This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 299.85 1
test_part198.39 298.94 296.75 4299.23 390.73 7398.63 399.28 299.01 299.60 299.55 298.75 299.68 396.41 499.97 199.84 2
LCM-MVSNet-Re94.20 11894.58 10393.04 16795.91 20283.13 19893.79 12799.19 392.00 8798.84 698.04 3593.64 7099.02 10381.28 26198.54 14696.96 209
LTVRE_ROB93.87 197.93 398.16 397.26 2698.81 2493.86 3099.07 298.98 497.01 1398.92 598.78 1595.22 3898.61 16796.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 497.60 597.93 299.02 1295.95 598.61 498.81 597.41 1097.28 4698.46 2694.62 5798.84 12994.64 1899.53 3498.99 53
ANet_high94.83 9496.28 3790.47 24996.65 15073.16 31494.33 11398.74 696.39 2398.09 2498.93 993.37 7798.70 15990.38 12699.68 1899.53 15
ACMH+88.43 1196.48 3196.82 1795.47 8198.54 4289.06 9495.65 6698.61 796.10 2698.16 2297.52 5896.90 898.62 16690.30 13199.60 2498.72 89
SF-MVS95.88 5695.88 5895.87 6598.12 7389.65 8595.58 6898.56 891.84 9796.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
CS-MVS92.54 16592.31 16393.23 16495.89 20484.07 18693.58 13398.48 988.60 17090.41 25886.23 33792.00 10999.35 5587.54 19098.06 19896.26 234
HPM-MVScopyleft96.81 1396.62 2497.36 2498.89 1993.53 3797.51 898.44 1092.35 7895.95 10496.41 12996.71 999.42 2893.99 3299.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 9094.51 10696.00 5698.02 8392.17 5095.26 7898.43 1190.48 13595.04 14496.74 10992.54 10097.86 23185.11 22498.98 10097.98 147
TestCases96.00 5698.02 8392.17 5098.43 1190.48 13595.04 14496.74 10992.54 10097.86 23185.11 22498.98 10097.98 147
xxxxxxxxxxxxxcwj95.03 8294.93 8995.33 8597.46 11788.05 11792.04 18498.42 1387.63 19096.36 8096.68 11494.37 6399.32 6592.41 8599.05 9198.64 95
APDe-MVS96.46 3396.64 2395.93 6197.68 10489.38 9196.90 1898.41 1492.52 7397.43 4197.92 4195.11 4299.50 2094.45 2099.30 6298.92 67
9.1494.81 9397.49 11494.11 11898.37 1587.56 19395.38 12696.03 15394.66 5699.08 9290.70 12098.97 104
ETH3D-3000-0.194.86 9194.55 10495.81 6697.61 10789.72 8394.05 12098.37 1588.09 17995.06 14395.85 15992.58 9899.10 9190.33 13098.99 9998.62 99
abl_697.31 697.12 1497.86 398.54 4295.32 796.61 2598.35 1795.81 3197.55 3597.44 6396.51 1099.40 4094.06 3199.23 7498.85 76
MP-MVS-pluss96.08 5095.92 5796.57 4699.06 1091.21 6493.25 14098.32 1887.89 18396.86 6297.38 6695.55 2599.39 4595.47 1199.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 7495.88 5893.62 14998.49 5481.77 20995.90 5898.32 1893.93 5397.53 3797.56 5588.48 17199.40 4092.91 7599.83 699.68 5
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2898.38 5894.31 1596.79 2198.32 1896.69 1796.86 6297.56 5595.48 2698.77 14690.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVS95.89 5495.88 5895.92 6397.93 9089.83 8293.46 13698.30 2192.37 7697.75 2896.95 9295.14 4099.51 1991.74 10199.28 6898.41 116
PGM-MVS96.32 4295.94 5597.43 1998.59 3693.84 3195.33 7598.30 2191.40 11495.76 11096.87 9995.26 3699.45 2392.77 7699.21 7699.00 51
ACMH88.36 1296.59 2897.43 694.07 13498.56 3785.33 17096.33 4098.30 2194.66 3998.72 998.30 3097.51 698.00 22094.87 1599.59 2698.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4296.55 2795.62 7697.83 9388.55 10795.77 6298.29 2492.68 6998.03 2597.91 4395.13 4198.95 11493.85 3499.49 3799.36 24
APD-MVS_3200maxsize96.82 1196.65 2297.32 2597.95 8993.82 3296.31 4298.25 2595.51 3596.99 5997.05 8895.63 2299.39 4593.31 5898.88 11198.75 85
LPG-MVS_test96.38 4196.23 3996.84 4098.36 6192.13 5295.33 7598.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
LGP-MVS_train96.84 4098.36 6192.13 5298.25 2591.78 10197.07 5197.22 7996.38 1499.28 7092.07 9199.59 2699.11 41
Anonymous2023121196.60 2697.13 1395.00 9897.46 11786.35 15497.11 1598.24 2897.58 898.72 998.97 893.15 8499.15 8393.18 6499.74 1399.50 17
canonicalmvs94.59 10294.69 9894.30 12995.60 22187.03 13595.59 6798.24 2891.56 11195.21 13792.04 28394.95 5098.66 16391.45 11197.57 22497.20 203
test_0728_SECOND94.88 10198.55 4086.72 14295.20 8198.22 3099.38 5193.44 5299.31 6098.53 106
Vis-MVSNetpermissive95.50 6795.48 7195.56 7998.11 7489.40 9095.35 7398.22 3092.36 7794.11 16998.07 3392.02 10899.44 2493.38 5697.67 22097.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 597.24 1297.69 598.22 6893.87 2998.42 598.19 3296.95 1495.46 12499.23 593.45 7399.57 1495.34 1399.89 399.63 10
test072698.51 4686.69 14395.34 7498.18 3391.85 9497.63 3197.37 6795.58 23
MSP-MVS95.34 7394.63 10297.48 1498.67 2894.05 2196.41 3698.18 3391.26 11795.12 13895.15 19386.60 20799.50 2093.43 5496.81 24798.89 69
ACMMPcopyleft96.61 2596.34 3597.43 1998.61 3393.88 2896.95 1798.18 3392.26 8196.33 8296.84 10395.10 4399.40 4093.47 4999.33 5899.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 16992.03 16893.30 16295.81 20883.97 18792.80 15298.17 3687.71 18789.79 27187.56 32791.17 13799.18 8187.97 18397.27 23296.77 216
HPM-MVS_fast97.01 896.89 1697.39 2299.12 893.92 2797.16 1198.17 3693.11 6696.48 7697.36 7096.92 799.34 5994.31 2499.38 5498.92 67
XVG-OURS94.72 9894.12 11996.50 4998.00 8594.23 1691.48 20998.17 3690.72 12995.30 13096.47 12487.94 18296.98 27491.41 11297.61 22398.30 122
ZNCC-MVS96.42 3796.20 4197.07 3098.80 2692.79 4696.08 5098.16 3991.74 10595.34 12896.36 13795.68 2099.44 2494.41 2299.28 6898.97 59
FIs94.90 8895.35 7593.55 15298.28 6481.76 21095.33 7598.14 4093.05 6797.07 5197.18 8187.65 18599.29 6891.72 10299.69 1599.61 12
XVG-OURS-SEG-HR95.38 7195.00 8896.51 4898.10 7594.07 1892.46 16498.13 4190.69 13093.75 18096.25 14598.03 397.02 27392.08 9095.55 27098.45 113
SR-MVS-dyc-post96.84 996.60 2697.56 1098.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8994.85 5299.42 2893.49 4598.84 11698.00 143
RE-MVS-def96.66 2198.07 7795.27 896.37 3798.12 4295.66 3397.00 5797.03 8995.40 2893.49 4598.84 11698.00 143
RPMNet90.31 21490.14 21390.81 24391.01 31378.93 25592.52 16098.12 4291.91 9189.10 27896.89 9868.84 30399.41 3590.17 13792.70 31894.08 292
SED-MVS96.00 5396.41 3394.76 10698.51 4686.97 13695.21 7998.10 4591.95 8897.63 3197.25 7696.48 1299.35 5593.29 5999.29 6397.95 151
test_241102_TWO98.10 4591.95 8897.54 3697.25 7695.37 2999.35 5593.29 5999.25 7198.49 109
test_241102_ONE98.51 4686.97 13698.10 4591.85 9497.63 3197.03 8996.48 1298.95 114
WR-MVS_H96.60 2697.05 1595.24 9099.02 1286.44 15096.78 2298.08 4897.42 998.48 1797.86 4591.76 11699.63 794.23 2799.84 499.66 7
CP-MVS96.44 3696.08 4997.54 1198.29 6394.62 1396.80 2098.08 4892.67 7195.08 14296.39 13494.77 5499.42 2893.17 6599.44 4498.58 104
ACMP88.15 1395.71 6195.43 7496.54 4798.17 7191.73 6094.24 11598.08 4889.46 15396.61 7396.47 12495.85 1899.12 8890.45 12399.56 3298.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS96.70 2096.42 3097.54 1198.05 7994.69 1196.13 4898.07 5195.17 3696.82 6496.73 11195.09 4499.43 2792.99 7398.71 13398.50 108
v7n96.82 1197.31 1195.33 8598.54 4286.81 14096.83 1998.07 5196.59 2098.46 1898.43 2892.91 9099.52 1896.25 799.76 1199.65 9
UniMVSNet (Re)95.32 7495.15 8495.80 6897.79 9488.91 9792.91 14898.07 5193.46 6296.31 8495.97 15690.14 15499.34 5992.11 8899.64 2299.16 36
test117296.79 1696.52 2897.60 998.03 8294.87 1096.07 5198.06 5495.76 3296.89 6196.85 10094.85 5299.42 2893.35 5798.81 12498.53 106
SD-MVS95.19 8095.73 6693.55 15296.62 15388.88 10094.67 9998.05 5591.26 11797.25 4896.40 13095.42 2794.36 32592.72 8099.19 7797.40 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs94.32 11294.80 9492.85 17896.05 19181.44 21592.35 17198.05 5591.53 11295.75 11196.80 10493.35 7898.49 18191.01 11698.32 16998.64 95
PEN-MVS96.69 2197.39 994.61 11199.16 484.50 17696.54 2898.05 5598.06 598.64 1498.25 3195.01 4899.65 492.95 7499.83 699.68 5
XVG-ACMP-BASELINE95.68 6295.34 7696.69 4498.40 5693.04 4194.54 10998.05 5590.45 13796.31 8496.76 10792.91 9098.72 15291.19 11499.42 4698.32 119
baseline94.26 11594.80 9492.64 18496.08 18980.99 22193.69 13098.04 5990.80 12894.89 15096.32 13993.19 8298.48 18591.68 10598.51 15098.43 114
ACMMP_NAP96.21 4696.12 4796.49 5098.90 1891.42 6294.57 10598.03 6090.42 13896.37 7997.35 7195.68 2099.25 7494.44 2199.34 5698.80 80
ACMM88.83 996.30 4496.07 5096.97 3598.39 5792.95 4494.74 9798.03 6090.82 12797.15 4996.85 10096.25 1699.00 10693.10 6899.33 5898.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6896.82 14389.92 7992.72 15398.02 6284.73 23793.65 18495.54 18091.68 11899.22 7788.78 16898.49 15398.26 125
DeepC-MVS91.39 495.43 6995.33 7795.71 7497.67 10590.17 7693.86 12698.02 6287.35 19496.22 9297.99 3894.48 6199.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4595.99 5497.00 3498.65 2992.71 4795.69 6598.01 6492.08 8695.74 11296.28 14295.22 3899.42 2893.17 6599.06 8898.88 71
OurMVSNet-221017-096.80 1496.75 1996.96 3699.03 1191.85 5797.98 698.01 6494.15 4898.93 499.07 688.07 17899.57 1495.86 1099.69 1599.46 18
SteuartSystems-ACMMP96.40 3996.30 3696.71 4398.63 3091.96 5595.70 6398.01 6493.34 6496.64 7196.57 12194.99 4999.36 5493.48 4899.34 5698.82 78
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 4096.17 4497.04 3198.51 4693.37 3896.30 4497.98 6792.35 7895.63 11696.47 12495.37 2999.27 7293.78 3699.14 8298.48 110
#test#95.89 5495.51 7097.04 3198.51 4693.37 3895.14 8497.98 6789.34 15595.63 11696.47 12495.37 2999.27 7291.99 9399.14 8298.48 110
LS3D96.11 4995.83 6296.95 3794.75 24394.20 1797.34 1097.98 6797.31 1195.32 12996.77 10593.08 8699.20 7991.79 9998.16 18897.44 190
PS-CasMVS96.69 2197.43 694.49 12299.13 684.09 18596.61 2597.97 7097.91 698.64 1498.13 3295.24 3799.65 493.39 5599.84 499.72 3
region2R96.41 3896.09 4897.38 2398.62 3193.81 3496.32 4197.96 7192.26 8195.28 13296.57 12195.02 4799.41 3593.63 4099.11 8698.94 62
ACMMPR96.46 3396.14 4597.41 2198.60 3493.82 3296.30 4497.96 7192.35 7895.57 11996.61 11994.93 5199.41 3593.78 3699.15 8199.00 51
XVS96.49 3096.18 4297.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16596.49 12394.56 5899.39 4593.57 4199.05 9198.93 63
X-MVStestdata90.70 20088.45 23897.44 1798.56 3793.99 2596.50 3097.95 7394.58 4094.38 16526.89 35394.56 5899.39 4593.57 4199.05 9198.93 63
Gipumacopyleft95.31 7695.80 6493.81 14697.99 8890.91 6996.42 3597.95 7396.69 1791.78 23798.85 1391.77 11595.49 30891.72 10299.08 8795.02 274
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1897.43 694.67 10999.13 684.68 17596.51 2997.94 7698.14 498.67 1398.32 2995.04 4599.69 293.27 6199.82 899.62 11
PS-MVSNAJss96.01 5296.04 5295.89 6498.82 2388.51 10995.57 6997.88 7788.72 16698.81 798.86 1190.77 14199.60 995.43 1299.53 3499.57 14
pmmvs696.80 1497.36 1095.15 9499.12 887.82 12396.68 2397.86 7896.10 2698.14 2399.28 497.94 498.21 20391.38 11399.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8098.26 6687.69 12493.75 12897.86 7895.96 3097.48 3997.14 8395.33 3399.44 2490.79 11899.76 1199.38 22
PHI-MVS94.34 11193.80 12495.95 5895.65 21791.67 6194.82 9497.86 7887.86 18493.04 20494.16 23291.58 12098.78 14290.27 13398.96 10697.41 191
testtj94.81 9594.42 10796.01 5597.23 12590.51 7494.77 9697.85 8191.29 11694.92 14995.66 17191.71 11799.40 4088.07 18198.25 17898.11 136
ETV-MVS92.99 14992.74 15393.72 14795.86 20586.30 15592.33 17297.84 8291.70 10892.81 20986.17 33892.22 10499.19 8088.03 18297.73 21495.66 260
UniMVSNet_NR-MVSNet95.35 7295.21 8295.76 7197.69 10388.59 10592.26 17697.84 8294.91 3796.80 6595.78 16790.42 15099.41 3591.60 10799.58 3099.29 28
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 14590.79 7296.30 4497.82 8496.13 2594.74 15697.23 7891.33 12699.16 8293.25 6298.30 17298.46 112
HQP_MVS94.26 11593.93 12195.23 9197.71 10088.12 11594.56 10697.81 8591.74 10593.31 19195.59 17386.93 19998.95 11489.26 15998.51 15098.60 102
plane_prior597.81 8598.95 11489.26 15998.51 15098.60 102
DU-MVS95.28 7795.12 8695.75 7297.75 9688.59 10592.58 15897.81 8593.99 5096.80 6595.90 15790.10 15899.41 3591.60 10799.58 3099.26 29
APD-MVScopyleft95.00 8494.69 9895.93 6197.38 12090.88 7094.59 10297.81 8589.22 15895.46 12496.17 14993.42 7699.34 5989.30 15598.87 11497.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 5995.54 6996.47 5198.27 6591.19 6595.09 8597.79 8986.48 20597.42 4397.51 6094.47 6299.29 6893.55 4399.29 6398.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4895.68 6797.51 1398.81 2494.06 1996.10 4997.78 9092.73 6893.48 18796.72 11294.23 6599.42 2891.99 9399.29 6399.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 14193.88 12291.37 22196.34 17082.81 20193.11 14297.74 9189.37 15494.08 17195.29 19190.40 15396.35 29690.35 12898.25 17894.96 275
mPP-MVS96.46 3396.05 5197.69 598.62 3194.65 1296.45 3297.74 9192.59 7295.47 12296.68 11494.50 6099.42 2893.10 6899.26 7098.99 53
ETH3 D test640091.91 17791.25 18993.89 14296.59 15484.41 17792.10 18197.72 9378.52 28691.82 23693.78 24688.70 16999.13 8683.61 23898.39 15898.14 132
TAPA-MVS88.58 1092.49 16691.75 17794.73 10796.50 15989.69 8492.91 14897.68 9478.02 29092.79 21094.10 23390.85 14097.96 22484.76 23098.16 18896.54 219
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 9794.12 11996.60 4598.15 7293.01 4295.84 6097.66 9589.21 15993.28 19495.46 18288.89 16898.98 10789.80 14698.82 12297.80 168
DP-MVS95.62 6395.84 6194.97 9997.16 12988.62 10494.54 10997.64 9696.94 1596.58 7497.32 7493.07 8798.72 15290.45 12398.84 11697.57 183
zzz-MVS96.47 3296.14 4597.47 1598.95 1694.05 2193.69 13097.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
MTGPAbinary97.62 97
MTAPA96.65 2396.38 3497.47 1598.95 1694.05 2195.88 5997.62 9794.46 4496.29 8696.94 9393.56 7199.37 5294.29 2599.42 4698.99 53
anonymousdsp96.74 1896.42 3097.68 798.00 8594.03 2496.97 1697.61 10087.68 18998.45 1998.77 1694.20 6699.50 2096.70 399.40 5299.53 15
mvs_tets96.83 1096.71 2097.17 2798.83 2292.51 4896.58 2797.61 10087.57 19298.80 898.90 1096.50 1199.59 1396.15 899.47 3899.40 21
VPA-MVSNet95.14 8195.67 6893.58 15197.76 9583.15 19794.58 10497.58 10293.39 6397.05 5598.04 3593.25 8098.51 18089.75 14999.59 2699.08 45
v1094.68 10095.27 8192.90 17696.57 15680.15 22894.65 10197.57 10390.68 13197.43 4198.00 3788.18 17599.15 8394.84 1699.55 3399.41 20
CSCG94.69 9994.75 9694.52 11997.55 11187.87 12195.01 9097.57 10392.68 6996.20 9493.44 25391.92 11398.78 14289.11 16399.24 7396.92 210
ZD-MVS97.23 12590.32 7597.54 10584.40 23994.78 15495.79 16492.76 9599.39 4588.72 17198.40 156
UniMVSNet_ETH3D97.13 797.72 495.35 8399.51 287.38 12797.70 797.54 10598.16 398.94 399.33 397.84 599.08 9290.73 11999.73 1499.59 13
Effi-MVS+92.79 15492.74 15392.94 17495.10 23383.30 19494.00 12297.53 10791.36 11589.35 27790.65 30594.01 6898.66 16387.40 19495.30 27896.88 213
CP-MVSNet96.19 4796.80 1894.38 12898.99 1483.82 18996.31 4297.53 10797.60 798.34 2097.52 5891.98 11299.63 793.08 7099.81 999.70 4
RPSCF95.58 6594.89 9197.62 897.58 10996.30 495.97 5597.53 10792.42 7493.41 18897.78 4691.21 13297.77 24091.06 11597.06 23798.80 80
diffmvs91.74 17991.93 17191.15 23193.06 28078.17 26688.77 28097.51 11086.28 20992.42 22093.96 24088.04 17997.46 25690.69 12196.67 25297.82 166
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17497.73 9983.95 18892.14 18097.46 11178.85 28592.35 22494.98 20384.16 22599.08 9286.36 21096.77 24995.79 254
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5295.96 19892.96 4389.48 26397.46 11185.14 22896.23 9195.42 18593.19 8298.08 21390.37 12798.76 13097.38 197
jajsoiax96.59 2896.42 3097.12 2998.76 2792.49 4996.44 3497.42 11386.96 20198.71 1198.72 1895.36 3299.56 1795.92 999.45 4299.32 26
OMC-MVS94.22 11793.69 12995.81 6697.25 12491.27 6392.27 17597.40 11487.10 20094.56 16095.42 18593.74 6998.11 21286.62 20498.85 11598.06 137
v124093.29 13693.71 12892.06 20496.01 19677.89 27091.81 20297.37 11585.12 22996.69 6996.40 13086.67 20599.07 9694.51 1998.76 13099.22 32
NR-MVSNet95.28 7795.28 8095.26 8997.75 9687.21 13195.08 8697.37 11593.92 5497.65 3095.90 15790.10 15899.33 6490.11 13999.66 2099.26 29
MVSFormer92.18 17392.23 16492.04 20594.74 24480.06 23297.15 1297.37 11588.98 16088.83 28192.79 26677.02 28099.60 996.41 496.75 25096.46 226
test_djsdf96.62 2496.49 2997.01 3398.55 4091.77 5997.15 1297.37 11588.98 16098.26 2198.86 1193.35 7899.60 996.41 499.45 4299.66 7
DP-MVS Recon92.31 17091.88 17293.60 15097.18 12886.87 13991.10 21897.37 11584.92 23492.08 23294.08 23488.59 17098.20 20483.50 23998.14 19095.73 256
test_prior393.29 13692.85 14994.61 11195.95 19987.23 12990.21 24197.36 12089.33 15690.77 25094.81 21090.41 15198.68 16188.21 17598.55 14397.93 153
test_prior94.61 11195.95 19987.23 12997.36 12098.68 16197.93 153
QAPM92.88 15292.77 15193.22 16595.82 20683.31 19396.45 3297.35 12283.91 24293.75 18096.77 10589.25 16698.88 12184.56 23297.02 23997.49 187
OPM-MVS95.61 6495.45 7296.08 5498.49 5491.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4598.56 17592.77 7699.06 8898.70 90
HQP3-MVS97.31 12497.73 214
HQP-MVS92.09 17491.49 18393.88 14396.36 16684.89 17391.37 21097.31 12487.16 19788.81 28393.40 25484.76 22198.60 16986.55 20697.73 21498.14 132
PCF-MVS84.52 1789.12 23487.71 25393.34 15996.06 19085.84 16486.58 31697.31 12468.46 33493.61 18593.89 24287.51 18898.52 17967.85 33898.11 19495.66 260
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 20489.80 21792.63 18698.00 8582.24 20593.40 13897.29 12765.84 34189.40 27694.80 21386.99 19798.75 14783.88 23798.61 14096.89 212
CLD-MVS91.82 17891.41 18593.04 16796.37 16483.65 19186.82 30997.29 12784.65 23892.27 22889.67 31592.20 10597.85 23383.95 23699.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 9694.90 9094.47 12395.47 22487.06 13396.63 2497.28 12991.82 10094.34 16797.41 6490.60 14898.65 16592.47 8498.11 19497.70 175
DELS-MVS92.05 17592.16 16591.72 21294.44 25480.13 23087.62 29097.25 13087.34 19592.22 22993.18 26089.54 16498.73 15189.67 15098.20 18696.30 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 13993.61 13292.19 19896.04 19578.31 26491.88 19597.24 13185.17 22796.19 9696.19 14786.76 20499.05 9794.18 2998.84 11699.22 32
test_040295.73 6096.22 4094.26 13098.19 7085.77 16593.24 14197.24 13196.88 1697.69 2997.77 4894.12 6799.13 8691.54 11099.29 6397.88 159
v119293.49 13193.78 12592.62 18796.16 18579.62 24491.83 20197.22 13386.07 21396.10 10096.38 13587.22 19299.02 10394.14 3098.88 11199.22 32
F-COLMAP92.28 17191.06 19395.95 5897.52 11291.90 5693.53 13497.18 13483.98 24188.70 28994.04 23588.41 17398.55 17780.17 27295.99 26297.39 195
v894.65 10195.29 7992.74 18196.65 15079.77 24294.59 10297.17 13591.86 9397.47 4097.93 4088.16 17699.08 9294.32 2399.47 3899.38 22
v14419293.20 14493.54 13592.16 20196.05 19178.26 26591.95 18897.14 13684.98 23395.96 10396.11 15087.08 19699.04 10093.79 3598.84 11699.17 35
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11596.14 18687.90 12093.36 13997.14 13685.53 22293.90 17895.45 18391.30 12898.59 17189.51 15298.62 13997.31 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 15192.51 15994.10 13397.52 11285.72 16691.36 21397.13 13880.33 26792.91 20894.24 22891.23 13198.72 15289.99 14397.93 20797.86 161
pm-mvs195.43 6995.94 5593.93 14098.38 5885.08 17295.46 7297.12 13991.84 9797.28 4698.46 2695.30 3597.71 24590.17 13799.42 4698.99 53
save fliter97.46 11788.05 11792.04 18497.08 14087.63 190
CDPH-MVS92.67 15991.83 17395.18 9396.94 13788.46 11090.70 22797.07 14177.38 29292.34 22695.08 19892.67 9798.88 12185.74 21598.57 14298.20 129
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18394.53 25384.10 18495.70 6397.03 14282.44 25691.14 24796.42 12888.47 17298.38 19085.95 21497.47 22795.55 264
原ACMM192.87 17796.91 13984.22 18197.01 14376.84 29789.64 27494.46 22188.00 18098.70 15981.53 25998.01 20395.70 258
DVP-MVS95.82 5896.18 4294.72 10898.51 4686.69 14395.20 8197.00 14491.85 9497.40 4497.35 7195.58 2399.34 5993.44 5299.31 6098.13 134
CANet92.38 16891.99 17093.52 15693.82 27083.46 19291.14 21697.00 14489.81 14886.47 30994.04 23587.90 18399.21 7889.50 15398.27 17497.90 157
HPM-MVS++copyleft95.02 8394.39 10896.91 3897.88 9193.58 3694.09 11996.99 14691.05 12292.40 22195.22 19291.03 13999.25 7492.11 8898.69 13697.90 157
v114493.50 13093.81 12392.57 18996.28 17579.61 24591.86 20096.96 14786.95 20295.91 10796.32 13987.65 18598.96 11293.51 4498.88 11199.13 39
testing_294.03 12194.38 10993.00 16996.79 14781.41 21692.87 15096.96 14785.88 21797.06 5497.92 4191.18 13698.71 15891.72 10299.04 9698.87 72
MVS_Test92.57 16493.29 14090.40 25193.53 27275.85 29592.52 16096.96 14788.73 16592.35 22496.70 11390.77 14198.37 19392.53 8395.49 27296.99 208
PVSNet_BlendedMVS90.35 21189.96 21591.54 21894.81 24078.80 26090.14 24596.93 15079.43 27588.68 29095.06 19986.27 21098.15 21080.27 26998.04 20197.68 177
PVSNet_Blended88.74 24488.16 24890.46 25094.81 24078.80 26086.64 31396.93 15074.67 30488.68 29089.18 31986.27 21098.15 21080.27 26996.00 26194.44 287
TEST996.45 16289.46 8690.60 22996.92 15279.09 28190.49 25594.39 22491.31 12798.88 121
train_agg92.71 15891.83 17395.35 8396.45 16289.46 8690.60 22996.92 15279.37 27690.49 25594.39 22491.20 13398.88 12188.66 17298.43 15597.72 174
NCCC94.08 12093.54 13595.70 7596.49 16089.90 8192.39 16896.91 15490.64 13292.33 22794.60 21890.58 14998.96 11290.21 13697.70 21898.23 126
test_896.37 16489.14 9390.51 23296.89 15579.37 27690.42 25794.36 22691.20 13398.82 131
agg_prior192.60 16191.76 17695.10 9696.20 18188.89 9890.37 23696.88 15679.67 27390.21 25994.41 22291.30 12898.78 14288.46 17498.37 16597.64 180
agg_prior96.20 18188.89 9896.88 15690.21 25998.78 142
MIMVSNet195.52 6695.45 7295.72 7399.14 589.02 9596.23 4796.87 15893.73 5697.87 2698.49 2590.73 14599.05 9786.43 20999.60 2499.10 44
IU-MVS98.51 4686.66 14596.83 15972.74 31695.83 10893.00 7299.29 6398.64 95
TSAR-MVS + MP.94.96 8694.75 9695.57 7898.86 2188.69 10196.37 3796.81 16085.23 22594.75 15597.12 8491.85 11499.40 4093.45 5098.33 16798.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 10394.29 11395.46 8296.94 13789.35 9291.81 20296.80 16189.66 15093.90 17895.44 18492.80 9498.72 15292.74 7898.52 14898.32 119
cascas87.02 27886.28 27989.25 27491.56 30876.45 28984.33 33196.78 16271.01 32486.89 30885.91 33981.35 24996.94 27583.09 24395.60 26994.35 289
IterMVS-LS93.78 12694.28 11492.27 19596.27 17679.21 25391.87 19696.78 16291.77 10396.57 7597.07 8687.15 19498.74 15091.99 9399.03 9898.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 6795.83 6294.50 12097.33 12385.93 16295.19 8396.77 16496.64 1997.61 3498.05 3493.23 8198.79 13888.60 17399.04 9698.78 82
TransMVSNet (Re)95.27 7996.04 5292.97 17198.37 6081.92 20895.07 8796.76 16593.97 5297.77 2798.57 2095.72 1997.90 22588.89 16699.23 7499.08 45
EG-PatchMatch MVS94.54 10594.67 10094.14 13297.87 9286.50 14692.00 18796.74 16688.16 17896.93 6097.61 5393.04 8897.90 22591.60 10798.12 19398.03 141
1112_ss88.42 24887.41 25791.45 21996.69 14980.99 22189.72 25896.72 16773.37 31287.00 30790.69 30377.38 27698.20 20481.38 26093.72 30595.15 270
Baseline_NR-MVSNet94.47 10795.09 8792.60 18898.50 5380.82 22492.08 18296.68 16893.82 5596.29 8698.56 2190.10 15897.75 24390.10 14199.66 2099.24 31
eth_miper_zixun_eth90.72 19990.61 20391.05 23292.04 29976.84 28586.91 30596.67 16985.21 22694.41 16393.92 24179.53 26098.26 20089.76 14897.02 23998.06 137
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11894.66 25088.25 11292.05 18396.65 17089.62 15190.08 26291.23 29392.56 9998.60 16986.30 21196.27 25996.90 211
test1196.65 170
RRT_test8_iter0588.21 25188.17 24688.33 28991.62 30666.82 34091.73 20596.60 17286.34 20894.14 16895.38 19047.72 35699.11 8991.78 10098.26 17599.06 47
LF4IMVS92.72 15792.02 16994.84 10395.65 21791.99 5492.92 14796.60 17285.08 23192.44 21993.62 24886.80 20396.35 29686.81 19998.25 17896.18 238
GBi-Net93.21 14292.96 14693.97 13795.40 22684.29 17895.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20098.38 16098.65 91
test193.21 14292.96 14693.97 13795.40 22684.29 17895.99 5296.56 17488.63 16795.10 13998.53 2281.31 25098.98 10786.74 20098.38 16098.65 91
FMVSNet194.84 9395.13 8593.97 13797.60 10884.29 17895.99 5296.56 17492.38 7597.03 5698.53 2290.12 15598.98 10788.78 16899.16 8098.65 91
ITE_SJBPF95.95 5897.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11197.08 27185.53 21797.96 20597.41 191
Fast-Effi-MVS+91.28 19290.86 19692.53 19195.45 22582.53 20389.25 27296.52 17885.00 23289.91 26688.55 32392.94 8998.84 12984.72 23195.44 27496.22 236
V4293.43 13393.58 13392.97 17195.34 23081.22 21892.67 15696.49 17987.25 19696.20 9496.37 13687.32 19198.85 12892.39 8798.21 18498.85 76
PLCcopyleft85.34 1590.40 20888.92 23094.85 10296.53 15890.02 7791.58 20796.48 18080.16 26886.14 31192.18 27985.73 21598.25 20176.87 30094.61 29396.30 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl_fuxian91.32 19191.42 18491.00 23692.29 29276.79 28687.52 29696.42 18185.76 22094.72 15893.89 24282.73 23598.16 20990.93 11798.55 14398.04 140
Regformer-294.86 9194.55 10495.77 7092.83 28589.98 7891.87 19696.40 18294.38 4696.19 9695.04 20092.47 10399.04 10093.49 4598.31 17098.28 123
USDC89.02 23589.08 22688.84 27995.07 23474.50 30588.97 27596.39 18373.21 31393.27 19596.28 14282.16 24296.39 29377.55 29498.80 12695.62 263
ambc92.98 17096.88 14083.01 20095.92 5796.38 18496.41 7797.48 6188.26 17497.80 23689.96 14498.93 10898.12 135
PAPM_NR91.03 19490.81 19891.68 21496.73 14881.10 22093.72 12996.35 18588.19 17788.77 28792.12 28285.09 22097.25 26682.40 25193.90 30296.68 218
v2v48293.29 13693.63 13192.29 19496.35 16978.82 25891.77 20496.28 18688.45 17295.70 11596.26 14486.02 21398.90 11893.02 7198.81 12499.14 38
AdaColmapbinary91.63 18291.36 18692.47 19395.56 22286.36 15392.24 17896.27 18788.88 16489.90 26792.69 26991.65 11998.32 19477.38 29797.64 22192.72 319
Test_1112_low_res87.50 26686.58 27290.25 25596.80 14677.75 27187.53 29596.25 18869.73 33086.47 30993.61 24975.67 28697.88 22779.95 27493.20 31095.11 272
test1294.43 12695.95 19986.75 14196.24 18989.76 27289.79 16298.79 13897.95 20697.75 173
PAPR87.65 26286.77 27090.27 25492.85 28477.38 27688.56 28596.23 19076.82 29884.98 31789.75 31486.08 21297.16 26972.33 32293.35 30896.26 234
MVS_111021_HR93.63 12993.42 13894.26 13096.65 15086.96 13889.30 26996.23 19088.36 17593.57 18694.60 21893.45 7397.77 24090.23 13598.38 16098.03 141
XXY-MVS92.58 16293.16 14590.84 24297.75 9679.84 23891.87 19696.22 19285.94 21595.53 12197.68 5092.69 9694.48 32183.21 24297.51 22598.21 128
MSDG90.82 19690.67 20291.26 22594.16 25983.08 19986.63 31496.19 19390.60 13491.94 23491.89 28489.16 16795.75 30380.96 26794.51 29494.95 276
miper_ehance_all_eth90.48 20590.42 20790.69 24491.62 30676.57 28886.83 30896.18 19483.38 24494.06 17392.66 27182.20 24198.04 21589.79 14797.02 23997.45 189
TinyColmap92.00 17692.76 15289.71 26595.62 22077.02 28090.72 22696.17 19587.70 18895.26 13396.29 14192.54 10096.45 29181.77 25698.77 12995.66 260
DPM-MVS89.35 23088.40 23992.18 20096.13 18884.20 18286.96 30496.15 19675.40 30387.36 30491.55 29183.30 22898.01 21982.17 25496.62 25394.32 290
HyFIR lowres test87.19 27485.51 28492.24 19697.12 13380.51 22585.03 32396.06 19766.11 34091.66 23892.98 26370.12 30199.14 8575.29 30995.23 28097.07 204
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
xiu_mvs_v1_base91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22295.69 21481.56 21289.92 25296.05 19883.22 24691.26 24390.74 30091.55 12198.82 13189.29 15695.91 26393.62 307
Regformer-494.90 8894.67 10095.59 7792.78 28789.02 9592.39 16895.91 20194.50 4296.41 7795.56 17892.10 10799.01 10594.23 2798.14 19098.74 86
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25394.64 25180.24 22689.69 25995.88 20285.77 21993.94 17795.69 16981.99 24492.98 33684.21 23591.30 32797.62 181
CANet_DTU89.85 22489.17 22591.87 20792.20 29580.02 23590.79 22495.87 20386.02 21482.53 33391.77 28680.01 25798.57 17485.66 21697.70 21897.01 207
PMVScopyleft87.21 1494.97 8595.33 7793.91 14198.97 1597.16 295.54 7095.85 20496.47 2193.40 19097.46 6295.31 3495.47 30986.18 21398.78 12889.11 336
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-194.55 10494.33 11295.19 9292.83 28588.54 10891.87 19695.84 20593.99 5095.95 10495.04 20092.00 10998.79 13893.14 6798.31 17098.23 126
alignmvs93.26 13992.85 14994.50 12095.70 21387.45 12593.45 13795.76 20691.58 11095.25 13492.42 27781.96 24598.72 15291.61 10697.87 21097.33 199
无先验89.94 25195.75 20770.81 32698.59 17181.17 26494.81 277
WR-MVS93.49 13193.72 12792.80 18097.57 11080.03 23490.14 24595.68 20893.70 5796.62 7295.39 18887.21 19399.04 10087.50 19199.64 2299.33 25
VPNet93.08 14593.76 12691.03 23398.60 3475.83 29791.51 20895.62 20991.84 9795.74 11297.10 8589.31 16598.32 19485.07 22699.06 8898.93 63
xiu_mvs_v2_base89.00 23789.19 22488.46 28794.86 23874.63 30286.97 30395.60 21080.88 26387.83 29988.62 32291.04 13898.81 13682.51 25094.38 29591.93 325
PS-MVSNAJ88.86 24188.99 22988.48 28694.88 23674.71 30086.69 31295.60 21080.88 26387.83 29987.37 33090.77 14198.82 13182.52 24994.37 29691.93 325
CHOSEN 1792x268887.19 27485.92 28291.00 23697.13 13279.41 24784.51 32995.60 21064.14 34490.07 26394.81 21078.26 27097.14 27073.34 31695.38 27796.46 226
miper_enhance_ethall88.42 24887.87 25190.07 26088.67 33975.52 29885.10 32295.59 21375.68 29992.49 21789.45 31878.96 26297.88 22787.86 18697.02 23996.81 215
MVP-Stereo90.07 22188.92 23093.54 15496.31 17386.49 14790.93 22195.59 21379.80 26991.48 23995.59 17380.79 25497.39 26278.57 28891.19 32896.76 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 32431.13 3270.00 3400.00 3610.00 3620.00 35295.58 2150.00 3570.00 35891.15 29493.43 750.00 3580.00 3560.00 3560.00 354
CNLPA91.72 18091.20 19093.26 16396.17 18491.02 6691.14 21695.55 21690.16 14290.87 24993.56 25186.31 20994.40 32479.92 27797.12 23694.37 288
FMVSNet292.78 15592.73 15592.95 17395.40 22681.98 20794.18 11795.53 21788.63 16796.05 10197.37 6781.31 25098.81 13687.38 19598.67 13798.06 137
ab-mvs92.40 16792.62 15791.74 21197.02 13481.65 21195.84 6095.50 21886.95 20292.95 20797.56 5590.70 14697.50 25379.63 27897.43 22896.06 242
MVS_111021_LR93.66 12893.28 14294.80 10496.25 17990.95 6890.21 24195.43 21987.91 18193.74 18294.40 22392.88 9296.38 29490.39 12598.28 17397.07 204
tfpnnormal94.27 11494.87 9292.48 19297.71 10080.88 22394.55 10895.41 22093.70 5796.67 7097.72 4991.40 12498.18 20787.45 19299.18 7998.36 117
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24496.67 394.00 12295.41 22089.94 14491.93 23592.13 28190.12 15598.97 11187.68 18897.48 22697.67 178
mvs-test193.07 14791.80 17596.89 3994.74 24495.83 692.17 17995.41 22089.94 14489.85 26890.59 30690.12 15598.88 12187.68 18895.66 26895.97 245
cl-mvsnet_90.65 20290.56 20490.91 24091.85 30176.98 28386.75 31095.36 22385.53 22294.06 17394.89 20777.36 27897.98 22390.27 13398.98 10097.76 171
cl-mvsnet190.65 20290.56 20490.91 24091.85 30176.99 28286.75 31095.36 22385.52 22494.06 17394.89 20777.37 27797.99 22290.28 13298.97 10497.76 171
testgi90.38 20991.34 18787.50 29897.49 11471.54 32389.43 26495.16 22588.38 17494.54 16194.68 21792.88 9293.09 33571.60 32797.85 21197.88 159
v14892.87 15393.29 14091.62 21596.25 17977.72 27291.28 21495.05 22689.69 14995.93 10696.04 15287.34 19098.38 19090.05 14297.99 20498.78 82
miper_lstm_enhance89.90 22389.80 21790.19 25991.37 31077.50 27483.82 33595.00 22784.84 23593.05 20394.96 20476.53 28595.20 31789.96 14498.67 13797.86 161
VNet92.67 15992.96 14691.79 20996.27 17680.15 22891.95 18894.98 22892.19 8494.52 16296.07 15187.43 18997.39 26284.83 22898.38 16097.83 164
FMVSNet390.78 19890.32 20992.16 20193.03 28279.92 23792.54 15994.95 22986.17 21295.10 13996.01 15469.97 30298.75 14786.74 20098.38 16097.82 166
BH-untuned90.68 20190.90 19490.05 26295.98 19779.57 24690.04 24894.94 23087.91 18194.07 17293.00 26287.76 18497.78 23979.19 28495.17 28192.80 317
RRT_MVS91.36 18990.05 21495.29 8889.21 33488.15 11492.51 16394.89 23186.73 20495.54 12095.68 17061.82 33699.30 6794.91 1499.13 8598.43 114
D2MVS89.93 22289.60 22290.92 23894.03 26478.40 26388.69 28294.85 23278.96 28393.08 20195.09 19774.57 28896.94 27588.19 17798.96 10697.41 191
SixPastTwentyTwo94.91 8795.21 8293.98 13698.52 4583.19 19695.93 5694.84 23394.86 3898.49 1698.74 1781.45 24899.60 994.69 1799.39 5399.15 37
旧先验196.20 18184.17 18394.82 23495.57 17789.57 16397.89 20996.32 231
API-MVS91.52 18591.61 17891.26 22594.16 25986.26 15794.66 10094.82 23491.17 12092.13 23191.08 29690.03 16197.06 27279.09 28597.35 23190.45 334
FMVSNet587.82 25886.56 27391.62 21592.31 29179.81 24193.49 13594.81 23683.26 24591.36 24196.93 9552.77 35297.49 25576.07 30598.03 20297.55 186
MAR-MVS90.32 21388.87 23394.66 11094.82 23991.85 5794.22 11694.75 23780.91 26287.52 30388.07 32686.63 20697.87 23076.67 30196.21 26094.25 291
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 21091.30 18887.58 29792.17 29668.00 33489.84 25694.73 23883.82 24393.22 19897.40 6587.54 18797.40 26187.94 18495.05 28397.34 198
Regformer-394.28 11394.23 11894.46 12492.78 28786.28 15692.39 16894.70 23993.69 6095.97 10295.56 17891.34 12598.48 18593.45 5098.14 19098.62 99
EI-MVSNet-UG-set94.35 11094.27 11694.59 11692.46 29085.87 16392.42 16794.69 24093.67 6196.13 9895.84 16291.20 13398.86 12693.78 3698.23 18199.03 49
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11192.55 28985.98 16192.44 16594.69 24093.70 5796.12 9995.81 16391.24 13098.86 12693.76 3998.22 18398.98 58
EI-MVSNet92.99 14993.26 14492.19 19892.12 29779.21 25392.32 17394.67 24291.77 10395.24 13595.85 15987.14 19598.49 18191.99 9398.26 17598.86 73
MVSTER89.32 23188.75 23491.03 23390.10 32476.62 28790.85 22294.67 24282.27 25795.24 13595.79 16461.09 33998.49 18190.49 12298.26 17597.97 150
新几何193.17 16697.16 12987.29 12894.43 24467.95 33591.29 24294.94 20586.97 19898.23 20281.06 26697.75 21393.98 298
112190.26 21589.23 22393.34 15997.15 13187.40 12691.94 19094.39 24567.88 33691.02 24894.91 20686.91 20198.59 17181.17 26497.71 21794.02 297
CMPMVSbinary68.83 2287.28 27085.67 28392.09 20388.77 33885.42 16990.31 23994.38 24670.02 32988.00 29793.30 25673.78 29294.03 32975.96 30796.54 25496.83 214
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 10694.35 11194.92 10098.25 6786.46 14997.13 1494.31 24796.24 2496.28 8996.36 13782.88 23299.35 5588.19 17799.52 3698.96 60
testdata91.03 23396.87 14182.01 20694.28 24871.55 32092.46 21895.42 18585.65 21797.38 26482.64 24797.27 23293.70 305
UGNet93.08 14592.50 16094.79 10593.87 26887.99 11995.07 8794.26 24990.64 13287.33 30597.67 5186.89 20298.49 18188.10 18098.71 13397.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 28984.30 28987.01 30191.03 31277.69 27391.94 19094.16 25059.36 34984.23 32387.50 32985.66 21696.80 28171.79 32493.05 31586.54 341
131486.46 28186.33 27886.87 30391.65 30574.54 30391.94 19094.10 25174.28 30684.78 31987.33 33183.03 23195.00 31878.72 28691.16 32991.06 331
cl-mvsnet289.02 23588.50 23790.59 24789.76 32676.45 28986.62 31594.03 25282.98 25292.65 21392.49 27272.05 29797.53 25188.93 16497.02 23997.78 169
EPP-MVSNet93.91 12493.68 13094.59 11698.08 7685.55 16897.44 994.03 25294.22 4794.94 14796.19 14782.07 24399.57 1487.28 19698.89 10998.65 91
UnsupCasMVSNet_bld88.50 24788.03 24989.90 26395.52 22378.88 25787.39 29794.02 25479.32 27993.06 20294.02 23780.72 25594.27 32675.16 31093.08 31496.54 219
pmmvs-eth3d91.54 18490.73 20193.99 13595.76 21187.86 12290.83 22393.98 25578.23 28994.02 17696.22 14682.62 23896.83 28086.57 20598.33 16797.29 201
BH-RMVSNet90.47 20690.44 20690.56 24895.21 23278.65 26289.15 27393.94 25688.21 17692.74 21194.22 22986.38 20897.88 22778.67 28795.39 27695.14 271
test22296.95 13685.27 17188.83 27893.61 25765.09 34390.74 25294.85 20984.62 22397.36 23093.91 299
CDS-MVSNet89.55 22788.22 24593.53 15595.37 22986.49 14789.26 27093.59 25879.76 27191.15 24692.31 27877.12 27998.38 19077.51 29597.92 20895.71 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 23890.79 19983.50 32394.28 25855.83 35585.34 32193.56 25986.18 21195.47 12295.73 16883.10 23096.51 28985.40 21898.06 19898.16 130
IterMVS-SCA-FT91.65 18191.55 17991.94 20693.89 26779.22 25287.56 29393.51 26091.53 11295.37 12796.62 11878.65 26598.90 11891.89 9894.95 28497.70 175
Anonymous2023120688.77 24388.29 24190.20 25896.31 17378.81 25989.56 26293.49 26174.26 30792.38 22295.58 17682.21 24095.43 31172.07 32398.75 13296.34 230
OpenMVS_ROBcopyleft85.12 1689.52 22989.05 22790.92 23894.58 25281.21 21991.10 21893.41 26277.03 29693.41 18893.99 23983.23 22997.80 23679.93 27694.80 28893.74 304
VDD-MVS94.37 10894.37 11094.40 12797.49 11486.07 16093.97 12493.28 26394.49 4396.24 9097.78 4687.99 18198.79 13888.92 16599.14 8298.34 118
jason89.17 23388.32 24091.70 21395.73 21280.07 23188.10 28793.22 26471.98 31990.09 26192.79 26678.53 26898.56 17587.43 19397.06 23796.46 226
jason: jason.
PAPM81.91 30680.11 31687.31 30093.87 26872.32 32184.02 33393.22 26469.47 33176.13 35089.84 30972.15 29697.23 26753.27 35189.02 33492.37 322
BH-w/o87.21 27287.02 26687.79 29694.77 24277.27 27887.90 28893.21 26681.74 26089.99 26588.39 32583.47 22696.93 27771.29 32892.43 32089.15 335
ppachtmachnet_test88.61 24688.64 23588.50 28591.76 30370.99 32684.59 32892.98 26779.30 28092.38 22293.53 25279.57 25997.45 25786.50 20897.17 23597.07 204
IterMVS90.18 21690.16 21090.21 25793.15 27875.98 29487.56 29392.97 26886.43 20794.09 17096.40 13078.32 26997.43 25887.87 18594.69 29197.23 202
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 19790.85 19790.63 24695.63 21979.24 25189.81 25792.87 26989.90 14694.39 16496.40 13085.77 21495.27 31673.86 31499.05 9197.39 195
CR-MVSNet87.89 25587.12 26490.22 25691.01 31378.93 25592.52 16092.81 27073.08 31489.10 27896.93 9567.11 30897.64 24888.80 16792.70 31894.08 292
Patchmtry90.11 21889.92 21690.66 24590.35 32277.00 28192.96 14692.81 27090.25 14194.74 15696.93 9567.11 30897.52 25285.17 21998.98 10097.46 188
GA-MVS87.70 25986.82 26890.31 25293.27 27577.22 27984.72 32792.79 27285.11 23089.82 26990.07 30766.80 31197.76 24284.56 23294.27 29995.96 246
sss87.23 27186.82 26888.46 28793.96 26577.94 26786.84 30792.78 27377.59 29187.61 30291.83 28578.75 26491.92 33977.84 29194.20 30095.52 265
Patchmatch-RL test88.81 24288.52 23689.69 26695.33 23179.94 23686.22 31792.71 27478.46 28795.80 10994.18 23166.25 31695.33 31489.22 16198.53 14793.78 302
test_yl90.11 21889.73 22091.26 22594.09 26279.82 23990.44 23392.65 27590.90 12393.19 19993.30 25673.90 29098.03 21682.23 25296.87 24595.93 247
DCV-MVSNet90.11 21889.73 22091.26 22594.09 26279.82 23990.44 23392.65 27590.90 12393.19 19993.30 25673.90 29098.03 21682.23 25296.87 24595.93 247
TSAR-MVS + GP.93.07 14792.41 16295.06 9795.82 20690.87 7190.97 22092.61 27788.04 18094.61 15993.79 24588.08 17797.81 23589.41 15498.39 15896.50 224
TAMVS90.16 21789.05 22793.49 15796.49 16086.37 15290.34 23892.55 27880.84 26592.99 20594.57 22081.94 24698.20 20473.51 31598.21 18495.90 250
MS-PatchMatch88.05 25487.75 25288.95 27693.28 27477.93 26887.88 28992.49 27975.42 30292.57 21693.59 25080.44 25694.24 32881.28 26192.75 31794.69 283
MG-MVS89.54 22889.80 21788.76 28094.88 23672.47 32089.60 26092.44 28085.82 21889.48 27595.98 15582.85 23397.74 24481.87 25595.27 27996.08 241
MVS_030490.96 19590.15 21293.37 15893.17 27787.06 13393.62 13292.43 28189.60 15282.25 33495.50 18182.56 23997.83 23484.41 23497.83 21295.22 268
lupinMVS88.34 25087.31 25891.45 21994.74 24480.06 23287.23 29892.27 28271.10 32388.83 28191.15 29477.02 28098.53 17886.67 20396.75 25095.76 255
pmmvs587.87 25687.14 26390.07 26093.26 27676.97 28488.89 27792.18 28373.71 31188.36 29293.89 24276.86 28396.73 28380.32 26896.81 24796.51 221
PM-MVS93.33 13592.67 15695.33 8596.58 15594.06 1992.26 17692.18 28385.92 21696.22 9296.61 11985.64 21895.99 30190.35 12898.23 18195.93 247
pmmvs488.95 23987.70 25492.70 18294.30 25785.60 16787.22 29992.16 28574.62 30589.75 27394.19 23077.97 27296.41 29282.71 24696.36 25896.09 240
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21794.68 24980.16 22785.49 32092.14 28690.41 13994.93 14895.79 16485.10 21996.93 27785.15 22194.19 30197.57 183
door-mid92.13 287
WTY-MVS86.93 27986.50 27788.24 29094.96 23574.64 30187.19 30092.07 28878.29 28888.32 29391.59 29078.06 27194.27 32674.88 31193.15 31295.80 253
TR-MVS87.70 25987.17 26289.27 27394.11 26179.26 25088.69 28291.86 28981.94 25990.69 25389.79 31282.82 23497.42 25972.65 32191.98 32491.14 330
VDDNet94.03 12194.27 11693.31 16198.87 2082.36 20495.51 7191.78 29097.19 1296.32 8398.60 1984.24 22498.75 14787.09 19798.83 12198.81 79
Anonymous20240521192.58 16292.50 16092.83 17996.55 15783.22 19592.43 16691.64 29194.10 4995.59 11896.64 11781.88 24797.50 25385.12 22398.52 14897.77 170
HY-MVS82.50 1886.81 28085.93 28189.47 26793.63 27177.93 26894.02 12191.58 29275.68 29983.64 32693.64 24777.40 27597.42 25971.70 32692.07 32393.05 314
door91.26 293
PatchMatch-RL89.18 23288.02 25092.64 18495.90 20392.87 4588.67 28491.06 29480.34 26690.03 26491.67 28883.34 22794.42 32376.35 30494.84 28790.64 333
ADS-MVSNet284.01 29482.20 30289.41 26989.04 33576.37 29187.57 29190.98 29572.71 31784.46 32092.45 27368.08 30496.48 29070.58 33383.97 34295.38 266
wuyk23d87.83 25790.79 19978.96 33290.46 32188.63 10392.72 15390.67 29691.65 10998.68 1297.64 5296.06 1777.53 35259.84 34799.41 5170.73 349
our_test_387.55 26487.59 25587.44 29991.76 30370.48 32783.83 33490.55 29779.79 27092.06 23392.17 28078.63 26795.63 30484.77 22994.73 28996.22 236
EU-MVSNet87.39 26886.71 27189.44 26893.40 27376.11 29294.93 9390.00 29857.17 35095.71 11497.37 6764.77 32397.68 24792.67 8194.37 29694.52 285
CHOSEN 280x42080.04 31777.97 32386.23 30790.13 32374.53 30472.87 34789.59 29966.38 33976.29 34985.32 34156.96 34595.36 31269.49 33694.72 29088.79 338
MDA-MVSNet_test_wron88.16 25388.23 24487.93 29392.22 29373.71 31080.71 34288.84 30082.52 25494.88 15195.14 19482.70 23693.61 33183.28 24193.80 30496.46 226
YYNet188.17 25288.24 24387.93 29392.21 29473.62 31180.75 34188.77 30182.51 25594.99 14695.11 19682.70 23693.70 33083.33 24093.83 30396.48 225
PVSNet76.22 2082.89 30082.37 30084.48 31893.96 26564.38 34878.60 34488.61 30271.50 32184.43 32286.36 33674.27 28994.60 32069.87 33593.69 30694.46 286
MIMVSNet87.13 27686.54 27488.89 27896.05 19176.11 29294.39 11188.51 30381.37 26188.27 29496.75 10872.38 29595.52 30665.71 34395.47 27395.03 273
tpmvs84.22 29383.97 29284.94 31487.09 34665.18 34391.21 21588.35 30482.87 25385.21 31490.96 29865.24 32196.75 28279.60 28185.25 34192.90 316
EPNet_dtu85.63 28584.37 28889.40 27086.30 34974.33 30791.64 20688.26 30584.84 23572.96 35289.85 30871.27 30097.69 24676.60 30297.62 22296.18 238
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 31579.46 31884.07 32188.78 33765.06 34689.26 27088.23 30662.27 34781.90 33989.66 31662.70 33495.29 31571.72 32580.60 34991.86 327
baseline187.62 26387.31 25888.54 28494.71 24874.27 30893.10 14388.20 30786.20 21092.18 23093.04 26173.21 29395.52 30679.32 28285.82 34095.83 252
CVMVSNet85.16 28784.72 28686.48 30492.12 29770.19 32892.32 17388.17 30856.15 35190.64 25495.85 15967.97 30696.69 28488.78 16890.52 33192.56 320
SCA87.43 26787.21 26188.10 29292.01 30071.98 32289.43 26488.11 30982.26 25888.71 28892.83 26478.65 26597.59 24979.61 27993.30 30994.75 280
tpmrst82.85 30182.93 29982.64 32587.65 34058.99 35390.14 24587.90 31075.54 30183.93 32491.63 28966.79 31395.36 31281.21 26381.54 34893.57 310
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 22997.66 10677.32 27794.33 11387.66 31191.20 11992.99 20595.13 19575.40 28798.28 19677.86 29099.19 7797.99 146
MDTV_nov1_ep1383.88 29389.42 33261.52 35188.74 28187.41 31273.99 30984.96 31894.01 23865.25 32095.53 30578.02 28993.16 311
PatchmatchNetpermissive85.22 28684.64 28786.98 30289.51 33169.83 33190.52 23187.34 31378.87 28487.22 30692.74 26866.91 31096.53 28781.77 25686.88 33994.58 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 24087.25 26093.83 14594.40 25693.81 3484.73 32587.09 31479.36 27893.26 19692.43 27679.29 26191.68 34077.50 29697.22 23496.00 244
EPNet89.80 22688.25 24294.45 12583.91 35586.18 15893.87 12587.07 31591.16 12180.64 34394.72 21578.83 26398.89 12085.17 21998.89 10998.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 28386.01 28086.38 30690.63 31774.22 30989.57 26186.69 31685.73 22189.81 27092.83 26465.24 32191.04 34277.82 29395.78 26793.88 301
K. test v393.37 13493.27 14393.66 14898.05 7982.62 20294.35 11286.62 31796.05 2897.51 3898.85 1376.59 28499.65 493.21 6398.20 18698.73 88
CostFormer83.09 29882.21 30185.73 30889.27 33367.01 33590.35 23786.47 31870.42 32783.52 32893.23 25961.18 33896.85 27977.21 29888.26 33793.34 312
thres20085.85 28485.18 28587.88 29594.44 25472.52 31989.08 27486.21 31988.57 17191.44 24088.40 32464.22 32498.00 22068.35 33795.88 26693.12 313
ET-MVSNet_ETH3D86.15 28284.27 29091.79 20993.04 28181.28 21787.17 30186.14 32079.57 27483.65 32588.66 32157.10 34498.18 20787.74 18795.40 27595.90 250
PatchT87.51 26588.17 24685.55 30990.64 31666.91 33692.02 18686.09 32192.20 8389.05 28097.16 8264.15 32596.37 29589.21 16292.98 31693.37 311
DWT-MVSNet_test80.74 31379.18 31985.43 31187.51 34366.87 33789.87 25586.01 32274.20 30880.86 34280.62 34848.84 35496.68 28681.54 25883.14 34692.75 318
tfpn200view987.05 27786.52 27588.67 28295.77 20972.94 31691.89 19386.00 32390.84 12592.61 21489.80 31063.93 32698.28 19671.27 32996.54 25494.79 278
thres40087.20 27386.52 27589.24 27595.77 20972.94 31691.89 19386.00 32390.84 12592.61 21489.80 31063.93 32698.28 19671.27 32996.54 25496.51 221
IB-MVS77.21 1983.11 29781.05 30889.29 27291.15 31175.85 29585.66 31986.00 32379.70 27282.02 33886.61 33348.26 35598.39 18877.84 29192.22 32193.63 306
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 29981.11 30788.66 28383.81 35686.44 15082.24 34085.65 32661.75 34882.07 33685.64 34079.75 25891.59 34175.99 30693.09 31387.94 340
tpm84.38 29284.08 29185.30 31390.47 32063.43 35089.34 26785.63 32777.24 29587.62 30195.03 20261.00 34097.30 26579.26 28391.09 33095.16 269
LFMVS91.33 19091.16 19291.82 20896.27 17679.36 24895.01 9085.61 32896.04 2994.82 15297.06 8772.03 29898.46 18784.96 22798.70 13597.65 179
FPMVS84.50 29183.28 29588.16 29196.32 17294.49 1485.76 31885.47 32983.09 24985.20 31594.26 22763.79 32886.58 34963.72 34591.88 32683.40 344
tpm281.46 30780.35 31484.80 31589.90 32565.14 34490.44 23385.36 33065.82 34282.05 33792.44 27557.94 34396.69 28470.71 33288.49 33692.56 320
thres100view90087.35 26986.89 26788.72 28196.14 18673.09 31593.00 14585.31 33192.13 8593.26 19690.96 29863.42 32998.28 19671.27 32996.54 25494.79 278
thres600view787.66 26187.10 26589.36 27196.05 19173.17 31392.72 15385.31 33191.89 9293.29 19390.97 29763.42 32998.39 18873.23 31796.99 24496.51 221
dp79.28 31878.62 32181.24 32885.97 35056.45 35486.91 30585.26 33372.97 31581.45 34189.17 32056.01 34895.45 31073.19 31876.68 35091.82 328
PMMVS281.31 30883.44 29474.92 33490.52 31946.49 35769.19 34985.23 33484.30 24087.95 29894.71 21676.95 28284.36 35164.07 34498.09 19693.89 300
ADS-MVSNet82.25 30381.55 30484.34 31989.04 33565.30 34287.57 29185.13 33572.71 31784.46 32092.45 27368.08 30492.33 33870.58 33383.97 34295.38 266
test-LLR83.58 29583.17 29684.79 31689.68 32866.86 33883.08 33684.52 33683.07 25082.85 33184.78 34262.86 33293.49 33282.85 24494.86 28594.03 295
test-mter81.21 31080.01 31784.79 31689.68 32866.86 33883.08 33684.52 33673.85 31082.85 33184.78 34243.66 36093.49 33282.85 24494.86 28594.03 295
JIA-IIPM85.08 28883.04 29791.19 23087.56 34186.14 15989.40 26684.44 33888.98 16082.20 33597.95 3956.82 34696.15 29876.55 30383.45 34491.30 329
thisisatest053088.69 24587.52 25692.20 19796.33 17179.36 24892.81 15184.01 33986.44 20693.67 18392.68 27053.62 35199.25 7489.65 15198.45 15498.00 143
tttt051789.81 22588.90 23292.55 19097.00 13579.73 24395.03 8983.65 34089.88 14795.30 13094.79 21453.64 35099.39 4591.99 9398.79 12798.54 105
thisisatest051584.72 29082.99 29889.90 26392.96 28375.33 29984.36 33083.42 34177.37 29388.27 29486.65 33253.94 34998.72 15282.56 24897.40 22995.67 259
PVSNet_070.34 2174.58 32172.96 32479.47 33190.63 31766.24 34173.26 34583.40 34263.67 34678.02 34778.35 34972.53 29489.59 34656.68 34960.05 35382.57 347
pmmvs380.83 31278.96 32086.45 30587.23 34577.48 27584.87 32482.31 34363.83 34585.03 31689.50 31749.66 35393.10 33473.12 31995.10 28288.78 339
E-PMN80.72 31480.86 31180.29 33085.11 35268.77 33372.96 34681.97 34487.76 18683.25 33083.01 34662.22 33589.17 34777.15 29994.31 29882.93 345
test0.0.03 182.48 30281.47 30685.48 31089.70 32773.57 31284.73 32581.64 34583.07 25088.13 29686.61 33362.86 33289.10 34866.24 34290.29 33293.77 303
baseline283.38 29681.54 30588.90 27791.38 30972.84 31888.78 27981.22 34678.97 28279.82 34587.56 32761.73 33797.80 23674.30 31290.05 33396.05 243
EMVS80.35 31680.28 31580.54 32984.73 35469.07 33272.54 34880.73 34787.80 18581.66 34081.73 34762.89 33189.84 34575.79 30894.65 29282.71 346
TESTMET0.1,179.09 31978.04 32282.25 32687.52 34264.03 34983.08 33680.62 34870.28 32880.16 34483.22 34544.13 35990.56 34379.95 27493.36 30792.15 323
lessismore_v093.87 14498.05 7983.77 19080.32 34997.13 5097.91 4377.49 27499.11 8992.62 8298.08 19798.74 86
new_pmnet81.22 30981.01 31081.86 32790.92 31570.15 32984.03 33280.25 35070.83 32585.97 31289.78 31367.93 30784.65 35067.44 33991.90 32590.78 332
MVS-HIRNet78.83 32080.60 31273.51 33593.07 27947.37 35687.10 30278.00 35168.94 33277.53 34897.26 7571.45 29994.62 31963.28 34688.74 33578.55 348
DSMNet-mixed82.21 30481.56 30384.16 32089.57 33070.00 33090.65 22877.66 35254.99 35283.30 32997.57 5477.89 27390.50 34466.86 34195.54 27191.97 324
EPMVS81.17 31180.37 31383.58 32285.58 35165.08 34590.31 23971.34 35377.31 29485.80 31391.30 29259.38 34192.70 33779.99 27382.34 34792.96 315
gg-mvs-nofinetune82.10 30581.02 30985.34 31287.46 34471.04 32494.74 9767.56 35496.44 2279.43 34698.99 745.24 35796.15 29867.18 34092.17 32288.85 337
GG-mvs-BLEND83.24 32485.06 35371.03 32594.99 9265.55 35574.09 35175.51 35044.57 35894.46 32259.57 34887.54 33884.24 343
MVEpermissive59.87 2373.86 32272.65 32577.47 33387.00 34874.35 30661.37 35160.93 35667.27 33769.69 35386.49 33581.24 25372.33 35356.45 35083.45 34485.74 342
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP94.82 9454.62 357
DeepMVS_CXcopyleft53.83 33670.38 35764.56 34748.52 35833.01 35365.50 35474.21 35156.19 34746.64 35438.45 35370.07 35150.30 350
tmp_tt37.97 32344.33 32618.88 33711.80 35821.54 35963.51 35045.66 3594.23 35451.34 35550.48 35259.08 34222.11 35544.50 35268.35 35213.00 351
testmvs9.02 32611.42 3291.81 3392.77 3601.13 36179.44 3431.90 3601.18 3562.65 3576.80 3541.95 3620.87 3572.62 3553.45 3553.44 353
test1239.49 32512.01 3281.91 3382.87 3591.30 36082.38 3391.34 3611.36 3552.84 3566.56 3552.45 3610.97 3562.73 3545.56 3543.47 352
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.56 32710.09 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35890.77 1410.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
n20.00 362
nn0.00 362
ab-mvs-re7.56 32710.08 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35890.69 3030.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
OPU-MVS95.15 9496.84 14289.43 8895.21 7995.66 17193.12 8598.06 21486.28 21298.61 14097.95 151
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5599.34 5993.88 3399.42 4698.89 69
GSMVS94.75 280
test_part298.21 6989.41 8996.72 68
sam_mvs166.64 31494.75 280
sam_mvs66.41 315
test_post190.21 2415.85 35765.36 31996.00 30079.61 279
test_post6.07 35665.74 31895.84 302
patchmatchnet-post91.71 28766.22 31797.59 249
gm-plane-assit87.08 34759.33 35271.22 32283.58 34497.20 26873.95 313
test9_res88.16 17998.40 15697.83 164
agg_prior287.06 19898.36 16697.98 147
test_prior489.91 8090.74 225
test_prior290.21 24189.33 15690.77 25094.81 21090.41 15188.21 17598.55 143
旧先验290.00 25068.65 33392.71 21296.52 28885.15 221
新几何290.02 249
原ACMM289.34 267
testdata298.03 21680.24 271
segment_acmp92.14 106
testdata188.96 27688.44 173
plane_prior797.71 10088.68 102
plane_prior697.21 12788.23 11386.93 199
plane_prior495.59 173
plane_prior388.43 11190.35 14093.31 191
plane_prior294.56 10691.74 105
plane_prior197.38 120
plane_prior88.12 11593.01 14488.98 16098.06 198
HQP5-MVS84.89 173
HQP-NCC96.36 16691.37 21087.16 19788.81 283
ACMP_Plane96.36 16691.37 21087.16 19788.81 283
BP-MVS86.55 206
HQP4-MVS88.81 28398.61 16798.15 131
HQP2-MVS84.76 221
NP-MVS96.82 14387.10 13293.40 254
MDTV_nov1_ep13_2view42.48 35888.45 28667.22 33883.56 32766.80 31172.86 32094.06 294
ACMMP++_ref98.82 122
ACMMP++99.25 71
Test By Simon90.61 147