This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
LCM-MVSNet-Re98.64 9298.48 9599.11 10498.85 22198.51 9898.49 9499.83 398.37 10699.69 1799.46 4398.21 5699.92 3594.13 27999.30 22998.91 256
DROMVSNet98.85 5898.81 5198.97 13099.08 17398.61 8798.99 5599.81 498.54 10297.73 24398.07 26598.50 3699.88 6798.81 4499.72 11398.42 297
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11199.17 3799.78 599.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 599.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8499.36 1499.92 3499.64 39
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9899.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30697.70 10899.73 10697.89 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
Patchmatch-RL test97.26 22297.02 22397.99 23699.52 7295.53 24796.13 28399.71 1097.47 17299.27 7399.16 8684.30 32999.62 27097.89 9499.77 9098.81 267
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7599.84 5699.52 93
CS-MVS98.16 15498.22 13397.97 23798.56 27397.01 21198.10 13099.70 1397.45 17997.29 27397.19 31297.72 8999.80 16898.37 6999.62 15497.11 340
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1498.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
Effi-MVS+98.02 16197.82 17198.62 17698.53 27897.19 20297.33 21299.68 1597.30 19496.68 30097.46 30398.56 3399.80 16896.63 17898.20 30798.86 261
PM-MVS98.82 6098.72 6099.12 10299.64 4698.54 9697.98 14999.68 1597.62 15899.34 6199.18 8097.54 10499.77 20197.79 10099.74 10399.04 233
PVSNet_Blended_VisFu98.17 15298.15 14498.22 22099.73 2495.15 26097.36 21099.68 1594.45 29098.99 11999.27 6796.87 15099.94 2397.13 13599.91 4099.57 66
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1899.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
CS-MVS-test97.75 18797.70 17897.90 23898.30 29397.66 17497.93 15299.65 1996.91 22196.27 31696.28 33397.00 14399.80 16897.64 11199.28 23296.24 350
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1999.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 2199.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
CHOSEN 1792x268897.49 20497.14 21998.54 19299.68 3996.09 23596.50 26599.62 2291.58 32898.84 15098.97 13192.36 27699.88 6796.76 16699.95 1699.67 33
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6599.62 2298.48 10399.37 5699.49 3998.75 2499.86 9198.20 7899.80 7799.71 26
v7n99.53 899.57 899.41 6099.88 798.54 9699.45 999.61 2499.66 1199.68 1999.66 1798.44 4099.95 1599.73 299.96 1499.75 22
EIA-MVS98.00 16397.74 17598.80 15498.72 24298.09 12798.05 13899.60 2597.39 18596.63 30295.55 34397.68 9199.80 16896.73 17099.27 23498.52 290
EG-PatchMatch MVS98.99 3999.01 3898.94 13599.50 7797.47 18498.04 14099.59 2698.15 12899.40 5299.36 5798.58 3299.76 20898.78 4599.68 13499.59 55
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2699.59 2099.71 1499.57 2797.12 13599.90 4999.21 2399.87 5299.54 83
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2899.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
AllTest98.44 12298.20 13599.16 9799.50 7798.55 9398.25 11599.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
TestCases99.16 9799.50 7798.55 9399.58 2896.80 22598.88 14499.06 10197.65 9499.57 28794.45 26699.61 16199.37 160
diffmvs98.22 14698.24 13098.17 22399.00 18995.44 25196.38 27299.58 2897.79 14998.53 19298.50 22496.76 16099.74 21997.95 9399.64 14899.34 172
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2899.44 2999.78 1099.76 696.39 17899.92 3599.44 1399.92 3499.68 31
1112_ss97.29 22196.86 23398.58 18199.34 11796.32 22996.75 25399.58 2893.14 31096.89 29397.48 30192.11 27999.86 9196.91 14999.54 18399.57 66
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2899.11 5699.53 3399.18 8098.81 2299.67 25096.71 17399.77 9099.50 100
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10699.30 2299.57 3599.61 1999.40 5299.50 3697.12 13599.85 10599.02 3299.94 2199.80 12
casdiffmvs98.95 4799.00 3998.81 15299.38 10897.33 19097.82 16599.57 3599.17 5399.35 5999.17 8498.35 4799.69 23898.46 6499.73 10699.41 141
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9199.27 2999.57 3599.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15499.66 34
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9397.47 20399.57 3599.37 3499.21 8499.61 2396.76 16099.83 13698.06 8699.83 6299.71 26
door-mid99.57 35
RPSCF98.62 9698.36 11699.42 5799.65 4399.42 498.55 8599.57 3597.72 15298.90 13799.26 6996.12 18799.52 30295.72 23399.71 11899.32 180
CSCG98.68 8698.50 9099.20 9299.45 9898.63 8498.56 8499.57 3597.87 14398.85 14898.04 26797.66 9399.84 12296.72 17199.81 6999.13 222
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10898.73 7099.56 4298.42 10598.91 13698.81 17398.94 1899.91 4598.35 7199.73 10699.49 104
MVSFormer98.26 14298.43 10597.77 24698.88 21693.89 29599.39 1199.56 4299.11 5698.16 21498.13 25693.81 25599.97 399.26 1899.57 17599.43 135
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4299.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4299.09 6599.33 6299.19 7898.40 4299.72 23195.98 22099.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1098.97 4499.11 3398.55 18999.44 10096.21 23298.90 6099.55 4698.73 8899.48 4099.60 2596.63 16799.83 13699.70 399.99 599.61 48
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4699.46 2799.50 3999.34 6097.30 12499.93 2898.90 3799.93 2599.77 16
114514_t96.50 26595.77 27098.69 16899.48 9297.43 18797.84 16399.55 4681.42 36196.51 30898.58 21595.53 21199.67 25093.41 30099.58 17198.98 242
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10599.07 4699.55 4698.30 11199.65 2299.45 4799.22 999.76 20898.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 5099.31 3999.62 2799.53 3397.36 12299.86 9199.24 2299.71 11899.39 150
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26299.54 5098.24 11798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 5099.62 1799.56 2899.42 4998.16 6099.96 898.78 4599.93 2599.77 16
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5399.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
Test_1112_low_res96.99 24696.55 25498.31 21399.35 11595.47 25095.84 29899.53 5391.51 33096.80 29898.48 22991.36 28399.83 13696.58 18099.53 18799.62 44
USDC97.41 21297.40 20097.44 27098.94 20093.67 30195.17 31899.53 5394.03 30098.97 12499.10 9895.29 21999.34 32895.84 22999.73 10699.30 187
FIs99.14 3299.09 3499.29 7799.70 3698.28 11099.13 4199.52 5699.48 2499.24 8099.41 5196.79 15799.82 14698.69 5399.88 4999.76 20
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5799.70 899.80 999.68 1496.84 15199.83 13699.21 2399.91 4099.77 16
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5799.64 1299.56 2899.46 4398.23 5299.97 398.78 4599.93 2599.72 25
ETV-MVS98.03 15997.86 16998.56 18898.69 25398.07 13397.51 19999.50 5998.10 12997.50 26295.51 34498.41 4199.88 6796.27 20799.24 23997.71 328
Fast-Effi-MVS+-dtu98.27 14098.09 14998.81 15298.43 28698.11 12697.61 18799.50 5998.64 9097.39 27097.52 29898.12 6399.95 1596.90 15498.71 29198.38 299
abl_698.99 3998.78 5499.61 999.45 9899.46 398.60 7999.50 5998.59 9699.24 8099.04 11198.54 3499.89 5896.45 19599.62 15499.50 100
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5997.33 19098.94 13398.86 15998.75 2499.82 14697.53 11599.71 11899.56 71
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28799.50 5997.30 19499.05 10998.98 12999.35 799.32 33195.72 23399.68 13499.18 214
baseline98.96 4699.02 3798.76 16299.38 10897.26 19598.49 9499.50 5998.86 8299.19 8699.06 10198.23 5299.69 23898.71 5299.76 9999.33 178
FMVSNet596.01 27695.20 29198.41 20497.53 33196.10 23398.74 6899.50 5997.22 20898.03 22799.04 11169.80 36499.88 6797.27 12699.71 11899.25 198
HyFIR lowres test97.19 22996.60 25098.96 13299.62 5097.28 19495.17 31899.50 5994.21 29599.01 11598.32 24586.61 30899.99 297.10 13799.84 5699.60 49
testgi98.32 13498.39 11298.13 22599.57 5595.54 24697.78 16799.49 6797.37 18799.19 8697.65 29098.96 1799.49 30896.50 19298.99 27699.34 172
PGM-MVS98.66 8998.37 11599.55 2699.53 7099.18 3598.23 11699.49 6797.01 21798.69 16798.88 15598.00 7099.89 5895.87 22699.59 16599.58 61
new-patchmatchnet98.35 13298.74 5797.18 27999.24 12992.23 32296.42 27099.48 6998.30 11199.69 1799.53 3397.44 11799.82 14698.84 4299.77 9099.49 104
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5699.48 6999.68 999.46 4399.26 6998.62 2999.73 22399.17 2699.92 3499.76 20
APDe-MVS98.99 3998.79 5399.60 1399.21 13699.15 4598.87 6299.48 6997.57 16399.35 5999.24 7297.83 8099.89 5897.88 9799.70 12399.75 22
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 26199.48 6997.32 19299.11 9598.61 21299.33 899.30 33496.23 20898.38 30299.28 192
LPG-MVS_test98.71 7798.46 9999.47 5399.57 5598.97 6298.23 11699.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6996.60 23399.10 9899.06 10198.71 2699.83 13695.58 24299.78 8699.62 44
v899.01 3799.16 3098.57 18499.47 9496.31 23098.90 6099.47 7599.03 6899.52 3599.57 2796.93 14799.81 15999.60 499.98 999.60 49
LF4IMVS97.90 16997.69 17998.52 19399.17 15297.66 17497.19 22699.47 7596.31 24497.85 23598.20 25396.71 16499.52 30294.62 26099.72 11398.38 299
canonicalmvs98.34 13398.26 12898.58 18198.46 28397.82 16298.96 5799.46 7799.19 5297.46 26595.46 34698.59 3199.46 31598.08 8598.71 29198.46 292
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 9097.71 17699.46 7797.25 19998.98 12198.99 12597.54 10499.84 12295.88 22399.74 10399.23 202
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14699.46 7797.56 16599.54 3099.50 3698.97 1699.84 12298.06 8699.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Fast-Effi-MVS+97.67 19297.38 20298.57 18498.71 24597.43 18797.23 21999.45 8094.82 28296.13 31796.51 32598.52 3599.91 4596.19 21198.83 28498.37 301
v124098.55 10898.62 7498.32 21199.22 13495.58 24597.51 19999.45 8097.16 21099.45 4599.24 7296.12 18799.85 10599.60 499.88 4999.55 79
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10799.00 5299.45 8099.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
Anonymous2024052198.69 8298.87 4498.16 22499.77 2095.11 26399.08 4499.44 8399.34 3799.33 6299.55 2994.10 25299.94 2399.25 2099.96 1499.42 138
tfpnnormal98.90 5398.90 4398.91 13999.67 4097.82 16299.00 5299.44 8399.45 2899.51 3899.24 7298.20 5799.86 9195.92 22299.69 12999.04 233
GBi-Net98.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
test198.65 9098.47 9799.17 9498.90 21098.24 11399.20 3299.44 8398.59 9698.95 12799.55 2994.14 24899.86 9197.77 10299.69 12999.41 141
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11399.20 3299.44 8399.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
TinyColmap97.89 17197.98 15997.60 25798.86 21994.35 27896.21 28099.44 8397.45 17999.06 10498.88 15597.99 7399.28 33794.38 27299.58 17199.18 214
HPM-MVScopyleft98.79 6498.53 8599.59 1799.65 4399.29 1799.16 3899.43 8996.74 22898.61 17798.38 23798.62 2999.87 8496.47 19399.67 14099.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PVSNet_BlendedMVS97.55 20097.53 19197.60 25798.92 20693.77 29996.64 25899.43 8994.49 28697.62 25099.18 8096.82 15499.67 25094.73 25799.93 2599.36 166
PVSNet_Blended96.88 24996.68 24497.47 26898.92 20693.77 29994.71 32999.43 8990.98 33697.62 25097.36 30996.82 15499.67 25094.73 25799.56 18098.98 242
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9299.42 3099.36 5899.06 10198.38 4399.95 1598.34 7299.90 4499.57 66
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9396.77 22798.83 15198.90 14697.80 8499.82 14695.68 23699.52 19099.38 157
RRT_test8_iter0595.24 29395.13 29395.57 32097.32 33987.02 35197.99 14799.41 9398.06 13199.12 9399.05 10866.85 36999.85 10598.93 3699.47 20499.84 8
door99.41 93
PMMVS298.07 15898.08 15298.04 23399.41 10694.59 27594.59 33699.40 9697.50 16998.82 15598.83 16896.83 15399.84 12297.50 11799.81 6999.71 26
UniMVSNet_NR-MVSNet98.86 5798.68 6799.40 6299.17 15298.74 7697.68 17999.40 9699.14 5499.06 10498.59 21496.71 16499.93 2898.57 5899.77 9099.53 89
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23499.39 9897.67 15499.44 4698.99 12597.53 10699.89 5895.40 24699.68 13499.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-LS98.55 10898.70 6598.09 22699.48 9294.73 26997.22 22299.39 9898.97 7499.38 5499.31 6496.00 19299.93 2898.58 5699.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22999.38 10094.87 28198.97 12498.99 12598.01 6999.88 6797.29 12599.70 12399.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
UniMVSNet (Re)98.87 5598.71 6299.35 6999.24 12998.73 7997.73 17599.38 10098.93 7999.12 9398.73 18496.77 15899.86 9198.63 5599.80 7799.46 122
PHI-MVS98.29 13997.95 16199.34 7298.44 28599.16 4098.12 12799.38 10096.01 25498.06 22398.43 23197.80 8499.67 25095.69 23599.58 17199.20 207
ACMP95.32 1598.41 12598.09 14999.36 6499.51 7498.79 7497.68 17999.38 10095.76 26298.81 15798.82 17198.36 4499.82 14694.75 25699.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMMPcopyleft98.75 7298.50 9099.52 4199.56 6299.16 4098.87 6299.37 10497.16 21098.82 15599.01 12297.71 9099.87 8496.29 20699.69 12999.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OpenMVScopyleft96.65 797.09 23596.68 24498.32 21198.32 29197.16 20598.86 6499.37 10489.48 34496.29 31599.15 9096.56 16999.90 4992.90 30699.20 24497.89 315
MSDG97.71 18997.52 19298.28 21698.91 20996.82 21694.42 33999.37 10497.65 15698.37 20698.29 24797.40 11999.33 33094.09 28099.22 24198.68 286
ACMM96.08 1298.91 5198.73 5899.48 5099.55 6599.14 4898.07 13499.37 10497.62 15899.04 11198.96 13498.84 2099.79 18397.43 11999.65 14699.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part197.91 16897.46 19999.27 8298.80 23398.18 12099.07 4699.36 10899.75 599.63 2599.49 3982.20 34299.89 5898.87 4099.95 1699.74 24
v14419298.54 11198.57 8298.45 20199.21 13695.98 23697.63 18499.36 10897.15 21299.32 6899.18 8095.84 20399.84 12299.50 1099.91 4099.54 83
v192192098.54 11198.60 7998.38 20799.20 14095.76 24497.56 19399.36 10897.23 20599.38 5499.17 8496.02 19099.84 12299.57 699.90 4499.54 83
v119298.60 9998.66 7098.41 20499.27 12495.88 23997.52 19799.36 10897.41 18399.33 6299.20 7796.37 18199.82 14699.57 699.92 3499.55 79
SD-MVS98.40 12798.68 6797.54 26498.96 19797.99 13997.88 15899.36 10898.20 12399.63 2599.04 11198.76 2395.33 36596.56 18599.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CP-MVS98.70 8098.42 10799.52 4199.36 11199.12 5398.72 7199.36 10897.54 16798.30 20798.40 23397.86 7999.89 5896.53 19099.72 11399.56 71
test072699.50 7799.21 2698.17 12499.35 11497.97 13599.26 7799.06 10197.61 99
MSP-MVS98.40 12798.00 15899.61 999.57 5599.25 2298.57 8399.35 11497.55 16699.31 7097.71 28694.61 23899.88 6796.14 21599.19 24899.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17998.43 10299.35 11499.47 2699.28 7199.05 10896.72 16399.82 14698.09 8499.36 21899.59 55
UnsupCasMVSNet_eth97.89 17197.60 18998.75 16499.31 11897.17 20497.62 18599.35 11498.72 8998.76 16298.68 19392.57 27599.74 21997.76 10695.60 35199.34 172
DP-MVS Recon97.33 21796.92 22998.57 18499.09 16997.99 13996.79 24999.35 11493.18 30997.71 24498.07 26595.00 22699.31 33293.97 28299.13 25898.42 297
ITE_SJBPF98.87 14499.22 13498.48 10099.35 11497.50 16998.28 20998.60 21397.64 9799.35 32793.86 28899.27 23498.79 273
v114498.60 9998.66 7098.41 20499.36 11195.90 23897.58 19199.34 12097.51 16899.27 7399.15 9096.34 18399.80 16899.47 1299.93 2599.51 96
XVS98.72 7698.45 10199.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25898.63 20797.50 11099.83 13696.79 16299.53 18799.56 71
X-MVStestdata94.32 30592.59 32399.53 3699.46 9599.21 2698.65 7499.34 12098.62 9497.54 25845.85 36597.50 11099.83 13696.79 16299.53 18799.56 71
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 12099.42 3099.33 6299.26 6997.01 14299.94 2398.74 5099.93 2599.79 13
test_040298.76 7098.71 6298.93 13699.56 6298.14 12598.45 10199.34 12099.28 4298.95 12798.91 14398.34 4899.79 18395.63 23999.91 4098.86 261
APD-MVS_3200maxsize98.84 5998.61 7799.53 3699.19 14399.27 2098.49 9499.33 12598.64 9099.03 11498.98 12997.89 7799.85 10596.54 18999.42 20999.46 122
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10298.46 9999.33 12599.63 1499.48 4099.15 9097.23 13299.75 21597.17 13099.66 14599.63 43
9.1497.78 17299.07 17497.53 19699.32 12795.53 26798.54 19198.70 19097.58 10199.76 20894.32 27399.46 205
ETH3D-3000-0.198.03 15997.62 18799.29 7799.11 16298.80 7397.47 20399.32 12795.54 26598.43 20098.62 20996.61 16899.77 20193.95 28499.49 20199.30 187
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14399.32 12799.88 6796.99 14399.63 15199.68 31
Anonymous2023120698.21 14798.21 13498.20 22199.51 7495.43 25298.13 12599.32 12796.16 24898.93 13498.82 17196.00 19299.83 13697.32 12499.73 10699.36 166
LS3D98.63 9498.38 11499.36 6497.25 34199.38 599.12 4399.32 12799.21 4598.44 19798.88 15597.31 12399.80 16896.58 18099.34 22298.92 253
test117298.76 7098.49 9399.57 1899.18 15099.37 898.39 10599.31 13298.43 10498.90 13798.88 15597.49 11399.86 9196.43 19799.37 21799.48 112
SED-MVS98.91 5198.72 6099.49 4899.49 8499.17 3698.10 13099.31 13298.03 13299.66 2099.02 11598.36 4499.88 6796.91 14999.62 15499.41 141
test_241102_ONE99.49 8499.17 3699.31 13297.98 13499.66 2098.90 14698.36 4499.48 311
miper_lstm_enhance97.18 23097.16 21697.25 27898.16 30292.85 31195.15 32099.31 13297.25 19998.74 16598.78 17790.07 28999.78 19597.19 12999.80 7799.11 225
HFP-MVS98.71 7798.44 10399.51 4599.49 8499.16 4098.52 8899.31 13297.47 17298.58 18398.50 22497.97 7499.85 10596.57 18299.59 16599.53 89
region2R98.69 8298.40 10999.54 2999.53 7099.17 3698.52 8899.31 13297.46 17798.44 19798.51 22197.83 8099.88 6796.46 19499.58 17199.58 61
#test#98.50 11698.16 14299.51 4599.49 8499.16 4098.03 14199.31 13296.30 24598.58 18398.50 22497.97 7499.85 10595.68 23699.59 16599.53 89
ACMMPR98.70 8098.42 10799.54 2999.52 7299.14 4898.52 8899.31 13297.47 17298.56 18798.54 21897.75 8799.88 6796.57 18299.59 16599.58 61
SteuartSystems-ACMMP98.79 6498.54 8499.54 2999.73 2499.16 4098.23 11699.31 13297.92 13998.90 13798.90 14698.00 7099.88 6796.15 21499.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS-dyc-post98.81 6298.55 8399.57 1899.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.49 11399.86 9196.56 18599.39 21399.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 14198.64 9098.95 12798.96 13497.75 8796.56 18599.39 21399.45 126
test_241102_TWO99.30 14198.03 13299.26 7799.02 11597.51 10999.88 6796.91 14999.60 16399.66 34
RPMNet97.02 24296.93 22797.30 27597.71 32394.22 27998.11 12899.30 14199.37 3496.91 28999.34 6086.72 30799.87 8497.53 11597.36 33197.81 321
MVS_111021_LR98.30 13698.12 14798.83 14999.16 15498.03 13796.09 28499.30 14197.58 16298.10 22098.24 24998.25 5099.34 32896.69 17499.65 14699.12 223
F-COLMAP97.30 21996.68 24499.14 10099.19 14398.39 10497.27 21899.30 14192.93 31296.62 30398.00 26895.73 20699.68 24792.62 31598.46 30199.35 170
3Dnovator98.27 298.81 6298.73 5899.05 12098.76 23697.81 16499.25 3099.30 14198.57 10098.55 18999.33 6297.95 7699.90 4997.16 13199.67 14099.44 131
ZNCC-MVS98.68 8698.40 10999.54 2999.57 5599.21 2698.46 9999.29 14897.28 19698.11 21998.39 23598.00 7099.87 8496.86 15999.64 14899.55 79
SR-MVS98.71 7798.43 10599.57 1899.18 15099.35 1198.36 10899.29 14898.29 11498.88 14498.85 16297.53 10699.87 8496.14 21599.31 22699.48 112
pmmvs-eth3d98.47 11998.34 11998.86 14699.30 12197.76 16797.16 22999.28 15095.54 26599.42 4899.19 7897.27 12799.63 26897.89 9499.97 1199.20 207
APD-MVScopyleft98.10 15597.67 18099.42 5799.11 16298.93 6697.76 17299.28 15094.97 27898.72 16698.77 17997.04 13899.85 10593.79 29099.54 18399.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TAPA-MVS96.21 1196.63 26095.95 26898.65 17098.93 20298.09 12796.93 24099.28 15083.58 35998.13 21797.78 28296.13 18699.40 32193.52 29699.29 23198.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS97.99 16697.67 18098.93 13699.19 14397.65 17697.77 17099.27 15398.20 12397.79 23997.98 27094.90 22799.70 23494.42 26899.51 19399.45 126
plane_prior599.27 15399.70 23494.42 26899.51 19399.45 126
CPTT-MVS97.84 18197.36 20499.27 8299.31 11898.46 10198.29 11199.27 15394.90 28097.83 23698.37 23994.90 22799.84 12293.85 28999.54 18399.51 96
UnsupCasMVSNet_bld97.30 21996.92 22998.45 20199.28 12396.78 22096.20 28199.27 15395.42 27098.28 20998.30 24693.16 26399.71 23294.99 25197.37 32998.87 260
MVS_111021_HR98.25 14498.08 15298.75 16499.09 16997.46 18595.97 28799.27 15397.60 16197.99 22898.25 24898.15 6299.38 32596.87 15799.57 17599.42 138
cascas94.79 30094.33 30696.15 31296.02 36092.36 32092.34 35899.26 15885.34 35795.08 34194.96 35392.96 26998.53 35894.41 27198.59 29897.56 333
GST-MVS98.61 9798.30 12499.52 4199.51 7499.20 3298.26 11499.25 15997.44 18198.67 16998.39 23597.68 9199.85 10596.00 21899.51 19399.52 93
IterMVS-SCA-FT97.85 18098.18 13896.87 29399.27 12491.16 33795.53 30899.25 15999.10 6299.41 4999.35 5893.10 26599.96 898.65 5499.94 2199.49 104
ACMMP_NAP98.75 7298.48 9599.57 1899.58 5199.29 1797.82 16599.25 15996.94 21998.78 15899.12 9498.02 6899.84 12297.13 13599.67 14099.59 55
DU-MVS98.82 6098.63 7399.39 6399.16 15498.74 7697.54 19599.25 15998.84 8499.06 10498.76 18196.76 16099.93 2898.57 5899.77 9099.50 100
OMC-MVS97.88 17397.49 19499.04 12298.89 21598.63 8496.94 23899.25 15995.02 27698.53 19298.51 22197.27 12799.47 31393.50 29899.51 19399.01 237
test20.0398.78 6798.77 5698.78 15999.46 9597.20 20197.78 16799.24 16499.04 6799.41 4998.90 14697.65 9499.76 20897.70 10899.79 8299.39 150
mPP-MVS98.64 9298.34 11999.54 2999.54 6899.17 3698.63 7699.24 16497.47 17298.09 22198.68 19397.62 9899.89 5896.22 20999.62 15499.57 66
MSLP-MVS++98.02 16198.14 14697.64 25598.58 27095.19 25997.48 20199.23 16697.47 17297.90 23198.62 20997.04 13898.81 35697.55 11299.41 21098.94 251
SMA-MVScopyleft98.40 12798.03 15699.51 4599.16 15499.21 2698.05 13899.22 16794.16 29798.98 12199.10 9897.52 10899.79 18396.45 19599.64 14899.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS97.73 18898.11 14896.57 30099.24 12990.28 33895.52 31099.21 16898.86 8299.33 6299.33 6293.11 26499.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CLD-MVS97.49 20497.16 21698.48 19899.07 17497.03 20994.71 32999.21 16894.46 28898.06 22397.16 31597.57 10299.48 31194.46 26599.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
zzz-MVS98.79 6498.52 8699.61 999.67 4099.36 997.33 21299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
MTGPAbinary99.20 170
MTAPA98.88 5498.64 7299.61 999.67 4099.36 998.43 10299.20 17098.83 8598.89 14098.90 14696.98 14599.92 3597.16 13199.70 12399.56 71
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 17099.10 6299.72 1398.76 18196.38 18099.86 9198.00 9199.82 6599.50 100
DELS-MVS98.27 14098.20 13598.48 19898.86 21996.70 22195.60 30699.20 17097.73 15198.45 19698.71 18797.50 11099.82 14698.21 7799.59 16598.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4298.78 6798.78 5498.76 16299.44 10097.04 20898.27 11399.19 17597.87 14399.25 7999.16 8696.84 15199.78 19599.21 2399.84 5699.46 122
MP-MVScopyleft98.46 12098.09 14999.54 2999.57 5599.22 2598.50 9399.19 17597.61 16097.58 25498.66 19897.40 11999.88 6794.72 25999.60 16399.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM97.31 21896.81 23798.82 15098.80 23397.49 18399.06 4899.19 17590.22 34097.69 24699.16 8696.91 14899.90 4990.89 33899.41 21099.07 227
3Dnovator+97.89 398.69 8298.51 8899.24 8998.81 23198.40 10399.02 4999.19 17598.99 7198.07 22299.28 6597.11 13799.84 12296.84 16099.32 22499.47 120
ETH3 D test640096.46 26795.59 27899.08 11098.88 21698.21 11996.53 26299.18 17988.87 34897.08 28097.79 28193.64 26099.77 20188.92 34599.40 21299.28 192
eth_miper_zixun_eth97.23 22697.25 21097.17 28098.00 31192.77 31394.71 32999.18 17997.27 19798.56 18798.74 18391.89 28199.69 23897.06 13999.81 6999.05 229
testtj97.79 18597.25 21099.42 5799.03 18498.85 6897.78 16799.18 17995.83 26098.12 21898.50 22495.50 21499.86 9192.23 32099.07 26499.54 83
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 23199.18 17997.10 21398.75 16398.92 14298.18 5899.65 26396.68 17599.56 18099.37 160
MVP-Stereo98.08 15797.92 16498.57 18498.96 19796.79 21797.90 15799.18 17996.41 24098.46 19598.95 13895.93 19999.60 27796.51 19198.98 27899.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DeepPCF-MVS96.93 598.32 13498.01 15799.23 9098.39 28898.97 6295.03 32299.18 17996.88 22399.33 6298.78 17798.16 6099.28 33796.74 16899.62 15499.44 131
xiu_mvs_v1_base_debu97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
xiu_mvs_v1_base_debi97.86 17598.17 13996.92 29098.98 19493.91 29296.45 26799.17 18597.85 14598.41 20197.14 31798.47 3799.92 3598.02 8899.05 26596.92 341
cl-mvsnet____97.02 24296.83 23697.58 25997.82 31994.04 28594.66 33299.16 18897.04 21598.63 17398.71 18788.68 30099.69 23897.00 14199.81 6999.00 240
cl-mvsnet197.02 24296.84 23597.58 25997.82 31994.03 28694.66 33299.16 18897.04 21598.63 17398.71 18788.69 29999.69 23897.00 14199.81 6999.01 237
cl_fuxian97.36 21497.37 20397.31 27498.09 30693.25 30495.01 32399.16 18897.05 21498.77 16198.72 18692.88 27099.64 26596.93 14899.76 9999.05 229
Effi-MVS+-dtu98.26 14297.90 16699.35 6998.02 30999.49 298.02 14399.16 18898.29 11497.64 24997.99 26996.44 17699.95 1596.66 17698.93 28198.60 287
mvs-test197.83 18397.48 19798.89 14298.02 30999.20 3297.20 22399.16 18898.29 11496.46 31297.17 31496.44 17699.92 3596.66 17697.90 32097.54 334
v2v48298.56 10498.62 7498.37 20899.42 10595.81 24297.58 19199.16 18897.90 14199.28 7199.01 12295.98 19699.79 18399.33 1599.90 4499.51 96
MDA-MVSNet-bldmvs97.94 16797.91 16598.06 23199.44 10094.96 26596.63 25999.15 19498.35 10798.83 15199.11 9694.31 24599.85 10596.60 17998.72 28999.37 160
ETH3D cwj APD-0.1697.55 20097.00 22499.19 9398.51 27998.64 8396.85 24699.13 19594.19 29697.65 24898.40 23395.78 20499.81 15993.37 30199.16 25199.12 223
FMVSNet298.49 11798.40 10998.75 16498.90 21097.14 20798.61 7899.13 19598.59 9699.19 8699.28 6594.14 24899.82 14697.97 9299.80 7799.29 191
DSMNet-mixed97.42 21197.60 18996.87 29399.15 15891.46 32898.54 8699.12 19792.87 31497.58 25499.63 2096.21 18599.90 4995.74 23299.54 18399.27 194
CMPMVSbinary75.91 2396.29 27095.44 28398.84 14896.25 35798.69 8297.02 23399.12 19788.90 34797.83 23698.86 15989.51 29398.90 35491.92 32199.51 19398.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PCF-MVS92.86 1894.36 30493.00 32198.42 20398.70 24997.56 18093.16 35499.11 19979.59 36297.55 25797.43 30492.19 27799.73 22379.85 36299.45 20797.97 314
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cdsmvs_eth3d_5k24.66 33632.88 3390.00 3520.00 3730.00 3740.00 36499.10 2000.00 3690.00 37097.58 29499.21 100.00 3700.00 3680.00 3680.00 366
miper_ehance_all_eth97.06 23897.03 22297.16 28297.83 31893.06 30694.66 33299.09 20195.99 25598.69 16798.45 23092.73 27399.61 27696.79 16299.03 26998.82 264
Regformer-298.60 9998.46 9999.02 12698.85 22197.71 17296.91 24399.09 20198.98 7399.01 11598.64 20397.37 12199.84 12297.75 10799.57 17599.52 93
DeepC-MVS_fast96.85 698.30 13698.15 14498.75 16498.61 26597.23 19697.76 17299.09 20197.31 19398.75 16398.66 19897.56 10399.64 26596.10 21799.55 18299.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZD-MVS99.01 18898.84 6999.07 20494.10 29898.05 22598.12 25996.36 18299.86 9192.70 31499.19 248
v14898.45 12198.60 7998.00 23599.44 10094.98 26497.44 20699.06 20598.30 11199.32 6898.97 13196.65 16699.62 27098.37 6999.85 5499.39 150
Regformer-498.73 7598.68 6798.89 14299.02 18697.22 19897.17 22799.06 20599.21 4599.17 9198.85 16297.45 11699.86 9198.48 6399.70 12399.60 49
PatchMatch-RL97.24 22596.78 23898.61 17899.03 18497.83 15996.36 27399.06 20593.49 30897.36 27297.78 28295.75 20599.49 30893.44 29998.77 28698.52 290
PLCcopyleft94.65 1696.51 26395.73 27298.85 14798.75 23897.91 15296.42 27099.06 20590.94 33795.59 32797.38 30794.41 24299.59 28190.93 33698.04 31899.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test97.50 20297.74 17596.78 29898.70 24991.23 33694.55 33799.05 20996.36 24199.21 8498.79 17696.39 17899.78 19596.74 16899.82 6599.34 172
CANet97.87 17497.76 17398.19 22297.75 32195.51 24896.76 25299.05 20997.74 15096.93 28698.21 25295.59 21099.89 5897.86 9999.93 2599.19 212
pmmvs597.64 19497.49 19498.08 22999.14 15995.12 26296.70 25699.05 20993.77 30398.62 17598.83 16893.23 26199.75 21598.33 7499.76 9999.36 166
HQP3-MVS99.04 21299.26 237
HQP-MVS97.00 24596.49 25698.55 18998.67 25896.79 21796.29 27699.04 21296.05 25195.55 33196.84 32093.84 25399.54 29692.82 30999.26 23799.32 180
TEST998.71 24598.08 13195.96 28999.03 21491.40 33195.85 32497.53 29696.52 17199.76 208
train_agg97.10 23496.45 25799.07 11398.71 24598.08 13195.96 28999.03 21491.64 32695.85 32497.53 29696.47 17499.76 20893.67 29299.16 25199.36 166
test_prior397.48 20697.00 22498.95 13398.69 25397.95 14995.74 30199.03 21496.48 23796.11 31897.63 29295.92 20099.59 28194.16 27499.20 24499.30 187
test_prior98.95 13398.69 25397.95 14999.03 21499.59 28199.30 187
save fliter99.11 16297.97 14496.53 26299.02 21898.24 117
test_898.67 25898.01 13895.91 29499.02 21891.64 32695.79 32697.50 29996.47 17499.76 208
MVS_Test98.18 15098.36 11697.67 25198.48 28194.73 26998.18 12199.02 21897.69 15398.04 22699.11 9697.22 13399.56 29098.57 5898.90 28298.71 280
agg_prior197.06 23896.40 25899.03 12398.68 25697.99 13995.76 29999.01 22191.73 32595.59 32797.50 29996.49 17399.77 20193.71 29199.14 25599.34 172
agg_prior98.68 25697.99 13999.01 22195.59 32799.77 201
CDPH-MVS97.26 22296.66 24799.07 11399.00 18998.15 12396.03 28599.01 22191.21 33497.79 23997.85 27996.89 14999.69 23892.75 31299.38 21699.39 150
ambc98.24 21998.82 22995.97 23798.62 7799.00 22499.27 7399.21 7596.99 14499.50 30796.55 18899.50 20099.26 197
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11899.01 5098.99 22599.25 4499.54 3099.37 5497.04 13899.80 16897.89 9499.52 19099.35 170
Regformer-198.55 10898.44 10398.87 14498.85 22197.29 19296.91 24398.99 22598.97 7498.99 11998.64 20397.26 13099.81 15997.79 10099.57 17599.51 96
our_test_397.39 21397.73 17796.34 30498.70 24989.78 34094.61 33598.97 22796.50 23699.04 11198.85 16295.98 19699.84 12297.26 12799.67 14099.41 141
TSAR-MVS + MP.98.63 9498.49 9399.06 11899.64 4697.90 15398.51 9298.94 22896.96 21899.24 8098.89 15497.83 8099.81 15996.88 15699.49 20199.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
WR-MVS98.40 12798.19 13799.03 12399.00 18997.65 17696.85 24698.94 22898.57 10098.89 14098.50 22495.60 20999.85 10597.54 11499.85 5499.59 55
CNVR-MVS98.17 15297.87 16899.07 11398.67 25898.24 11397.01 23498.93 23097.25 19997.62 25098.34 24297.27 12799.57 28796.42 19899.33 22399.39 150
CNLPA97.17 23196.71 24298.55 18998.56 27398.05 13696.33 27498.93 23096.91 22197.06 28297.39 30694.38 24499.45 31791.66 32499.18 25098.14 307
AdaColmapbinary97.14 23396.71 24298.46 20098.34 29097.80 16596.95 23798.93 23095.58 26496.92 28797.66 28995.87 20299.53 29890.97 33599.14 25598.04 310
CR-MVSNet96.28 27195.95 26897.28 27697.71 32394.22 27998.11 12898.92 23392.31 32096.91 28999.37 5485.44 32099.81 15997.39 12197.36 33197.81 321
Patchmtry97.35 21596.97 22698.50 19797.31 34096.47 22598.18 12198.92 23398.95 7898.78 15899.37 5485.44 32099.85 10595.96 22199.83 6299.17 218
FMVSNet397.50 20297.24 21298.29 21598.08 30795.83 24197.86 16198.91 23597.89 14298.95 12798.95 13887.06 30599.81 15997.77 10299.69 12999.23 202
mvs_anonymous97.83 18398.16 14296.87 29398.18 30191.89 32497.31 21498.90 23697.37 18798.83 15199.46 4396.28 18499.79 18398.90 3798.16 31098.95 247
NCCC97.86 17597.47 19899.05 12098.61 26598.07 13396.98 23698.90 23697.63 15797.04 28397.93 27595.99 19599.66 25895.31 24798.82 28599.43 135
miper_enhance_ethall96.01 27695.74 27196.81 29796.41 35592.27 32193.69 35198.89 23891.14 33598.30 20797.35 31090.58 28699.58 28696.31 20499.03 26998.60 287
D2MVS97.84 18197.84 17097.83 24399.14 15994.74 26896.94 23898.88 23995.84 25998.89 14098.96 13494.40 24399.69 23897.55 11299.95 1699.05 229
CHOSEN 280x42095.51 28995.47 28095.65 31998.25 29688.27 34693.25 35398.88 23993.53 30694.65 34397.15 31686.17 31299.93 2897.41 12099.93 2598.73 279
IU-MVS99.49 8499.15 4598.87 24192.97 31199.41 4996.76 16699.62 15499.66 34
EI-MVSNet-UG-set98.69 8298.71 6298.62 17699.10 16696.37 22797.23 21998.87 24199.20 4899.19 8698.99 12597.30 12499.85 10598.77 4899.79 8299.65 38
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26997.20 22398.87 24198.97 7499.06 10499.02 11596.00 19299.80 16898.58 5699.82 6599.60 49
test1198.87 241
MVSTER96.86 25096.55 25497.79 24597.91 31594.21 28197.56 19398.87 24197.49 17199.06 10499.05 10880.72 34499.80 16898.44 6599.82 6599.37 160
EI-MVSNet-Vis-set98.68 8698.70 6598.63 17499.09 16996.40 22697.23 21998.86 24699.20 4899.18 9098.97 13197.29 12699.85 10598.72 5199.78 8699.64 39
PS-MVSNAJ97.08 23697.39 20196.16 31198.56 27392.46 31795.24 31798.85 24797.25 19997.49 26395.99 33698.07 6499.90 4996.37 20098.67 29496.12 354
DVP-MVS98.77 6998.52 8699.52 4199.50 7799.21 2698.02 14398.84 24897.97 13599.08 10199.02 11597.61 9999.88 6796.99 14399.63 15199.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v2_base97.16 23297.49 19496.17 30998.54 27692.46 31795.45 31298.84 24897.25 19997.48 26496.49 32698.31 4999.90 4996.34 20398.68 29396.15 353
MS-PatchMatch97.68 19197.75 17497.45 26998.23 29993.78 29897.29 21598.84 24896.10 25098.64 17298.65 20096.04 18999.36 32696.84 16099.14 25599.20 207
Regformer-398.61 9798.61 7798.63 17499.02 18696.53 22497.17 22798.84 24899.13 5599.10 9898.85 16297.24 13199.79 18398.41 6899.70 12399.57 66
PMMVS96.51 26395.98 26798.09 22697.53 33195.84 24094.92 32598.84 24891.58 32896.05 32295.58 34295.68 20799.66 25895.59 24198.09 31498.76 276
原ACMM198.35 20998.90 21096.25 23198.83 25392.48 31896.07 32198.10 26195.39 21899.71 23292.61 31698.99 27699.08 226
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19699.32 1598.81 25497.66 15598.62 17599.40 5396.82 15499.80 16895.88 22399.51 19398.75 277
TAMVS98.24 14598.05 15498.80 15499.07 17497.18 20397.88 15898.81 25496.66 23299.17 9199.21 7594.81 23399.77 20196.96 14799.88 4999.44 131
testdata98.09 22698.93 20295.40 25398.80 25690.08 34297.45 26698.37 23995.26 22099.70 23493.58 29598.95 28099.17 218
CL-MVSNet_2432*160097.44 21097.22 21398.08 22998.57 27295.78 24394.30 34298.79 25796.58 23598.60 17998.19 25494.74 23799.64 26596.41 19998.84 28398.82 264
CANet_DTU97.26 22297.06 22197.84 24297.57 32894.65 27396.19 28298.79 25797.23 20595.14 34098.24 24993.22 26299.84 12297.34 12399.84 5699.04 233
test22298.92 20696.93 21495.54 30798.78 25985.72 35696.86 29598.11 26094.43 24199.10 26399.23 202
RRT_MVS97.07 23796.57 25298.58 18195.89 36196.33 22897.36 21098.77 26097.85 14599.08 10199.12 9482.30 33999.96 898.82 4399.90 4499.45 126
新几何198.91 13998.94 20097.76 16798.76 26187.58 35396.75 29998.10 26194.80 23499.78 19592.73 31399.00 27599.20 207
旧先验198.82 22997.45 18698.76 26198.34 24295.50 21499.01 27499.23 202
PAPM_NR96.82 25396.32 26198.30 21499.07 17496.69 22297.48 20198.76 26195.81 26196.61 30496.47 32894.12 25199.17 34490.82 33997.78 32199.06 228
HPM-MVS++copyleft98.10 15597.64 18599.48 5099.09 16999.13 5197.52 19798.75 26497.46 17796.90 29297.83 28096.01 19199.84 12295.82 23099.35 22099.46 122
CDS-MVSNet97.69 19097.35 20598.69 16898.73 24097.02 21096.92 24298.75 26495.89 25898.59 18198.67 19592.08 28099.74 21996.72 17199.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
无先验95.74 30198.74 26689.38 34599.73 22392.38 31899.22 206
112196.73 25596.00 26698.91 13998.95 19997.76 16798.07 13498.73 26787.65 35296.54 30598.13 25694.52 24099.73 22392.38 31899.02 27299.24 201
MCST-MVS98.00 16397.63 18699.10 10699.24 12998.17 12296.89 24598.73 26795.66 26397.92 22997.70 28897.17 13499.66 25896.18 21399.23 24099.47 120
PAPR95.29 29194.47 30197.75 24897.50 33595.14 26194.89 32698.71 26991.39 33295.35 33895.48 34594.57 23999.14 34784.95 35397.37 32998.97 246
PMVScopyleft91.26 2097.86 17597.94 16397.65 25399.71 3097.94 15198.52 8898.68 27098.99 7197.52 26099.35 5897.41 11898.18 36091.59 32799.67 14096.82 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
VNet98.42 12498.30 12498.79 15698.79 23597.29 19298.23 11698.66 27199.31 3998.85 14898.80 17494.80 23499.78 19598.13 8099.13 25899.31 184
test1298.93 13698.58 27097.83 15998.66 27196.53 30695.51 21399.69 23899.13 25899.27 194
TSAR-MVS + GP.98.18 15097.98 15998.77 16198.71 24597.88 15496.32 27598.66 27196.33 24299.23 8398.51 22197.48 11599.40 32197.16 13199.46 20599.02 236
OpenMVS_ROBcopyleft95.38 1495.84 28195.18 29297.81 24498.41 28797.15 20697.37 20998.62 27483.86 35898.65 17198.37 23994.29 24699.68 24788.41 34698.62 29796.60 347
MAR-MVS96.47 26695.70 27398.79 15697.92 31499.12 5398.28 11298.60 27592.16 32395.54 33496.17 33494.77 23699.52 30289.62 34398.23 30597.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
hse-mvs397.77 18697.33 20899.10 10699.21 13697.84 15898.35 10998.57 27699.11 5698.58 18399.02 11588.65 30199.96 898.11 8196.34 34499.49 104
UGNet98.53 11398.45 10198.79 15697.94 31396.96 21299.08 4498.54 27799.10 6296.82 29799.47 4296.55 17099.84 12298.56 6199.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
cl-mvsnet295.79 28295.39 28696.98 28796.77 34992.79 31294.40 34098.53 27894.59 28597.89 23298.17 25582.82 33899.24 33996.37 20099.03 26998.92 253
pmmvs497.58 19997.28 20998.51 19598.84 22496.93 21495.40 31498.52 27993.60 30598.61 17798.65 20095.10 22499.60 27796.97 14699.79 8298.99 241
API-MVS97.04 24196.91 23197.42 27197.88 31698.23 11798.18 12198.50 28097.57 16397.39 27096.75 32296.77 15899.15 34690.16 34199.02 27294.88 359
sss97.21 22796.93 22798.06 23198.83 22695.22 25896.75 25398.48 28194.49 28697.27 27497.90 27692.77 27299.80 16896.57 18299.32 22499.16 221
Vis-MVSNet (Re-imp)97.46 20797.16 21698.34 21099.55 6596.10 23398.94 5898.44 28298.32 11098.16 21498.62 20988.76 29899.73 22393.88 28799.79 8299.18 214
MDA-MVSNet_test_wron97.60 19797.66 18397.41 27299.04 18193.09 30595.27 31598.42 28397.26 19898.88 14498.95 13895.43 21799.73 22397.02 14098.72 28999.41 141
jason97.45 20997.35 20597.76 24799.24 12993.93 29195.86 29598.42 28394.24 29498.50 19498.13 25694.82 23199.91 4597.22 12899.73 10699.43 135
jason: jason.
test_method79.78 33479.50 33780.62 34880.21 36945.76 37170.82 36398.41 28531.08 36680.89 36797.71 28684.85 32297.37 36291.51 32980.03 36498.75 277
YYNet197.60 19797.67 18097.39 27399.04 18193.04 30995.27 31598.38 28697.25 19998.92 13598.95 13895.48 21699.73 22396.99 14398.74 28799.41 141
IS-MVSNet98.19 14997.90 16699.08 11099.57 5597.97 14499.31 1898.32 28799.01 7098.98 12199.03 11491.59 28299.79 18395.49 24499.80 7799.48 112
131495.74 28395.60 27796.17 30997.53 33192.75 31498.07 13498.31 28891.22 33394.25 34696.68 32395.53 21199.03 34891.64 32697.18 33496.74 345
DPM-MVS96.32 26995.59 27898.51 19598.76 23697.21 20094.54 33898.26 28991.94 32496.37 31397.25 31193.06 26799.43 31991.42 33098.74 28798.89 257
BH-untuned96.83 25196.75 24097.08 28398.74 23993.33 30396.71 25598.26 28996.72 22998.44 19797.37 30895.20 22199.47 31391.89 32297.43 32798.44 295
EU-MVSNet97.66 19398.50 9095.13 32799.63 4885.84 35498.35 10998.21 29198.23 11999.54 3099.46 4395.02 22599.68 24798.24 7599.87 5299.87 4
SixPastTwentyTwo98.75 7298.62 7499.16 9799.83 1597.96 14899.28 2798.20 29299.37 3499.70 1599.65 1992.65 27499.93 2899.04 3199.84 5699.60 49
new_pmnet96.99 24696.76 23997.67 25198.72 24294.89 26695.95 29198.20 29292.62 31798.55 18998.54 21894.88 23099.52 30293.96 28399.44 20898.59 289
CVMVSNet96.25 27297.21 21493.38 34399.10 16680.56 36797.20 22398.19 29496.94 21999.00 11899.02 11589.50 29499.80 16896.36 20299.59 16599.78 14
KD-MVS_2432*160092.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
miper_refine_blended92.87 32491.99 32895.51 32291.37 36689.27 34194.07 34498.14 29595.42 27097.25 27596.44 32967.86 36699.24 33991.28 33196.08 34898.02 311
MG-MVS96.77 25496.61 24997.26 27798.31 29293.06 30695.93 29298.12 29796.45 23997.92 22998.73 18493.77 25799.39 32391.19 33499.04 26899.33 178
EPP-MVSNet98.30 13698.04 15599.07 11399.56 6297.83 15999.29 2398.07 29899.03 6898.59 18199.13 9392.16 27899.90 4996.87 15799.68 13499.49 104
MVS93.19 32292.09 32696.50 30296.91 34594.03 28698.07 13498.06 29968.01 36394.56 34596.48 32795.96 19899.30 33483.84 35596.89 33996.17 351
MVS_030497.64 19497.35 20598.52 19397.87 31796.69 22298.59 8198.05 30097.44 18193.74 35498.85 16293.69 25999.88 6798.11 8199.81 6998.98 242
lupinMVS97.06 23896.86 23397.65 25398.88 21693.89 29595.48 31197.97 30193.53 30698.16 21497.58 29493.81 25599.91 4596.77 16599.57 17599.17 218
GA-MVS95.86 28095.32 28897.49 26798.60 26794.15 28393.83 34997.93 30295.49 26896.68 30097.42 30583.21 33499.30 33496.22 20998.55 30099.01 237
WTY-MVS96.67 25896.27 26497.87 24198.81 23194.61 27496.77 25197.92 30394.94 27997.12 27797.74 28591.11 28499.82 14693.89 28698.15 31199.18 214
Patchmatch-test96.55 26296.34 26097.17 28098.35 28993.06 30698.40 10497.79 30497.33 19098.41 20198.67 19583.68 33399.69 23895.16 24899.31 22698.77 275
ADS-MVSNet295.43 29094.98 29696.76 29998.14 30391.74 32597.92 15497.76 30590.23 33896.51 30898.91 14385.61 31799.85 10592.88 30796.90 33798.69 283
PVSNet93.40 1795.67 28495.70 27395.57 32098.83 22688.57 34392.50 35697.72 30692.69 31696.49 31196.44 32993.72 25899.43 31993.61 29399.28 23298.71 280
pmmvs395.03 29794.40 30396.93 28997.70 32592.53 31695.08 32197.71 30788.57 34997.71 24498.08 26479.39 35199.82 14696.19 21199.11 26298.43 296
alignmvs97.35 21596.88 23298.78 15998.54 27698.09 12797.71 17697.69 30899.20 4897.59 25395.90 33888.12 30499.55 29398.18 7998.96 27998.70 282
AUN-MVS96.24 27395.45 28298.60 17998.70 24997.22 19897.38 20897.65 30995.95 25695.53 33597.96 27482.11 34399.79 18396.31 20497.44 32698.80 272
tpm cat193.29 32193.13 32093.75 33897.39 33784.74 35897.39 20797.65 30983.39 36094.16 34798.41 23282.86 33799.39 32391.56 32895.35 35397.14 339
hse-mvs297.46 20797.07 22098.64 17198.73 24097.33 19097.45 20597.64 31199.11 5698.58 18397.98 27088.65 30199.79 18398.11 8197.39 32898.81 267
PVSNet_089.98 2191.15 33390.30 33693.70 33997.72 32284.34 36290.24 36097.42 31290.20 34193.79 35293.09 36290.90 28598.89 35586.57 35172.76 36597.87 317
BH-w/o95.13 29594.89 29995.86 31398.20 30091.31 33295.65 30497.37 31393.64 30496.52 30795.70 34193.04 26899.02 34988.10 34795.82 35097.24 338
test_yl96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
DCV-MVSNet96.69 25696.29 26297.90 23898.28 29495.24 25697.29 21597.36 31498.21 12098.17 21297.86 27786.27 31099.55 29394.87 25498.32 30398.89 257
BH-RMVSNet96.83 25196.58 25197.58 25998.47 28294.05 28496.67 25797.36 31496.70 23197.87 23397.98 27095.14 22399.44 31890.47 34098.58 29999.25 198
ADS-MVSNet95.24 29394.93 29896.18 30898.14 30390.10 33997.92 15497.32 31790.23 33896.51 30898.91 14385.61 31799.74 21992.88 30796.90 33798.69 283
VDDNet98.21 14797.95 16199.01 12799.58 5197.74 17099.01 5097.29 31899.67 1098.97 12499.50 3690.45 28799.80 16897.88 9799.20 24499.48 112
PAPM91.88 33290.34 33596.51 30198.06 30892.56 31592.44 35797.17 31986.35 35490.38 36196.01 33586.61 30899.21 34270.65 36595.43 35297.75 325
FPMVS93.44 32092.23 32597.08 28399.25 12897.86 15695.61 30597.16 32092.90 31393.76 35398.65 20075.94 35995.66 36379.30 36397.49 32497.73 326
E-PMN94.17 30994.37 30493.58 34096.86 34685.71 35690.11 36197.07 32198.17 12697.82 23897.19 31284.62 32598.94 35289.77 34297.68 32396.09 355
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32299.59 2099.11 9599.27 6794.82 23199.79 18398.34 7299.63 15199.34 172
tpmrst95.07 29695.46 28193.91 33797.11 34384.36 36197.62 18596.96 32394.98 27796.35 31498.80 17485.46 31999.59 28195.60 24096.23 34697.79 324
wuyk23d96.06 27597.62 18791.38 34698.65 26498.57 9298.85 6596.95 32496.86 22499.90 499.16 8699.18 1198.40 35989.23 34499.77 9077.18 363
HY-MVS95.94 1395.90 27995.35 28797.55 26397.95 31294.79 26798.81 6796.94 32592.28 32195.17 33998.57 21689.90 29199.75 21591.20 33397.33 33398.10 308
MIMVSNet96.62 26196.25 26597.71 25099.04 18194.66 27299.16 3896.92 32697.23 20597.87 23399.10 9886.11 31499.65 26391.65 32599.21 24398.82 264
SCA96.41 26896.66 24795.67 31798.24 29788.35 34595.85 29796.88 32796.11 24997.67 24798.67 19593.10 26599.85 10594.16 27499.22 24198.81 267
tpmvs95.02 29895.25 28994.33 33396.39 35685.87 35398.08 13396.83 32895.46 26995.51 33698.69 19185.91 31599.53 29894.16 27496.23 34697.58 332
PatchmatchNetpermissive95.58 28695.67 27595.30 32697.34 33887.32 34997.65 18396.65 32995.30 27397.07 28198.69 19184.77 32399.75 21594.97 25298.64 29598.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchT96.65 25996.35 25997.54 26497.40 33695.32 25497.98 14996.64 33099.33 3896.89 29399.42 4984.32 32899.81 15997.69 11097.49 32497.48 335
TR-MVS95.55 28795.12 29496.86 29697.54 33093.94 29096.49 26696.53 33194.36 29397.03 28496.61 32494.26 24799.16 34586.91 35096.31 34597.47 336
dp93.47 31993.59 31393.13 34596.64 35081.62 36697.66 18196.42 33292.80 31596.11 31898.64 20378.55 35699.59 28193.31 30292.18 36298.16 306
EMVS93.83 31594.02 30793.23 34496.83 34884.96 35789.77 36296.32 33397.92 13997.43 26896.36 33286.17 31298.93 35387.68 34897.73 32295.81 356
Anonymous20240521197.90 16997.50 19399.08 11098.90 21098.25 11298.53 8796.16 33498.87 8199.11 9598.86 15990.40 28899.78 19597.36 12299.31 22699.19 212
MDTV_nov1_ep1395.22 29097.06 34483.20 36397.74 17496.16 33494.37 29296.99 28598.83 16883.95 33199.53 29893.90 28597.95 319
baseline195.96 27895.44 28397.52 26698.51 27993.99 28998.39 10596.09 33698.21 12098.40 20597.76 28486.88 30699.63 26895.42 24589.27 36398.95 247
CostFormer93.97 31393.78 31094.51 33297.53 33185.83 35597.98 14995.96 33789.29 34694.99 34298.63 20778.63 35499.62 27094.54 26296.50 34298.09 309
JIA-IIPM95.52 28895.03 29597.00 28596.85 34794.03 28696.93 24095.82 33899.20 4894.63 34499.71 1283.09 33599.60 27794.42 26894.64 35597.36 337
tpm293.09 32392.58 32494.62 33197.56 32986.53 35297.66 18195.79 33986.15 35594.07 35098.23 25175.95 35899.53 29890.91 33796.86 34097.81 321
EPNet_dtu94.93 29994.78 30095.38 32593.58 36587.68 34896.78 25095.69 34097.35 18989.14 36398.09 26388.15 30399.49 30894.95 25399.30 22998.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DWT-MVSNet_test92.75 32692.05 32794.85 32996.48 35387.21 35097.83 16494.99 34192.22 32292.72 35694.11 36070.75 36399.46 31595.01 25094.33 35897.87 317
tpm94.67 30194.34 30595.66 31897.68 32788.42 34497.88 15894.90 34294.46 28896.03 32398.56 21778.66 35399.79 18395.88 22395.01 35498.78 274
EPNet96.14 27495.44 28398.25 21890.76 36895.50 24997.92 15494.65 34398.97 7492.98 35598.85 16289.12 29699.87 8495.99 21999.68 13499.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20093.72 31793.14 31995.46 32498.66 26391.29 33396.61 26094.63 34497.39 18596.83 29693.71 36179.88 34699.56 29082.40 35998.13 31295.54 358
DeepMVS_CXcopyleft93.44 34298.24 29794.21 28194.34 34564.28 36491.34 36094.87 35689.45 29592.77 36677.54 36493.14 36093.35 361
tfpn200view994.03 31293.44 31495.78 31598.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31596.29 348
thres40094.14 31093.44 31496.24 30798.93 20291.44 32997.60 18894.29 34697.94 13797.10 27894.31 35879.67 34999.62 27083.05 35698.08 31597.66 329
thres100view90094.19 30893.67 31295.75 31699.06 17891.35 33198.03 14194.24 34898.33 10997.40 26994.98 35279.84 34799.62 27083.05 35698.08 31596.29 348
thres600view794.45 30393.83 30996.29 30599.06 17891.53 32797.99 14794.24 34898.34 10897.44 26795.01 35079.84 34799.67 25084.33 35498.23 30597.66 329
LFMVS97.20 22896.72 24198.64 17198.72 24296.95 21398.93 5994.14 35099.74 798.78 15899.01 12284.45 32699.73 22397.44 11899.27 23499.25 198
bset_n11_16_dypcd96.99 24696.56 25398.27 21799.00 18995.25 25592.18 35994.05 35198.75 8799.01 11598.38 23788.98 29799.93 2898.77 4899.92 3499.64 39
test0.0.03 194.51 30293.69 31196.99 28696.05 35893.61 30294.97 32493.49 35296.17 24697.57 25694.88 35482.30 33999.01 35193.60 29494.17 35998.37 301
N_pmnet97.63 19697.17 21598.99 12999.27 12497.86 15695.98 28693.41 35395.25 27499.47 4298.90 14695.63 20899.85 10596.91 14999.73 10699.27 194
IB-MVS91.63 1992.24 33090.90 33496.27 30697.22 34291.24 33594.36 34193.33 35492.37 31992.24 35894.58 35766.20 37199.89 5893.16 30494.63 35697.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ET-MVSNet_ETH3D94.30 30793.21 31797.58 25998.14 30394.47 27694.78 32893.24 35594.72 28389.56 36295.87 33978.57 35599.81 15996.91 14997.11 33698.46 292
K. test v398.00 16397.66 18399.03 12399.79 1997.56 18099.19 3692.47 35699.62 1799.52 3599.66 1789.61 29299.96 899.25 2099.81 6999.56 71
test-LLR93.90 31493.85 30894.04 33596.53 35184.62 35994.05 34692.39 35796.17 24694.12 34895.07 34882.30 33999.67 25095.87 22698.18 30897.82 319
test-mter92.33 32991.76 33294.04 33596.53 35184.62 35994.05 34692.39 35794.00 30194.12 34895.07 34865.63 37299.67 25095.87 22698.18 30897.82 319
MTMP97.93 15291.91 359
TESTMET0.1,192.19 33191.77 33193.46 34196.48 35382.80 36494.05 34691.52 36094.45 29094.00 35194.88 35466.65 37099.56 29095.78 23198.11 31398.02 311
thisisatest051594.12 31193.16 31896.97 28898.60 26792.90 31093.77 35090.61 36194.10 29896.91 28995.87 33974.99 36099.80 16894.52 26399.12 26198.20 304
tttt051795.64 28594.98 29697.64 25599.36 11193.81 29798.72 7190.47 36298.08 13098.67 16998.34 24273.88 36199.92 3597.77 10299.51 19399.20 207
thisisatest053095.27 29294.45 30297.74 24999.19 14394.37 27797.86 16190.20 36397.17 20998.22 21197.65 29073.53 36299.90 4996.90 15499.35 22098.95 247
baseline293.73 31692.83 32296.42 30397.70 32591.28 33496.84 24889.77 36493.96 30292.44 35795.93 33779.14 35299.77 20192.94 30596.76 34198.21 303
MVS-HIRNet94.32 30595.62 27690.42 34798.46 28375.36 36896.29 27689.13 36595.25 27495.38 33799.75 792.88 27099.19 34394.07 28199.39 21396.72 346
lessismore_v098.97 13099.73 2497.53 18286.71 36699.37 5699.52 3589.93 29099.92 3598.99 3499.72 11399.44 131
EPMVS93.72 31793.27 31695.09 32896.04 35987.76 34798.13 12585.01 36794.69 28496.92 28798.64 20378.47 35799.31 33295.04 24996.46 34398.20 304
MVEpermissive83.40 2292.50 32791.92 33094.25 33498.83 22691.64 32692.71 35583.52 36895.92 25786.46 36695.46 34695.20 22195.40 36480.51 36198.64 29595.73 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
gg-mvs-nofinetune92.37 32891.20 33395.85 31495.80 36292.38 31999.31 1881.84 36999.75 591.83 35999.74 868.29 36599.02 34987.15 34997.12 33596.16 352
GG-mvs-BLEND94.76 33094.54 36492.13 32399.31 1880.47 37088.73 36491.01 36467.59 36898.16 36182.30 36094.53 35793.98 360
tmp_tt78.77 33578.73 33878.90 34958.45 37074.76 37094.20 34378.26 37139.16 36586.71 36592.82 36380.50 34575.19 36786.16 35292.29 36186.74 362
testmvs17.12 33720.53 3406.87 35112.05 3714.20 37393.62 3526.73 3724.62 36810.41 36824.33 3668.28 3743.56 3699.69 36715.07 36612.86 365
test12317.04 33820.11 3417.82 35010.25 3724.91 37294.80 3274.47 3734.93 36710.00 36924.28 3679.69 3733.64 36810.14 36612.43 36714.92 364
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas8.17 33910.90 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37098.07 640.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
n20.00 374
nn0.00 374
ab-mvs-re8.12 34010.83 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37097.48 3010.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS98.82 15098.59 26998.30 10998.10 13098.52 22098.18 5898.75 35794.62 26099.48 20399.41 141
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13899.71 11899.70 29
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32498.81 267
sam_mvs84.29 330
test_post197.59 19020.48 36983.07 33699.66 25894.16 274
test_post21.25 36883.86 33299.70 234
patchmatchnet-post98.77 17984.37 32799.85 105
gm-plane-assit94.83 36381.97 36588.07 35194.99 35199.60 27791.76 323
test9_res93.28 30399.15 25499.38 157
agg_prior292.50 31799.16 25199.37 160
test_prior497.97 14495.86 295
test_prior295.74 30196.48 23796.11 31897.63 29295.92 20094.16 27499.20 244
旧先验295.76 29988.56 35097.52 26099.66 25894.48 264
新几何295.93 292
原ACMM295.53 308
testdata299.79 18392.80 311
segment_acmp97.02 141
testdata195.44 31396.32 243
plane_prior799.19 14397.87 155
plane_prior698.99 19397.70 17394.90 227
plane_prior497.98 270
plane_prior397.78 16697.41 18397.79 239
plane_prior297.77 17098.20 123
plane_prior199.05 180
plane_prior97.65 17697.07 23296.72 22999.36 218
HQP5-MVS96.79 217
HQP-NCC98.67 25896.29 27696.05 25195.55 331
ACMP_Plane98.67 25896.29 27696.05 25195.55 331
BP-MVS92.82 309
HQP4-MVS95.56 33099.54 29699.32 180
HQP2-MVS93.84 253
NP-MVS98.84 22497.39 18996.84 320
MDTV_nov1_ep13_2view74.92 36997.69 17890.06 34397.75 24285.78 31693.52 29698.69 283
ACMMP++_ref99.77 90
ACMMP++99.68 134
Test By Simon96.52 171