This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ANet_high99.57 799.67 599.28 7999.89 698.09 12599.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2299.31 16100.00 199.82 9
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
LCM-MVSNet-Re98.64 8998.48 9299.11 10398.85 21798.51 9798.49 9199.83 398.37 10199.69 1799.46 4298.21 5599.92 3394.13 27399.30 22598.91 253
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2398.26 10999.17 3799.78 499.11 5599.27 7299.48 4098.82 2099.95 1498.94 3499.93 2499.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15699.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 699.64 1299.84 899.83 299.50 599.87 8099.36 1499.92 3399.64 39
Gipumacopyleft99.03 3599.16 3098.64 16899.94 298.51 9799.32 1599.75 799.58 2298.60 17799.62 2198.22 5499.51 30097.70 10299.73 10597.89 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UA-Net99.47 1199.40 1499.70 299.49 8399.29 1799.80 399.72 899.82 399.04 11099.81 398.05 6699.96 898.85 4099.99 599.86 6
Patchmatch-RL test97.26 21697.02 21797.99 23299.52 7195.53 24296.13 27799.71 997.47 16799.27 7299.16 8584.30 32299.62 26497.89 8899.77 8998.81 264
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 999.27 4299.90 499.74 899.68 299.97 399.55 899.99 599.88 3
TDRefinement99.42 1699.38 1599.55 2699.76 2199.33 1599.68 599.71 999.38 3399.53 3399.61 2398.64 2799.80 16598.24 7199.84 5599.52 93
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1298.93 7699.65 2299.72 1198.93 1899.95 1499.11 26100.00 199.82 9
Effi-MVS+98.02 15797.82 16798.62 17298.53 27397.19 19897.33 20699.68 1397.30 18896.68 29497.46 29798.56 3299.80 16596.63 17198.20 30398.86 258
PM-MVS98.82 5898.72 5799.12 10199.64 4598.54 9597.98 14599.68 1397.62 15399.34 6199.18 7997.54 10299.77 19597.79 9499.74 10299.04 230
PVSNet_Blended_VisFu98.17 14998.15 14098.22 21799.73 2395.15 25597.36 20499.68 1394.45 28498.99 11899.27 6696.87 14799.94 2297.13 12899.91 3999.57 66
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1699.09 6299.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12199.20 3299.65 1799.48 2499.92 399.71 1298.07 6399.96 899.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1899.30 4099.65 2299.60 2599.16 1499.82 14399.07 2899.83 6199.56 71
CHOSEN 1792x268897.49 19997.14 21498.54 18899.68 3896.09 23096.50 25999.62 1991.58 32298.84 14898.97 12992.36 27299.88 6496.76 15999.95 1599.67 33
XXY-MVS99.14 3299.15 3299.10 10599.76 2197.74 16898.85 6399.62 1998.48 9999.37 5699.49 3898.75 2399.86 8798.20 7499.80 7699.71 26
CS-MVS97.82 18197.59 18698.52 18998.76 23298.04 13598.20 11699.61 2197.10 20796.02 31794.87 34898.27 4899.84 11896.31 19799.17 24697.69 323
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2199.66 1199.68 1999.66 1798.44 3899.95 1499.73 299.96 1499.75 22
EIA-MVS98.00 15997.74 17198.80 15198.72 23898.09 12598.05 13499.60 2397.39 17996.63 29695.55 33597.68 8999.80 16596.73 16399.27 22998.52 285
EG-PatchMatch MVS98.99 3899.01 3898.94 13299.50 7697.47 18198.04 13699.59 2498.15 12399.40 5299.36 5698.58 3199.76 20298.78 4399.68 13199.59 55
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13399.90 4699.21 2299.87 5199.54 83
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1499.00 3299.95 1599.78 14
AllTest98.44 11998.20 13199.16 9699.50 7698.55 9298.25 11199.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
TestCases99.16 9699.50 7698.55 9299.58 2696.80 21998.88 14299.06 10097.65 9299.57 28194.45 26099.61 15799.37 157
diffmvs98.22 14398.24 12798.17 22099.00 18595.44 24696.38 26699.58 2697.79 14498.53 18898.50 22196.76 15799.74 21397.95 8799.64 14599.34 169
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17599.92 3399.44 1399.92 3399.68 31
1112_ss97.29 21596.86 22798.58 17799.34 11596.32 22496.75 24799.58 2693.14 30496.89 28797.48 29592.11 27599.86 8796.91 14299.54 17999.57 66
ACMH+96.62 999.08 3499.00 3999.33 7499.71 2998.83 7098.60 7699.58 2699.11 5599.53 3399.18 7998.81 2199.67 24496.71 16699.77 8999.50 100
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3597.12 13399.85 10199.02 3199.94 2099.80 12
casdiffmvs98.95 4699.00 3998.81 14999.38 10697.33 18797.82 16099.57 3399.17 5299.35 5999.17 8398.35 4599.69 23298.46 6299.73 10599.41 138
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13399.06 2999.62 15199.66 34
Baseline_NR-MVSNet98.98 4298.86 4499.36 6499.82 1698.55 9297.47 19899.57 3399.37 3499.21 8399.61 2396.76 15799.83 13398.06 8099.83 6199.71 26
door-mid99.57 33
RPSCF98.62 9398.36 11399.42 5799.65 4299.42 498.55 8299.57 3397.72 14798.90 13599.26 6896.12 18499.52 29695.72 22799.71 11599.32 177
CSCG98.68 8398.50 8799.20 9199.45 9798.63 8498.56 8199.57 3397.87 13898.85 14698.04 26397.66 9199.84 11896.72 16499.81 6899.13 219
MVSFormer98.26 13998.43 10297.77 24098.88 21293.89 28999.39 1199.56 4099.11 5598.16 21098.13 25393.81 25199.97 399.26 1899.57 17199.43 133
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5599.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
COLMAP_ROBcopyleft96.50 1098.99 3898.85 4599.41 6099.58 5099.10 5698.74 6699.56 4099.09 6299.33 6299.19 7798.40 4099.72 22595.98 21499.76 9899.42 136
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1098.97 4399.11 3398.55 18599.44 9996.21 22798.90 5899.55 4398.73 8599.48 4099.60 2596.63 16499.83 13399.70 399.99 599.61 48
WR-MVS_H99.33 2399.22 2799.65 599.71 2999.24 2399.32 1599.55 4399.46 2799.50 3999.34 5997.30 12299.93 2698.90 3699.93 2499.77 16
114514_t96.50 25995.77 26498.69 16599.48 9197.43 18497.84 15899.55 4381.42 35596.51 30298.58 21295.53 20899.67 24493.41 29499.58 16798.98 239
ACMH96.65 799.25 2799.24 2699.26 8599.72 2898.38 10499.07 4599.55 4398.30 10699.65 2299.45 4699.22 999.76 20298.44 6399.77 8999.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4799.06 6098.69 7099.54 4799.31 3899.62 2799.53 3297.36 12099.86 8799.24 2199.71 11599.39 147
xxxxxxxxxxxxxcwj98.44 11998.24 12799.06 11699.11 15997.97 14396.53 25699.54 4798.24 11298.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
PEN-MVS99.41 1799.34 1999.62 699.73 2399.14 4899.29 2399.54 4799.62 1799.56 2899.42 4898.16 5999.96 898.78 4399.93 2499.77 16
PS-CasMVS99.40 1899.33 2099.62 699.71 2999.10 5699.29 2399.53 5099.53 2399.46 4399.41 5098.23 5199.95 1498.89 3899.95 1599.81 11
Test_1112_low_res96.99 24096.55 24898.31 21099.35 11395.47 24595.84 29299.53 5091.51 32496.80 29298.48 22691.36 27999.83 13396.58 17399.53 18399.62 44
USDC97.41 20697.40 19697.44 26498.94 19693.67 29595.17 31299.53 5094.03 29498.97 12399.10 9795.29 21699.34 32295.84 22399.73 10599.30 184
FIs99.14 3299.09 3499.29 7799.70 3598.28 10899.13 4199.52 5399.48 2499.24 7999.41 5096.79 15499.82 14398.69 5199.88 4899.76 20
Anonymous2023121199.27 2599.27 2499.26 8599.29 12098.18 11899.49 899.51 5499.70 899.80 999.68 1496.84 14899.83 13399.21 2299.91 3999.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 2999.30 1699.31 1899.51 5499.64 1299.56 2899.46 4298.23 5199.97 398.78 4399.93 2499.72 25
ETV-MVS98.03 15597.86 16598.56 18498.69 24998.07 13197.51 19499.50 5698.10 12497.50 25795.51 33698.41 3999.88 6496.27 20199.24 23497.71 322
Fast-Effi-MVS+-dtu98.27 13798.09 14598.81 14998.43 28198.11 12497.61 18299.50 5698.64 8797.39 26597.52 29298.12 6299.95 1496.90 14798.71 28798.38 293
abl_698.99 3898.78 5199.61 999.45 9799.46 398.60 7699.50 5698.59 9399.24 7999.04 11098.54 3399.89 5596.45 18899.62 15199.50 100
HPM-MVS_fast99.01 3698.82 4799.57 1899.71 2999.35 1199.00 5199.50 5697.33 18498.94 13298.86 15798.75 2399.82 14397.53 10899.71 11599.56 71
XVG-OURS98.53 11098.34 11699.11 10399.50 7698.82 7295.97 28199.50 5697.30 18899.05 10898.98 12799.35 799.32 32595.72 22799.68 13199.18 211
baseline98.96 4599.02 3798.76 15999.38 10697.26 19198.49 9199.50 5698.86 7999.19 8599.06 10098.23 5199.69 23298.71 5099.76 9899.33 175
FMVSNet596.01 27095.20 28598.41 20197.53 32596.10 22898.74 6699.50 5697.22 20298.03 22399.04 11069.80 35799.88 6497.27 11999.71 11599.25 195
HyFIR lowres test97.19 22396.60 24498.96 12999.62 4997.28 19095.17 31299.50 5694.21 28999.01 11498.32 24286.61 30299.99 297.10 13099.84 5599.60 49
testgi98.32 13198.39 10998.13 22199.57 5495.54 24197.78 16299.49 6497.37 18199.19 8597.65 28498.96 1799.49 30296.50 18598.99 27299.34 169
PGM-MVS98.66 8698.37 11299.55 2699.53 6999.18 3598.23 11299.49 6497.01 21298.69 16598.88 15398.00 6999.89 5595.87 22099.59 16199.58 61
new-patchmatchnet98.35 12998.74 5497.18 27399.24 12792.23 31696.42 26499.48 6698.30 10699.69 1799.53 3297.44 11599.82 14398.84 4199.77 8999.49 104
nrg03099.40 1899.35 1799.54 2999.58 5099.13 5198.98 5499.48 6699.68 999.46 4399.26 6898.62 2899.73 21799.17 2599.92 3399.76 20
APDe-MVS98.99 3898.79 5099.60 1399.21 13499.15 4598.87 6099.48 6697.57 15899.35 5999.24 7197.83 7999.89 5597.88 9199.70 12099.75 22
XVG-OURS-SEG-HR98.49 11498.28 12399.14 9999.49 8398.83 7096.54 25599.48 6697.32 18699.11 9498.61 20999.33 899.30 32896.23 20298.38 29899.28 189
LPG-MVS_test98.71 7598.46 9699.47 5399.57 5498.97 6298.23 11299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
LGP-MVS_train99.47 5399.57 5498.97 6299.48 6696.60 22799.10 9799.06 10098.71 2599.83 13395.58 23699.78 8599.62 44
v899.01 3699.16 3098.57 18099.47 9396.31 22598.90 5899.47 7299.03 6599.52 3599.57 2796.93 14499.81 15699.60 499.98 999.60 49
LF4IMVS97.90 16597.69 17498.52 18999.17 14997.66 17297.19 22099.47 7296.31 23897.85 23198.20 25096.71 16199.52 29694.62 25499.72 11198.38 293
canonicalmvs98.34 13098.26 12598.58 17798.46 27897.82 16098.96 5599.46 7499.19 5197.46 26095.46 33898.59 3099.46 30998.08 7998.71 28798.46 287
XVG-ACMP-BASELINE98.56 10198.34 11699.22 9099.54 6798.59 8997.71 17199.46 7497.25 19398.98 12098.99 12397.54 10299.84 11895.88 21799.74 10299.23 199
DeepC-MVS97.60 498.97 4398.93 4199.10 10599.35 11397.98 14298.01 14299.46 7497.56 16099.54 3099.50 3598.97 1699.84 11898.06 8099.92 3399.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+97.67 18797.38 19898.57 18098.71 24197.43 18497.23 21399.45 7794.82 27696.13 31096.51 31898.52 3499.91 4396.19 20598.83 28098.37 295
v124098.55 10598.62 7198.32 20899.22 13295.58 24097.51 19499.45 7797.16 20499.45 4599.24 7196.12 18499.85 10199.60 499.88 4899.55 79
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8398.36 10699.00 5199.45 7799.63 1499.52 3599.44 4798.25 4999.88 6499.09 2799.84 5599.62 44
tfpnnormal98.90 5298.90 4298.91 13699.67 3997.82 16099.00 5199.44 8099.45 2899.51 3899.24 7198.20 5699.86 8795.92 21699.69 12699.04 230
GBi-Net98.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
test198.65 8798.47 9499.17 9398.90 20698.24 11199.20 3299.44 8098.59 9398.95 12699.55 2994.14 24599.86 8797.77 9699.69 12699.41 138
FMVSNet199.17 3099.17 2999.17 9399.55 6498.24 11199.20 3299.44 8099.21 4499.43 4799.55 2997.82 8299.86 8798.42 6599.89 4799.41 138
TinyColmap97.89 16797.98 15597.60 25198.86 21594.35 27296.21 27499.44 8097.45 17499.06 10398.88 15397.99 7299.28 33194.38 26699.58 16799.18 211
HPM-MVScopyleft98.79 6298.53 8299.59 1799.65 4299.29 1799.16 3899.43 8596.74 22298.61 17598.38 23498.62 2899.87 8096.47 18699.67 13799.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_BlendedMVS97.55 19597.53 18797.60 25198.92 20293.77 29396.64 25299.43 8594.49 28097.62 24599.18 7996.82 15199.67 24494.73 25199.93 2499.36 163
PVSNet_Blended96.88 24396.68 23897.47 26298.92 20293.77 29394.71 32399.43 8590.98 33097.62 24597.36 30396.82 15199.67 24494.73 25199.56 17698.98 239
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 10898.87 6798.39 10299.42 8899.42 3099.36 5899.06 10098.38 4199.95 1498.34 6899.90 4399.57 66
SF-MVS98.53 11098.27 12499.32 7699.31 11698.75 7598.19 11799.41 8996.77 22198.83 14998.90 14497.80 8399.82 14395.68 23099.52 18699.38 154
RRT_test8_iter0595.24 28795.13 28795.57 31497.32 33387.02 34597.99 14399.41 8998.06 12699.12 9299.05 10766.85 36299.85 10198.93 3599.47 20099.84 8
door99.41 89
PMMVS298.07 15498.08 14898.04 22999.41 10494.59 26994.59 33099.40 9297.50 16498.82 15398.83 16696.83 15099.84 11897.50 11099.81 6899.71 26
UniMVSNet_NR-MVSNet98.86 5698.68 6499.40 6299.17 14998.74 7697.68 17499.40 9299.14 5399.06 10398.59 21196.71 16199.93 2698.57 5699.77 8999.53 89
DPE-MVS98.59 9998.26 12599.57 1899.27 12299.15 4597.01 22899.39 9497.67 14999.44 4698.99 12397.53 10499.89 5595.40 24099.68 13199.66 34
IterMVS-LS98.55 10598.70 6298.09 22299.48 9194.73 26397.22 21699.39 9498.97 7199.38 5499.31 6396.00 18999.93 2698.58 5499.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss98.57 10098.23 12999.60 1399.69 3799.35 1197.16 22399.38 9694.87 27598.97 12398.99 12398.01 6899.88 6497.29 11899.70 12099.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UniMVSNet (Re)98.87 5498.71 5999.35 6999.24 12798.73 7997.73 17099.38 9698.93 7699.12 9298.73 18196.77 15599.86 8798.63 5399.80 7699.46 120
PHI-MVS98.29 13697.95 15799.34 7298.44 28099.16 4098.12 12499.38 9696.01 24898.06 21998.43 22897.80 8399.67 24495.69 22999.58 16799.20 204
ACMP95.32 1598.41 12298.09 14599.36 6499.51 7398.79 7497.68 17499.38 9695.76 25698.81 15598.82 16998.36 4299.82 14394.75 25099.77 8999.48 110
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPcopyleft98.75 7098.50 8799.52 4199.56 6199.16 4098.87 6099.37 10097.16 20498.82 15399.01 12097.71 8899.87 8096.29 20099.69 12699.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 22996.68 23898.32 20898.32 28697.16 20198.86 6299.37 10089.48 33896.29 30999.15 8996.56 16699.90 4692.90 30099.20 23997.89 309
MSDG97.71 18497.52 18898.28 21398.91 20596.82 21194.42 33399.37 10097.65 15198.37 20298.29 24497.40 11799.33 32494.09 27499.22 23698.68 281
ACMM96.08 1298.91 5098.73 5599.48 5099.55 6499.14 4898.07 13099.37 10097.62 15399.04 11098.96 13298.84 1999.79 17897.43 11299.65 14399.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part197.91 16497.46 19599.27 8298.80 22998.18 11899.07 4599.36 10499.75 599.63 2599.49 3882.20 33599.89 5598.87 3999.95 1599.74 24
v14419298.54 10898.57 7998.45 19899.21 13495.98 23197.63 17999.36 10497.15 20699.32 6799.18 7995.84 20099.84 11899.50 1099.91 3999.54 83
v192192098.54 10898.60 7698.38 20499.20 13795.76 23997.56 18899.36 10497.23 19999.38 5499.17 8396.02 18799.84 11899.57 699.90 4399.54 83
v119298.60 9698.66 6798.41 20199.27 12295.88 23497.52 19299.36 10497.41 17799.33 6299.20 7696.37 17899.82 14399.57 699.92 3399.55 79
SD-MVS98.40 12498.68 6497.54 25898.96 19397.99 13897.88 15399.36 10498.20 11899.63 2599.04 11098.76 2295.33 35896.56 17899.74 10299.31 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CP-MVS98.70 7898.42 10499.52 4199.36 10999.12 5398.72 6899.36 10497.54 16298.30 20398.40 23097.86 7899.89 5596.53 18399.72 11199.56 71
test072699.50 7699.21 2698.17 12199.35 11097.97 13099.26 7699.06 10097.61 97
MSP-MVS98.40 12498.00 15499.61 999.57 5499.25 2298.57 8099.35 11097.55 16199.31 6997.71 28194.61 23599.88 6496.14 20999.19 24399.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 5498.83 4699.01 12599.70 3597.62 17698.43 9999.35 11099.47 2699.28 7099.05 10796.72 16099.82 14398.09 7899.36 21499.59 55
UnsupCasMVSNet_eth97.89 16797.60 18498.75 16199.31 11697.17 20097.62 18099.35 11098.72 8698.76 16098.68 19092.57 27199.74 21397.76 10095.60 34599.34 169
DP-MVS Recon97.33 21196.92 22398.57 18099.09 16697.99 13896.79 24399.35 11093.18 30397.71 23998.07 26295.00 22399.31 32693.97 27699.13 25498.42 292
ITE_SJBPF98.87 14199.22 13298.48 9999.35 11097.50 16498.28 20598.60 21097.64 9599.35 32193.86 28299.27 22998.79 269
v114498.60 9698.66 6798.41 20199.36 10995.90 23397.58 18699.34 11697.51 16399.27 7299.15 8996.34 18099.80 16599.47 1299.93 2499.51 96
XVS98.72 7498.45 9899.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25398.63 20497.50 10899.83 13396.79 15599.53 18399.56 71
X-MVStestdata94.32 29992.59 31799.53 3699.46 9499.21 2698.65 7199.34 11698.62 9197.54 25345.85 35897.50 10899.83 13396.79 15599.53 18399.56 71
CP-MVSNet99.21 2999.09 3499.56 2499.65 4298.96 6599.13 4199.34 11699.42 3099.33 6299.26 6897.01 14099.94 2298.74 4899.93 2499.79 13
test_040298.76 6898.71 5998.93 13399.56 6198.14 12398.45 9899.34 11699.28 4198.95 12698.91 14198.34 4699.79 17895.63 23399.91 3998.86 258
APD-MVS_3200maxsize98.84 5798.61 7499.53 3699.19 14099.27 2098.49 9199.33 12198.64 8799.03 11398.98 12797.89 7699.85 10196.54 18299.42 20599.46 120
DP-MVS98.93 4898.81 4999.28 7999.21 13498.45 10198.46 9699.33 12199.63 1499.48 4099.15 8997.23 13099.75 20997.17 12399.66 14299.63 43
9.1497.78 16899.07 17097.53 19199.32 12395.53 26198.54 18798.70 18797.58 9999.76 20294.32 26799.46 201
ETH3D-3000-0.198.03 15597.62 18299.29 7799.11 15998.80 7397.47 19899.32 12395.54 25998.43 19698.62 20696.61 16599.77 19593.95 27899.49 19799.30 184
test_0728_SECOND99.60 1399.50 7699.23 2498.02 13999.32 12399.88 6496.99 13699.63 14899.68 31
Anonymous2023120698.21 14498.21 13098.20 21899.51 7395.43 24798.13 12299.32 12396.16 24298.93 13398.82 16996.00 18999.83 13397.32 11799.73 10599.36 163
LS3D98.63 9198.38 11199.36 6497.25 33599.38 599.12 4399.32 12399.21 4498.44 19398.88 15397.31 12199.80 16596.58 17399.34 21898.92 250
test117298.76 6898.49 9099.57 1899.18 14799.37 898.39 10299.31 12898.43 10098.90 13598.88 15397.49 11199.86 8796.43 19099.37 21399.48 110
SED-MVS98.91 5098.72 5799.49 4899.49 8399.17 3698.10 12799.31 12898.03 12799.66 2099.02 11498.36 4299.88 6496.91 14299.62 15199.41 138
test_241102_ONE99.49 8399.17 3699.31 12897.98 12999.66 2098.90 14498.36 4299.48 305
miper_lstm_enhance97.18 22497.16 21197.25 27298.16 29692.85 30595.15 31499.31 12897.25 19398.74 16398.78 17490.07 28599.78 18997.19 12299.80 7699.11 222
HFP-MVS98.71 7598.44 10099.51 4599.49 8399.16 4098.52 8599.31 12897.47 16798.58 18198.50 22197.97 7399.85 10196.57 17599.59 16199.53 89
region2R98.69 8098.40 10699.54 2999.53 6999.17 3698.52 8599.31 12897.46 17298.44 19398.51 21897.83 7999.88 6496.46 18799.58 16799.58 61
#test#98.50 11398.16 13899.51 4599.49 8399.16 4098.03 13799.31 12896.30 23998.58 18198.50 22197.97 7399.85 10195.68 23099.59 16199.53 89
ACMMPR98.70 7898.42 10499.54 2999.52 7199.14 4898.52 8599.31 12897.47 16798.56 18398.54 21597.75 8699.88 6496.57 17599.59 16199.58 61
SteuartSystems-ACMMP98.79 6298.54 8199.54 2999.73 2399.16 4098.23 11299.31 12897.92 13498.90 13598.90 14498.00 6999.88 6496.15 20899.72 11199.58 61
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS-dyc-post98.81 6098.55 8099.57 1899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.49 11199.86 8796.56 17899.39 20999.45 124
RE-MVS-def98.58 7899.20 13799.38 598.48 9499.30 13798.64 8798.95 12698.96 13297.75 8696.56 17899.39 20999.45 124
test_241102_TWO99.30 13798.03 12799.26 7699.02 11497.51 10799.88 6496.91 14299.60 15999.66 34
RPMNet97.02 23696.93 22197.30 26997.71 31794.22 27398.11 12599.30 13799.37 3496.91 28399.34 5986.72 30199.87 8097.53 10897.36 32697.81 315
MVS_111021_LR98.30 13398.12 14398.83 14699.16 15198.03 13696.09 27899.30 13797.58 15798.10 21698.24 24698.25 4999.34 32296.69 16799.65 14399.12 220
F-COLMAP97.30 21396.68 23899.14 9999.19 14098.39 10397.27 21299.30 13792.93 30696.62 29798.00 26495.73 20399.68 24192.62 30998.46 29799.35 167
3Dnovator98.27 298.81 6098.73 5599.05 11898.76 23297.81 16299.25 3099.30 13798.57 9798.55 18599.33 6197.95 7599.90 4697.16 12499.67 13799.44 129
ZNCC-MVS98.68 8398.40 10699.54 2999.57 5499.21 2698.46 9699.29 14497.28 19098.11 21598.39 23298.00 6999.87 8096.86 15299.64 14599.55 79
SR-MVS98.71 7598.43 10299.57 1899.18 14799.35 1198.36 10599.29 14498.29 10998.88 14298.85 16097.53 10499.87 8096.14 20999.31 22299.48 110
pmmvs-eth3d98.47 11698.34 11698.86 14399.30 11997.76 16597.16 22399.28 14695.54 25999.42 4899.19 7797.27 12599.63 26297.89 8899.97 1199.20 204
APD-MVScopyleft98.10 15197.67 17599.42 5799.11 15998.93 6697.76 16799.28 14694.97 27298.72 16498.77 17697.04 13699.85 10193.79 28499.54 17999.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS96.21 1196.63 25495.95 26298.65 16798.93 19898.09 12596.93 23499.28 14683.58 35398.13 21397.78 27796.13 18399.40 31593.52 29099.29 22798.45 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS97.99 16297.67 17598.93 13399.19 14097.65 17397.77 16599.27 14998.20 11897.79 23597.98 26694.90 22499.70 22894.42 26299.51 18999.45 124
plane_prior599.27 14999.70 22894.42 26299.51 18999.45 124
CPTT-MVS97.84 17797.36 20099.27 8299.31 11698.46 10098.29 10799.27 14994.90 27497.83 23298.37 23694.90 22499.84 11893.85 28399.54 17999.51 96
UnsupCasMVSNet_bld97.30 21396.92 22398.45 19899.28 12196.78 21596.20 27599.27 14995.42 26498.28 20598.30 24393.16 25999.71 22694.99 24597.37 32498.87 257
MVS_111021_HR98.25 14198.08 14898.75 16199.09 16697.46 18295.97 28199.27 14997.60 15697.99 22498.25 24598.15 6199.38 31996.87 15099.57 17199.42 136
cascas94.79 29494.33 30096.15 30696.02 35492.36 31492.34 35299.26 15485.34 35195.08 33594.96 34592.96 26598.53 35294.41 26598.59 29497.56 328
GST-MVS98.61 9498.30 12199.52 4199.51 7399.20 3298.26 11099.25 15597.44 17598.67 16798.39 23297.68 8999.85 10196.00 21299.51 18999.52 93
IterMVS-SCA-FT97.85 17698.18 13496.87 28799.27 12291.16 33195.53 30299.25 15599.10 5999.41 4999.35 5793.10 26199.96 898.65 5299.94 2099.49 104
ACMMP_NAP98.75 7098.48 9299.57 1899.58 5099.29 1797.82 16099.25 15596.94 21498.78 15699.12 9398.02 6799.84 11897.13 12899.67 13799.59 55
DU-MVS98.82 5898.63 7099.39 6399.16 15198.74 7697.54 19099.25 15598.84 8199.06 10398.76 17896.76 15799.93 2698.57 5699.77 8999.50 100
OMC-MVS97.88 16997.49 19099.04 12098.89 21198.63 8496.94 23299.25 15595.02 27098.53 18898.51 21897.27 12599.47 30793.50 29299.51 18999.01 234
test20.0398.78 6598.77 5398.78 15699.46 9497.20 19797.78 16299.24 16099.04 6499.41 4998.90 14497.65 9299.76 20297.70 10299.79 8199.39 147
mPP-MVS98.64 8998.34 11699.54 2999.54 6799.17 3698.63 7399.24 16097.47 16798.09 21798.68 19097.62 9699.89 5596.22 20399.62 15199.57 66
MSLP-MVS++98.02 15798.14 14297.64 24998.58 26695.19 25497.48 19699.23 16297.47 16797.90 22798.62 20697.04 13698.81 35097.55 10599.41 20698.94 248
SMA-MVScopyleft98.40 12498.03 15299.51 4599.16 15199.21 2698.05 13499.22 16394.16 29198.98 12099.10 9797.52 10699.79 17896.45 18899.64 14599.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS97.73 18398.11 14496.57 29499.24 12790.28 33295.52 30499.21 16498.86 7999.33 6299.33 6193.11 26099.94 2298.49 6099.94 2099.48 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.49 19997.16 21198.48 19599.07 17097.03 20594.71 32399.21 16494.46 28298.06 21997.16 30897.57 10099.48 30594.46 25999.78 8598.95 244
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
zzz-MVS98.79 6298.52 8399.61 999.67 3999.36 997.33 20699.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
MTGPAbinary99.20 166
MTAPA98.88 5398.64 6999.61 999.67 3999.36 998.43 9999.20 16698.83 8298.89 13898.90 14496.98 14299.92 3397.16 12499.70 12099.56 71
NR-MVSNet98.95 4698.82 4799.36 6499.16 15198.72 8199.22 3199.20 16699.10 5999.72 1398.76 17896.38 17799.86 8798.00 8599.82 6499.50 100
DELS-MVS98.27 13798.20 13198.48 19598.86 21596.70 21695.60 30099.20 16697.73 14698.45 19298.71 18497.50 10899.82 14398.21 7399.59 16198.93 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4298.78 6598.78 5198.76 15999.44 9997.04 20498.27 10999.19 17197.87 13899.25 7899.16 8596.84 14899.78 18999.21 2299.84 5599.46 120
MP-MVScopyleft98.46 11798.09 14599.54 2999.57 5499.22 2598.50 9099.19 17197.61 15597.58 24998.66 19597.40 11799.88 6494.72 25399.60 15999.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM97.31 21296.81 23198.82 14798.80 22997.49 18099.06 4799.19 17190.22 33497.69 24199.16 8596.91 14599.90 4690.89 33199.41 20699.07 224
3Dnovator+97.89 398.69 8098.51 8599.24 8898.81 22798.40 10299.02 4899.19 17198.99 6898.07 21899.28 6497.11 13599.84 11896.84 15399.32 22099.47 118
ETH3 D test640096.46 26195.59 27299.08 10898.88 21298.21 11796.53 25699.18 17588.87 34297.08 27497.79 27693.64 25699.77 19588.92 33899.40 20899.28 189
eth_miper_zixun_eth97.23 22097.25 20597.17 27498.00 30592.77 30794.71 32399.18 17597.27 19198.56 18398.74 18091.89 27799.69 23297.06 13299.81 6899.05 226
testtj97.79 18297.25 20599.42 5799.03 18098.85 6897.78 16299.18 17595.83 25498.12 21498.50 22195.50 21199.86 8792.23 31499.07 26099.54 83
OPM-MVS98.56 10198.32 12099.25 8799.41 10498.73 7997.13 22599.18 17597.10 20798.75 16198.92 14098.18 5799.65 25796.68 16899.56 17699.37 157
MVP-Stereo98.08 15397.92 16098.57 18098.96 19396.79 21297.90 15299.18 17596.41 23498.46 19198.95 13695.93 19699.60 27196.51 18498.98 27499.31 181
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DeepPCF-MVS96.93 598.32 13198.01 15399.23 8998.39 28398.97 6295.03 31699.18 17596.88 21799.33 6298.78 17498.16 5999.28 33196.74 16199.62 15199.44 129
xiu_mvs_v1_base_debu97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
xiu_mvs_v1_base_debi97.86 17198.17 13596.92 28498.98 19093.91 28696.45 26199.17 18197.85 14098.41 19797.14 31098.47 3599.92 3398.02 8299.05 26196.92 335
cl-mvsnet_97.02 23696.83 23097.58 25397.82 31394.04 27994.66 32699.16 18497.04 21098.63 17198.71 18488.68 29699.69 23297.00 13499.81 6899.00 237
cl-mvsnet197.02 23696.84 22997.58 25397.82 31394.03 28094.66 32699.16 18497.04 21098.63 17198.71 18488.69 29599.69 23297.00 13499.81 6899.01 234
cl_fuxian97.36 20897.37 19997.31 26898.09 30093.25 29895.01 31799.16 18497.05 20998.77 15998.72 18392.88 26699.64 25996.93 14199.76 9899.05 226
Effi-MVS+-dtu98.26 13997.90 16299.35 6998.02 30399.49 298.02 13999.16 18498.29 10997.64 24497.99 26596.44 17399.95 1496.66 16998.93 27798.60 282
mvs-test197.83 17997.48 19398.89 13998.02 30399.20 3297.20 21799.16 18498.29 10996.46 30697.17 30796.44 17399.92 3396.66 16997.90 31697.54 329
v2v48298.56 10198.62 7198.37 20599.42 10395.81 23797.58 18699.16 18497.90 13699.28 7099.01 12095.98 19399.79 17899.33 1599.90 4399.51 96
MDA-MVSNet-bldmvs97.94 16397.91 16198.06 22799.44 9994.96 25996.63 25399.15 19098.35 10298.83 14999.11 9594.31 24299.85 10196.60 17298.72 28599.37 157
ETH3D cwj APD-0.1697.55 19597.00 21899.19 9298.51 27498.64 8396.85 24099.13 19194.19 29097.65 24398.40 23095.78 20199.81 15693.37 29599.16 24799.12 220
FMVSNet298.49 11498.40 10698.75 16198.90 20697.14 20398.61 7599.13 19198.59 9399.19 8599.28 6494.14 24599.82 14397.97 8699.80 7699.29 188
DSMNet-mixed97.42 20597.60 18496.87 28799.15 15591.46 32298.54 8399.12 19392.87 30897.58 24999.63 2096.21 18299.90 4695.74 22699.54 17999.27 191
CMPMVSbinary75.91 2396.29 26495.44 27798.84 14596.25 35198.69 8297.02 22799.12 19388.90 34197.83 23298.86 15789.51 28998.90 34891.92 31599.51 18998.92 250
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PCF-MVS92.86 1894.36 29893.00 31598.42 20098.70 24597.56 17793.16 34899.11 19579.59 35697.55 25297.43 29892.19 27399.73 21779.85 35599.45 20397.97 308
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cdsmvs_eth3d_5k24.66 32932.88 3320.00 3450.00 3660.00 3670.00 35799.10 1960.00 3620.00 36397.58 28899.21 100.00 3630.00 3610.00 3610.00 359
miper_ehance_all_eth97.06 23297.03 21697.16 27697.83 31293.06 30094.66 32699.09 19795.99 24998.69 16598.45 22792.73 26999.61 27096.79 15599.03 26598.82 261
Regformer-298.60 9698.46 9699.02 12498.85 21797.71 17096.91 23799.09 19798.98 7099.01 11498.64 20097.37 11999.84 11897.75 10199.57 17199.52 93
DeepC-MVS_fast96.85 698.30 13398.15 14098.75 16198.61 26197.23 19297.76 16799.09 19797.31 18798.75 16198.66 19597.56 10199.64 25996.10 21199.55 17899.39 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS99.01 18498.84 6999.07 20094.10 29298.05 22198.12 25696.36 17999.86 8792.70 30899.19 243
v14898.45 11898.60 7698.00 23199.44 9994.98 25897.44 20099.06 20198.30 10699.32 6798.97 12996.65 16399.62 26498.37 6799.85 5399.39 147
Regformer-498.73 7398.68 6498.89 13999.02 18297.22 19497.17 22199.06 20199.21 4499.17 9098.85 16097.45 11499.86 8798.48 6199.70 12099.60 49
PatchMatch-RL97.24 21996.78 23298.61 17499.03 18097.83 15796.36 26799.06 20193.49 30297.36 26797.78 27795.75 20299.49 30293.44 29398.77 28298.52 285
PLCcopyleft94.65 1696.51 25795.73 26698.85 14498.75 23597.91 15196.42 26499.06 20190.94 33195.59 32197.38 30194.41 23999.59 27590.93 32998.04 31499.05 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test97.50 19797.74 17196.78 29298.70 24591.23 33094.55 33199.05 20596.36 23599.21 8398.79 17396.39 17599.78 18996.74 16199.82 6499.34 169
CANet97.87 17097.76 16998.19 21997.75 31595.51 24396.76 24699.05 20597.74 14596.93 28098.21 24995.59 20799.89 5597.86 9399.93 2499.19 209
pmmvs597.64 18997.49 19098.08 22599.14 15695.12 25796.70 25099.05 20593.77 29798.62 17398.83 16693.23 25799.75 20998.33 7099.76 9899.36 163
HQP3-MVS99.04 20899.26 232
HQP-MVS97.00 23996.49 25098.55 18598.67 25496.79 21296.29 27099.04 20896.05 24595.55 32596.84 31393.84 24999.54 29092.82 30399.26 23299.32 177
TEST998.71 24198.08 12995.96 28399.03 21091.40 32595.85 31897.53 29096.52 16899.76 202
train_agg97.10 22896.45 25199.07 11198.71 24198.08 12995.96 28399.03 21091.64 32095.85 31897.53 29096.47 17199.76 20293.67 28699.16 24799.36 163
test_prior397.48 20197.00 21898.95 13098.69 24997.95 14895.74 29599.03 21096.48 23196.11 31197.63 28695.92 19799.59 27594.16 26899.20 23999.30 184
test_prior98.95 13098.69 24997.95 14899.03 21099.59 27599.30 184
save fliter99.11 15997.97 14396.53 25699.02 21498.24 112
test_898.67 25498.01 13795.91 28899.02 21491.64 32095.79 32097.50 29396.47 17199.76 202
MVS_Test98.18 14798.36 11397.67 24598.48 27694.73 26398.18 11899.02 21497.69 14898.04 22299.11 9597.22 13199.56 28498.57 5698.90 27898.71 275
agg_prior197.06 23296.40 25299.03 12198.68 25297.99 13895.76 29399.01 21791.73 31995.59 32197.50 29396.49 17099.77 19593.71 28599.14 25199.34 169
agg_prior98.68 25297.99 13899.01 21795.59 32199.77 195
CDPH-MVS97.26 21696.66 24199.07 11199.00 18598.15 12196.03 27999.01 21791.21 32897.79 23597.85 27496.89 14699.69 23292.75 30699.38 21299.39 147
ambc98.24 21698.82 22595.97 23298.62 7499.00 22099.27 7299.21 7496.99 14199.50 30196.55 18199.50 19699.26 194
Anonymous2024052998.93 4898.87 4399.12 10199.19 14098.22 11699.01 4998.99 22199.25 4399.54 3099.37 5397.04 13699.80 16597.89 8899.52 18699.35 167
Regformer-198.55 10598.44 10098.87 14198.85 21797.29 18896.91 23798.99 22198.97 7198.99 11898.64 20097.26 12899.81 15697.79 9499.57 17199.51 96
our_test_397.39 20797.73 17396.34 29898.70 24589.78 33494.61 32998.97 22396.50 23099.04 11098.85 16095.98 19399.84 11897.26 12099.67 13799.41 138
TSAR-MVS + MP.98.63 9198.49 9099.06 11699.64 4597.90 15298.51 8998.94 22496.96 21399.24 7998.89 15297.83 7999.81 15696.88 14999.49 19799.48 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
WR-MVS98.40 12498.19 13399.03 12199.00 18597.65 17396.85 24098.94 22498.57 9798.89 13898.50 22195.60 20699.85 10197.54 10799.85 5399.59 55
CNVR-MVS98.17 14997.87 16499.07 11198.67 25498.24 11197.01 22898.93 22697.25 19397.62 24598.34 23997.27 12599.57 28196.42 19199.33 21999.39 147
CNLPA97.17 22596.71 23698.55 18598.56 26998.05 13496.33 26898.93 22696.91 21697.06 27697.39 30094.38 24199.45 31191.66 31899.18 24598.14 301
AdaColmapbinary97.14 22796.71 23698.46 19798.34 28597.80 16396.95 23198.93 22695.58 25896.92 28197.66 28395.87 19999.53 29290.97 32899.14 25198.04 304
CR-MVSNet96.28 26595.95 26297.28 27097.71 31794.22 27398.11 12598.92 22992.31 31496.91 28399.37 5385.44 31499.81 15697.39 11497.36 32697.81 315
Patchmtry97.35 20996.97 22098.50 19497.31 33496.47 22098.18 11898.92 22998.95 7598.78 15699.37 5385.44 31499.85 10195.96 21599.83 6199.17 215
FMVSNet397.50 19797.24 20798.29 21298.08 30195.83 23697.86 15698.91 23197.89 13798.95 12698.95 13687.06 29999.81 15697.77 9699.69 12699.23 199
mvs_anonymous97.83 17998.16 13896.87 28798.18 29591.89 31897.31 20898.90 23297.37 18198.83 14999.46 4296.28 18199.79 17898.90 3698.16 30698.95 244
NCCC97.86 17197.47 19499.05 11898.61 26198.07 13196.98 23098.90 23297.63 15297.04 27797.93 27095.99 19299.66 25295.31 24198.82 28199.43 133
miper_enhance_ethall96.01 27095.74 26596.81 29196.41 34992.27 31593.69 34598.89 23491.14 32998.30 20397.35 30490.58 28299.58 28096.31 19799.03 26598.60 282
D2MVS97.84 17797.84 16697.83 23799.14 15694.74 26296.94 23298.88 23595.84 25398.89 13898.96 13294.40 24099.69 23297.55 10599.95 1599.05 226
CHOSEN 280x42095.51 28395.47 27495.65 31398.25 29088.27 34093.25 34798.88 23593.53 30094.65 33797.15 30986.17 30699.93 2697.41 11399.93 2498.73 274
IU-MVS99.49 8399.15 4598.87 23792.97 30599.41 4996.76 15999.62 15199.66 34
EI-MVSNet-UG-set98.69 8098.71 5998.62 17299.10 16396.37 22297.23 21398.87 23799.20 4799.19 8598.99 12397.30 12299.85 10198.77 4699.79 8199.65 38
EI-MVSNet98.40 12498.51 8598.04 22999.10 16394.73 26397.20 21798.87 23798.97 7199.06 10399.02 11496.00 18999.80 16598.58 5499.82 6499.60 49
test1198.87 237
MVSTER96.86 24496.55 24897.79 23997.91 30994.21 27597.56 18898.87 23797.49 16699.06 10399.05 10780.72 33799.80 16598.44 6399.82 6499.37 157
EI-MVSNet-Vis-set98.68 8398.70 6298.63 17099.09 16696.40 22197.23 21398.86 24299.20 4799.18 8998.97 12997.29 12499.85 10198.72 4999.78 8599.64 39
PS-MVSNAJ97.08 23097.39 19796.16 30598.56 26992.46 31195.24 31198.85 24397.25 19397.49 25895.99 32898.07 6399.90 4696.37 19398.67 29096.12 347
DVP-MVS98.77 6798.52 8399.52 4199.50 7699.21 2698.02 13998.84 24497.97 13099.08 10099.02 11497.61 9799.88 6496.99 13699.63 14899.48 110
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v2_base97.16 22697.49 19096.17 30398.54 27192.46 31195.45 30698.84 24497.25 19397.48 25996.49 31998.31 4799.90 4696.34 19698.68 28996.15 346
MS-PatchMatch97.68 18697.75 17097.45 26398.23 29393.78 29297.29 20998.84 24496.10 24498.64 17098.65 19796.04 18699.36 32096.84 15399.14 25199.20 204
Regformer-398.61 9498.61 7498.63 17099.02 18296.53 21997.17 22198.84 24499.13 5499.10 9798.85 16097.24 12999.79 17898.41 6699.70 12099.57 66
PMMVS96.51 25795.98 26198.09 22297.53 32595.84 23594.92 31998.84 24491.58 32296.05 31595.58 33495.68 20499.66 25295.59 23598.09 31098.76 272
原ACMM198.35 20698.90 20696.25 22698.83 24992.48 31296.07 31498.10 25895.39 21599.71 22692.61 31098.99 27299.08 223
ab-mvs98.41 12298.36 11398.59 17699.19 14097.23 19299.32 1598.81 25097.66 15098.62 17399.40 5296.82 15199.80 16595.88 21799.51 18998.75 273
TAMVS98.24 14298.05 15098.80 15199.07 17097.18 19997.88 15398.81 25096.66 22699.17 9099.21 7494.81 23099.77 19596.96 14099.88 4899.44 129
testdata98.09 22298.93 19895.40 24898.80 25290.08 33697.45 26198.37 23695.26 21799.70 22893.58 28998.95 27699.17 215
CL-MVSNet_2432*160097.44 20497.22 20898.08 22598.57 26895.78 23894.30 33698.79 25396.58 22998.60 17798.19 25194.74 23499.64 25996.41 19298.84 27998.82 261
CANet_DTU97.26 21697.06 21597.84 23697.57 32294.65 26796.19 27698.79 25397.23 19995.14 33498.24 24693.22 25899.84 11897.34 11699.84 5599.04 230
test22298.92 20296.93 20995.54 30198.78 25585.72 35096.86 28998.11 25794.43 23899.10 25999.23 199
RRT_MVS97.07 23196.57 24698.58 17795.89 35596.33 22397.36 20498.77 25697.85 14099.08 10099.12 9382.30 33299.96 898.82 4299.90 4399.45 124
新几何198.91 13698.94 19697.76 16598.76 25787.58 34796.75 29398.10 25894.80 23199.78 18992.73 30799.00 27199.20 204
旧先验198.82 22597.45 18398.76 25798.34 23995.50 21199.01 27099.23 199
PAPM_NR96.82 24796.32 25598.30 21199.07 17096.69 21797.48 19698.76 25795.81 25596.61 29896.47 32194.12 24899.17 33890.82 33297.78 31799.06 225
HPM-MVS++copyleft98.10 15197.64 18099.48 5099.09 16699.13 5197.52 19298.75 26097.46 17296.90 28697.83 27596.01 18899.84 11895.82 22499.35 21699.46 120
CDS-MVSNet97.69 18597.35 20198.69 16598.73 23797.02 20696.92 23698.75 26095.89 25298.59 17998.67 19292.08 27699.74 21396.72 16499.81 6899.32 177
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
无先验95.74 29598.74 26289.38 33999.73 21792.38 31299.22 203
112196.73 24996.00 26098.91 13698.95 19597.76 16598.07 13098.73 26387.65 34696.54 29998.13 25394.52 23799.73 21792.38 31299.02 26899.24 198
MCST-MVS98.00 15997.63 18199.10 10599.24 12798.17 12096.89 23998.73 26395.66 25797.92 22597.70 28297.17 13299.66 25296.18 20799.23 23599.47 118
PAPR95.29 28594.47 29597.75 24297.50 32995.14 25694.89 32098.71 26591.39 32695.35 33295.48 33794.57 23699.14 34184.95 34697.37 32498.97 243
PMVScopyleft91.26 2097.86 17197.94 15997.65 24799.71 2997.94 15098.52 8598.68 26698.99 6897.52 25599.35 5797.41 11698.18 35491.59 32199.67 13796.82 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VNet98.42 12198.30 12198.79 15398.79 23197.29 18898.23 11298.66 26799.31 3898.85 14698.80 17194.80 23199.78 18998.13 7699.13 25499.31 181
test1298.93 13398.58 26697.83 15798.66 26796.53 30095.51 21099.69 23299.13 25499.27 191
TSAR-MVS + GP.98.18 14797.98 15598.77 15898.71 24197.88 15396.32 26998.66 26796.33 23699.23 8298.51 21897.48 11399.40 31597.16 12499.46 20199.02 233
OpenMVS_ROBcopyleft95.38 1495.84 27595.18 28697.81 23898.41 28297.15 20297.37 20398.62 27083.86 35298.65 16998.37 23694.29 24399.68 24188.41 33998.62 29396.60 341
MAR-MVS96.47 26095.70 26798.79 15397.92 30899.12 5398.28 10898.60 27192.16 31795.54 32896.17 32694.77 23399.52 29689.62 33698.23 30197.72 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
UGNet98.53 11098.45 9898.79 15397.94 30796.96 20799.08 4498.54 27299.10 5996.82 29199.47 4196.55 16799.84 11898.56 5999.94 2099.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl-mvsnet295.79 27695.39 28096.98 28196.77 34392.79 30694.40 33498.53 27394.59 27997.89 22898.17 25282.82 33199.24 33396.37 19399.03 26598.92 250
pmmvs497.58 19497.28 20498.51 19298.84 22096.93 20995.40 30898.52 27493.60 29998.61 17598.65 19795.10 22199.60 27196.97 13999.79 8198.99 238
API-MVS97.04 23596.91 22597.42 26597.88 31098.23 11598.18 11898.50 27597.57 15897.39 26596.75 31596.77 15599.15 34090.16 33499.02 26894.88 352
sss97.21 22196.93 22198.06 22798.83 22295.22 25396.75 24798.48 27694.49 28097.27 26897.90 27192.77 26899.80 16596.57 17599.32 22099.16 218
Vis-MVSNet (Re-imp)97.46 20297.16 21198.34 20799.55 6496.10 22898.94 5698.44 27798.32 10598.16 21098.62 20688.76 29499.73 21793.88 28199.79 8199.18 211
MDA-MVSNet_test_wron97.60 19297.66 17897.41 26699.04 17793.09 29995.27 30998.42 27897.26 19298.88 14298.95 13695.43 21499.73 21797.02 13398.72 28599.41 138
jason97.45 20397.35 20197.76 24199.24 12793.93 28595.86 28998.42 27894.24 28898.50 19098.13 25394.82 22899.91 4397.22 12199.73 10599.43 133
jason: jason.
YYNet197.60 19297.67 17597.39 26799.04 17793.04 30395.27 30998.38 28097.25 19398.92 13498.95 13695.48 21399.73 21796.99 13698.74 28399.41 138
IS-MVSNet98.19 14697.90 16299.08 10899.57 5497.97 14399.31 1898.32 28199.01 6798.98 12099.03 11391.59 27899.79 17895.49 23899.80 7699.48 110
131495.74 27795.60 27196.17 30397.53 32592.75 30898.07 13098.31 28291.22 32794.25 34096.68 31695.53 20899.03 34291.64 32097.18 32996.74 339
DPM-MVS96.32 26395.59 27298.51 19298.76 23297.21 19694.54 33298.26 28391.94 31896.37 30797.25 30593.06 26399.43 31391.42 32398.74 28398.89 254
BH-untuned96.83 24596.75 23497.08 27798.74 23693.33 29796.71 24998.26 28396.72 22398.44 19397.37 30295.20 21899.47 30791.89 31697.43 32398.44 290
EU-MVSNet97.66 18898.50 8795.13 32199.63 4785.84 34898.35 10698.21 28598.23 11499.54 3099.46 4295.02 22299.68 24198.24 7199.87 5199.87 4
SixPastTwentyTwo98.75 7098.62 7199.16 9699.83 1597.96 14799.28 2798.20 28699.37 3499.70 1599.65 1992.65 27099.93 2699.04 3099.84 5599.60 49
new_pmnet96.99 24096.76 23397.67 24598.72 23894.89 26095.95 28598.20 28692.62 31198.55 18598.54 21594.88 22799.52 29693.96 27799.44 20498.59 284
CVMVSNet96.25 26697.21 20993.38 33799.10 16380.56 36197.20 21798.19 28896.94 21499.00 11799.02 11489.50 29099.80 16596.36 19599.59 16199.78 14
KD-MVS_2432*160092.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
miper_refine_blended92.87 31891.99 32295.51 31691.37 36089.27 33594.07 33898.14 28995.42 26497.25 26996.44 32267.86 35999.24 33391.28 32496.08 34298.02 305
MG-MVS96.77 24896.61 24397.26 27198.31 28793.06 30095.93 28698.12 29196.45 23397.92 22598.73 18193.77 25399.39 31791.19 32799.04 26499.33 175
EPP-MVSNet98.30 13398.04 15199.07 11199.56 6197.83 15799.29 2398.07 29299.03 6598.59 17999.13 9292.16 27499.90 4696.87 15099.68 13199.49 104
MVS93.19 31692.09 32096.50 29696.91 33994.03 28098.07 13098.06 29368.01 35794.56 33996.48 32095.96 19599.30 32883.84 34896.89 33496.17 344
MVS_030497.64 18997.35 20198.52 18997.87 31196.69 21798.59 7898.05 29497.44 17593.74 34898.85 16093.69 25599.88 6498.11 7799.81 6898.98 239
lupinMVS97.06 23296.86 22797.65 24798.88 21293.89 28995.48 30597.97 29593.53 30098.16 21097.58 28893.81 25199.91 4396.77 15899.57 17199.17 215
GA-MVS95.86 27495.32 28297.49 26198.60 26394.15 27793.83 34397.93 29695.49 26296.68 29497.42 29983.21 32799.30 32896.22 20398.55 29699.01 234
WTY-MVS96.67 25296.27 25897.87 23598.81 22794.61 26896.77 24597.92 29794.94 27397.12 27197.74 28091.11 28099.82 14393.89 28098.15 30799.18 211
Patchmatch-test96.55 25696.34 25497.17 27498.35 28493.06 30098.40 10197.79 29897.33 18498.41 19798.67 19283.68 32699.69 23295.16 24299.31 22298.77 271
ADS-MVSNet295.43 28494.98 29096.76 29398.14 29791.74 31997.92 14997.76 29990.23 33296.51 30298.91 14185.61 31199.85 10192.88 30196.90 33298.69 278
PVSNet93.40 1795.67 27895.70 26795.57 31498.83 22288.57 33792.50 35097.72 30092.69 31096.49 30596.44 32293.72 25499.43 31393.61 28799.28 22898.71 275
pmmvs395.03 29194.40 29796.93 28397.70 31992.53 31095.08 31597.71 30188.57 34397.71 23998.08 26179.39 34499.82 14396.19 20599.11 25898.43 291
alignmvs97.35 20996.88 22698.78 15698.54 27198.09 12597.71 17197.69 30299.20 4797.59 24895.90 33088.12 29899.55 28798.18 7598.96 27598.70 277
AUN-MVS96.24 26795.45 27698.60 17598.70 24597.22 19497.38 20297.65 30395.95 25095.53 32997.96 26982.11 33699.79 17896.31 19797.44 32298.80 268
tpm cat193.29 31593.13 31493.75 33297.39 33184.74 35297.39 20197.65 30383.39 35494.16 34198.41 22982.86 33099.39 31791.56 32295.35 34797.14 334
PVSNet_089.98 2191.15 32790.30 33093.70 33397.72 31684.34 35690.24 35497.42 30590.20 33593.79 34693.09 35590.90 28198.89 34986.57 34472.76 35897.87 311
BH-w/o95.13 28994.89 29395.86 30798.20 29491.31 32695.65 29897.37 30693.64 29896.52 30195.70 33393.04 26499.02 34388.10 34095.82 34497.24 333
test_yl96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
DCV-MVSNet96.69 25096.29 25697.90 23398.28 28895.24 25197.29 20997.36 30798.21 11598.17 20897.86 27286.27 30499.55 28794.87 24898.32 29998.89 254
BH-RMVSNet96.83 24596.58 24597.58 25398.47 27794.05 27896.67 25197.36 30796.70 22597.87 22997.98 26695.14 22099.44 31290.47 33398.58 29599.25 195
ADS-MVSNet95.24 28794.93 29296.18 30298.14 29790.10 33397.92 14997.32 31090.23 33296.51 30298.91 14185.61 31199.74 21392.88 30196.90 33298.69 278
VDDNet98.21 14497.95 15799.01 12599.58 5097.74 16899.01 4997.29 31199.67 1098.97 12399.50 3590.45 28399.80 16597.88 9199.20 23999.48 110
PAPM91.88 32690.34 32996.51 29598.06 30292.56 30992.44 35197.17 31286.35 34890.38 35596.01 32786.61 30299.21 33670.65 35895.43 34697.75 319
FPMVS93.44 31492.23 31997.08 27799.25 12697.86 15595.61 29997.16 31392.90 30793.76 34798.65 19775.94 35295.66 35679.30 35697.49 32097.73 320
E-PMN94.17 30394.37 29893.58 33496.86 34085.71 35090.11 35597.07 31498.17 12197.82 23497.19 30684.62 31898.94 34689.77 33597.68 31996.09 348
VDD-MVS98.56 10198.39 10999.07 11199.13 15898.07 13198.59 7897.01 31599.59 2099.11 9499.27 6694.82 22899.79 17898.34 6899.63 14899.34 169
tpmrst95.07 29095.46 27593.91 33197.11 33784.36 35597.62 18096.96 31694.98 27196.35 30898.80 17185.46 31399.59 27595.60 23496.23 34097.79 318
wuyk23d96.06 26997.62 18291.38 34098.65 26098.57 9198.85 6396.95 31796.86 21899.90 499.16 8599.18 1198.40 35389.23 33799.77 8977.18 356
HY-MVS95.94 1395.90 27395.35 28197.55 25797.95 30694.79 26198.81 6596.94 31892.28 31595.17 33398.57 21389.90 28799.75 20991.20 32697.33 32898.10 302
MIMVSNet96.62 25596.25 25997.71 24499.04 17794.66 26699.16 3896.92 31997.23 19997.87 22999.10 9786.11 30899.65 25791.65 31999.21 23898.82 261
SCA96.41 26296.66 24195.67 31198.24 29188.35 33995.85 29196.88 32096.11 24397.67 24298.67 19293.10 26199.85 10194.16 26899.22 23698.81 264
tpmvs95.02 29295.25 28394.33 32796.39 35085.87 34798.08 12996.83 32195.46 26395.51 33098.69 18885.91 30999.53 29294.16 26896.23 34097.58 327
PatchmatchNetpermissive95.58 28095.67 26995.30 32097.34 33287.32 34397.65 17896.65 32295.30 26797.07 27598.69 18884.77 31699.75 20994.97 24698.64 29198.83 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchT96.65 25396.35 25397.54 25897.40 33095.32 24997.98 14596.64 32399.33 3796.89 28799.42 4884.32 32199.81 15697.69 10497.49 32097.48 330
TR-MVS95.55 28195.12 28896.86 29097.54 32493.94 28496.49 26096.53 32494.36 28797.03 27896.61 31794.26 24499.16 33986.91 34396.31 33997.47 331
dp93.47 31393.59 30793.13 33996.64 34481.62 36097.66 17696.42 32592.80 30996.11 31198.64 20078.55 34999.59 27593.31 29692.18 35698.16 300
EMVS93.83 30994.02 30193.23 33896.83 34284.96 35189.77 35696.32 32697.92 13497.43 26396.36 32586.17 30698.93 34787.68 34197.73 31895.81 349
Anonymous20240521197.90 16597.50 18999.08 10898.90 20698.25 11098.53 8496.16 32798.87 7899.11 9498.86 15790.40 28499.78 18997.36 11599.31 22299.19 209
MDTV_nov1_ep1395.22 28497.06 33883.20 35797.74 16996.16 32794.37 28696.99 27998.83 16683.95 32499.53 29293.90 27997.95 315
baseline195.96 27295.44 27797.52 26098.51 27493.99 28398.39 10296.09 32998.21 11598.40 20197.76 27986.88 30099.63 26295.42 23989.27 35798.95 244
CostFormer93.97 30793.78 30494.51 32697.53 32585.83 34997.98 14595.96 33089.29 34094.99 33698.63 20478.63 34799.62 26494.54 25696.50 33798.09 303
JIA-IIPM95.52 28295.03 28997.00 27996.85 34194.03 28096.93 23495.82 33199.20 4794.63 33899.71 1283.09 32899.60 27194.42 26294.64 34997.36 332
tpm293.09 31792.58 31894.62 32597.56 32386.53 34697.66 17695.79 33286.15 34994.07 34498.23 24875.95 35199.53 29290.91 33096.86 33597.81 315
EPNet_dtu94.93 29394.78 29495.38 31993.58 35987.68 34296.78 24495.69 33397.35 18389.14 35798.09 26088.15 29799.49 30294.95 24799.30 22598.98 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DWT-MVSNet_test92.75 32092.05 32194.85 32396.48 34787.21 34497.83 15994.99 33492.22 31692.72 35094.11 35370.75 35699.46 30995.01 24494.33 35297.87 311
tpm94.67 29594.34 29995.66 31297.68 32188.42 33897.88 15394.90 33594.46 28296.03 31698.56 21478.66 34699.79 17895.88 21795.01 34898.78 270
EPNet96.14 26895.44 27798.25 21590.76 36295.50 24497.92 14994.65 33698.97 7192.98 34998.85 16089.12 29299.87 8095.99 21399.68 13199.39 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20093.72 31193.14 31395.46 31898.66 25991.29 32796.61 25494.63 33797.39 17996.83 29093.71 35479.88 33999.56 28482.40 35298.13 30895.54 351
DeepMVS_CXcopyleft93.44 33698.24 29194.21 27594.34 33864.28 35891.34 35494.87 34889.45 29192.77 35977.54 35793.14 35493.35 354
tfpn200view994.03 30693.44 30895.78 30998.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31196.29 342
thres40094.14 30493.44 30896.24 30198.93 19891.44 32397.60 18394.29 33997.94 13297.10 27294.31 35179.67 34299.62 26483.05 34998.08 31197.66 324
thres100view90094.19 30293.67 30695.75 31099.06 17491.35 32598.03 13794.24 34198.33 10497.40 26494.98 34479.84 34099.62 26483.05 34998.08 31196.29 342
thres600view794.45 29793.83 30396.29 29999.06 17491.53 32197.99 14394.24 34198.34 10397.44 26295.01 34279.84 34099.67 24484.33 34798.23 30197.66 324
LFMVS97.20 22296.72 23598.64 16898.72 23896.95 20898.93 5794.14 34399.74 798.78 15699.01 12084.45 31999.73 21797.44 11199.27 22999.25 195
bset_n11_16_dypcd96.99 24096.56 24798.27 21499.00 18595.25 25092.18 35394.05 34498.75 8499.01 11498.38 23488.98 29399.93 2698.77 4699.92 3399.64 39
test0.0.03 194.51 29693.69 30596.99 28096.05 35293.61 29694.97 31893.49 34596.17 24097.57 25194.88 34682.30 33299.01 34593.60 28894.17 35398.37 295
N_pmnet97.63 19197.17 21098.99 12799.27 12297.86 15595.98 28093.41 34695.25 26899.47 4298.90 14495.63 20599.85 10196.91 14299.73 10599.27 191
IB-MVS91.63 1992.24 32490.90 32896.27 30097.22 33691.24 32994.36 33593.33 34792.37 31392.24 35294.58 35066.20 36499.89 5593.16 29894.63 35097.66 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.30 30193.21 31197.58 25398.14 29794.47 27094.78 32293.24 34894.72 27789.56 35695.87 33178.57 34899.81 15696.91 14297.11 33198.46 287
K. test v398.00 15997.66 17899.03 12199.79 1997.56 17799.19 3692.47 34999.62 1799.52 3599.66 1789.61 28899.96 899.25 2099.81 6899.56 71
test-LLR93.90 30893.85 30294.04 32996.53 34584.62 35394.05 34092.39 35096.17 24094.12 34295.07 34082.30 33299.67 24495.87 22098.18 30497.82 313
test-mter92.33 32391.76 32694.04 32996.53 34584.62 35394.05 34092.39 35094.00 29594.12 34295.07 34065.63 36599.67 24495.87 22098.18 30497.82 313
MTMP97.93 14891.91 352
TESTMET0.1,192.19 32591.77 32593.46 33596.48 34782.80 35894.05 34091.52 35394.45 28494.00 34594.88 34666.65 36399.56 28495.78 22598.11 30998.02 305
thisisatest051594.12 30593.16 31296.97 28298.60 26392.90 30493.77 34490.61 35494.10 29296.91 28395.87 33174.99 35399.80 16594.52 25799.12 25798.20 298
tttt051795.64 27994.98 29097.64 24999.36 10993.81 29198.72 6890.47 35598.08 12598.67 16798.34 23973.88 35499.92 3397.77 9699.51 18999.20 204
thisisatest053095.27 28694.45 29697.74 24399.19 14094.37 27197.86 15690.20 35697.17 20398.22 20797.65 28473.53 35599.90 4696.90 14799.35 21698.95 244
baseline293.73 31092.83 31696.42 29797.70 31991.28 32896.84 24289.77 35793.96 29692.44 35195.93 32979.14 34599.77 19592.94 29996.76 33698.21 297
MVS-HIRNet94.32 29995.62 27090.42 34198.46 27875.36 36296.29 27089.13 35895.25 26895.38 33199.75 792.88 26699.19 33794.07 27599.39 20996.72 340
lessismore_v098.97 12899.73 2397.53 17986.71 35999.37 5699.52 3489.93 28699.92 3398.99 3399.72 11199.44 129
EPMVS93.72 31193.27 31095.09 32296.04 35387.76 34198.13 12285.01 36094.69 27896.92 28198.64 20078.47 35099.31 32695.04 24396.46 33898.20 298
MVEpermissive83.40 2292.50 32191.92 32494.25 32898.83 22291.64 32092.71 34983.52 36195.92 25186.46 36095.46 33895.20 21895.40 35780.51 35498.64 29195.73 350
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 32291.20 32795.85 30895.80 35692.38 31399.31 1881.84 36299.75 591.83 35399.74 868.29 35899.02 34387.15 34297.12 33096.16 345
GG-mvs-BLEND94.76 32494.54 35892.13 31799.31 1880.47 36388.73 35891.01 35767.59 36198.16 35582.30 35394.53 35193.98 353
tmp_tt78.77 32878.73 33178.90 34258.45 36374.76 36494.20 33778.26 36439.16 35986.71 35992.82 35680.50 33875.19 36086.16 34592.29 35586.74 355
testmvs17.12 33020.53 3336.87 34412.05 3644.20 36693.62 3466.73 3654.62 36110.41 36124.33 3598.28 3673.56 3629.69 36015.07 35912.86 358
test12317.04 33120.11 3347.82 34310.25 3654.91 36594.80 3214.47 3664.93 36010.00 36224.28 3609.69 3663.64 36110.14 35912.43 36014.92 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas8.17 33210.90 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36398.07 630.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
n20.00 367
nn0.00 367
ab-mvs-re8.12 33310.83 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36397.48 2950.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS98.82 14798.59 26598.30 10798.10 12798.52 21798.18 5798.75 35194.62 25499.48 19999.41 138
test_0728_THIRD98.17 12199.08 10099.02 11497.89 7699.88 6497.07 13199.71 11599.70 29
GSMVS98.81 264
test_part299.36 10999.10 5699.05 108
sam_mvs184.74 31798.81 264
sam_mvs84.29 323
test_post197.59 18520.48 36283.07 32999.66 25294.16 268
test_post21.25 36183.86 32599.70 228
patchmatchnet-post98.77 17684.37 32099.85 101
gm-plane-assit94.83 35781.97 35988.07 34594.99 34399.60 27191.76 317
test9_res93.28 29799.15 25099.38 154
agg_prior292.50 31199.16 24799.37 157
test_prior497.97 14395.86 289
test_prior295.74 29596.48 23196.11 31197.63 28695.92 19794.16 26899.20 239
旧先验295.76 29388.56 34497.52 25599.66 25294.48 258
新几何295.93 286
原ACMM295.53 302
testdata299.79 17892.80 305
segment_acmp97.02 139
testdata195.44 30796.32 237
plane_prior799.19 14097.87 154
plane_prior698.99 18997.70 17194.90 224
plane_prior497.98 266
plane_prior397.78 16497.41 17797.79 235
plane_prior297.77 16598.20 118
plane_prior199.05 176
plane_prior97.65 17397.07 22696.72 22399.36 214
HQP5-MVS96.79 212
HQP-NCC98.67 25496.29 27096.05 24595.55 325
ACMP_Plane98.67 25496.29 27096.05 24595.55 325
BP-MVS92.82 303
HQP4-MVS95.56 32499.54 29099.32 177
HQP2-MVS93.84 249
NP-MVS98.84 22097.39 18696.84 313
MDTV_nov1_ep13_2view74.92 36397.69 17390.06 33797.75 23885.78 31093.52 29098.69 278
ACMMP++_ref99.77 89
ACMMP++99.68 131
Test By Simon96.52 168