This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LCM-MVSNet-Re94.20 11894.58 10393.04 16995.91 20583.13 19993.79 13099.19 292.00 8798.84 598.04 3593.64 6999.02 10481.28 26598.54 14896.96 213
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 16996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4698.46 2594.62 5698.84 13194.64 1799.53 3598.99 53
ANet_high94.83 9396.28 3690.47 25396.65 15073.16 31994.33 11498.74 596.39 2298.09 2498.93 893.37 7698.70 16090.38 12899.68 1899.53 14
ACMH+88.43 1196.48 3096.82 1695.47 8198.54 4189.06 9595.65 6598.61 696.10 2598.16 2297.52 5996.90 798.62 16890.30 13399.60 2598.72 90
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8695.58 6798.56 791.84 9796.36 8096.68 11594.37 6299.32 6592.41 8799.05 9498.64 96
CS-MVS92.54 16792.31 16493.23 16695.89 20784.07 18793.58 13698.48 888.60 17390.41 26286.23 34492.00 10899.35 5587.54 19498.06 20096.26 239
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 13096.71 899.42 2893.99 3199.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 8994.51 10796.00 5598.02 8292.17 5095.26 7898.43 1090.48 13595.04 14596.74 11092.54 9997.86 23585.11 22898.98 10297.98 148
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13595.04 14596.74 11092.54 9997.86 23585.11 22898.98 10297.98 148
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8597.46 11788.05 11892.04 18798.42 1287.63 19396.36 8096.68 11594.37 6299.32 6592.41 8799.05 9498.64 96
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9296.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6498.92 67
9.1494.81 9297.49 11494.11 12098.37 1487.56 19695.38 12796.03 15594.66 5599.08 9390.70 12298.97 106
ETH3D-3000-0.194.86 9094.55 10495.81 6597.61 10789.72 8494.05 12298.37 1488.09 18295.06 14495.85 16192.58 9799.10 9290.33 13298.99 10198.62 100
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6496.51 999.40 4094.06 3099.23 7698.85 75
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14398.32 1787.89 18696.86 6297.38 6795.55 2499.39 4595.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 7395.88 5793.62 15198.49 5381.77 21195.90 5798.32 1793.93 5397.53 3797.56 5688.48 17099.40 4092.91 7599.83 699.68 4
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5695.48 2598.77 14890.11 14199.44 4598.31 122
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVScopyleft95.89 5395.88 5795.92 6297.93 8989.83 8393.46 13998.30 2092.37 7697.75 2896.95 9395.14 3999.51 1891.74 10399.28 7098.41 117
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11196.87 10095.26 3599.45 2292.77 7699.21 7899.00 51
ACMH88.36 1296.59 2797.43 594.07 13598.56 3685.33 17196.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22394.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10895.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11693.85 3399.49 3899.36 24
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8995.63 2199.39 4593.31 5898.88 11398.75 84
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 8096.38 1399.28 7092.07 9399.59 2799.11 41
Anonymous2023121196.60 2597.13 1295.00 9997.46 11786.35 15597.11 1498.24 2797.58 798.72 898.97 793.15 8399.15 8393.18 6499.74 1399.50 16
canonicalmvs94.59 10194.69 9894.30 13095.60 22487.03 13695.59 6698.24 2791.56 11195.21 13892.04 28894.95 4998.66 16591.45 11297.57 22797.20 206
test_0728_SECOND94.88 10298.55 3986.72 14395.20 8198.22 2999.38 5193.44 5199.31 6298.53 107
Vis-MVSNetpermissive95.50 6695.48 7095.56 7998.11 7389.40 9195.35 7398.22 2992.36 7794.11 17098.07 3392.02 10799.44 2393.38 5697.67 22397.85 164
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12599.23 493.45 7299.57 1395.34 1299.89 299.63 9
test072698.51 4586.69 14495.34 7498.18 3291.85 9497.63 3197.37 6895.58 22
MSP-MVS95.34 7294.63 10297.48 1498.67 2794.05 2196.41 3598.18 3291.26 11795.12 13995.15 19586.60 20699.50 1993.43 5396.81 25098.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10495.10 4299.40 4093.47 4899.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 17192.03 16993.30 16495.81 21183.97 18892.80 15498.17 3587.71 19089.79 27787.56 33491.17 13599.18 8187.97 18797.27 23596.77 220
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7196.92 699.34 5994.31 2399.38 5598.92 67
XVG-OURS94.72 9794.12 11996.50 4898.00 8494.23 1691.48 21298.17 3590.72 12995.30 13196.47 12587.94 18196.98 27891.41 11397.61 22698.30 123
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12996.36 13895.68 1999.44 2394.41 2199.28 7098.97 59
FIs94.90 8795.35 7493.55 15498.28 6381.76 21295.33 7598.14 3993.05 6797.07 5197.18 8287.65 18499.29 6891.72 10499.69 1599.61 11
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16698.13 4090.69 13093.75 18396.25 14698.03 297.02 27792.08 9295.55 27598.45 114
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9094.85 5199.42 2893.49 4498.84 11898.00 144
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 9095.40 2793.49 4498.84 11898.00 144
RPMNet90.31 21690.14 21590.81 24691.01 31878.93 25892.52 16298.12 4191.91 9189.10 28496.89 9968.84 30799.41 3590.17 13992.70 32394.08 297
SED-MVS96.00 5296.41 3294.76 10798.51 4586.97 13795.21 7998.10 4491.95 8897.63 3197.25 7796.48 1199.35 5593.29 5999.29 6597.95 152
test_241102_TWO98.10 4491.95 8897.54 3697.25 7795.37 2899.35 5593.29 5999.25 7398.49 110
test_241102_ONE98.51 4586.97 13798.10 4491.85 9497.63 3197.03 9096.48 1198.95 116
test_part194.39 10794.55 10493.92 14296.14 18782.86 20295.54 6998.09 4795.36 3598.27 2098.36 2875.91 28899.44 2393.41 5499.84 399.47 17
WR-MVS_H96.60 2597.05 1495.24 9199.02 1186.44 15196.78 2198.08 4897.42 898.48 1697.86 4591.76 11599.63 694.23 2699.84 399.66 6
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14396.39 13594.77 5399.42 2893.17 6599.44 4598.58 105
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11698.08 4889.46 15496.61 7396.47 12595.85 1799.12 8990.45 12599.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11295.09 4399.43 2792.99 7398.71 13598.50 109
v7n96.82 1097.31 1095.33 8598.54 4186.81 14196.83 1898.07 5196.59 1998.46 1798.43 2792.91 8999.52 1796.25 699.76 1199.65 8
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9892.91 15198.07 5193.46 6296.31 8495.97 15890.14 15399.34 5992.11 9099.64 2399.16 36
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10194.85 5199.42 2893.35 5798.81 12698.53 107
SD-MVS95.19 7995.73 6593.55 15496.62 15388.88 10194.67 10098.05 5591.26 11797.25 4896.40 13195.42 2694.36 33292.72 8099.19 8097.40 196
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs94.32 11294.80 9392.85 17996.05 19481.44 21792.35 17498.05 5591.53 11295.75 11296.80 10593.35 7798.49 18391.01 11898.32 17198.64 96
PEN-MVS96.69 2097.39 894.61 11299.16 384.50 17796.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11098.05 5590.45 13796.31 8496.76 10892.91 8998.72 15491.19 11599.42 4798.32 120
baseline94.26 11594.80 9392.64 18596.08 19280.99 22393.69 13398.04 5990.80 12894.89 15196.32 14093.19 8198.48 18791.68 10698.51 15298.43 115
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10698.03 6090.42 13896.37 7997.35 7295.68 1999.25 7494.44 2099.34 5898.80 79
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9898.03 6090.82 12797.15 4996.85 10196.25 1599.00 10893.10 6899.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETH3D cwj APD-0.1693.99 12393.38 14095.80 6796.82 14489.92 8092.72 15598.02 6284.73 24193.65 18795.54 18291.68 11799.22 7788.78 17298.49 15598.26 126
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7793.86 12998.02 6287.35 19796.22 9297.99 3894.48 6099.05 9892.73 7999.68 1897.93 154
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11396.28 14395.22 3799.42 2893.17 6599.06 9198.88 71
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17799.57 1395.86 999.69 1599.46 18
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12294.99 4899.36 5493.48 4799.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11796.47 12595.37 2899.27 7293.78 3599.14 8598.48 111
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15795.63 11796.47 12595.37 2899.27 7291.99 9599.14 8598.48 111
LS3D96.11 4895.83 6196.95 3794.75 24794.20 1797.34 997.98 6797.31 1095.32 13096.77 10693.08 8599.20 7991.79 10198.16 19097.44 192
PS-CasMVS96.69 2097.43 594.49 12399.13 584.09 18696.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13396.57 12295.02 4699.41 3593.63 3999.11 8998.94 62
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 12096.61 12094.93 5099.41 3593.78 3599.15 8499.00 51
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16696.49 12494.56 5799.39 4593.57 4099.05 9498.93 63
X-MVStestdata90.70 20288.45 24297.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16626.89 36094.56 5799.39 4593.57 4099.05 9498.93 63
Gipumacopyleft95.31 7595.80 6393.81 14897.99 8790.91 6996.42 3497.95 7396.69 1691.78 24198.85 1291.77 11495.49 31591.72 10499.08 9095.02 279
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1797.43 594.67 11099.13 584.68 17696.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 11095.57 6897.88 7788.72 16998.81 698.86 1090.77 13999.60 895.43 1199.53 3599.57 13
pmmvs696.80 1397.36 995.15 9599.12 787.82 12496.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20691.38 11499.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 8098.26 6587.69 12593.75 13197.86 7895.96 2997.48 3997.14 8495.33 3299.44 2390.79 12099.76 1199.38 22
PHI-MVS94.34 11193.80 12495.95 5795.65 22091.67 6194.82 9597.86 7887.86 18793.04 20894.16 23491.58 11998.78 14490.27 13598.96 10897.41 193
testtj94.81 9494.42 10896.01 5497.23 12590.51 7594.77 9797.85 8191.29 11694.92 15095.66 17391.71 11699.40 4088.07 18598.25 18098.11 137
ETV-MVS92.99 14992.74 15493.72 14995.86 20886.30 15692.33 17597.84 8291.70 10892.81 21386.17 34592.22 10399.19 8088.03 18697.73 21795.66 265
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10692.26 17997.84 8294.91 3796.80 6595.78 16990.42 14899.41 3591.60 10899.58 3199.29 28
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14690.79 7296.30 4397.82 8496.13 2494.74 15797.23 7991.33 12599.16 8293.25 6298.30 17498.46 113
HQP_MVS94.26 11593.93 12195.23 9297.71 9988.12 11694.56 10797.81 8591.74 10593.31 19495.59 17586.93 19898.95 11689.26 16198.51 15298.60 103
plane_prior597.81 8598.95 11689.26 16198.51 15298.60 103
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10692.58 16097.81 8593.99 5096.80 6595.90 15990.10 15799.41 3591.60 10899.58 3199.26 29
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10397.81 8589.22 16195.46 12596.17 15193.42 7599.34 5989.30 15798.87 11697.56 186
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 20897.42 4397.51 6194.47 6199.29 6893.55 4299.29 6598.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 19096.72 11394.23 6499.42 2891.99 9599.29 6599.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 14193.88 12291.37 22496.34 17182.81 20393.11 14597.74 9189.37 15694.08 17295.29 19390.40 15196.35 30090.35 13098.25 18094.96 280
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12396.68 11594.50 5999.42 2893.10 6899.26 7298.99 53
ETH3 D test640091.91 17991.25 19193.89 14496.59 15484.41 17892.10 18497.72 9378.52 29391.82 24093.78 24988.70 16899.13 8783.61 24298.39 16098.14 133
TAPA-MVS88.58 1092.49 16891.75 17994.73 10896.50 16089.69 8592.91 15197.68 9478.02 29792.79 21494.10 23590.85 13897.96 22784.76 23498.16 19096.54 224
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 9694.12 11996.60 4498.15 7193.01 4295.84 5997.66 9589.21 16293.28 19795.46 18488.89 16798.98 10989.80 14898.82 12497.80 169
DP-MVS95.62 6295.84 6094.97 10097.16 12988.62 10594.54 11097.64 9696.94 1496.58 7497.32 7593.07 8698.72 15490.45 12598.84 11897.57 184
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13397.62 9794.46 4496.29 8696.94 9493.56 7099.37 5294.29 2499.42 4798.99 53
MTGPAbinary97.62 97
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9493.56 7099.37 5294.29 2499.42 4798.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19298.45 1898.77 1594.20 6599.50 1996.70 399.40 5399.53 14
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
VPA-MVSNet95.14 8095.67 6793.58 15397.76 9483.15 19894.58 10597.58 10293.39 6397.05 5498.04 3593.25 7998.51 18289.75 15199.59 2799.08 45
v1094.68 9995.27 8092.90 17796.57 15680.15 23094.65 10297.57 10390.68 13197.43 4198.00 3788.18 17499.15 8394.84 1599.55 3499.41 20
CSCG94.69 9894.75 9594.52 12097.55 11187.87 12295.01 9097.57 10392.68 6996.20 9493.44 25691.92 11298.78 14489.11 16599.24 7596.92 214
ZD-MVS97.23 12590.32 7697.54 10584.40 24394.78 15595.79 16692.76 9499.39 4588.72 17598.40 158
UniMVSNet_ETH3D97.13 697.72 395.35 8399.51 287.38 12897.70 697.54 10598.16 298.94 299.33 297.84 499.08 9390.73 12199.73 1499.59 12
Effi-MVS+92.79 15692.74 15492.94 17595.10 23783.30 19594.00 12497.53 10791.36 11589.35 28390.65 31094.01 6798.66 16587.40 19895.30 28396.88 217
CP-MVSNet96.19 4696.80 1794.38 12998.99 1383.82 19096.31 4197.53 10797.60 698.34 1997.52 5991.98 11199.63 693.08 7099.81 999.70 3
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 19197.78 4691.21 13197.77 24491.06 11697.06 24098.80 79
diffmvs91.74 18191.93 17391.15 23493.06 28578.17 26988.77 28397.51 11086.28 21292.42 22493.96 24288.04 17897.46 26090.69 12396.67 25597.82 167
PVSNet_Blended_VisFu91.63 18491.20 19292.94 17597.73 9883.95 18992.14 18397.46 11178.85 29292.35 22894.98 20584.16 22499.08 9386.36 21496.77 25295.79 259
DeepPCF-MVS90.46 694.20 11893.56 13596.14 5195.96 20192.96 4389.48 26697.46 11185.14 23196.23 9195.42 18793.19 8198.08 21690.37 12998.76 13297.38 199
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
OMC-MVS94.22 11793.69 12995.81 6597.25 12491.27 6392.27 17897.40 11487.10 20394.56 16195.42 18793.74 6898.11 21586.62 20898.85 11798.06 138
v124093.29 13693.71 12892.06 20796.01 19977.89 27391.81 20597.37 11585.12 23396.69 6996.40 13186.67 20499.07 9794.51 1898.76 13299.22 32
NR-MVSNet95.28 7695.28 7995.26 9097.75 9587.21 13295.08 8697.37 11593.92 5497.65 3095.90 15990.10 15799.33 6490.11 14199.66 2199.26 29
MVSFormer92.18 17592.23 16592.04 20894.74 24980.06 23497.15 1197.37 11588.98 16388.83 28792.79 27077.02 28199.60 896.41 496.75 25396.46 231
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16398.26 2198.86 1093.35 7799.60 896.41 499.45 4399.66 6
DP-MVS Recon92.31 17291.88 17493.60 15297.18 12886.87 14091.10 22197.37 11584.92 23892.08 23694.08 23688.59 16998.20 20783.50 24398.14 19295.73 261
test_prior393.29 13692.85 15094.61 11295.95 20287.23 13090.21 24497.36 12089.33 15890.77 25494.81 21290.41 14998.68 16388.21 17998.55 14597.93 154
test_prior94.61 11295.95 20287.23 13097.36 12098.68 16397.93 154
QAPM92.88 15392.77 15293.22 16795.82 20983.31 19496.45 3197.35 12283.91 24693.75 18396.77 10689.25 16598.88 12384.56 23697.02 24297.49 189
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 15997.33 12390.05 14396.77 6796.85 10195.04 4498.56 17792.77 7699.06 9198.70 91
HQP3-MVS97.31 12497.73 217
HQP-MVS92.09 17691.49 18593.88 14596.36 16784.89 17491.37 21397.31 12487.16 20088.81 28993.40 25784.76 22098.60 17186.55 21097.73 21798.14 133
PCF-MVS84.52 1789.12 23987.71 25893.34 16196.06 19385.84 16586.58 32097.31 12468.46 34193.61 18893.89 24587.51 18798.52 18167.85 34598.11 19695.66 265
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 20689.80 22092.63 18798.00 8482.24 20793.40 14197.29 12765.84 34889.40 28294.80 21586.99 19698.75 14983.88 24198.61 14296.89 216
CLD-MVS91.82 18091.41 18793.04 16996.37 16583.65 19286.82 31297.29 12784.65 24292.27 23289.67 32092.20 10497.85 23783.95 24099.47 3997.62 182
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 9594.90 8994.47 12495.47 22787.06 13496.63 2397.28 12991.82 10094.34 16897.41 6590.60 14698.65 16792.47 8598.11 19697.70 176
DELS-MVS92.05 17792.16 16691.72 21594.44 25980.13 23287.62 29397.25 13087.34 19892.22 23393.18 26389.54 16398.73 15389.67 15298.20 18896.30 237
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 13993.61 13292.19 20096.04 19878.31 26791.88 19897.24 13185.17 23096.19 9696.19 14886.76 20399.05 9894.18 2898.84 11899.22 32
test_040295.73 5996.22 3994.26 13198.19 6985.77 16693.24 14497.24 13196.88 1597.69 2997.77 4894.12 6699.13 8791.54 11199.29 6597.88 160
v119293.49 13193.78 12592.62 18896.16 18679.62 24691.83 20497.22 13386.07 21696.10 10096.38 13687.22 19199.02 10494.14 2998.88 11399.22 32
F-COLMAP92.28 17391.06 19595.95 5797.52 11291.90 5693.53 13797.18 13483.98 24588.70 29594.04 23788.41 17298.55 17980.17 27695.99 26697.39 197
v894.65 10095.29 7892.74 18296.65 15079.77 24494.59 10397.17 13591.86 9397.47 4097.93 4088.16 17599.08 9394.32 2299.47 3999.38 22
v14419293.20 14493.54 13692.16 20496.05 19478.26 26891.95 19197.14 13684.98 23795.96 10396.11 15287.08 19599.04 10193.79 3498.84 11899.17 35
DeepC-MVS_fast89.96 793.73 12793.44 13894.60 11696.14 18787.90 12193.36 14297.14 13685.53 22593.90 18095.45 18591.30 12798.59 17389.51 15498.62 14197.31 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 15192.51 16094.10 13497.52 11285.72 16791.36 21697.13 13880.33 27492.91 21294.24 23091.23 13098.72 15489.99 14597.93 21097.86 162
DIV-MVS_2432*160094.10 12094.73 9792.19 20097.66 10579.49 24994.86 9497.12 13989.59 15396.87 6197.65 5290.40 15198.34 19689.08 16699.35 5798.75 84
pm-mvs195.43 6895.94 5493.93 14198.38 5785.08 17395.46 7297.12 13991.84 9797.28 4698.46 2595.30 3497.71 24990.17 13999.42 4798.99 53
save fliter97.46 11788.05 11892.04 18797.08 14187.63 193
CDPH-MVS92.67 16191.83 17595.18 9496.94 13888.46 11190.70 23097.07 14277.38 29992.34 23095.08 20092.67 9698.88 12385.74 21998.57 14498.20 130
OpenMVScopyleft89.45 892.27 17492.13 16892.68 18494.53 25884.10 18595.70 6297.03 14382.44 26291.14 25196.42 12988.47 17198.38 19285.95 21897.47 23095.55 269
原ACMM192.87 17896.91 14084.22 18297.01 14476.84 30489.64 28094.46 22388.00 17998.70 16081.53 26398.01 20695.70 263
DVP-MVS95.82 5796.18 4194.72 10998.51 4586.69 14495.20 8197.00 14591.85 9497.40 4497.35 7295.58 2299.34 5993.44 5199.31 6298.13 135
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet92.38 17091.99 17193.52 15893.82 27583.46 19391.14 21997.00 14589.81 14886.47 31694.04 23787.90 18299.21 7889.50 15598.27 17697.90 158
HPM-MVS++copyleft95.02 8294.39 10996.91 3897.88 9093.58 3694.09 12196.99 14791.05 12292.40 22595.22 19491.03 13799.25 7492.11 9098.69 13897.90 158
v114493.50 13093.81 12392.57 19096.28 17679.61 24791.86 20396.96 14886.95 20595.91 10796.32 14087.65 18498.96 11493.51 4398.88 11399.13 39
MVS_Test92.57 16693.29 14190.40 25693.53 27775.85 29992.52 16296.96 14888.73 16892.35 22896.70 11490.77 13998.37 19592.53 8495.49 27796.99 212
PVSNet_BlendedMVS90.35 21389.96 21791.54 22194.81 24478.80 26390.14 24896.93 15079.43 28288.68 29695.06 20186.27 20998.15 21380.27 27398.04 20397.68 178
PVSNet_Blended88.74 24988.16 25390.46 25594.81 24478.80 26386.64 31696.93 15074.67 31188.68 29689.18 32686.27 20998.15 21380.27 27396.00 26594.44 292
TEST996.45 16389.46 8790.60 23296.92 15279.09 28890.49 25994.39 22691.31 12698.88 123
train_agg92.71 16091.83 17595.35 8396.45 16389.46 8790.60 23296.92 15279.37 28390.49 25994.39 22691.20 13298.88 12388.66 17698.43 15797.72 175
NCCC94.08 12193.54 13695.70 7496.49 16189.90 8292.39 17196.91 15490.64 13292.33 23194.60 22090.58 14798.96 11490.21 13897.70 22198.23 127
test_896.37 16589.14 9490.51 23596.89 15579.37 28390.42 26194.36 22891.20 13298.82 133
agg_prior192.60 16391.76 17895.10 9796.20 18288.89 9990.37 23996.88 15679.67 28090.21 26594.41 22491.30 12798.78 14488.46 17898.37 16797.64 181
agg_prior96.20 18288.89 9996.88 15690.21 26598.78 144
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9696.23 4696.87 15893.73 5697.87 2698.49 2490.73 14399.05 9886.43 21399.60 2599.10 44
IU-MVS98.51 4586.66 14696.83 15972.74 32395.83 10993.00 7299.29 6598.64 96
TSAR-MVS + MP.94.96 8594.75 9595.57 7898.86 2088.69 10296.37 3696.81 16085.23 22894.75 15697.12 8591.85 11399.40 4093.45 4998.33 16998.62 100
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 10294.29 11395.46 8296.94 13889.35 9391.81 20596.80 16189.66 15093.90 18095.44 18692.80 9398.72 15492.74 7898.52 15098.32 120
cascas87.02 28386.28 28489.25 27991.56 31376.45 29384.33 33596.78 16271.01 33186.89 31585.91 34681.35 24996.94 27983.09 24795.60 27494.35 294
IterMVS-LS93.78 12694.28 11492.27 19796.27 17779.21 25691.87 19996.78 16291.77 10396.57 7597.07 8787.15 19398.74 15291.99 9599.03 10098.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 6695.83 6194.50 12197.33 12385.93 16395.19 8396.77 16496.64 1897.61 3498.05 3493.23 8098.79 14088.60 17799.04 9998.78 81
TransMVSNet (Re)95.27 7896.04 5192.97 17298.37 5981.92 21095.07 8796.76 16593.97 5297.77 2798.57 1995.72 1897.90 22988.89 17099.23 7699.08 45
EG-PatchMatch MVS94.54 10494.67 10094.14 13397.87 9186.50 14792.00 19096.74 16688.16 18196.93 5997.61 5493.04 8797.90 22991.60 10898.12 19598.03 142
1112_ss88.42 25387.41 26291.45 22296.69 14980.99 22389.72 26196.72 16773.37 31987.00 31490.69 30877.38 27798.20 20781.38 26493.72 31095.15 275
Baseline_NR-MVSNet94.47 10695.09 8692.60 18998.50 5280.82 22692.08 18596.68 16893.82 5596.29 8698.56 2090.10 15797.75 24790.10 14399.66 2199.24 31
eth_miper_zixun_eth90.72 20190.61 20591.05 23592.04 30476.84 28986.91 30896.67 16985.21 22994.41 16493.92 24379.53 26198.26 20389.76 15097.02 24298.06 138
Fast-Effi-MVS+-dtu92.77 15892.16 16694.58 11994.66 25588.25 11392.05 18696.65 17089.62 15190.08 26891.23 29892.56 9898.60 17186.30 21596.27 26296.90 215
test1196.65 170
RRT_test8_iter0588.21 25688.17 25188.33 29491.62 31166.82 34791.73 20896.60 17286.34 21194.14 16995.38 19247.72 36199.11 9091.78 10298.26 17799.06 47
LF4IMVS92.72 15992.02 17094.84 10495.65 22091.99 5492.92 15096.60 17285.08 23592.44 22393.62 25186.80 20296.35 30086.81 20398.25 18096.18 243
GBi-Net93.21 14292.96 14793.97 13895.40 22984.29 17995.99 5196.56 17488.63 17095.10 14098.53 2181.31 25098.98 10986.74 20498.38 16298.65 92
test193.21 14292.96 14793.97 13895.40 22984.29 17995.99 5196.56 17488.63 17095.10 14098.53 2181.31 25098.98 10986.74 20498.38 16298.65 92
FMVSNet194.84 9295.13 8493.97 13897.60 10884.29 17995.99 5196.56 17492.38 7597.03 5598.53 2190.12 15498.98 10988.78 17299.16 8398.65 92
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17791.93 9094.82 15395.39 19091.99 11097.08 27585.53 22197.96 20897.41 193
Fast-Effi-MVS+91.28 19490.86 19892.53 19295.45 22882.53 20589.25 27596.52 17885.00 23689.91 27288.55 33092.94 8898.84 13184.72 23595.44 27996.22 241
V4293.43 13393.58 13392.97 17295.34 23381.22 22092.67 15896.49 17987.25 19996.20 9496.37 13787.32 19098.85 13092.39 8998.21 18698.85 75
PLCcopyleft85.34 1590.40 21088.92 23494.85 10396.53 15990.02 7891.58 21096.48 18080.16 27586.14 31892.18 28485.73 21498.25 20476.87 30594.61 29896.30 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
cl_fuxian91.32 19391.42 18691.00 23992.29 29776.79 29087.52 29996.42 18185.76 22294.72 15993.89 24582.73 23598.16 21290.93 11998.55 14598.04 141
Regformer-294.86 9094.55 10495.77 6992.83 29089.98 7991.87 19996.40 18294.38 4696.19 9695.04 20292.47 10299.04 10193.49 4498.31 17298.28 124
USDC89.02 24089.08 23088.84 28495.07 23874.50 31088.97 27896.39 18373.21 32093.27 19896.28 14382.16 24296.39 29777.55 29998.80 12895.62 268
ambc92.98 17196.88 14183.01 20195.92 5696.38 18496.41 7797.48 6288.26 17397.80 24089.96 14698.93 11098.12 136
PAPM_NR91.03 19690.81 20091.68 21796.73 14881.10 22293.72 13296.35 18588.19 18088.77 29392.12 28785.09 21997.25 27082.40 25593.90 30796.68 223
v2v48293.29 13693.63 13192.29 19696.35 17078.82 26191.77 20796.28 18688.45 17595.70 11696.26 14586.02 21298.90 12093.02 7198.81 12699.14 38
AdaColmapbinary91.63 18491.36 18892.47 19595.56 22586.36 15492.24 18196.27 18788.88 16789.90 27392.69 27391.65 11898.32 19777.38 30297.64 22492.72 326
Test_1112_low_res87.50 27186.58 27790.25 26096.80 14777.75 27587.53 29896.25 18869.73 33786.47 31693.61 25275.67 28997.88 23179.95 27893.20 31595.11 277
test1294.43 12795.95 20286.75 14296.24 18989.76 27889.79 16198.79 14097.95 20997.75 174
PAPR87.65 26786.77 27590.27 25992.85 28977.38 28088.56 28896.23 19076.82 30584.98 32489.75 31986.08 21197.16 27372.33 32993.35 31396.26 239
MVS_111021_HR93.63 12993.42 13994.26 13196.65 15086.96 13989.30 27296.23 19088.36 17893.57 18994.60 22093.45 7297.77 24490.23 13798.38 16298.03 142
XXY-MVS92.58 16493.16 14690.84 24597.75 9579.84 24091.87 19996.22 19285.94 21895.53 12297.68 5092.69 9594.48 32883.21 24697.51 22898.21 129
MSDG90.82 19890.67 20491.26 22894.16 26483.08 20086.63 31796.19 19390.60 13491.94 23891.89 28989.16 16695.75 31080.96 27194.51 29994.95 281
miper_ehance_all_eth90.48 20790.42 20990.69 24891.62 31176.57 29286.83 31196.18 19483.38 24894.06 17492.66 27582.20 24198.04 21889.79 14997.02 24297.45 191
TinyColmap92.00 17892.76 15389.71 27095.62 22377.02 28490.72 22996.17 19587.70 19195.26 13496.29 14292.54 9996.45 29581.77 26098.77 13195.66 265
DPM-MVS89.35 23588.40 24392.18 20396.13 19084.20 18386.96 30796.15 19675.40 31087.36 31191.55 29683.30 22898.01 22282.17 25896.62 25694.32 295
HyFIR lowres test87.19 27985.51 28992.24 19897.12 13380.51 22785.03 32796.06 19766.11 34791.66 24292.98 26670.12 30599.14 8575.29 31495.23 28597.07 207
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22595.69 21781.56 21489.92 25596.05 19883.22 25091.26 24790.74 30591.55 12098.82 13389.29 15895.91 26793.62 312
xiu_mvs_v1_base91.47 18891.52 18291.33 22595.69 21781.56 21489.92 25596.05 19883.22 25091.26 24790.74 30591.55 12098.82 13389.29 15895.91 26793.62 312
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22595.69 21781.56 21489.92 25596.05 19883.22 25091.26 24790.74 30591.55 12098.82 13389.29 15895.91 26793.62 312
Regformer-494.90 8794.67 10095.59 7692.78 29289.02 9692.39 17195.91 20194.50 4296.41 7795.56 18092.10 10699.01 10694.23 2698.14 19298.74 87
UnsupCasMVSNet_eth90.33 21490.34 21090.28 25894.64 25680.24 22889.69 26295.88 20285.77 22193.94 17995.69 17181.99 24492.98 34384.21 23991.30 33497.62 182
CANet_DTU89.85 22989.17 22891.87 21092.20 30080.02 23790.79 22795.87 20386.02 21782.53 34091.77 29180.01 25898.57 17685.66 22097.70 22197.01 211
PMVScopyleft87.21 1494.97 8495.33 7693.91 14398.97 1497.16 295.54 6995.85 20496.47 2093.40 19397.46 6395.31 3395.47 31686.18 21798.78 13089.11 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-194.55 10394.33 11295.19 9392.83 29088.54 10991.87 19995.84 20593.99 5095.95 10495.04 20292.00 10898.79 14093.14 6798.31 17298.23 127
alignmvs93.26 13992.85 15094.50 12195.70 21687.45 12693.45 14095.76 20691.58 11095.25 13592.42 28281.96 24598.72 15491.61 10797.87 21397.33 201
无先验89.94 25495.75 20770.81 33398.59 17381.17 26894.81 282
WR-MVS93.49 13193.72 12792.80 18197.57 11080.03 23690.14 24895.68 20893.70 5796.62 7295.39 19087.21 19299.04 10187.50 19599.64 2399.33 25
VPNet93.08 14593.76 12691.03 23698.60 3375.83 30191.51 21195.62 20991.84 9795.74 11397.10 8689.31 16498.32 19785.07 23099.06 9198.93 63
Anonymous2024052192.86 15593.57 13490.74 24796.57 15675.50 30394.15 11995.60 21089.38 15595.90 10897.90 4480.39 25797.96 22792.60 8399.68 1898.75 84
xiu_mvs_v2_base89.00 24289.19 22788.46 29294.86 24274.63 30786.97 30695.60 21080.88 27087.83 30688.62 32991.04 13698.81 13882.51 25494.38 30091.93 332
PS-MVSNAJ88.86 24688.99 23388.48 29194.88 24074.71 30586.69 31595.60 21080.88 27087.83 30687.37 33790.77 13998.82 13382.52 25394.37 30191.93 332
CHOSEN 1792x268887.19 27985.92 28791.00 23997.13 13279.41 25084.51 33395.60 21064.14 35190.07 26994.81 21278.26 27197.14 27473.34 32395.38 28296.46 231
miper_enhance_ethall88.42 25387.87 25690.07 26588.67 34475.52 30285.10 32695.59 21475.68 30692.49 22189.45 32378.96 26397.88 23187.86 19097.02 24296.81 219
MVP-Stereo90.07 22388.92 23493.54 15696.31 17486.49 14890.93 22495.59 21479.80 27691.48 24395.59 17580.79 25497.39 26678.57 29391.19 33596.76 221
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 33131.13 3340.00 3470.00 3680.00 3690.00 35995.58 2160.00 3640.00 36591.15 29993.43 740.00 3650.00 3630.00 3630.00 361
CNLPA91.72 18291.20 19293.26 16596.17 18591.02 6691.14 21995.55 21790.16 14290.87 25393.56 25486.31 20894.40 33179.92 28297.12 23994.37 293
FMVSNet292.78 15792.73 15692.95 17495.40 22981.98 20994.18 11895.53 21888.63 17096.05 10197.37 6881.31 25098.81 13887.38 19998.67 13998.06 138
ab-mvs92.40 16992.62 15891.74 21497.02 13481.65 21395.84 5995.50 21986.95 20592.95 21197.56 5690.70 14497.50 25779.63 28397.43 23196.06 247
MVS_111021_LR93.66 12893.28 14394.80 10596.25 18090.95 6890.21 24495.43 22087.91 18493.74 18594.40 22592.88 9196.38 29890.39 12798.28 17597.07 207
tfpnnormal94.27 11494.87 9192.48 19497.71 9980.88 22594.55 10995.41 22193.70 5796.67 7097.72 4991.40 12398.18 21087.45 19699.18 8298.36 118
Effi-MVS+-dtu93.90 12592.60 15997.77 494.74 24996.67 394.00 12495.41 22189.94 14491.93 23992.13 28690.12 15498.97 11387.68 19297.48 22997.67 179
mvs-test193.07 14791.80 17796.89 3994.74 24995.83 692.17 18295.41 22189.94 14489.85 27490.59 31190.12 15498.88 12387.68 19295.66 27395.97 250
cl-mvsnet_90.65 20490.56 20690.91 24391.85 30676.98 28786.75 31395.36 22485.53 22594.06 17494.89 20977.36 27997.98 22690.27 13598.98 10297.76 172
cl-mvsnet190.65 20490.56 20690.91 24391.85 30676.99 28686.75 31395.36 22485.52 22794.06 17494.89 20977.37 27897.99 22590.28 13498.97 10697.76 172
testgi90.38 21191.34 18987.50 30397.49 11471.54 32889.43 26795.16 22688.38 17794.54 16294.68 21992.88 9193.09 34271.60 33497.85 21497.88 160
v14892.87 15493.29 14191.62 21896.25 18077.72 27691.28 21795.05 22789.69 14995.93 10696.04 15487.34 18998.38 19290.05 14497.99 20798.78 81
miper_lstm_enhance89.90 22889.80 22090.19 26491.37 31577.50 27883.82 34095.00 22884.84 23993.05 20794.96 20676.53 28795.20 32489.96 14698.67 13997.86 162
VNet92.67 16192.96 14791.79 21296.27 17780.15 23091.95 19194.98 22992.19 8494.52 16396.07 15387.43 18897.39 26684.83 23298.38 16297.83 165
FMVSNet390.78 20090.32 21192.16 20493.03 28779.92 23992.54 16194.95 23086.17 21595.10 14096.01 15669.97 30698.75 14986.74 20498.38 16297.82 167
BH-untuned90.68 20390.90 19690.05 26795.98 20079.57 24890.04 25194.94 23187.91 18494.07 17393.00 26587.76 18397.78 24379.19 28995.17 28692.80 324
RRT_MVS91.36 19190.05 21695.29 8989.21 33988.15 11592.51 16594.89 23286.73 20795.54 12195.68 17261.82 34199.30 6794.91 1399.13 8898.43 115
D2MVS89.93 22789.60 22590.92 24194.03 26978.40 26688.69 28594.85 23378.96 29093.08 20595.09 19974.57 29196.94 27988.19 18198.96 10897.41 193
SixPastTwentyTwo94.91 8695.21 8193.98 13798.52 4483.19 19795.93 5594.84 23494.86 3898.49 1598.74 1681.45 24899.60 894.69 1699.39 5499.15 37
旧先验196.20 18284.17 18494.82 23595.57 17989.57 16297.89 21296.32 236
API-MVS91.52 18791.61 18091.26 22894.16 26486.26 15894.66 10194.82 23591.17 12092.13 23591.08 30190.03 16097.06 27679.09 29097.35 23490.45 341
FMVSNet587.82 26386.56 27891.62 21892.31 29679.81 24393.49 13894.81 23783.26 24991.36 24596.93 9652.77 35797.49 25976.07 31098.03 20497.55 187
MAR-MVS90.32 21588.87 23794.66 11194.82 24391.85 5794.22 11794.75 23880.91 26987.52 31088.07 33386.63 20597.87 23476.67 30696.21 26394.25 296
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 21291.30 19087.58 30292.17 30168.00 34189.84 25994.73 23983.82 24793.22 20297.40 6687.54 18697.40 26587.94 18895.05 28897.34 200
Regformer-394.28 11394.23 11894.46 12592.78 29286.28 15792.39 17194.70 24093.69 6095.97 10295.56 18091.34 12498.48 18793.45 4998.14 19298.62 100
EI-MVSNet-UG-set94.35 11094.27 11694.59 11792.46 29585.87 16492.42 16994.69 24193.67 6196.13 9895.84 16491.20 13298.86 12893.78 3598.23 18399.03 49
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11292.55 29485.98 16292.44 16794.69 24193.70 5796.12 9995.81 16591.24 12998.86 12893.76 3898.22 18598.98 58
EI-MVSNet92.99 14993.26 14592.19 20092.12 30279.21 25692.32 17694.67 24391.77 10395.24 13695.85 16187.14 19498.49 18391.99 9598.26 17798.86 72
MVSTER89.32 23688.75 23891.03 23690.10 32976.62 29190.85 22594.67 24382.27 26395.24 13695.79 16661.09 34498.49 18390.49 12498.26 17797.97 151
新几何193.17 16897.16 12987.29 12994.43 24567.95 34291.29 24694.94 20786.97 19798.23 20581.06 27097.75 21693.98 303
112190.26 21789.23 22693.34 16197.15 13187.40 12791.94 19394.39 24667.88 34391.02 25294.91 20886.91 20098.59 17381.17 26897.71 22094.02 302
CMPMVSbinary68.83 2287.28 27585.67 28892.09 20688.77 34385.42 17090.31 24294.38 24770.02 33688.00 30493.30 25973.78 29594.03 33675.96 31296.54 25796.83 218
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 10594.35 11194.92 10198.25 6686.46 15097.13 1394.31 24896.24 2396.28 8996.36 13882.88 23299.35 5588.19 18199.52 3798.96 60
testdata91.03 23696.87 14282.01 20894.28 24971.55 32792.46 22295.42 18785.65 21697.38 26882.64 25197.27 23593.70 310
UGNet93.08 14592.50 16194.79 10693.87 27387.99 12095.07 8794.26 25090.64 13287.33 31297.67 5186.89 20198.49 18388.10 18498.71 13597.91 157
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 29484.30 29487.01 30691.03 31777.69 27791.94 19394.16 25159.36 35684.23 33087.50 33685.66 21596.80 28571.79 33193.05 32086.54 348
131486.46 28686.33 28386.87 30891.65 31074.54 30891.94 19394.10 25274.28 31384.78 32687.33 33883.03 23195.00 32578.72 29191.16 33691.06 338
cl-mvsnet289.02 24088.50 24190.59 25189.76 33176.45 29386.62 31894.03 25382.98 25692.65 21792.49 27672.05 30197.53 25588.93 16797.02 24297.78 170
EPP-MVSNet93.91 12493.68 13094.59 11798.08 7585.55 16997.44 894.03 25394.22 4794.94 14896.19 14882.07 24399.57 1387.28 20098.89 11198.65 92
UnsupCasMVSNet_bld88.50 25288.03 25489.90 26895.52 22678.88 26087.39 30094.02 25579.32 28693.06 20694.02 23980.72 25594.27 33375.16 31593.08 31996.54 224
hse-mvs392.89 15291.99 17195.58 7796.97 13690.55 7393.94 12794.01 25689.23 16093.95 17896.19 14876.88 28499.14 8591.02 11795.71 27297.04 210
pmmvs-eth3d91.54 18690.73 20393.99 13695.76 21487.86 12390.83 22693.98 25778.23 29694.02 17796.22 14782.62 23896.83 28486.57 20998.33 16997.29 203
BH-RMVSNet90.47 20890.44 20890.56 25295.21 23678.65 26589.15 27693.94 25888.21 17992.74 21594.22 23186.38 20797.88 23178.67 29295.39 28195.14 276
test22296.95 13785.27 17288.83 28193.61 25965.09 35090.74 25694.85 21184.62 22297.36 23393.91 304
CDS-MVSNet89.55 23288.22 25093.53 15795.37 23286.49 14889.26 27393.59 26079.76 27891.15 25092.31 28377.12 28098.38 19277.51 30097.92 21195.71 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 24390.79 20183.50 33094.28 26355.83 36285.34 32593.56 26186.18 21495.47 12395.73 17083.10 23096.51 29385.40 22298.06 20098.16 131
IterMVS-SCA-FT91.65 18391.55 18191.94 20993.89 27279.22 25587.56 29693.51 26291.53 11295.37 12896.62 11978.65 26698.90 12091.89 10094.95 28997.70 176
Anonymous2023120688.77 24888.29 24690.20 26396.31 17478.81 26289.56 26593.49 26374.26 31492.38 22695.58 17882.21 24095.43 31872.07 33098.75 13496.34 235
OpenMVS_ROBcopyleft85.12 1689.52 23489.05 23190.92 24194.58 25781.21 22191.10 22193.41 26477.03 30393.41 19193.99 24183.23 22997.80 24079.93 28094.80 29393.74 309
VDD-MVS94.37 10894.37 11094.40 12897.49 11486.07 16193.97 12693.28 26594.49 4396.24 9097.78 4687.99 18098.79 14088.92 16899.14 8598.34 119
jason89.17 23888.32 24491.70 21695.73 21580.07 23388.10 29093.22 26671.98 32690.09 26792.79 27078.53 26998.56 17787.43 19797.06 24096.46 231
jason: jason.
PAPM81.91 31380.11 32387.31 30593.87 27372.32 32684.02 33893.22 26669.47 33876.13 35789.84 31472.15 30097.23 27153.27 35889.02 34192.37 329
BH-w/o87.21 27787.02 27187.79 30194.77 24677.27 28287.90 29193.21 26881.74 26789.99 27188.39 33283.47 22696.93 28171.29 33592.43 32789.15 342
ppachtmachnet_test88.61 25188.64 23988.50 29091.76 30870.99 33184.59 33292.98 26979.30 28792.38 22693.53 25579.57 26097.45 26186.50 21297.17 23897.07 207
IterMVS90.18 21890.16 21290.21 26293.15 28375.98 29887.56 29692.97 27086.43 21094.09 17196.40 13178.32 27097.43 26287.87 18994.69 29697.23 204
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 19990.85 19990.63 25095.63 22279.24 25489.81 26092.87 27189.90 14694.39 16596.40 13185.77 21395.27 32373.86 32199.05 9497.39 197
CR-MVSNet87.89 26087.12 26990.22 26191.01 31878.93 25892.52 16292.81 27273.08 32189.10 28496.93 9667.11 31297.64 25288.80 17192.70 32394.08 297
Patchmtry90.11 22089.92 21890.66 24990.35 32777.00 28592.96 14992.81 27290.25 14194.74 15796.93 9667.11 31297.52 25685.17 22398.98 10297.46 190
GA-MVS87.70 26486.82 27390.31 25793.27 28077.22 28384.72 33192.79 27485.11 23489.82 27590.07 31266.80 31597.76 24684.56 23694.27 30495.96 251
sss87.23 27686.82 27388.46 29293.96 27077.94 27086.84 31092.78 27577.59 29887.61 30991.83 29078.75 26591.92 34677.84 29694.20 30595.52 270
Patchmatch-RL test88.81 24788.52 24089.69 27195.33 23479.94 23886.22 32192.71 27678.46 29495.80 11094.18 23366.25 32095.33 32189.22 16398.53 14993.78 307
test_yl90.11 22089.73 22391.26 22894.09 26779.82 24190.44 23692.65 27790.90 12393.19 20393.30 25973.90 29398.03 21982.23 25696.87 24895.93 252
DCV-MVSNet90.11 22089.73 22391.26 22894.09 26779.82 24190.44 23692.65 27790.90 12393.19 20393.30 25973.90 29398.03 21982.23 25696.87 24895.93 252
CL-MVSNet_2432*160090.04 22589.90 21990.47 25395.24 23577.81 27486.60 31992.62 27985.64 22493.25 20193.92 24383.84 22596.06 30679.93 28098.03 20497.53 188
TSAR-MVS + GP.93.07 14792.41 16395.06 9895.82 20990.87 7190.97 22392.61 28088.04 18394.61 16093.79 24888.08 17697.81 23989.41 15698.39 16096.50 229
TAMVS90.16 21989.05 23193.49 15996.49 16186.37 15390.34 24192.55 28180.84 27292.99 20994.57 22281.94 24698.20 20773.51 32298.21 18695.90 255
MS-PatchMatch88.05 25987.75 25788.95 28193.28 27977.93 27187.88 29292.49 28275.42 30992.57 22093.59 25380.44 25694.24 33581.28 26592.75 32294.69 288
MG-MVS89.54 23389.80 22088.76 28594.88 24072.47 32589.60 26392.44 28385.82 22089.48 28195.98 15782.85 23397.74 24881.87 25995.27 28496.08 246
MVS_030490.96 19790.15 21493.37 16093.17 28287.06 13493.62 13592.43 28489.60 15282.25 34195.50 18382.56 23997.83 23884.41 23897.83 21595.22 273
lupinMVS88.34 25587.31 26391.45 22294.74 24980.06 23487.23 30192.27 28571.10 33088.83 28791.15 29977.02 28198.53 18086.67 20796.75 25395.76 260
pmmvs587.87 26187.14 26890.07 26593.26 28176.97 28888.89 28092.18 28673.71 31888.36 29993.89 24576.86 28596.73 28780.32 27296.81 25096.51 226
PM-MVS93.33 13592.67 15795.33 8596.58 15594.06 1992.26 17992.18 28685.92 21996.22 9296.61 12085.64 21795.99 30890.35 13098.23 18395.93 252
pmmvs488.95 24487.70 25992.70 18394.30 26285.60 16887.22 30292.16 28874.62 31289.75 27994.19 23277.97 27396.41 29682.71 25096.36 26196.09 245
MDA-MVSNet-bldmvs91.04 19590.88 19791.55 22094.68 25480.16 22985.49 32492.14 28990.41 13994.93 14995.79 16685.10 21896.93 28185.15 22594.19 30697.57 184
door-mid92.13 290
WTY-MVS86.93 28486.50 28288.24 29594.96 23974.64 30687.19 30392.07 29178.29 29588.32 30091.59 29578.06 27294.27 33374.88 31693.15 31795.80 258
AUN-MVS90.05 22488.30 24595.32 8896.09 19190.52 7492.42 16992.05 29282.08 26588.45 29892.86 26765.76 32298.69 16288.91 16996.07 26496.75 222
TR-MVS87.70 26487.17 26789.27 27894.11 26679.26 25388.69 28591.86 29381.94 26690.69 25789.79 31782.82 23497.42 26372.65 32891.98 33191.14 337
VDDNet94.03 12294.27 11693.31 16398.87 1982.36 20695.51 7191.78 29497.19 1196.32 8398.60 1884.24 22398.75 14987.09 20198.83 12398.81 78
Anonymous20240521192.58 16492.50 16192.83 18096.55 15883.22 19692.43 16891.64 29594.10 4995.59 11996.64 11881.88 24797.50 25785.12 22798.52 15097.77 171
HY-MVS82.50 1886.81 28585.93 28689.47 27293.63 27677.93 27194.02 12391.58 29675.68 30683.64 33393.64 25077.40 27697.42 26371.70 33392.07 33093.05 321
door91.26 297
PatchMatch-RL89.18 23788.02 25592.64 18595.90 20692.87 4588.67 28791.06 29880.34 27390.03 27091.67 29383.34 22794.42 33076.35 30994.84 29290.64 340
ADS-MVSNet284.01 29982.20 30789.41 27489.04 34076.37 29587.57 29490.98 29972.71 32484.46 32792.45 27868.08 30896.48 29470.58 34083.97 34995.38 271
KD-MVS_2432*160082.17 31080.75 31786.42 31182.04 36270.09 33581.75 34690.80 30082.56 25890.37 26389.30 32442.90 36696.11 30474.47 31792.55 32593.06 319
miper_refine_blended82.17 31080.75 31786.42 31182.04 36270.09 33581.75 34690.80 30082.56 25890.37 26389.30 32442.90 36696.11 30474.47 31792.55 32593.06 319
wuyk23d87.83 26290.79 20178.96 33990.46 32688.63 10492.72 15590.67 30291.65 10998.68 1197.64 5396.06 1677.53 35959.84 35499.41 5270.73 356
our_test_387.55 26987.59 26087.44 30491.76 30870.48 33283.83 33990.55 30379.79 27792.06 23792.17 28578.63 26895.63 31184.77 23394.73 29496.22 241
EU-MVSNet87.39 27386.71 27689.44 27393.40 27876.11 29694.93 9390.00 30457.17 35795.71 11597.37 6864.77 32897.68 25192.67 8194.37 30194.52 290
CHOSEN 280x42080.04 32477.97 33086.23 31490.13 32874.53 30972.87 35489.59 30566.38 34676.29 35685.32 34856.96 35095.36 31969.49 34394.72 29588.79 345
MDA-MVSNet_test_wron88.16 25888.23 24987.93 29892.22 29873.71 31580.71 34988.84 30682.52 26094.88 15295.14 19682.70 23693.61 33883.28 24593.80 30996.46 231
YYNet188.17 25788.24 24887.93 29892.21 29973.62 31680.75 34888.77 30782.51 26194.99 14795.11 19882.70 23693.70 33783.33 24493.83 30896.48 230
PVSNet76.22 2082.89 30582.37 30584.48 32593.96 27064.38 35578.60 35188.61 30871.50 32884.43 32986.36 34374.27 29294.60 32769.87 34293.69 31194.46 291
MIMVSNet87.13 28186.54 27988.89 28396.05 19476.11 29694.39 11288.51 30981.37 26888.27 30196.75 10972.38 29995.52 31365.71 35095.47 27895.03 278
tpmvs84.22 29883.97 29784.94 32187.09 35165.18 35091.21 21888.35 31082.87 25785.21 32190.96 30365.24 32696.75 28679.60 28685.25 34892.90 323
EPNet_dtu85.63 29084.37 29389.40 27586.30 35474.33 31291.64 20988.26 31184.84 23972.96 35989.85 31371.27 30497.69 25076.60 30797.62 22596.18 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 32279.46 32584.07 32888.78 34265.06 35389.26 27388.23 31262.27 35481.90 34689.66 32162.70 33995.29 32271.72 33280.60 35691.86 334
baseline187.62 26887.31 26388.54 28994.71 25374.27 31393.10 14688.20 31386.20 21392.18 23493.04 26473.21 29695.52 31379.32 28785.82 34795.83 257
CVMVSNet85.16 29284.72 29186.48 30992.12 30270.19 33392.32 17688.17 31456.15 35890.64 25895.85 16167.97 31096.69 28888.78 17290.52 33892.56 327
SCA87.43 27287.21 26688.10 29792.01 30571.98 32789.43 26788.11 31582.26 26488.71 29492.83 26878.65 26697.59 25379.61 28493.30 31494.75 285
tpmrst82.85 30682.93 30482.64 33287.65 34558.99 36090.14 24887.90 31675.54 30883.93 33191.63 29466.79 31795.36 31981.21 26781.54 35593.57 315
Vis-MVSNet (Re-imp)90.42 20990.16 21291.20 23297.66 10577.32 28194.33 11487.66 31791.20 11992.99 20995.13 19775.40 29098.28 19977.86 29599.19 8097.99 147
bset_n11_16_dypcd89.99 22689.15 22992.53 19294.75 24781.34 21884.19 33687.56 31885.13 23293.77 18292.46 27772.82 29799.01 10692.46 8699.21 7897.23 204
MDTV_nov1_ep1383.88 29889.42 33761.52 35888.74 28487.41 31973.99 31684.96 32594.01 24065.25 32595.53 31278.02 29493.16 316
PatchmatchNetpermissive85.22 29184.64 29286.98 30789.51 33669.83 33890.52 23487.34 32078.87 29187.22 31392.74 27266.91 31496.53 29181.77 26086.88 34694.58 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 24587.25 26593.83 14794.40 26193.81 3484.73 32987.09 32179.36 28593.26 19992.43 28179.29 26291.68 34777.50 30197.22 23796.00 249
EPNet89.80 23188.25 24794.45 12683.91 36086.18 15993.87 12887.07 32291.16 12180.64 35094.72 21778.83 26498.89 12285.17 22398.89 11198.28 124
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 28886.01 28586.38 31390.63 32274.22 31489.57 26486.69 32385.73 22389.81 27692.83 26865.24 32691.04 34977.82 29895.78 27193.88 306
K. test v393.37 13493.27 14493.66 15098.05 7882.62 20494.35 11386.62 32496.05 2797.51 3898.85 1276.59 28699.65 393.21 6398.20 18898.73 89
CostFormer83.09 30382.21 30685.73 31589.27 33867.01 34290.35 24086.47 32570.42 33483.52 33593.23 26261.18 34396.85 28377.21 30388.26 34493.34 317
thres20085.85 28985.18 29087.88 30094.44 25972.52 32489.08 27786.21 32688.57 17491.44 24488.40 33164.22 32998.00 22368.35 34495.88 27093.12 318
ET-MVSNet_ETH3D86.15 28784.27 29591.79 21293.04 28681.28 21987.17 30486.14 32779.57 28183.65 33288.66 32857.10 34998.18 21087.74 19195.40 28095.90 255
PatchT87.51 27088.17 25185.55 31690.64 32166.91 34392.02 18986.09 32892.20 8389.05 28697.16 8364.15 33096.37 29989.21 16492.98 32193.37 316
DWT-MVSNet_test80.74 32079.18 32685.43 31887.51 34866.87 34489.87 25886.01 32974.20 31580.86 34980.62 35548.84 35996.68 29081.54 26283.14 35392.75 325
tfpn200view987.05 28286.52 28088.67 28795.77 21272.94 32191.89 19686.00 33090.84 12592.61 21889.80 31563.93 33198.28 19971.27 33696.54 25794.79 283
thres40087.20 27886.52 28089.24 28095.77 21272.94 32191.89 19686.00 33090.84 12592.61 21889.80 31563.93 33198.28 19971.27 33696.54 25796.51 226
IB-MVS77.21 1983.11 30281.05 31389.29 27791.15 31675.85 29985.66 32386.00 33079.70 27982.02 34586.61 34048.26 36098.39 19077.84 29692.22 32893.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 30481.11 31288.66 28883.81 36186.44 15182.24 34585.65 33361.75 35582.07 34385.64 34779.75 25991.59 34875.99 31193.09 31887.94 347
tpm84.38 29784.08 29685.30 32090.47 32563.43 35789.34 27085.63 33477.24 30287.62 30895.03 20461.00 34597.30 26979.26 28891.09 33795.16 274
LFMVS91.33 19291.16 19491.82 21196.27 17779.36 25195.01 9085.61 33596.04 2894.82 15397.06 8872.03 30298.46 18984.96 23198.70 13797.65 180
FPMVS84.50 29683.28 30088.16 29696.32 17394.49 1485.76 32285.47 33683.09 25385.20 32294.26 22963.79 33386.58 35663.72 35291.88 33383.40 351
tpm281.46 31480.35 32184.80 32289.90 33065.14 35190.44 23685.36 33765.82 34982.05 34492.44 28057.94 34896.69 28870.71 33988.49 34392.56 327
thres100view90087.35 27486.89 27288.72 28696.14 18773.09 32093.00 14885.31 33892.13 8593.26 19990.96 30363.42 33498.28 19971.27 33696.54 25794.79 283
thres600view787.66 26687.10 27089.36 27696.05 19473.17 31892.72 15585.31 33891.89 9293.29 19690.97 30263.42 33498.39 19073.23 32496.99 24796.51 226
dp79.28 32578.62 32881.24 33585.97 35556.45 36186.91 30885.26 34072.97 32281.45 34889.17 32756.01 35395.45 31773.19 32576.68 35791.82 335
PMMVS281.31 31583.44 29974.92 34190.52 32446.49 36469.19 35685.23 34184.30 24487.95 30594.71 21876.95 28384.36 35864.07 35198.09 19893.89 305
ADS-MVSNet82.25 30881.55 30984.34 32689.04 34065.30 34987.57 29485.13 34272.71 32484.46 32792.45 27868.08 30892.33 34570.58 34083.97 34995.38 271
test-LLR83.58 30083.17 30184.79 32389.68 33366.86 34583.08 34184.52 34383.07 25482.85 33884.78 34962.86 33793.49 33982.85 24894.86 29094.03 300
test-mter81.21 31780.01 32484.79 32389.68 33366.86 34583.08 34184.52 34373.85 31782.85 33884.78 34943.66 36593.49 33982.85 24894.86 29094.03 300
JIA-IIPM85.08 29383.04 30291.19 23387.56 34686.14 16089.40 26984.44 34588.98 16382.20 34297.95 3956.82 35196.15 30276.55 30883.45 35191.30 336
thisisatest053088.69 25087.52 26192.20 19996.33 17279.36 25192.81 15384.01 34686.44 20993.67 18692.68 27453.62 35699.25 7489.65 15398.45 15698.00 144
tttt051789.81 23088.90 23692.55 19197.00 13579.73 24595.03 8983.65 34789.88 14795.30 13194.79 21653.64 35599.39 4591.99 9598.79 12998.54 106
thisisatest051584.72 29582.99 30389.90 26892.96 28875.33 30484.36 33483.42 34877.37 30088.27 30186.65 33953.94 35498.72 15482.56 25297.40 23295.67 264
PVSNet_070.34 2174.58 32872.96 33179.47 33890.63 32266.24 34873.26 35283.40 34963.67 35378.02 35478.35 35672.53 29889.59 35356.68 35660.05 36082.57 354
pmmvs380.83 31978.96 32786.45 31087.23 35077.48 27984.87 32882.31 35063.83 35285.03 32389.50 32249.66 35893.10 34173.12 32695.10 28788.78 346
E-PMN80.72 32180.86 31680.29 33785.11 35768.77 34072.96 35381.97 35187.76 18983.25 33783.01 35362.22 34089.17 35477.15 30494.31 30382.93 352
test0.0.03 182.48 30781.47 31185.48 31789.70 33273.57 31784.73 32981.64 35283.07 25488.13 30386.61 34062.86 33789.10 35566.24 34990.29 33993.77 308
baseline283.38 30181.54 31088.90 28291.38 31472.84 32388.78 28281.22 35378.97 28979.82 35287.56 33461.73 34297.80 24074.30 31990.05 34096.05 248
EMVS80.35 32380.28 32280.54 33684.73 35969.07 33972.54 35580.73 35487.80 18881.66 34781.73 35462.89 33689.84 35275.79 31394.65 29782.71 353
TESTMET0.1,179.09 32678.04 32982.25 33387.52 34764.03 35683.08 34180.62 35570.28 33580.16 35183.22 35244.13 36490.56 35079.95 27893.36 31292.15 330
lessismore_v093.87 14698.05 7883.77 19180.32 35697.13 5097.91 4277.49 27599.11 9092.62 8298.08 19998.74 87
new_pmnet81.22 31681.01 31581.86 33490.92 32070.15 33484.03 33780.25 35770.83 33285.97 31989.78 31867.93 31184.65 35767.44 34691.90 33290.78 339
MVS-HIRNet78.83 32780.60 31973.51 34293.07 28447.37 36387.10 30578.00 35868.94 33977.53 35597.26 7671.45 30394.62 32663.28 35388.74 34278.55 355
DSMNet-mixed82.21 30981.56 30884.16 32789.57 33570.00 33790.65 23177.66 35954.99 35983.30 33697.57 5577.89 27490.50 35166.86 34895.54 27691.97 331
EPMVS81.17 31880.37 32083.58 32985.58 35665.08 35290.31 24271.34 36077.31 30185.80 32091.30 29759.38 34692.70 34479.99 27782.34 35492.96 322
gg-mvs-nofinetune82.10 31281.02 31485.34 31987.46 34971.04 32994.74 9867.56 36196.44 2179.43 35398.99 645.24 36296.15 30267.18 34792.17 32988.85 344
GG-mvs-BLEND83.24 33185.06 35871.03 33094.99 9265.55 36274.09 35875.51 35744.57 36394.46 32959.57 35587.54 34584.24 350
MVEpermissive59.87 2373.86 32972.65 33277.47 34087.00 35374.35 31161.37 35860.93 36367.27 34469.69 36086.49 34281.24 25372.33 36056.45 35783.45 35185.74 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP94.82 9554.62 364
DeepMVS_CXcopyleft53.83 34370.38 36464.56 35448.52 36533.01 36065.50 36174.21 35856.19 35246.64 36138.45 36070.07 35850.30 357
tmp_tt37.97 33044.33 33318.88 34411.80 36521.54 36663.51 35745.66 3664.23 36151.34 36250.48 35959.08 34722.11 36244.50 35968.35 35913.00 358
testmvs9.02 33311.42 3361.81 3462.77 3671.13 36879.44 3501.90 3671.18 3632.65 3646.80 3611.95 3690.87 3642.62 3623.45 3623.44 360
test1239.49 33212.01 3351.91 3452.87 3661.30 36782.38 3441.34 3681.36 3622.84 3636.56 3622.45 3680.97 3632.73 3615.56 3613.47 359
uanet_test0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
pcd_1.5k_mvsjas7.56 33410.09 3370.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 36590.77 1390.00 3650.00 3630.00 3630.00 361
sosnet-low-res0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
sosnet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
uncertanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
Regformer0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
n20.00 369
nn0.00 369
ab-mvs-re7.56 33410.08 3380.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 36590.69 3080.00 3700.00 3650.00 3630.00 3630.00 361
uanet0.00 3360.00 3390.00 3470.00 3680.00 3690.00 3590.00 3690.00 3640.00 3650.00 3650.00 3700.00 3650.00 3630.00 3630.00 361
OPU-MVS95.15 9596.84 14389.43 8995.21 7995.66 17393.12 8498.06 21786.28 21698.61 14297.95 152
test_0728_THIRD93.26 6597.40 4497.35 7294.69 5499.34 5993.88 3299.42 4798.89 69
GSMVS94.75 285
test_part298.21 6889.41 9096.72 68
sam_mvs166.64 31894.75 285
sam_mvs66.41 319
test_post190.21 2445.85 36465.36 32496.00 30779.61 284
test_post6.07 36365.74 32395.84 309
patchmatchnet-post91.71 29266.22 32197.59 253
gm-plane-assit87.08 35259.33 35971.22 32983.58 35197.20 27273.95 320
test9_res88.16 18398.40 15897.83 165
agg_prior287.06 20298.36 16897.98 148
test_prior489.91 8190.74 228
test_prior290.21 24489.33 15890.77 25494.81 21290.41 14988.21 17998.55 145
旧先验290.00 25368.65 34092.71 21696.52 29285.15 225
新几何290.02 252
原ACMM289.34 270
testdata298.03 21980.24 275
segment_acmp92.14 105
testdata188.96 27988.44 176
plane_prior797.71 9988.68 103
plane_prior697.21 12788.23 11486.93 198
plane_prior495.59 175
plane_prior388.43 11290.35 14093.31 194
plane_prior294.56 10791.74 105
plane_prior197.38 120
plane_prior88.12 11693.01 14788.98 16398.06 200
HQP5-MVS84.89 174
HQP-NCC96.36 16791.37 21387.16 20088.81 289
ACMP_Plane96.36 16791.37 21387.16 20088.81 289
BP-MVS86.55 210
HQP4-MVS88.81 28998.61 16998.15 132
HQP2-MVS84.76 220
NP-MVS96.82 14487.10 13393.40 257
MDTV_nov1_ep13_2view42.48 36588.45 28967.22 34583.56 33466.80 31572.86 32794.06 299
ACMMP++_ref98.82 124
ACMMP++99.25 73
Test By Simon90.61 145