.38 96 | 96.01 246 | 98.06 217 | 98.43 228 | 97.80 85 | 99.67 242 | 95.69 226 | 99.58 166 | 99.20 203 |
|
IU-MVS | | | | | | 99.49 84 | 99.15 46 | | 98.87 237 | 92.97 300 | 99.41 49 | | | | 96.76 158 | 99.62 150 | 99.66 34 |
|
DPE-MVS | | | 98.59 100 | 98.26 126 | 99.57 19 | 99.27 123 | 99.15 46 | 97.01 227 | 99.39 94 | 97.67 148 | 99.44 45 | 98.99 123 | 97.53 106 | 99.89 55 | 95.40 237 | 99.68 130 | 99.66 34 |
|
APDe-MVS | | | 98.99 38 | 98.79 51 | 99.60 14 | 99.21 135 | 99.15 46 | 98.87 60 | 99.48 66 | 97.57 157 | 99.35 59 | 99.24 71 | 97.83 81 | 99.89 55 | 97.88 90 | 99.70 119 | 99.75 23 |
|
ACMMPR | | | 98.70 79 | 98.42 105 | 99.54 30 | 99.52 72 | 99.14 49 | 98.52 84 | 99.31 127 | 97.47 166 | 98.56 181 | 98.54 215 | 97.75 88 | 99.88 63 | 96.57 174 | 99.59 160 | 99.58 60 |
|
PEN-MVS | | | 99.41 18 | 99.34 20 | 99.62 7 | 99.73 24 | 99.14 49 | 99.29 24 | 99.54 48 | 99.62 17 | 99.56 27 | 99.42 48 | 98.16 61 | 99.96 9 | 98.78 43 | 99.93 25 | 99.77 17 |
|
ACMM | | 96.08 12 | 98.91 51 | 98.73 56 | 99.48 51 | 99.55 65 | 99.14 49 | 98.07 129 | 99.37 100 | 97.62 152 | 99.04 110 | 98.96 132 | 98.84 20 | 99.79 176 | 97.43 111 | 99.65 142 | 99.49 104 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
nrg030 | | | 99.40 19 | 99.35 18 | 99.54 30 | 99.58 50 | 99.13 52 | 98.98 54 | 99.48 66 | 99.68 9 | 99.46 42 | 99.26 68 | 98.62 29 | 99.73 215 | 99.17 25 | 99.92 34 | 99.76 21 |
|
HPM-MVS++ | | | 98.10 152 | 97.64 181 | 99.48 51 | 99.09 167 | 99.13 52 | 97.52 192 | 98.75 259 | 97.46 171 | 96.90 282 | 97.83 272 | 96.01 189 | 99.84 116 | 95.82 221 | 99.35 215 | 99.46 120 |
|
CP-MVS | | | 98.70 79 | 98.42 105 | 99.52 42 | 99.36 110 | 99.12 54 | 98.72 68 | 99.36 104 | 97.54 161 | 98.30 201 | 98.40 230 | 97.86 80 | 99.89 55 | 96.53 182 | 99.72 111 | 99.56 70 |
|
MAR-MVS | | | 96.47 258 | 95.70 265 | 98.79 152 | 97.92 305 | 99.12 54 | 98.28 107 | 98.60 270 | 92.16 312 | 95.54 324 | 96.17 321 | 94.77 234 | 99.52 293 | 89.62 331 | 98.23 299 | 97.72 316 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LTVRE_ROB | | 98.40 1 | 99.67 4 | 99.71 3 | 99.56 25 | 99.85 13 | 99.11 56 | 99.90 1 | 99.78 5 | 99.63 14 | 99.78 11 | 99.67 17 | 99.48 6 | 99.81 154 | 99.30 18 | 99.97 12 | 99.77 17 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_part2 | | | | | | 99.36 110 | 99.10 57 | | | | 99.05 108 | | | | | | |
|
PS-CasMVS | | | 99.40 19 | 99.33 21 | 99.62 7 | 99.71 30 | 99.10 57 | 99.29 24 | 99.53 50 | 99.53 23 | 99.46 42 | 99.41 50 | 98.23 52 | 99.95 15 | 98.89 38 | 99.95 16 | 99.81 12 |
|
COLMAP_ROB | | 96.50 10 | 98.99 38 | 98.85 46 | 99.41 60 | 99.58 50 | 99.10 57 | 98.74 66 | 99.56 41 | 99.09 61 | 99.33 62 | 99.19 77 | 98.40 41 | 99.72 223 | 95.98 211 | 99.76 98 | 99.42 136 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 99.51 11 | 99.47 13 | 99.62 7 | 99.88 7 | 99.08 60 | 99.34 14 | 99.69 13 | 98.93 75 | 99.65 23 | 99.72 12 | 98.93 19 | 99.95 15 | 99.11 26 | 100.00 1 | 99.82 10 |
|
OurMVSNet-221017-0 | | | 99.37 22 | 99.31 23 | 99.53 37 | 99.91 3 | 98.98 61 | 99.63 7 | 99.58 27 | 99.44 29 | 99.78 11 | 99.76 7 | 96.39 176 | 99.92 33 | 99.44 14 | 99.92 34 | 99.68 31 |
|
LPG-MVS_test | | | 98.71 76 | 98.46 97 | 99.47 54 | 99.57 54 | 98.97 62 | 98.23 111 | 99.48 66 | 96.60 226 | 99.10 97 | 99.06 100 | 98.71 26 | 99.83 131 | 95.58 233 | 99.78 85 | 99.62 43 |
|
LGP-MVS_train | | | | | 99.47 54 | 99.57 54 | 98.97 62 | | 99.48 66 | 96.60 226 | 99.10 97 | 99.06 100 | 98.71 26 | 99.83 131 | 95.58 233 | 99.78 85 | 99.62 43 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 132 | 98.01 154 | 99.23 88 | 98.39 280 | 98.97 62 | 95.03 315 | 99.18 174 | 96.88 216 | 99.33 62 | 98.78 174 | 98.16 61 | 99.28 328 | 96.74 160 | 99.62 150 | 99.44 129 |
|
CP-MVSNet | | | 99.21 29 | 99.09 34 | 99.56 25 | 99.65 43 | 98.96 65 | 99.13 42 | 99.34 115 | 99.42 30 | 99.33 62 | 99.26 68 | 97.01 141 | 99.94 23 | 98.74 47 | 99.93 25 | 99.79 14 |
|
APD-MVS | | | 98.10 152 | 97.67 176 | 99.42 57 | 99.11 160 | 98.93 66 | 97.76 167 | 99.28 145 | 94.97 267 | 98.72 163 | 98.77 176 | 97.04 137 | 99.85 99 | 93.79 281 | 99.54 178 | 99.49 104 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TranMVSNet+NR-MVSNet | | | 99.17 30 | 99.07 36 | 99.46 56 | 99.37 109 | 98.87 67 | 98.39 101 | 99.42 88 | 99.42 30 | 99.36 58 | 99.06 100 | 98.38 42 | 99.95 15 | 98.34 67 | 99.90 43 | 99.57 65 |
|
testtj | | | 97.79 182 | 97.25 205 | 99.42 57 | 99.03 181 | 98.85 68 | 97.78 162 | 99.18 174 | 95.83 251 | 98.12 212 | 98.50 221 | 95.50 212 | 99.86 86 | 92.23 311 | 99.07 259 | 99.54 82 |
|
ZD-MVS | | | | | | 99.01 185 | 98.84 69 | | 99.07 200 | 94.10 287 | 98.05 219 | 98.12 254 | 96.36 180 | 99.86 86 | 92.70 305 | 99.19 242 | |
|
XVG-OURS-SEG-HR | | | 98.49 115 | 98.28 124 | 99.14 98 | 99.49 84 | 98.83 70 | 96.54 254 | 99.48 66 | 97.32 185 | 99.11 94 | 98.61 209 | 99.33 8 | 99.30 325 | 96.23 199 | 98.38 296 | 99.28 188 |
|
ACMH+ | | 96.62 9 | 99.08 34 | 99.00 39 | 99.33 74 | 99.71 30 | 98.83 70 | 98.60 75 | 99.58 27 | 99.11 54 | 99.53 32 | 99.18 79 | 98.81 22 | 99.67 242 | 96.71 165 | 99.77 89 | 99.50 100 |
|
XVG-OURS | | | 98.53 111 | 98.34 117 | 99.11 102 | 99.50 77 | 98.82 72 | 95.97 280 | 99.50 56 | 97.30 187 | 99.05 108 | 98.98 127 | 99.35 7 | 99.32 322 | 95.72 224 | 99.68 130 | 99.18 210 |
|
ETH3D-3000-0.1 | | | 98.03 156 | 97.62 183 | 99.29 77 | 99.11 160 | 98.80 73 | 97.47 198 | 99.32 122 | 95.54 256 | 98.43 194 | 98.62 206 | 96.61 166 | 99.77 192 | 93.95 275 | 99.49 196 | 99.30 183 |
|
ACMP | | 95.32 15 | 98.41 123 | 98.09 146 | 99.36 64 | 99.51 74 | 98.79 74 | 97.68 174 | 99.38 96 | 95.76 253 | 98.81 154 | 98.82 169 | 98.36 43 | 99.82 141 | 94.75 247 | 99.77 89 | 99.48 110 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SF-MVS | | | 98.53 111 | 98.27 125 | 99.32 76 | 99.31 117 | 98.75 75 | 98.19 116 | 99.41 89 | 96.77 220 | 98.83 148 | 98.90 144 | 97.80 85 | 99.82 141 | 95.68 227 | 99.52 185 | 99.38 153 |
|
UniMVSNet_NR-MVSNet | | | 98.86 57 | 98.68 65 | 99.40 62 | 99.17 150 | 98.74 76 | 97.68 174 | 99.40 92 | 99.14 52 | 99.06 103 | 98.59 211 | 96.71 162 | 99.93 27 | 98.57 55 | 99.77 89 | 99.53 88 |
|
DU-MVS | | | 98.82 59 | 98.63 71 | 99.39 63 | 99.16 152 | 98.74 76 | 97.54 190 | 99.25 154 | 98.84 80 | 99.06 103 | 98.76 178 | 96.76 158 | 99.93 27 | 98.57 55 | 99.77 89 | 99.50 100 |
|
test_djsdf | | | 99.52 10 | 99.51 10 | 99.53 37 | 99.86 11 | 98.74 76 | 99.39 12 | 99.56 41 | 99.11 54 | 99.70 16 | 99.73 11 | 99.00 16 | 99.97 3 | 99.26 19 | 99.98 10 | 99.89 3 |
|
OPM-MVS | | | 98.56 102 | 98.32 121 | 99.25 86 | 99.41 105 | 98.73 79 | 97.13 224 | 99.18 174 | 97.10 206 | 98.75 160 | 98.92 140 | 98.18 59 | 99.65 255 | 96.68 167 | 99.56 175 | 99.37 156 |
|
UniMVSNet (Re) | | | 98.87 55 | 98.71 60 | 99.35 69 | 99.24 128 | 98.73 79 | 97.73 170 | 99.38 96 | 98.93 75 | 99.12 92 | 98.73 181 | 96.77 156 | 99.86 86 | 98.63 52 | 99.80 76 | 99.46 120 |
|
NR-MVSNet | | | 98.95 46 | 98.82 48 | 99.36 64 | 99.16 152 | 98.72 81 | 99.22 32 | 99.20 165 | 99.10 58 | 99.72 14 | 98.76 178 | 96.38 178 | 99.86 86 | 98.00 84 | 99.82 64 | 99.50 100 |
|
CMPMVS | | 75.91 23 | 96.29 262 | 95.44 274 | 98.84 144 | 96.25 348 | 98.69 82 | 97.02 226 | 99.12 193 | 88.90 336 | 97.83 230 | 98.86 157 | 89.51 289 | 98.90 343 | 91.92 312 | 99.51 188 | 98.92 249 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ETH3D cwj APD-0.16 | | | 97.55 195 | 97.00 217 | 99.19 91 | 98.51 271 | 98.64 83 | 96.85 239 | 99.13 190 | 94.19 285 | 97.65 241 | 98.40 230 | 95.78 202 | 99.81 154 | 93.37 292 | 99.16 246 | 99.12 219 |
|
pm-mvs1 | | | 99.44 14 | 99.48 12 | 99.33 74 | 99.80 18 | 98.63 84 | 99.29 24 | 99.63 19 | 99.30 39 | 99.65 23 | 99.60 26 | 99.16 15 | 99.82 141 | 99.07 28 | 99.83 61 | 99.56 70 |
|
CSCG | | | 98.68 84 | 98.50 88 | 99.20 90 | 99.45 98 | 98.63 84 | 98.56 80 | 99.57 34 | 97.87 137 | 98.85 145 | 98.04 261 | 97.66 93 | 99.84 116 | 96.72 163 | 99.81 68 | 99.13 218 |
|
OMC-MVS | | | 97.88 169 | 97.49 191 | 99.04 119 | 98.89 211 | 98.63 84 | 96.94 231 | 99.25 154 | 95.02 265 | 98.53 186 | 98.51 218 | 97.27 126 | 99.47 304 | 93.50 289 | 99.51 188 | 99.01 233 |
|
jajsoiax | | | 99.58 7 | 99.61 8 | 99.48 51 | 99.87 10 | 98.61 87 | 99.28 28 | 99.66 17 | 99.09 61 | 99.89 7 | 99.68 15 | 99.53 4 | 99.97 3 | 99.50 11 | 99.99 5 | 99.87 5 |
|
mvs_tets | | | 99.63 6 | 99.67 6 | 99.49 49 | 99.88 7 | 98.61 87 | 99.34 14 | 99.71 10 | 99.27 41 | 99.90 5 | 99.74 9 | 99.68 2 | 99.97 3 | 99.55 9 | 99.99 5 | 99.88 4 |
|
XVG-ACMP-BASELINE | | | 98.56 102 | 98.34 117 | 99.22 89 | 99.54 68 | 98.59 89 | 97.71 171 | 99.46 74 | 97.25 192 | 98.98 119 | 98.99 123 | 97.54 104 | 99.84 116 | 95.88 214 | 99.74 102 | 99.23 198 |
|
TransMVSNet (Re) | | | 99.44 14 | 99.47 13 | 99.36 64 | 99.80 18 | 98.58 90 | 99.27 30 | 99.57 34 | 99.39 32 | 99.75 13 | 99.62 22 | 99.17 13 | 99.83 131 | 99.06 29 | 99.62 150 | 99.66 34 |
|
wuyk23d | | | 96.06 266 | 97.62 183 | 91.38 335 | 98.65 258 | 98.57 91 | 98.85 63 | 96.95 313 | 96.86 217 | 99.90 5 | 99.16 85 | 99.18 12 | 98.40 348 | 89.23 332 | 99.77 89 | 77.18 351 |
|
AllTest | | | 98.44 120 | 98.20 132 | 99.16 95 | 99.50 77 | 98.55 92 | 98.25 110 | 99.58 27 | 96.80 218 | 98.88 141 | 99.06 100 | 97.65 94 | 99.57 278 | 94.45 257 | 99.61 156 | 99.37 156 |
|
TestCases | | | | | 99.16 95 | 99.50 77 | 98.55 92 | | 99.58 27 | 96.80 218 | 98.88 141 | 99.06 100 | 97.65 94 | 99.57 278 | 94.45 257 | 99.61 156 | 99.37 156 |
|
Baseline_NR-MVSNet | | | 98.98 42 | 98.86 45 | 99.36 64 | 99.82 17 | 98.55 92 | 97.47 198 | 99.57 34 | 99.37 34 | 99.21 83 | 99.61 24 | 96.76 158 | 99.83 131 | 98.06 79 | 99.83 61 | 99.71 26 |
|
v7n | | | 99.53 9 | 99.57 9 | 99.41 60 | 99.88 7 | 98.54 95 | 99.45 10 | 99.61 22 | 99.66 11 | 99.68 20 | 99.66 18 | 98.44 39 | 99.95 15 | 99.73 2 | 99.96 15 | 99.75 23 |
|
PM-MVS | | | 98.82 59 | 98.72 58 | 99.12 100 | 99.64 46 | 98.54 95 | 97.98 144 | 99.68 14 | 97.62 152 | 99.34 61 | 99.18 79 | 97.54 104 | 99.77 192 | 97.79 93 | 99.74 102 | 99.04 229 |
|
LCM-MVSNet-Re | | | 98.64 90 | 98.48 93 | 99.11 102 | 98.85 217 | 98.51 97 | 98.49 90 | 99.83 3 | 98.37 100 | 99.69 18 | 99.46 41 | 98.21 57 | 99.92 33 | 94.13 270 | 99.30 224 | 98.91 252 |
|
Gipuma | | | 99.03 35 | 99.16 30 | 98.64 168 | 99.94 2 | 98.51 97 | 99.32 16 | 99.75 8 | 99.58 22 | 98.60 176 | 99.62 22 | 98.22 55 | 99.51 297 | 97.70 101 | 99.73 105 | 97.89 304 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ITE_SJBPF | | | | | 98.87 140 | 99.22 133 | 98.48 99 | | 99.35 109 | 97.50 163 | 98.28 203 | 98.60 210 | 97.64 97 | 99.35 318 | 93.86 279 | 99.27 228 | 98.79 266 |
|
CPTT-MVS | | | 97.84 177 | 97.36 200 | 99.27 82 | 99.31 117 | 98.46 100 | 98.29 106 | 99.27 148 | 94.90 269 | 97.83 230 | 98.37 235 | 94.90 225 | 99.84 116 | 93.85 280 | 99.54 178 | 99.51 95 |
|
DP-MVS | | | 98.93 48 | 98.81 50 | 99.28 79 | 99.21 135 | 98.45 101 | 98.46 95 | 99.33 120 | 99.63 14 | 99.48 39 | 99.15 89 | 97.23 131 | 99.75 206 | 97.17 122 | 99.66 141 | 99.63 42 |
|
3Dnovator+ | | 97.89 3 | 98.69 81 | 98.51 86 | 99.24 87 | 98.81 227 | 98.40 102 | 99.02 48 | 99.19 170 | 98.99 67 | 98.07 216 | 99.28 64 | 97.11 136 | 99.84 116 | 96.84 152 | 99.32 219 | 99.47 118 |
|
F-COLMAP | | | 97.30 212 | 96.68 237 | 99.14 98 | 99.19 141 | 98.39 103 | 97.27 211 | 99.30 136 | 92.93 301 | 96.62 293 | 98.00 262 | 95.73 204 | 99.68 239 | 92.62 306 | 98.46 295 | 99.35 166 |
|
ACMH | | 96.65 7 | 99.25 28 | 99.24 27 | 99.26 84 | 99.72 29 | 98.38 104 | 99.07 46 | 99.55 44 | 98.30 105 | 99.65 23 | 99.45 45 | 99.22 10 | 99.76 199 | 98.44 62 | 99.77 89 | 99.64 39 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FC-MVSNet-test | | | 99.27 26 | 99.25 26 | 99.34 72 | 99.77 21 | 98.37 105 | 99.30 23 | 99.57 34 | 99.61 19 | 99.40 52 | 99.50 35 | 97.12 134 | 99.85 99 | 99.02 31 | 99.94 20 | 99.80 13 |
|
VPA-MVSNet | | | 99.30 25 | 99.30 24 | 99.28 79 | 99.49 84 | 98.36 106 | 99.00 51 | 99.45 77 | 99.63 14 | 99.52 34 | 99.44 46 | 98.25 50 | 99.88 63 | 99.09 27 | 99.84 55 | 99.62 43 |
|
OPU-MVS | | | | | 98.82 146 | 98.59 263 | 98.30 107 | 98.10 126 | | | | 98.52 217 | 98.18 59 | 98.75 346 | 94.62 251 | 99.48 198 | 99.41 138 |
|
FIs | | | 99.14 32 | 99.09 34 | 99.29 77 | 99.70 36 | 98.28 108 | 99.13 42 | 99.52 53 | 99.48 24 | 99.24 79 | 99.41 50 | 96.79 155 | 99.82 141 | 98.69 50 | 99.88 48 | 99.76 21 |
|
Vis-MVSNet | | | 99.34 23 | 99.36 17 | 99.27 82 | 99.73 24 | 98.26 109 | 99.17 38 | 99.78 5 | 99.11 54 | 99.27 72 | 99.48 39 | 98.82 21 | 99.95 15 | 98.94 34 | 99.93 25 | 99.59 54 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Anonymous202405211 | | | 97.90 165 | 97.50 190 | 99.08 107 | 98.90 206 | 98.25 110 | 98.53 83 | 96.16 323 | 98.87 77 | 99.11 94 | 98.86 157 | 90.40 284 | 99.78 186 | 97.36 114 | 99.31 221 | 99.19 208 |
|
CNVR-MVS | | | 98.17 150 | 97.87 165 | 99.07 110 | 98.67 252 | 98.24 111 | 97.01 227 | 98.93 226 | 97.25 192 | 97.62 243 | 98.34 238 | 97.27 126 | 99.57 278 | 96.42 190 | 99.33 218 | 99.39 147 |
|
GBi-Net | | | 98.65 88 | 98.47 95 | 99.17 92 | 98.90 206 | 98.24 111 | 99.20 33 | 99.44 80 | 98.59 91 | 98.95 125 | 99.55 30 | 94.14 245 | 99.86 86 | 97.77 95 | 99.69 125 | 99.41 138 |
|
test1 | | | 98.65 88 | 98.47 95 | 99.17 92 | 98.90 206 | 98.24 111 | 99.20 33 | 99.44 80 | 98.59 91 | 98.95 125 | 99.55 30 | 94.14 245 | 99.86 86 | 97.77 95 | 99.69 125 | 99.41 138 |
|
FMVSNet1 | | | 99.17 30 | 99.17 29 | 99.17 92 | 99.55 65 | 98.24 111 | 99.20 33 | 99.44 80 | 99.21 43 | 99.43 47 | 99.55 30 | 97.82 84 | 99.86 86 | 98.42 64 | 99.89 47 | 99.41 138 |
|
API-MVS | | | 97.04 234 | 96.91 224 | 97.42 262 | 97.88 307 | 98.23 115 | 98.18 117 | 98.50 274 | 97.57 157 | 97.39 263 | 96.75 312 | 96.77 156 | 99.15 335 | 90.16 329 | 99.02 267 | 94.88 347 |
|
Anonymous20240529 | | | 98.93 48 | 98.87 44 | 99.12 100 | 99.19 141 | 98.22 116 | 99.01 49 | 98.99 221 | 99.25 42 | 99.54 29 | 99.37 53 | 97.04 137 | 99.80 163 | 97.89 87 | 99.52 185 | 99.35 166 |
|
ETH3 D test6400 | | | 96.46 259 | 95.59 270 | 99.08 107 | 98.88 212 | 98.21 117 | 96.53 255 | 99.18 174 | 88.87 337 | 97.08 270 | 97.79 273 | 93.64 256 | 99.77 192 | 88.92 333 | 99.40 207 | 99.28 188 |
|
Anonymous20231211 | | | 99.27 26 | 99.27 25 | 99.26 84 | 99.29 121 | 98.18 118 | 99.49 9 | 99.51 54 | 99.70 8 | 99.80 10 | 99.68 15 | 96.84 149 | 99.83 131 | 99.21 22 | 99.91 39 | 99.77 17 |
|
MCST-MVS | | | 98.00 160 | 97.63 182 | 99.10 104 | 99.24 128 | 98.17 119 | 96.89 238 | 98.73 262 | 95.66 254 | 97.92 223 | 97.70 279 | 97.17 133 | 99.66 250 | 96.18 204 | 99.23 234 | 99.47 118 |
|
PS-MVSNAJss | | | 99.46 13 | 99.49 11 | 99.35 69 | 99.90 4 | 98.15 120 | 99.20 33 | 99.65 18 | 99.48 24 | 99.92 4 | 99.71 13 | 98.07 65 | 99.96 9 | 99.53 10 | 100.00 1 | 99.93 1 |
|
CDPH-MVS | | | 97.26 215 | 96.66 240 | 99.07 110 | 99.00 186 | 98.15 120 | 96.03 278 | 99.01 217 | 91.21 323 | 97.79 233 | 97.85 271 | 96.89 147 | 99.69 230 | 92.75 303 | 99.38 211 | 99.39 147 |
|
test_0402 | | | 98.76 69 | 98.71 60 | 98.93 132 | 99.56 62 | 98.14 122 | 98.45 97 | 99.34 115 | 99.28 40 | 98.95 125 | 98.91 141 | 98.34 47 | 99.79 176 | 95.63 230 | 99.91 39 | 98.86 257 |
|
Fast-Effi-MVS+-dtu | | | 98.27 138 | 98.09 146 | 98.81 148 | 98.43 278 | 98.11 123 | 97.61 182 | 99.50 56 | 98.64 85 | 97.39 263 | 97.52 289 | 98.12 64 | 99.95 15 | 96.90 146 | 98.71 285 | 98.38 290 |
|
EIA-MVS | | | 98.00 160 | 97.74 172 | 98.80 150 | 98.72 237 | 98.09 124 | 98.05 133 | 99.60 24 | 97.39 178 | 96.63 292 | 95.55 330 | 97.68 91 | 99.80 163 | 96.73 162 | 99.27 228 | 98.52 282 |
|
alignmvs | | | 97.35 208 | 96.88 225 | 98.78 155 | 98.54 268 | 98.09 124 | 97.71 171 | 97.69 299 | 99.20 46 | 97.59 246 | 95.90 325 | 88.12 297 | 99.55 284 | 98.18 74 | 98.96 274 | 98.70 274 |
|
ANet_high | | | 99.57 8 | 99.67 6 | 99.28 79 | 99.89 6 | 98.09 124 | 99.14 41 | 99.93 1 | 99.82 4 | 99.93 3 | 99.81 4 | 99.17 13 | 99.94 23 | 99.31 17 | 100.00 1 | 99.82 10 |
|
TAPA-MVS | | 96.21 11 | 96.63 252 | 95.95 260 | 98.65 167 | 98.93 198 | 98.09 124 | 96.93 233 | 99.28 145 | 83.58 348 | 98.13 211 | 97.78 274 | 96.13 184 | 99.40 312 | 93.52 287 | 99.29 226 | 98.45 286 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TEST9 | | | | | | 98.71 240 | 98.08 128 | 95.96 282 | 99.03 210 | 91.40 320 | 95.85 314 | 97.53 287 | 96.52 169 | 99.76 199 | | | |
|
train_agg | | | 97.10 227 | 96.45 249 | 99.07 110 | 98.71 240 | 98.08 128 | 95.96 282 | 99.03 210 | 91.64 315 | 95.85 314 | 97.53 287 | 96.47 172 | 99.76 199 | 93.67 283 | 99.16 246 | 99.36 162 |
|
ETV-MVS | | | 98.03 156 | 97.86 166 | 98.56 183 | 98.69 247 | 98.07 130 | 97.51 194 | 99.50 56 | 98.10 123 | 97.50 255 | 95.51 331 | 98.41 40 | 99.88 63 | 96.27 198 | 99.24 233 | 97.71 317 |
|
VDD-MVS | | | 98.56 102 | 98.39 110 | 99.07 110 | 99.13 159 | 98.07 130 | 98.59 77 | 97.01 311 | 99.59 20 | 99.11 94 | 99.27 66 | 94.82 229 | 99.79 176 | 98.34 67 | 99.63 147 | 99.34 168 |
|
NCCC | | | 97.86 171 | 97.47 195 | 99.05 117 | 98.61 259 | 98.07 130 | 96.98 229 | 98.90 232 | 97.63 151 | 97.04 273 | 97.93 267 | 95.99 193 | 99.66 250 | 95.31 238 | 98.82 279 | 99.43 133 |
|
CNLPA | | | 97.17 224 | 96.71 235 | 98.55 184 | 98.56 266 | 98.05 133 | 96.33 267 | 98.93 226 | 96.91 215 | 97.06 272 | 97.39 297 | 94.38 241 | 99.45 308 | 91.66 315 | 99.18 244 | 98.14 298 |
|
CS-MVS | | | 97.82 181 | 97.59 187 | 98.52 188 | 98.76 231 | 98.04 134 | 98.20 115 | 99.61 22 | 97.10 206 | 96.02 313 | 94.87 343 | 98.27 49 | 99.84 116 | 96.31 195 | 99.17 245 | 97.69 318 |
|
MVS_111021_LR | | | 98.30 134 | 98.12 144 | 98.83 145 | 99.16 152 | 98.03 135 | 96.09 277 | 99.30 136 | 97.58 156 | 98.10 214 | 98.24 245 | 98.25 50 | 99.34 319 | 96.69 166 | 99.65 142 | 99.12 219 |
|
test_8 | | | | | | 98.67 252 | 98.01 136 | 95.91 287 | 99.02 214 | 91.64 315 | 95.79 316 | 97.50 290 | 96.47 172 | 99.76 199 | | | |
|
agg_prior1 | | | 97.06 231 | 96.40 250 | 99.03 120 | 98.68 250 | 97.99 137 | 95.76 292 | 99.01 217 | 91.73 314 | 95.59 317 | 97.50 290 | 96.49 171 | 99.77 192 | 93.71 282 | 99.14 250 | 99.34 168 |
|
agg_prior | | | | | | 98.68 250 | 97.99 137 | | 99.01 217 | | 95.59 317 | | | 99.77 192 | | | |
|
SD-MVS | | | 98.40 125 | 98.68 65 | 97.54 255 | 98.96 193 | 97.99 137 | 97.88 152 | 99.36 104 | 98.20 117 | 99.63 26 | 99.04 110 | 98.76 23 | 95.33 353 | 96.56 177 | 99.74 102 | 99.31 180 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DP-MVS Recon | | | 97.33 210 | 96.92 222 | 98.57 179 | 99.09 167 | 97.99 137 | 96.79 242 | 99.35 109 | 93.18 298 | 97.71 237 | 98.07 260 | 95.00 224 | 99.31 323 | 93.97 273 | 99.13 253 | 98.42 289 |
|
DeepC-MVS | | 97.60 4 | 98.97 43 | 98.93 42 | 99.10 104 | 99.35 114 | 97.98 141 | 98.01 141 | 99.46 74 | 97.56 159 | 99.54 29 | 99.50 35 | 98.97 17 | 99.84 116 | 98.06 79 | 99.92 34 | 99.49 104 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xxxxxxxxxxxxxcwj | | | 98.44 120 | 98.24 128 | 99.06 115 | 99.11 160 | 97.97 142 | 96.53 255 | 99.54 48 | 98.24 111 | 98.83 148 | 98.90 144 | 97.80 85 | 99.82 141 | 95.68 227 | 99.52 185 | 99.38 153 |
|
save fliter | | | | | | 99.11 160 | 97.97 142 | 96.53 255 | 99.02 214 | 98.24 111 | | | | | | | |
|
test_prior4 | | | | | | | 97.97 142 | 95.86 288 | | | | | | | | | |
|
IS-MVSNet | | | 98.19 147 | 97.90 163 | 99.08 107 | 99.57 54 | 97.97 142 | 99.31 19 | 98.32 280 | 99.01 66 | 98.98 119 | 99.03 113 | 91.59 278 | 99.79 176 | 95.49 235 | 99.80 76 | 99.48 110 |
|
SixPastTwentyTwo | | | 98.75 71 | 98.62 72 | 99.16 95 | 99.83 16 | 97.96 146 | 99.28 28 | 98.20 285 | 99.37 34 | 99.70 16 | 99.65 20 | 92.65 270 | 99.93 27 | 99.04 30 | 99.84 55 | 99.60 48 |
|
test_prior3 | | | 97.48 201 | 97.00 217 | 98.95 129 | 98.69 247 | 97.95 147 | 95.74 294 | 99.03 210 | 96.48 229 | 96.11 307 | 97.63 283 | 95.92 198 | 99.59 272 | 94.16 265 | 99.20 238 | 99.30 183 |
|
test_prior | | | | | 98.95 129 | 98.69 247 | 97.95 147 | | 99.03 210 | | | | | 99.59 272 | | | 99.30 183 |
|
PMVS | | 91.26 20 | 97.86 171 | 97.94 160 | 97.65 244 | 99.71 30 | 97.94 149 | 98.52 84 | 98.68 265 | 98.99 67 | 97.52 253 | 99.35 57 | 97.41 118 | 98.18 349 | 91.59 318 | 99.67 136 | 96.82 333 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PLC | | 94.65 16 | 96.51 255 | 95.73 264 | 98.85 143 | 98.75 234 | 97.91 150 | 96.42 263 | 99.06 201 | 90.94 326 | 95.59 317 | 97.38 298 | 94.41 239 | 99.59 272 | 90.93 324 | 98.04 312 | 99.05 225 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + MP. | | | 98.63 92 | 98.49 91 | 99.06 115 | 99.64 46 | 97.90 151 | 98.51 88 | 98.94 224 | 96.96 212 | 99.24 79 | 98.89 152 | 97.83 81 | 99.81 154 | 96.88 148 | 99.49 196 | 99.48 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 98.18 148 | 97.98 156 | 98.77 157 | 98.71 240 | 97.88 152 | 96.32 268 | 98.66 266 | 96.33 234 | 99.23 82 | 98.51 218 | 97.48 115 | 99.40 312 | 97.16 123 | 99.46 200 | 99.02 232 |
|
plane_prior7 | | | | | | 99.19 141 | 97.87 153 | | | | | | | | | | |
|
N_pmnet | | | 97.63 191 | 97.17 209 | 98.99 126 | 99.27 123 | 97.86 154 | 95.98 279 | 93.41 341 | 95.25 263 | 99.47 41 | 98.90 144 | 95.63 206 | 99.85 99 | 96.91 141 | 99.73 105 | 99.27 190 |
|
FPMVS | | | 93.44 311 | 92.23 316 | 97.08 274 | 99.25 127 | 97.86 154 | 95.61 298 | 97.16 309 | 92.90 302 | 93.76 342 | 98.65 197 | 75.94 349 | 95.66 351 | 79.30 351 | 97.49 318 | 97.73 315 |
|
test12 | | | | | 98.93 132 | 98.58 264 | 97.83 156 | | 98.66 266 | | 96.53 296 | | 95.51 211 | 99.69 230 | | 99.13 253 | 99.27 190 |
|
PatchMatch-RL | | | 97.24 218 | 96.78 231 | 98.61 174 | 99.03 181 | 97.83 156 | 96.36 266 | 99.06 201 | 93.49 297 | 97.36 265 | 97.78 274 | 95.75 203 | 99.49 299 | 93.44 290 | 98.77 280 | 98.52 282 |
|
EPP-MVSNet | | | 98.30 134 | 98.04 152 | 99.07 110 | 99.56 62 | 97.83 156 | 99.29 24 | 98.07 289 | 99.03 64 | 98.59 177 | 99.13 92 | 92.16 274 | 99.90 46 | 96.87 149 | 99.68 130 | 99.49 104 |
|
tfpnnormal | | | 98.90 53 | 98.90 43 | 98.91 135 | 99.67 40 | 97.82 159 | 99.00 51 | 99.44 80 | 99.45 28 | 99.51 37 | 99.24 71 | 98.20 58 | 99.86 86 | 95.92 213 | 99.69 125 | 99.04 229 |
|
canonicalmvs | | | 98.34 131 | 98.26 126 | 98.58 176 | 98.46 275 | 97.82 159 | 98.96 55 | 99.46 74 | 99.19 50 | 97.46 258 | 95.46 333 | 98.59 31 | 99.46 306 | 98.08 78 | 98.71 285 | 98.46 284 |
|
3Dnovator | | 98.27 2 | 98.81 61 | 98.73 56 | 99.05 117 | 98.76 231 | 97.81 161 | 99.25 31 | 99.30 136 | 98.57 95 | 98.55 183 | 99.33 61 | 97.95 77 | 99.90 46 | 97.16 123 | 99.67 136 | 99.44 129 |
|
AdaColmap | | | 97.14 226 | 96.71 235 | 98.46 196 | 98.34 282 | 97.80 162 | 96.95 230 | 98.93 226 | 95.58 255 | 96.92 277 | 97.66 280 | 95.87 200 | 99.53 289 | 90.97 323 | 99.14 250 | 98.04 301 |
|
plane_prior3 | | | | | | | 97.78 163 | | | 97.41 176 | 97.79 233 | | | | | | |
|
pmmvs-eth3d | | | 98.47 117 | 98.34 117 | 98.86 142 | 99.30 120 | 97.76 164 | 97.16 222 | 99.28 145 | 95.54 256 | 99.42 48 | 99.19 77 | 97.27 126 | 99.63 259 | 97.89 87 | 99.97 12 | 99.20 203 |
|
新几何1 | | | | | 98.91 135 | 98.94 196 | 97.76 164 | | 98.76 256 | 87.58 342 | 96.75 289 | 98.10 256 | 94.80 232 | 99.78 186 | 92.73 304 | 99.00 270 | 99.20 203 |
|
1121 | | | 96.73 247 | 96.00 258 | 98.91 135 | 98.95 195 | 97.76 164 | 98.07 129 | 98.73 262 | 87.65 341 | 96.54 295 | 98.13 251 | 94.52 237 | 99.73 215 | 92.38 309 | 99.02 267 | 99.24 197 |
|
VDDNet | | | 98.21 145 | 97.95 158 | 99.01 124 | 99.58 50 | 97.74 167 | 99.01 49 | 97.29 307 | 99.67 10 | 98.97 122 | 99.50 35 | 90.45 283 | 99.80 163 | 97.88 90 | 99.20 238 | 99.48 110 |
|
XXY-MVS | | | 99.14 32 | 99.15 32 | 99.10 104 | 99.76 22 | 97.74 167 | 98.85 63 | 99.62 20 | 98.48 97 | 99.37 56 | 99.49 38 | 98.75 24 | 99.86 86 | 98.20 73 | 99.80 76 | 99.71 26 |
|
Regformer-2 | | | 98.60 97 | 98.46 97 | 99.02 123 | 98.85 217 | 97.71 169 | 96.91 236 | 99.09 197 | 98.98 69 | 99.01 114 | 98.64 200 | 97.37 121 | 99.84 116 | 97.75 100 | 99.57 170 | 99.52 92 |
|
plane_prior6 | | | | | | 98.99 189 | 97.70 170 | | | | | | 94.90 225 | | | | |
|
LF4IMVS | | | 97.90 165 | 97.69 175 | 98.52 188 | 99.17 150 | 97.66 171 | 97.19 219 | 99.47 72 | 96.31 236 | 97.85 229 | 98.20 249 | 96.71 162 | 99.52 293 | 94.62 251 | 99.72 111 | 98.38 290 |
|
HQP_MVS | | | 97.99 163 | 97.67 176 | 98.93 132 | 99.19 141 | 97.65 172 | 97.77 165 | 99.27 148 | 98.20 117 | 97.79 233 | 97.98 264 | 94.90 225 | 99.70 226 | 94.42 259 | 99.51 188 | 99.45 124 |
|
plane_prior | | | | | | | 97.65 172 | 97.07 225 | | 96.72 222 | | | | | | 99.36 213 | |
|
WR-MVS | | | 98.40 125 | 98.19 134 | 99.03 120 | 99.00 186 | 97.65 172 | 96.85 239 | 98.94 224 | 98.57 95 | 98.89 137 | 98.50 221 | 95.60 207 | 99.85 99 | 97.54 106 | 99.85 53 | 99.59 54 |
|
VPNet | | | 98.87 55 | 98.83 47 | 99.01 124 | 99.70 36 | 97.62 175 | 98.43 98 | 99.35 109 | 99.47 26 | 99.28 70 | 99.05 107 | 96.72 161 | 99.82 141 | 98.09 77 | 99.36 213 | 99.59 54 |
|
K. test v3 | | | 98.00 160 | 97.66 179 | 99.03 120 | 99.79 20 | 97.56 176 | 99.19 37 | 92.47 344 | 99.62 17 | 99.52 34 | 99.66 18 | 89.61 288 | 99.96 9 | 99.25 21 | 99.81 68 | 99.56 70 |
|
PCF-MVS | | 92.86 18 | 94.36 295 | 93.00 312 | 98.42 199 | 98.70 244 | 97.56 176 | 93.16 344 | 99.11 195 | 79.59 351 | 97.55 250 | 97.43 295 | 92.19 273 | 99.73 215 | 79.85 350 | 99.45 202 | 97.97 303 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
lessismore_v0 | | | | | 98.97 127 | 99.73 24 | 97.53 178 | | 86.71 354 | | 99.37 56 | 99.52 34 | 89.93 286 | 99.92 33 | 98.99 33 | 99.72 111 | 99.44 129 |
|
QAPM | | | 97.31 211 | 96.81 230 | 98.82 146 | 98.80 229 | 97.49 179 | 99.06 47 | 99.19 170 | 90.22 329 | 97.69 239 | 99.16 85 | 96.91 146 | 99.90 46 | 90.89 326 | 99.41 205 | 99.07 223 |
|
EG-PatchMatch MVS | | | 98.99 38 | 99.01 38 | 98.94 131 | 99.50 77 | 97.47 180 | 98.04 135 | 99.59 25 | 98.15 122 | 99.40 52 | 99.36 56 | 98.58 32 | 99.76 199 | 98.78 43 | 99.68 130 | 99.59 54 |
|
MVS_111021_HR | | | 98.25 142 | 98.08 149 | 98.75 161 | 99.09 167 | 97.46 181 | 95.97 280 | 99.27 148 | 97.60 155 | 97.99 222 | 98.25 244 | 98.15 63 | 99.38 316 | 96.87 149 | 99.57 170 | 99.42 136 |
|
旧先验1 | | | | | | 98.82 225 | 97.45 182 | | 98.76 256 | | | 98.34 238 | 95.50 212 | | | 99.01 269 | 99.23 198 |
|
Fast-Effi-MVS+ | | | 97.67 187 | 97.38 198 | 98.57 179 | 98.71 240 | 97.43 183 | 97.23 212 | 99.45 77 | 94.82 271 | 96.13 306 | 96.51 315 | 98.52 35 | 99.91 43 | 96.19 202 | 98.83 278 | 98.37 292 |
|
114514_t | | | 96.50 257 | 95.77 262 | 98.69 165 | 99.48 92 | 97.43 183 | 97.84 158 | 99.55 44 | 81.42 350 | 96.51 298 | 98.58 212 | 95.53 209 | 99.67 242 | 93.41 291 | 99.58 166 | 98.98 238 |
|
NP-MVS | | | | | | 98.84 220 | 97.39 185 | | | | | 96.84 310 | | | | | |
|
casdiffmvs | | | 98.95 46 | 99.00 39 | 98.81 148 | 99.38 107 | 97.33 186 | 97.82 160 | 99.57 34 | 99.17 51 | 99.35 59 | 99.17 83 | 98.35 46 | 99.69 230 | 98.46 61 | 99.73 105 | 99.41 138 |
|
Regformer-1 | | | 98.55 106 | 98.44 101 | 98.87 140 | 98.85 217 | 97.29 187 | 96.91 236 | 98.99 221 | 98.97 70 | 98.99 117 | 98.64 200 | 97.26 129 | 99.81 154 | 97.79 93 | 99.57 170 | 99.51 95 |
|
VNet | | | 98.42 122 | 98.30 122 | 98.79 152 | 98.79 230 | 97.29 187 | 98.23 111 | 98.66 266 | 99.31 38 | 98.85 145 | 98.80 171 | 94.80 232 | 99.78 186 | 98.13 75 | 99.13 253 | 99.31 180 |
|
HyFIR lowres test | | | 97.19 222 | 96.60 243 | 98.96 128 | 99.62 49 | 97.28 189 | 95.17 311 | 99.50 56 | 94.21 284 | 99.01 114 | 98.32 241 | 86.61 301 | 99.99 2 | 97.10 129 | 99.84 55 | 99.60 48 |
|
baseline | | | 98.96 45 | 99.02 37 | 98.76 158 | 99.38 107 | 97.26 190 | 98.49 90 | 99.50 56 | 98.86 78 | 99.19 85 | 99.06 100 | 98.23 52 | 99.69 230 | 98.71 49 | 99.76 98 | 99.33 174 |
|
ab-mvs | | | 98.41 123 | 98.36 114 | 98.59 175 | 99.19 141 | 97.23 191 | 99.32 16 | 98.81 250 | 97.66 149 | 98.62 172 | 99.40 52 | 96.82 152 | 99.80 163 | 95.88 214 | 99.51 188 | 98.75 270 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 134 | 98.15 141 | 98.75 161 | 98.61 259 | 97.23 191 | 97.76 167 | 99.09 197 | 97.31 186 | 98.75 160 | 98.66 195 | 97.56 103 | 99.64 257 | 96.10 208 | 99.55 177 | 99.39 147 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-4 | | | 98.73 74 | 98.68 65 | 98.89 138 | 99.02 183 | 97.22 193 | 97.17 220 | 99.06 201 | 99.21 43 | 99.17 90 | 98.85 160 | 97.45 116 | 99.86 86 | 98.48 60 | 99.70 119 | 99.60 48 |
|
DPM-MVS | | | 96.32 261 | 95.59 270 | 98.51 191 | 98.76 231 | 97.21 194 | 94.54 331 | 98.26 282 | 91.94 313 | 96.37 303 | 97.25 302 | 93.06 263 | 99.43 310 | 91.42 320 | 98.74 281 | 98.89 253 |
|
test20.03 | | | 98.78 66 | 98.77 54 | 98.78 155 | 99.46 95 | 97.20 195 | 97.78 162 | 99.24 159 | 99.04 63 | 99.41 49 | 98.90 144 | 97.65 94 | 99.76 199 | 97.70 101 | 99.79 81 | 99.39 147 |
|
Effi-MVS+ | | | 98.02 158 | 97.82 168 | 98.62 172 | 98.53 270 | 97.19 196 | 97.33 205 | 99.68 14 | 97.30 187 | 96.68 290 | 97.46 294 | 98.56 33 | 99.80 163 | 96.63 170 | 98.20 301 | 98.86 257 |
|
TAMVS | | | 98.24 143 | 98.05 151 | 98.80 150 | 99.07 171 | 97.18 197 | 97.88 152 | 98.81 250 | 96.66 225 | 99.17 90 | 99.21 74 | 94.81 231 | 99.77 192 | 96.96 139 | 99.88 48 | 99.44 129 |
|
UnsupCasMVSNet_eth | | | 97.89 167 | 97.60 185 | 98.75 161 | 99.31 117 | 97.17 198 | 97.62 180 | 99.35 109 | 98.72 84 | 98.76 159 | 98.68 190 | 92.57 271 | 99.74 210 | 97.76 99 | 95.60 340 | 99.34 168 |
|
OpenMVS | | 96.65 7 | 97.09 228 | 96.68 237 | 98.32 207 | 98.32 283 | 97.16 199 | 98.86 62 | 99.37 100 | 89.48 333 | 96.29 305 | 99.15 89 | 96.56 167 | 99.90 46 | 92.90 297 | 99.20 238 | 97.89 304 |
|
OpenMVS_ROB | | 95.38 14 | 95.84 272 | 95.18 283 | 97.81 235 | 98.41 279 | 97.15 200 | 97.37 202 | 98.62 269 | 83.86 347 | 98.65 168 | 98.37 235 | 94.29 243 | 99.68 239 | 88.41 334 | 98.62 291 | 96.60 336 |
|
FMVSNet2 | | | 98.49 115 | 98.40 107 | 98.75 161 | 98.90 206 | 97.14 201 | 98.61 74 | 99.13 190 | 98.59 91 | 99.19 85 | 99.28 64 | 94.14 245 | 99.82 141 | 97.97 85 | 99.80 76 | 99.29 187 |
|
V42 | | | 98.78 66 | 98.78 52 | 98.76 158 | 99.44 100 | 97.04 202 | 98.27 108 | 99.19 170 | 97.87 137 | 99.25 78 | 99.16 85 | 96.84 149 | 99.78 186 | 99.21 22 | 99.84 55 | 99.46 120 |
|
testing_2 | | | 98.93 48 | 98.99 41 | 98.76 158 | 99.57 54 | 97.03 203 | 97.85 157 | 99.13 190 | 98.46 98 | 99.44 45 | 99.44 46 | 98.22 55 | 99.74 210 | 98.85 39 | 99.94 20 | 99.51 95 |
|
CLD-MVS | | | 97.49 199 | 97.16 210 | 98.48 194 | 99.07 171 | 97.03 203 | 94.71 322 | 99.21 163 | 94.46 277 | 98.06 217 | 97.16 305 | 97.57 102 | 99.48 302 | 94.46 256 | 99.78 85 | 98.95 243 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDS-MVSNet | | | 97.69 185 | 97.35 201 | 98.69 165 | 98.73 236 | 97.02 205 | 96.92 235 | 98.75 259 | 95.89 249 | 98.59 177 | 98.67 192 | 92.08 276 | 99.74 210 | 96.72 163 | 99.81 68 | 99.32 176 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
UGNet | | | 98.53 111 | 98.45 99 | 98.79 152 | 97.94 304 | 96.96 206 | 99.08 45 | 98.54 271 | 99.10 58 | 96.82 287 | 99.47 40 | 96.55 168 | 99.84 116 | 98.56 58 | 99.94 20 | 99.55 78 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LFMVS | | | 97.20 221 | 96.72 234 | 98.64 168 | 98.72 237 | 96.95 207 | 98.93 57 | 94.14 339 | 99.74 7 | 98.78 155 | 99.01 120 | 84.45 318 | 99.73 215 | 97.44 110 | 99.27 228 | 99.25 194 |
|
test222 | | | | | | 98.92 202 | 96.93 208 | 95.54 300 | 98.78 254 | 85.72 345 | 96.86 285 | 98.11 255 | 94.43 238 | | | 99.10 258 | 99.23 198 |
|
pmmvs4 | | | 97.58 194 | 97.28 204 | 98.51 191 | 98.84 220 | 96.93 208 | 95.40 307 | 98.52 273 | 93.60 294 | 98.61 174 | 98.65 197 | 95.10 222 | 99.60 268 | 96.97 138 | 99.79 81 | 98.99 237 |
|
MSDG | | | 97.71 184 | 97.52 189 | 98.28 212 | 98.91 205 | 96.82 210 | 94.42 332 | 99.37 100 | 97.65 150 | 98.37 200 | 98.29 243 | 97.40 119 | 99.33 321 | 94.09 271 | 99.22 235 | 98.68 278 |
|
MVP-Stereo | | | 98.08 154 | 97.92 161 | 98.57 179 | 98.96 193 | 96.79 211 | 97.90 151 | 99.18 174 | 96.41 232 | 98.46 189 | 98.95 136 | 95.93 197 | 99.60 268 | 96.51 183 | 98.98 273 | 99.31 180 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HQP5-MVS | | | | | | | 96.79 211 | | | | | | | | | | |
|
HQP-MVS | | | 97.00 238 | 96.49 248 | 98.55 184 | 98.67 252 | 96.79 211 | 96.29 269 | 99.04 208 | 96.05 243 | 95.55 321 | 96.84 310 | 93.84 249 | 99.54 287 | 92.82 300 | 99.26 231 | 99.32 176 |
|
UnsupCasMVSNet_bld | | | 97.30 212 | 96.92 222 | 98.45 197 | 99.28 122 | 96.78 214 | 96.20 274 | 99.27 148 | 95.42 261 | 98.28 203 | 98.30 242 | 93.16 259 | 99.71 224 | 94.99 242 | 97.37 321 | 98.87 256 |
|
DELS-MVS | | | 98.27 138 | 98.20 132 | 98.48 194 | 98.86 215 | 96.70 215 | 95.60 299 | 99.20 165 | 97.73 145 | 98.45 190 | 98.71 184 | 97.50 110 | 99.82 141 | 98.21 72 | 99.59 160 | 98.93 248 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_0304 | | | 97.64 189 | 97.35 201 | 98.52 188 | 97.87 308 | 96.69 216 | 98.59 77 | 98.05 291 | 97.44 174 | 93.74 343 | 98.85 160 | 93.69 255 | 99.88 63 | 98.11 76 | 99.81 68 | 98.98 238 |
|
PAPM_NR | | | 96.82 245 | 96.32 253 | 98.30 210 | 99.07 171 | 96.69 216 | 97.48 196 | 98.76 256 | 95.81 252 | 96.61 294 | 96.47 318 | 94.12 248 | 99.17 333 | 90.82 327 | 97.78 315 | 99.06 224 |
|
Regformer-3 | | | 98.61 95 | 98.61 75 | 98.63 170 | 99.02 183 | 96.53 218 | 97.17 220 | 98.84 244 | 99.13 53 | 99.10 97 | 98.85 160 | 97.24 130 | 99.79 176 | 98.41 65 | 99.70 119 | 99.57 65 |
|
Patchmtry | | | 97.35 208 | 96.97 219 | 98.50 193 | 97.31 331 | 96.47 219 | 98.18 117 | 98.92 229 | 98.95 74 | 98.78 155 | 99.37 53 | 85.44 313 | 99.85 99 | 95.96 212 | 99.83 61 | 99.17 214 |
|
EI-MVSNet-Vis-set | | | 98.68 84 | 98.70 63 | 98.63 170 | 99.09 167 | 96.40 220 | 97.23 212 | 98.86 242 | 99.20 46 | 99.18 89 | 98.97 129 | 97.29 125 | 99.85 99 | 98.72 48 | 99.78 85 | 99.64 39 |
|
EI-MVSNet-UG-set | | | 98.69 81 | 98.71 60 | 98.62 172 | 99.10 164 | 96.37 221 | 97.23 212 | 98.87 237 | 99.20 46 | 99.19 85 | 98.99 123 | 97.30 123 | 99.85 99 | 98.77 46 | 99.79 81 | 99.65 38 |
|
RRT_MVS | | | 97.07 230 | 96.57 245 | 98.58 176 | 95.89 352 | 96.33 222 | 97.36 203 | 98.77 255 | 97.85 139 | 99.08 100 | 99.12 93 | 82.30 331 | 99.96 9 | 98.82 42 | 99.90 43 | 99.45 124 |
|
1112_ss | | | 97.29 214 | 96.86 226 | 98.58 176 | 99.34 116 | 96.32 223 | 96.75 246 | 99.58 27 | 93.14 299 | 96.89 283 | 97.48 292 | 92.11 275 | 99.86 86 | 96.91 141 | 99.54 178 | 99.57 65 |
|
v8 | | | 99.01 36 | 99.16 30 | 98.57 179 | 99.47 94 | 96.31 224 | 98.90 58 | 99.47 72 | 99.03 64 | 99.52 34 | 99.57 28 | 96.93 145 | 99.81 154 | 99.60 4 | 99.98 10 | 99.60 48 |
|
原ACMM1 | | | | | 98.35 205 | 98.90 206 | 96.25 225 | | 98.83 249 | 92.48 307 | 96.07 310 | 98.10 256 | 95.39 216 | 99.71 224 | 92.61 307 | 98.99 271 | 99.08 222 |
|
v10 | | | 98.97 43 | 99.11 33 | 98.55 184 | 99.44 100 | 96.21 226 | 98.90 58 | 99.55 44 | 98.73 83 | 99.48 39 | 99.60 26 | 96.63 165 | 99.83 131 | 99.70 3 | 99.99 5 | 99.61 47 |
|
FMVSNet5 | | | 96.01 267 | 95.20 282 | 98.41 200 | 97.53 322 | 96.10 227 | 98.74 66 | 99.50 56 | 97.22 201 | 98.03 221 | 99.04 110 | 69.80 354 | 99.88 63 | 97.27 118 | 99.71 115 | 99.25 194 |
|
Vis-MVSNet (Re-imp) | | | 97.46 202 | 97.16 210 | 98.34 206 | 99.55 65 | 96.10 227 | 98.94 56 | 98.44 276 | 98.32 104 | 98.16 208 | 98.62 206 | 88.76 293 | 99.73 215 | 93.88 278 | 99.79 81 | 99.18 210 |
|
CHOSEN 1792x2688 | | | 97.49 199 | 97.14 213 | 98.54 187 | 99.68 39 | 96.09 229 | 96.50 258 | 99.62 20 | 91.58 317 | 98.84 147 | 98.97 129 | 92.36 272 | 99.88 63 | 96.76 158 | 99.95 16 | 99.67 33 |
|
v144192 | | | 98.54 109 | 98.57 80 | 98.45 197 | 99.21 135 | 95.98 230 | 97.63 179 | 99.36 104 | 97.15 205 | 99.32 67 | 99.18 79 | 95.84 201 | 99.84 116 | 99.50 11 | 99.91 39 | 99.54 82 |
|
ambc | | | | | 98.24 214 | 98.82 225 | 95.97 231 | 98.62 73 | 99.00 220 | | 99.27 72 | 99.21 74 | 96.99 142 | 99.50 298 | 96.55 180 | 99.50 195 | 99.26 193 |
|
v1144 | | | 98.60 97 | 98.66 68 | 98.41 200 | 99.36 110 | 95.90 232 | 97.58 186 | 99.34 115 | 97.51 162 | 99.27 72 | 99.15 89 | 96.34 181 | 99.80 163 | 99.47 13 | 99.93 25 | 99.51 95 |
|
v1192 | | | 98.60 97 | 98.66 68 | 98.41 200 | 99.27 123 | 95.88 233 | 97.52 192 | 99.36 104 | 97.41 176 | 99.33 62 | 99.20 76 | 96.37 179 | 99.82 141 | 99.57 7 | 99.92 34 | 99.55 78 |
|
PMMVS | | | 96.51 255 | 95.98 259 | 98.09 220 | 97.53 322 | 95.84 234 | 94.92 318 | 98.84 244 | 91.58 317 | 96.05 311 | 95.58 329 | 95.68 205 | 99.66 250 | 95.59 232 | 98.09 308 | 98.76 269 |
|
FMVSNet3 | | | 97.50 197 | 97.24 207 | 98.29 211 | 98.08 298 | 95.83 235 | 97.86 155 | 98.91 231 | 97.89 136 | 98.95 125 | 98.95 136 | 87.06 298 | 99.81 154 | 97.77 95 | 99.69 125 | 99.23 198 |
|
v2v482 | | | 98.56 102 | 98.62 72 | 98.37 204 | 99.42 104 | 95.81 236 | 97.58 186 | 99.16 183 | 97.90 135 | 99.28 70 | 99.01 120 | 95.98 194 | 99.79 176 | 99.33 16 | 99.90 43 | 99.51 95 |
|
v1921920 | | | 98.54 109 | 98.60 77 | 98.38 203 | 99.20 138 | 95.76 237 | 97.56 188 | 99.36 104 | 97.23 198 | 99.38 54 | 99.17 83 | 96.02 188 | 99.84 116 | 99.57 7 | 99.90 43 | 99.54 82 |
|
v1240 | | | 98.55 106 | 98.62 72 | 98.32 207 | 99.22 133 | 95.58 238 | 97.51 194 | 99.45 77 | 97.16 203 | 99.45 44 | 99.24 71 | 96.12 185 | 99.85 99 | 99.60 4 | 99.88 48 | 99.55 78 |
|
testgi | | | 98.32 132 | 98.39 110 | 98.13 219 | 99.57 54 | 95.54 239 | 97.78 162 | 99.49 64 | 97.37 180 | 99.19 85 | 97.65 281 | 98.96 18 | 99.49 299 | 96.50 184 | 98.99 271 | 99.34 168 |
|
Patchmatch-RL test | | | 97.26 215 | 97.02 216 | 97.99 229 | 99.52 72 | 95.53 240 | 96.13 276 | 99.71 10 | 97.47 166 | 99.27 72 | 99.16 85 | 84.30 321 | 99.62 261 | 97.89 87 | 99.77 89 | 98.81 262 |
|
CANet | | | 97.87 170 | 97.76 170 | 98.19 217 | 97.75 312 | 95.51 241 | 96.76 245 | 99.05 205 | 97.74 144 | 96.93 276 | 98.21 248 | 95.59 208 | 99.89 55 | 97.86 92 | 99.93 25 | 99.19 208 |
|
EPNet | | | 96.14 265 | 95.44 274 | 98.25 213 | 90.76 357 | 95.50 242 | 97.92 148 | 94.65 332 | 98.97 70 | 92.98 344 | 98.85 160 | 89.12 292 | 99.87 79 | 95.99 210 | 99.68 130 | 99.39 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Test_1112_low_res | | | 96.99 239 | 96.55 246 | 98.31 209 | 99.35 114 | 95.47 243 | 95.84 291 | 99.53 50 | 91.51 319 | 96.80 288 | 98.48 226 | 91.36 279 | 99.83 131 | 96.58 172 | 99.53 182 | 99.62 43 |
|
diffmvs | | | 98.22 144 | 98.24 128 | 98.17 218 | 99.00 186 | 95.44 244 | 96.38 265 | 99.58 27 | 97.79 143 | 98.53 186 | 98.50 221 | 96.76 158 | 99.74 210 | 97.95 86 | 99.64 144 | 99.34 168 |
|
Anonymous20231206 | | | 98.21 145 | 98.21 131 | 98.20 216 | 99.51 74 | 95.43 245 | 98.13 121 | 99.32 122 | 96.16 240 | 98.93 132 | 98.82 169 | 96.00 190 | 99.83 131 | 97.32 116 | 99.73 105 | 99.36 162 |
|
testdata | | | | | 98.09 220 | 98.93 198 | 95.40 246 | | 98.80 252 | 90.08 331 | 97.45 259 | 98.37 235 | 95.26 218 | 99.70 226 | 93.58 286 | 98.95 275 | 99.17 214 |
|
PatchT | | | 96.65 251 | 96.35 251 | 97.54 255 | 97.40 327 | 95.32 247 | 97.98 144 | 96.64 319 | 99.33 37 | 96.89 283 | 99.42 48 | 84.32 320 | 99.81 154 | 97.69 103 | 97.49 318 | 97.48 325 |
|
test_yl | | | 96.69 248 | 96.29 254 | 97.90 230 | 98.28 285 | 95.24 248 | 97.29 208 | 97.36 303 | 98.21 114 | 98.17 206 | 97.86 269 | 86.27 303 | 99.55 284 | 94.87 245 | 98.32 297 | 98.89 253 |
|
DCV-MVSNet | | | 96.69 248 | 96.29 254 | 97.90 230 | 98.28 285 | 95.24 248 | 97.29 208 | 97.36 303 | 98.21 114 | 98.17 206 | 97.86 269 | 86.27 303 | 99.55 284 | 94.87 245 | 98.32 297 | 98.89 253 |
|
sss | | | 97.21 220 | 96.93 220 | 98.06 224 | 98.83 222 | 95.22 250 | 96.75 246 | 98.48 275 | 94.49 275 | 97.27 266 | 97.90 268 | 92.77 268 | 99.80 163 | 96.57 174 | 99.32 219 | 99.16 217 |
|
MSLP-MVS++ | | | 98.02 158 | 98.14 143 | 97.64 246 | 98.58 264 | 95.19 251 | 97.48 196 | 99.23 161 | 97.47 166 | 97.90 225 | 98.62 206 | 97.04 137 | 98.81 345 | 97.55 104 | 99.41 205 | 98.94 247 |
|
PVSNet_Blended_VisFu | | | 98.17 150 | 98.15 141 | 98.22 215 | 99.73 24 | 95.15 252 | 97.36 203 | 99.68 14 | 94.45 279 | 98.99 117 | 99.27 66 | 96.87 148 | 99.94 23 | 97.13 127 | 99.91 39 | 99.57 65 |
|
PAPR | | | 95.29 282 | 94.47 292 | 97.75 239 | 97.50 326 | 95.14 253 | 94.89 319 | 98.71 264 | 91.39 321 | 95.35 327 | 95.48 332 | 94.57 236 | 99.14 336 | 84.95 341 | 97.37 321 | 98.97 242 |
|
pmmvs5 | | | 97.64 189 | 97.49 191 | 98.08 223 | 99.14 157 | 95.12 254 | 96.70 249 | 99.05 205 | 93.77 292 | 98.62 172 | 98.83 166 | 93.23 257 | 99.75 206 | 98.33 69 | 99.76 98 | 99.36 162 |
|
v148 | | | 98.45 119 | 98.60 77 | 98.00 228 | 99.44 100 | 94.98 255 | 97.44 200 | 99.06 201 | 98.30 105 | 99.32 67 | 98.97 129 | 96.65 164 | 99.62 261 | 98.37 66 | 99.85 53 | 99.39 147 |
|
MDA-MVSNet-bldmvs | | | 97.94 164 | 97.91 162 | 98.06 224 | 99.44 100 | 94.96 256 | 96.63 252 | 99.15 189 | 98.35 101 | 98.83 148 | 99.11 95 | 94.31 242 | 99.85 99 | 96.60 171 | 98.72 283 | 99.37 156 |
|
new_pmnet | | | 96.99 239 | 96.76 232 | 97.67 242 | 98.72 237 | 94.89 257 | 95.95 284 | 98.20 285 | 92.62 306 | 98.55 183 | 98.54 215 | 94.88 228 | 99.52 293 | 93.96 274 | 99.44 203 | 98.59 281 |
|
HY-MVS | | 95.94 13 | 95.90 270 | 95.35 278 | 97.55 254 | 97.95 303 | 94.79 258 | 98.81 65 | 96.94 314 | 92.28 310 | 95.17 328 | 98.57 213 | 89.90 287 | 99.75 206 | 91.20 321 | 97.33 325 | 98.10 299 |
|
D2MVS | | | 97.84 177 | 97.84 167 | 97.83 234 | 99.14 157 | 94.74 259 | 96.94 231 | 98.88 235 | 95.84 250 | 98.89 137 | 98.96 132 | 94.40 240 | 99.69 230 | 97.55 104 | 99.95 16 | 99.05 225 |
|
EI-MVSNet | | | 98.40 125 | 98.51 86 | 98.04 226 | 99.10 164 | 94.73 260 | 97.20 216 | 98.87 237 | 98.97 70 | 99.06 103 | 99.02 114 | 96.00 190 | 99.80 163 | 98.58 53 | 99.82 64 | 99.60 48 |
|
MVS_Test | | | 98.18 148 | 98.36 114 | 97.67 242 | 98.48 273 | 94.73 260 | 98.18 117 | 99.02 214 | 97.69 147 | 98.04 220 | 99.11 95 | 97.22 132 | 99.56 281 | 98.57 55 | 98.90 277 | 98.71 272 |
|
IterMVS-LS | | | 98.55 106 | 98.70 63 | 98.09 220 | 99.48 92 | 94.73 260 | 97.22 215 | 99.39 94 | 98.97 70 | 99.38 54 | 99.31 63 | 96.00 190 | 99.93 27 | 98.58 53 | 99.97 12 | 99.60 48 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MIMVSNet | | | 96.62 253 | 96.25 257 | 97.71 241 | 99.04 178 | 94.66 263 | 99.16 39 | 96.92 315 | 97.23 198 | 97.87 227 | 99.10 97 | 86.11 307 | 99.65 255 | 91.65 316 | 99.21 237 | 98.82 260 |
|
CANet_DTU | | | 97.26 215 | 97.06 214 | 97.84 233 | 97.57 319 | 94.65 264 | 96.19 275 | 98.79 253 | 97.23 198 | 95.14 329 | 98.24 245 | 93.22 258 | 99.84 116 | 97.34 115 | 99.84 55 | 99.04 229 |
|
WTY-MVS | | | 96.67 250 | 96.27 256 | 97.87 232 | 98.81 227 | 94.61 265 | 96.77 244 | 97.92 294 | 94.94 268 | 97.12 267 | 97.74 277 | 91.11 280 | 99.82 141 | 93.89 277 | 98.15 305 | 99.18 210 |
|
PMMVS2 | | | 98.07 155 | 98.08 149 | 98.04 226 | 99.41 105 | 94.59 266 | 94.59 329 | 99.40 92 | 97.50 163 | 98.82 152 | 98.83 166 | 96.83 151 | 99.84 116 | 97.50 109 | 99.81 68 | 99.71 26 |
|
ET-MVSNet_ETH3D | | | 94.30 298 | 93.21 308 | 97.58 250 | 98.14 294 | 94.47 267 | 94.78 321 | 93.24 343 | 94.72 272 | 89.56 351 | 95.87 326 | 78.57 345 | 99.81 154 | 96.91 141 | 97.11 328 | 98.46 284 |
|
thisisatest0530 | | | 95.27 283 | 94.45 293 | 97.74 240 | 99.19 141 | 94.37 268 | 97.86 155 | 90.20 351 | 97.17 202 | 98.22 205 | 97.65 281 | 73.53 352 | 99.90 46 | 96.90 146 | 99.35 215 | 98.95 243 |
|
TinyColmap | | | 97.89 167 | 97.98 156 | 97.60 248 | 98.86 215 | 94.35 269 | 96.21 273 | 99.44 80 | 97.45 173 | 99.06 103 | 98.88 153 | 97.99 74 | 99.28 328 | 94.38 263 | 99.58 166 | 99.18 210 |
|
CR-MVSNet | | | 96.28 263 | 95.95 260 | 97.28 267 | 97.71 314 | 94.22 270 | 98.11 124 | 98.92 229 | 92.31 309 | 96.91 279 | 99.37 53 | 85.44 313 | 99.81 154 | 97.39 113 | 97.36 323 | 97.81 310 |
|
RPMNet | | | 97.02 235 | 96.93 220 | 97.30 266 | 97.71 314 | 94.22 270 | 98.11 124 | 99.30 136 | 99.37 34 | 96.91 279 | 99.34 59 | 86.72 300 | 99.87 79 | 97.53 107 | 97.36 323 | 97.81 310 |
|
MVSTER | | | 96.86 242 | 96.55 246 | 97.79 236 | 97.91 306 | 94.21 272 | 97.56 188 | 98.87 237 | 97.49 165 | 99.06 103 | 99.05 107 | 80.72 334 | 99.80 163 | 98.44 62 | 99.82 64 | 99.37 156 |
|
DeepMVS_CX | | | | | 93.44 331 | 98.24 288 | 94.21 272 | | 94.34 334 | 64.28 353 | 91.34 349 | 94.87 343 | 89.45 291 | 92.77 354 | 77.54 352 | 93.14 349 | 93.35 349 |
|
GA-MVS | | | 95.86 271 | 95.32 279 | 97.49 258 | 98.60 261 | 94.15 274 | 93.83 339 | 97.93 293 | 95.49 259 | 96.68 290 | 97.42 296 | 83.21 326 | 99.30 325 | 96.22 200 | 98.55 294 | 99.01 233 |
|
BH-RMVSNet | | | 96.83 243 | 96.58 244 | 97.58 250 | 98.47 274 | 94.05 275 | 96.67 250 | 97.36 303 | 96.70 224 | 97.87 227 | 97.98 264 | 95.14 221 | 99.44 309 | 90.47 328 | 98.58 293 | 99.25 194 |
|
cl-mvsnet_ | | | 97.02 235 | 96.83 229 | 97.58 250 | 97.82 310 | 94.04 276 | 94.66 325 | 99.16 183 | 97.04 209 | 98.63 170 | 98.71 184 | 88.68 295 | 99.69 230 | 97.00 133 | 99.81 68 | 99.00 236 |
|
cl-mvsnet1 | | | 97.02 235 | 96.84 228 | 97.58 250 | 97.82 310 | 94.03 277 | 94.66 325 | 99.16 183 | 97.04 209 | 98.63 170 | 98.71 184 | 88.69 294 | 99.69 230 | 97.00 133 | 99.81 68 | 99.01 233 |
|
MVS | | | 93.19 313 | 92.09 317 | 96.50 293 | 96.91 336 | 94.03 277 | 98.07 129 | 98.06 290 | 68.01 352 | 94.56 334 | 96.48 317 | 95.96 196 | 99.30 325 | 83.84 343 | 96.89 331 | 96.17 339 |
|
JIA-IIPM | | | 95.52 279 | 95.03 286 | 97.00 276 | 96.85 338 | 94.03 277 | 96.93 233 | 95.82 327 | 99.20 46 | 94.63 333 | 99.71 13 | 83.09 327 | 99.60 268 | 94.42 259 | 94.64 344 | 97.36 327 |
|
baseline1 | | | 95.96 269 | 95.44 274 | 97.52 257 | 98.51 271 | 93.99 280 | 98.39 101 | 96.09 325 | 98.21 114 | 98.40 199 | 97.76 276 | 86.88 299 | 99.63 259 | 95.42 236 | 89.27 352 | 98.95 243 |
|
TR-MVS | | | 95.55 278 | 95.12 285 | 96.86 287 | 97.54 321 | 93.94 281 | 96.49 259 | 96.53 320 | 94.36 282 | 97.03 274 | 96.61 314 | 94.26 244 | 99.16 334 | 86.91 338 | 96.31 336 | 97.47 326 |
|
jason | | | 97.45 203 | 97.35 201 | 97.76 238 | 99.24 128 | 93.93 282 | 95.86 288 | 98.42 277 | 94.24 283 | 98.50 188 | 98.13 251 | 94.82 229 | 99.91 43 | 97.22 120 | 99.73 105 | 99.43 133 |
jason: jason. |
xiu_mvs_v1_base_debu | | | 97.86 171 | 98.17 136 | 96.92 281 | 98.98 190 | 93.91 283 | 96.45 260 | 99.17 180 | 97.85 139 | 98.41 195 | 97.14 307 | 98.47 36 | 99.92 33 | 98.02 81 | 99.05 260 | 96.92 330 |
|
xiu_mvs_v1_base | | | 97.86 171 | 98.17 136 | 96.92 281 | 98.98 190 | 93.91 283 | 96.45 260 | 99.17 180 | 97.85 139 | 98.41 195 | 97.14 307 | 98.47 36 | 99.92 33 | 98.02 81 | 99.05 260 | 96.92 330 |
|
xiu_mvs_v1_base_debi | | | 97.86 171 | 98.17 136 | 96.92 281 | 98.98 190 | 93.91 283 | 96.45 260 | 99.17 180 | 97.85 139 | 98.41 195 | 97.14 307 | 98.47 36 | 99.92 33 | 98.02 81 | 99.05 260 | 96.92 330 |
|
MVSFormer | | | 98.26 140 | 98.43 103 | 97.77 237 | 98.88 212 | 93.89 286 | 99.39 12 | 99.56 41 | 99.11 54 | 98.16 208 | 98.13 251 | 93.81 251 | 99.97 3 | 99.26 19 | 99.57 170 | 99.43 133 |
|
lupinMVS | | | 97.06 231 | 96.86 226 | 97.65 244 | 98.88 212 | 93.89 286 | 95.48 304 | 97.97 292 | 93.53 295 | 98.16 208 | 97.58 285 | 93.81 251 | 99.91 43 | 96.77 157 | 99.57 170 | 99.17 214 |
|
tttt0517 | | | 95.64 276 | 94.98 287 | 97.64 246 | 99.36 110 | 93.81 288 | 98.72 68 | 90.47 350 | 98.08 124 | 98.67 166 | 98.34 238 | 73.88 351 | 99.92 33 | 97.77 95 | 99.51 188 | 99.20 203 |
|
MS-PatchMatch | | | 97.68 186 | 97.75 171 | 97.45 260 | 98.23 290 | 93.78 289 | 97.29 208 | 98.84 244 | 96.10 242 | 98.64 169 | 98.65 197 | 96.04 187 | 99.36 317 | 96.84 152 | 99.14 250 | 99.20 203 |
|
PVSNet_BlendedMVS | | | 97.55 195 | 97.53 188 | 97.60 248 | 98.92 202 | 93.77 290 | 96.64 251 | 99.43 85 | 94.49 275 | 97.62 243 | 99.18 79 | 96.82 152 | 99.67 242 | 94.73 248 | 99.93 25 | 99.36 162 |
|
PVSNet_Blended | | | 96.88 241 | 96.68 237 | 97.47 259 | 98.92 202 | 93.77 290 | 94.71 322 | 99.43 85 | 90.98 325 | 97.62 243 | 97.36 300 | 96.82 152 | 99.67 242 | 94.73 248 | 99.56 175 | 98.98 238 |
|
USDC | | | 97.41 205 | 97.40 196 | 97.44 261 | 98.94 196 | 93.67 292 | 95.17 311 | 99.53 50 | 94.03 289 | 98.97 122 | 99.10 97 | 95.29 217 | 99.34 319 | 95.84 220 | 99.73 105 | 99.30 183 |
|
test0.0.03 1 | | | 94.51 293 | 93.69 302 | 96.99 277 | 96.05 349 | 93.61 293 | 94.97 317 | 93.49 340 | 96.17 238 | 97.57 249 | 94.88 341 | 82.30 331 | 99.01 340 | 93.60 285 | 94.17 348 | 98.37 292 |
|
BH-untuned | | | 96.83 243 | 96.75 233 | 97.08 274 | 98.74 235 | 93.33 294 | 96.71 248 | 98.26 282 | 96.72 222 | 98.44 191 | 97.37 299 | 95.20 219 | 99.47 304 | 91.89 313 | 97.43 320 | 98.44 287 |
|
cl_fuxian | | | 97.36 207 | 97.37 199 | 97.31 265 | 98.09 297 | 93.25 295 | 95.01 316 | 99.16 183 | 97.05 208 | 98.77 158 | 98.72 183 | 92.88 266 | 99.64 257 | 96.93 140 | 99.76 98 | 99.05 225 |
|
MDA-MVSNet_test_wron | | | 97.60 192 | 97.66 179 | 97.41 263 | 99.04 178 | 93.09 296 | 95.27 308 | 98.42 277 | 97.26 191 | 98.88 141 | 98.95 136 | 95.43 215 | 99.73 215 | 97.02 132 | 98.72 283 | 99.41 138 |
|
miper_ehance_all_eth | | | 97.06 231 | 97.03 215 | 97.16 273 | 97.83 309 | 93.06 297 | 94.66 325 | 99.09 197 | 95.99 247 | 98.69 164 | 98.45 227 | 92.73 269 | 99.61 267 | 96.79 154 | 99.03 264 | 98.82 260 |
|
Patchmatch-test | | | 96.55 254 | 96.34 252 | 97.17 271 | 98.35 281 | 93.06 297 | 98.40 100 | 97.79 295 | 97.33 183 | 98.41 195 | 98.67 192 | 83.68 325 | 99.69 230 | 95.16 239 | 99.31 221 | 98.77 268 |
|
MG-MVS | | | 96.77 246 | 96.61 242 | 97.26 268 | 98.31 284 | 93.06 297 | 95.93 285 | 98.12 288 | 96.45 231 | 97.92 223 | 98.73 181 | 93.77 253 | 99.39 314 | 91.19 322 | 99.04 263 | 99.33 174 |
|
YYNet1 | | | 97.60 192 | 97.67 176 | 97.39 264 | 99.04 178 | 93.04 300 | 95.27 308 | 98.38 279 | 97.25 192 | 98.92 133 | 98.95 136 | 95.48 214 | 99.73 215 | 96.99 135 | 98.74 281 | 99.41 138 |
|
thisisatest0515 | | | 94.12 302 | 93.16 309 | 96.97 279 | 98.60 261 | 92.90 301 | 93.77 340 | 90.61 349 | 94.10 287 | 96.91 279 | 95.87 326 | 74.99 350 | 99.80 163 | 94.52 254 | 99.12 256 | 98.20 295 |
|
miper_lstm_enhance | | | 97.18 223 | 97.16 210 | 97.25 269 | 98.16 293 | 92.85 302 | 95.15 313 | 99.31 127 | 97.25 192 | 98.74 162 | 98.78 174 | 90.07 285 | 99.78 186 | 97.19 121 | 99.80 76 | 99.11 221 |
|
cl-mvsnet2 | | | 95.79 273 | 95.39 277 | 96.98 278 | 96.77 340 | 92.79 303 | 94.40 333 | 98.53 272 | 94.59 274 | 97.89 226 | 98.17 250 | 82.82 330 | 99.24 330 | 96.37 191 | 99.03 264 | 98.92 249 |
|
eth_miper_zixun_eth | | | 97.23 219 | 97.25 205 | 97.17 271 | 98.00 302 | 92.77 304 | 94.71 322 | 99.18 174 | 97.27 190 | 98.56 181 | 98.74 180 | 91.89 277 | 99.69 230 | 97.06 131 | 99.81 68 | 99.05 225 |
|
1314 | | | 95.74 274 | 95.60 269 | 96.17 300 | 97.53 322 | 92.75 305 | 98.07 129 | 98.31 281 | 91.22 322 | 94.25 335 | 96.68 313 | 95.53 209 | 99.03 337 | 91.64 317 | 97.18 326 | 96.74 334 |
|
PAPM | | | 91.88 321 | 90.34 324 | 96.51 292 | 98.06 299 | 92.56 306 | 92.44 347 | 97.17 308 | 86.35 343 | 90.38 350 | 96.01 322 | 86.61 301 | 99.21 331 | 70.65 353 | 95.43 341 | 97.75 314 |
|
pmmvs3 | | | 95.03 288 | 94.40 294 | 96.93 280 | 97.70 316 | 92.53 307 | 95.08 314 | 97.71 298 | 88.57 338 | 97.71 237 | 98.08 259 | 79.39 341 | 99.82 141 | 96.19 202 | 99.11 257 | 98.43 288 |
|
xiu_mvs_v2_base | | | 97.16 225 | 97.49 191 | 96.17 300 | 98.54 268 | 92.46 308 | 95.45 305 | 98.84 244 | 97.25 192 | 97.48 257 | 96.49 316 | 98.31 48 | 99.90 46 | 96.34 194 | 98.68 287 | 96.15 341 |
|
PS-MVSNAJ | | | 97.08 229 | 97.39 197 | 96.16 302 | 98.56 266 | 92.46 308 | 95.24 310 | 98.85 243 | 97.25 192 | 97.49 256 | 95.99 323 | 98.07 65 | 99.90 46 | 96.37 191 | 98.67 288 | 96.12 342 |
|
gg-mvs-nofinetune | | | 92.37 317 | 91.20 322 | 95.85 305 | 95.80 353 | 92.38 310 | 99.31 19 | 81.84 357 | 99.75 6 | 91.83 348 | 99.74 9 | 68.29 355 | 99.02 338 | 87.15 337 | 97.12 327 | 96.16 340 |
|
cascas | | | 94.79 291 | 94.33 297 | 96.15 303 | 96.02 351 | 92.36 311 | 92.34 348 | 99.26 153 | 85.34 346 | 95.08 330 | 94.96 340 | 92.96 265 | 98.53 347 | 94.41 262 | 98.59 292 | 97.56 323 |
|
miper_enhance_ethall | | | 96.01 267 | 95.74 263 | 96.81 288 | 96.41 346 | 92.27 312 | 93.69 341 | 98.89 234 | 91.14 324 | 98.30 201 | 97.35 301 | 90.58 282 | 99.58 277 | 96.31 195 | 99.03 264 | 98.60 279 |
|
new-patchmatchnet | | | 98.35 130 | 98.74 55 | 97.18 270 | 99.24 128 | 92.23 313 | 96.42 263 | 99.48 66 | 98.30 105 | 99.69 18 | 99.53 33 | 97.44 117 | 99.82 141 | 98.84 41 | 99.77 89 | 99.49 104 |
|
GG-mvs-BLEND | | | | | 94.76 319 | 94.54 355 | 92.13 314 | 99.31 19 | 80.47 358 | | 88.73 353 | 91.01 352 | 67.59 356 | 98.16 350 | 82.30 348 | 94.53 346 | 93.98 348 |
|
mvs_anonymous | | | 97.83 179 | 98.16 139 | 96.87 284 | 98.18 292 | 91.89 315 | 97.31 207 | 98.90 232 | 97.37 180 | 98.83 148 | 99.46 41 | 96.28 182 | 99.79 176 | 98.90 36 | 98.16 304 | 98.95 243 |
|
ADS-MVSNet2 | | | 95.43 281 | 94.98 287 | 96.76 290 | 98.14 294 | 91.74 316 | 97.92 148 | 97.76 296 | 90.23 327 | 96.51 298 | 98.91 141 | 85.61 310 | 99.85 99 | 92.88 298 | 96.90 329 | 98.69 275 |
|
MVE | | 83.40 22 | 92.50 316 | 91.92 319 | 94.25 323 | 98.83 222 | 91.64 317 | 92.71 345 | 83.52 356 | 95.92 248 | 86.46 355 | 95.46 333 | 95.20 219 | 95.40 352 | 80.51 349 | 98.64 289 | 95.73 345 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
thres600view7 | | | 94.45 294 | 93.83 300 | 96.29 296 | 99.06 175 | 91.53 318 | 97.99 142 | 94.24 337 | 98.34 102 | 97.44 260 | 95.01 337 | 79.84 337 | 99.67 242 | 84.33 342 | 98.23 299 | 97.66 319 |
|
DSMNet-mixed | | | 97.42 204 | 97.60 185 | 96.87 284 | 99.15 156 | 91.46 319 | 98.54 82 | 99.12 193 | 92.87 303 | 97.58 247 | 99.63 21 | 96.21 183 | 99.90 46 | 95.74 223 | 99.54 178 | 99.27 190 |
|
tfpn200view9 | | | 94.03 303 | 93.44 305 | 95.78 306 | 98.93 198 | 91.44 320 | 97.60 183 | 94.29 335 | 97.94 131 | 97.10 268 | 94.31 346 | 79.67 339 | 99.62 261 | 83.05 344 | 98.08 309 | 96.29 337 |
|
thres400 | | | 94.14 301 | 93.44 305 | 96.24 298 | 98.93 198 | 91.44 320 | 97.60 183 | 94.29 335 | 97.94 131 | 97.10 268 | 94.31 346 | 79.67 339 | 99.62 261 | 83.05 344 | 98.08 309 | 97.66 319 |
|
thres100view900 | | | 94.19 299 | 93.67 303 | 95.75 307 | 99.06 175 | 91.35 322 | 98.03 136 | 94.24 337 | 98.33 103 | 97.40 262 | 94.98 339 | 79.84 337 | 99.62 261 | 83.05 344 | 98.08 309 | 96.29 337 |
|
BH-w/o | | | 95.13 286 | 94.89 290 | 95.86 304 | 98.20 291 | 91.31 323 | 95.65 297 | 97.37 302 | 93.64 293 | 96.52 297 | 95.70 328 | 93.04 264 | 99.02 338 | 88.10 335 | 95.82 339 | 97.24 328 |
|
thres200 | | | 93.72 308 | 93.14 310 | 95.46 313 | 98.66 257 | 91.29 324 | 96.61 253 | 94.63 333 | 97.39 178 | 96.83 286 | 93.71 349 | 79.88 336 | 99.56 281 | 82.40 347 | 98.13 306 | 95.54 346 |
|
baseline2 | | | 93.73 307 | 92.83 313 | 96.42 294 | 97.70 316 | 91.28 325 | 96.84 241 | 89.77 352 | 93.96 291 | 92.44 346 | 95.93 324 | 79.14 342 | 99.77 192 | 92.94 296 | 96.76 333 | 98.21 294 |
|
IB-MVS | | 91.63 19 | 92.24 319 | 90.90 323 | 96.27 297 | 97.22 333 | 91.24 326 | 94.36 334 | 93.33 342 | 92.37 308 | 92.24 347 | 94.58 345 | 66.20 359 | 99.89 55 | 93.16 295 | 94.63 345 | 97.66 319 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ppachtmachnet_test | | | 97.50 197 | 97.74 172 | 96.78 289 | 98.70 244 | 91.23 327 | 94.55 330 | 99.05 205 | 96.36 233 | 99.21 83 | 98.79 173 | 96.39 176 | 99.78 186 | 96.74 160 | 99.82 64 | 99.34 168 |
|
IterMVS-SCA-FT | | | 97.85 176 | 98.18 135 | 96.87 284 | 99.27 123 | 91.16 328 | 95.53 301 | 99.25 154 | 99.10 58 | 99.41 49 | 99.35 57 | 93.10 261 | 99.96 9 | 98.65 51 | 99.94 20 | 99.49 104 |
|
IterMVS | | | 97.73 183 | 98.11 145 | 96.57 291 | 99.24 128 | 90.28 329 | 95.52 303 | 99.21 163 | 98.86 78 | 99.33 62 | 99.33 61 | 93.11 260 | 99.94 23 | 98.49 59 | 99.94 20 | 99.48 110 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ADS-MVSNet | | | 95.24 284 | 94.93 289 | 96.18 299 | 98.14 294 | 90.10 330 | 97.92 148 | 97.32 306 | 90.23 327 | 96.51 298 | 98.91 141 | 85.61 310 | 99.74 210 | 92.88 298 | 96.90 329 | 98.69 275 |
|
our_test_3 | | | 97.39 206 | 97.73 174 | 96.34 295 | 98.70 244 | 89.78 331 | 94.61 328 | 98.97 223 | 96.50 228 | 99.04 110 | 98.85 160 | 95.98 194 | 99.84 116 | 97.26 119 | 99.67 136 | 99.41 138 |
|
PVSNet | | 93.40 17 | 95.67 275 | 95.70 265 | 95.57 311 | 98.83 222 | 88.57 332 | 92.50 346 | 97.72 297 | 92.69 305 | 96.49 301 | 96.44 319 | 93.72 254 | 99.43 310 | 93.61 284 | 99.28 227 | 98.71 272 |
|
tpm | | | 94.67 292 | 94.34 296 | 95.66 309 | 97.68 318 | 88.42 333 | 97.88 152 | 94.90 331 | 94.46 277 | 96.03 312 | 98.56 214 | 78.66 343 | 99.79 176 | 95.88 214 | 95.01 343 | 98.78 267 |
|
SCA | | | 96.41 260 | 96.66 240 | 95.67 308 | 98.24 288 | 88.35 334 | 95.85 290 | 96.88 316 | 96.11 241 | 97.67 240 | 98.67 192 | 93.10 261 | 99.85 99 | 94.16 265 | 99.22 235 | 98.81 262 |
|
CHOSEN 280x420 | | | 95.51 280 | 95.47 272 | 95.65 310 | 98.25 287 | 88.27 335 | 93.25 343 | 98.88 235 | 93.53 295 | 94.65 332 | 97.15 306 | 86.17 305 | 99.93 27 | 97.41 112 | 99.93 25 | 98.73 271 |
|
EPMVS | | | 93.72 308 | 93.27 307 | 95.09 317 | 96.04 350 | 87.76 336 | 98.13 121 | 85.01 355 | 94.69 273 | 96.92 277 | 98.64 200 | 78.47 347 | 99.31 323 | 95.04 240 | 96.46 335 | 98.20 295 |
|
EPNet_dtu | | | 94.93 290 | 94.78 291 | 95.38 314 | 93.58 356 | 87.68 337 | 96.78 243 | 95.69 329 | 97.35 182 | 89.14 352 | 98.09 258 | 88.15 296 | 99.49 299 | 94.95 244 | 99.30 224 | 98.98 238 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet | | | 95.58 277 | 95.67 267 | 95.30 315 | 97.34 329 | 87.32 338 | 97.65 178 | 96.65 318 | 95.30 262 | 97.07 271 | 98.69 188 | 84.77 315 | 99.75 206 | 94.97 243 | 98.64 289 | 98.83 259 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
DWT-MVSNet_test | | | 92.75 315 | 92.05 318 | 94.85 318 | 96.48 344 | 87.21 339 | 97.83 159 | 94.99 330 | 92.22 311 | 92.72 345 | 94.11 348 | 70.75 353 | 99.46 306 | 95.01 241 | 94.33 347 | 97.87 306 |
|
RRT_test8_iter05 | | | 95.24 284 | 95.13 284 | 95.57 311 | 97.32 330 | 87.02 340 | 97.99 142 | 99.41 89 | 98.06 125 | 99.12 92 | 99.05 107 | 66.85 357 | 99.85 99 | 98.93 35 | 99.47 199 | 99.84 9 |
|
tpm2 | | | 93.09 314 | 92.58 315 | 94.62 320 | 97.56 320 | 86.53 341 | 97.66 176 | 95.79 328 | 86.15 344 | 94.07 339 | 98.23 247 | 75.95 348 | 99.53 289 | 90.91 325 | 96.86 332 | 97.81 310 |
|
tpmvs | | | 95.02 289 | 95.25 280 | 94.33 322 | 96.39 347 | 85.87 342 | 98.08 128 | 96.83 317 | 95.46 260 | 95.51 325 | 98.69 188 | 85.91 308 | 99.53 289 | 94.16 265 | 96.23 337 | 97.58 322 |
|
EU-MVSNet | | | 97.66 188 | 98.50 88 | 95.13 316 | 99.63 48 | 85.84 343 | 98.35 105 | 98.21 284 | 98.23 113 | 99.54 29 | 99.46 41 | 95.02 223 | 99.68 239 | 98.24 70 | 99.87 51 | 99.87 5 |
|
CostFormer | | | 93.97 304 | 93.78 301 | 94.51 321 | 97.53 322 | 85.83 344 | 97.98 144 | 95.96 326 | 89.29 335 | 94.99 331 | 98.63 204 | 78.63 344 | 99.62 261 | 94.54 253 | 96.50 334 | 98.09 300 |
|
E-PMN | | | 94.17 300 | 94.37 295 | 93.58 329 | 96.86 337 | 85.71 345 | 90.11 350 | 97.07 310 | 98.17 120 | 97.82 232 | 97.19 303 | 84.62 317 | 98.94 341 | 89.77 330 | 97.68 317 | 96.09 343 |
|
EMVS | | | 93.83 306 | 94.02 298 | 93.23 333 | 96.83 339 | 84.96 346 | 89.77 351 | 96.32 322 | 97.92 133 | 97.43 261 | 96.36 320 | 86.17 305 | 98.93 342 | 87.68 336 | 97.73 316 | 95.81 344 |
|
tpm cat1 | | | 93.29 312 | 93.13 311 | 93.75 327 | 97.39 328 | 84.74 347 | 97.39 201 | 97.65 300 | 83.39 349 | 94.16 336 | 98.41 229 | 82.86 329 | 99.39 314 | 91.56 319 | 95.35 342 | 97.14 329 |
|
test-LLR | | | 93.90 305 | 93.85 299 | 94.04 324 | 96.53 342 | 84.62 348 | 94.05 336 | 92.39 345 | 96.17 238 | 94.12 337 | 95.07 335 | 82.30 331 | 99.67 242 | 95.87 217 | 98.18 302 | 97.82 308 |
|
test-mter | | | 92.33 318 | 91.76 321 | 94.04 324 | 96.53 342 | 84.62 348 | 94.05 336 | 92.39 345 | 94.00 290 | 94.12 337 | 95.07 335 | 65.63 360 | 99.67 242 | 95.87 217 | 98.18 302 | 97.82 308 |
|
tpmrst | | | 95.07 287 | 95.46 273 | 93.91 326 | 97.11 334 | 84.36 350 | 97.62 180 | 96.96 312 | 94.98 266 | 96.35 304 | 98.80 171 | 85.46 312 | 99.59 272 | 95.60 231 | 96.23 337 | 97.79 313 |
|
PVSNet_0 | | 89.98 21 | 91.15 322 | 90.30 325 | 93.70 328 | 97.72 313 | 84.34 351 | 90.24 349 | 97.42 301 | 90.20 330 | 93.79 341 | 93.09 350 | 90.90 281 | 98.89 344 | 86.57 339 | 72.76 353 | 97.87 306 |
|
MDTV_nov1_ep13 | | | | 95.22 281 | | 97.06 335 | 83.20 352 | 97.74 169 | 96.16 323 | 94.37 281 | 96.99 275 | 98.83 166 | 83.95 323 | 99.53 289 | 93.90 276 | 97.95 313 | |
|
TESTMET0.1,1 | | | 92.19 320 | 91.77 320 | 93.46 330 | 96.48 344 | 82.80 353 | 94.05 336 | 91.52 348 | 94.45 279 | 94.00 340 | 94.88 341 | 66.65 358 | 99.56 281 | 95.78 222 | 98.11 307 | 98.02 302 |
|
gm-plane-assit | | | | | | 94.83 354 | 81.97 354 | | | 88.07 340 | | 94.99 338 | | 99.60 268 | 91.76 314 | | |
|
dp | | | 93.47 310 | 93.59 304 | 93.13 334 | 96.64 341 | 81.62 355 | 97.66 176 | 96.42 321 | 92.80 304 | 96.11 307 | 98.64 200 | 78.55 346 | 99.59 272 | 93.31 293 | 92.18 351 | 98.16 297 |
|
CVMVSNet | | | 96.25 264 | 97.21 208 | 93.38 332 | 99.10 164 | 80.56 356 | 97.20 216 | 98.19 287 | 96.94 213 | 99.00 116 | 99.02 114 | 89.50 290 | 99.80 163 | 96.36 193 | 99.59 160 | 99.78 15 |
|
MVS-HIRNet | | | 94.32 296 | 95.62 268 | 90.42 336 | 98.46 275 | 75.36 357 | 96.29 269 | 89.13 353 | 95.25 263 | 95.38 326 | 99.75 8 | 92.88 266 | 99.19 332 | 94.07 272 | 99.39 208 | 96.72 335 |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 358 | 97.69 173 | | 90.06 332 | 97.75 236 | | 85.78 309 | | 93.52 287 | | 98.69 275 |
|
tmp_tt | | | 78.77 323 | 78.73 326 | 78.90 337 | 58.45 358 | 74.76 359 | 94.20 335 | 78.26 359 | 39.16 354 | 86.71 354 | 92.82 351 | 80.50 335 | 75.19 355 | 86.16 340 | 92.29 350 | 86.74 350 |
|
test123 | | | 17.04 326 | 20.11 329 | 7.82 338 | 10.25 360 | 4.91 360 | 94.80 320 | 4.47 361 | 4.93 355 | 10.00 357 | 24.28 355 | 9.69 361 | 3.64 356 | 10.14 354 | 12.43 355 | 14.92 352 |
|
testmvs | | | 17.12 325 | 20.53 328 | 6.87 339 | 12.05 359 | 4.20 361 | 93.62 342 | 6.73 360 | 4.62 356 | 10.41 356 | 24.33 354 | 8.28 362 | 3.56 357 | 9.69 355 | 15.07 354 | 12.86 353 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
cdsmvs_eth3d_5k | | | 24.66 324 | 32.88 327 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 99.10 196 | 0.00 357 | 0.00 358 | 97.58 285 | 99.21 11 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 8.17 327 | 10.90 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 98.07 65 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 8.12 328 | 10.83 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 97.48 292 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
test_241102_TWO | | | | | | | | | 99.30 136 | 98.03 126 | 99.26 76 | 99.02 114 | 97.51 109 | 99.88 63 | 96.91 141 | 99.60 158 | 99.66 34 |
|
9.14 | | | | 97.78 169 | | 99.07 171 | | 97.53 191 | 99.32 122 | 95.53 258 | 98.54 185 | 98.70 187 | 97.58 101 | 99.76 199 | 94.32 264 | 99.46 200 | |
|
test_0728_THIRD | | | | | | | | | | 98.17 120 | 99.08 100 | 99.02 114 | 97.89 78 | 99.88 63 | 97.07 130 | 99.71 115 | 99.70 29 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 262 |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 316 | | | | 98.81 262 |
|
sam_mvs | | | | | | | | | | | | | 84.29 322 | | | | |
|
MTGPA | | | | | | | | | 99.20 165 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 185 | | | | 20.48 357 | 83.07 328 | 99.66 250 | 94.16 265 | | |
|
test_post | | | | | | | | | | | | 21.25 356 | 83.86 324 | 99.70 226 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 176 | 84.37 319 | 99.85 99 | | | |
|
MTMP | | | | | | | | 97.93 147 | 91.91 347 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 294 | 99.15 249 | 99.38 153 |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 308 | 99.16 246 | 99.37 156 |
|
test_prior2 | | | | | | | | 95.74 294 | | 96.48 229 | 96.11 307 | 97.63 283 | 95.92 198 | | 94.16 265 | 99.20 238 | |
|
旧先验2 | | | | | | | | 95.76 292 | | 88.56 339 | 97.52 253 | | | 99.66 250 | 94.48 255 | | |
|
新几何2 | | | | | | | | 95.93 285 | | | | | | | | | |
|
无先验 | | | | | | | | 95.74 294 | 98.74 261 | 89.38 334 | | | | 99.73 215 | 92.38 309 | | 99.22 202 |
|
原ACMM2 | | | | | | | | 95.53 301 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.79 176 | 92.80 302 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 140 | | | | |
|
testdata1 | | | | | | | | 95.44 306 | | 96.32 235 | | | | | | | |
|
plane_prior5 | | | | | | | | | 99.27 148 | | | | | 99.70 226 | 94.42 259 | 99.51 188 | 99.45 124 |
|
plane_prior4 | | | | | | | | | | | | 97.98 264 | | | | | |
|
plane_prior2 | | | | | | | | 97.77 165 | | 98.20 117 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 177 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 34 | | | | | | | | |
|
test11 | | | | | | | | | 98.87 237 | | | | | | | | |
|
door | | | | | | | | | 99.41 89 | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 252 | | 96.29 269 | | 96.05 243 | 95.55 321 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 252 | | 96.29 269 | | 96.05 243 | 95.55 321 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 300 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 320 | | | 99.54 287 | | | 99.32 176 |
|
HQP3-MVS | | | | | | | | | 99.04 208 | | | | | | | 99.26 231 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 249 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 89 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 130 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 169 | | | | |
|