LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 2 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 1 | 100.00 1 | 99.85 7 |
|
FOURS1 | | | | | | 99.73 25 | 99.67 2 | 99.43 10 | 99.54 50 | 99.43 30 | 99.26 80 | | | | | | |
|
Effi-MVS+-dtu | | | 98.26 144 | 97.90 168 | 99.35 70 | 98.02 318 | 99.49 3 | 98.02 150 | 99.16 192 | 98.29 119 | 97.64 256 | 97.99 276 | 96.44 180 | 99.95 15 | 96.66 183 | 98.93 289 | 98.60 296 |
|
abl_6 | | | 98.99 40 | 98.78 54 | 99.61 9 | 99.45 100 | 99.46 4 | 98.60 86 | 99.50 60 | 98.59 101 | 99.24 85 | 99.04 115 | 98.54 35 | 99.89 59 | 96.45 202 | 99.62 158 | 99.50 105 |
|
RPSCF | | | 98.62 97 | 98.36 117 | 99.42 58 | 99.65 45 | 99.42 5 | 98.55 92 | 99.57 35 | 97.72 159 | 98.90 142 | 99.26 73 | 96.12 191 | 99.52 309 | 95.72 240 | 99.71 122 | 99.32 187 |
|
SR-MVS-dyc-post | | | 98.81 63 | 98.55 84 | 99.57 18 | 99.20 147 | 99.38 6 | 98.48 104 | 99.30 144 | 98.64 95 | 98.95 132 | 98.96 140 | 97.49 118 | 99.86 94 | 96.56 192 | 99.39 222 | 99.45 133 |
|
RE-MVS-def | | | | 98.58 82 | | 99.20 147 | 99.38 6 | 98.48 104 | 99.30 144 | 98.64 95 | 98.95 132 | 98.96 140 | 97.75 90 | | 96.56 192 | 99.39 222 | 99.45 133 |
|
LS3D | | | 98.63 95 | 98.38 115 | 99.36 65 | 97.25 350 | 99.38 6 | 99.12 49 | 99.32 128 | 99.21 46 | 98.44 204 | 98.88 161 | 97.31 128 | 99.80 176 | 96.58 187 | 99.34 231 | 98.92 261 |
|
test1172 | | | 98.76 71 | 98.49 94 | 99.57 18 | 99.18 157 | 99.37 9 | 98.39 112 | 99.31 134 | 98.43 109 | 98.90 142 | 98.88 161 | 97.49 118 | 99.86 94 | 96.43 204 | 99.37 226 | 99.48 119 |
|
zzz-MVS | | | 98.79 65 | 98.52 87 | 99.61 9 | 99.67 42 | 99.36 10 | 97.33 218 | 99.20 174 | 98.83 90 | 98.89 145 | 98.90 152 | 96.98 149 | 99.92 35 | 97.16 134 | 99.70 127 | 99.56 74 |
|
MTAPA | | | 98.88 56 | 98.64 73 | 99.61 9 | 99.67 42 | 99.36 10 | 98.43 109 | 99.20 174 | 98.83 90 | 98.89 145 | 98.90 152 | 96.98 149 | 99.92 35 | 97.16 134 | 99.70 127 | 99.56 74 |
|
SR-MVS | | | 98.71 78 | 98.43 106 | 99.57 18 | 99.18 157 | 99.35 12 | 98.36 115 | 99.29 151 | 98.29 119 | 98.88 149 | 98.85 168 | 97.53 111 | 99.87 87 | 96.14 222 | 99.31 235 | 99.48 119 |
|
MP-MVS-pluss | | | 98.57 104 | 98.23 134 | 99.60 13 | 99.69 40 | 99.35 12 | 97.16 235 | 99.38 101 | 94.87 287 | 98.97 129 | 98.99 131 | 98.01 71 | 99.88 70 | 97.29 128 | 99.70 127 | 99.58 64 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HPM-MVS_fast | | | 99.01 38 | 98.82 50 | 99.57 18 | 99.71 32 | 99.35 12 | 99.00 59 | 99.50 60 | 97.33 197 | 98.94 138 | 98.86 165 | 98.75 24 | 99.82 153 | 97.53 118 | 99.71 122 | 99.56 74 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 14 | 99.34 15 | 99.69 4 | 99.58 28 | 99.90 2 | 99.86 7 | 99.78 5 | 99.58 3 | 99.95 15 | 99.00 34 | 99.95 16 | 99.78 14 |
|
TDRefinement | | | 99.42 16 | 99.38 15 | 99.55 26 | 99.76 23 | 99.33 16 | 99.68 5 | 99.71 11 | 99.38 34 | 99.53 33 | 99.61 23 | 98.64 29 | 99.80 176 | 98.24 78 | 99.84 59 | 99.52 98 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 17 | 99.66 4 | 99.71 32 | 99.30 17 | 99.31 21 | 99.51 58 | 99.64 12 | 99.56 28 | 99.46 46 | 98.23 52 | 99.97 3 | 98.78 46 | 99.93 28 | 99.72 25 |
|
ACMMP_NAP | | | 98.75 73 | 98.48 96 | 99.57 18 | 99.58 53 | 99.29 18 | 97.82 171 | 99.25 163 | 96.94 226 | 98.78 163 | 99.12 98 | 98.02 70 | 99.84 127 | 97.13 140 | 99.67 144 | 99.59 58 |
|
UA-Net | | | 99.47 11 | 99.40 14 | 99.70 2 | 99.49 86 | 99.29 18 | 99.80 3 | 99.72 10 | 99.82 3 | 99.04 116 | 99.81 3 | 98.05 69 | 99.96 8 | 98.85 42 | 99.99 5 | 99.86 6 |
|
HPM-MVS |  | | 98.79 65 | 98.53 86 | 99.59 17 | 99.65 45 | 99.29 18 | 99.16 44 | 99.43 90 | 96.74 234 | 98.61 184 | 98.38 244 | 98.62 30 | 99.87 87 | 96.47 200 | 99.67 144 | 99.59 58 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 13 | 99.90 4 | 99.27 21 | 99.53 7 | 99.76 8 | 99.64 12 | 99.84 8 | 99.83 2 | 99.50 5 | 99.87 87 | 99.36 14 | 99.92 37 | 99.64 41 |
|
APD-MVS_3200maxsize | | | 98.84 60 | 98.61 78 | 99.53 36 | 99.19 150 | 99.27 21 | 98.49 101 | 99.33 126 | 98.64 95 | 99.03 119 | 98.98 135 | 97.89 79 | 99.85 109 | 96.54 196 | 99.42 218 | 99.46 129 |
|
MSP-MVS | | | 98.40 129 | 98.00 160 | 99.61 9 | 99.57 57 | 99.25 23 | 98.57 90 | 99.35 115 | 97.55 173 | 99.31 73 | 97.71 293 | 94.61 242 | 99.88 70 | 96.14 222 | 99.19 256 | 99.70 31 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
WR-MVS_H | | | 99.33 23 | 99.22 27 | 99.65 5 | 99.71 32 | 99.24 24 | 99.32 17 | 99.55 46 | 99.46 27 | 99.50 39 | 99.34 64 | 97.30 129 | 99.93 28 | 98.90 38 | 99.93 28 | 99.77 16 |
|
test_0728_SECOND | | | | | 99.60 13 | 99.50 79 | 99.23 25 | 98.02 150 | 99.32 128 | | | | | 99.88 70 | 96.99 150 | 99.63 155 | 99.68 33 |
|
MP-MVS |  | | 98.46 121 | 98.09 151 | 99.54 29 | 99.57 57 | 99.22 26 | 98.50 100 | 99.19 179 | 97.61 167 | 97.58 261 | 98.66 204 | 97.40 124 | 99.88 70 | 94.72 267 | 99.60 167 | 99.54 86 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ZNCC-MVS | | | 98.68 87 | 98.40 110 | 99.54 29 | 99.57 57 | 99.21 27 | 98.46 106 | 99.29 151 | 97.28 203 | 98.11 227 | 98.39 242 | 98.00 72 | 99.87 87 | 96.86 166 | 99.64 152 | 99.55 82 |
|
DVP-MVS |  | | 98.77 70 | 98.52 87 | 99.52 41 | 99.50 79 | 99.21 27 | 98.02 150 | 98.84 254 | 97.97 142 | 99.08 106 | 99.02 119 | 97.61 103 | 99.88 70 | 96.99 150 | 99.63 155 | 99.48 119 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.50 79 | 99.21 27 | 98.17 131 | 99.35 115 | 97.97 142 | 99.26 80 | 99.06 105 | 97.61 103 | | | | |
|
SMA-MVS |  | | 98.40 129 | 98.03 158 | 99.51 45 | 99.16 161 | 99.21 27 | 98.05 145 | 99.22 171 | 94.16 303 | 98.98 126 | 99.10 102 | 97.52 113 | 99.79 190 | 96.45 202 | 99.64 152 | 99.53 94 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
XVS | | | 98.72 77 | 98.45 102 | 99.53 36 | 99.46 97 | 99.21 27 | 98.65 81 | 99.34 121 | 98.62 99 | 97.54 265 | 98.63 213 | 97.50 115 | 99.83 142 | 96.79 169 | 99.53 193 | 99.56 74 |
|
X-MVStestdata | | | 94.32 308 | 92.59 326 | 99.53 36 | 99.46 97 | 99.21 27 | 98.65 81 | 99.34 121 | 98.62 99 | 97.54 265 | 45.85 372 | 97.50 115 | 99.83 142 | 96.79 169 | 99.53 193 | 99.56 74 |
|
EGC-MVSNET | | | 85.24 338 | 80.54 341 | 99.34 73 | 99.77 20 | 99.20 33 | 99.08 50 | 99.29 151 | 12.08 374 | 20.84 375 | 99.42 52 | 97.55 108 | 99.85 109 | 97.08 143 | 99.72 117 | 98.96 254 |
|
test_one_0601 | | | | | | 99.39 111 | 99.20 33 | | 99.31 134 | 98.49 107 | 98.66 177 | 99.02 119 | 97.64 100 | | | | |
|
GST-MVS | | | 98.61 98 | 98.30 125 | 99.52 41 | 99.51 76 | 99.20 33 | 98.26 121 | 99.25 163 | 97.44 188 | 98.67 175 | 98.39 242 | 97.68 94 | 99.85 109 | 96.00 225 | 99.51 199 | 99.52 98 |
|
mvs-test1 | | | 97.83 185 | 97.48 198 | 98.89 146 | 98.02 318 | 99.20 33 | 97.20 229 | 99.16 192 | 98.29 119 | 96.46 320 | 97.17 322 | 96.44 180 | 99.92 35 | 96.66 183 | 97.90 328 | 97.54 343 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 21 | 99.55 26 | 99.86 11 | 99.19 37 | 99.41 12 | 99.59 26 | 99.59 20 | 99.71 14 | 99.57 28 | 97.12 140 | 99.90 49 | 99.21 23 | 99.87 55 | 99.54 86 |
|
PGM-MVS | | | 98.66 90 | 98.37 116 | 99.55 26 | 99.53 72 | 99.18 38 | 98.23 123 | 99.49 68 | 97.01 224 | 98.69 173 | 98.88 161 | 98.00 72 | 99.89 59 | 95.87 233 | 99.59 171 | 99.58 64 |
|
SED-MVS | | | 98.91 52 | 98.72 60 | 99.49 49 | 99.49 86 | 99.17 39 | 98.10 137 | 99.31 134 | 98.03 138 | 99.66 20 | 99.02 119 | 98.36 44 | 99.88 70 | 96.91 156 | 99.62 158 | 99.41 148 |
|
test_241102_ONE | | | | | | 99.49 86 | 99.17 39 | | 99.31 134 | 97.98 140 | 99.66 20 | 98.90 152 | 98.36 44 | 99.48 318 | | | |
|
region2R | | | 98.69 83 | 98.40 110 | 99.54 29 | 99.53 72 | 99.17 39 | 98.52 95 | 99.31 134 | 97.46 184 | 98.44 204 | 98.51 228 | 97.83 83 | 99.88 70 | 96.46 201 | 99.58 177 | 99.58 64 |
|
mPP-MVS | | | 98.64 93 | 98.34 120 | 99.54 29 | 99.54 70 | 99.17 39 | 98.63 83 | 99.24 168 | 97.47 179 | 98.09 229 | 98.68 199 | 97.62 102 | 99.89 59 | 96.22 216 | 99.62 158 | 99.57 69 |
|
HFP-MVS | | | 98.71 78 | 98.44 104 | 99.51 45 | 99.49 86 | 99.16 43 | 98.52 95 | 99.31 134 | 97.47 179 | 98.58 190 | 98.50 231 | 97.97 76 | 99.85 109 | 96.57 189 | 99.59 171 | 99.53 94 |
|
#test# | | | 98.50 117 | 98.16 144 | 99.51 45 | 99.49 86 | 99.16 43 | 98.03 148 | 99.31 134 | 96.30 251 | 98.58 190 | 98.50 231 | 97.97 76 | 99.85 109 | 95.68 243 | 99.59 171 | 99.53 94 |
|
SteuartSystems-ACMMP | | | 98.79 65 | 98.54 85 | 99.54 29 | 99.73 25 | 99.16 43 | 98.23 123 | 99.31 134 | 97.92 146 | 98.90 142 | 98.90 152 | 98.00 72 | 99.88 70 | 96.15 221 | 99.72 117 | 99.58 64 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMMP |  | | 98.75 73 | 98.50 91 | 99.52 41 | 99.56 64 | 99.16 43 | 98.87 68 | 99.37 105 | 97.16 217 | 98.82 160 | 99.01 128 | 97.71 93 | 99.87 87 | 96.29 213 | 99.69 133 | 99.54 86 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PHI-MVS | | | 98.29 141 | 97.95 163 | 99.34 73 | 98.44 292 | 99.16 43 | 98.12 134 | 99.38 101 | 96.01 260 | 98.06 231 | 98.43 238 | 97.80 87 | 99.67 257 | 95.69 242 | 99.58 177 | 99.20 214 |
|
DVP-MVS++ | | | 98.90 54 | 98.70 65 | 99.51 45 | 98.43 293 | 99.15 48 | 99.43 10 | 99.32 128 | 98.17 131 | 99.26 80 | 99.02 119 | 98.18 59 | 99.88 70 | 97.07 144 | 99.45 214 | 99.49 109 |
|
IU-MVS | | | | | | 99.49 86 | 99.15 48 | | 98.87 245 | 92.97 318 | 99.41 50 | | | | 96.76 173 | 99.62 158 | 99.66 36 |
|
DPE-MVS |  | | 98.59 103 | 98.26 130 | 99.57 18 | 99.27 131 | 99.15 48 | 97.01 240 | 99.39 99 | 97.67 161 | 99.44 47 | 98.99 131 | 97.53 111 | 99.89 59 | 95.40 253 | 99.68 138 | 99.66 36 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 98.99 40 | 98.79 53 | 99.60 13 | 99.21 143 | 99.15 48 | 98.87 68 | 99.48 70 | 97.57 170 | 99.35 62 | 99.24 76 | 97.83 83 | 99.89 59 | 97.88 100 | 99.70 127 | 99.75 22 |
|
ACMMPR | | | 98.70 81 | 98.42 108 | 99.54 29 | 99.52 74 | 99.14 52 | 98.52 95 | 99.31 134 | 97.47 179 | 98.56 194 | 98.54 224 | 97.75 90 | 99.88 70 | 96.57 189 | 99.59 171 | 99.58 64 |
|
PEN-MVS | | | 99.41 17 | 99.34 19 | 99.62 6 | 99.73 25 | 99.14 52 | 99.29 26 | 99.54 50 | 99.62 17 | 99.56 28 | 99.42 52 | 98.16 62 | 99.96 8 | 98.78 46 | 99.93 28 | 99.77 16 |
|
ACMM | | 96.08 12 | 98.91 52 | 98.73 58 | 99.48 51 | 99.55 67 | 99.14 52 | 98.07 141 | 99.37 105 | 97.62 165 | 99.04 116 | 98.96 140 | 98.84 20 | 99.79 190 | 97.43 122 | 99.65 150 | 99.49 109 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
nrg030 | | | 99.40 18 | 99.35 17 | 99.54 29 | 99.58 53 | 99.13 55 | 98.98 62 | 99.48 70 | 99.68 9 | 99.46 43 | 99.26 73 | 98.62 30 | 99.73 230 | 99.17 26 | 99.92 37 | 99.76 20 |
|
HPM-MVS++ |  | | 98.10 157 | 97.64 186 | 99.48 51 | 99.09 176 | 99.13 55 | 97.52 203 | 98.75 270 | 97.46 184 | 96.90 299 | 97.83 287 | 96.01 195 | 99.84 127 | 95.82 237 | 99.35 229 | 99.46 129 |
|
CP-MVS | | | 98.70 81 | 98.42 108 | 99.52 41 | 99.36 117 | 99.12 57 | 98.72 77 | 99.36 109 | 97.54 174 | 98.30 214 | 98.40 240 | 97.86 81 | 99.89 59 | 96.53 197 | 99.72 117 | 99.56 74 |
|
MAR-MVS | | | 96.47 268 | 95.70 276 | 98.79 160 | 97.92 323 | 99.12 57 | 98.28 119 | 98.60 281 | 92.16 330 | 95.54 341 | 96.17 341 | 94.77 240 | 99.52 309 | 89.62 351 | 98.23 313 | 97.72 336 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 24 | 99.85 13 | 99.11 59 | 99.90 1 | 99.78 6 | 99.63 14 | 99.78 10 | 99.67 16 | 99.48 6 | 99.81 167 | 99.30 17 | 99.97 11 | 99.77 16 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
test_part2 | | | | | | 99.36 117 | 99.10 60 | | | | 99.05 114 | | | | | | |
|
PS-CasMVS | | | 99.40 18 | 99.33 20 | 99.62 6 | 99.71 32 | 99.10 60 | 99.29 26 | 99.53 54 | 99.53 23 | 99.46 43 | 99.41 55 | 98.23 52 | 99.95 15 | 98.89 40 | 99.95 16 | 99.81 11 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 40 | 98.85 48 | 99.41 61 | 99.58 53 | 99.10 60 | 98.74 74 | 99.56 42 | 99.09 67 | 99.33 65 | 99.19 82 | 98.40 42 | 99.72 238 | 95.98 227 | 99.76 103 | 99.42 145 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 7 | 99.08 63 | 99.34 15 | 99.69 15 | 98.93 84 | 99.65 22 | 99.72 11 | 98.93 19 | 99.95 15 | 99.11 27 | 100.00 1 | 99.82 9 |
|
KD-MVS_self_test | | | 99.25 27 | 99.18 28 | 99.44 57 | 99.63 50 | 99.06 64 | 98.69 80 | 99.54 50 | 99.31 40 | 99.62 27 | 99.53 36 | 97.36 127 | 99.86 94 | 99.24 22 | 99.71 122 | 99.39 157 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 22 | 99.53 36 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 28 | 99.44 29 | 99.78 10 | 99.76 6 | 96.39 182 | 99.92 35 | 99.44 13 | 99.92 37 | 99.68 33 |
|
LPG-MVS_test | | | 98.71 78 | 98.46 100 | 99.47 54 | 99.57 57 | 98.97 66 | 98.23 123 | 99.48 70 | 96.60 239 | 99.10 103 | 99.06 105 | 98.71 27 | 99.83 142 | 95.58 249 | 99.78 89 | 99.62 46 |
|
LGP-MVS_train | | | | | 99.47 54 | 99.57 57 | 98.97 66 | | 99.48 70 | 96.60 239 | 99.10 103 | 99.06 105 | 98.71 27 | 99.83 142 | 95.58 249 | 99.78 89 | 99.62 46 |
|
DeepPCF-MVS | | 96.93 5 | 98.32 136 | 98.01 159 | 99.23 94 | 98.39 298 | 98.97 66 | 95.03 328 | 99.18 183 | 96.88 229 | 99.33 65 | 98.78 183 | 98.16 62 | 99.28 344 | 96.74 175 | 99.62 158 | 99.44 138 |
|
CP-MVSNet | | | 99.21 29 | 99.09 34 | 99.56 24 | 99.65 45 | 98.96 69 | 99.13 47 | 99.34 121 | 99.42 31 | 99.33 65 | 99.26 73 | 97.01 147 | 99.94 23 | 98.74 51 | 99.93 28 | 99.79 13 |
|
APD-MVS |  | | 98.10 157 | 97.67 181 | 99.42 58 | 99.11 169 | 98.93 70 | 97.76 178 | 99.28 154 | 94.97 284 | 98.72 172 | 98.77 185 | 97.04 143 | 99.85 109 | 93.79 298 | 99.54 189 | 99.49 109 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
DROMVSNet | | | 99.09 34 | 99.05 37 | 99.20 96 | 99.28 129 | 98.93 70 | 99.24 34 | 99.84 3 | 99.08 69 | 98.12 225 | 98.37 246 | 98.72 26 | 99.90 49 | 99.05 31 | 99.77 93 | 98.77 283 |
|
TranMVSNet+NR-MVSNet | | | 99.17 30 | 99.07 36 | 99.46 56 | 99.37 116 | 98.87 72 | 98.39 112 | 99.42 93 | 99.42 31 | 99.36 60 | 99.06 105 | 98.38 43 | 99.95 15 | 98.34 75 | 99.90 47 | 99.57 69 |
|
testtj | | | 97.79 187 | 97.25 211 | 99.42 58 | 99.03 190 | 98.85 73 | 97.78 173 | 99.18 183 | 95.83 266 | 98.12 225 | 98.50 231 | 95.50 218 | 99.86 94 | 92.23 328 | 99.07 272 | 99.54 86 |
|
ZD-MVS | | | | | | 99.01 194 | 98.84 74 | | 99.07 208 | 94.10 304 | 98.05 233 | 98.12 267 | 96.36 186 | 99.86 94 | 92.70 322 | 99.19 256 | |
|
XVG-OURS-SEG-HR | | | 98.49 118 | 98.28 128 | 99.14 105 | 99.49 86 | 98.83 75 | 96.54 267 | 99.48 70 | 97.32 199 | 99.11 100 | 98.61 218 | 99.33 8 | 99.30 341 | 96.23 215 | 98.38 310 | 99.28 199 |
|
ACMH+ | | 96.62 9 | 99.08 35 | 99.00 40 | 99.33 76 | 99.71 32 | 98.83 75 | 98.60 86 | 99.58 28 | 99.11 57 | 99.53 33 | 99.18 84 | 98.81 22 | 99.67 257 | 96.71 180 | 99.77 93 | 99.50 105 |
|
XVG-OURS | | | 98.53 114 | 98.34 120 | 99.11 109 | 99.50 79 | 98.82 77 | 95.97 293 | 99.50 60 | 97.30 201 | 99.05 114 | 98.98 135 | 99.35 7 | 99.32 338 | 95.72 240 | 99.68 138 | 99.18 221 |
|
ETH3D-3000-0.1 | | | 98.03 161 | 97.62 188 | 99.29 81 | 99.11 169 | 98.80 78 | 97.47 209 | 99.32 128 | 95.54 271 | 98.43 207 | 98.62 215 | 96.61 172 | 99.77 208 | 93.95 292 | 99.49 207 | 99.30 194 |
|
ACMP | | 95.32 15 | 98.41 126 | 98.09 151 | 99.36 65 | 99.51 76 | 98.79 79 | 97.68 185 | 99.38 101 | 95.76 268 | 98.81 162 | 98.82 177 | 98.36 44 | 99.82 153 | 94.75 264 | 99.77 93 | 99.48 119 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SF-MVS | | | 98.53 114 | 98.27 129 | 99.32 78 | 99.31 124 | 98.75 80 | 98.19 127 | 99.41 94 | 96.77 233 | 98.83 156 | 98.90 152 | 97.80 87 | 99.82 153 | 95.68 243 | 99.52 196 | 99.38 164 |
|
UniMVSNet_NR-MVSNet | | | 98.86 59 | 98.68 68 | 99.40 63 | 99.17 159 | 98.74 81 | 97.68 185 | 99.40 97 | 99.14 55 | 99.06 109 | 98.59 220 | 96.71 168 | 99.93 28 | 98.57 60 | 99.77 93 | 99.53 94 |
|
DU-MVS | | | 98.82 61 | 98.63 74 | 99.39 64 | 99.16 161 | 98.74 81 | 97.54 201 | 99.25 163 | 98.84 89 | 99.06 109 | 98.76 187 | 96.76 164 | 99.93 28 | 98.57 60 | 99.77 93 | 99.50 105 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 36 | 99.86 11 | 98.74 81 | 99.39 13 | 99.56 42 | 99.11 57 | 99.70 15 | 99.73 10 | 99.00 15 | 99.97 3 | 99.26 18 | 99.98 9 | 99.89 2 |
|
OPM-MVS | | | 98.56 105 | 98.32 124 | 99.25 91 | 99.41 109 | 98.73 84 | 97.13 237 | 99.18 183 | 97.10 220 | 98.75 169 | 98.92 148 | 98.18 59 | 99.65 270 | 96.68 182 | 99.56 186 | 99.37 167 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
UniMVSNet (Re) | | | 98.87 57 | 98.71 62 | 99.35 70 | 99.24 136 | 98.73 84 | 97.73 181 | 99.38 101 | 98.93 84 | 99.12 98 | 98.73 190 | 96.77 162 | 99.86 94 | 98.63 57 | 99.80 80 | 99.46 129 |
|
NR-MVSNet | | | 98.95 48 | 98.82 50 | 99.36 65 | 99.16 161 | 98.72 86 | 99.22 35 | 99.20 174 | 99.10 64 | 99.72 13 | 98.76 187 | 96.38 184 | 99.86 94 | 98.00 94 | 99.82 68 | 99.50 105 |
|
CMPMVS |  | 75.91 23 | 96.29 273 | 95.44 286 | 98.84 152 | 96.25 366 | 98.69 87 | 97.02 239 | 99.12 201 | 88.90 354 | 97.83 244 | 98.86 165 | 89.51 297 | 98.90 361 | 91.92 329 | 99.51 199 | 98.92 261 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ETH3D cwj APD-0.16 | | | 97.55 201 | 97.00 225 | 99.19 98 | 98.51 286 | 98.64 88 | 96.85 252 | 99.13 199 | 94.19 302 | 97.65 255 | 98.40 240 | 95.78 208 | 99.81 167 | 93.37 309 | 99.16 259 | 99.12 230 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 76 | 99.80 17 | 98.63 89 | 99.29 26 | 99.63 21 | 99.30 42 | 99.65 22 | 99.60 25 | 99.16 14 | 99.82 153 | 99.07 29 | 99.83 65 | 99.56 74 |
|
CSCG | | | 98.68 87 | 98.50 91 | 99.20 96 | 99.45 100 | 98.63 89 | 98.56 91 | 99.57 35 | 97.87 150 | 98.85 153 | 98.04 274 | 97.66 96 | 99.84 127 | 96.72 178 | 99.81 72 | 99.13 229 |
|
OMC-MVS | | | 97.88 175 | 97.49 195 | 99.04 127 | 98.89 221 | 98.63 89 | 96.94 244 | 99.25 163 | 95.02 282 | 98.53 199 | 98.51 228 | 97.27 132 | 99.47 320 | 93.50 306 | 99.51 199 | 99.01 244 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 51 | 99.87 10 | 98.61 92 | 99.28 30 | 99.66 19 | 99.09 67 | 99.89 6 | 99.68 14 | 99.53 4 | 99.97 3 | 99.50 10 | 99.99 5 | 99.87 4 |
|
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 49 | 99.88 7 | 98.61 92 | 99.34 15 | 99.71 11 | 99.27 44 | 99.90 4 | 99.74 8 | 99.68 2 | 99.97 3 | 99.55 8 | 99.99 5 | 99.88 3 |
|
XVG-ACMP-BASELINE | | | 98.56 105 | 98.34 120 | 99.22 95 | 99.54 70 | 98.59 94 | 97.71 182 | 99.46 78 | 97.25 206 | 98.98 126 | 98.99 131 | 97.54 109 | 99.84 127 | 95.88 230 | 99.74 107 | 99.23 209 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 65 | 99.80 17 | 98.58 95 | 99.27 32 | 99.57 35 | 99.39 33 | 99.75 12 | 99.62 21 | 99.17 12 | 99.83 142 | 99.06 30 | 99.62 158 | 99.66 36 |
|
wuyk23d | | | 96.06 278 | 97.62 188 | 91.38 353 | 98.65 271 | 98.57 96 | 98.85 71 | 96.95 330 | 96.86 230 | 99.90 4 | 99.16 90 | 99.18 11 | 98.40 366 | 89.23 352 | 99.77 93 | 77.18 371 |
|
AllTest | | | 98.44 123 | 98.20 137 | 99.16 102 | 99.50 79 | 98.55 97 | 98.25 122 | 99.58 28 | 96.80 231 | 98.88 149 | 99.06 105 | 97.65 97 | 99.57 294 | 94.45 274 | 99.61 165 | 99.37 167 |
|
TestCases | | | | | 99.16 102 | 99.50 79 | 98.55 97 | | 99.58 28 | 96.80 231 | 98.88 149 | 99.06 105 | 97.65 97 | 99.57 294 | 94.45 274 | 99.61 165 | 99.37 167 |
|
Baseline_NR-MVSNet | | | 98.98 44 | 98.86 47 | 99.36 65 | 99.82 16 | 98.55 97 | 97.47 209 | 99.57 35 | 99.37 35 | 99.21 89 | 99.61 23 | 96.76 164 | 99.83 142 | 98.06 89 | 99.83 65 | 99.71 26 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 61 | 99.88 7 | 98.54 100 | 99.45 9 | 99.61 24 | 99.66 11 | 99.68 19 | 99.66 17 | 98.44 40 | 99.95 15 | 99.73 2 | 99.96 14 | 99.75 22 |
|
PM-MVS | | | 98.82 61 | 98.72 60 | 99.12 107 | 99.64 48 | 98.54 100 | 97.98 156 | 99.68 16 | 97.62 165 | 99.34 64 | 99.18 84 | 97.54 109 | 99.77 208 | 97.79 104 | 99.74 107 | 99.04 240 |
|
LCM-MVSNet-Re | | | 98.64 93 | 98.48 96 | 99.11 109 | 98.85 227 | 98.51 102 | 98.49 101 | 99.83 4 | 98.37 111 | 99.69 17 | 99.46 46 | 98.21 57 | 99.92 35 | 94.13 287 | 99.30 238 | 98.91 264 |
|
Gipuma |  | | 99.03 37 | 99.16 30 | 98.64 176 | 99.94 2 | 98.51 102 | 99.32 17 | 99.75 9 | 99.58 22 | 98.60 186 | 99.62 21 | 98.22 55 | 99.51 313 | 97.70 112 | 99.73 110 | 97.89 324 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
ITE_SJBPF | | | | | 98.87 148 | 99.22 141 | 98.48 104 | | 99.35 115 | 97.50 176 | 98.28 216 | 98.60 219 | 97.64 100 | 99.35 334 | 93.86 296 | 99.27 242 | 98.79 281 |
|
CPTT-MVS | | | 97.84 183 | 97.36 205 | 99.27 86 | 99.31 124 | 98.46 105 | 98.29 118 | 99.27 157 | 94.90 286 | 97.83 244 | 98.37 246 | 94.90 231 | 99.84 127 | 93.85 297 | 99.54 189 | 99.51 101 |
|
DP-MVS | | | 98.93 50 | 98.81 52 | 99.28 83 | 99.21 143 | 98.45 106 | 98.46 106 | 99.33 126 | 99.63 14 | 99.48 40 | 99.15 94 | 97.23 137 | 99.75 222 | 97.17 133 | 99.66 149 | 99.63 45 |
|
3Dnovator+ | | 97.89 3 | 98.69 83 | 98.51 89 | 99.24 93 | 98.81 238 | 98.40 107 | 99.02 56 | 99.19 179 | 98.99 76 | 98.07 230 | 99.28 69 | 97.11 142 | 99.84 127 | 96.84 167 | 99.32 233 | 99.47 127 |
|
CS-MVS-test | | | 98.41 126 | 98.30 125 | 98.73 172 | 98.84 230 | 98.39 108 | 98.71 79 | 99.79 5 | 97.98 140 | 96.86 302 | 97.38 314 | 97.86 81 | 99.83 142 | 97.81 103 | 99.46 211 | 97.97 322 |
|
F-COLMAP | | | 97.30 220 | 96.68 246 | 99.14 105 | 99.19 150 | 98.39 108 | 97.27 224 | 99.30 144 | 92.93 319 | 96.62 311 | 98.00 275 | 95.73 210 | 99.68 254 | 92.62 323 | 98.46 309 | 99.35 177 |
|
ACMH | | 96.65 7 | 99.25 27 | 99.24 26 | 99.26 89 | 99.72 31 | 98.38 110 | 99.07 53 | 99.55 46 | 98.30 116 | 99.65 22 | 99.45 50 | 99.22 9 | 99.76 215 | 98.44 68 | 99.77 93 | 99.64 41 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSC_two_6792asdad | | | | | 99.32 78 | 98.43 293 | 98.37 111 | | 98.86 250 | | | | | 99.89 59 | 97.14 138 | 99.60 167 | 99.71 26 |
|
No_MVS | | | | | 99.32 78 | 98.43 293 | 98.37 111 | | 98.86 250 | | | | | 99.89 59 | 97.14 138 | 99.60 167 | 99.71 26 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 25 | 99.34 73 | 99.77 20 | 98.37 111 | 99.30 25 | 99.57 35 | 99.61 19 | 99.40 53 | 99.50 39 | 97.12 140 | 99.85 109 | 99.02 33 | 99.94 24 | 99.80 12 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 23 | 99.28 83 | 99.49 86 | 98.36 114 | 99.00 59 | 99.45 81 | 99.63 14 | 99.52 35 | 99.44 51 | 98.25 50 | 99.88 70 | 99.09 28 | 99.84 59 | 99.62 46 |
|
GeoE | | | 99.05 36 | 98.99 42 | 99.25 91 | 99.44 102 | 98.35 115 | 98.73 76 | 99.56 42 | 98.42 110 | 98.91 141 | 98.81 179 | 98.94 18 | 99.91 45 | 98.35 74 | 99.73 110 | 99.49 109 |
|
OPU-MVS | | | | | 98.82 154 | 98.59 276 | 98.30 116 | 98.10 137 | | | | 98.52 227 | 98.18 59 | 98.75 364 | 94.62 268 | 99.48 209 | 99.41 148 |
|
FIs | | | 99.14 32 | 99.09 34 | 99.29 81 | 99.70 38 | 98.28 117 | 99.13 47 | 99.52 57 | 99.48 24 | 99.24 85 | 99.41 55 | 96.79 161 | 99.82 153 | 98.69 55 | 99.88 52 | 99.76 20 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 16 | 99.27 86 | 99.73 25 | 98.26 118 | 99.17 43 | 99.78 6 | 99.11 57 | 99.27 76 | 99.48 44 | 98.82 21 | 99.95 15 | 98.94 36 | 99.93 28 | 99.59 58 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
Anonymous202405211 | | | 97.90 171 | 97.50 194 | 99.08 115 | 98.90 216 | 98.25 119 | 98.53 94 | 96.16 340 | 98.87 86 | 99.11 100 | 98.86 165 | 90.40 292 | 99.78 202 | 97.36 125 | 99.31 235 | 99.19 219 |
|
CNVR-MVS | | | 98.17 154 | 97.87 170 | 99.07 118 | 98.67 265 | 98.24 120 | 97.01 240 | 98.93 234 | 97.25 206 | 97.62 257 | 98.34 250 | 97.27 132 | 99.57 294 | 96.42 205 | 99.33 232 | 99.39 157 |
|
GBi-Net | | | 98.65 91 | 98.47 98 | 99.17 99 | 98.90 216 | 98.24 120 | 99.20 38 | 99.44 84 | 98.59 101 | 98.95 132 | 99.55 32 | 94.14 252 | 99.86 94 | 97.77 106 | 99.69 133 | 99.41 148 |
|
test1 | | | 98.65 91 | 98.47 98 | 99.17 99 | 98.90 216 | 98.24 120 | 99.20 38 | 99.44 84 | 98.59 101 | 98.95 132 | 99.55 32 | 94.14 252 | 99.86 94 | 97.77 106 | 99.69 133 | 99.41 148 |
|
FMVSNet1 | | | 99.17 30 | 99.17 29 | 99.17 99 | 99.55 67 | 98.24 120 | 99.20 38 | 99.44 84 | 99.21 46 | 99.43 48 | 99.55 32 | 97.82 86 | 99.86 94 | 98.42 70 | 99.89 51 | 99.41 148 |
|
API-MVS | | | 97.04 242 | 96.91 232 | 97.42 275 | 97.88 325 | 98.23 124 | 98.18 128 | 98.50 286 | 97.57 170 | 97.39 277 | 96.75 330 | 96.77 162 | 99.15 353 | 90.16 349 | 99.02 280 | 94.88 367 |
|
Anonymous20240529 | | | 98.93 50 | 98.87 45 | 99.12 107 | 99.19 150 | 98.22 125 | 99.01 57 | 98.99 229 | 99.25 45 | 99.54 30 | 99.37 58 | 97.04 143 | 99.80 176 | 97.89 97 | 99.52 196 | 99.35 177 |
|
ETH3 D test6400 | | | 96.46 269 | 95.59 281 | 99.08 115 | 98.88 222 | 98.21 126 | 96.53 268 | 99.18 183 | 88.87 355 | 97.08 287 | 97.79 288 | 93.64 264 | 99.77 208 | 88.92 353 | 99.40 221 | 99.28 199 |
|
test_part1 | | | 97.91 170 | 97.46 200 | 99.27 86 | 98.80 240 | 98.18 127 | 99.07 53 | 99.36 109 | 99.75 5 | 99.63 25 | 99.49 42 | 82.20 348 | 99.89 59 | 98.87 41 | 99.95 16 | 99.74 24 |
|
Anonymous20231211 | | | 99.27 25 | 99.27 24 | 99.26 89 | 99.29 128 | 98.18 127 | 99.49 8 | 99.51 58 | 99.70 8 | 99.80 9 | 99.68 14 | 96.84 155 | 99.83 142 | 99.21 23 | 99.91 43 | 99.77 16 |
|
MCST-MVS | | | 98.00 165 | 97.63 187 | 99.10 111 | 99.24 136 | 98.17 129 | 96.89 251 | 98.73 273 | 95.66 269 | 97.92 237 | 97.70 295 | 97.17 139 | 99.66 265 | 96.18 220 | 99.23 248 | 99.47 127 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 70 | 99.90 4 | 98.15 130 | 99.20 38 | 99.65 20 | 99.48 24 | 99.92 3 | 99.71 12 | 98.07 66 | 99.96 8 | 99.53 9 | 100.00 1 | 99.93 1 |
|
CDPH-MVS | | | 97.26 223 | 96.66 249 | 99.07 118 | 99.00 195 | 98.15 130 | 96.03 291 | 99.01 225 | 91.21 341 | 97.79 247 | 97.85 286 | 96.89 153 | 99.69 245 | 92.75 320 | 99.38 225 | 99.39 157 |
|
test_0402 | | | 98.76 71 | 98.71 62 | 98.93 140 | 99.56 64 | 98.14 132 | 98.45 108 | 99.34 121 | 99.28 43 | 98.95 132 | 98.91 149 | 98.34 48 | 99.79 190 | 95.63 246 | 99.91 43 | 98.86 269 |
|
Fast-Effi-MVS+-dtu | | | 98.27 142 | 98.09 151 | 98.81 156 | 98.43 293 | 98.11 133 | 97.61 193 | 99.50 60 | 98.64 95 | 97.39 277 | 97.52 305 | 98.12 65 | 99.95 15 | 96.90 161 | 98.71 299 | 98.38 307 |
|
EIA-MVS | | | 98.00 165 | 97.74 177 | 98.80 158 | 98.72 249 | 98.09 134 | 98.05 145 | 99.60 25 | 97.39 192 | 96.63 310 | 95.55 350 | 97.68 94 | 99.80 176 | 96.73 177 | 99.27 242 | 98.52 299 |
|
alignmvs | | | 97.35 216 | 96.88 233 | 98.78 163 | 98.54 283 | 98.09 134 | 97.71 182 | 97.69 314 | 99.20 49 | 97.59 260 | 95.90 345 | 88.12 310 | 99.55 300 | 98.18 82 | 98.96 287 | 98.70 291 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 83 | 99.89 6 | 98.09 134 | 99.14 46 | 99.93 1 | 99.82 3 | 99.93 2 | 99.81 3 | 99.17 12 | 99.94 23 | 99.31 16 | 100.00 1 | 99.82 9 |
|
TAPA-MVS | | 96.21 11 | 96.63 261 | 95.95 271 | 98.65 175 | 98.93 208 | 98.09 134 | 96.93 246 | 99.28 154 | 83.58 366 | 98.13 224 | 97.78 289 | 96.13 190 | 99.40 328 | 93.52 304 | 99.29 240 | 98.45 303 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TEST9 | | | | | | 98.71 252 | 98.08 138 | 95.96 295 | 99.03 218 | 91.40 338 | 95.85 331 | 97.53 303 | 96.52 175 | 99.76 215 | | | |
|
train_agg | | | 97.10 235 | 96.45 260 | 99.07 118 | 98.71 252 | 98.08 138 | 95.96 295 | 99.03 218 | 91.64 333 | 95.85 331 | 97.53 303 | 96.47 178 | 99.76 215 | 93.67 300 | 99.16 259 | 99.36 173 |
|
ETV-MVS | | | 98.03 161 | 97.86 171 | 98.56 193 | 98.69 260 | 98.07 140 | 97.51 205 | 99.50 60 | 98.10 135 | 97.50 269 | 95.51 351 | 98.41 41 | 99.88 70 | 96.27 214 | 99.24 247 | 97.71 337 |
|
VDD-MVS | | | 98.56 105 | 98.39 113 | 99.07 118 | 99.13 168 | 98.07 140 | 98.59 88 | 97.01 328 | 99.59 20 | 99.11 100 | 99.27 71 | 94.82 235 | 99.79 190 | 98.34 75 | 99.63 155 | 99.34 179 |
|
NCCC | | | 97.86 177 | 97.47 199 | 99.05 125 | 98.61 272 | 98.07 140 | 96.98 242 | 98.90 240 | 97.63 164 | 97.04 290 | 97.93 282 | 95.99 199 | 99.66 265 | 95.31 254 | 98.82 293 | 99.43 142 |
|
CNLPA | | | 97.17 232 | 96.71 244 | 98.55 194 | 98.56 280 | 98.05 143 | 96.33 280 | 98.93 234 | 96.91 228 | 97.06 289 | 97.39 313 | 94.38 248 | 99.45 324 | 91.66 332 | 99.18 258 | 98.14 315 |
|
MVS_111021_LR | | | 98.30 138 | 98.12 149 | 98.83 153 | 99.16 161 | 98.03 144 | 96.09 290 | 99.30 144 | 97.58 169 | 98.10 228 | 98.24 257 | 98.25 50 | 99.34 335 | 96.69 181 | 99.65 150 | 99.12 230 |
|
test_8 | | | | | | 98.67 265 | 98.01 145 | 95.91 300 | 99.02 222 | 91.64 333 | 95.79 333 | 97.50 306 | 96.47 178 | 99.76 215 | | | |
|
agg_prior1 | | | 97.06 239 | 96.40 261 | 99.03 128 | 98.68 263 | 97.99 146 | 95.76 305 | 99.01 225 | 91.73 332 | 95.59 334 | 97.50 306 | 96.49 177 | 99.77 208 | 93.71 299 | 99.14 263 | 99.34 179 |
|
agg_prior | | | | | | 98.68 263 | 97.99 146 | | 99.01 225 | | 95.59 334 | | | 99.77 208 | | | |
|
SD-MVS | | | 98.40 129 | 98.68 68 | 97.54 268 | 98.96 203 | 97.99 146 | 97.88 164 | 99.36 109 | 98.20 128 | 99.63 25 | 99.04 115 | 98.76 23 | 95.33 373 | 96.56 192 | 99.74 107 | 99.31 191 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DP-MVS Recon | | | 97.33 218 | 96.92 230 | 98.57 189 | 99.09 176 | 97.99 146 | 96.79 255 | 99.35 115 | 93.18 316 | 97.71 251 | 98.07 273 | 95.00 230 | 99.31 339 | 93.97 290 | 99.13 266 | 98.42 306 |
|
DeepC-MVS | | 97.60 4 | 98.97 45 | 98.93 43 | 99.10 111 | 99.35 121 | 97.98 150 | 98.01 153 | 99.46 78 | 97.56 172 | 99.54 30 | 99.50 39 | 98.97 16 | 99.84 127 | 98.06 89 | 99.92 37 | 99.49 109 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
xxxxxxxxxxxxxcwj | | | 98.44 123 | 98.24 132 | 99.06 123 | 99.11 169 | 97.97 151 | 96.53 268 | 99.54 50 | 98.24 122 | 98.83 156 | 98.90 152 | 97.80 87 | 99.82 153 | 95.68 243 | 99.52 196 | 99.38 164 |
|
save fliter | | | | | | 99.11 169 | 97.97 151 | 96.53 268 | 99.02 222 | 98.24 122 | | | | | | | |
|
test_prior4 | | | | | | | 97.97 151 | 95.86 301 | | | | | | | | | |
|
IS-MVSNet | | | 98.19 151 | 97.90 168 | 99.08 115 | 99.57 57 | 97.97 151 | 99.31 21 | 98.32 293 | 99.01 75 | 98.98 126 | 99.03 118 | 91.59 286 | 99.79 190 | 95.49 251 | 99.80 80 | 99.48 119 |
|
SixPastTwentyTwo | | | 98.75 73 | 98.62 75 | 99.16 102 | 99.83 15 | 97.96 155 | 99.28 30 | 98.20 298 | 99.37 35 | 99.70 15 | 99.65 19 | 92.65 278 | 99.93 28 | 99.04 32 | 99.84 59 | 99.60 52 |
|
test_prior3 | | | 97.48 207 | 97.00 225 | 98.95 137 | 98.69 260 | 97.95 156 | 95.74 307 | 99.03 218 | 96.48 243 | 96.11 325 | 97.63 299 | 95.92 204 | 99.59 288 | 94.16 282 | 99.20 252 | 99.30 194 |
|
test_prior | | | | | 98.95 137 | 98.69 260 | 97.95 156 | | 99.03 218 | | | | | 99.59 288 | | | 99.30 194 |
|
PMVS |  | 91.26 20 | 97.86 177 | 97.94 165 | 97.65 257 | 99.71 32 | 97.94 158 | 98.52 95 | 98.68 276 | 98.99 76 | 97.52 267 | 99.35 62 | 97.41 123 | 98.18 367 | 91.59 335 | 99.67 144 | 96.82 353 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PLC |  | 94.65 16 | 96.51 264 | 95.73 275 | 98.85 151 | 98.75 245 | 97.91 159 | 96.42 276 | 99.06 209 | 90.94 344 | 95.59 334 | 97.38 314 | 94.41 246 | 99.59 288 | 90.93 344 | 98.04 326 | 99.05 236 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TSAR-MVS + MP. | | | 98.63 95 | 98.49 94 | 99.06 123 | 99.64 48 | 97.90 160 | 98.51 99 | 98.94 232 | 96.96 225 | 99.24 85 | 98.89 160 | 97.83 83 | 99.81 167 | 96.88 163 | 99.49 207 | 99.48 119 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 98.18 152 | 97.98 161 | 98.77 165 | 98.71 252 | 97.88 161 | 96.32 281 | 98.66 277 | 96.33 248 | 99.23 88 | 98.51 228 | 97.48 120 | 99.40 328 | 97.16 134 | 99.46 211 | 99.02 243 |
|
plane_prior7 | | | | | | 99.19 150 | 97.87 162 | | | | | | | | | | |
|
N_pmnet | | | 97.63 197 | 97.17 216 | 98.99 134 | 99.27 131 | 97.86 163 | 95.98 292 | 93.41 359 | 95.25 280 | 99.47 42 | 98.90 152 | 95.63 212 | 99.85 109 | 96.91 156 | 99.73 110 | 99.27 201 |
|
FPMVS | | | 93.44 323 | 92.23 328 | 97.08 287 | 99.25 135 | 97.86 163 | 95.61 311 | 97.16 326 | 92.90 320 | 93.76 360 | 98.65 206 | 75.94 365 | 95.66 371 | 79.30 371 | 97.49 332 | 97.73 335 |
|
h-mvs33 | | | 97.77 188 | 97.33 209 | 99.10 111 | 99.21 143 | 97.84 165 | 98.35 116 | 98.57 282 | 99.11 57 | 98.58 190 | 99.02 119 | 88.65 306 | 99.96 8 | 98.11 84 | 96.34 352 | 99.49 109 |
|
test12 | | | | | 98.93 140 | 98.58 277 | 97.83 166 | | 98.66 277 | | 96.53 314 | | 95.51 217 | 99.69 245 | | 99.13 266 | 99.27 201 |
|
PatchMatch-RL | | | 97.24 226 | 96.78 240 | 98.61 183 | 99.03 190 | 97.83 166 | 96.36 279 | 99.06 209 | 93.49 314 | 97.36 279 | 97.78 289 | 95.75 209 | 99.49 315 | 93.44 307 | 98.77 294 | 98.52 299 |
|
EPP-MVSNet | | | 98.30 138 | 98.04 157 | 99.07 118 | 99.56 64 | 97.83 166 | 99.29 26 | 98.07 304 | 99.03 73 | 98.59 188 | 99.13 97 | 92.16 282 | 99.90 49 | 96.87 164 | 99.68 138 | 99.49 109 |
|
tfpnnormal | | | 98.90 54 | 98.90 44 | 98.91 143 | 99.67 42 | 97.82 169 | 99.00 59 | 99.44 84 | 99.45 28 | 99.51 38 | 99.24 76 | 98.20 58 | 99.86 94 | 95.92 229 | 99.69 133 | 99.04 240 |
|
canonicalmvs | | | 98.34 135 | 98.26 130 | 98.58 186 | 98.46 290 | 97.82 169 | 98.96 63 | 99.46 78 | 99.19 53 | 97.46 272 | 95.46 353 | 98.59 32 | 99.46 322 | 98.08 88 | 98.71 299 | 98.46 301 |
|
3Dnovator | | 98.27 2 | 98.81 63 | 98.73 58 | 99.05 125 | 98.76 243 | 97.81 171 | 99.25 33 | 99.30 144 | 98.57 105 | 98.55 196 | 99.33 66 | 97.95 78 | 99.90 49 | 97.16 134 | 99.67 144 | 99.44 138 |
|
AdaColmap |  | | 97.14 234 | 96.71 244 | 98.46 205 | 98.34 300 | 97.80 172 | 96.95 243 | 98.93 234 | 95.58 270 | 96.92 294 | 97.66 296 | 95.87 206 | 99.53 305 | 90.97 343 | 99.14 263 | 98.04 318 |
|
plane_prior3 | | | | | | | 97.78 173 | | | 97.41 190 | 97.79 247 | | | | | | |
|
pmmvs-eth3d | | | 98.47 120 | 98.34 120 | 98.86 150 | 99.30 127 | 97.76 174 | 97.16 235 | 99.28 154 | 95.54 271 | 99.42 49 | 99.19 82 | 97.27 132 | 99.63 275 | 97.89 97 | 99.97 11 | 99.20 214 |
|
新几何1 | | | | | 98.91 143 | 98.94 206 | 97.76 174 | | 98.76 267 | 87.58 360 | 96.75 307 | 98.10 269 | 94.80 238 | 99.78 202 | 92.73 321 | 99.00 283 | 99.20 214 |
|
1121 | | | 96.73 256 | 96.00 269 | 98.91 143 | 98.95 205 | 97.76 174 | 98.07 141 | 98.73 273 | 87.65 359 | 96.54 313 | 98.13 264 | 94.52 244 | 99.73 230 | 92.38 326 | 99.02 280 | 99.24 208 |
|
VDDNet | | | 98.21 149 | 97.95 163 | 99.01 132 | 99.58 53 | 97.74 177 | 99.01 57 | 97.29 324 | 99.67 10 | 98.97 129 | 99.50 39 | 90.45 291 | 99.80 176 | 97.88 100 | 99.20 252 | 99.48 119 |
|
XXY-MVS | | | 99.14 32 | 99.15 32 | 99.10 111 | 99.76 23 | 97.74 177 | 98.85 71 | 99.62 22 | 98.48 108 | 99.37 58 | 99.49 42 | 98.75 24 | 99.86 94 | 98.20 81 | 99.80 80 | 99.71 26 |
|
Regformer-2 | | | 98.60 100 | 98.46 100 | 99.02 131 | 98.85 227 | 97.71 179 | 96.91 249 | 99.09 205 | 98.98 78 | 99.01 120 | 98.64 209 | 97.37 126 | 99.84 127 | 97.75 111 | 99.57 181 | 99.52 98 |
|
plane_prior6 | | | | | | 98.99 199 | 97.70 180 | | | | | | 94.90 231 | | | | |
|
LF4IMVS | | | 97.90 171 | 97.69 180 | 98.52 198 | 99.17 159 | 97.66 181 | 97.19 232 | 99.47 76 | 96.31 250 | 97.85 243 | 98.20 261 | 96.71 168 | 99.52 309 | 94.62 268 | 99.72 117 | 98.38 307 |
|
HQP_MVS | | | 97.99 168 | 97.67 181 | 98.93 140 | 99.19 150 | 97.65 182 | 97.77 176 | 99.27 157 | 98.20 128 | 97.79 247 | 97.98 277 | 94.90 231 | 99.70 241 | 94.42 276 | 99.51 199 | 99.45 133 |
|
plane_prior | | | | | | | 97.65 182 | 97.07 238 | | 96.72 235 | | | | | | 99.36 227 | |
|
WR-MVS | | | 98.40 129 | 98.19 139 | 99.03 128 | 99.00 195 | 97.65 182 | 96.85 252 | 98.94 232 | 98.57 105 | 98.89 145 | 98.50 231 | 95.60 213 | 99.85 109 | 97.54 117 | 99.85 57 | 99.59 58 |
|
VPNet | | | 98.87 57 | 98.83 49 | 99.01 132 | 99.70 38 | 97.62 185 | 98.43 109 | 99.35 115 | 99.47 26 | 99.28 74 | 99.05 112 | 96.72 167 | 99.82 153 | 98.09 87 | 99.36 227 | 99.59 58 |
|
K. test v3 | | | 98.00 165 | 97.66 184 | 99.03 128 | 99.79 19 | 97.56 186 | 99.19 42 | 92.47 362 | 99.62 17 | 99.52 35 | 99.66 17 | 89.61 296 | 99.96 8 | 99.25 20 | 99.81 72 | 99.56 74 |
|
PCF-MVS | | 92.86 18 | 94.36 307 | 93.00 324 | 98.42 208 | 98.70 256 | 97.56 186 | 93.16 360 | 99.11 203 | 79.59 369 | 97.55 264 | 97.43 311 | 92.19 281 | 99.73 230 | 79.85 370 | 99.45 214 | 97.97 322 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
lessismore_v0 | | | | | 98.97 135 | 99.73 25 | 97.53 188 | | 86.71 373 | | 99.37 58 | 99.52 38 | 89.93 294 | 99.92 35 | 98.99 35 | 99.72 117 | 99.44 138 |
|
QAPM | | | 97.31 219 | 96.81 239 | 98.82 154 | 98.80 240 | 97.49 189 | 99.06 55 | 99.19 179 | 90.22 347 | 97.69 253 | 99.16 90 | 96.91 152 | 99.90 49 | 90.89 346 | 99.41 219 | 99.07 234 |
|
EG-PatchMatch MVS | | | 98.99 40 | 99.01 39 | 98.94 139 | 99.50 79 | 97.47 190 | 98.04 147 | 99.59 26 | 98.15 134 | 99.40 53 | 99.36 61 | 98.58 33 | 99.76 215 | 98.78 46 | 99.68 138 | 99.59 58 |
|
MVS_111021_HR | | | 98.25 146 | 98.08 154 | 98.75 168 | 99.09 176 | 97.46 191 | 95.97 293 | 99.27 157 | 97.60 168 | 97.99 236 | 98.25 256 | 98.15 64 | 99.38 332 | 96.87 164 | 99.57 181 | 99.42 145 |
|
旧先验1 | | | | | | 98.82 236 | 97.45 192 | | 98.76 267 | | | 98.34 250 | 95.50 218 | | | 99.01 282 | 99.23 209 |
|
Fast-Effi-MVS+ | | | 97.67 193 | 97.38 203 | 98.57 189 | 98.71 252 | 97.43 193 | 97.23 225 | 99.45 81 | 94.82 288 | 96.13 324 | 96.51 333 | 98.52 36 | 99.91 45 | 96.19 218 | 98.83 292 | 98.37 309 |
|
114514_t | | | 96.50 266 | 95.77 273 | 98.69 173 | 99.48 94 | 97.43 193 | 97.84 169 | 99.55 46 | 81.42 368 | 96.51 316 | 98.58 221 | 95.53 215 | 99.67 257 | 93.41 308 | 99.58 177 | 98.98 249 |
|
NP-MVS | | | | | | 98.84 230 | 97.39 195 | | | | | 96.84 328 | | | | | |
|
hse-mvs2 | | | 97.46 208 | 97.07 221 | 98.64 176 | 98.73 247 | 97.33 196 | 97.45 211 | 97.64 317 | 99.11 57 | 98.58 190 | 97.98 277 | 88.65 306 | 99.79 190 | 98.11 84 | 97.39 336 | 98.81 275 |
|
casdiffmvs | | | 98.95 48 | 99.00 40 | 98.81 156 | 99.38 112 | 97.33 196 | 97.82 171 | 99.57 35 | 99.17 54 | 99.35 62 | 99.17 88 | 98.35 47 | 99.69 245 | 98.46 67 | 99.73 110 | 99.41 148 |
|
Regformer-1 | | | 98.55 109 | 98.44 104 | 98.87 148 | 98.85 227 | 97.29 198 | 96.91 249 | 98.99 229 | 98.97 79 | 98.99 124 | 98.64 209 | 97.26 135 | 99.81 167 | 97.79 104 | 99.57 181 | 99.51 101 |
|
VNet | | | 98.42 125 | 98.30 125 | 98.79 160 | 98.79 242 | 97.29 198 | 98.23 123 | 98.66 277 | 99.31 40 | 98.85 153 | 98.80 180 | 94.80 238 | 99.78 202 | 98.13 83 | 99.13 266 | 99.31 191 |
|
HyFIR lowres test | | | 97.19 230 | 96.60 253 | 98.96 136 | 99.62 52 | 97.28 200 | 95.17 324 | 99.50 60 | 94.21 301 | 99.01 120 | 98.32 253 | 86.61 314 | 99.99 2 | 97.10 142 | 99.84 59 | 99.60 52 |
|
baseline | | | 98.96 47 | 99.02 38 | 98.76 166 | 99.38 112 | 97.26 201 | 98.49 101 | 99.50 60 | 98.86 87 | 99.19 91 | 99.06 105 | 98.23 52 | 99.69 245 | 98.71 53 | 99.76 103 | 99.33 185 |
|
ab-mvs | | | 98.41 126 | 98.36 117 | 98.59 185 | 99.19 150 | 97.23 202 | 99.32 17 | 98.81 260 | 97.66 162 | 98.62 182 | 99.40 57 | 96.82 158 | 99.80 176 | 95.88 230 | 99.51 199 | 98.75 286 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 138 | 98.15 146 | 98.75 168 | 98.61 272 | 97.23 202 | 97.76 178 | 99.09 205 | 97.31 200 | 98.75 169 | 98.66 204 | 97.56 107 | 99.64 272 | 96.10 224 | 99.55 188 | 99.39 157 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
AUN-MVS | | | 96.24 276 | 95.45 285 | 98.60 184 | 98.70 256 | 97.22 204 | 97.38 214 | 97.65 315 | 95.95 262 | 95.53 342 | 97.96 281 | 82.11 349 | 99.79 190 | 96.31 211 | 97.44 334 | 98.80 280 |
|
Regformer-4 | | | 98.73 76 | 98.68 68 | 98.89 146 | 99.02 192 | 97.22 204 | 97.17 233 | 99.06 209 | 99.21 46 | 99.17 96 | 98.85 168 | 97.45 121 | 99.86 94 | 98.48 66 | 99.70 127 | 99.60 52 |
|
DPM-MVS | | | 96.32 272 | 95.59 281 | 98.51 200 | 98.76 243 | 97.21 206 | 94.54 344 | 98.26 295 | 91.94 331 | 96.37 321 | 97.25 319 | 93.06 271 | 99.43 326 | 91.42 338 | 98.74 295 | 98.89 265 |
|
test20.03 | | | 98.78 68 | 98.77 56 | 98.78 163 | 99.46 97 | 97.20 207 | 97.78 173 | 99.24 168 | 99.04 72 | 99.41 50 | 98.90 152 | 97.65 97 | 99.76 215 | 97.70 112 | 99.79 85 | 99.39 157 |
|
Effi-MVS+ | | | 98.02 163 | 97.82 173 | 98.62 181 | 98.53 285 | 97.19 208 | 97.33 218 | 99.68 16 | 97.30 201 | 96.68 308 | 97.46 310 | 98.56 34 | 99.80 176 | 96.63 185 | 98.20 315 | 98.86 269 |
|
TAMVS | | | 98.24 147 | 98.05 156 | 98.80 158 | 99.07 180 | 97.18 209 | 97.88 164 | 98.81 260 | 96.66 238 | 99.17 96 | 99.21 79 | 94.81 237 | 99.77 208 | 96.96 154 | 99.88 52 | 99.44 138 |
|
UnsupCasMVSNet_eth | | | 97.89 173 | 97.60 190 | 98.75 168 | 99.31 124 | 97.17 210 | 97.62 191 | 99.35 115 | 98.72 94 | 98.76 168 | 98.68 199 | 92.57 279 | 99.74 226 | 97.76 110 | 95.60 359 | 99.34 179 |
|
OpenMVS |  | 96.65 7 | 97.09 236 | 96.68 246 | 98.32 216 | 98.32 301 | 97.16 211 | 98.86 70 | 99.37 105 | 89.48 351 | 96.29 323 | 99.15 94 | 96.56 173 | 99.90 49 | 92.90 314 | 99.20 252 | 97.89 324 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 284 | 95.18 295 | 97.81 248 | 98.41 297 | 97.15 212 | 97.37 215 | 98.62 280 | 83.86 365 | 98.65 178 | 98.37 246 | 94.29 250 | 99.68 254 | 88.41 354 | 98.62 305 | 96.60 356 |
|
FMVSNet2 | | | 98.49 118 | 98.40 110 | 98.75 168 | 98.90 216 | 97.14 213 | 98.61 85 | 99.13 199 | 98.59 101 | 99.19 91 | 99.28 69 | 94.14 252 | 99.82 153 | 97.97 95 | 99.80 80 | 99.29 198 |
|
V42 | | | 98.78 68 | 98.78 54 | 98.76 166 | 99.44 102 | 97.04 214 | 98.27 120 | 99.19 179 | 97.87 150 | 99.25 84 | 99.16 90 | 96.84 155 | 99.78 202 | 99.21 23 | 99.84 59 | 99.46 129 |
|
CLD-MVS | | | 97.49 205 | 97.16 217 | 98.48 203 | 99.07 180 | 97.03 215 | 94.71 335 | 99.21 172 | 94.46 294 | 98.06 231 | 97.16 323 | 97.57 106 | 99.48 318 | 94.46 273 | 99.78 89 | 98.95 255 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CDS-MVSNet | | | 97.69 191 | 97.35 206 | 98.69 173 | 98.73 247 | 97.02 216 | 96.92 248 | 98.75 270 | 95.89 264 | 98.59 188 | 98.67 201 | 92.08 284 | 99.74 226 | 96.72 178 | 99.81 72 | 99.32 187 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
CS-MVS | | | 98.16 156 | 98.22 135 | 97.97 242 | 98.56 280 | 97.01 217 | 98.10 137 | 99.70 14 | 97.45 186 | 97.29 280 | 97.19 320 | 97.72 92 | 99.80 176 | 98.37 72 | 99.62 158 | 97.11 349 |
|
UGNet | | | 98.53 114 | 98.45 102 | 98.79 160 | 97.94 322 | 96.96 218 | 99.08 50 | 98.54 283 | 99.10 64 | 96.82 305 | 99.47 45 | 96.55 174 | 99.84 127 | 98.56 63 | 99.94 24 | 99.55 82 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
LFMVS | | | 97.20 229 | 96.72 243 | 98.64 176 | 98.72 249 | 96.95 219 | 98.93 65 | 94.14 356 | 99.74 7 | 98.78 163 | 99.01 128 | 84.45 332 | 99.73 230 | 97.44 121 | 99.27 242 | 99.25 205 |
|
test222 | | | | | | 98.92 212 | 96.93 220 | 95.54 313 | 98.78 265 | 85.72 363 | 96.86 302 | 98.11 268 | 94.43 245 | | | 99.10 271 | 99.23 209 |
|
pmmvs4 | | | 97.58 200 | 97.28 210 | 98.51 200 | 98.84 230 | 96.93 220 | 95.40 320 | 98.52 285 | 93.60 311 | 98.61 184 | 98.65 206 | 95.10 228 | 99.60 284 | 96.97 153 | 99.79 85 | 98.99 248 |
|
MSDG | | | 97.71 190 | 97.52 193 | 98.28 221 | 98.91 215 | 96.82 222 | 94.42 345 | 99.37 105 | 97.65 163 | 98.37 213 | 98.29 255 | 97.40 124 | 99.33 337 | 94.09 288 | 99.22 249 | 98.68 295 |
|
MVP-Stereo | | | 98.08 159 | 97.92 166 | 98.57 189 | 98.96 203 | 96.79 223 | 97.90 163 | 99.18 183 | 96.41 246 | 98.46 202 | 98.95 144 | 95.93 203 | 99.60 284 | 96.51 198 | 98.98 286 | 99.31 191 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HQP5-MVS | | | | | | | 96.79 223 | | | | | | | | | | |
|
HQP-MVS | | | 97.00 246 | 96.49 259 | 98.55 194 | 98.67 265 | 96.79 223 | 96.29 282 | 99.04 216 | 96.05 257 | 95.55 338 | 96.84 328 | 93.84 257 | 99.54 303 | 92.82 317 | 99.26 245 | 99.32 187 |
|
UnsupCasMVSNet_bld | | | 97.30 220 | 96.92 230 | 98.45 206 | 99.28 129 | 96.78 226 | 96.20 287 | 99.27 157 | 95.42 276 | 98.28 216 | 98.30 254 | 93.16 267 | 99.71 239 | 94.99 259 | 97.37 337 | 98.87 268 |
|
DELS-MVS | | | 98.27 142 | 98.20 137 | 98.48 203 | 98.86 225 | 96.70 227 | 95.60 312 | 99.20 174 | 97.73 158 | 98.45 203 | 98.71 193 | 97.50 115 | 99.82 153 | 98.21 80 | 99.59 171 | 98.93 260 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
MVS_0304 | | | 97.64 195 | 97.35 206 | 98.52 198 | 97.87 326 | 96.69 228 | 98.59 88 | 98.05 306 | 97.44 188 | 93.74 361 | 98.85 168 | 93.69 263 | 99.88 70 | 98.11 84 | 99.81 72 | 98.98 249 |
|
PAPM_NR | | | 96.82 254 | 96.32 264 | 98.30 219 | 99.07 180 | 96.69 228 | 97.48 207 | 98.76 267 | 95.81 267 | 96.61 312 | 96.47 336 | 94.12 255 | 99.17 351 | 90.82 347 | 97.78 329 | 99.06 235 |
|
Regformer-3 | | | 98.61 98 | 98.61 78 | 98.63 179 | 99.02 192 | 96.53 230 | 97.17 233 | 98.84 254 | 99.13 56 | 99.10 103 | 98.85 168 | 97.24 136 | 99.79 190 | 98.41 71 | 99.70 127 | 99.57 69 |
|
Patchmtry | | | 97.35 216 | 96.97 227 | 98.50 202 | 97.31 349 | 96.47 231 | 98.18 128 | 98.92 237 | 98.95 83 | 98.78 163 | 99.37 58 | 85.44 326 | 99.85 109 | 95.96 228 | 99.83 65 | 99.17 225 |
|
EI-MVSNet-Vis-set | | | 98.68 87 | 98.70 65 | 98.63 179 | 99.09 176 | 96.40 232 | 97.23 225 | 98.86 250 | 99.20 49 | 99.18 95 | 98.97 137 | 97.29 131 | 99.85 109 | 98.72 52 | 99.78 89 | 99.64 41 |
|
EI-MVSNet-UG-set | | | 98.69 83 | 98.71 62 | 98.62 181 | 99.10 173 | 96.37 233 | 97.23 225 | 98.87 245 | 99.20 49 | 99.19 91 | 98.99 131 | 97.30 129 | 99.85 109 | 98.77 49 | 99.79 85 | 99.65 40 |
|
RRT_MVS | | | 97.07 238 | 96.57 255 | 98.58 186 | 95.89 370 | 96.33 234 | 97.36 216 | 98.77 266 | 97.85 152 | 99.08 106 | 99.12 98 | 82.30 345 | 99.96 8 | 98.82 44 | 99.90 47 | 99.45 133 |
|
1112_ss | | | 97.29 222 | 96.86 234 | 98.58 186 | 99.34 123 | 96.32 235 | 96.75 259 | 99.58 28 | 93.14 317 | 96.89 300 | 97.48 308 | 92.11 283 | 99.86 94 | 96.91 156 | 99.54 189 | 99.57 69 |
|
v8 | | | 99.01 38 | 99.16 30 | 98.57 189 | 99.47 96 | 96.31 236 | 98.90 66 | 99.47 76 | 99.03 73 | 99.52 35 | 99.57 28 | 96.93 151 | 99.81 167 | 99.60 4 | 99.98 9 | 99.60 52 |
|
原ACMM1 | | | | | 98.35 214 | 98.90 216 | 96.25 237 | | 98.83 259 | 92.48 325 | 96.07 328 | 98.10 269 | 95.39 222 | 99.71 239 | 92.61 324 | 98.99 284 | 99.08 233 |
|
v10 | | | 98.97 45 | 99.11 33 | 98.55 194 | 99.44 102 | 96.21 238 | 98.90 66 | 99.55 46 | 98.73 93 | 99.48 40 | 99.60 25 | 96.63 171 | 99.83 142 | 99.70 3 | 99.99 5 | 99.61 51 |
|
FMVSNet5 | | | 96.01 279 | 95.20 294 | 98.41 209 | 97.53 340 | 96.10 239 | 98.74 74 | 99.50 60 | 97.22 215 | 98.03 235 | 99.04 115 | 69.80 370 | 99.88 70 | 97.27 129 | 99.71 122 | 99.25 205 |
|
Vis-MVSNet (Re-imp) | | | 97.46 208 | 97.16 217 | 98.34 215 | 99.55 67 | 96.10 239 | 98.94 64 | 98.44 288 | 98.32 115 | 98.16 221 | 98.62 215 | 88.76 302 | 99.73 230 | 93.88 295 | 99.79 85 | 99.18 221 |
|
CHOSEN 1792x2688 | | | 97.49 205 | 97.14 220 | 98.54 197 | 99.68 41 | 96.09 241 | 96.50 271 | 99.62 22 | 91.58 335 | 98.84 155 | 98.97 137 | 92.36 280 | 99.88 70 | 96.76 173 | 99.95 16 | 99.67 35 |
|
v144192 | | | 98.54 112 | 98.57 83 | 98.45 206 | 99.21 143 | 95.98 242 | 97.63 190 | 99.36 109 | 97.15 219 | 99.32 71 | 99.18 84 | 95.84 207 | 99.84 127 | 99.50 10 | 99.91 43 | 99.54 86 |
|
ambc | | | | | 98.24 224 | 98.82 236 | 95.97 243 | 98.62 84 | 99.00 228 | | 99.27 76 | 99.21 79 | 96.99 148 | 99.50 314 | 96.55 195 | 99.50 206 | 99.26 204 |
|
v1144 | | | 98.60 100 | 98.66 71 | 98.41 209 | 99.36 117 | 95.90 244 | 97.58 197 | 99.34 121 | 97.51 175 | 99.27 76 | 99.15 94 | 96.34 187 | 99.80 176 | 99.47 12 | 99.93 28 | 99.51 101 |
|
v1192 | | | 98.60 100 | 98.66 71 | 98.41 209 | 99.27 131 | 95.88 245 | 97.52 203 | 99.36 109 | 97.41 190 | 99.33 65 | 99.20 81 | 96.37 185 | 99.82 153 | 99.57 6 | 99.92 37 | 99.55 82 |
|
PMMVS | | | 96.51 264 | 95.98 270 | 98.09 231 | 97.53 340 | 95.84 246 | 94.92 331 | 98.84 254 | 91.58 335 | 96.05 329 | 95.58 349 | 95.68 211 | 99.66 265 | 95.59 248 | 98.09 322 | 98.76 285 |
|
FMVSNet3 | | | 97.50 203 | 97.24 213 | 98.29 220 | 98.08 316 | 95.83 247 | 97.86 167 | 98.91 239 | 97.89 149 | 98.95 132 | 98.95 144 | 87.06 311 | 99.81 167 | 97.77 106 | 99.69 133 | 99.23 209 |
|
v2v482 | | | 98.56 105 | 98.62 75 | 98.37 213 | 99.42 107 | 95.81 248 | 97.58 197 | 99.16 192 | 97.90 148 | 99.28 74 | 99.01 128 | 95.98 200 | 99.79 190 | 99.33 15 | 99.90 47 | 99.51 101 |
|
CL-MVSNet_self_test | | | 97.44 211 | 97.22 214 | 98.08 234 | 98.57 279 | 95.78 249 | 94.30 348 | 98.79 263 | 96.58 241 | 98.60 186 | 98.19 262 | 94.74 241 | 99.64 272 | 96.41 206 | 98.84 291 | 98.82 272 |
|
v1921920 | | | 98.54 112 | 98.60 80 | 98.38 212 | 99.20 147 | 95.76 250 | 97.56 199 | 99.36 109 | 97.23 212 | 99.38 56 | 99.17 88 | 96.02 194 | 99.84 127 | 99.57 6 | 99.90 47 | 99.54 86 |
|
v1240 | | | 98.55 109 | 98.62 75 | 98.32 216 | 99.22 141 | 95.58 251 | 97.51 205 | 99.45 81 | 97.16 217 | 99.45 46 | 99.24 76 | 96.12 191 | 99.85 109 | 99.60 4 | 99.88 52 | 99.55 82 |
|
testgi | | | 98.32 136 | 98.39 113 | 98.13 230 | 99.57 57 | 95.54 252 | 97.78 173 | 99.49 68 | 97.37 194 | 99.19 91 | 97.65 297 | 98.96 17 | 99.49 315 | 96.50 199 | 98.99 284 | 99.34 179 |
|
Patchmatch-RL test | | | 97.26 223 | 97.02 224 | 97.99 241 | 99.52 74 | 95.53 253 | 96.13 289 | 99.71 11 | 97.47 179 | 99.27 76 | 99.16 90 | 84.30 335 | 99.62 277 | 97.89 97 | 99.77 93 | 98.81 275 |
|
CANet | | | 97.87 176 | 97.76 175 | 98.19 227 | 97.75 330 | 95.51 254 | 96.76 258 | 99.05 213 | 97.74 157 | 96.93 293 | 98.21 260 | 95.59 214 | 99.89 59 | 97.86 102 | 99.93 28 | 99.19 219 |
|
EPNet | | | 96.14 277 | 95.44 286 | 98.25 223 | 90.76 377 | 95.50 255 | 97.92 160 | 94.65 349 | 98.97 79 | 92.98 362 | 98.85 168 | 89.12 300 | 99.87 87 | 95.99 226 | 99.68 138 | 99.39 157 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Test_1112_low_res | | | 96.99 247 | 96.55 257 | 98.31 218 | 99.35 121 | 95.47 256 | 95.84 304 | 99.53 54 | 91.51 337 | 96.80 306 | 98.48 236 | 91.36 287 | 99.83 142 | 96.58 187 | 99.53 193 | 99.62 46 |
|
diffmvs | | | 98.22 148 | 98.24 132 | 98.17 228 | 99.00 195 | 95.44 257 | 96.38 278 | 99.58 28 | 97.79 156 | 98.53 199 | 98.50 231 | 96.76 164 | 99.74 226 | 97.95 96 | 99.64 152 | 99.34 179 |
|
Anonymous20231206 | | | 98.21 149 | 98.21 136 | 98.20 226 | 99.51 76 | 95.43 258 | 98.13 132 | 99.32 128 | 96.16 254 | 98.93 139 | 98.82 177 | 96.00 196 | 99.83 142 | 97.32 127 | 99.73 110 | 99.36 173 |
|
testdata | | | | | 98.09 231 | 98.93 208 | 95.40 259 | | 98.80 262 | 90.08 349 | 97.45 273 | 98.37 246 | 95.26 224 | 99.70 241 | 93.58 303 | 98.95 288 | 99.17 225 |
|
PatchT | | | 96.65 260 | 96.35 262 | 97.54 268 | 97.40 345 | 95.32 260 | 97.98 156 | 96.64 336 | 99.33 39 | 96.89 300 | 99.42 52 | 84.32 334 | 99.81 167 | 97.69 114 | 97.49 332 | 97.48 344 |
|
bset_n11_16_dypcd | | | 96.99 247 | 96.56 256 | 98.27 222 | 99.00 195 | 95.25 261 | 92.18 365 | 94.05 357 | 98.75 92 | 99.01 120 | 98.38 244 | 88.98 301 | 99.93 28 | 98.77 49 | 99.92 37 | 99.64 41 |
|
test_yl | | | 96.69 257 | 96.29 265 | 97.90 243 | 98.28 303 | 95.24 262 | 97.29 221 | 97.36 320 | 98.21 125 | 98.17 219 | 97.86 284 | 86.27 316 | 99.55 300 | 94.87 262 | 98.32 311 | 98.89 265 |
|
DCV-MVSNet | | | 96.69 257 | 96.29 265 | 97.90 243 | 98.28 303 | 95.24 262 | 97.29 221 | 97.36 320 | 98.21 125 | 98.17 219 | 97.86 284 | 86.27 316 | 99.55 300 | 94.87 262 | 98.32 311 | 98.89 265 |
|
sss | | | 97.21 228 | 96.93 228 | 98.06 236 | 98.83 233 | 95.22 264 | 96.75 259 | 98.48 287 | 94.49 292 | 97.27 281 | 97.90 283 | 92.77 276 | 99.80 176 | 96.57 189 | 99.32 233 | 99.16 228 |
|
MSLP-MVS++ | | | 98.02 163 | 98.14 148 | 97.64 259 | 98.58 277 | 95.19 265 | 97.48 207 | 99.23 170 | 97.47 179 | 97.90 239 | 98.62 215 | 97.04 143 | 98.81 363 | 97.55 115 | 99.41 219 | 98.94 259 |
|
PVSNet_Blended_VisFu | | | 98.17 154 | 98.15 146 | 98.22 225 | 99.73 25 | 95.15 266 | 97.36 216 | 99.68 16 | 94.45 296 | 98.99 124 | 99.27 71 | 96.87 154 | 99.94 23 | 97.13 140 | 99.91 43 | 99.57 69 |
|
PAPR | | | 95.29 294 | 94.47 304 | 97.75 252 | 97.50 344 | 95.14 267 | 94.89 332 | 98.71 275 | 91.39 339 | 95.35 345 | 95.48 352 | 94.57 243 | 99.14 354 | 84.95 361 | 97.37 337 | 98.97 253 |
|
pmmvs5 | | | 97.64 195 | 97.49 195 | 98.08 234 | 99.14 166 | 95.12 268 | 96.70 262 | 99.05 213 | 93.77 309 | 98.62 182 | 98.83 174 | 93.23 265 | 99.75 222 | 98.33 77 | 99.76 103 | 99.36 173 |
|
Anonymous20240521 | | | 98.69 83 | 98.87 45 | 98.16 229 | 99.77 20 | 95.11 269 | 99.08 50 | 99.44 84 | 99.34 38 | 99.33 65 | 99.55 32 | 94.10 256 | 99.94 23 | 99.25 20 | 99.96 14 | 99.42 145 |
|
v148 | | | 98.45 122 | 98.60 80 | 98.00 240 | 99.44 102 | 94.98 270 | 97.44 212 | 99.06 209 | 98.30 116 | 99.32 71 | 98.97 137 | 96.65 170 | 99.62 277 | 98.37 72 | 99.85 57 | 99.39 157 |
|
MDA-MVSNet-bldmvs | | | 97.94 169 | 97.91 167 | 98.06 236 | 99.44 102 | 94.96 271 | 96.63 265 | 99.15 198 | 98.35 112 | 98.83 156 | 99.11 100 | 94.31 249 | 99.85 109 | 96.60 186 | 98.72 297 | 99.37 167 |
|
new_pmnet | | | 96.99 247 | 96.76 241 | 97.67 255 | 98.72 249 | 94.89 272 | 95.95 297 | 98.20 298 | 92.62 324 | 98.55 196 | 98.54 224 | 94.88 234 | 99.52 309 | 93.96 291 | 99.44 217 | 98.59 298 |
|
HY-MVS | | 95.94 13 | 95.90 282 | 95.35 290 | 97.55 267 | 97.95 321 | 94.79 273 | 98.81 73 | 96.94 331 | 92.28 328 | 95.17 346 | 98.57 222 | 89.90 295 | 99.75 222 | 91.20 341 | 97.33 341 | 98.10 316 |
|
D2MVS | | | 97.84 183 | 97.84 172 | 97.83 247 | 99.14 166 | 94.74 274 | 96.94 244 | 98.88 243 | 95.84 265 | 98.89 145 | 98.96 140 | 94.40 247 | 99.69 245 | 97.55 115 | 99.95 16 | 99.05 236 |
|
EI-MVSNet | | | 98.40 129 | 98.51 89 | 98.04 238 | 99.10 173 | 94.73 275 | 97.20 229 | 98.87 245 | 98.97 79 | 99.06 109 | 99.02 119 | 96.00 196 | 99.80 176 | 98.58 58 | 99.82 68 | 99.60 52 |
|
MVS_Test | | | 98.18 152 | 98.36 117 | 97.67 255 | 98.48 288 | 94.73 275 | 98.18 128 | 99.02 222 | 97.69 160 | 98.04 234 | 99.11 100 | 97.22 138 | 99.56 297 | 98.57 60 | 98.90 290 | 98.71 289 |
|
IterMVS-LS | | | 98.55 109 | 98.70 65 | 98.09 231 | 99.48 94 | 94.73 275 | 97.22 228 | 99.39 99 | 98.97 79 | 99.38 56 | 99.31 68 | 96.00 196 | 99.93 28 | 98.58 58 | 99.97 11 | 99.60 52 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
MIMVSNet | | | 96.62 262 | 96.25 268 | 97.71 254 | 99.04 187 | 94.66 278 | 99.16 44 | 96.92 332 | 97.23 212 | 97.87 241 | 99.10 102 | 86.11 320 | 99.65 270 | 91.65 333 | 99.21 251 | 98.82 272 |
|
CANet_DTU | | | 97.26 223 | 97.06 222 | 97.84 246 | 97.57 337 | 94.65 279 | 96.19 288 | 98.79 263 | 97.23 212 | 95.14 347 | 98.24 257 | 93.22 266 | 99.84 127 | 97.34 126 | 99.84 59 | 99.04 240 |
|
WTY-MVS | | | 96.67 259 | 96.27 267 | 97.87 245 | 98.81 238 | 94.61 280 | 96.77 257 | 97.92 309 | 94.94 285 | 97.12 284 | 97.74 292 | 91.11 288 | 99.82 153 | 93.89 294 | 98.15 319 | 99.18 221 |
|
PMMVS2 | | | 98.07 160 | 98.08 154 | 98.04 238 | 99.41 109 | 94.59 281 | 94.59 342 | 99.40 97 | 97.50 176 | 98.82 160 | 98.83 174 | 96.83 157 | 99.84 127 | 97.50 120 | 99.81 72 | 99.71 26 |
|
ET-MVSNet_ETH3D | | | 94.30 310 | 93.21 320 | 97.58 263 | 98.14 312 | 94.47 282 | 94.78 334 | 93.24 361 | 94.72 289 | 89.56 369 | 95.87 346 | 78.57 361 | 99.81 167 | 96.91 156 | 97.11 344 | 98.46 301 |
|
thisisatest0530 | | | 95.27 295 | 94.45 305 | 97.74 253 | 99.19 150 | 94.37 283 | 97.86 167 | 90.20 369 | 97.17 216 | 98.22 218 | 97.65 297 | 73.53 368 | 99.90 49 | 96.90 161 | 99.35 229 | 98.95 255 |
|
TinyColmap | | | 97.89 173 | 97.98 161 | 97.60 261 | 98.86 225 | 94.35 284 | 96.21 286 | 99.44 84 | 97.45 186 | 99.06 109 | 98.88 161 | 97.99 75 | 99.28 344 | 94.38 280 | 99.58 177 | 99.18 221 |
|
CR-MVSNet | | | 96.28 274 | 95.95 271 | 97.28 280 | 97.71 332 | 94.22 285 | 98.11 135 | 98.92 237 | 92.31 327 | 96.91 296 | 99.37 58 | 85.44 326 | 99.81 167 | 97.39 124 | 97.36 339 | 97.81 330 |
|
RPMNet | | | 97.02 243 | 96.93 228 | 97.30 279 | 97.71 332 | 94.22 285 | 98.11 135 | 99.30 144 | 99.37 35 | 96.91 296 | 99.34 64 | 86.72 313 | 99.87 87 | 97.53 118 | 97.36 339 | 97.81 330 |
|
MVSTER | | | 96.86 251 | 96.55 257 | 97.79 249 | 97.91 324 | 94.21 287 | 97.56 199 | 98.87 245 | 97.49 178 | 99.06 109 | 99.05 112 | 80.72 350 | 99.80 176 | 98.44 68 | 99.82 68 | 99.37 167 |
|
DeepMVS_CX |  | | | | 93.44 349 | 98.24 306 | 94.21 287 | | 94.34 351 | 64.28 371 | 91.34 367 | 94.87 363 | 89.45 299 | 92.77 374 | 77.54 372 | 93.14 368 | 93.35 369 |
|
GA-MVS | | | 95.86 283 | 95.32 291 | 97.49 271 | 98.60 274 | 94.15 289 | 93.83 355 | 97.93 308 | 95.49 274 | 96.68 308 | 97.42 312 | 83.21 340 | 99.30 341 | 96.22 216 | 98.55 308 | 99.01 244 |
|
BH-RMVSNet | | | 96.83 252 | 96.58 254 | 97.58 263 | 98.47 289 | 94.05 290 | 96.67 263 | 97.36 320 | 96.70 237 | 97.87 241 | 97.98 277 | 95.14 227 | 99.44 325 | 90.47 348 | 98.58 307 | 99.25 205 |
|
cl____ | | | 97.02 243 | 96.83 237 | 97.58 263 | 97.82 328 | 94.04 291 | 94.66 338 | 99.16 192 | 97.04 222 | 98.63 180 | 98.71 193 | 88.68 305 | 99.69 245 | 97.00 148 | 99.81 72 | 99.00 247 |
|
DIV-MVS_self_test | | | 97.02 243 | 96.84 236 | 97.58 263 | 97.82 328 | 94.03 292 | 94.66 338 | 99.16 192 | 97.04 222 | 98.63 180 | 98.71 193 | 88.69 303 | 99.69 245 | 97.00 148 | 99.81 72 | 99.01 244 |
|
MVS | | | 93.19 325 | 92.09 329 | 96.50 306 | 96.91 354 | 94.03 292 | 98.07 141 | 98.06 305 | 68.01 370 | 94.56 352 | 96.48 335 | 95.96 202 | 99.30 341 | 83.84 363 | 96.89 347 | 96.17 359 |
|
JIA-IIPM | | | 95.52 291 | 95.03 298 | 97.00 289 | 96.85 356 | 94.03 292 | 96.93 246 | 95.82 344 | 99.20 49 | 94.63 351 | 99.71 12 | 83.09 341 | 99.60 284 | 94.42 276 | 94.64 363 | 97.36 346 |
|
baseline1 | | | 95.96 281 | 95.44 286 | 97.52 270 | 98.51 286 | 93.99 295 | 98.39 112 | 96.09 342 | 98.21 125 | 98.40 212 | 97.76 291 | 86.88 312 | 99.63 275 | 95.42 252 | 89.27 371 | 98.95 255 |
|
TR-MVS | | | 95.55 290 | 95.12 297 | 96.86 300 | 97.54 339 | 93.94 296 | 96.49 272 | 96.53 337 | 94.36 299 | 97.03 291 | 96.61 332 | 94.26 251 | 99.16 352 | 86.91 358 | 96.31 353 | 97.47 345 |
|
jason | | | 97.45 210 | 97.35 206 | 97.76 251 | 99.24 136 | 93.93 297 | 95.86 301 | 98.42 289 | 94.24 300 | 98.50 201 | 98.13 264 | 94.82 235 | 99.91 45 | 97.22 131 | 99.73 110 | 99.43 142 |
jason: jason. |
xiu_mvs_v1_base_debu | | | 97.86 177 | 98.17 141 | 96.92 294 | 98.98 200 | 93.91 298 | 96.45 273 | 99.17 189 | 97.85 152 | 98.41 208 | 97.14 325 | 98.47 37 | 99.92 35 | 98.02 91 | 99.05 273 | 96.92 350 |
|
xiu_mvs_v1_base | | | 97.86 177 | 98.17 141 | 96.92 294 | 98.98 200 | 93.91 298 | 96.45 273 | 99.17 189 | 97.85 152 | 98.41 208 | 97.14 325 | 98.47 37 | 99.92 35 | 98.02 91 | 99.05 273 | 96.92 350 |
|
xiu_mvs_v1_base_debi | | | 97.86 177 | 98.17 141 | 96.92 294 | 98.98 200 | 93.91 298 | 96.45 273 | 99.17 189 | 97.85 152 | 98.41 208 | 97.14 325 | 98.47 37 | 99.92 35 | 98.02 91 | 99.05 273 | 96.92 350 |
|
MVSFormer | | | 98.26 144 | 98.43 106 | 97.77 250 | 98.88 222 | 93.89 301 | 99.39 13 | 99.56 42 | 99.11 57 | 98.16 221 | 98.13 264 | 93.81 259 | 99.97 3 | 99.26 18 | 99.57 181 | 99.43 142 |
|
lupinMVS | | | 97.06 239 | 96.86 234 | 97.65 257 | 98.88 222 | 93.89 301 | 95.48 317 | 97.97 307 | 93.53 312 | 98.16 221 | 97.58 301 | 93.81 259 | 99.91 45 | 96.77 172 | 99.57 181 | 99.17 225 |
|
tttt0517 | | | 95.64 288 | 94.98 299 | 97.64 259 | 99.36 117 | 93.81 303 | 98.72 77 | 90.47 368 | 98.08 136 | 98.67 175 | 98.34 250 | 73.88 367 | 99.92 35 | 97.77 106 | 99.51 199 | 99.20 214 |
|
MS-PatchMatch | | | 97.68 192 | 97.75 176 | 97.45 273 | 98.23 308 | 93.78 304 | 97.29 221 | 98.84 254 | 96.10 256 | 98.64 179 | 98.65 206 | 96.04 193 | 99.36 333 | 96.84 167 | 99.14 263 | 99.20 214 |
|
PVSNet_BlendedMVS | | | 97.55 201 | 97.53 192 | 97.60 261 | 98.92 212 | 93.77 305 | 96.64 264 | 99.43 90 | 94.49 292 | 97.62 257 | 99.18 84 | 96.82 158 | 99.67 257 | 94.73 265 | 99.93 28 | 99.36 173 |
|
PVSNet_Blended | | | 96.88 250 | 96.68 246 | 97.47 272 | 98.92 212 | 93.77 305 | 94.71 335 | 99.43 90 | 90.98 343 | 97.62 257 | 97.36 317 | 96.82 158 | 99.67 257 | 94.73 265 | 99.56 186 | 98.98 249 |
|
USDC | | | 97.41 213 | 97.40 201 | 97.44 274 | 98.94 206 | 93.67 307 | 95.17 324 | 99.53 54 | 94.03 306 | 98.97 129 | 99.10 102 | 95.29 223 | 99.34 335 | 95.84 236 | 99.73 110 | 99.30 194 |
|
test0.0.03 1 | | | 94.51 305 | 93.69 314 | 96.99 290 | 96.05 367 | 93.61 308 | 94.97 330 | 93.49 358 | 96.17 252 | 97.57 263 | 94.88 361 | 82.30 345 | 99.01 358 | 93.60 302 | 94.17 367 | 98.37 309 |
|
BH-untuned | | | 96.83 252 | 96.75 242 | 97.08 287 | 98.74 246 | 93.33 309 | 96.71 261 | 98.26 295 | 96.72 235 | 98.44 204 | 97.37 316 | 95.20 225 | 99.47 320 | 91.89 330 | 97.43 335 | 98.44 304 |
|
c3_l | | | 97.36 215 | 97.37 204 | 97.31 278 | 98.09 315 | 93.25 310 | 95.01 329 | 99.16 192 | 97.05 221 | 98.77 166 | 98.72 192 | 92.88 274 | 99.64 272 | 96.93 155 | 99.76 103 | 99.05 236 |
|
MDA-MVSNet_test_wron | | | 97.60 198 | 97.66 184 | 97.41 276 | 99.04 187 | 93.09 311 | 95.27 321 | 98.42 289 | 97.26 205 | 98.88 149 | 98.95 144 | 95.43 221 | 99.73 230 | 97.02 147 | 98.72 297 | 99.41 148 |
|
miper_ehance_all_eth | | | 97.06 239 | 97.03 223 | 97.16 286 | 97.83 327 | 93.06 312 | 94.66 338 | 99.09 205 | 95.99 261 | 98.69 173 | 98.45 237 | 92.73 277 | 99.61 283 | 96.79 169 | 99.03 277 | 98.82 272 |
|
Patchmatch-test | | | 96.55 263 | 96.34 263 | 97.17 284 | 98.35 299 | 93.06 312 | 98.40 111 | 97.79 310 | 97.33 197 | 98.41 208 | 98.67 201 | 83.68 339 | 99.69 245 | 95.16 256 | 99.31 235 | 98.77 283 |
|
MG-MVS | | | 96.77 255 | 96.61 251 | 97.26 281 | 98.31 302 | 93.06 312 | 95.93 298 | 98.12 303 | 96.45 245 | 97.92 237 | 98.73 190 | 93.77 261 | 99.39 330 | 91.19 342 | 99.04 276 | 99.33 185 |
|
YYNet1 | | | 97.60 198 | 97.67 181 | 97.39 277 | 99.04 187 | 93.04 315 | 95.27 321 | 98.38 292 | 97.25 206 | 98.92 140 | 98.95 144 | 95.48 220 | 99.73 230 | 96.99 150 | 98.74 295 | 99.41 148 |
|
thisisatest0515 | | | 94.12 314 | 93.16 321 | 96.97 292 | 98.60 274 | 92.90 316 | 93.77 356 | 90.61 367 | 94.10 304 | 96.91 296 | 95.87 346 | 74.99 366 | 99.80 176 | 94.52 271 | 99.12 269 | 98.20 312 |
|
miper_lstm_enhance | | | 97.18 231 | 97.16 217 | 97.25 282 | 98.16 311 | 92.85 317 | 95.15 326 | 99.31 134 | 97.25 206 | 98.74 171 | 98.78 183 | 90.07 293 | 99.78 202 | 97.19 132 | 99.80 80 | 99.11 232 |
|
cl22 | | | 95.79 285 | 95.39 289 | 96.98 291 | 96.77 358 | 92.79 318 | 94.40 346 | 98.53 284 | 94.59 291 | 97.89 240 | 98.17 263 | 82.82 344 | 99.24 346 | 96.37 207 | 99.03 277 | 98.92 261 |
|
eth_miper_zixun_eth | | | 97.23 227 | 97.25 211 | 97.17 284 | 98.00 320 | 92.77 319 | 94.71 335 | 99.18 183 | 97.27 204 | 98.56 194 | 98.74 189 | 91.89 285 | 99.69 245 | 97.06 146 | 99.81 72 | 99.05 236 |
|
1314 | | | 95.74 286 | 95.60 280 | 96.17 313 | 97.53 340 | 92.75 320 | 98.07 141 | 98.31 294 | 91.22 340 | 94.25 353 | 96.68 331 | 95.53 215 | 99.03 355 | 91.64 334 | 97.18 342 | 96.74 354 |
|
PAPM | | | 91.88 336 | 90.34 339 | 96.51 305 | 98.06 317 | 92.56 321 | 92.44 363 | 97.17 325 | 86.35 361 | 90.38 368 | 96.01 342 | 86.61 314 | 99.21 349 | 70.65 373 | 95.43 360 | 97.75 334 |
|
pmmvs3 | | | 95.03 300 | 94.40 306 | 96.93 293 | 97.70 334 | 92.53 322 | 95.08 327 | 97.71 313 | 88.57 356 | 97.71 251 | 98.08 272 | 79.39 357 | 99.82 153 | 96.19 218 | 99.11 270 | 98.43 305 |
|
xiu_mvs_v2_base | | | 97.16 233 | 97.49 195 | 96.17 313 | 98.54 283 | 92.46 323 | 95.45 318 | 98.84 254 | 97.25 206 | 97.48 271 | 96.49 334 | 98.31 49 | 99.90 49 | 96.34 210 | 98.68 301 | 96.15 361 |
|
PS-MVSNAJ | | | 97.08 237 | 97.39 202 | 96.16 315 | 98.56 280 | 92.46 323 | 95.24 323 | 98.85 253 | 97.25 206 | 97.49 270 | 95.99 343 | 98.07 66 | 99.90 49 | 96.37 207 | 98.67 302 | 96.12 362 |
|
gg-mvs-nofinetune | | | 92.37 332 | 91.20 337 | 95.85 318 | 95.80 371 | 92.38 325 | 99.31 21 | 81.84 377 | 99.75 5 | 91.83 366 | 99.74 8 | 68.29 371 | 99.02 356 | 87.15 357 | 97.12 343 | 96.16 360 |
|
cascas | | | 94.79 303 | 94.33 309 | 96.15 316 | 96.02 369 | 92.36 326 | 92.34 364 | 99.26 162 | 85.34 364 | 95.08 348 | 94.96 360 | 92.96 273 | 98.53 365 | 94.41 279 | 98.59 306 | 97.56 342 |
|
miper_enhance_ethall | | | 96.01 279 | 95.74 274 | 96.81 301 | 96.41 364 | 92.27 327 | 93.69 357 | 98.89 242 | 91.14 342 | 98.30 214 | 97.35 318 | 90.58 290 | 99.58 293 | 96.31 211 | 99.03 277 | 98.60 296 |
|
new-patchmatchnet | | | 98.35 134 | 98.74 57 | 97.18 283 | 99.24 136 | 92.23 328 | 96.42 276 | 99.48 70 | 98.30 116 | 99.69 17 | 99.53 36 | 97.44 122 | 99.82 153 | 98.84 43 | 99.77 93 | 99.49 109 |
|
GG-mvs-BLEND | | | | | 94.76 336 | 94.54 373 | 92.13 329 | 99.31 21 | 80.47 378 | | 88.73 371 | 91.01 371 | 67.59 374 | 98.16 368 | 82.30 368 | 94.53 365 | 93.98 368 |
|
mvs_anonymous | | | 97.83 185 | 98.16 144 | 96.87 297 | 98.18 310 | 91.89 330 | 97.31 220 | 98.90 240 | 97.37 194 | 98.83 156 | 99.46 46 | 96.28 188 | 99.79 190 | 98.90 38 | 98.16 318 | 98.95 255 |
|
ADS-MVSNet2 | | | 95.43 293 | 94.98 299 | 96.76 303 | 98.14 312 | 91.74 331 | 97.92 160 | 97.76 311 | 90.23 345 | 96.51 316 | 98.91 149 | 85.61 323 | 99.85 109 | 92.88 315 | 96.90 345 | 98.69 292 |
|
MVE |  | 83.40 22 | 92.50 330 | 91.92 333 | 94.25 340 | 98.83 233 | 91.64 332 | 92.71 361 | 83.52 376 | 95.92 263 | 86.46 373 | 95.46 353 | 95.20 225 | 95.40 372 | 80.51 369 | 98.64 303 | 95.73 365 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
thres600view7 | | | 94.45 306 | 93.83 312 | 96.29 309 | 99.06 184 | 91.53 333 | 97.99 154 | 94.24 354 | 98.34 113 | 97.44 274 | 95.01 357 | 79.84 353 | 99.67 257 | 84.33 362 | 98.23 313 | 97.66 338 |
|
DSMNet-mixed | | | 97.42 212 | 97.60 190 | 96.87 297 | 99.15 165 | 91.46 334 | 98.54 93 | 99.12 201 | 92.87 321 | 97.58 261 | 99.63 20 | 96.21 189 | 99.90 49 | 95.74 239 | 99.54 189 | 99.27 201 |
|
tfpn200view9 | | | 94.03 315 | 93.44 317 | 95.78 320 | 98.93 208 | 91.44 335 | 97.60 194 | 94.29 352 | 97.94 144 | 97.10 285 | 94.31 365 | 79.67 355 | 99.62 277 | 83.05 364 | 98.08 323 | 96.29 357 |
|
thres400 | | | 94.14 313 | 93.44 317 | 96.24 311 | 98.93 208 | 91.44 335 | 97.60 194 | 94.29 352 | 97.94 144 | 97.10 285 | 94.31 365 | 79.67 355 | 99.62 277 | 83.05 364 | 98.08 323 | 97.66 338 |
|
thres100view900 | | | 94.19 311 | 93.67 315 | 95.75 321 | 99.06 184 | 91.35 337 | 98.03 148 | 94.24 354 | 98.33 114 | 97.40 276 | 94.98 359 | 79.84 353 | 99.62 277 | 83.05 364 | 98.08 323 | 96.29 357 |
|
BH-w/o | | | 95.13 298 | 94.89 302 | 95.86 317 | 98.20 309 | 91.31 338 | 95.65 310 | 97.37 319 | 93.64 310 | 96.52 315 | 95.70 348 | 93.04 272 | 99.02 356 | 88.10 355 | 95.82 358 | 97.24 347 |
|
thres200 | | | 93.72 320 | 93.14 322 | 95.46 330 | 98.66 270 | 91.29 339 | 96.61 266 | 94.63 350 | 97.39 192 | 96.83 304 | 93.71 368 | 79.88 352 | 99.56 297 | 82.40 367 | 98.13 320 | 95.54 366 |
|
baseline2 | | | 93.73 319 | 92.83 325 | 96.42 307 | 97.70 334 | 91.28 340 | 96.84 254 | 89.77 370 | 93.96 308 | 92.44 364 | 95.93 344 | 79.14 358 | 99.77 208 | 92.94 313 | 96.76 349 | 98.21 311 |
|
IB-MVS | | 91.63 19 | 92.24 334 | 90.90 338 | 96.27 310 | 97.22 351 | 91.24 341 | 94.36 347 | 93.33 360 | 92.37 326 | 92.24 365 | 94.58 364 | 66.20 378 | 99.89 59 | 93.16 312 | 94.63 364 | 97.66 338 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ppachtmachnet_test | | | 97.50 203 | 97.74 177 | 96.78 302 | 98.70 256 | 91.23 342 | 94.55 343 | 99.05 213 | 96.36 247 | 99.21 89 | 98.79 182 | 96.39 182 | 99.78 202 | 96.74 175 | 99.82 68 | 99.34 179 |
|
IterMVS-SCA-FT | | | 97.85 182 | 98.18 140 | 96.87 297 | 99.27 131 | 91.16 343 | 95.53 314 | 99.25 163 | 99.10 64 | 99.41 50 | 99.35 62 | 93.10 269 | 99.96 8 | 98.65 56 | 99.94 24 | 99.49 109 |
|
IterMVS | | | 97.73 189 | 98.11 150 | 96.57 304 | 99.24 136 | 90.28 344 | 95.52 316 | 99.21 172 | 98.86 87 | 99.33 65 | 99.33 66 | 93.11 268 | 99.94 23 | 98.49 65 | 99.94 24 | 99.48 119 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
ADS-MVSNet | | | 95.24 296 | 94.93 301 | 96.18 312 | 98.14 312 | 90.10 345 | 97.92 160 | 97.32 323 | 90.23 345 | 96.51 316 | 98.91 149 | 85.61 323 | 99.74 226 | 92.88 315 | 96.90 345 | 98.69 292 |
|
our_test_3 | | | 97.39 214 | 97.73 179 | 96.34 308 | 98.70 256 | 89.78 346 | 94.61 341 | 98.97 231 | 96.50 242 | 99.04 116 | 98.85 168 | 95.98 200 | 99.84 127 | 97.26 130 | 99.67 144 | 99.41 148 |
|
KD-MVS_2432*1600 | | | 92.87 327 | 91.99 331 | 95.51 328 | 91.37 375 | 89.27 347 | 94.07 350 | 98.14 301 | 95.42 276 | 97.25 282 | 96.44 337 | 67.86 372 | 99.24 346 | 91.28 339 | 96.08 356 | 98.02 319 |
|
miper_refine_blended | | | 92.87 327 | 91.99 331 | 95.51 328 | 91.37 375 | 89.27 347 | 94.07 350 | 98.14 301 | 95.42 276 | 97.25 282 | 96.44 337 | 67.86 372 | 99.24 346 | 91.28 339 | 96.08 356 | 98.02 319 |
|
PVSNet | | 93.40 17 | 95.67 287 | 95.70 276 | 95.57 325 | 98.83 233 | 88.57 349 | 92.50 362 | 97.72 312 | 92.69 323 | 96.49 319 | 96.44 337 | 93.72 262 | 99.43 326 | 93.61 301 | 99.28 241 | 98.71 289 |
|
tpm | | | 94.67 304 | 94.34 308 | 95.66 323 | 97.68 336 | 88.42 350 | 97.88 164 | 94.90 348 | 94.46 294 | 96.03 330 | 98.56 223 | 78.66 359 | 99.79 190 | 95.88 230 | 95.01 362 | 98.78 282 |
|
SCA | | | 96.41 271 | 96.66 249 | 95.67 322 | 98.24 306 | 88.35 351 | 95.85 303 | 96.88 333 | 96.11 255 | 97.67 254 | 98.67 201 | 93.10 269 | 99.85 109 | 94.16 282 | 99.22 249 | 98.81 275 |
|
CHOSEN 280x420 | | | 95.51 292 | 95.47 283 | 95.65 324 | 98.25 305 | 88.27 352 | 93.25 359 | 98.88 243 | 93.53 312 | 94.65 350 | 97.15 324 | 86.17 318 | 99.93 28 | 97.41 123 | 99.93 28 | 98.73 288 |
|
ECVR-MVS |  | | 96.42 270 | 96.61 251 | 95.85 318 | 99.38 112 | 88.18 353 | 99.22 35 | 86.00 374 | 99.08 69 | 99.36 60 | 99.57 28 | 88.47 308 | 99.82 153 | 98.52 64 | 99.95 16 | 99.54 86 |
|
EPMVS | | | 93.72 320 | 93.27 319 | 95.09 334 | 96.04 368 | 87.76 354 | 98.13 132 | 85.01 375 | 94.69 290 | 96.92 294 | 98.64 209 | 78.47 363 | 99.31 339 | 95.04 257 | 96.46 351 | 98.20 312 |
|
EPNet_dtu | | | 94.93 302 | 94.78 303 | 95.38 331 | 93.58 374 | 87.68 355 | 96.78 256 | 95.69 346 | 97.35 196 | 89.14 370 | 98.09 271 | 88.15 309 | 99.49 315 | 94.95 261 | 99.30 238 | 98.98 249 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchmatchNet |  | | 95.58 289 | 95.67 278 | 95.30 332 | 97.34 347 | 87.32 356 | 97.65 189 | 96.65 335 | 95.30 279 | 97.07 288 | 98.69 197 | 84.77 329 | 99.75 222 | 94.97 260 | 98.64 303 | 98.83 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
DWT-MVSNet_test | | | 92.75 329 | 92.05 330 | 94.85 335 | 96.48 362 | 87.21 357 | 97.83 170 | 94.99 347 | 92.22 329 | 92.72 363 | 94.11 367 | 70.75 369 | 99.46 322 | 95.01 258 | 94.33 366 | 97.87 326 |
|
test1111 | | | 96.49 267 | 96.82 238 | 95.52 327 | 99.42 107 | 87.08 358 | 99.22 35 | 87.14 372 | 99.11 57 | 99.46 43 | 99.58 27 | 88.69 303 | 99.86 94 | 98.80 45 | 99.95 16 | 99.62 46 |
|
RRT_test8_iter05 | | | 95.24 296 | 95.13 296 | 95.57 325 | 97.32 348 | 87.02 359 | 97.99 154 | 99.41 94 | 98.06 137 | 99.12 98 | 99.05 112 | 66.85 375 | 99.85 109 | 98.93 37 | 99.47 210 | 99.84 8 |
|
tpm2 | | | 93.09 326 | 92.58 327 | 94.62 337 | 97.56 338 | 86.53 360 | 97.66 187 | 95.79 345 | 86.15 362 | 94.07 357 | 98.23 259 | 75.95 364 | 99.53 305 | 90.91 345 | 96.86 348 | 97.81 330 |
|
tpmvs | | | 95.02 301 | 95.25 292 | 94.33 339 | 96.39 365 | 85.87 361 | 98.08 140 | 96.83 334 | 95.46 275 | 95.51 343 | 98.69 197 | 85.91 321 | 99.53 305 | 94.16 282 | 96.23 354 | 97.58 341 |
|
EU-MVSNet | | | 97.66 194 | 98.50 91 | 95.13 333 | 99.63 50 | 85.84 362 | 98.35 116 | 98.21 297 | 98.23 124 | 99.54 30 | 99.46 46 | 95.02 229 | 99.68 254 | 98.24 78 | 99.87 55 | 99.87 4 |
|
CostFormer | | | 93.97 316 | 93.78 313 | 94.51 338 | 97.53 340 | 85.83 363 | 97.98 156 | 95.96 343 | 89.29 353 | 94.99 349 | 98.63 213 | 78.63 360 | 99.62 277 | 94.54 270 | 96.50 350 | 98.09 317 |
|
E-PMN | | | 94.17 312 | 94.37 307 | 93.58 347 | 96.86 355 | 85.71 364 | 90.11 367 | 97.07 327 | 98.17 131 | 97.82 246 | 97.19 320 | 84.62 331 | 98.94 359 | 89.77 350 | 97.68 331 | 96.09 363 |
|
EMVS | | | 93.83 318 | 94.02 310 | 93.23 351 | 96.83 357 | 84.96 365 | 89.77 368 | 96.32 339 | 97.92 146 | 97.43 275 | 96.36 340 | 86.17 318 | 98.93 360 | 87.68 356 | 97.73 330 | 95.81 364 |
|
tpm cat1 | | | 93.29 324 | 93.13 323 | 93.75 345 | 97.39 346 | 84.74 366 | 97.39 213 | 97.65 315 | 83.39 367 | 94.16 354 | 98.41 239 | 82.86 343 | 99.39 330 | 91.56 336 | 95.35 361 | 97.14 348 |
|
test-LLR | | | 93.90 317 | 93.85 311 | 94.04 341 | 96.53 360 | 84.62 367 | 94.05 352 | 92.39 363 | 96.17 252 | 94.12 355 | 95.07 355 | 82.30 345 | 99.67 257 | 95.87 233 | 98.18 316 | 97.82 328 |
|
test-mter | | | 92.33 333 | 91.76 336 | 94.04 341 | 96.53 360 | 84.62 367 | 94.05 352 | 92.39 363 | 94.00 307 | 94.12 355 | 95.07 355 | 65.63 379 | 99.67 257 | 95.87 233 | 98.18 316 | 97.82 328 |
|
tpmrst | | | 95.07 299 | 95.46 284 | 93.91 343 | 97.11 352 | 84.36 369 | 97.62 191 | 96.96 329 | 94.98 283 | 96.35 322 | 98.80 180 | 85.46 325 | 99.59 288 | 95.60 247 | 96.23 354 | 97.79 333 |
|
PVSNet_0 | | 89.98 21 | 91.15 337 | 90.30 340 | 93.70 346 | 97.72 331 | 84.34 370 | 90.24 366 | 97.42 318 | 90.20 348 | 93.79 359 | 93.09 369 | 90.90 289 | 98.89 362 | 86.57 359 | 72.76 373 | 97.87 326 |
|
MDTV_nov1_ep13 | | | | 95.22 293 | | 97.06 353 | 83.20 371 | 97.74 180 | 96.16 340 | 94.37 298 | 96.99 292 | 98.83 174 | 83.95 337 | 99.53 305 | 93.90 293 | 97.95 327 | |
|
TESTMET0.1,1 | | | 92.19 335 | 91.77 335 | 93.46 348 | 96.48 362 | 82.80 372 | 94.05 352 | 91.52 366 | 94.45 296 | 94.00 358 | 94.88 361 | 66.65 376 | 99.56 297 | 95.78 238 | 98.11 321 | 98.02 319 |
|
test2506 | | | 92.39 331 | 91.89 334 | 93.89 344 | 99.38 112 | 82.28 373 | 99.32 17 | 66.03 380 | 99.08 69 | 98.77 166 | 99.57 28 | 66.26 377 | 99.84 127 | 98.71 53 | 99.95 16 | 99.54 86 |
|
gm-plane-assit | | | | | | 94.83 372 | 81.97 374 | | | 88.07 358 | | 94.99 358 | | 99.60 284 | 91.76 331 | | |
|
dp | | | 93.47 322 | 93.59 316 | 93.13 352 | 96.64 359 | 81.62 375 | 97.66 187 | 96.42 338 | 92.80 322 | 96.11 325 | 98.64 209 | 78.55 362 | 99.59 288 | 93.31 310 | 92.18 370 | 98.16 314 |
|
CVMVSNet | | | 96.25 275 | 97.21 215 | 93.38 350 | 99.10 173 | 80.56 376 | 97.20 229 | 98.19 300 | 96.94 226 | 99.00 123 | 99.02 119 | 89.50 298 | 99.80 176 | 96.36 209 | 99.59 171 | 99.78 14 |
|
MVS-HIRNet | | | 94.32 308 | 95.62 279 | 90.42 354 | 98.46 290 | 75.36 377 | 96.29 282 | 89.13 371 | 95.25 280 | 95.38 344 | 99.75 7 | 92.88 274 | 99.19 350 | 94.07 289 | 99.39 222 | 96.72 355 |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 378 | 97.69 184 | | 90.06 350 | 97.75 250 | | 85.78 322 | | 93.52 304 | | 98.69 292 |
|
tmp_tt | | | 78.77 340 | 78.73 343 | 78.90 356 | 58.45 379 | 74.76 379 | 94.20 349 | 78.26 379 | 39.16 372 | 86.71 372 | 92.82 370 | 80.50 351 | 75.19 375 | 86.16 360 | 92.29 369 | 86.74 370 |
|
test_method | | | 79.78 339 | 79.50 342 | 80.62 355 | 80.21 378 | 45.76 380 | 70.82 369 | 98.41 291 | 31.08 373 | 80.89 374 | 97.71 293 | 84.85 328 | 97.37 369 | 91.51 337 | 80.03 372 | 98.75 286 |
|
test123 | | | 17.04 343 | 20.11 346 | 7.82 357 | 10.25 381 | 4.91 381 | 94.80 333 | 4.47 382 | 4.93 375 | 10.00 377 | 24.28 374 | 9.69 380 | 3.64 376 | 10.14 374 | 12.43 375 | 14.92 372 |
|
testmvs | | | 17.12 342 | 20.53 345 | 6.87 358 | 12.05 380 | 4.20 382 | 93.62 358 | 6.73 381 | 4.62 376 | 10.41 376 | 24.33 373 | 8.28 381 | 3.56 377 | 9.69 375 | 15.07 374 | 12.86 373 |
|
test_blank | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet_test | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
cdsmvs_eth3d_5k | | | 24.66 341 | 32.88 344 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 99.10 204 | 0.00 377 | 0.00 378 | 97.58 301 | 99.21 10 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
pcd_1.5k_mvsjas | | | 8.17 344 | 10.90 347 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 98.07 66 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet-low-res | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
sosnet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uncertanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
Regformer | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
ab-mvs-re | | | 8.12 345 | 10.83 348 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 97.48 308 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
uanet | | | 0.00 346 | 0.00 349 | 0.00 359 | 0.00 382 | 0.00 383 | 0.00 370 | 0.00 383 | 0.00 377 | 0.00 378 | 0.00 377 | 0.00 382 | 0.00 378 | 0.00 376 | 0.00 376 | 0.00 374 |
|
PC_three_1452 | | | | | | | | | | 93.27 315 | 99.40 53 | 98.54 224 | 98.22 55 | 97.00 370 | 95.17 255 | 99.45 214 | 99.49 109 |
|
eth-test2 | | | | | | 0.00 382 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 382 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 99.30 144 | 98.03 138 | 99.26 80 | 99.02 119 | 97.51 114 | 99.88 70 | 96.91 156 | 99.60 167 | 99.66 36 |
|
9.14 | | | | 97.78 174 | | 99.07 180 | | 97.53 202 | 99.32 128 | 95.53 273 | 98.54 198 | 98.70 196 | 97.58 105 | 99.76 215 | 94.32 281 | 99.46 211 | |
|
test_0728_THIRD | | | | | | | | | | 98.17 131 | 99.08 106 | 99.02 119 | 97.89 79 | 99.88 70 | 97.07 144 | 99.71 122 | 99.70 31 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 275 |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 330 | | | | 98.81 275 |
|
sam_mvs | | | | | | | | | | | | | 84.29 336 | | | | |
|
MTGPA |  | | | | | | | | 99.20 174 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 196 | | | | 20.48 376 | 83.07 342 | 99.66 265 | 94.16 282 | | |
|
test_post | | | | | | | | | | | | 21.25 375 | 83.86 338 | 99.70 241 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 185 | 84.37 333 | 99.85 109 | | | |
|
MTMP | | | | | | | | 97.93 159 | 91.91 365 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 311 | 99.15 262 | 99.38 164 |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 325 | 99.16 259 | 99.37 167 |
|
test_prior2 | | | | | | | | 95.74 307 | | 96.48 243 | 96.11 325 | 97.63 299 | 95.92 204 | | 94.16 282 | 99.20 252 | |
|
旧先验2 | | | | | | | | 95.76 305 | | 88.56 357 | 97.52 267 | | | 99.66 265 | 94.48 272 | | |
|
新几何2 | | | | | | | | 95.93 298 | | | | | | | | | |
|
无先验 | | | | | | | | 95.74 307 | 98.74 272 | 89.38 352 | | | | 99.73 230 | 92.38 326 | | 99.22 213 |
|
原ACMM2 | | | | | | | | 95.53 314 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.79 190 | 92.80 319 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 146 | | | | |
|
testdata1 | | | | | | | | 95.44 319 | | 96.32 249 | | | | | | | |
|
plane_prior5 | | | | | | | | | 99.27 157 | | | | | 99.70 241 | 94.42 276 | 99.51 199 | 99.45 133 |
|
plane_prior4 | | | | | | | | | | | | 97.98 277 | | | | | |
|
plane_prior2 | | | | | | | | 97.77 176 | | 98.20 128 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 186 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 383 | | | | | | | | |
|
nn | | | | | | | | | 0.00 383 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 35 | | | | | | | | |
|
test11 | | | | | | | | | 98.87 245 | | | | | | | | |
|
door | | | | | | | | | 99.41 94 | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 265 | | 96.29 282 | | 96.05 257 | 95.55 338 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 265 | | 96.29 282 | | 96.05 257 | 95.55 338 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 317 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 337 | | | 99.54 303 | | | 99.32 187 |
|
HQP3-MVS | | | | | | | | | 99.04 216 | | | | | | | 99.26 245 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 257 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 93 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 138 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 175 | | | | |
|