This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3299.95 1599.78 14
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8099.36 1499.92 3399.64 39
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15699.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4299.90 499.74 899.68 299.97 399.55 899.99 599.88 3
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6299.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5599.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7699.65 2299.72 1198.93 1899.95 1499.11 26100.00 199.82 9
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1799.80 399.72 899.82 399.04 11099.81 398.05 6699.96 898.85 4099.99 599.86 6
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4099.65 2299.60 2599.16 1499.82 14399.07 2899.83 6199.56 71
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13399.06 2999.62 15199.66 34
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1699.31 1899.51 5499.64 1299.56 2899.46 4298.23 5199.97 398.78 4399.93 2499.72 25
TDRefinement99.42 1699.38 1599.55 2699.76 2199.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16598.24 7199.84 5599.52 93
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4899.29 2399.54 4799.62 1799.56 2899.42 4898.16 5999.96 898.78 4399.93 2499.77 16
nrg03099.40 1899.35 1799.54 2999.58 5099.13 5198.98 5499.48 6699.68 999.46 4399.26 6898.62 2899.73 21799.17 2599.92 3399.76 20
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5699.29 2399.53 5099.53 2399.46 4399.41 5098.23 5199.95 1498.89 3899.95 1599.81 11
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4699.21 2299.87 5199.54 83
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3399.44 1399.92 3399.68 31
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2398.26 10999.17 3799.78 499.11 5599.27 7299.48 4098.82 2099.95 1498.94 3499.93 2499.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2399.32 1599.55 4399.46 2799.50 3999.34 5997.30 12299.93 2698.90 3699.93 2499.77 16
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8398.36 10699.00 5199.45 7799.63 1499.52 3599.44 4798.25 4999.88 6499.09 2799.84 5599.62 44
Anonymous2023121199.27 2599.27 2499.26 8599.29 12098.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13399.21 2299.91 3999.77 16
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3597.12 13399.85 10199.02 3199.94 2099.80 12
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4799.06 6098.69 7099.54 4799.31 3899.62 2799.53 3297.36 12099.86 8799.24 2199.71 11599.39 147
ACMH96.65 799.25 2799.24 2699.26 8599.72 2898.38 10499.07 4599.55 4398.30 10699.65 2299.45 4699.22 999.76 20298.44 6399.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet99.21 2999.09 3499.56 2499.65 4298.96 6599.13 4199.34 11699.42 3099.33 6299.26 6897.01 14099.94 2298.74 4899.93 2499.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10898.87 6798.39 10299.42 8899.42 3099.36 5899.06 10098.38 4199.95 1498.34 6899.90 4399.57 66
FMVSNet199.17 3099.17 2999.17 9399.55 6498.24 11199.20 3299.44 8099.21 4499.43 4799.55 2997.82 8299.86 8798.42 6599.89 4799.41 138
FIs99.14 3299.09 3499.29 7799.70 3598.28 10899.13 4199.52 5399.48 2499.24 7999.41 5096.79 15499.82 14398.69 5199.88 4899.76 20
XXY-MVS99.14 3299.15 3299.10 10599.76 2197.74 16898.85 6399.62 1998.48 9999.37 5699.49 3898.75 2399.86 8798.20 7499.80 7699.71 26
ACMH+96.62 999.08 3499.00 3999.33 7499.71 2998.83 7098.60 7699.58 2699.11 5599.53 3399.18 7998.81 2199.67 24496.71 16699.77 8999.50 100
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1599.75 799.58 2298.60 17799.62 2198.22 5499.51 30097.70 10299.73 10597.89 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.01 3699.16 3098.57 18099.47 9396.31 22598.90 5899.47 7299.03 6599.52 3599.57 2796.93 14499.81 15699.60 499.98 999.60 49
HPM-MVS_fast99.01 3698.82 4799.57 1899.71 2999.35 1199.00 5199.50 5697.33 18498.94 13298.86 15798.75 2399.82 14397.53 10899.71 11599.56 71
APDe-MVS98.99 3898.79 5099.60 1399.21 13499.15 4598.87 6099.48 6697.57 15899.35 5999.24 7197.83 7999.89 5597.88 9199.70 12099.75 22
abl_698.99 3898.78 5199.61 999.45 9799.46 398.60 7699.50 5698.59 9399.24 7999.04 11098.54 3399.89 5596.45 18899.62 15199.50 100
EG-PatchMatch MVS98.99 3899.01 3898.94 13299.50 7697.47 18198.04 13699.59 2498.15 12399.40 5299.36 5698.58 3199.76 20298.78 4399.68 13199.59 55
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4599.41 6099.58 5099.10 5698.74 6699.56 4099.09 6299.33 6299.19 7798.40 4099.72 22595.98 21499.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet98.98 4298.86 4499.36 6499.82 1698.55 9297.47 19899.57 3399.37 3499.21 8399.61 2396.76 15799.83 13398.06 8099.83 6199.71 26
v1098.97 4399.11 3398.55 18599.44 9996.21 22798.90 5899.55 4398.73 8599.48 4099.60 2596.63 16499.83 13399.70 399.99 599.61 48
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11397.98 14298.01 14299.46 7497.56 16099.54 3099.50 3598.97 1699.84 11898.06 8099.92 3399.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline98.96 4599.02 3798.76 15999.38 10697.26 19198.49 9199.50 5698.86 7999.19 8599.06 10098.23 5199.69 23298.71 5099.76 9899.33 175
casdiffmvs98.95 4699.00 3998.81 14999.38 10697.33 18797.82 16099.57 3399.17 5299.35 5999.17 8398.35 4599.69 23298.46 6299.73 10599.41 138
NR-MVSNet98.95 4698.82 4799.36 6499.16 15198.72 8199.22 3199.20 16699.10 5999.72 1398.76 17896.38 17799.86 8798.00 8599.82 6499.50 100
Anonymous2024052998.93 4898.87 4399.12 10199.19 14098.22 11699.01 4998.99 22199.25 4399.54 3099.37 5397.04 13699.80 16597.89 8899.52 18699.35 167
DP-MVS98.93 4898.81 4999.28 7999.21 13498.45 10198.46 9699.33 12199.63 1499.48 4099.15 8997.23 13099.75 20997.17 12399.66 14299.63 43
SED-MVS98.91 5098.72 5799.49 4899.49 8399.17 3698.10 12799.31 12898.03 12799.66 2099.02 11498.36 4299.88 6496.91 14299.62 15199.41 138
ACMM96.08 1298.91 5098.73 5599.48 5099.55 6499.14 4898.07 13099.37 10097.62 15399.04 11098.96 13298.84 1999.79 17897.43 11299.65 14399.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tfpnnormal98.90 5298.90 4298.91 13699.67 3997.82 16099.00 5199.44 8099.45 2899.51 3899.24 7198.20 5699.86 8795.92 21699.69 12699.04 230
MTAPA98.88 5398.64 6999.61 999.67 3999.36 998.43 9999.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
VPNet98.87 5498.83 4699.01 12599.70 3597.62 17698.43 9999.35 11099.47 2699.28 7099.05 10796.72 16099.82 14398.09 7899.36 21499.59 55
UniMVSNet (Re)98.87 5498.71 5999.35 6999.24 12798.73 7997.73 17099.38 9698.93 7699.12 9298.73 18196.77 15599.86 8798.63 5399.80 7699.46 120
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 6299.17 14998.74 7697.68 17499.40 9299.14 5399.06 10398.59 21196.71 16199.93 2698.57 5699.77 8999.53 89
APD-MVS_3200maxsize98.84 5798.61 7499.53 3699.19 14099.27 2098.49 9199.33 12198.64 8799.03 11398.98 12797.89 7699.85 10196.54 18299.42 20599.46 120
PM-MVS98.82 5898.72 5799.12 10199.64 4598.54 9597.98 14599.68 1397.62 15399.34 6199.18 7997.54 10299.77 19597.79 9499.74 10299.04 230
DU-MVS98.82 5898.63 7099.39 6399.16 15198.74 7697.54 19099.25 15598.84 8199.06 10398.76 17896.76 15799.93 2698.57 5699.77 8999.50 100
SR-MVS-dyc-post98.81 6098.55 8099.57 1899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.49 11199.86 8796.56 17899.39 20999.45 124
3Dnovator98.27 298.81 6098.73 5599.05 11898.76 23297.81 16299.25 3099.30 13798.57 9798.55 18599.33 6197.95 7599.90 4697.16 12499.67 13799.44 129
zzz-MVS98.79 6298.52 8399.61 999.67 3999.36 997.33 20699.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
HPM-MVScopyleft98.79 6298.53 8299.59 1799.65 4299.29 1799.16 3899.43 8596.74 22298.61 17598.38 23498.62 2899.87 8096.47 18699.67 13799.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP98.79 6298.54 8199.54 2999.73 2399.16 4098.23 11299.31 12897.92 13498.90 13598.90 14498.00 6999.88 6496.15 20899.72 11199.58 61
Skip Steuart: Steuart Systems R&D Blog.
V4298.78 6598.78 5198.76 15999.44 9997.04 20498.27 10999.19 17197.87 13899.25 7899.16 8596.84 14899.78 18999.21 2299.84 5599.46 120
test20.0398.78 6598.77 5398.78 15699.46 9497.20 19797.78 16299.24 16099.04 6499.41 4998.90 14497.65 9299.76 20297.70 10299.79 8199.39 147
DVP-MVS98.77 6798.52 8399.52 4199.50 7699.21 2698.02 13998.84 24497.97 13099.08 10099.02 11497.61 9799.88 6496.99 13699.63 14899.48 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test117298.76 6898.49 9099.57 1899.18 14799.37 898.39 10299.31 12898.43 10098.90 13598.88 15397.49 11199.86 8796.43 19099.37 21399.48 110
test_040298.76 6898.71 5998.93 13399.56 6198.14 12398.45 9899.34 11699.28 4198.95 12698.91 14198.34 4699.79 17895.63 23399.91 3998.86 258
ACMMP_NAP98.75 7098.48 9299.57 1899.58 5099.29 1797.82 16099.25 15596.94 21498.78 15699.12 9398.02 6799.84 11897.13 12899.67 13799.59 55
SixPastTwentyTwo98.75 7098.62 7199.16 9699.83 1597.96 14799.28 2798.20 28699.37 3499.70 1599.65 1992.65 27099.93 2699.04 3099.84 5599.60 49
ACMMPcopyleft98.75 7098.50 8799.52 4199.56 6199.16 4098.87 6099.37 10097.16 20498.82 15399.01 12097.71 8899.87 8096.29 20099.69 12699.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Regformer-498.73 7398.68 6498.89 13999.02 18297.22 19497.17 22199.06 20199.21 4499.17 9098.85 16097.45 11499.86 8798.48 6199.70 12099.60 49
XVS98.72 7498.45 9899.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25398.63 20497.50 10899.83 13396.79 15599.53 18399.56 71
SR-MVS98.71 7598.43 10299.57 1899.18 14799.35 1198.36 10599.29 14498.29 10998.88 14298.85 16097.53 10499.87 8096.14 20999.31 22299.48 110
HFP-MVS98.71 7598.44 10099.51 4599.49 8399.16 4098.52 8599.31 12897.47 16798.58 18198.50 22197.97 7399.85 10196.57 17599.59 16199.53 89
LPG-MVS_test98.71 7598.46 9699.47 5399.57 5498.97 6298.23 11299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
ACMMPR98.70 7898.42 10499.54 2999.52 7199.14 4898.52 8599.31 12897.47 16798.56 18398.54 21597.75 8699.88 6496.57 17599.59 16199.58 61
CP-MVS98.70 7898.42 10499.52 4199.36 10999.12 5398.72 6899.36 10497.54 16298.30 20398.40 23097.86 7899.89 5596.53 18399.72 11199.56 71
region2R98.69 8098.40 10699.54 2999.53 6999.17 3698.52 8599.31 12897.46 17298.44 19398.51 21897.83 7999.88 6496.46 18799.58 16799.58 61
EI-MVSNet-UG-set98.69 8098.71 5998.62 17299.10 16396.37 22297.23 21398.87 23799.20 4799.19 8598.99 12397.30 12299.85 10198.77 4699.79 8199.65 38
3Dnovator+97.89 398.69 8098.51 8599.24 8898.81 22798.40 10299.02 4899.19 17198.99 6898.07 21899.28 6497.11 13599.84 11896.84 15399.32 22099.47 118
ZNCC-MVS98.68 8398.40 10699.54 2999.57 5499.21 2698.46 9699.29 14497.28 19098.11 21598.39 23298.00 6999.87 8096.86 15299.64 14599.55 79
EI-MVSNet-Vis-set98.68 8398.70 6298.63 17099.09 16696.40 22197.23 21398.86 24299.20 4799.18 8998.97 12997.29 12499.85 10198.72 4999.78 8599.64 39
CSCG98.68 8398.50 8799.20 9199.45 9798.63 8498.56 8199.57 3397.87 13898.85 14698.04 26397.66 9199.84 11896.72 16499.81 6899.13 219
PGM-MVS98.66 8698.37 11299.55 2699.53 6999.18 3598.23 11299.49 6497.01 21298.69 16598.88 15398.00 6999.89 5595.87 22099.59 16199.58 61
GBi-Net98.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
test198.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
LCM-MVSNet-Re98.64 8998.48 9299.11 10398.85 21798.51 9798.49 9199.83 398.37 10199.69 1799.46 4298.21 5599.92 3394.13 27399.30 22598.91 253
mPP-MVS98.64 8998.34 11699.54 2999.54 6799.17 3698.63 7399.24 16097.47 16798.09 21798.68 19097.62 9699.89 5596.22 20399.62 15199.57 66
TSAR-MVS + MP.98.63 9198.49 9099.06 11699.64 4597.90 15298.51 8998.94 22496.96 21399.24 7998.89 15297.83 7999.81 15696.88 14999.49 19799.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LS3D98.63 9198.38 11199.36 6497.25 33599.38 599.12 4399.32 12399.21 4498.44 19398.88 15397.31 12199.80 16596.58 17399.34 21898.92 250
RPSCF98.62 9398.36 11399.42 5799.65 4299.42 498.55 8299.57 3397.72 14798.90 13599.26 6896.12 18499.52 29695.72 22799.71 11599.32 177
GST-MVS98.61 9498.30 12199.52 4199.51 7399.20 3298.26 11099.25 15597.44 17598.67 16798.39 23297.68 8999.85 10196.00 21299.51 18999.52 93
Regformer-398.61 9498.61 7498.63 17099.02 18296.53 21997.17 22198.84 24499.13 5499.10 9798.85 16097.24 12999.79 17898.41 6699.70 12099.57 66
v119298.60 9698.66 6798.41 20199.27 12295.88 23497.52 19299.36 10497.41 17799.33 6299.20 7696.37 17899.82 14399.57 699.92 3399.55 79
v114498.60 9698.66 6798.41 20199.36 10995.90 23397.58 18699.34 11697.51 16399.27 7299.15 8996.34 18099.80 16599.47 1299.93 2499.51 96
Regformer-298.60 9698.46 9699.02 12498.85 21797.71 17096.91 23799.09 19798.98 7099.01 11498.64 20097.37 11999.84 11897.75 10199.57 17199.52 93
DPE-MVS98.59 9998.26 12599.57 1899.27 12299.15 4597.01 22899.39 9497.67 14999.44 4698.99 12397.53 10499.89 5595.40 24099.68 13199.66 34
MP-MVS-pluss98.57 10098.23 12999.60 1399.69 3799.35 1197.16 22399.38 9694.87 27598.97 12398.99 12398.01 6899.88 6497.29 11899.70 12099.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS98.56 10198.32 12099.25 8799.41 10498.73 7997.13 22599.18 17597.10 20798.75 16198.92 14098.18 5799.65 25796.68 16899.56 17699.37 157
VDD-MVS98.56 10198.39 10999.07 11199.13 15898.07 13198.59 7897.01 31599.59 2099.11 9499.27 6694.82 22899.79 17898.34 6899.63 14899.34 169
v2v48298.56 10198.62 7198.37 20599.42 10395.81 23797.58 18699.16 18497.90 13699.28 7099.01 12095.98 19399.79 17899.33 1599.90 4399.51 96
XVG-ACMP-BASELINE98.56 10198.34 11699.22 9099.54 6798.59 8997.71 17199.46 7497.25 19398.98 12098.99 12397.54 10299.84 11895.88 21799.74 10299.23 199
Regformer-198.55 10598.44 10098.87 14198.85 21797.29 18896.91 23798.99 22198.97 7198.99 11898.64 20097.26 12899.81 15697.79 9499.57 17199.51 96
v124098.55 10598.62 7198.32 20899.22 13295.58 24097.51 19499.45 7797.16 20499.45 4599.24 7196.12 18499.85 10199.60 499.88 4899.55 79
IterMVS-LS98.55 10598.70 6298.09 22299.48 9194.73 26397.22 21699.39 9498.97 7199.38 5499.31 6396.00 18999.93 2698.58 5499.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419298.54 10898.57 7998.45 19899.21 13495.98 23197.63 17999.36 10497.15 20699.32 6799.18 7995.84 20099.84 11899.50 1099.91 3999.54 83
v192192098.54 10898.60 7698.38 20499.20 13795.76 23997.56 18899.36 10497.23 19999.38 5499.17 8396.02 18799.84 11899.57 699.90 4399.54 83
SF-MVS98.53 11098.27 12499.32 7699.31 11698.75 7598.19 11799.41 8996.77 22198.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
XVG-OURS98.53 11098.34 11699.11 10399.50 7698.82 7295.97 28199.50 5697.30 18899.05 10898.98 12799.35 799.32 32595.72 22799.68 13199.18 211
UGNet98.53 11098.45 9898.79 15397.94 30796.96 20799.08 4498.54 27299.10 5996.82 29199.47 4196.55 16799.84 11898.56 5999.94 2099.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
#test#98.50 11398.16 13899.51 4599.49 8399.16 4098.03 13799.31 12896.30 23998.58 18198.50 22197.97 7399.85 10195.68 23099.59 16199.53 89
XVG-OURS-SEG-HR98.49 11498.28 12399.14 9999.49 8398.83 7096.54 25599.48 6697.32 18699.11 9498.61 20999.33 899.30 32896.23 20298.38 29899.28 189
FMVSNet298.49 11498.40 10698.75 16198.90 20697.14 20398.61 7599.13 19198.59 9399.19 8599.28 6494.14 24599.82 14397.97 8699.80 7699.29 188
pmmvs-eth3d98.47 11698.34 11698.86 14399.30 11997.76 16597.16 22399.28 14695.54 25999.42 4899.19 7797.27 12599.63 26297.89 8899.97 1199.20 204
MP-MVScopyleft98.46 11798.09 14599.54 2999.57 5499.22 2598.50 9099.19 17197.61 15597.58 24998.66 19597.40 11799.88 6494.72 25399.60 15999.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
v14898.45 11898.60 7698.00 23199.44 9994.98 25897.44 20099.06 20198.30 10699.32 6798.97 12996.65 16399.62 26498.37 6799.85 5399.39 147
xxxxxxxxxxxxxcwj98.44 11998.24 12799.06 11699.11 15997.97 14396.53 25699.54 4798.24 11298.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
AllTest98.44 11998.20 13199.16 9699.50 7698.55 9298.25 11199.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
VNet98.42 12198.30 12198.79 15398.79 23197.29 18898.23 11298.66 26799.31 3898.85 14698.80 17194.80 23199.78 18998.13 7699.13 25499.31 181
ab-mvs98.41 12298.36 11398.59 17699.19 14097.23 19299.32 1598.81 25097.66 15098.62 17399.40 5296.82 15199.80 16595.88 21799.51 18998.75 273
ACMP95.32 1598.41 12298.09 14599.36 6499.51 7398.79 7497.68 17499.38 9695.76 25698.81 15598.82 16998.36 4299.82 14394.75 25099.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft98.40 12498.03 15299.51 4599.16 15199.21 2698.05 13499.22 16394.16 29198.98 12099.10 9797.52 10699.79 17896.45 18899.64 14599.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS98.40 12498.00 15499.61 999.57 5499.25 2298.57 8099.35 11097.55 16199.31 6997.71 28194.61 23599.88 6496.14 20999.19 24399.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS98.40 12498.68 6497.54 25898.96 19397.99 13897.88 15399.36 10498.20 11899.63 2599.04 11098.76 2295.33 35896.56 17899.74 10299.31 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EI-MVSNet98.40 12498.51 8598.04 22999.10 16394.73 26397.20 21798.87 23798.97 7199.06 10399.02 11496.00 18999.80 16598.58 5499.82 6499.60 49
WR-MVS98.40 12498.19 13399.03 12199.00 18597.65 17396.85 24098.94 22498.57 9798.89 13898.50 22195.60 20699.85 10197.54 10799.85 5399.59 55
new-patchmatchnet98.35 12998.74 5497.18 27399.24 12792.23 31696.42 26499.48 6698.30 10699.69 1799.53 3297.44 11599.82 14398.84 4199.77 8999.49 104
canonicalmvs98.34 13098.26 12598.58 17798.46 27897.82 16098.96 5599.46 7499.19 5197.46 26095.46 33898.59 3099.46 30998.08 7998.71 28798.46 287
testgi98.32 13198.39 10998.13 22199.57 5495.54 24197.78 16299.49 6497.37 18199.19 8597.65 28498.96 1799.49 30296.50 18598.99 27299.34 169
DeepPCF-MVS96.93 598.32 13198.01 15399.23 8998.39 28398.97 6295.03 31699.18 17596.88 21799.33 6298.78 17498.16 5999.28 33196.74 16199.62 15199.44 129
MVS_111021_LR98.30 13398.12 14398.83 14699.16 15198.03 13696.09 27899.30 13797.58 15798.10 21698.24 24698.25 4999.34 32296.69 16799.65 14399.12 220
EPP-MVSNet98.30 13398.04 15199.07 11199.56 6197.83 15799.29 2398.07 29299.03 6598.59 17999.13 9292.16 27499.90 4696.87 15099.68 13199.49 104
DeepC-MVS_fast96.85 698.30 13398.15 14098.75 16198.61 26197.23 19297.76 16799.09 19797.31 18798.75 16198.66 19597.56 10199.64 25996.10 21199.55 17899.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PHI-MVS98.29 13697.95 15799.34 7298.44 28099.16 4098.12 12499.38 9696.01 24898.06 21998.43 22897.80 8399.67 24495.69 22999.58 16799.20 204
Fast-Effi-MVS+-dtu98.27 13798.09 14598.81 14998.43 28198.11 12497.61 18299.50 5698.64 8797.39 26597.52 29298.12 6299.95 1496.90 14798.71 28798.38 293
DELS-MVS98.27 13798.20 13198.48 19598.86 21596.70 21695.60 30099.20 16697.73 14698.45 19298.71 18497.50 10899.82 14398.21 7399.59 16198.93 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu98.26 13997.90 16299.35 6998.02 30399.49 298.02 13999.16 18498.29 10997.64 24497.99 26596.44 17399.95 1496.66 16998.93 27798.60 282
MVSFormer98.26 13998.43 10297.77 24098.88 21293.89 28999.39 1199.56 4099.11 5598.16 21098.13 25393.81 25199.97 399.26 1899.57 17199.43 133
MVS_111021_HR98.25 14198.08 14898.75 16199.09 16697.46 18295.97 28199.27 14997.60 15697.99 22498.25 24598.15 6199.38 31996.87 15099.57 17199.42 136
TAMVS98.24 14298.05 15098.80 15199.07 17097.18 19997.88 15398.81 25096.66 22699.17 9099.21 7494.81 23099.77 19596.96 14099.88 4899.44 129
diffmvs98.22 14398.24 12798.17 22099.00 18595.44 24696.38 26699.58 2697.79 14498.53 18898.50 22196.76 15799.74 21397.95 8799.64 14599.34 169
Anonymous2023120698.21 14498.21 13098.20 21899.51 7395.43 24798.13 12299.32 12396.16 24298.93 13398.82 16996.00 18999.83 13397.32 11799.73 10599.36 163
VDDNet98.21 14497.95 15799.01 12599.58 5097.74 16899.01 4997.29 31199.67 1098.97 12399.50 3590.45 28399.80 16597.88 9199.20 23999.48 110
IS-MVSNet98.19 14697.90 16299.08 10899.57 5497.97 14399.31 1898.32 28199.01 6798.98 12099.03 11391.59 27899.79 17895.49 23899.80 7699.48 110
MVS_Test98.18 14798.36 11397.67 24598.48 27694.73 26398.18 11899.02 21497.69 14898.04 22299.11 9597.22 13199.56 28498.57 5698.90 27898.71 275
TSAR-MVS + GP.98.18 14797.98 15598.77 15898.71 24197.88 15396.32 26998.66 26796.33 23699.23 8298.51 21897.48 11399.40 31597.16 12499.46 20199.02 233
CNVR-MVS98.17 14997.87 16499.07 11198.67 25498.24 11197.01 22898.93 22697.25 19397.62 24598.34 23997.27 12599.57 28196.42 19199.33 21999.39 147
PVSNet_Blended_VisFu98.17 14998.15 14098.22 21799.73 2395.15 25597.36 20499.68 1394.45 28498.99 11899.27 6696.87 14799.94 2297.13 12899.91 3999.57 66
HPM-MVS++copyleft98.10 15197.64 18099.48 5099.09 16699.13 5197.52 19298.75 26097.46 17296.90 28697.83 27596.01 18899.84 11895.82 22499.35 21699.46 120
APD-MVScopyleft98.10 15197.67 17599.42 5799.11 15998.93 6697.76 16799.28 14694.97 27298.72 16498.77 17697.04 13699.85 10193.79 28499.54 17999.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVP-Stereo98.08 15397.92 16098.57 18098.96 19396.79 21297.90 15299.18 17596.41 23498.46 19198.95 13695.93 19699.60 27196.51 18498.98 27499.31 181
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PMMVS298.07 15498.08 14898.04 22999.41 10494.59 26994.59 33099.40 9297.50 16498.82 15398.83 16696.83 15099.84 11897.50 11099.81 6899.71 26
ETH3D-3000-0.198.03 15597.62 18299.29 7799.11 15998.80 7397.47 19899.32 12395.54 25998.43 19698.62 20696.61 16599.77 19593.95 27899.49 19799.30 184
ETV-MVS98.03 15597.86 16598.56 18498.69 24998.07 13197.51 19499.50 5698.10 12497.50 25795.51 33698.41 3999.88 6496.27 20199.24 23497.71 322
Effi-MVS+98.02 15797.82 16798.62 17298.53 27397.19 19897.33 20699.68 1397.30 18896.68 29497.46 29798.56 3299.80 16596.63 17198.20 30398.86 258
MSLP-MVS++98.02 15798.14 14297.64 24998.58 26695.19 25497.48 19699.23 16297.47 16797.90 22798.62 20697.04 13698.81 35097.55 10599.41 20698.94 248
EIA-MVS98.00 15997.74 17198.80 15198.72 23898.09 12598.05 13499.60 2397.39 17996.63 29695.55 33597.68 8999.80 16596.73 16399.27 22998.52 285
MCST-MVS98.00 15997.63 18199.10 10599.24 12798.17 12096.89 23998.73 26395.66 25797.92 22597.70 28297.17 13299.66 25296.18 20799.23 23599.47 118
K. test v398.00 15997.66 17899.03 12199.79 1997.56 17799.19 3692.47 34999.62 1799.52 3599.66 1789.61 28899.96 899.25 2099.81 6899.56 71
HQP_MVS97.99 16297.67 17598.93 13399.19 14097.65 17397.77 16599.27 14998.20 11897.79 23597.98 26694.90 22499.70 22894.42 26299.51 18999.45 124
MDA-MVSNet-bldmvs97.94 16397.91 16198.06 22799.44 9994.96 25996.63 25399.15 19098.35 10298.83 14999.11 9594.31 24299.85 10196.60 17298.72 28599.37 157
test_part197.91 16497.46 19599.27 8298.80 22998.18 11899.07 4599.36 10499.75 599.63 2599.49 3882.20 33599.89 5598.87 3999.95 1599.74 24
Anonymous20240521197.90 16597.50 18999.08 10898.90 20698.25 11098.53 8496.16 32798.87 7899.11 9498.86 15790.40 28499.78 18997.36 11599.31 22299.19 209
LF4IMVS97.90 16597.69 17498.52 18999.17 14997.66 17297.19 22099.47 7296.31 23897.85 23198.20 25096.71 16199.52 29694.62 25499.72 11198.38 293
UnsupCasMVSNet_eth97.89 16797.60 18498.75 16199.31 11697.17 20097.62 18099.35 11098.72 8698.76 16098.68 19092.57 27199.74 21397.76 10095.60 34599.34 169
TinyColmap97.89 16797.98 15597.60 25198.86 21594.35 27296.21 27499.44 8097.45 17499.06 10398.88 15397.99 7299.28 33194.38 26699.58 16799.18 211
OMC-MVS97.88 16997.49 19099.04 12098.89 21198.63 8496.94 23299.25 15595.02 27098.53 18898.51 21897.27 12599.47 30793.50 29299.51 18999.01 234
CANet97.87 17097.76 16998.19 21997.75 31595.51 24396.76 24699.05 20597.74 14596.93 28098.21 24995.59 20799.89 5597.86 9399.93 2499.19 209
xiu_mvs_v1_base_debu97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base_debi97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
NCCC97.86 17197.47 19499.05 11898.61 26198.07 13196.98 23098.90 23297.63 15297.04 27797.93 27095.99 19299.66 25295.31 24198.82 28199.43 133
PMVScopyleft91.26 2097.86 17197.94 15997.65 24799.71 2997.94 15098.52 8598.68 26698.99 6897.52 25599.35 5797.41 11698.18 35491.59 32199.67 13796.82 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
IterMVS-SCA-FT97.85 17698.18 13496.87 28799.27 12291.16 33195.53 30299.25 15599.10 5999.41 4999.35 5793.10 26199.96 898.65 5299.94 2099.49 104
D2MVS97.84 17797.84 16697.83 23799.14 15694.74 26296.94 23298.88 23595.84 25398.89 13898.96 13294.40 24099.69 23297.55 10599.95 1599.05 226
CPTT-MVS97.84 17797.36 20099.27 8299.31 11698.46 10098.29 10799.27 14994.90 27497.83 23298.37 23694.90 22499.84 11893.85 28399.54 17999.51 96
mvs-test197.83 17997.48 19398.89 13998.02 30399.20 3297.20 21799.16 18498.29 10996.46 30697.17 30796.44 17399.92 3396.66 16997.90 31697.54 329
mvs_anonymous97.83 17998.16 13896.87 28798.18 29591.89 31897.31 20898.90 23297.37 18198.83 14999.46 4296.28 18199.79 17898.90 3698.16 30698.95 244
CS-MVS97.82 18197.59 18698.52 18998.76 23298.04 13598.20 11699.61 2197.10 20796.02 31794.87 34898.27 4899.84 11896.31 19799.17 24697.69 323
testtj97.79 18297.25 20599.42 5799.03 18098.85 6897.78 16299.18 17595.83 25498.12 21498.50 22195.50 21199.86 8792.23 31499.07 26099.54 83
IterMVS97.73 18398.11 14496.57 29499.24 12790.28 33295.52 30499.21 16498.86 7999.33 6299.33 6193.11 26099.94 2298.49 6099.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSDG97.71 18497.52 18898.28 21398.91 20596.82 21194.42 33399.37 10097.65 15198.37 20298.29 24497.40 11799.33 32494.09 27499.22 23698.68 281
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23797.02 20696.92 23698.75 26095.89 25298.59 17998.67 19292.08 27699.74 21396.72 16499.81 6899.32 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch97.68 18697.75 17097.45 26398.23 29393.78 29297.29 20998.84 24496.10 24498.64 17098.65 19796.04 18699.36 32096.84 15399.14 25199.20 204
Fast-Effi-MVS+97.67 18797.38 19898.57 18098.71 24197.43 18497.23 21399.45 7794.82 27696.13 31096.51 31898.52 3499.91 4396.19 20598.83 28098.37 295
EU-MVSNet97.66 18898.50 8795.13 32199.63 4785.84 34898.35 10698.21 28598.23 11499.54 3099.46 4295.02 22299.68 24198.24 7199.87 5199.87 4
MVS_030497.64 18997.35 20198.52 18997.87 31196.69 21798.59 7898.05 29497.44 17593.74 34898.85 16093.69 25599.88 6498.11 7799.81 6898.98 239
pmmvs597.64 18997.49 19098.08 22599.14 15695.12 25796.70 25099.05 20593.77 29798.62 17398.83 16693.23 25799.75 20998.33 7099.76 9899.36 163
N_pmnet97.63 19197.17 21098.99 12799.27 12297.86 15595.98 28093.41 34695.25 26899.47 4298.90 14495.63 20599.85 10196.91 14299.73 10599.27 191
YYNet197.60 19297.67 17597.39 26799.04 17793.04 30395.27 30998.38 28097.25 19398.92 13498.95 13695.48 21399.73 21796.99 13698.74 28399.41 138
MDA-MVSNet_test_wron97.60 19297.66 17897.41 26699.04 17793.09 29995.27 30998.42 27897.26 19298.88 14298.95 13695.43 21499.73 21797.02 13398.72 28599.41 138
pmmvs497.58 19497.28 20498.51 19298.84 22096.93 20995.40 30898.52 27493.60 29998.61 17598.65 19795.10 22199.60 27196.97 13999.79 8198.99 238
ETH3D cwj APD-0.1697.55 19597.00 21899.19 9298.51 27498.64 8396.85 24099.13 19194.19 29097.65 24398.40 23095.78 20199.81 15693.37 29599.16 24799.12 220
PVSNet_BlendedMVS97.55 19597.53 18797.60 25198.92 20293.77 29396.64 25299.43 8594.49 28097.62 24599.18 7996.82 15199.67 24494.73 25199.93 2499.36 163
ppachtmachnet_test97.50 19797.74 17196.78 29298.70 24591.23 33094.55 33199.05 20596.36 23599.21 8398.79 17396.39 17599.78 18996.74 16199.82 6499.34 169
FMVSNet397.50 19797.24 20798.29 21298.08 30195.83 23697.86 15698.91 23197.89 13798.95 12698.95 13687.06 29999.81 15697.77 9699.69 12699.23 199
CHOSEN 1792x268897.49 19997.14 21498.54 18899.68 3896.09 23096.50 25999.62 1991.58 32298.84 14898.97 12992.36 27299.88 6496.76 15999.95 1599.67 33
CLD-MVS97.49 19997.16 21198.48 19599.07 17097.03 20594.71 32399.21 16494.46 28298.06 21997.16 30897.57 10099.48 30594.46 25999.78 8598.95 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_prior397.48 20197.00 21898.95 13098.69 24997.95 14895.74 29599.03 21096.48 23196.11 31197.63 28695.92 19799.59 27594.16 26899.20 23999.30 184
Vis-MVSNet (Re-imp)97.46 20297.16 21198.34 20799.55 6496.10 22898.94 5698.44 27798.32 10598.16 21098.62 20688.76 29499.73 21793.88 28199.79 8199.18 211
jason97.45 20397.35 20197.76 24199.24 12793.93 28595.86 28998.42 27894.24 28898.50 19098.13 25394.82 22899.91 4397.22 12199.73 10599.43 133
jason: jason.
CL-MVSNet_2432*160097.44 20497.22 20898.08 22598.57 26895.78 23894.30 33698.79 25396.58 22998.60 17798.19 25194.74 23499.64 25996.41 19298.84 27998.82 261
DSMNet-mixed97.42 20597.60 18496.87 28799.15 15591.46 32298.54 8399.12 19392.87 30897.58 24999.63 2096.21 18299.90 4695.74 22699.54 17999.27 191
USDC97.41 20697.40 19697.44 26498.94 19693.67 29595.17 31299.53 5094.03 29498.97 12399.10 9795.29 21699.34 32295.84 22399.73 10599.30 184
our_test_397.39 20797.73 17396.34 29898.70 24589.78 33494.61 32998.97 22396.50 23099.04 11098.85 16095.98 19399.84 11897.26 12099.67 13799.41 138
cl_fuxian97.36 20897.37 19997.31 26898.09 30093.25 29895.01 31799.16 18497.05 20998.77 15998.72 18392.88 26699.64 25996.93 14199.76 9899.05 226
alignmvs97.35 20996.88 22698.78 15698.54 27198.09 12597.71 17197.69 30299.20 4797.59 24895.90 33088.12 29899.55 28798.18 7598.96 27598.70 277
Patchmtry97.35 20996.97 22098.50 19497.31 33496.47 22098.18 11898.92 22998.95 7598.78 15699.37 5385.44 31499.85 10195.96 21599.83 6199.17 215
DP-MVS Recon97.33 21196.92 22398.57 18099.09 16697.99 13896.79 24399.35 11093.18 30397.71 23998.07 26295.00 22399.31 32693.97 27699.13 25498.42 292
QAPM97.31 21296.81 23198.82 14798.80 22997.49 18099.06 4799.19 17190.22 33497.69 24199.16 8596.91 14599.90 4690.89 33199.41 20699.07 224
UnsupCasMVSNet_bld97.30 21396.92 22398.45 19899.28 12196.78 21596.20 27599.27 14995.42 26498.28 20598.30 24393.16 25999.71 22694.99 24597.37 32498.87 257
F-COLMAP97.30 21396.68 23899.14 9999.19 14098.39 10397.27 21299.30 13792.93 30696.62 29798.00 26495.73 20399.68 24192.62 30998.46 29799.35 167
1112_ss97.29 21596.86 22798.58 17799.34 11596.32 22496.75 24799.58 2693.14 30496.89 28797.48 29592.11 27599.86 8796.91 14299.54 17999.57 66
CANet_DTU97.26 21697.06 21597.84 23697.57 32294.65 26796.19 27698.79 25397.23 19995.14 33498.24 24693.22 25899.84 11897.34 11699.84 5599.04 230
Patchmatch-RL test97.26 21697.02 21797.99 23299.52 7195.53 24296.13 27799.71 997.47 16799.27 7299.16 8584.30 32299.62 26497.89 8899.77 8998.81 264
CDPH-MVS97.26 21696.66 24199.07 11199.00 18598.15 12196.03 27999.01 21791.21 32897.79 23597.85 27496.89 14699.69 23292.75 30699.38 21299.39 147
PatchMatch-RL97.24 21996.78 23298.61 17499.03 18097.83 15796.36 26799.06 20193.49 30297.36 26797.78 27795.75 20299.49 30293.44 29398.77 28298.52 285
eth_miper_zixun_eth97.23 22097.25 20597.17 27498.00 30592.77 30794.71 32399.18 17597.27 19198.56 18398.74 18091.89 27799.69 23297.06 13299.81 6899.05 226
sss97.21 22196.93 22198.06 22798.83 22295.22 25396.75 24798.48 27694.49 28097.27 26897.90 27192.77 26899.80 16596.57 17599.32 22099.16 218
LFMVS97.20 22296.72 23598.64 16898.72 23896.95 20898.93 5794.14 34399.74 798.78 15699.01 12084.45 31999.73 21797.44 11199.27 22999.25 195
HyFIR lowres test97.19 22396.60 24498.96 12999.62 4997.28 19095.17 31299.50 5694.21 28999.01 11498.32 24286.61 30299.99 297.10 13099.84 5599.60 49
miper_lstm_enhance97.18 22497.16 21197.25 27298.16 29692.85 30595.15 31499.31 12897.25 19398.74 16398.78 17490.07 28599.78 18997.19 12299.80 7699.11 222
CNLPA97.17 22596.71 23698.55 18598.56 26998.05 13496.33 26898.93 22696.91 21697.06 27697.39 30094.38 24199.45 31191.66 31899.18 24598.14 301
xiu_mvs_v2_base97.16 22697.49 19096.17 30398.54 27192.46 31195.45 30698.84 24497.25 19397.48 25996.49 31998.31 4799.90 4696.34 19698.68 28996.15 346
AdaColmapbinary97.14 22796.71 23698.46 19798.34 28597.80 16396.95 23198.93 22695.58 25896.92 28197.66 28395.87 19999.53 29290.97 32899.14 25198.04 304
train_agg97.10 22896.45 25199.07 11198.71 24198.08 12995.96 28399.03 21091.64 32095.85 31897.53 29096.47 17199.76 20293.67 28699.16 24799.36 163
OpenMVScopyleft96.65 797.09 22996.68 23898.32 20898.32 28697.16 20198.86 6299.37 10089.48 33896.29 30999.15 8996.56 16699.90 4692.90 30099.20 23997.89 309
PS-MVSNAJ97.08 23097.39 19796.16 30598.56 26992.46 31195.24 31198.85 24397.25 19397.49 25895.99 32898.07 6399.90 4696.37 19398.67 29096.12 347
RRT_MVS97.07 23196.57 24698.58 17795.89 35596.33 22397.36 20498.77 25697.85 14099.08 10099.12 9382.30 33299.96 898.82 4299.90 4399.45 124
miper_ehance_all_eth97.06 23297.03 21697.16 27697.83 31293.06 30094.66 32699.09 19795.99 24998.69 16598.45 22792.73 26999.61 27096.79 15599.03 26598.82 261
agg_prior197.06 23296.40 25299.03 12198.68 25297.99 13895.76 29399.01 21791.73 31995.59 32197.50 29396.49 17099.77 19593.71 28599.14 25199.34 169
lupinMVS97.06 23296.86 22797.65 24798.88 21293.89 28995.48 30597.97 29593.53 30098.16 21097.58 28893.81 25199.91 4396.77 15899.57 17199.17 215
API-MVS97.04 23596.91 22597.42 26597.88 31098.23 11598.18 11898.50 27597.57 15897.39 26596.75 31596.77 15599.15 34090.16 33499.02 26894.88 352
cl-mvsnet_97.02 23696.83 23097.58 25397.82 31394.04 27994.66 32699.16 18497.04 21098.63 17198.71 18488.68 29699.69 23297.00 13499.81 6899.00 237
cl-mvsnet197.02 23696.84 22997.58 25397.82 31394.03 28094.66 32699.16 18497.04 21098.63 17198.71 18488.69 29599.69 23297.00 13499.81 6899.01 234
RPMNet97.02 23696.93 22197.30 26997.71 31794.22 27398.11 12599.30 13799.37 3496.91 28399.34 5986.72 30199.87 8097.53 10897.36 32697.81 315
HQP-MVS97.00 23996.49 25098.55 18598.67 25496.79 21296.29 27099.04 20896.05 24595.55 32596.84 31393.84 24999.54 29092.82 30399.26 23299.32 177
bset_n11_16_dypcd96.99 24096.56 24798.27 21499.00 18595.25 25092.18 35394.05 34498.75 8499.01 11498.38 23488.98 29399.93 2698.77 4699.92 3399.64 39
new_pmnet96.99 24096.76 23397.67 24598.72 23894.89 26095.95 28598.20 28692.62 31198.55 18598.54 21594.88 22799.52 29693.96 27799.44 20498.59 284
Test_1112_low_res96.99 24096.55 24898.31 21099.35 11395.47 24595.84 29299.53 5091.51 32496.80 29298.48 22691.36 27999.83 13396.58 17399.53 18399.62 44
PVSNet_Blended96.88 24396.68 23897.47 26298.92 20293.77 29394.71 32399.43 8590.98 33097.62 24597.36 30396.82 15199.67 24494.73 25199.56 17698.98 239
MVSTER96.86 24496.55 24897.79 23997.91 30994.21 27597.56 18898.87 23797.49 16699.06 10399.05 10780.72 33799.80 16598.44 6399.82 6499.37 157
BH-untuned96.83 24596.75 23497.08 27798.74 23693.33 29796.71 24998.26 28396.72 22398.44 19397.37 30295.20 21899.47 30791.89 31697.43 32398.44 290
BH-RMVSNet96.83 24596.58 24597.58 25398.47 27794.05 27896.67 25197.36 30796.70 22597.87 22997.98 26695.14 22099.44 31290.47 33398.58 29599.25 195
PAPM_NR96.82 24796.32 25598.30 21199.07 17096.69 21797.48 19698.76 25795.81 25596.61 29896.47 32194.12 24899.17 33890.82 33297.78 31799.06 225
MG-MVS96.77 24896.61 24397.26 27198.31 28793.06 30095.93 28698.12 29196.45 23397.92 22598.73 18193.77 25399.39 31791.19 32799.04 26499.33 175
112196.73 24996.00 26098.91 13698.95 19597.76 16598.07 13098.73 26387.65 34696.54 29998.13 25394.52 23799.73 21792.38 31299.02 26899.24 198
test_yl96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
DCV-MVSNet96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
WTY-MVS96.67 25296.27 25897.87 23598.81 22794.61 26896.77 24597.92 29794.94 27397.12 27197.74 28091.11 28099.82 14393.89 28098.15 30799.18 211
PatchT96.65 25396.35 25397.54 25897.40 33095.32 24997.98 14596.64 32399.33 3796.89 28799.42 4884.32 32199.81 15697.69 10497.49 32097.48 330
TAPA-MVS96.21 1196.63 25495.95 26298.65 16798.93 19898.09 12596.93 23499.28 14683.58 35398.13 21397.78 27796.13 18399.40 31593.52 29099.29 22798.45 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MIMVSNet96.62 25596.25 25997.71 24499.04 17794.66 26699.16 3896.92 31997.23 19997.87 22999.10 9786.11 30899.65 25791.65 31999.21 23898.82 261
Patchmatch-test96.55 25696.34 25497.17 27498.35 28493.06 30098.40 10197.79 29897.33 18498.41 19798.67 19283.68 32699.69 23295.16 24299.31 22298.77 271
PMMVS96.51 25795.98 26198.09 22297.53 32595.84 23594.92 31998.84 24491.58 32296.05 31595.58 33495.68 20499.66 25295.59 23598.09 31098.76 272
PLCcopyleft94.65 1696.51 25795.73 26698.85 14498.75 23597.91 15196.42 26499.06 20190.94 33195.59 32197.38 30194.41 23999.59 27590.93 32998.04 31499.05 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t96.50 25995.77 26498.69 16599.48 9197.43 18497.84 15899.55 4381.42 35596.51 30298.58 21295.53 20899.67 24493.41 29499.58 16798.98 239
MAR-MVS96.47 26095.70 26798.79 15397.92 30899.12 5398.28 10898.60 27192.16 31795.54 32896.17 32694.77 23399.52 29689.62 33698.23 30197.72 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETH3 D test640096.46 26195.59 27299.08 10898.88 21298.21 11796.53 25699.18 17588.87 34297.08 27497.79 27693.64 25699.77 19588.92 33899.40 20899.28 189
SCA96.41 26296.66 24195.67 31198.24 29188.35 33995.85 29196.88 32096.11 24397.67 24298.67 19293.10 26199.85 10194.16 26899.22 23698.81 264
DPM-MVS96.32 26395.59 27298.51 19298.76 23297.21 19694.54 33298.26 28391.94 31896.37 30797.25 30593.06 26399.43 31391.42 32398.74 28398.89 254
CMPMVSbinary75.91 2396.29 26495.44 27798.84 14596.25 35198.69 8297.02 22799.12 19388.90 34197.83 23298.86 15789.51 28998.90 34891.92 31599.51 18998.92 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CR-MVSNet96.28 26595.95 26297.28 27097.71 31794.22 27398.11 12598.92 22992.31 31496.91 28399.37 5385.44 31499.81 15697.39 11497.36 32697.81 315
CVMVSNet96.25 26697.21 20993.38 33799.10 16380.56 36197.20 21798.19 28896.94 21499.00 11799.02 11489.50 29099.80 16596.36 19599.59 16199.78 14
AUN-MVS96.24 26795.45 27698.60 17598.70 24597.22 19497.38 20297.65 30395.95 25095.53 32997.96 26982.11 33699.79 17896.31 19797.44 32298.80 268
EPNet96.14 26895.44 27798.25 21590.76 36295.50 24497.92 14994.65 33698.97 7192.98 34998.85 16089.12 29299.87 8095.99 21399.68 13199.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
wuyk23d96.06 26997.62 18291.38 34098.65 26098.57 9198.85 6396.95 31796.86 21899.90 499.16 8599.18 1198.40 35389.23 33799.77 8977.18 356
miper_enhance_ethall96.01 27095.74 26596.81 29196.41 34992.27 31593.69 34598.89 23491.14 32998.30 20397.35 30490.58 28299.58 28096.31 19799.03 26598.60 282
FMVSNet596.01 27095.20 28598.41 20197.53 32596.10 22898.74 6699.50 5697.22 20298.03 22399.04 11069.80 35799.88 6497.27 11999.71 11599.25 195
baseline195.96 27295.44 27797.52 26098.51 27493.99 28398.39 10296.09 32998.21 11598.40 20197.76 27986.88 30099.63 26295.42 23989.27 35798.95 244
HY-MVS95.94 1395.90 27395.35 28197.55 25797.95 30694.79 26198.81 6596.94 31892.28 31595.17 33398.57 21389.90 28799.75 20991.20 32697.33 32898.10 302
GA-MVS95.86 27495.32 28297.49 26198.60 26394.15 27793.83 34397.93 29695.49 26296.68 29497.42 29983.21 32799.30 32896.22 20398.55 29699.01 234
OpenMVS_ROBcopyleft95.38 1495.84 27595.18 28697.81 23898.41 28297.15 20297.37 20398.62 27083.86 35298.65 16998.37 23694.29 24399.68 24188.41 33998.62 29396.60 341
cl-mvsnet295.79 27695.39 28096.98 28196.77 34392.79 30694.40 33498.53 27394.59 27997.89 22898.17 25282.82 33199.24 33396.37 19399.03 26598.92 250
131495.74 27795.60 27196.17 30397.53 32592.75 30898.07 13098.31 28291.22 32794.25 34096.68 31695.53 20899.03 34291.64 32097.18 32996.74 339
PVSNet93.40 1795.67 27895.70 26795.57 31498.83 22288.57 33792.50 35097.72 30092.69 31096.49 30596.44 32293.72 25499.43 31393.61 28799.28 22898.71 275
tttt051795.64 27994.98 29097.64 24999.36 10993.81 29198.72 6890.47 35598.08 12598.67 16798.34 23973.88 35499.92 3397.77 9699.51 18999.20 204
PatchmatchNetpermissive95.58 28095.67 26995.30 32097.34 33287.32 34397.65 17896.65 32295.30 26797.07 27598.69 18884.77 31699.75 20994.97 24698.64 29198.83 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS95.55 28195.12 28896.86 29097.54 32493.94 28496.49 26096.53 32494.36 28797.03 27896.61 31794.26 24499.16 33986.91 34396.31 33997.47 331
JIA-IIPM95.52 28295.03 28997.00 27996.85 34194.03 28096.93 23495.82 33199.20 4794.63 33899.71 1283.09 32899.60 27194.42 26294.64 34997.36 332
CHOSEN 280x42095.51 28395.47 27495.65 31398.25 29088.27 34093.25 34798.88 23593.53 30094.65 33797.15 30986.17 30699.93 2697.41 11399.93 2498.73 274
ADS-MVSNet295.43 28494.98 29096.76 29398.14 29791.74 31997.92 14997.76 29990.23 33296.51 30298.91 14185.61 31199.85 10192.88 30196.90 33298.69 278
PAPR95.29 28594.47 29597.75 24297.50 32995.14 25694.89 32098.71 26591.39 32695.35 33295.48 33794.57 23699.14 34184.95 34697.37 32498.97 243
thisisatest053095.27 28694.45 29697.74 24399.19 14094.37 27197.86 15690.20 35697.17 20398.22 20797.65 28473.53 35599.90 4696.90 14799.35 21698.95 244
ADS-MVSNet95.24 28794.93 29296.18 30298.14 29790.10 33397.92 14997.32 31090.23 33296.51 30298.91 14185.61 31199.74 21392.88 30196.90 33298.69 278
RRT_test8_iter0595.24 28795.13 28795.57 31497.32 33387.02 34597.99 14399.41 8998.06 12699.12 9299.05 10766.85 36299.85 10198.93 3599.47 20099.84 8
BH-w/o95.13 28994.89 29395.86 30798.20 29491.31 32695.65 29897.37 30693.64 29896.52 30195.70 33393.04 26499.02 34388.10 34095.82 34497.24 333
tpmrst95.07 29095.46 27593.91 33197.11 33784.36 35597.62 18096.96 31694.98 27196.35 30898.80 17185.46 31399.59 27595.60 23496.23 34097.79 318
pmmvs395.03 29194.40 29796.93 28397.70 31992.53 31095.08 31597.71 30188.57 34397.71 23998.08 26179.39 34499.82 14396.19 20599.11 25898.43 291
tpmvs95.02 29295.25 28394.33 32796.39 35085.87 34798.08 12996.83 32195.46 26395.51 33098.69 18885.91 30999.53 29294.16 26896.23 34097.58 327
EPNet_dtu94.93 29394.78 29495.38 31993.58 35987.68 34296.78 24495.69 33397.35 18389.14 35798.09 26088.15 29799.49 30294.95 24799.30 22598.98 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
cascas94.79 29494.33 30096.15 30696.02 35492.36 31492.34 35299.26 15485.34 35195.08 33594.96 34592.96 26598.53 35294.41 26598.59 29497.56 328
tpm94.67 29594.34 29995.66 31297.68 32188.42 33897.88 15394.90 33594.46 28296.03 31698.56 21478.66 34699.79 17895.88 21795.01 34898.78 270
test0.0.03 194.51 29693.69 30596.99 28096.05 35293.61 29694.97 31893.49 34596.17 24097.57 25194.88 34682.30 33299.01 34593.60 28894.17 35398.37 295
thres600view794.45 29793.83 30396.29 29999.06 17491.53 32197.99 14394.24 34198.34 10397.44 26295.01 34279.84 34099.67 24484.33 34798.23 30197.66 324
PCF-MVS92.86 1894.36 29893.00 31598.42 20098.70 24597.56 17793.16 34899.11 19579.59 35697.55 25297.43 29892.19 27399.73 21779.85 35599.45 20397.97 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata94.32 29992.59 31799.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25345.85 35897.50 10899.83 13396.79 15599.53 18399.56 71
MVS-HIRNet94.32 29995.62 27090.42 34198.46 27875.36 36296.29 27089.13 35895.25 26895.38 33199.75 792.88 26699.19 33794.07 27599.39 20996.72 340
ET-MVSNet_ETH3D94.30 30193.21 31197.58 25398.14 29794.47 27094.78 32293.24 34894.72 27789.56 35695.87 33178.57 34899.81 15696.91 14297.11 33198.46 287
thres100view90094.19 30293.67 30695.75 31099.06 17491.35 32598.03 13794.24 34198.33 10497.40 26494.98 34479.84 34099.62 26483.05 34998.08 31196.29 342
E-PMN94.17 30394.37 29893.58 33496.86 34085.71 35090.11 35597.07 31498.17 12197.82 23497.19 30684.62 31898.94 34689.77 33597.68 31996.09 348
thres40094.14 30493.44 30896.24 30198.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31197.66 324
thisisatest051594.12 30593.16 31296.97 28298.60 26392.90 30493.77 34490.61 35494.10 29296.91 28395.87 33174.99 35399.80 16594.52 25799.12 25798.20 298
tfpn200view994.03 30693.44 30895.78 30998.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31196.29 342
CostFormer93.97 30793.78 30494.51 32697.53 32585.83 34997.98 14595.96 33089.29 34094.99 33698.63 20478.63 34799.62 26494.54 25696.50 33798.09 303
test-LLR93.90 30893.85 30294.04 32996.53 34584.62 35394.05 34092.39 35096.17 24094.12 34295.07 34082.30 33299.67 24495.87 22098.18 30497.82 313
EMVS93.83 30994.02 30193.23 33896.83 34284.96 35189.77 35696.32 32697.92 13497.43 26396.36 32586.17 30698.93 34787.68 34197.73 31895.81 349
baseline293.73 31092.83 31696.42 29797.70 31991.28 32896.84 24289.77 35793.96 29692.44 35195.93 32979.14 34599.77 19592.94 29996.76 33698.21 297
thres20093.72 31193.14 31395.46 31898.66 25991.29 32796.61 25494.63 33797.39 17996.83 29093.71 35479.88 33999.56 28482.40 35298.13 30895.54 351
EPMVS93.72 31193.27 31095.09 32296.04 35387.76 34198.13 12285.01 36094.69 27896.92 28198.64 20078.47 35099.31 32695.04 24396.46 33898.20 298
dp93.47 31393.59 30793.13 33996.64 34481.62 36097.66 17696.42 32592.80 30996.11 31198.64 20078.55 34999.59 27593.31 29692.18 35698.16 300
FPMVS93.44 31492.23 31997.08 27799.25 12697.86 15595.61 29997.16 31392.90 30793.76 34798.65 19775.94 35295.66 35679.30 35697.49 32097.73 320
tpm cat193.29 31593.13 31493.75 33297.39 33184.74 35297.39 20197.65 30383.39 35494.16 34198.41 22982.86 33099.39 31791.56 32295.35 34797.14 334
MVS93.19 31692.09 32096.50 29696.91 33994.03 28098.07 13098.06 29368.01 35794.56 33996.48 32095.96 19599.30 32883.84 34896.89 33496.17 344
tpm293.09 31792.58 31894.62 32597.56 32386.53 34697.66 17695.79 33286.15 34994.07 34498.23 24875.95 35199.53 29290.91 33096.86 33597.81 315
KD-MVS_2432*160092.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
miper_refine_blended92.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
DWT-MVSNet_test92.75 32092.05 32194.85 32396.48 34787.21 34497.83 15994.99 33492.22 31692.72 35094.11 35370.75 35699.46 30995.01 24494.33 35297.87 311
MVEpermissive83.40 2292.50 32191.92 32494.25 32898.83 22291.64 32092.71 34983.52 36195.92 25186.46 36095.46 33895.20 21895.40 35780.51 35498.64 29195.73 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 32291.20 32795.85 30895.80 35692.38 31399.31 1881.84 36299.75 591.83 35399.74 868.29 35899.02 34387.15 34297.12 33096.16 345
test-mter92.33 32391.76 32694.04 32996.53 34584.62 35394.05 34092.39 35094.00 29594.12 34295.07 34065.63 36599.67 24495.87 22098.18 30497.82 313
IB-MVS91.63 1992.24 32490.90 32896.27 30097.22 33691.24 32994.36 33593.33 34792.37 31392.24 35294.58 35066.20 36499.89 5593.16 29894.63 35097.66 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,192.19 32591.77 32593.46 33596.48 34782.80 35894.05 34091.52 35394.45 28494.00 34594.88 34666.65 36399.56 28495.78 22598.11 30998.02 305
PAPM91.88 32690.34 32996.51 29598.06 30292.56 30992.44 35197.17 31286.35 34890.38 35596.01 32786.61 30299.21 33670.65 35895.43 34697.75 319
PVSNet_089.98 2191.15 32790.30 33093.70 33397.72 31684.34 35690.24 35497.42 30590.20 33593.79 34693.09 35590.90 28198.89 34986.57 34472.76 35897.87 311
tmp_tt78.77 32878.73 33178.90 34258.45 36374.76 36494.20 33778.26 36439.16 35986.71 35992.82 35680.50 33875.19 36086.16 34592.29 35586.74 355
cdsmvs_eth3d_5k24.66 32932.88 3320.00 3450.00 3660.00 3670.00 35799.10 1960.00 3620.00 36397.58 28899.21 100.00 3630.00 3610.00 3610.00 359
testmvs17.12 33020.53 3336.87 34412.05 3644.20 36693.62 3466.73 3654.62 36110.41 36124.33 3598.28 3673.56 3629.69 36015.07 35912.86 358
test12317.04 33120.11 3347.82 34310.25 3654.91 36594.80 3214.47 3664.93 36010.00 36224.28 3609.69 3663.64 36110.14 35912.43 36014.92 357
pcd_1.5k_mvsjas8.17 33210.90 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36398.07 630.00 3630.00 3610.00 3610.00 359
ab-mvs-re8.12 33310.83 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36397.48 2950.00 3680.00 3630.00 3610.00 3610.00 359
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ZD-MVS99.01 18498.84 6999.07 20094.10 29298.05 22198.12 25696.36 17999.86 8792.70 30899.19 243
RE-MVS-def98.58 7899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.75 8696.56 17899.39 20999.45 124
IU-MVS99.49 8399.15 4598.87 23792.97 30599.41 4996.76 15999.62 15199.66 34
OPU-MVS98.82 14798.59 26598.30 10798.10 12798.52 21798.18 5798.75 35194.62 25499.48 19999.41 138
test_241102_TWO99.30 13798.03 12799.26 7699.02 11497.51 10799.88 6496.91 14299.60 15999.66 34
test_241102_ONE99.49 8399.17 3699.31 12897.98 12999.66 2098.90 14498.36 4299.48 305
9.1497.78 16899.07 17097.53 19199.32 12395.53 26198.54 18798.70 18797.58 9999.76 20294.32 26799.46 201
save fliter99.11 15997.97 14396.53 25699.02 21498.24 112
test_0728_THIRD98.17 12199.08 10099.02 11497.89 7699.88 6497.07 13199.71 11599.70 29
test_0728_SECOND99.60 1399.50 7699.23 2498.02 13999.32 12399.88 6496.99 13699.63 14899.68 31
test072699.50 7699.21 2698.17 12199.35 11097.97 13099.26 7699.06 10097.61 97
GSMVS98.81 264
test_part299.36 10999.10 5699.05 108
sam_mvs184.74 31798.81 264
sam_mvs84.29 323
ambc98.24 21698.82 22595.97 23298.62 7499.00 22099.27 7299.21 7496.99 14199.50 30196.55 18199.50 19699.26 194
MTGPAbinary99.20 166
test_post197.59 18520.48 36283.07 32999.66 25294.16 268
test_post21.25 36183.86 32599.70 228
patchmatchnet-post98.77 17684.37 32099.85 101
GG-mvs-BLEND94.76 32494.54 35892.13 31799.31 1880.47 36388.73 35891.01 35767.59 36198.16 35582.30 35394.53 35193.98 353
MTMP97.93 14891.91 352
gm-plane-assit94.83 35781.97 35988.07 34594.99 34399.60 27191.76 317
test9_res93.28 29799.15 25099.38 154
TEST998.71 24198.08 12995.96 28399.03 21091.40 32595.85 31897.53 29096.52 16899.76 202
test_898.67 25498.01 13795.91 28899.02 21491.64 32095.79 32097.50 29396.47 17199.76 202
agg_prior292.50 31199.16 24799.37 157
agg_prior98.68 25297.99 13899.01 21795.59 32199.77 195
TestCases99.16 9699.50 7698.55 9299.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
test_prior497.97 14395.86 289
test_prior295.74 29596.48 23196.11 31197.63 28695.92 19794.16 26899.20 239
test_prior98.95 13098.69 24997.95 14899.03 21099.59 27599.30 184
旧先验295.76 29388.56 34497.52 25599.66 25294.48 258
新几何295.93 286
新几何198.91 13698.94 19697.76 16598.76 25787.58 34796.75 29398.10 25894.80 23199.78 18992.73 30799.00 27199.20 204
旧先验198.82 22597.45 18398.76 25798.34 23995.50 21199.01 27099.23 199
无先验95.74 29598.74 26289.38 33999.73 21792.38 31299.22 203
原ACMM295.53 302
原ACMM198.35 20698.90 20696.25 22698.83 24992.48 31296.07 31498.10 25895.39 21599.71 22692.61 31098.99 27299.08 223
test22298.92 20296.93 20995.54 30198.78 25585.72 35096.86 28998.11 25794.43 23899.10 25999.23 199
testdata299.79 17892.80 305
segment_acmp97.02 139
testdata98.09 22298.93 19895.40 24898.80 25290.08 33697.45 26198.37 23695.26 21799.70 22893.58 28998.95 27699.17 215
testdata195.44 30796.32 237
test1298.93 13398.58 26697.83 15798.66 26796.53 30095.51 21099.69 23299.13 25499.27 191
plane_prior799.19 14097.87 154
plane_prior698.99 18997.70 17194.90 224
plane_prior599.27 14999.70 22894.42 26299.51 18999.45 124
plane_prior497.98 266
plane_prior397.78 16497.41 17797.79 235
plane_prior297.77 16598.20 118
plane_prior199.05 176
plane_prior97.65 17397.07 22696.72 22399.36 214
n20.00 367
nn0.00 367
door-mid99.57 33
lessismore_v098.97 12899.73 2397.53 17986.71 35999.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
LGP-MVS_train99.47 5399.57 5498.97 6299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
test1198.87 237
door99.41 89
HQP5-MVS96.79 212
HQP-NCC98.67 25496.29 27096.05 24595.55 325
ACMP_Plane98.67 25496.29 27096.05 24595.55 325
BP-MVS92.82 303
HQP4-MVS95.56 32499.54 29099.32 177
HQP3-MVS99.04 20899.26 232
HQP2-MVS93.84 249
NP-MVS98.84 22097.39 18696.84 313
MDTV_nov1_ep13_2view74.92 36397.69 17390.06 33797.75 23885.78 31093.52 29098.69 278
MDTV_nov1_ep1395.22 28497.06 33883.20 35797.74 16996.16 32794.37 28696.99 27998.83 16683.95 32499.53 29293.90 27997.95 315
ACMMP++_ref99.77 89
ACMMP++99.68 131
Test By Simon96.52 168
ITE_SJBPF98.87 14199.22 13298.48 9999.35 11097.50 16498.28 20598.60 21097.64 9599.35 32193.86 28299.27 22998.79 269
DeepMVS_CXcopyleft93.44 33698.24 29194.21 27594.34 33864.28 35891.34 35494.87 34889.45 29192.77 35977.54 35793.14 35493.35 354