LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 2 | 99.85 1 |
|
test_part1 | | | 98.39 2 | 98.94 2 | 96.75 42 | 99.23 3 | 90.73 73 | 98.63 3 | 99.28 2 | 99.01 2 | 99.60 2 | 99.55 2 | 98.75 2 | 99.68 3 | 96.41 4 | 99.97 1 | 99.84 2 |
|
LCM-MVSNet-Re | | | 94.20 118 | 94.58 103 | 93.04 167 | 95.91 202 | 83.13 198 | 93.79 127 | 99.19 3 | 92.00 87 | 98.84 6 | 98.04 35 | 93.64 70 | 99.02 103 | 81.28 261 | 98.54 146 | 96.96 209 |
|
LTVRE_ROB | | 93.87 1 | 97.93 3 | 98.16 3 | 97.26 26 | 98.81 24 | 93.86 30 | 99.07 2 | 98.98 4 | 97.01 13 | 98.92 5 | 98.78 15 | 95.22 38 | 98.61 167 | 96.85 2 | 99.77 10 | 99.31 27 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
TDRefinement | | | 97.68 4 | 97.60 5 | 97.93 2 | 99.02 12 | 95.95 5 | 98.61 4 | 98.81 5 | 97.41 10 | 97.28 46 | 98.46 26 | 94.62 57 | 98.84 129 | 94.64 18 | 99.53 34 | 98.99 53 |
|
ANet_high | | | 94.83 94 | 96.28 37 | 90.47 249 | 96.65 150 | 73.16 314 | 94.33 113 | 98.74 6 | 96.39 23 | 98.09 24 | 98.93 9 | 93.37 77 | 98.70 159 | 90.38 126 | 99.68 18 | 99.53 15 |
|
ACMH+ | | 88.43 11 | 96.48 31 | 96.82 17 | 95.47 81 | 98.54 42 | 89.06 94 | 95.65 66 | 98.61 7 | 96.10 26 | 98.16 22 | 97.52 58 | 96.90 8 | 98.62 166 | 90.30 131 | 99.60 24 | 98.72 89 |
|
SF-MVS | | | 95.88 56 | 95.88 58 | 95.87 65 | 98.12 73 | 89.65 85 | 95.58 68 | 98.56 8 | 91.84 97 | 96.36 80 | 96.68 114 | 94.37 63 | 99.32 65 | 92.41 85 | 99.05 91 | 98.64 95 |
|
CS-MVS | | | 92.54 165 | 92.31 163 | 93.23 164 | 95.89 204 | 84.07 186 | 93.58 133 | 98.48 9 | 88.60 170 | 90.41 258 | 86.23 337 | 92.00 109 | 99.35 55 | 87.54 190 | 98.06 198 | 96.26 234 |
|
HPM-MVS | | | 96.81 13 | 96.62 24 | 97.36 24 | 98.89 19 | 93.53 37 | 97.51 8 | 98.44 10 | 92.35 78 | 95.95 104 | 96.41 129 | 96.71 9 | 99.42 28 | 93.99 32 | 99.36 55 | 99.13 39 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
AllTest | | | 94.88 90 | 94.51 106 | 96.00 56 | 98.02 83 | 92.17 50 | 95.26 78 | 98.43 11 | 90.48 135 | 95.04 144 | 96.74 109 | 92.54 100 | 97.86 231 | 85.11 224 | 98.98 100 | 97.98 147 |
|
TestCases | | | | | 96.00 56 | 98.02 83 | 92.17 50 | | 98.43 11 | 90.48 135 | 95.04 144 | 96.74 109 | 92.54 100 | 97.86 231 | 85.11 224 | 98.98 100 | 97.98 147 |
|
xxxxxxxxxxxxxcwj | | | 95.03 82 | 94.93 89 | 95.33 85 | 97.46 117 | 88.05 117 | 92.04 184 | 98.42 13 | 87.63 190 | 96.36 80 | 96.68 114 | 94.37 63 | 99.32 65 | 92.41 85 | 99.05 91 | 98.64 95 |
|
APDe-MVS | | | 96.46 33 | 96.64 23 | 95.93 61 | 97.68 104 | 89.38 91 | 96.90 18 | 98.41 14 | 92.52 73 | 97.43 41 | 97.92 41 | 95.11 42 | 99.50 20 | 94.45 20 | 99.30 62 | 98.92 67 |
|
9.14 | | | | 94.81 93 | | 97.49 114 | | 94.11 118 | 98.37 15 | 87.56 193 | 95.38 126 | 96.03 153 | 94.66 56 | 99.08 92 | 90.70 120 | 98.97 104 | |
|
ETH3D-3000-0.1 | | | 94.86 91 | 94.55 104 | 95.81 66 | 97.61 107 | 89.72 83 | 94.05 120 | 98.37 15 | 88.09 179 | 95.06 143 | 95.85 159 | 92.58 98 | 99.10 91 | 90.33 130 | 98.99 99 | 98.62 99 |
|
abl_6 | | | 97.31 6 | 97.12 14 | 97.86 3 | 98.54 42 | 95.32 7 | 96.61 25 | 98.35 17 | 95.81 31 | 97.55 35 | 97.44 63 | 96.51 10 | 99.40 40 | 94.06 31 | 99.23 74 | 98.85 76 |
|
MP-MVS-pluss | | | 96.08 50 | 95.92 57 | 96.57 46 | 99.06 10 | 91.21 64 | 93.25 140 | 98.32 18 | 87.89 183 | 96.86 62 | 97.38 66 | 95.55 25 | 99.39 45 | 95.47 11 | 99.47 38 | 99.11 41 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
FC-MVSNet-test | | | 95.32 74 | 95.88 58 | 93.62 149 | 98.49 54 | 81.77 209 | 95.90 58 | 98.32 18 | 93.93 53 | 97.53 37 | 97.56 55 | 88.48 171 | 99.40 40 | 92.91 75 | 99.83 6 | 99.68 5 |
|
COLMAP_ROB | | 91.06 5 | 96.75 17 | 96.62 24 | 97.13 28 | 98.38 58 | 94.31 15 | 96.79 21 | 98.32 18 | 96.69 17 | 96.86 62 | 97.56 55 | 95.48 26 | 98.77 146 | 90.11 139 | 99.44 44 | 98.31 121 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
DPE-MVS | | | 95.89 54 | 95.88 58 | 95.92 63 | 97.93 90 | 89.83 82 | 93.46 136 | 98.30 21 | 92.37 76 | 97.75 28 | 96.95 92 | 95.14 40 | 99.51 19 | 91.74 101 | 99.28 68 | 98.41 116 |
|
PGM-MVS | | | 96.32 42 | 95.94 55 | 97.43 19 | 98.59 36 | 93.84 31 | 95.33 75 | 98.30 21 | 91.40 114 | 95.76 110 | 96.87 99 | 95.26 36 | 99.45 23 | 92.77 76 | 99.21 76 | 99.00 51 |
|
ACMH | | 88.36 12 | 96.59 28 | 97.43 6 | 94.07 134 | 98.56 37 | 85.33 170 | 96.33 40 | 98.30 21 | 94.66 39 | 98.72 9 | 98.30 30 | 97.51 6 | 98.00 220 | 94.87 15 | 99.59 26 | 98.86 73 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
nrg030 | | | 96.32 42 | 96.55 27 | 95.62 76 | 97.83 93 | 88.55 107 | 95.77 62 | 98.29 24 | 92.68 69 | 98.03 25 | 97.91 43 | 95.13 41 | 98.95 114 | 93.85 34 | 99.49 37 | 99.36 24 |
|
APD-MVS_3200maxsize | | | 96.82 11 | 96.65 22 | 97.32 25 | 97.95 89 | 93.82 32 | 96.31 42 | 98.25 25 | 95.51 35 | 96.99 59 | 97.05 88 | 95.63 22 | 99.39 45 | 93.31 58 | 98.88 111 | 98.75 85 |
|
LPG-MVS_test | | | 96.38 41 | 96.23 39 | 96.84 40 | 98.36 61 | 92.13 52 | 95.33 75 | 98.25 25 | 91.78 101 | 97.07 51 | 97.22 79 | 96.38 14 | 99.28 70 | 92.07 91 | 99.59 26 | 99.11 41 |
|
LGP-MVS_train | | | | | 96.84 40 | 98.36 61 | 92.13 52 | | 98.25 25 | 91.78 101 | 97.07 51 | 97.22 79 | 96.38 14 | 99.28 70 | 92.07 91 | 99.59 26 | 99.11 41 |
|
Anonymous20231211 | | | 96.60 26 | 97.13 13 | 95.00 98 | 97.46 117 | 86.35 154 | 97.11 15 | 98.24 28 | 97.58 8 | 98.72 9 | 98.97 8 | 93.15 84 | 99.15 83 | 93.18 64 | 99.74 13 | 99.50 17 |
|
canonicalmvs | | | 94.59 102 | 94.69 98 | 94.30 129 | 95.60 221 | 87.03 135 | 95.59 67 | 98.24 28 | 91.56 111 | 95.21 137 | 92.04 283 | 94.95 50 | 98.66 163 | 91.45 111 | 97.57 224 | 97.20 203 |
|
test_0728_SECOND | | | | | 94.88 101 | 98.55 40 | 86.72 142 | 95.20 81 | 98.22 30 | | | | | 99.38 51 | 93.44 52 | 99.31 60 | 98.53 106 |
|
Vis-MVSNet | | | 95.50 67 | 95.48 71 | 95.56 79 | 98.11 74 | 89.40 90 | 95.35 73 | 98.22 30 | 92.36 77 | 94.11 169 | 98.07 33 | 92.02 108 | 99.44 24 | 93.38 56 | 97.67 220 | 97.85 163 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
UA-Net | | | 97.35 5 | 97.24 12 | 97.69 5 | 98.22 68 | 93.87 29 | 98.42 5 | 98.19 32 | 96.95 14 | 95.46 124 | 99.23 5 | 93.45 73 | 99.57 14 | 95.34 13 | 99.89 3 | 99.63 10 |
|
test0726 | | | | | | 98.51 46 | 86.69 143 | 95.34 74 | 98.18 33 | 91.85 94 | 97.63 31 | 97.37 67 | 95.58 23 | | | | |
|
MSP-MVS | | | 95.34 73 | 94.63 102 | 97.48 14 | 98.67 28 | 94.05 21 | 96.41 36 | 98.18 33 | 91.26 117 | 95.12 138 | 95.15 193 | 86.60 207 | 99.50 20 | 93.43 54 | 96.81 247 | 98.89 69 |
|
ACMMP | | | 96.61 25 | 96.34 35 | 97.43 19 | 98.61 33 | 93.88 28 | 96.95 17 | 98.18 33 | 92.26 81 | 96.33 82 | 96.84 103 | 95.10 43 | 99.40 40 | 93.47 49 | 99.33 58 | 99.02 50 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
EIA-MVS | | | 92.35 169 | 92.03 168 | 93.30 162 | 95.81 208 | 83.97 187 | 92.80 152 | 98.17 36 | 87.71 187 | 89.79 271 | 87.56 327 | 91.17 137 | 99.18 81 | 87.97 183 | 97.27 232 | 96.77 216 |
|
HPM-MVS_fast | | | 97.01 8 | 96.89 16 | 97.39 22 | 99.12 8 | 93.92 27 | 97.16 11 | 98.17 36 | 93.11 66 | 96.48 76 | 97.36 70 | 96.92 7 | 99.34 59 | 94.31 24 | 99.38 54 | 98.92 67 |
|
XVG-OURS | | | 94.72 98 | 94.12 119 | 96.50 49 | 98.00 85 | 94.23 16 | 91.48 209 | 98.17 36 | 90.72 129 | 95.30 130 | 96.47 124 | 87.94 182 | 96.98 274 | 91.41 112 | 97.61 223 | 98.30 122 |
|
ZNCC-MVS | | | 96.42 37 | 96.20 41 | 97.07 30 | 98.80 26 | 92.79 46 | 96.08 50 | 98.16 39 | 91.74 105 | 95.34 128 | 96.36 137 | 95.68 20 | 99.44 24 | 94.41 22 | 99.28 68 | 98.97 59 |
|
FIs | | | 94.90 88 | 95.35 75 | 93.55 152 | 98.28 64 | 81.76 210 | 95.33 75 | 98.14 40 | 93.05 67 | 97.07 51 | 97.18 81 | 87.65 185 | 99.29 68 | 91.72 102 | 99.69 15 | 99.61 12 |
|
XVG-OURS-SEG-HR | | | 95.38 71 | 95.00 88 | 96.51 48 | 98.10 75 | 94.07 18 | 92.46 164 | 98.13 41 | 90.69 130 | 93.75 180 | 96.25 145 | 98.03 3 | 97.02 273 | 92.08 90 | 95.55 270 | 98.45 113 |
|
SR-MVS-dyc-post | | | 96.84 9 | 96.60 26 | 97.56 10 | 98.07 77 | 95.27 8 | 96.37 37 | 98.12 42 | 95.66 33 | 97.00 57 | 97.03 89 | 94.85 52 | 99.42 28 | 93.49 45 | 98.84 116 | 98.00 143 |
|
RE-MVS-def | | | | 96.66 21 | | 98.07 77 | 95.27 8 | 96.37 37 | 98.12 42 | 95.66 33 | 97.00 57 | 97.03 89 | 95.40 28 | | 93.49 45 | 98.84 116 | 98.00 143 |
|
RPMNet | | | 90.31 214 | 90.14 213 | 90.81 243 | 91.01 313 | 78.93 255 | 92.52 160 | 98.12 42 | 91.91 91 | 89.10 278 | 96.89 98 | 68.84 303 | 99.41 35 | 90.17 137 | 92.70 318 | 94.08 292 |
|
SED-MVS | | | 96.00 53 | 96.41 33 | 94.76 106 | 98.51 46 | 86.97 136 | 95.21 79 | 98.10 45 | 91.95 88 | 97.63 31 | 97.25 76 | 96.48 12 | 99.35 55 | 93.29 59 | 99.29 63 | 97.95 151 |
|
test_241102_TWO | | | | | | | | | 98.10 45 | 91.95 88 | 97.54 36 | 97.25 76 | 95.37 29 | 99.35 55 | 93.29 59 | 99.25 71 | 98.49 109 |
|
test_241102_ONE | | | | | | 98.51 46 | 86.97 136 | | 98.10 45 | 91.85 94 | 97.63 31 | 97.03 89 | 96.48 12 | 98.95 114 | | | |
|
WR-MVS_H | | | 96.60 26 | 97.05 15 | 95.24 90 | 99.02 12 | 86.44 150 | 96.78 22 | 98.08 48 | 97.42 9 | 98.48 17 | 97.86 45 | 91.76 116 | 99.63 7 | 94.23 27 | 99.84 4 | 99.66 7 |
|
CP-MVS | | | 96.44 36 | 96.08 49 | 97.54 11 | 98.29 63 | 94.62 13 | 96.80 20 | 98.08 48 | 92.67 71 | 95.08 142 | 96.39 134 | 94.77 54 | 99.42 28 | 93.17 65 | 99.44 44 | 98.58 104 |
|
ACMP | | 88.15 13 | 95.71 61 | 95.43 74 | 96.54 47 | 98.17 71 | 91.73 60 | 94.24 115 | 98.08 48 | 89.46 153 | 96.61 73 | 96.47 124 | 95.85 18 | 99.12 88 | 90.45 123 | 99.56 32 | 98.77 84 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SR-MVS | | | 96.70 20 | 96.42 30 | 97.54 11 | 98.05 79 | 94.69 11 | 96.13 48 | 98.07 51 | 95.17 36 | 96.82 64 | 96.73 111 | 95.09 44 | 99.43 27 | 92.99 73 | 98.71 133 | 98.50 108 |
|
v7n | | | 96.82 11 | 97.31 11 | 95.33 85 | 98.54 42 | 86.81 140 | 96.83 19 | 98.07 51 | 96.59 20 | 98.46 18 | 98.43 28 | 92.91 90 | 99.52 18 | 96.25 7 | 99.76 11 | 99.65 9 |
|
UniMVSNet (Re) | | | 95.32 74 | 95.15 84 | 95.80 68 | 97.79 94 | 88.91 97 | 92.91 148 | 98.07 51 | 93.46 62 | 96.31 84 | 95.97 156 | 90.14 154 | 99.34 59 | 92.11 88 | 99.64 22 | 99.16 36 |
|
test1172 | | | 96.79 16 | 96.52 28 | 97.60 9 | 98.03 82 | 94.87 10 | 96.07 51 | 98.06 54 | 95.76 32 | 96.89 61 | 96.85 100 | 94.85 52 | 99.42 28 | 93.35 57 | 98.81 124 | 98.53 106 |
|
SD-MVS | | | 95.19 80 | 95.73 66 | 93.55 152 | 96.62 153 | 88.88 100 | 94.67 99 | 98.05 55 | 91.26 117 | 97.25 48 | 96.40 130 | 95.42 27 | 94.36 325 | 92.72 80 | 99.19 77 | 97.40 194 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
casdiffmvs | | | 94.32 112 | 94.80 94 | 92.85 178 | 96.05 191 | 81.44 215 | 92.35 171 | 98.05 55 | 91.53 112 | 95.75 111 | 96.80 104 | 93.35 78 | 98.49 181 | 91.01 116 | 98.32 169 | 98.64 95 |
|
PEN-MVS | | | 96.69 21 | 97.39 9 | 94.61 111 | 99.16 4 | 84.50 176 | 96.54 28 | 98.05 55 | 98.06 5 | 98.64 14 | 98.25 31 | 95.01 48 | 99.65 4 | 92.95 74 | 99.83 6 | 99.68 5 |
|
XVG-ACMP-BASELINE | | | 95.68 62 | 95.34 76 | 96.69 44 | 98.40 56 | 93.04 41 | 94.54 109 | 98.05 55 | 90.45 137 | 96.31 84 | 96.76 107 | 92.91 90 | 98.72 152 | 91.19 114 | 99.42 46 | 98.32 119 |
|
baseline | | | 94.26 115 | 94.80 94 | 92.64 184 | 96.08 189 | 80.99 221 | 93.69 130 | 98.04 59 | 90.80 128 | 94.89 150 | 96.32 139 | 93.19 82 | 98.48 185 | 91.68 105 | 98.51 150 | 98.43 114 |
|
ACMMP_NAP | | | 96.21 46 | 96.12 47 | 96.49 50 | 98.90 18 | 91.42 62 | 94.57 105 | 98.03 60 | 90.42 138 | 96.37 79 | 97.35 71 | 95.68 20 | 99.25 74 | 94.44 21 | 99.34 56 | 98.80 80 |
|
ACMM | | 88.83 9 | 96.30 44 | 96.07 50 | 96.97 35 | 98.39 57 | 92.95 44 | 94.74 97 | 98.03 60 | 90.82 127 | 97.15 49 | 96.85 100 | 96.25 16 | 99.00 106 | 93.10 68 | 99.33 58 | 98.95 61 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ETH3D cwj APD-0.16 | | | 93.99 123 | 93.38 139 | 95.80 68 | 96.82 143 | 89.92 79 | 92.72 153 | 98.02 62 | 84.73 237 | 93.65 184 | 95.54 180 | 91.68 118 | 99.22 77 | 88.78 168 | 98.49 153 | 98.26 125 |
|
DeepC-MVS | | 91.39 4 | 95.43 69 | 95.33 77 | 95.71 74 | 97.67 105 | 90.17 76 | 93.86 126 | 98.02 62 | 87.35 194 | 96.22 92 | 97.99 38 | 94.48 61 | 99.05 97 | 92.73 79 | 99.68 18 | 97.93 153 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
GST-MVS | | | 96.24 45 | 95.99 54 | 97.00 34 | 98.65 29 | 92.71 47 | 95.69 65 | 98.01 64 | 92.08 86 | 95.74 112 | 96.28 142 | 95.22 38 | 99.42 28 | 93.17 65 | 99.06 88 | 98.88 71 |
|
OurMVSNet-221017-0 | | | 96.80 14 | 96.75 19 | 96.96 36 | 99.03 11 | 91.85 57 | 97.98 6 | 98.01 64 | 94.15 48 | 98.93 4 | 99.07 6 | 88.07 178 | 99.57 14 | 95.86 10 | 99.69 15 | 99.46 18 |
|
SteuartSystems-ACMMP | | | 96.40 39 | 96.30 36 | 96.71 43 | 98.63 30 | 91.96 55 | 95.70 63 | 98.01 64 | 93.34 64 | 96.64 71 | 96.57 121 | 94.99 49 | 99.36 54 | 93.48 48 | 99.34 56 | 98.82 78 |
Skip Steuart: Steuart Systems R&D Blog. |
HFP-MVS | | | 96.39 40 | 96.17 44 | 97.04 31 | 98.51 46 | 93.37 38 | 96.30 44 | 97.98 67 | 92.35 78 | 95.63 116 | 96.47 124 | 95.37 29 | 99.27 72 | 93.78 36 | 99.14 82 | 98.48 110 |
|
#test# | | | 95.89 54 | 95.51 70 | 97.04 31 | 98.51 46 | 93.37 38 | 95.14 84 | 97.98 67 | 89.34 155 | 95.63 116 | 96.47 124 | 95.37 29 | 99.27 72 | 91.99 93 | 99.14 82 | 98.48 110 |
|
LS3D | | | 96.11 49 | 95.83 62 | 96.95 37 | 94.75 243 | 94.20 17 | 97.34 10 | 97.98 67 | 97.31 11 | 95.32 129 | 96.77 105 | 93.08 86 | 99.20 79 | 91.79 99 | 98.16 188 | 97.44 190 |
|
PS-CasMVS | | | 96.69 21 | 97.43 6 | 94.49 122 | 99.13 6 | 84.09 185 | 96.61 25 | 97.97 70 | 97.91 6 | 98.64 14 | 98.13 32 | 95.24 37 | 99.65 4 | 93.39 55 | 99.84 4 | 99.72 3 |
|
region2R | | | 96.41 38 | 96.09 48 | 97.38 23 | 98.62 31 | 93.81 34 | 96.32 41 | 97.96 71 | 92.26 81 | 95.28 132 | 96.57 121 | 95.02 47 | 99.41 35 | 93.63 40 | 99.11 86 | 98.94 62 |
|
ACMMPR | | | 96.46 33 | 96.14 45 | 97.41 21 | 98.60 34 | 93.82 32 | 96.30 44 | 97.96 71 | 92.35 78 | 95.57 119 | 96.61 119 | 94.93 51 | 99.41 35 | 93.78 36 | 99.15 81 | 99.00 51 |
|
XVS | | | 96.49 30 | 96.18 42 | 97.44 17 | 98.56 37 | 93.99 25 | 96.50 30 | 97.95 73 | 94.58 40 | 94.38 165 | 96.49 123 | 94.56 58 | 99.39 45 | 93.57 41 | 99.05 91 | 98.93 63 |
|
X-MVStestdata | | | 90.70 200 | 88.45 238 | 97.44 17 | 98.56 37 | 93.99 25 | 96.50 30 | 97.95 73 | 94.58 40 | 94.38 165 | 26.89 353 | 94.56 58 | 99.39 45 | 93.57 41 | 99.05 91 | 98.93 63 |
|
Gipuma | | | 95.31 76 | 95.80 64 | 93.81 146 | 97.99 88 | 90.91 69 | 96.42 35 | 97.95 73 | 96.69 17 | 91.78 237 | 98.85 13 | 91.77 115 | 95.49 308 | 91.72 102 | 99.08 87 | 95.02 274 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
DTE-MVSNet | | | 96.74 18 | 97.43 6 | 94.67 109 | 99.13 6 | 84.68 175 | 96.51 29 | 97.94 76 | 98.14 4 | 98.67 13 | 98.32 29 | 95.04 45 | 99.69 2 | 93.27 61 | 99.82 8 | 99.62 11 |
|
PS-MVSNAJss | | | 96.01 52 | 96.04 52 | 95.89 64 | 98.82 23 | 88.51 109 | 95.57 69 | 97.88 77 | 88.72 166 | 98.81 7 | 98.86 11 | 90.77 141 | 99.60 9 | 95.43 12 | 99.53 34 | 99.57 14 |
|
pmmvs6 | | | 96.80 14 | 97.36 10 | 95.15 94 | 99.12 8 | 87.82 123 | 96.68 23 | 97.86 78 | 96.10 26 | 98.14 23 | 99.28 4 | 97.94 4 | 98.21 203 | 91.38 113 | 99.69 15 | 99.42 19 |
|
TranMVSNet+NR-MVSNet | | | 96.07 51 | 96.26 38 | 95.50 80 | 98.26 66 | 87.69 124 | 93.75 128 | 97.86 78 | 95.96 30 | 97.48 39 | 97.14 83 | 95.33 33 | 99.44 24 | 90.79 118 | 99.76 11 | 99.38 22 |
|
PHI-MVS | | | 94.34 111 | 93.80 124 | 95.95 58 | 95.65 217 | 91.67 61 | 94.82 94 | 97.86 78 | 87.86 184 | 93.04 204 | 94.16 232 | 91.58 120 | 98.78 142 | 90.27 133 | 98.96 106 | 97.41 191 |
|
testtj | | | 94.81 95 | 94.42 107 | 96.01 55 | 97.23 125 | 90.51 74 | 94.77 96 | 97.85 81 | 91.29 116 | 94.92 149 | 95.66 171 | 91.71 117 | 99.40 40 | 88.07 181 | 98.25 178 | 98.11 136 |
|
ETV-MVS | | | 92.99 149 | 92.74 153 | 93.72 147 | 95.86 205 | 86.30 155 | 92.33 172 | 97.84 82 | 91.70 108 | 92.81 209 | 86.17 338 | 92.22 104 | 99.19 80 | 88.03 182 | 97.73 214 | 95.66 260 |
|
UniMVSNet_NR-MVSNet | | | 95.35 72 | 95.21 82 | 95.76 71 | 97.69 103 | 88.59 105 | 92.26 176 | 97.84 82 | 94.91 37 | 96.80 65 | 95.78 167 | 90.42 150 | 99.41 35 | 91.60 107 | 99.58 30 | 99.29 28 |
|
3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 65 | 96.13 53 | 96.81 145 | 90.79 72 | 96.30 44 | 97.82 84 | 96.13 25 | 94.74 156 | 97.23 78 | 91.33 126 | 99.16 82 | 93.25 62 | 98.30 172 | 98.46 112 |
|
HQP_MVS | | | 94.26 115 | 93.93 121 | 95.23 91 | 97.71 100 | 88.12 115 | 94.56 106 | 97.81 85 | 91.74 105 | 93.31 191 | 95.59 173 | 86.93 199 | 98.95 114 | 89.26 159 | 98.51 150 | 98.60 102 |
|
plane_prior5 | | | | | | | | | 97.81 85 | | | | | 98.95 114 | 89.26 159 | 98.51 150 | 98.60 102 |
|
DU-MVS | | | 95.28 77 | 95.12 86 | 95.75 72 | 97.75 96 | 88.59 105 | 92.58 158 | 97.81 85 | 93.99 50 | 96.80 65 | 95.90 157 | 90.10 158 | 99.41 35 | 91.60 107 | 99.58 30 | 99.26 29 |
|
APD-MVS | | | 95.00 84 | 94.69 98 | 95.93 61 | 97.38 120 | 90.88 70 | 94.59 102 | 97.81 85 | 89.22 158 | 95.46 124 | 96.17 149 | 93.42 76 | 99.34 59 | 89.30 155 | 98.87 114 | 97.56 185 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SMA-MVS | | | 95.77 59 | 95.54 69 | 96.47 51 | 98.27 65 | 91.19 65 | 95.09 85 | 97.79 89 | 86.48 205 | 97.42 43 | 97.51 60 | 94.47 62 | 99.29 68 | 93.55 43 | 99.29 63 | 98.93 63 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MP-MVS | | | 96.14 48 | 95.68 67 | 97.51 13 | 98.81 24 | 94.06 19 | 96.10 49 | 97.78 90 | 92.73 68 | 93.48 187 | 96.72 112 | 94.23 65 | 99.42 28 | 91.99 93 | 99.29 63 | 99.05 48 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MSLP-MVS++ | | | 93.25 141 | 93.88 122 | 91.37 221 | 96.34 170 | 82.81 201 | 93.11 142 | 97.74 91 | 89.37 154 | 94.08 171 | 95.29 191 | 90.40 153 | 96.35 296 | 90.35 128 | 98.25 178 | 94.96 275 |
|
mPP-MVS | | | 96.46 33 | 96.05 51 | 97.69 5 | 98.62 31 | 94.65 12 | 96.45 32 | 97.74 91 | 92.59 72 | 95.47 122 | 96.68 114 | 94.50 60 | 99.42 28 | 93.10 68 | 99.26 70 | 98.99 53 |
|
ETH3 D test6400 | | | 91.91 177 | 91.25 189 | 93.89 142 | 96.59 154 | 84.41 177 | 92.10 181 | 97.72 93 | 78.52 286 | 91.82 236 | 93.78 246 | 88.70 169 | 99.13 86 | 83.61 238 | 98.39 158 | 98.14 132 |
|
TAPA-MVS | | 88.58 10 | 92.49 166 | 91.75 177 | 94.73 107 | 96.50 159 | 89.69 84 | 92.91 148 | 97.68 94 | 78.02 290 | 92.79 210 | 94.10 233 | 90.85 140 | 97.96 224 | 84.76 230 | 98.16 188 | 96.54 219 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
CPTT-MVS | | | 94.74 97 | 94.12 119 | 96.60 45 | 98.15 72 | 93.01 42 | 95.84 60 | 97.66 95 | 89.21 159 | 93.28 194 | 95.46 182 | 88.89 168 | 98.98 107 | 89.80 146 | 98.82 122 | 97.80 168 |
|
DP-MVS | | | 95.62 63 | 95.84 61 | 94.97 99 | 97.16 129 | 88.62 104 | 94.54 109 | 97.64 96 | 96.94 15 | 96.58 74 | 97.32 74 | 93.07 87 | 98.72 152 | 90.45 123 | 98.84 116 | 97.57 183 |
|
zzz-MVS | | | 96.47 32 | 96.14 45 | 97.47 15 | 98.95 16 | 94.05 21 | 93.69 130 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 93 | 93.56 71 | 99.37 52 | 94.29 25 | 99.42 46 | 98.99 53 |
|
MTGPA | | | | | | | | | 97.62 97 | | | | | | | | |
|
MTAPA | | | 96.65 23 | 96.38 34 | 97.47 15 | 98.95 16 | 94.05 21 | 95.88 59 | 97.62 97 | 94.46 44 | 96.29 86 | 96.94 93 | 93.56 71 | 99.37 52 | 94.29 25 | 99.42 46 | 98.99 53 |
|
anonymousdsp | | | 96.74 18 | 96.42 30 | 97.68 7 | 98.00 85 | 94.03 24 | 96.97 16 | 97.61 100 | 87.68 189 | 98.45 19 | 98.77 16 | 94.20 66 | 99.50 20 | 96.70 3 | 99.40 52 | 99.53 15 |
|
mvs_tets | | | 96.83 10 | 96.71 20 | 97.17 27 | 98.83 22 | 92.51 48 | 96.58 27 | 97.61 100 | 87.57 192 | 98.80 8 | 98.90 10 | 96.50 11 | 99.59 13 | 96.15 8 | 99.47 38 | 99.40 21 |
|
VPA-MVSNet | | | 95.14 81 | 95.67 68 | 93.58 151 | 97.76 95 | 83.15 197 | 94.58 104 | 97.58 102 | 93.39 63 | 97.05 55 | 98.04 35 | 93.25 80 | 98.51 180 | 89.75 149 | 99.59 26 | 99.08 45 |
|
v10 | | | 94.68 100 | 95.27 81 | 92.90 176 | 96.57 156 | 80.15 228 | 94.65 101 | 97.57 103 | 90.68 131 | 97.43 41 | 98.00 37 | 88.18 175 | 99.15 83 | 94.84 16 | 99.55 33 | 99.41 20 |
|
CSCG | | | 94.69 99 | 94.75 96 | 94.52 119 | 97.55 111 | 87.87 121 | 95.01 90 | 97.57 103 | 92.68 69 | 96.20 94 | 93.44 253 | 91.92 113 | 98.78 142 | 89.11 163 | 99.24 73 | 96.92 210 |
|
ZD-MVS | | | | | | 97.23 125 | 90.32 75 | | 97.54 105 | 84.40 239 | 94.78 154 | 95.79 164 | 92.76 95 | 99.39 45 | 88.72 171 | 98.40 156 | |
|
UniMVSNet_ETH3D | | | 97.13 7 | 97.72 4 | 95.35 83 | 99.51 2 | 87.38 127 | 97.70 7 | 97.54 105 | 98.16 3 | 98.94 3 | 99.33 3 | 97.84 5 | 99.08 92 | 90.73 119 | 99.73 14 | 99.59 13 |
|
Effi-MVS+ | | | 92.79 154 | 92.74 153 | 92.94 174 | 95.10 233 | 83.30 194 | 94.00 122 | 97.53 107 | 91.36 115 | 89.35 277 | 90.65 305 | 94.01 68 | 98.66 163 | 87.40 194 | 95.30 278 | 96.88 213 |
|
CP-MVSNet | | | 96.19 47 | 96.80 18 | 94.38 128 | 98.99 14 | 83.82 189 | 96.31 42 | 97.53 107 | 97.60 7 | 98.34 20 | 97.52 58 | 91.98 112 | 99.63 7 | 93.08 70 | 99.81 9 | 99.70 4 |
|
RPSCF | | | 95.58 65 | 94.89 91 | 97.62 8 | 97.58 109 | 96.30 4 | 95.97 55 | 97.53 107 | 92.42 74 | 93.41 188 | 97.78 46 | 91.21 132 | 97.77 240 | 91.06 115 | 97.06 237 | 98.80 80 |
|
diffmvs | | | 91.74 179 | 91.93 171 | 91.15 231 | 93.06 280 | 78.17 266 | 88.77 280 | 97.51 110 | 86.28 209 | 92.42 220 | 93.96 240 | 88.04 179 | 97.46 256 | 90.69 121 | 96.67 252 | 97.82 166 |
|
PVSNet_Blended_VisFu | | | 91.63 182 | 91.20 190 | 92.94 174 | 97.73 99 | 83.95 188 | 92.14 180 | 97.46 111 | 78.85 285 | 92.35 224 | 94.98 203 | 84.16 225 | 99.08 92 | 86.36 210 | 96.77 249 | 95.79 254 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 118 | 93.56 134 | 96.14 52 | 95.96 198 | 92.96 43 | 89.48 263 | 97.46 111 | 85.14 228 | 96.23 91 | 95.42 185 | 93.19 82 | 98.08 213 | 90.37 127 | 98.76 130 | 97.38 197 |
|
jajsoiax | | | 96.59 28 | 96.42 30 | 97.12 29 | 98.76 27 | 92.49 49 | 96.44 34 | 97.42 113 | 86.96 201 | 98.71 11 | 98.72 18 | 95.36 32 | 99.56 17 | 95.92 9 | 99.45 42 | 99.32 26 |
|
OMC-MVS | | | 94.22 117 | 93.69 129 | 95.81 66 | 97.25 124 | 91.27 63 | 92.27 175 | 97.40 114 | 87.10 200 | 94.56 160 | 95.42 185 | 93.74 69 | 98.11 212 | 86.62 204 | 98.85 115 | 98.06 137 |
|
v1240 | | | 93.29 136 | 93.71 128 | 92.06 204 | 96.01 196 | 77.89 270 | 91.81 202 | 97.37 115 | 85.12 229 | 96.69 69 | 96.40 130 | 86.67 205 | 99.07 96 | 94.51 19 | 98.76 130 | 99.22 32 |
|
NR-MVSNet | | | 95.28 77 | 95.28 80 | 95.26 89 | 97.75 96 | 87.21 131 | 95.08 86 | 97.37 115 | 93.92 54 | 97.65 30 | 95.90 157 | 90.10 158 | 99.33 64 | 90.11 139 | 99.66 20 | 99.26 29 |
|
MVSFormer | | | 92.18 173 | 92.23 164 | 92.04 205 | 94.74 244 | 80.06 232 | 97.15 12 | 97.37 115 | 88.98 160 | 88.83 281 | 92.79 266 | 77.02 280 | 99.60 9 | 96.41 4 | 96.75 250 | 96.46 226 |
|
test_djsdf | | | 96.62 24 | 96.49 29 | 97.01 33 | 98.55 40 | 91.77 59 | 97.15 12 | 97.37 115 | 88.98 160 | 98.26 21 | 98.86 11 | 93.35 78 | 99.60 9 | 96.41 4 | 99.45 42 | 99.66 7 |
|
DP-MVS Recon | | | 92.31 170 | 91.88 172 | 93.60 150 | 97.18 128 | 86.87 139 | 91.10 218 | 97.37 115 | 84.92 234 | 92.08 232 | 94.08 234 | 88.59 170 | 98.20 204 | 83.50 239 | 98.14 190 | 95.73 256 |
|
test_prior3 | | | 93.29 136 | 92.85 149 | 94.61 111 | 95.95 199 | 87.23 129 | 90.21 241 | 97.36 120 | 89.33 156 | 90.77 250 | 94.81 210 | 90.41 151 | 98.68 161 | 88.21 175 | 98.55 143 | 97.93 153 |
|
test_prior | | | | | 94.61 111 | 95.95 199 | 87.23 129 | | 97.36 120 | | | | | 98.68 161 | | | 97.93 153 |
|
QAPM | | | 92.88 152 | 92.77 151 | 93.22 165 | 95.82 206 | 83.31 193 | 96.45 32 | 97.35 122 | 83.91 242 | 93.75 180 | 96.77 105 | 89.25 166 | 98.88 121 | 84.56 232 | 97.02 239 | 97.49 187 |
|
OPM-MVS | | | 95.61 64 | 95.45 72 | 96.08 54 | 98.49 54 | 91.00 67 | 92.65 157 | 97.33 123 | 90.05 143 | 96.77 67 | 96.85 100 | 95.04 45 | 98.56 175 | 92.77 76 | 99.06 88 | 98.70 90 |
|
HQP3-MVS | | | | | | | | | 97.31 124 | | | | | | | 97.73 214 | |
|
HQP-MVS | | | 92.09 174 | 91.49 183 | 93.88 143 | 96.36 166 | 84.89 173 | 91.37 210 | 97.31 124 | 87.16 197 | 88.81 283 | 93.40 254 | 84.76 221 | 98.60 169 | 86.55 206 | 97.73 214 | 98.14 132 |
|
PCF-MVS | | 84.52 17 | 89.12 234 | 87.71 253 | 93.34 159 | 96.06 190 | 85.84 164 | 86.58 316 | 97.31 124 | 68.46 334 | 93.61 185 | 93.89 242 | 87.51 188 | 98.52 179 | 67.85 338 | 98.11 194 | 95.66 260 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
114514_t | | | 90.51 204 | 89.80 217 | 92.63 186 | 98.00 85 | 82.24 205 | 93.40 138 | 97.29 127 | 65.84 341 | 89.40 276 | 94.80 213 | 86.99 197 | 98.75 147 | 83.88 237 | 98.61 140 | 96.89 212 |
|
CLD-MVS | | | 91.82 178 | 91.41 185 | 93.04 167 | 96.37 164 | 83.65 191 | 86.82 309 | 97.29 127 | 84.65 238 | 92.27 228 | 89.67 315 | 92.20 105 | 97.85 233 | 83.95 236 | 99.47 38 | 97.62 181 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
3Dnovator | | 92.54 3 | 94.80 96 | 94.90 90 | 94.47 123 | 95.47 224 | 87.06 133 | 96.63 24 | 97.28 129 | 91.82 100 | 94.34 167 | 97.41 64 | 90.60 148 | 98.65 165 | 92.47 84 | 98.11 194 | 97.70 175 |
|
DELS-MVS | | | 92.05 175 | 92.16 165 | 91.72 212 | 94.44 254 | 80.13 230 | 87.62 290 | 97.25 130 | 87.34 195 | 92.22 229 | 93.18 260 | 89.54 164 | 98.73 151 | 89.67 150 | 98.20 186 | 96.30 232 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
v1921920 | | | 93.26 139 | 93.61 132 | 92.19 198 | 96.04 195 | 78.31 264 | 91.88 195 | 97.24 131 | 85.17 227 | 96.19 96 | 96.19 147 | 86.76 204 | 99.05 97 | 94.18 29 | 98.84 116 | 99.22 32 |
|
test_0402 | | | 95.73 60 | 96.22 40 | 94.26 130 | 98.19 70 | 85.77 165 | 93.24 141 | 97.24 131 | 96.88 16 | 97.69 29 | 97.77 48 | 94.12 67 | 99.13 86 | 91.54 110 | 99.29 63 | 97.88 159 |
|
v1192 | | | 93.49 131 | 93.78 125 | 92.62 187 | 96.16 185 | 79.62 244 | 91.83 201 | 97.22 133 | 86.07 213 | 96.10 100 | 96.38 135 | 87.22 192 | 99.02 103 | 94.14 30 | 98.88 111 | 99.22 32 |
|
F-COLMAP | | | 92.28 171 | 91.06 193 | 95.95 58 | 97.52 112 | 91.90 56 | 93.53 134 | 97.18 134 | 83.98 241 | 88.70 289 | 94.04 235 | 88.41 173 | 98.55 177 | 80.17 272 | 95.99 262 | 97.39 195 |
|
v8 | | | 94.65 101 | 95.29 79 | 92.74 181 | 96.65 150 | 79.77 242 | 94.59 102 | 97.17 135 | 91.86 93 | 97.47 40 | 97.93 40 | 88.16 176 | 99.08 92 | 94.32 23 | 99.47 38 | 99.38 22 |
|
v144192 | | | 93.20 144 | 93.54 135 | 92.16 201 | 96.05 191 | 78.26 265 | 91.95 188 | 97.14 136 | 84.98 233 | 95.96 103 | 96.11 150 | 87.08 196 | 99.04 100 | 93.79 35 | 98.84 116 | 99.17 35 |
|
DeepC-MVS_fast | | 89.96 7 | 93.73 127 | 93.44 137 | 94.60 115 | 96.14 186 | 87.90 120 | 93.36 139 | 97.14 136 | 85.53 222 | 93.90 178 | 95.45 183 | 91.30 128 | 98.59 171 | 89.51 152 | 98.62 139 | 97.31 200 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MCST-MVS | | | 92.91 151 | 92.51 159 | 94.10 133 | 97.52 112 | 85.72 166 | 91.36 213 | 97.13 138 | 80.33 267 | 92.91 208 | 94.24 228 | 91.23 131 | 98.72 152 | 89.99 143 | 97.93 207 | 97.86 161 |
|
pm-mvs1 | | | 95.43 69 | 95.94 55 | 93.93 140 | 98.38 58 | 85.08 172 | 95.46 72 | 97.12 139 | 91.84 97 | 97.28 46 | 98.46 26 | 95.30 35 | 97.71 245 | 90.17 137 | 99.42 46 | 98.99 53 |
|
save fliter | | | | | | 97.46 117 | 88.05 117 | 92.04 184 | 97.08 140 | 87.63 190 | | | | | | | |
|
CDPH-MVS | | | 92.67 159 | 91.83 173 | 95.18 93 | 96.94 137 | 88.46 110 | 90.70 227 | 97.07 141 | 77.38 292 | 92.34 226 | 95.08 198 | 92.67 97 | 98.88 121 | 85.74 215 | 98.57 142 | 98.20 129 |
|
OpenMVS | | 89.45 8 | 92.27 172 | 92.13 167 | 92.68 183 | 94.53 253 | 84.10 184 | 95.70 63 | 97.03 142 | 82.44 256 | 91.14 247 | 96.42 128 | 88.47 172 | 98.38 190 | 85.95 214 | 97.47 227 | 95.55 264 |
|
原ACMM1 | | | | | 92.87 177 | 96.91 139 | 84.22 181 | | 97.01 143 | 76.84 297 | 89.64 274 | 94.46 221 | 88.00 180 | 98.70 159 | 81.53 259 | 98.01 203 | 95.70 258 |
|
DVP-MVS | | | 95.82 58 | 96.18 42 | 94.72 108 | 98.51 46 | 86.69 143 | 95.20 81 | 97.00 144 | 91.85 94 | 97.40 44 | 97.35 71 | 95.58 23 | 99.34 59 | 93.44 52 | 99.31 60 | 98.13 134 |
|
CANet | | | 92.38 168 | 91.99 170 | 93.52 156 | 93.82 270 | 83.46 192 | 91.14 216 | 97.00 144 | 89.81 148 | 86.47 309 | 94.04 235 | 87.90 183 | 99.21 78 | 89.50 153 | 98.27 174 | 97.90 157 |
|
HPM-MVS++ | | | 95.02 83 | 94.39 108 | 96.91 38 | 97.88 91 | 93.58 36 | 94.09 119 | 96.99 146 | 91.05 122 | 92.40 221 | 95.22 192 | 91.03 139 | 99.25 74 | 92.11 88 | 98.69 136 | 97.90 157 |
|
v1144 | | | 93.50 130 | 93.81 123 | 92.57 189 | 96.28 175 | 79.61 245 | 91.86 200 | 96.96 147 | 86.95 202 | 95.91 107 | 96.32 139 | 87.65 185 | 98.96 112 | 93.51 44 | 98.88 111 | 99.13 39 |
|
testing_2 | | | 94.03 121 | 94.38 109 | 93.00 169 | 96.79 147 | 81.41 216 | 92.87 150 | 96.96 147 | 85.88 217 | 97.06 54 | 97.92 41 | 91.18 136 | 98.71 158 | 91.72 102 | 99.04 96 | 98.87 72 |
|
MVS_Test | | | 92.57 164 | 93.29 140 | 90.40 251 | 93.53 272 | 75.85 295 | 92.52 160 | 96.96 147 | 88.73 165 | 92.35 224 | 96.70 113 | 90.77 141 | 98.37 193 | 92.53 83 | 95.49 272 | 96.99 208 |
|
PVSNet_BlendedMVS | | | 90.35 211 | 89.96 215 | 91.54 218 | 94.81 240 | 78.80 260 | 90.14 245 | 96.93 150 | 79.43 275 | 88.68 290 | 95.06 199 | 86.27 210 | 98.15 210 | 80.27 269 | 98.04 201 | 97.68 177 |
|
PVSNet_Blended | | | 88.74 244 | 88.16 248 | 90.46 250 | 94.81 240 | 78.80 260 | 86.64 313 | 96.93 150 | 74.67 304 | 88.68 290 | 89.18 319 | 86.27 210 | 98.15 210 | 80.27 269 | 96.00 261 | 94.44 287 |
|
TEST9 | | | | | | 96.45 162 | 89.46 86 | 90.60 229 | 96.92 152 | 79.09 281 | 90.49 255 | 94.39 224 | 91.31 127 | 98.88 121 | | | |
|
train_agg | | | 92.71 158 | 91.83 173 | 95.35 83 | 96.45 162 | 89.46 86 | 90.60 229 | 96.92 152 | 79.37 276 | 90.49 255 | 94.39 224 | 91.20 133 | 98.88 121 | 88.66 172 | 98.43 155 | 97.72 174 |
|
NCCC | | | 94.08 120 | 93.54 135 | 95.70 75 | 96.49 160 | 89.90 81 | 92.39 168 | 96.91 154 | 90.64 132 | 92.33 227 | 94.60 218 | 90.58 149 | 98.96 112 | 90.21 136 | 97.70 218 | 98.23 126 |
|
test_8 | | | | | | 96.37 164 | 89.14 93 | 90.51 232 | 96.89 155 | 79.37 276 | 90.42 257 | 94.36 226 | 91.20 133 | 98.82 131 | | | |
|
agg_prior1 | | | 92.60 161 | 91.76 176 | 95.10 96 | 96.20 181 | 88.89 98 | 90.37 236 | 96.88 156 | 79.67 273 | 90.21 259 | 94.41 222 | 91.30 128 | 98.78 142 | 88.46 174 | 98.37 165 | 97.64 180 |
|
agg_prior | | | | | | 96.20 181 | 88.89 98 | | 96.88 156 | | 90.21 259 | | | 98.78 142 | | | |
|
MIMVSNet1 | | | 95.52 66 | 95.45 72 | 95.72 73 | 99.14 5 | 89.02 95 | 96.23 47 | 96.87 158 | 93.73 56 | 97.87 26 | 98.49 25 | 90.73 145 | 99.05 97 | 86.43 209 | 99.60 24 | 99.10 44 |
|
IU-MVS | | | | | | 98.51 46 | 86.66 145 | | 96.83 159 | 72.74 316 | 95.83 108 | | | | 93.00 72 | 99.29 63 | 98.64 95 |
|
TSAR-MVS + MP. | | | 94.96 86 | 94.75 96 | 95.57 78 | 98.86 21 | 88.69 101 | 96.37 37 | 96.81 160 | 85.23 225 | 94.75 155 | 97.12 84 | 91.85 114 | 99.40 40 | 93.45 50 | 98.33 167 | 98.62 99 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CNVR-MVS | | | 94.58 103 | 94.29 113 | 95.46 82 | 96.94 137 | 89.35 92 | 91.81 202 | 96.80 161 | 89.66 150 | 93.90 178 | 95.44 184 | 92.80 94 | 98.72 152 | 92.74 78 | 98.52 148 | 98.32 119 |
|
cascas | | | 87.02 278 | 86.28 279 | 89.25 274 | 91.56 308 | 76.45 289 | 84.33 331 | 96.78 162 | 71.01 324 | 86.89 308 | 85.91 339 | 81.35 249 | 96.94 275 | 83.09 243 | 95.60 269 | 94.35 289 |
|
IterMVS-LS | | | 93.78 126 | 94.28 114 | 92.27 195 | 96.27 176 | 79.21 253 | 91.87 196 | 96.78 162 | 91.77 103 | 96.57 75 | 97.07 86 | 87.15 194 | 98.74 150 | 91.99 93 | 99.03 98 | 98.86 73 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Anonymous20240529 | | | 95.50 67 | 95.83 62 | 94.50 120 | 97.33 123 | 85.93 162 | 95.19 83 | 96.77 164 | 96.64 19 | 97.61 34 | 98.05 34 | 93.23 81 | 98.79 138 | 88.60 173 | 99.04 96 | 98.78 82 |
|
TransMVSNet (Re) | | | 95.27 79 | 96.04 52 | 92.97 171 | 98.37 60 | 81.92 208 | 95.07 87 | 96.76 165 | 93.97 52 | 97.77 27 | 98.57 20 | 95.72 19 | 97.90 225 | 88.89 166 | 99.23 74 | 99.08 45 |
|
EG-PatchMatch MVS | | | 94.54 105 | 94.67 100 | 94.14 132 | 97.87 92 | 86.50 146 | 92.00 187 | 96.74 166 | 88.16 178 | 96.93 60 | 97.61 53 | 93.04 88 | 97.90 225 | 91.60 107 | 98.12 193 | 98.03 141 |
|
1112_ss | | | 88.42 248 | 87.41 257 | 91.45 219 | 96.69 149 | 80.99 221 | 89.72 258 | 96.72 167 | 73.37 312 | 87.00 307 | 90.69 303 | 77.38 276 | 98.20 204 | 81.38 260 | 93.72 305 | 95.15 270 |
|
Baseline_NR-MVSNet | | | 94.47 107 | 95.09 87 | 92.60 188 | 98.50 53 | 80.82 224 | 92.08 182 | 96.68 168 | 93.82 55 | 96.29 86 | 98.56 21 | 90.10 158 | 97.75 243 | 90.10 141 | 99.66 20 | 99.24 31 |
|
eth_miper_zixun_eth | | | 90.72 199 | 90.61 203 | 91.05 232 | 92.04 299 | 76.84 285 | 86.91 305 | 96.67 169 | 85.21 226 | 94.41 163 | 93.92 241 | 79.53 260 | 98.26 200 | 89.76 148 | 97.02 239 | 98.06 137 |
|
Fast-Effi-MVS+-dtu | | | 92.77 156 | 92.16 165 | 94.58 118 | 94.66 250 | 88.25 112 | 92.05 183 | 96.65 170 | 89.62 151 | 90.08 262 | 91.23 293 | 92.56 99 | 98.60 169 | 86.30 211 | 96.27 259 | 96.90 211 |
|
test11 | | | | | | | | | 96.65 170 | | | | | | | | |
|
RRT_test8_iter05 | | | 88.21 251 | 88.17 246 | 88.33 289 | 91.62 306 | 66.82 340 | 91.73 205 | 96.60 172 | 86.34 208 | 94.14 168 | 95.38 190 | 47.72 356 | 99.11 89 | 91.78 100 | 98.26 175 | 99.06 47 |
|
LF4IMVS | | | 92.72 157 | 92.02 169 | 94.84 103 | 95.65 217 | 91.99 54 | 92.92 147 | 96.60 172 | 85.08 231 | 92.44 219 | 93.62 248 | 86.80 203 | 96.35 296 | 86.81 199 | 98.25 178 | 96.18 238 |
|
GBi-Net | | | 93.21 142 | 92.96 146 | 93.97 137 | 95.40 226 | 84.29 178 | 95.99 52 | 96.56 174 | 88.63 167 | 95.10 139 | 98.53 22 | 81.31 250 | 98.98 107 | 86.74 200 | 98.38 160 | 98.65 91 |
|
test1 | | | 93.21 142 | 92.96 146 | 93.97 137 | 95.40 226 | 84.29 178 | 95.99 52 | 96.56 174 | 88.63 167 | 95.10 139 | 98.53 22 | 81.31 250 | 98.98 107 | 86.74 200 | 98.38 160 | 98.65 91 |
|
FMVSNet1 | | | 94.84 93 | 95.13 85 | 93.97 137 | 97.60 108 | 84.29 178 | 95.99 52 | 96.56 174 | 92.38 75 | 97.03 56 | 98.53 22 | 90.12 155 | 98.98 107 | 88.78 168 | 99.16 80 | 98.65 91 |
|
ITE_SJBPF | | | | | 95.95 58 | 97.34 122 | 93.36 40 | | 96.55 177 | 91.93 90 | 94.82 152 | 95.39 188 | 91.99 111 | 97.08 271 | 85.53 217 | 97.96 205 | 97.41 191 |
|
Fast-Effi-MVS+ | | | 91.28 192 | 90.86 196 | 92.53 191 | 95.45 225 | 82.53 203 | 89.25 272 | 96.52 178 | 85.00 232 | 89.91 266 | 88.55 323 | 92.94 89 | 98.84 129 | 84.72 231 | 95.44 274 | 96.22 236 |
|
V42 | | | 93.43 133 | 93.58 133 | 92.97 171 | 95.34 230 | 81.22 218 | 92.67 156 | 96.49 179 | 87.25 196 | 96.20 94 | 96.37 136 | 87.32 191 | 98.85 128 | 92.39 87 | 98.21 184 | 98.85 76 |
|
PLC | | 85.34 15 | 90.40 208 | 88.92 230 | 94.85 102 | 96.53 158 | 90.02 77 | 91.58 207 | 96.48 180 | 80.16 268 | 86.14 311 | 92.18 279 | 85.73 215 | 98.25 201 | 76.87 300 | 94.61 293 | 96.30 232 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
cl_fuxian | | | 91.32 191 | 91.42 184 | 91.00 236 | 92.29 292 | 76.79 286 | 87.52 296 | 96.42 181 | 85.76 220 | 94.72 158 | 93.89 242 | 82.73 235 | 98.16 209 | 90.93 117 | 98.55 143 | 98.04 140 |
|
Regformer-2 | | | 94.86 91 | 94.55 104 | 95.77 70 | 92.83 285 | 89.98 78 | 91.87 196 | 96.40 182 | 94.38 46 | 96.19 96 | 95.04 200 | 92.47 103 | 99.04 100 | 93.49 45 | 98.31 170 | 98.28 123 |
|
USDC | | | 89.02 235 | 89.08 226 | 88.84 279 | 95.07 234 | 74.50 305 | 88.97 275 | 96.39 183 | 73.21 313 | 93.27 195 | 96.28 142 | 82.16 242 | 96.39 293 | 77.55 294 | 98.80 126 | 95.62 263 |
|
ambc | | | | | 92.98 170 | 96.88 140 | 83.01 200 | 95.92 57 | 96.38 184 | | 96.41 77 | 97.48 61 | 88.26 174 | 97.80 236 | 89.96 144 | 98.93 108 | 98.12 135 |
|
PAPM_NR | | | 91.03 194 | 90.81 198 | 91.68 214 | 96.73 148 | 81.10 220 | 93.72 129 | 96.35 185 | 88.19 177 | 88.77 287 | 92.12 282 | 85.09 220 | 97.25 266 | 82.40 251 | 93.90 302 | 96.68 218 |
|
v2v482 | | | 93.29 136 | 93.63 131 | 92.29 194 | 96.35 169 | 78.82 258 | 91.77 204 | 96.28 186 | 88.45 172 | 95.70 115 | 96.26 144 | 86.02 213 | 98.90 118 | 93.02 71 | 98.81 124 | 99.14 38 |
|
AdaColmap | | | 91.63 182 | 91.36 186 | 92.47 193 | 95.56 222 | 86.36 153 | 92.24 178 | 96.27 187 | 88.88 164 | 89.90 267 | 92.69 269 | 91.65 119 | 98.32 194 | 77.38 297 | 97.64 221 | 92.72 319 |
|
Test_1112_low_res | | | 87.50 266 | 86.58 272 | 90.25 255 | 96.80 146 | 77.75 271 | 87.53 295 | 96.25 188 | 69.73 330 | 86.47 309 | 93.61 249 | 75.67 286 | 97.88 227 | 79.95 274 | 93.20 310 | 95.11 272 |
|
test12 | | | | | 94.43 126 | 95.95 199 | 86.75 141 | | 96.24 189 | | 89.76 272 | | 89.79 162 | 98.79 138 | | 97.95 206 | 97.75 173 |
|
PAPR | | | 87.65 262 | 86.77 270 | 90.27 254 | 92.85 284 | 77.38 276 | 88.56 285 | 96.23 190 | 76.82 298 | 84.98 317 | 89.75 314 | 86.08 212 | 97.16 269 | 72.33 322 | 93.35 308 | 96.26 234 |
|
MVS_111021_HR | | | 93.63 129 | 93.42 138 | 94.26 130 | 96.65 150 | 86.96 138 | 89.30 269 | 96.23 190 | 88.36 175 | 93.57 186 | 94.60 218 | 93.45 73 | 97.77 240 | 90.23 135 | 98.38 160 | 98.03 141 |
|
XXY-MVS | | | 92.58 162 | 93.16 145 | 90.84 242 | 97.75 96 | 79.84 238 | 91.87 196 | 96.22 192 | 85.94 215 | 95.53 121 | 97.68 50 | 92.69 96 | 94.48 321 | 83.21 242 | 97.51 225 | 98.21 128 |
|
MSDG | | | 90.82 196 | 90.67 202 | 91.26 225 | 94.16 259 | 83.08 199 | 86.63 314 | 96.19 193 | 90.60 134 | 91.94 234 | 91.89 284 | 89.16 167 | 95.75 303 | 80.96 267 | 94.51 294 | 94.95 276 |
|
miper_ehance_all_eth | | | 90.48 205 | 90.42 207 | 90.69 244 | 91.62 306 | 76.57 288 | 86.83 308 | 96.18 194 | 83.38 244 | 94.06 173 | 92.66 271 | 82.20 241 | 98.04 215 | 89.79 147 | 97.02 239 | 97.45 189 |
|
TinyColmap | | | 92.00 176 | 92.76 152 | 89.71 265 | 95.62 220 | 77.02 280 | 90.72 226 | 96.17 195 | 87.70 188 | 95.26 133 | 96.29 141 | 92.54 100 | 96.45 291 | 81.77 256 | 98.77 129 | 95.66 260 |
|
DPM-MVS | | | 89.35 230 | 88.40 239 | 92.18 200 | 96.13 188 | 84.20 182 | 86.96 304 | 96.15 196 | 75.40 303 | 87.36 304 | 91.55 291 | 83.30 228 | 98.01 219 | 82.17 254 | 96.62 253 | 94.32 290 |
|
HyFIR lowres test | | | 87.19 274 | 85.51 284 | 92.24 196 | 97.12 133 | 80.51 225 | 85.03 323 | 96.06 197 | 66.11 340 | 91.66 238 | 92.98 263 | 70.12 301 | 99.14 85 | 75.29 309 | 95.23 280 | 97.07 204 |
|
xiu_mvs_v1_base_debu | | | 91.47 186 | 91.52 180 | 91.33 222 | 95.69 214 | 81.56 212 | 89.92 252 | 96.05 198 | 83.22 246 | 91.26 243 | 90.74 300 | 91.55 121 | 98.82 131 | 89.29 156 | 95.91 263 | 93.62 307 |
|
xiu_mvs_v1_base | | | 91.47 186 | 91.52 180 | 91.33 222 | 95.69 214 | 81.56 212 | 89.92 252 | 96.05 198 | 83.22 246 | 91.26 243 | 90.74 300 | 91.55 121 | 98.82 131 | 89.29 156 | 95.91 263 | 93.62 307 |
|
xiu_mvs_v1_base_debi | | | 91.47 186 | 91.52 180 | 91.33 222 | 95.69 214 | 81.56 212 | 89.92 252 | 96.05 198 | 83.22 246 | 91.26 243 | 90.74 300 | 91.55 121 | 98.82 131 | 89.29 156 | 95.91 263 | 93.62 307 |
|
Regformer-4 | | | 94.90 88 | 94.67 100 | 95.59 77 | 92.78 287 | 89.02 95 | 92.39 168 | 95.91 201 | 94.50 42 | 96.41 77 | 95.56 178 | 92.10 107 | 99.01 105 | 94.23 27 | 98.14 190 | 98.74 86 |
|
UnsupCasMVSNet_eth | | | 90.33 212 | 90.34 208 | 90.28 253 | 94.64 251 | 80.24 226 | 89.69 259 | 95.88 202 | 85.77 219 | 93.94 177 | 95.69 169 | 81.99 244 | 92.98 336 | 84.21 235 | 91.30 327 | 97.62 181 |
|
CANet_DTU | | | 89.85 224 | 89.17 225 | 91.87 207 | 92.20 295 | 80.02 235 | 90.79 224 | 95.87 203 | 86.02 214 | 82.53 333 | 91.77 286 | 80.01 257 | 98.57 174 | 85.66 216 | 97.70 218 | 97.01 207 |
|
PMVS | | 87.21 14 | 94.97 85 | 95.33 77 | 93.91 141 | 98.97 15 | 97.16 2 | 95.54 70 | 95.85 204 | 96.47 21 | 93.40 190 | 97.46 62 | 95.31 34 | 95.47 309 | 86.18 213 | 98.78 128 | 89.11 336 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Regformer-1 | | | 94.55 104 | 94.33 112 | 95.19 92 | 92.83 285 | 88.54 108 | 91.87 196 | 95.84 205 | 93.99 50 | 95.95 104 | 95.04 200 | 92.00 109 | 98.79 138 | 93.14 67 | 98.31 170 | 98.23 126 |
|
alignmvs | | | 93.26 139 | 92.85 149 | 94.50 120 | 95.70 213 | 87.45 125 | 93.45 137 | 95.76 206 | 91.58 110 | 95.25 134 | 92.42 277 | 81.96 245 | 98.72 152 | 91.61 106 | 97.87 210 | 97.33 199 |
|
无先验 | | | | | | | | 89.94 251 | 95.75 207 | 70.81 326 | | | | 98.59 171 | 81.17 264 | | 94.81 277 |
|
WR-MVS | | | 93.49 131 | 93.72 127 | 92.80 180 | 97.57 110 | 80.03 234 | 90.14 245 | 95.68 208 | 93.70 57 | 96.62 72 | 95.39 188 | 87.21 193 | 99.04 100 | 87.50 191 | 99.64 22 | 99.33 25 |
|
VPNet | | | 93.08 145 | 93.76 126 | 91.03 233 | 98.60 34 | 75.83 297 | 91.51 208 | 95.62 209 | 91.84 97 | 95.74 112 | 97.10 85 | 89.31 165 | 98.32 194 | 85.07 226 | 99.06 88 | 98.93 63 |
|
xiu_mvs_v2_base | | | 89.00 237 | 89.19 224 | 88.46 287 | 94.86 238 | 74.63 302 | 86.97 303 | 95.60 210 | 80.88 263 | 87.83 299 | 88.62 322 | 91.04 138 | 98.81 136 | 82.51 250 | 94.38 295 | 91.93 325 |
|
PS-MVSNAJ | | | 88.86 241 | 88.99 229 | 88.48 286 | 94.88 236 | 74.71 300 | 86.69 312 | 95.60 210 | 80.88 263 | 87.83 299 | 87.37 330 | 90.77 141 | 98.82 131 | 82.52 249 | 94.37 296 | 91.93 325 |
|
CHOSEN 1792x2688 | | | 87.19 274 | 85.92 282 | 91.00 236 | 97.13 132 | 79.41 247 | 84.51 329 | 95.60 210 | 64.14 344 | 90.07 263 | 94.81 210 | 78.26 270 | 97.14 270 | 73.34 316 | 95.38 277 | 96.46 226 |
|
miper_enhance_ethall | | | 88.42 248 | 87.87 251 | 90.07 260 | 88.67 339 | 75.52 298 | 85.10 322 | 95.59 213 | 75.68 299 | 92.49 217 | 89.45 318 | 78.96 262 | 97.88 227 | 87.86 186 | 97.02 239 | 96.81 215 |
|
MVP-Stereo | | | 90.07 221 | 88.92 230 | 93.54 154 | 96.31 173 | 86.49 147 | 90.93 221 | 95.59 213 | 79.80 269 | 91.48 239 | 95.59 173 | 80.79 254 | 97.39 262 | 78.57 288 | 91.19 328 | 96.76 217 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
cdsmvs_eth3d_5k | | | 23.35 324 | 31.13 327 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 95.58 215 | 0.00 357 | 0.00 358 | 91.15 294 | 93.43 75 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
CNLPA | | | 91.72 180 | 91.20 190 | 93.26 163 | 96.17 184 | 91.02 66 | 91.14 216 | 95.55 216 | 90.16 142 | 90.87 249 | 93.56 251 | 86.31 209 | 94.40 324 | 79.92 277 | 97.12 236 | 94.37 288 |
|
FMVSNet2 | | | 92.78 155 | 92.73 155 | 92.95 173 | 95.40 226 | 81.98 207 | 94.18 117 | 95.53 217 | 88.63 167 | 96.05 101 | 97.37 67 | 81.31 250 | 98.81 136 | 87.38 195 | 98.67 137 | 98.06 137 |
|
ab-mvs | | | 92.40 167 | 92.62 157 | 91.74 211 | 97.02 134 | 81.65 211 | 95.84 60 | 95.50 218 | 86.95 202 | 92.95 207 | 97.56 55 | 90.70 146 | 97.50 253 | 79.63 278 | 97.43 228 | 96.06 242 |
|
MVS_111021_LR | | | 93.66 128 | 93.28 142 | 94.80 104 | 96.25 179 | 90.95 68 | 90.21 241 | 95.43 219 | 87.91 181 | 93.74 182 | 94.40 223 | 92.88 92 | 96.38 294 | 90.39 125 | 98.28 173 | 97.07 204 |
|
tfpnnormal | | | 94.27 114 | 94.87 92 | 92.48 192 | 97.71 100 | 80.88 223 | 94.55 108 | 95.41 220 | 93.70 57 | 96.67 70 | 97.72 49 | 91.40 124 | 98.18 207 | 87.45 192 | 99.18 79 | 98.36 117 |
|
Effi-MVS+-dtu | | | 93.90 125 | 92.60 158 | 97.77 4 | 94.74 244 | 96.67 3 | 94.00 122 | 95.41 220 | 89.94 144 | 91.93 235 | 92.13 281 | 90.12 155 | 98.97 111 | 87.68 188 | 97.48 226 | 97.67 178 |
|
mvs-test1 | | | 93.07 147 | 91.80 175 | 96.89 39 | 94.74 244 | 95.83 6 | 92.17 179 | 95.41 220 | 89.94 144 | 89.85 268 | 90.59 306 | 90.12 155 | 98.88 121 | 87.68 188 | 95.66 268 | 95.97 245 |
|
cl-mvsnet_ | | | 90.65 202 | 90.56 204 | 90.91 240 | 91.85 301 | 76.98 283 | 86.75 310 | 95.36 223 | 85.53 222 | 94.06 173 | 94.89 207 | 77.36 278 | 97.98 223 | 90.27 133 | 98.98 100 | 97.76 171 |
|
cl-mvsnet1 | | | 90.65 202 | 90.56 204 | 90.91 240 | 91.85 301 | 76.99 282 | 86.75 310 | 95.36 223 | 85.52 224 | 94.06 173 | 94.89 207 | 77.37 277 | 97.99 222 | 90.28 132 | 98.97 104 | 97.76 171 |
|
testgi | | | 90.38 209 | 91.34 187 | 87.50 298 | 97.49 114 | 71.54 323 | 89.43 264 | 95.16 225 | 88.38 174 | 94.54 161 | 94.68 217 | 92.88 92 | 93.09 335 | 71.60 327 | 97.85 211 | 97.88 159 |
|
v148 | | | 92.87 153 | 93.29 140 | 91.62 215 | 96.25 179 | 77.72 272 | 91.28 214 | 95.05 226 | 89.69 149 | 95.93 106 | 96.04 152 | 87.34 190 | 98.38 190 | 90.05 142 | 97.99 204 | 98.78 82 |
|
miper_lstm_enhance | | | 89.90 223 | 89.80 217 | 90.19 259 | 91.37 310 | 77.50 274 | 83.82 335 | 95.00 227 | 84.84 235 | 93.05 203 | 94.96 204 | 76.53 285 | 95.20 317 | 89.96 144 | 98.67 137 | 97.86 161 |
|
VNet | | | 92.67 159 | 92.96 146 | 91.79 209 | 96.27 176 | 80.15 228 | 91.95 188 | 94.98 228 | 92.19 84 | 94.52 162 | 96.07 151 | 87.43 189 | 97.39 262 | 84.83 228 | 98.38 160 | 97.83 164 |
|
FMVSNet3 | | | 90.78 198 | 90.32 209 | 92.16 201 | 93.03 282 | 79.92 237 | 92.54 159 | 94.95 229 | 86.17 212 | 95.10 139 | 96.01 154 | 69.97 302 | 98.75 147 | 86.74 200 | 98.38 160 | 97.82 166 |
|
BH-untuned | | | 90.68 201 | 90.90 194 | 90.05 262 | 95.98 197 | 79.57 246 | 90.04 248 | 94.94 230 | 87.91 181 | 94.07 172 | 93.00 262 | 87.76 184 | 97.78 239 | 79.19 284 | 95.17 281 | 92.80 317 |
|
RRT_MVS | | | 91.36 189 | 90.05 214 | 95.29 88 | 89.21 334 | 88.15 114 | 92.51 163 | 94.89 231 | 86.73 204 | 95.54 120 | 95.68 170 | 61.82 336 | 99.30 67 | 94.91 14 | 99.13 85 | 98.43 114 |
|
D2MVS | | | 89.93 222 | 89.60 222 | 90.92 238 | 94.03 264 | 78.40 263 | 88.69 282 | 94.85 232 | 78.96 283 | 93.08 201 | 95.09 197 | 74.57 288 | 96.94 275 | 88.19 177 | 98.96 106 | 97.41 191 |
|
SixPastTwentyTwo | | | 94.91 87 | 95.21 82 | 93.98 136 | 98.52 45 | 83.19 196 | 95.93 56 | 94.84 233 | 94.86 38 | 98.49 16 | 98.74 17 | 81.45 248 | 99.60 9 | 94.69 17 | 99.39 53 | 99.15 37 |
|
旧先验1 | | | | | | 96.20 181 | 84.17 183 | | 94.82 234 | | | 95.57 177 | 89.57 163 | | | 97.89 209 | 96.32 231 |
|
API-MVS | | | 91.52 185 | 91.61 178 | 91.26 225 | 94.16 259 | 86.26 157 | 94.66 100 | 94.82 234 | 91.17 120 | 92.13 231 | 91.08 296 | 90.03 161 | 97.06 272 | 79.09 285 | 97.35 231 | 90.45 334 |
|
FMVSNet5 | | | 87.82 258 | 86.56 273 | 91.62 215 | 92.31 291 | 79.81 241 | 93.49 135 | 94.81 236 | 83.26 245 | 91.36 241 | 96.93 95 | 52.77 352 | 97.49 255 | 76.07 305 | 98.03 202 | 97.55 186 |
|
MAR-MVS | | | 90.32 213 | 88.87 233 | 94.66 110 | 94.82 239 | 91.85 57 | 94.22 116 | 94.75 237 | 80.91 262 | 87.52 303 | 88.07 326 | 86.63 206 | 97.87 230 | 76.67 301 | 96.21 260 | 94.25 291 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
mvs_anonymous | | | 90.37 210 | 91.30 188 | 87.58 297 | 92.17 296 | 68.00 334 | 89.84 256 | 94.73 238 | 83.82 243 | 93.22 198 | 97.40 65 | 87.54 187 | 97.40 261 | 87.94 184 | 95.05 283 | 97.34 198 |
|
Regformer-3 | | | 94.28 113 | 94.23 118 | 94.46 124 | 92.78 287 | 86.28 156 | 92.39 168 | 94.70 239 | 93.69 60 | 95.97 102 | 95.56 178 | 91.34 125 | 98.48 185 | 93.45 50 | 98.14 190 | 98.62 99 |
|
EI-MVSNet-UG-set | | | 94.35 110 | 94.27 116 | 94.59 116 | 92.46 290 | 85.87 163 | 92.42 167 | 94.69 240 | 93.67 61 | 96.13 98 | 95.84 162 | 91.20 133 | 98.86 126 | 93.78 36 | 98.23 181 | 99.03 49 |
|
EI-MVSNet-Vis-set | | | 94.36 109 | 94.28 114 | 94.61 111 | 92.55 289 | 85.98 161 | 92.44 165 | 94.69 240 | 93.70 57 | 96.12 99 | 95.81 163 | 91.24 130 | 98.86 126 | 93.76 39 | 98.22 183 | 98.98 58 |
|
EI-MVSNet | | | 92.99 149 | 93.26 144 | 92.19 198 | 92.12 297 | 79.21 253 | 92.32 173 | 94.67 242 | 91.77 103 | 95.24 135 | 95.85 159 | 87.14 195 | 98.49 181 | 91.99 93 | 98.26 175 | 98.86 73 |
|
MVSTER | | | 89.32 231 | 88.75 234 | 91.03 233 | 90.10 324 | 76.62 287 | 90.85 222 | 94.67 242 | 82.27 257 | 95.24 135 | 95.79 164 | 61.09 339 | 98.49 181 | 90.49 122 | 98.26 175 | 97.97 150 |
|
新几何1 | | | | | 93.17 166 | 97.16 129 | 87.29 128 | | 94.43 244 | 67.95 335 | 91.29 242 | 94.94 205 | 86.97 198 | 98.23 202 | 81.06 266 | 97.75 213 | 93.98 298 |
|
1121 | | | 90.26 215 | 89.23 223 | 93.34 159 | 97.15 131 | 87.40 126 | 91.94 190 | 94.39 245 | 67.88 336 | 91.02 248 | 94.91 206 | 86.91 201 | 98.59 171 | 81.17 264 | 97.71 217 | 94.02 297 |
|
CMPMVS | | 68.83 22 | 87.28 270 | 85.67 283 | 92.09 203 | 88.77 338 | 85.42 169 | 90.31 239 | 94.38 246 | 70.02 329 | 88.00 297 | 93.30 256 | 73.78 292 | 94.03 329 | 75.96 307 | 96.54 254 | 96.83 214 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
IS-MVSNet | | | 94.49 106 | 94.35 111 | 94.92 100 | 98.25 67 | 86.46 149 | 97.13 14 | 94.31 247 | 96.24 24 | 96.28 89 | 96.36 137 | 82.88 232 | 99.35 55 | 88.19 177 | 99.52 36 | 98.96 60 |
|
testdata | | | | | 91.03 233 | 96.87 141 | 82.01 206 | | 94.28 248 | 71.55 320 | 92.46 218 | 95.42 185 | 85.65 217 | 97.38 264 | 82.64 247 | 97.27 232 | 93.70 305 |
|
UGNet | | | 93.08 145 | 92.50 160 | 94.79 105 | 93.87 268 | 87.99 119 | 95.07 87 | 94.26 249 | 90.64 132 | 87.33 305 | 97.67 51 | 86.89 202 | 98.49 181 | 88.10 180 | 98.71 133 | 97.91 156 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MVS | | | 84.98 289 | 84.30 289 | 87.01 301 | 91.03 312 | 77.69 273 | 91.94 190 | 94.16 250 | 59.36 349 | 84.23 323 | 87.50 329 | 85.66 216 | 96.80 281 | 71.79 324 | 93.05 315 | 86.54 341 |
|
1314 | | | 86.46 281 | 86.33 278 | 86.87 303 | 91.65 305 | 74.54 303 | 91.94 190 | 94.10 251 | 74.28 306 | 84.78 319 | 87.33 331 | 83.03 231 | 95.00 318 | 78.72 286 | 91.16 329 | 91.06 331 |
|
cl-mvsnet2 | | | 89.02 235 | 88.50 237 | 90.59 247 | 89.76 326 | 76.45 289 | 86.62 315 | 94.03 252 | 82.98 252 | 92.65 213 | 92.49 272 | 72.05 297 | 97.53 251 | 88.93 164 | 97.02 239 | 97.78 169 |
|
EPP-MVSNet | | | 93.91 124 | 93.68 130 | 94.59 116 | 98.08 76 | 85.55 168 | 97.44 9 | 94.03 252 | 94.22 47 | 94.94 147 | 96.19 147 | 82.07 243 | 99.57 14 | 87.28 196 | 98.89 109 | 98.65 91 |
|
UnsupCasMVSNet_bld | | | 88.50 247 | 88.03 249 | 89.90 263 | 95.52 223 | 78.88 257 | 87.39 297 | 94.02 254 | 79.32 279 | 93.06 202 | 94.02 237 | 80.72 255 | 94.27 326 | 75.16 310 | 93.08 314 | 96.54 219 |
|
pmmvs-eth3d | | | 91.54 184 | 90.73 201 | 93.99 135 | 95.76 211 | 87.86 122 | 90.83 223 | 93.98 255 | 78.23 289 | 94.02 176 | 96.22 146 | 82.62 238 | 96.83 280 | 86.57 205 | 98.33 167 | 97.29 201 |
|
BH-RMVSNet | | | 90.47 206 | 90.44 206 | 90.56 248 | 95.21 232 | 78.65 262 | 89.15 273 | 93.94 256 | 88.21 176 | 92.74 211 | 94.22 229 | 86.38 208 | 97.88 227 | 78.67 287 | 95.39 276 | 95.14 271 |
|
test222 | | | | | | 96.95 136 | 85.27 171 | 88.83 278 | 93.61 257 | 65.09 343 | 90.74 252 | 94.85 209 | 84.62 223 | | | 97.36 230 | 93.91 299 |
|
CDS-MVSNet | | | 89.55 227 | 88.22 245 | 93.53 155 | 95.37 229 | 86.49 147 | 89.26 270 | 93.59 258 | 79.76 271 | 91.15 246 | 92.31 278 | 77.12 279 | 98.38 190 | 77.51 295 | 97.92 208 | 95.71 257 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
new-patchmatchnet | | | 88.97 238 | 90.79 199 | 83.50 323 | 94.28 258 | 55.83 355 | 85.34 321 | 93.56 259 | 86.18 211 | 95.47 122 | 95.73 168 | 83.10 230 | 96.51 289 | 85.40 218 | 98.06 198 | 98.16 130 |
|
IterMVS-SCA-FT | | | 91.65 181 | 91.55 179 | 91.94 206 | 93.89 267 | 79.22 252 | 87.56 293 | 93.51 260 | 91.53 112 | 95.37 127 | 96.62 118 | 78.65 265 | 98.90 118 | 91.89 98 | 94.95 284 | 97.70 175 |
|
Anonymous20231206 | | | 88.77 243 | 88.29 241 | 90.20 258 | 96.31 173 | 78.81 259 | 89.56 262 | 93.49 261 | 74.26 307 | 92.38 222 | 95.58 176 | 82.21 240 | 95.43 311 | 72.07 323 | 98.75 132 | 96.34 230 |
|
OpenMVS_ROB | | 85.12 16 | 89.52 229 | 89.05 227 | 90.92 238 | 94.58 252 | 81.21 219 | 91.10 218 | 93.41 262 | 77.03 296 | 93.41 188 | 93.99 239 | 83.23 229 | 97.80 236 | 79.93 276 | 94.80 288 | 93.74 304 |
|
VDD-MVS | | | 94.37 108 | 94.37 110 | 94.40 127 | 97.49 114 | 86.07 160 | 93.97 124 | 93.28 263 | 94.49 43 | 96.24 90 | 97.78 46 | 87.99 181 | 98.79 138 | 88.92 165 | 99.14 82 | 98.34 118 |
|
jason | | | 89.17 233 | 88.32 240 | 91.70 213 | 95.73 212 | 80.07 231 | 88.10 287 | 93.22 264 | 71.98 319 | 90.09 261 | 92.79 266 | 78.53 268 | 98.56 175 | 87.43 193 | 97.06 237 | 96.46 226 |
jason: jason. |
PAPM | | | 81.91 306 | 80.11 316 | 87.31 300 | 93.87 268 | 72.32 321 | 84.02 333 | 93.22 264 | 69.47 331 | 76.13 350 | 89.84 309 | 72.15 296 | 97.23 267 | 53.27 351 | 89.02 334 | 92.37 322 |
|
BH-w/o | | | 87.21 272 | 87.02 266 | 87.79 296 | 94.77 242 | 77.27 278 | 87.90 288 | 93.21 266 | 81.74 260 | 89.99 265 | 88.39 325 | 83.47 226 | 96.93 277 | 71.29 328 | 92.43 320 | 89.15 335 |
|
ppachtmachnet_test | | | 88.61 246 | 88.64 235 | 88.50 285 | 91.76 303 | 70.99 326 | 84.59 328 | 92.98 267 | 79.30 280 | 92.38 222 | 93.53 252 | 79.57 259 | 97.45 257 | 86.50 208 | 97.17 235 | 97.07 204 |
|
IterMVS | | | 90.18 216 | 90.16 210 | 90.21 257 | 93.15 278 | 75.98 294 | 87.56 293 | 92.97 268 | 86.43 207 | 94.09 170 | 96.40 130 | 78.32 269 | 97.43 258 | 87.87 185 | 94.69 291 | 97.23 202 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test20.03 | | | 90.80 197 | 90.85 197 | 90.63 246 | 95.63 219 | 79.24 251 | 89.81 257 | 92.87 269 | 89.90 146 | 94.39 164 | 96.40 130 | 85.77 214 | 95.27 316 | 73.86 314 | 99.05 91 | 97.39 195 |
|
CR-MVSNet | | | 87.89 255 | 87.12 264 | 90.22 256 | 91.01 313 | 78.93 255 | 92.52 160 | 92.81 270 | 73.08 314 | 89.10 278 | 96.93 95 | 67.11 308 | 97.64 248 | 88.80 167 | 92.70 318 | 94.08 292 |
|
Patchmtry | | | 90.11 218 | 89.92 216 | 90.66 245 | 90.35 322 | 77.00 281 | 92.96 146 | 92.81 270 | 90.25 141 | 94.74 156 | 96.93 95 | 67.11 308 | 97.52 252 | 85.17 219 | 98.98 100 | 97.46 188 |
|
GA-MVS | | | 87.70 259 | 86.82 268 | 90.31 252 | 93.27 275 | 77.22 279 | 84.72 327 | 92.79 272 | 85.11 230 | 89.82 269 | 90.07 307 | 66.80 311 | 97.76 242 | 84.56 232 | 94.27 299 | 95.96 246 |
|
sss | | | 87.23 271 | 86.82 268 | 88.46 287 | 93.96 265 | 77.94 267 | 86.84 307 | 92.78 273 | 77.59 291 | 87.61 302 | 91.83 285 | 78.75 264 | 91.92 339 | 77.84 291 | 94.20 300 | 95.52 265 |
|
Patchmatch-RL test | | | 88.81 242 | 88.52 236 | 89.69 266 | 95.33 231 | 79.94 236 | 86.22 317 | 92.71 274 | 78.46 287 | 95.80 109 | 94.18 231 | 66.25 316 | 95.33 314 | 89.22 161 | 98.53 147 | 93.78 302 |
|
test_yl | | | 90.11 218 | 89.73 220 | 91.26 225 | 94.09 262 | 79.82 239 | 90.44 233 | 92.65 275 | 90.90 123 | 93.19 199 | 93.30 256 | 73.90 290 | 98.03 216 | 82.23 252 | 96.87 245 | 95.93 247 |
|
DCV-MVSNet | | | 90.11 218 | 89.73 220 | 91.26 225 | 94.09 262 | 79.82 239 | 90.44 233 | 92.65 275 | 90.90 123 | 93.19 199 | 93.30 256 | 73.90 290 | 98.03 216 | 82.23 252 | 96.87 245 | 95.93 247 |
|
TSAR-MVS + GP. | | | 93.07 147 | 92.41 162 | 95.06 97 | 95.82 206 | 90.87 71 | 90.97 220 | 92.61 277 | 88.04 180 | 94.61 159 | 93.79 245 | 88.08 177 | 97.81 235 | 89.41 154 | 98.39 158 | 96.50 224 |
|
TAMVS | | | 90.16 217 | 89.05 227 | 93.49 157 | 96.49 160 | 86.37 152 | 90.34 238 | 92.55 278 | 80.84 265 | 92.99 205 | 94.57 220 | 81.94 246 | 98.20 204 | 73.51 315 | 98.21 184 | 95.90 250 |
|
MS-PatchMatch | | | 88.05 254 | 87.75 252 | 88.95 276 | 93.28 274 | 77.93 268 | 87.88 289 | 92.49 279 | 75.42 302 | 92.57 216 | 93.59 250 | 80.44 256 | 94.24 328 | 81.28 261 | 92.75 317 | 94.69 283 |
|
MG-MVS | | | 89.54 228 | 89.80 217 | 88.76 280 | 94.88 236 | 72.47 320 | 89.60 260 | 92.44 280 | 85.82 218 | 89.48 275 | 95.98 155 | 82.85 233 | 97.74 244 | 81.87 255 | 95.27 279 | 96.08 241 |
|
MVS_0304 | | | 90.96 195 | 90.15 212 | 93.37 158 | 93.17 277 | 87.06 133 | 93.62 132 | 92.43 281 | 89.60 152 | 82.25 334 | 95.50 181 | 82.56 239 | 97.83 234 | 84.41 234 | 97.83 212 | 95.22 268 |
|
lupinMVS | | | 88.34 250 | 87.31 258 | 91.45 219 | 94.74 244 | 80.06 232 | 87.23 298 | 92.27 282 | 71.10 323 | 88.83 281 | 91.15 294 | 77.02 280 | 98.53 178 | 86.67 203 | 96.75 250 | 95.76 255 |
|
pmmvs5 | | | 87.87 256 | 87.14 263 | 90.07 260 | 93.26 276 | 76.97 284 | 88.89 277 | 92.18 283 | 73.71 311 | 88.36 292 | 93.89 242 | 76.86 283 | 96.73 283 | 80.32 268 | 96.81 247 | 96.51 221 |
|
PM-MVS | | | 93.33 135 | 92.67 156 | 95.33 85 | 96.58 155 | 94.06 19 | 92.26 176 | 92.18 283 | 85.92 216 | 96.22 92 | 96.61 119 | 85.64 218 | 95.99 301 | 90.35 128 | 98.23 181 | 95.93 247 |
|
pmmvs4 | | | 88.95 239 | 87.70 254 | 92.70 182 | 94.30 257 | 85.60 167 | 87.22 299 | 92.16 285 | 74.62 305 | 89.75 273 | 94.19 230 | 77.97 272 | 96.41 292 | 82.71 246 | 96.36 258 | 96.09 240 |
|
MDA-MVSNet-bldmvs | | | 91.04 193 | 90.88 195 | 91.55 217 | 94.68 249 | 80.16 227 | 85.49 320 | 92.14 286 | 90.41 139 | 94.93 148 | 95.79 164 | 85.10 219 | 96.93 277 | 85.15 221 | 94.19 301 | 97.57 183 |
|
door-mid | | | | | | | | | 92.13 287 | | | | | | | | |
|
WTY-MVS | | | 86.93 279 | 86.50 277 | 88.24 290 | 94.96 235 | 74.64 301 | 87.19 300 | 92.07 288 | 78.29 288 | 88.32 293 | 91.59 290 | 78.06 271 | 94.27 326 | 74.88 311 | 93.15 312 | 95.80 253 |
|
TR-MVS | | | 87.70 259 | 87.17 262 | 89.27 273 | 94.11 261 | 79.26 250 | 88.69 282 | 91.86 289 | 81.94 259 | 90.69 253 | 89.79 312 | 82.82 234 | 97.42 259 | 72.65 321 | 91.98 324 | 91.14 330 |
|
VDDNet | | | 94.03 121 | 94.27 116 | 93.31 161 | 98.87 20 | 82.36 204 | 95.51 71 | 91.78 290 | 97.19 12 | 96.32 83 | 98.60 19 | 84.24 224 | 98.75 147 | 87.09 197 | 98.83 121 | 98.81 79 |
|
Anonymous202405211 | | | 92.58 162 | 92.50 160 | 92.83 179 | 96.55 157 | 83.22 195 | 92.43 166 | 91.64 291 | 94.10 49 | 95.59 118 | 96.64 117 | 81.88 247 | 97.50 253 | 85.12 223 | 98.52 148 | 97.77 170 |
|
HY-MVS | | 82.50 18 | 86.81 280 | 85.93 281 | 89.47 267 | 93.63 271 | 77.93 268 | 94.02 121 | 91.58 292 | 75.68 299 | 83.64 326 | 93.64 247 | 77.40 275 | 97.42 259 | 71.70 326 | 92.07 323 | 93.05 314 |
|
door | | | | | | | | | 91.26 293 | | | | | | | | |
|
PatchMatch-RL | | | 89.18 232 | 88.02 250 | 92.64 184 | 95.90 203 | 92.87 45 | 88.67 284 | 91.06 294 | 80.34 266 | 90.03 264 | 91.67 288 | 83.34 227 | 94.42 323 | 76.35 304 | 94.84 287 | 90.64 333 |
|
ADS-MVSNet2 | | | 84.01 294 | 82.20 302 | 89.41 269 | 89.04 335 | 76.37 291 | 87.57 291 | 90.98 295 | 72.71 317 | 84.46 320 | 92.45 273 | 68.08 304 | 96.48 290 | 70.58 333 | 83.97 342 | 95.38 266 |
|
wuyk23d | | | 87.83 257 | 90.79 199 | 78.96 332 | 90.46 321 | 88.63 103 | 92.72 153 | 90.67 296 | 91.65 109 | 98.68 12 | 97.64 52 | 96.06 17 | 77.53 352 | 59.84 347 | 99.41 51 | 70.73 349 |
|
our_test_3 | | | 87.55 264 | 87.59 255 | 87.44 299 | 91.76 303 | 70.48 327 | 83.83 334 | 90.55 297 | 79.79 270 | 92.06 233 | 92.17 280 | 78.63 267 | 95.63 304 | 84.77 229 | 94.73 289 | 96.22 236 |
|
EU-MVSNet | | | 87.39 268 | 86.71 271 | 89.44 268 | 93.40 273 | 76.11 292 | 94.93 93 | 90.00 298 | 57.17 350 | 95.71 114 | 97.37 67 | 64.77 323 | 97.68 247 | 92.67 81 | 94.37 296 | 94.52 285 |
|
CHOSEN 280x420 | | | 80.04 317 | 77.97 323 | 86.23 307 | 90.13 323 | 74.53 304 | 72.87 347 | 89.59 299 | 66.38 339 | 76.29 349 | 85.32 341 | 56.96 345 | 95.36 312 | 69.49 336 | 94.72 290 | 88.79 338 |
|
MDA-MVSNet_test_wron | | | 88.16 253 | 88.23 244 | 87.93 293 | 92.22 293 | 73.71 310 | 80.71 342 | 88.84 300 | 82.52 254 | 94.88 151 | 95.14 194 | 82.70 236 | 93.61 331 | 83.28 241 | 93.80 304 | 96.46 226 |
|
YYNet1 | | | 88.17 252 | 88.24 243 | 87.93 293 | 92.21 294 | 73.62 311 | 80.75 341 | 88.77 301 | 82.51 255 | 94.99 146 | 95.11 196 | 82.70 236 | 93.70 330 | 83.33 240 | 93.83 303 | 96.48 225 |
|
PVSNet | | 76.22 20 | 82.89 300 | 82.37 300 | 84.48 318 | 93.96 265 | 64.38 348 | 78.60 344 | 88.61 302 | 71.50 321 | 84.43 322 | 86.36 336 | 74.27 289 | 94.60 320 | 69.87 335 | 93.69 306 | 94.46 286 |
|
MIMVSNet | | | 87.13 276 | 86.54 274 | 88.89 278 | 96.05 191 | 76.11 292 | 94.39 111 | 88.51 303 | 81.37 261 | 88.27 294 | 96.75 108 | 72.38 295 | 95.52 306 | 65.71 343 | 95.47 273 | 95.03 273 |
|
tpmvs | | | 84.22 293 | 83.97 292 | 84.94 314 | 87.09 346 | 65.18 343 | 91.21 215 | 88.35 304 | 82.87 253 | 85.21 314 | 90.96 298 | 65.24 321 | 96.75 282 | 79.60 281 | 85.25 341 | 92.90 316 |
|
EPNet_dtu | | | 85.63 285 | 84.37 288 | 89.40 270 | 86.30 349 | 74.33 307 | 91.64 206 | 88.26 305 | 84.84 235 | 72.96 352 | 89.85 308 | 71.27 300 | 97.69 246 | 76.60 302 | 97.62 222 | 96.18 238 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
tpm cat1 | | | 80.61 315 | 79.46 318 | 84.07 321 | 88.78 337 | 65.06 346 | 89.26 270 | 88.23 306 | 62.27 347 | 81.90 339 | 89.66 316 | 62.70 334 | 95.29 315 | 71.72 325 | 80.60 349 | 91.86 327 |
|
baseline1 | | | 87.62 263 | 87.31 258 | 88.54 284 | 94.71 248 | 74.27 308 | 93.10 143 | 88.20 307 | 86.20 210 | 92.18 230 | 93.04 261 | 73.21 293 | 95.52 306 | 79.32 282 | 85.82 340 | 95.83 252 |
|
CVMVSNet | | | 85.16 287 | 84.72 286 | 86.48 304 | 92.12 297 | 70.19 328 | 92.32 173 | 88.17 308 | 56.15 351 | 90.64 254 | 95.85 159 | 67.97 306 | 96.69 284 | 88.78 168 | 90.52 331 | 92.56 320 |
|
SCA | | | 87.43 267 | 87.21 261 | 88.10 292 | 92.01 300 | 71.98 322 | 89.43 264 | 88.11 309 | 82.26 258 | 88.71 288 | 92.83 264 | 78.65 265 | 97.59 249 | 79.61 279 | 93.30 309 | 94.75 280 |
|
tpmrst | | | 82.85 301 | 82.93 299 | 82.64 325 | 87.65 340 | 58.99 353 | 90.14 245 | 87.90 310 | 75.54 301 | 83.93 324 | 91.63 289 | 66.79 313 | 95.36 312 | 81.21 263 | 81.54 348 | 93.57 310 |
|
Vis-MVSNet (Re-imp) | | | 90.42 207 | 90.16 210 | 91.20 229 | 97.66 106 | 77.32 277 | 94.33 113 | 87.66 311 | 91.20 119 | 92.99 205 | 95.13 195 | 75.40 287 | 98.28 196 | 77.86 290 | 99.19 77 | 97.99 146 |
|
MDTV_nov1_ep13 | | | | 83.88 293 | | 89.42 332 | 61.52 351 | 88.74 281 | 87.41 312 | 73.99 309 | 84.96 318 | 94.01 238 | 65.25 320 | 95.53 305 | 78.02 289 | 93.16 311 | |
|
PatchmatchNet | | | 85.22 286 | 84.64 287 | 86.98 302 | 89.51 331 | 69.83 331 | 90.52 231 | 87.34 313 | 78.87 284 | 87.22 306 | 92.74 268 | 66.91 310 | 96.53 287 | 81.77 256 | 86.88 339 | 94.58 284 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
N_pmnet | | | 88.90 240 | 87.25 260 | 93.83 145 | 94.40 256 | 93.81 34 | 84.73 325 | 87.09 314 | 79.36 278 | 93.26 196 | 92.43 276 | 79.29 261 | 91.68 340 | 77.50 296 | 97.22 234 | 96.00 244 |
|
EPNet | | | 89.80 226 | 88.25 242 | 94.45 125 | 83.91 355 | 86.18 158 | 93.87 125 | 87.07 315 | 91.16 121 | 80.64 343 | 94.72 215 | 78.83 263 | 98.89 120 | 85.17 219 | 98.89 109 | 98.28 123 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Patchmatch-test | | | 86.10 283 | 86.01 280 | 86.38 306 | 90.63 317 | 74.22 309 | 89.57 261 | 86.69 316 | 85.73 221 | 89.81 270 | 92.83 264 | 65.24 321 | 91.04 342 | 77.82 293 | 95.78 267 | 93.88 301 |
|
K. test v3 | | | 93.37 134 | 93.27 143 | 93.66 148 | 98.05 79 | 82.62 202 | 94.35 112 | 86.62 317 | 96.05 28 | 97.51 38 | 98.85 13 | 76.59 284 | 99.65 4 | 93.21 63 | 98.20 186 | 98.73 88 |
|
CostFormer | | | 83.09 298 | 82.21 301 | 85.73 308 | 89.27 333 | 67.01 335 | 90.35 237 | 86.47 318 | 70.42 327 | 83.52 328 | 93.23 259 | 61.18 338 | 96.85 279 | 77.21 298 | 88.26 337 | 93.34 312 |
|
thres200 | | | 85.85 284 | 85.18 285 | 87.88 295 | 94.44 254 | 72.52 319 | 89.08 274 | 86.21 319 | 88.57 171 | 91.44 240 | 88.40 324 | 64.22 324 | 98.00 220 | 68.35 337 | 95.88 266 | 93.12 313 |
|
ET-MVSNet_ETH3D | | | 86.15 282 | 84.27 290 | 91.79 209 | 93.04 281 | 81.28 217 | 87.17 301 | 86.14 320 | 79.57 274 | 83.65 325 | 88.66 321 | 57.10 344 | 98.18 207 | 87.74 187 | 95.40 275 | 95.90 250 |
|
PatchT | | | 87.51 265 | 88.17 246 | 85.55 309 | 90.64 316 | 66.91 336 | 92.02 186 | 86.09 321 | 92.20 83 | 89.05 280 | 97.16 82 | 64.15 325 | 96.37 295 | 89.21 162 | 92.98 316 | 93.37 311 |
|
DWT-MVSNet_test | | | 80.74 313 | 79.18 319 | 85.43 311 | 87.51 343 | 66.87 337 | 89.87 255 | 86.01 322 | 74.20 308 | 80.86 342 | 80.62 348 | 48.84 354 | 96.68 286 | 81.54 258 | 83.14 346 | 92.75 318 |
|
tfpn200view9 | | | 87.05 277 | 86.52 275 | 88.67 282 | 95.77 209 | 72.94 316 | 91.89 193 | 86.00 323 | 90.84 125 | 92.61 214 | 89.80 310 | 63.93 326 | 98.28 196 | 71.27 329 | 96.54 254 | 94.79 278 |
|
thres400 | | | 87.20 273 | 86.52 275 | 89.24 275 | 95.77 209 | 72.94 316 | 91.89 193 | 86.00 323 | 90.84 125 | 92.61 214 | 89.80 310 | 63.93 326 | 98.28 196 | 71.27 329 | 96.54 254 | 96.51 221 |
|
IB-MVS | | 77.21 19 | 83.11 297 | 81.05 308 | 89.29 272 | 91.15 311 | 75.85 295 | 85.66 319 | 86.00 323 | 79.70 272 | 82.02 338 | 86.61 333 | 48.26 355 | 98.39 188 | 77.84 291 | 92.22 321 | 93.63 306 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PMMVS | | | 83.00 299 | 81.11 307 | 88.66 283 | 83.81 356 | 86.44 150 | 82.24 340 | 85.65 326 | 61.75 348 | 82.07 336 | 85.64 340 | 79.75 258 | 91.59 341 | 75.99 306 | 93.09 313 | 87.94 340 |
|
tpm | | | 84.38 292 | 84.08 291 | 85.30 313 | 90.47 320 | 63.43 350 | 89.34 267 | 85.63 327 | 77.24 295 | 87.62 301 | 95.03 202 | 61.00 340 | 97.30 265 | 79.26 283 | 91.09 330 | 95.16 269 |
|
LFMVS | | | 91.33 190 | 91.16 192 | 91.82 208 | 96.27 176 | 79.36 248 | 95.01 90 | 85.61 328 | 96.04 29 | 94.82 152 | 97.06 87 | 72.03 298 | 98.46 187 | 84.96 227 | 98.70 135 | 97.65 179 |
|
FPMVS | | | 84.50 291 | 83.28 295 | 88.16 291 | 96.32 172 | 94.49 14 | 85.76 318 | 85.47 329 | 83.09 249 | 85.20 315 | 94.26 227 | 63.79 328 | 86.58 349 | 63.72 345 | 91.88 326 | 83.40 344 |
|
tpm2 | | | 81.46 307 | 80.35 314 | 84.80 315 | 89.90 325 | 65.14 344 | 90.44 233 | 85.36 330 | 65.82 342 | 82.05 337 | 92.44 275 | 57.94 343 | 96.69 284 | 70.71 332 | 88.49 336 | 92.56 320 |
|
thres100view900 | | | 87.35 269 | 86.89 267 | 88.72 281 | 96.14 186 | 73.09 315 | 93.00 145 | 85.31 331 | 92.13 85 | 93.26 196 | 90.96 298 | 63.42 329 | 98.28 196 | 71.27 329 | 96.54 254 | 94.79 278 |
|
thres600view7 | | | 87.66 261 | 87.10 265 | 89.36 271 | 96.05 191 | 73.17 313 | 92.72 153 | 85.31 331 | 91.89 92 | 93.29 193 | 90.97 297 | 63.42 329 | 98.39 188 | 73.23 317 | 96.99 244 | 96.51 221 |
|
dp | | | 79.28 318 | 78.62 321 | 81.24 328 | 85.97 350 | 56.45 354 | 86.91 305 | 85.26 333 | 72.97 315 | 81.45 341 | 89.17 320 | 56.01 348 | 95.45 310 | 73.19 318 | 76.68 350 | 91.82 328 |
|
PMMVS2 | | | 81.31 308 | 83.44 294 | 74.92 334 | 90.52 319 | 46.49 357 | 69.19 349 | 85.23 334 | 84.30 240 | 87.95 298 | 94.71 216 | 76.95 282 | 84.36 351 | 64.07 344 | 98.09 196 | 93.89 300 |
|
ADS-MVSNet | | | 82.25 303 | 81.55 304 | 84.34 319 | 89.04 335 | 65.30 342 | 87.57 291 | 85.13 335 | 72.71 317 | 84.46 320 | 92.45 273 | 68.08 304 | 92.33 338 | 70.58 333 | 83.97 342 | 95.38 266 |
|
test-LLR | | | 83.58 295 | 83.17 296 | 84.79 316 | 89.68 328 | 66.86 338 | 83.08 336 | 84.52 336 | 83.07 250 | 82.85 331 | 84.78 342 | 62.86 332 | 93.49 332 | 82.85 244 | 94.86 285 | 94.03 295 |
|
test-mter | | | 81.21 310 | 80.01 317 | 84.79 316 | 89.68 328 | 66.86 338 | 83.08 336 | 84.52 336 | 73.85 310 | 82.85 331 | 84.78 342 | 43.66 360 | 93.49 332 | 82.85 244 | 94.86 285 | 94.03 295 |
|
JIA-IIPM | | | 85.08 288 | 83.04 297 | 91.19 230 | 87.56 341 | 86.14 159 | 89.40 266 | 84.44 338 | 88.98 160 | 82.20 335 | 97.95 39 | 56.82 346 | 96.15 298 | 76.55 303 | 83.45 344 | 91.30 329 |
|
thisisatest0530 | | | 88.69 245 | 87.52 256 | 92.20 197 | 96.33 171 | 79.36 248 | 92.81 151 | 84.01 339 | 86.44 206 | 93.67 183 | 92.68 270 | 53.62 351 | 99.25 74 | 89.65 151 | 98.45 154 | 98.00 143 |
|
tttt0517 | | | 89.81 225 | 88.90 232 | 92.55 190 | 97.00 135 | 79.73 243 | 95.03 89 | 83.65 340 | 89.88 147 | 95.30 130 | 94.79 214 | 53.64 350 | 99.39 45 | 91.99 93 | 98.79 127 | 98.54 105 |
|
thisisatest0515 | | | 84.72 290 | 82.99 298 | 89.90 263 | 92.96 283 | 75.33 299 | 84.36 330 | 83.42 341 | 77.37 293 | 88.27 294 | 86.65 332 | 53.94 349 | 98.72 152 | 82.56 248 | 97.40 229 | 95.67 259 |
|
PVSNet_0 | | 70.34 21 | 74.58 321 | 72.96 324 | 79.47 331 | 90.63 317 | 66.24 341 | 73.26 345 | 83.40 342 | 63.67 346 | 78.02 347 | 78.35 349 | 72.53 294 | 89.59 346 | 56.68 349 | 60.05 353 | 82.57 347 |
|
pmmvs3 | | | 80.83 312 | 78.96 320 | 86.45 305 | 87.23 345 | 77.48 275 | 84.87 324 | 82.31 343 | 63.83 345 | 85.03 316 | 89.50 317 | 49.66 353 | 93.10 334 | 73.12 319 | 95.10 282 | 88.78 339 |
|
E-PMN | | | 80.72 314 | 80.86 311 | 80.29 330 | 85.11 352 | 68.77 333 | 72.96 346 | 81.97 344 | 87.76 186 | 83.25 330 | 83.01 346 | 62.22 335 | 89.17 347 | 77.15 299 | 94.31 298 | 82.93 345 |
|
test0.0.03 1 | | | 82.48 302 | 81.47 306 | 85.48 310 | 89.70 327 | 73.57 312 | 84.73 325 | 81.64 345 | 83.07 250 | 88.13 296 | 86.61 333 | 62.86 332 | 89.10 348 | 66.24 342 | 90.29 332 | 93.77 303 |
|
baseline2 | | | 83.38 296 | 81.54 305 | 88.90 277 | 91.38 309 | 72.84 318 | 88.78 279 | 81.22 346 | 78.97 282 | 79.82 345 | 87.56 327 | 61.73 337 | 97.80 236 | 74.30 312 | 90.05 333 | 96.05 243 |
|
EMVS | | | 80.35 316 | 80.28 315 | 80.54 329 | 84.73 354 | 69.07 332 | 72.54 348 | 80.73 347 | 87.80 185 | 81.66 340 | 81.73 347 | 62.89 331 | 89.84 345 | 75.79 308 | 94.65 292 | 82.71 346 |
|
TESTMET0.1,1 | | | 79.09 319 | 78.04 322 | 82.25 326 | 87.52 342 | 64.03 349 | 83.08 336 | 80.62 348 | 70.28 328 | 80.16 344 | 83.22 345 | 44.13 359 | 90.56 343 | 79.95 274 | 93.36 307 | 92.15 323 |
|
lessismore_v0 | | | | | 93.87 144 | 98.05 79 | 83.77 190 | | 80.32 349 | | 97.13 50 | 97.91 43 | 77.49 274 | 99.11 89 | 92.62 82 | 98.08 197 | 98.74 86 |
|
new_pmnet | | | 81.22 309 | 81.01 310 | 81.86 327 | 90.92 315 | 70.15 329 | 84.03 332 | 80.25 350 | 70.83 325 | 85.97 312 | 89.78 313 | 67.93 307 | 84.65 350 | 67.44 339 | 91.90 325 | 90.78 332 |
|
MVS-HIRNet | | | 78.83 320 | 80.60 312 | 73.51 335 | 93.07 279 | 47.37 356 | 87.10 302 | 78.00 351 | 68.94 332 | 77.53 348 | 97.26 75 | 71.45 299 | 94.62 319 | 63.28 346 | 88.74 335 | 78.55 348 |
|
DSMNet-mixed | | | 82.21 304 | 81.56 303 | 84.16 320 | 89.57 330 | 70.00 330 | 90.65 228 | 77.66 352 | 54.99 352 | 83.30 329 | 97.57 54 | 77.89 273 | 90.50 344 | 66.86 341 | 95.54 271 | 91.97 324 |
|
EPMVS | | | 81.17 311 | 80.37 313 | 83.58 322 | 85.58 351 | 65.08 345 | 90.31 239 | 71.34 353 | 77.31 294 | 85.80 313 | 91.30 292 | 59.38 341 | 92.70 337 | 79.99 273 | 82.34 347 | 92.96 315 |
|
gg-mvs-nofinetune | | | 82.10 305 | 81.02 309 | 85.34 312 | 87.46 344 | 71.04 324 | 94.74 97 | 67.56 354 | 96.44 22 | 79.43 346 | 98.99 7 | 45.24 357 | 96.15 298 | 67.18 340 | 92.17 322 | 88.85 337 |
|
GG-mvs-BLEND | | | | | 83.24 324 | 85.06 353 | 71.03 325 | 94.99 92 | 65.55 355 | | 74.09 351 | 75.51 350 | 44.57 358 | 94.46 322 | 59.57 348 | 87.54 338 | 84.24 343 |
|
MVE | | 59.87 23 | 73.86 322 | 72.65 325 | 77.47 333 | 87.00 348 | 74.35 306 | 61.37 351 | 60.93 356 | 67.27 337 | 69.69 353 | 86.49 335 | 81.24 253 | 72.33 353 | 56.45 350 | 83.45 344 | 85.74 342 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
MTMP | | | | | | | | 94.82 94 | 54.62 357 | | | | | | | | |
|
DeepMVS_CX | | | | | 53.83 336 | 70.38 357 | 64.56 347 | | 48.52 358 | 33.01 353 | 65.50 354 | 74.21 351 | 56.19 347 | 46.64 354 | 38.45 353 | 70.07 351 | 50.30 350 |
|
tmp_tt | | | 37.97 323 | 44.33 326 | 18.88 337 | 11.80 358 | 21.54 359 | 63.51 350 | 45.66 359 | 4.23 354 | 51.34 355 | 50.48 352 | 59.08 342 | 22.11 355 | 44.50 352 | 68.35 352 | 13.00 351 |
|
testmvs | | | 9.02 326 | 11.42 329 | 1.81 339 | 2.77 360 | 1.13 361 | 79.44 343 | 1.90 360 | 1.18 356 | 2.65 357 | 6.80 354 | 1.95 362 | 0.87 357 | 2.62 355 | 3.45 355 | 3.44 353 |
|
test123 | | | 9.49 325 | 12.01 328 | 1.91 338 | 2.87 359 | 1.30 360 | 82.38 339 | 1.34 361 | 1.36 355 | 2.84 356 | 6.56 355 | 2.45 361 | 0.97 356 | 2.73 354 | 5.56 354 | 3.47 352 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 7.56 327 | 10.09 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 90.77 141 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
ab-mvs-re | | | 7.56 327 | 10.08 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 90.69 303 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
OPU-MVS | | | | | 95.15 94 | 96.84 142 | 89.43 88 | 95.21 79 | | | | 95.66 171 | 93.12 85 | 98.06 214 | 86.28 212 | 98.61 140 | 97.95 151 |
|
test_0728_THIRD | | | | | | | | | | 93.26 65 | 97.40 44 | 97.35 71 | 94.69 55 | 99.34 59 | 93.88 33 | 99.42 46 | 98.89 69 |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 280 |
|
test_part2 | | | | | | 98.21 69 | 89.41 89 | | | | 96.72 68 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 314 | | | | 94.75 280 |
|
sam_mvs | | | | | | | | | | | | | 66.41 315 | | | | |
|
test_post1 | | | | | | | | 90.21 241 | | | | 5.85 357 | 65.36 319 | 96.00 300 | 79.61 279 | | |
|
test_post | | | | | | | | | | | | 6.07 356 | 65.74 318 | 95.84 302 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 287 | 66.22 317 | 97.59 249 | | | |
|
gm-plane-assit | | | | | | 87.08 347 | 59.33 352 | | | 71.22 322 | | 83.58 344 | | 97.20 268 | 73.95 313 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 179 | 98.40 156 | 97.83 164 |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 198 | 98.36 166 | 97.98 147 |
|
test_prior4 | | | | | | | 89.91 80 | 90.74 225 | | | | | | | | | |
|
test_prior2 | | | | | | | | 90.21 241 | | 89.33 156 | 90.77 250 | 94.81 210 | 90.41 151 | | 88.21 175 | 98.55 143 | |
|
旧先验2 | | | | | | | | 90.00 250 | | 68.65 333 | 92.71 212 | | | 96.52 288 | 85.15 221 | | |
|
新几何2 | | | | | | | | 90.02 249 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 89.34 267 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 98.03 216 | 80.24 271 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 106 | | | | |
|
testdata1 | | | | | | | | 88.96 276 | | 88.44 173 | | | | | | | |
|
plane_prior7 | | | | | | 97.71 100 | 88.68 102 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 127 | 88.23 113 | | | | | | 86.93 199 | | | | |
|
plane_prior4 | | | | | | | | | | | | 95.59 173 | | | | | |
|
plane_prior3 | | | | | | | 88.43 111 | | | 90.35 140 | 93.31 191 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 106 | | 91.74 105 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 120 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 115 | 93.01 144 | | 88.98 160 | | | | | | 98.06 198 | |
|
HQP5-MVS | | | | | | | 84.89 173 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 166 | | 91.37 210 | | 87.16 197 | 88.81 283 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 166 | | 91.37 210 | | 87.16 197 | 88.81 283 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 206 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 283 | | | 98.61 167 | | | 98.15 131 |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 221 | | | | |
|
NP-MVS | | | | | | 96.82 143 | 87.10 132 | | | | | 93.40 254 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 358 | 88.45 286 | | 67.22 338 | 83.56 327 | | 66.80 311 | | 72.86 320 | | 94.06 294 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 122 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 71 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 147 | | | | |
|