This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21683.13 20693.79 13899.19 292.00 9198.84 598.04 3893.64 7299.02 11081.28 27698.54 15796.96 222
DROMVSNet95.44 6995.62 6994.89 10596.93 14687.69 12996.48 3399.14 393.93 5592.77 22494.52 23093.95 7099.49 2293.62 4399.22 8197.51 197
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CS-MVS-test93.33 13893.53 14192.71 18895.74 22583.08 20794.55 11598.85 591.02 12789.30 29491.91 29891.79 11899.23 8090.23 14498.41 16795.82 267
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
ANet_high94.83 9596.28 3790.47 26096.65 15773.16 32894.33 12198.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13499.68 1899.53 14
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 7098.61 996.10 2698.16 2397.52 6296.90 798.62 17890.30 14099.60 2598.72 91
CS-MVS92.12 18092.62 16290.60 25794.57 26978.12 27892.00 19898.58 1087.75 19990.08 27791.88 30089.79 16699.10 9790.35 13698.60 15294.58 299
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7398.56 1191.84 10196.36 8396.68 12094.37 6499.32 6892.41 9199.05 10098.64 101
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13596.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
AllTest94.88 9194.51 11096.00 5598.02 8592.17 5195.26 8498.43 1390.48 14095.04 15296.74 11592.54 10497.86 24585.11 23998.98 10897.98 156
TestCases96.00 5598.02 8592.17 5198.43 1390.48 14095.04 15296.74 11592.54 10497.86 24585.11 23998.98 10897.98 156
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 12288.05 12292.04 19598.42 1587.63 20396.36 8396.68 12094.37 6499.32 6892.41 9199.05 10098.64 101
APDe-MVS96.46 3296.64 2295.93 6097.68 10889.38 9696.90 1998.41 1692.52 7797.43 4397.92 4495.11 4299.50 1994.45 1999.30 6598.92 67
9.1494.81 9497.49 11994.11 12898.37 1787.56 20695.38 13296.03 16094.66 5699.08 9990.70 12898.97 112
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 11289.72 8694.05 13098.37 1788.09 19195.06 15195.85 16692.58 10299.10 9790.33 13998.99 10798.62 105
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6796.51 999.40 4394.06 3099.23 7998.85 76
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 15098.32 2087.89 19596.86 6597.38 7095.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6198.32 2093.93 5597.53 3997.56 5988.48 17699.40 4392.91 7999.83 699.68 4
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5995.48 2598.77 15590.11 14999.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9289.83 8593.46 14698.30 2392.37 8097.75 2996.95 9895.14 3999.51 1891.74 10799.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 8198.30 2391.40 11895.76 11696.87 10595.26 3599.45 2392.77 8099.21 8299.00 51
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23394.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
nrg03096.32 4196.55 2695.62 7797.83 9588.55 11295.77 6598.29 2692.68 7398.03 2697.91 4595.13 4098.95 12293.85 3699.49 3899.36 24
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9193.82 3396.31 4498.25 2795.51 3596.99 6097.05 9495.63 2199.39 4893.31 6298.88 11998.75 85
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 8198.25 2791.78 10597.07 5397.22 8596.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8596.38 1399.28 7392.07 9799.59 2799.11 41
Anonymous2023121196.60 2597.13 1295.00 10297.46 12286.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
canonicalmvs94.59 10394.69 10094.30 13595.60 23587.03 14295.59 7198.24 3091.56 11595.21 14592.04 29794.95 5098.66 17491.45 11697.57 23797.20 215
DVP-MVS++95.93 5396.34 3494.70 11496.54 16686.66 15298.45 498.22 3293.26 6897.54 3797.36 7493.12 8799.38 5493.88 3498.68 14598.04 147
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8798.22 3299.38 5493.44 5599.31 6398.53 112
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7998.22 3292.36 8194.11 17798.07 3692.02 11299.44 2493.38 6097.67 23397.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7495.13 40
test072698.51 4686.69 15095.34 8098.18 3691.85 9897.63 3297.37 7195.58 22
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14695.15 20286.60 21299.50 1993.43 5796.81 26098.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10995.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS92.35 17492.03 17393.30 17095.81 22183.97 19592.80 16198.17 4087.71 20089.79 28787.56 34591.17 14099.18 8587.97 19797.27 24596.77 230
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7496.92 699.34 6294.31 2399.38 5598.92 67
XVG-OURS94.72 9994.12 12296.50 4898.00 8794.23 1791.48 22198.17 4090.72 13495.30 13796.47 13087.94 18796.98 28891.41 11797.61 23698.30 128
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5398.16 4391.74 10995.34 13596.36 14395.68 1999.44 2494.41 2199.28 7398.97 59
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 8198.14 4493.05 7197.07 5397.18 8787.65 19099.29 7191.72 10899.69 1599.61 11
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17498.13 4590.69 13593.75 19196.25 15198.03 297.02 28792.08 9695.55 28698.45 119
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9594.85 5299.42 2993.49 4898.84 12498.00 152
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9595.40 2793.49 4898.84 12498.00 152
RPMNet90.31 22290.14 22290.81 25291.01 33078.93 26692.52 16998.12 4691.91 9589.10 29596.89 10468.84 31699.41 3690.17 14792.70 33494.08 308
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8598.10 4991.95 9297.63 3297.25 8296.48 1199.35 5993.29 6399.29 6897.95 160
test_241102_TWO98.10 4991.95 9297.54 3797.25 8295.37 2899.35 5993.29 6399.25 7698.49 115
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9596.48 1198.95 122
test_part194.39 11094.55 10793.92 14896.14 19882.86 21095.54 7598.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4891.76 12099.63 694.23 2699.84 399.66 6
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 15096.39 14094.77 5499.42 2993.17 6999.44 4598.58 110
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12398.08 5389.46 15996.61 7696.47 13095.85 1799.12 9390.45 13199.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5198.07 5695.17 3796.82 6796.73 11795.09 4499.43 2892.99 7798.71 14198.50 114
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9888.91 10292.91 15898.07 5693.46 6596.31 8795.97 16390.14 15899.34 6292.11 9499.64 2399.16 36
test117296.79 1596.52 2797.60 998.03 8494.87 1096.07 5498.06 5995.76 3296.89 6396.85 10694.85 5299.42 2993.35 6198.81 13298.53 112
SD-MVS95.19 8195.73 6693.55 16096.62 16088.88 10594.67 10698.05 6091.26 12197.25 5096.40 13695.42 2694.36 34392.72 8499.19 8497.40 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs94.32 11594.80 9592.85 18496.05 20581.44 22592.35 18298.05 6091.53 11695.75 11796.80 11093.35 8098.49 19391.01 12398.32 18298.64 101
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11798.05 6090.45 14296.31 8796.76 11392.91 9498.72 16191.19 11999.42 4798.32 125
baseline94.26 11894.80 9592.64 19196.08 20380.99 23193.69 14198.04 6490.80 13394.89 15896.32 14593.19 8498.48 19791.68 11098.51 16198.43 120
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 11298.03 6590.42 14396.37 8297.35 7795.68 1999.25 7794.44 2099.34 5898.80 80
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10498.03 6590.82 13297.15 5196.85 10696.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 15189.92 8292.72 16298.02 6784.73 25193.65 19595.54 18891.68 12299.22 8188.78 18098.49 16498.26 131
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10990.17 7993.86 13798.02 6787.35 20796.22 9597.99 4194.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6998.01 6992.08 9095.74 11896.28 14895.22 3799.42 2993.17 6999.06 9798.88 72
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6798.01 6993.34 6796.64 7496.57 12794.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12296.47 13095.37 2899.27 7593.78 3899.14 9198.48 116
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 9097.98 7289.34 16395.63 12296.47 13095.37 2899.27 7591.99 9999.14 9198.48 116
LS3D96.11 4895.83 6296.95 3794.75 25894.20 1897.34 1197.98 7297.31 1195.32 13696.77 11193.08 8999.20 8391.79 10598.16 20197.44 201
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3395.24 3699.65 393.39 5999.84 399.72 2
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13996.57 12795.02 4799.41 3693.63 4299.11 9598.94 62
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12596.61 12594.93 5199.41 3693.78 3899.15 9099.00 51
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17396.49 12994.56 5999.39 4893.57 4499.05 10098.93 63
X-MVStestdata90.70 20788.45 24997.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17326.89 37194.56 5999.39 4893.57 4499.05 10098.93 63
Gipumacopyleft95.31 7795.80 6493.81 15497.99 9090.91 7096.42 3797.95 7896.69 1791.78 25198.85 1291.77 11995.49 32691.72 10899.08 9695.02 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7497.88 8288.72 17898.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11899.69 1599.42 19
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13997.86 8395.96 3097.48 4197.14 8995.33 3299.44 2490.79 12699.76 1199.38 22
PHI-MVS94.34 11493.80 12795.95 5795.65 23191.67 6294.82 10197.86 8387.86 19693.04 21794.16 24291.58 12498.78 15190.27 14298.96 11497.41 202
testtj94.81 9694.42 11196.01 5497.23 13090.51 7794.77 10397.85 8691.29 12094.92 15795.66 17991.71 12199.40 4388.07 19598.25 19198.11 143
ETV-MVS92.99 15392.74 15893.72 15595.86 21886.30 16392.33 18397.84 8791.70 11292.81 22286.17 35592.22 10899.19 8488.03 19697.73 22795.66 275
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10788.59 11092.26 18797.84 8794.91 3896.80 6895.78 17490.42 15399.41 3691.60 11299.58 3199.29 28
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15390.79 7396.30 4697.82 8996.13 2594.74 16497.23 8491.33 13099.16 8693.25 6698.30 18598.46 118
HQP_MVS94.26 11893.93 12495.23 9597.71 10488.12 12094.56 11397.81 9091.74 10993.31 20395.59 18186.93 20498.95 12289.26 16998.51 16198.60 108
plane_prior597.81 9098.95 12289.26 16998.51 16198.60 108
DU-MVS95.28 7895.12 8795.75 7397.75 10088.59 11092.58 16797.81 9093.99 5296.80 6895.90 16490.10 16299.41 3691.60 11299.58 3199.26 29
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12590.88 7194.59 10997.81 9089.22 16895.46 13096.17 15693.42 7899.34 6289.30 16598.87 12297.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 9197.79 9486.48 21897.42 4597.51 6494.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5297.78 9592.73 7293.48 19996.72 11894.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSLP-MVS++93.25 14593.88 12591.37 23096.34 18182.81 21193.11 15297.74 9689.37 16294.08 17995.29 20090.40 15696.35 31090.35 13698.25 19194.96 290
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12896.68 12094.50 6199.42 2993.10 7299.26 7598.99 53
ETH3 D test640091.91 18491.25 19593.89 15096.59 16184.41 18692.10 19297.72 9878.52 30391.82 25093.78 25788.70 17499.13 9183.61 25398.39 17198.14 139
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 17089.69 8792.91 15897.68 9978.02 30792.79 22394.10 24390.85 14397.96 23784.76 24598.16 20196.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6397.66 10089.21 16993.28 20695.46 19188.89 17398.98 11589.80 15698.82 13097.80 177
DP-MVS95.62 6395.84 6194.97 10397.16 13588.62 10994.54 11797.64 10196.94 1596.58 7797.32 8093.07 9098.72 16190.45 13198.84 12497.57 192
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 14197.62 10294.46 4596.29 8996.94 9993.56 7399.37 5694.29 2499.42 4798.99 53
MTGPAbinary97.62 102
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6297.62 10294.46 4596.29 8996.94 9993.56 7399.37 5694.29 2499.42 4798.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8794.03 2596.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9983.15 20594.58 11197.58 10793.39 6697.05 5698.04 3893.25 8298.51 19289.75 15999.59 2799.08 45
v1094.68 10195.27 8292.90 18296.57 16380.15 23894.65 10897.57 10890.68 13697.43 4398.00 4088.18 18099.15 8794.84 1599.55 3499.41 20
CSCG94.69 10094.75 9794.52 12597.55 11687.87 12695.01 9697.57 10892.68 7396.20 9793.44 26491.92 11698.78 15189.11 17399.24 7896.92 223
ZD-MVS97.23 13090.32 7897.54 11084.40 25394.78 16295.79 17192.76 9999.39 4888.72 18398.40 168
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
Effi-MVS+92.79 16092.74 15892.94 18095.10 24883.30 20294.00 13297.53 11291.36 11989.35 29390.65 32194.01 6998.66 17487.40 20795.30 29496.88 226
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 6291.98 11599.63 693.08 7499.81 999.70 3
RPSCF95.58 6594.89 9297.62 897.58 11496.30 495.97 5897.53 11292.42 7893.41 20097.78 4991.21 13697.77 25491.06 12097.06 25098.80 80
diffmvs91.74 18691.93 17791.15 24093.06 29778.17 27788.77 29297.51 11586.28 22292.42 23493.96 25088.04 18497.46 27090.69 12996.67 26597.82 175
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10383.95 19692.14 19197.46 11678.85 30292.35 23894.98 21284.16 23099.08 9986.36 22596.77 26295.79 269
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 21292.96 4489.48 27597.46 11685.14 24196.23 9495.42 19493.19 8498.08 22690.37 13598.76 13897.38 208
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
OMC-MVS94.22 12093.69 13295.81 6797.25 12991.27 6492.27 18697.40 11987.10 21394.56 16895.42 19493.74 7198.11 22586.62 21998.85 12398.06 144
v124093.29 14093.71 13192.06 21396.01 21077.89 28291.81 21497.37 12085.12 24396.69 7296.40 13686.67 21099.07 10394.51 1898.76 13899.22 32
NR-MVSNet95.28 7895.28 8195.26 9397.75 10087.21 13795.08 9297.37 12093.92 5797.65 3195.90 16490.10 16299.33 6790.11 14999.66 2199.26 29
MVSFormer92.18 17992.23 16992.04 21494.74 26080.06 24297.15 1397.37 12088.98 17288.83 29892.79 27977.02 28799.60 896.41 496.75 26396.46 241
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13486.87 14691.10 23097.37 12084.92 24892.08 24694.08 24488.59 17598.20 21783.50 25498.14 20395.73 271
test_prior393.29 14092.85 15494.61 11795.95 21387.23 13590.21 25397.36 12589.33 16490.77 26494.81 21990.41 15498.68 17188.21 18898.55 15497.93 162
test_prior94.61 11795.95 21387.23 13597.36 12598.68 17197.93 162
QAPM92.88 15792.77 15693.22 17295.82 21983.31 20196.45 3497.35 12783.91 25693.75 19196.77 11189.25 17198.88 12984.56 24797.02 25297.49 198
GeoE94.55 10594.68 10294.15 13897.23 13085.11 18094.14 12797.34 12888.71 17995.26 14095.50 18994.65 5799.12 9390.94 12498.40 16898.23 132
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16697.33 12990.05 14896.77 7096.85 10695.04 4598.56 18792.77 8099.06 9798.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HQP3-MVS97.31 13097.73 227
HQP-MVS92.09 18191.49 18993.88 15196.36 17784.89 18291.37 22297.31 13087.16 21088.81 30093.40 26584.76 22698.60 18186.55 22197.73 22798.14 139
PCF-MVS84.52 1789.12 24687.71 26593.34 16796.06 20485.84 17286.58 32997.31 13068.46 35293.61 19693.89 25387.51 19398.52 19167.85 35698.11 20795.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
114514_t90.51 21189.80 22792.63 19398.00 8782.24 21593.40 14897.29 13365.84 35989.40 29294.80 22286.99 20298.75 15683.88 25298.61 15096.89 225
CLD-MVS91.82 18591.41 19193.04 17496.37 17583.65 19986.82 32197.29 13384.65 25292.27 24289.67 33192.20 10997.85 24783.95 25199.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23887.06 14096.63 2597.28 13591.82 10494.34 17597.41 6890.60 15198.65 17692.47 8998.11 20797.70 184
DELS-MVS92.05 18292.16 17091.72 22194.44 27180.13 24087.62 30297.25 13687.34 20892.22 24393.18 27189.54 16998.73 16089.67 16098.20 19996.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
v192192093.26 14393.61 13592.19 20696.04 20978.31 27591.88 20797.24 13785.17 24096.19 9996.19 15386.76 20999.05 10494.18 2898.84 12499.22 32
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 15197.24 13796.88 1697.69 3097.77 5194.12 6899.13 9191.54 11599.29 6897.88 168
v119293.49 13493.78 12892.62 19496.16 19679.62 25491.83 21397.22 13986.07 22696.10 10396.38 14187.22 19799.02 11094.14 2998.88 11999.22 32
F-COLMAP92.28 17691.06 20095.95 5797.52 11791.90 5793.53 14497.18 14083.98 25588.70 30694.04 24588.41 17898.55 18980.17 28795.99 27797.39 206
v894.65 10295.29 8092.74 18796.65 15779.77 25294.59 10997.17 14191.86 9797.47 4297.93 4388.16 18199.08 9994.32 2299.47 3999.38 22
v14419293.20 14893.54 13992.16 21096.05 20578.26 27691.95 20097.14 14284.98 24795.96 10696.11 15787.08 20199.04 10793.79 3798.84 12499.17 35
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19887.90 12593.36 14997.14 14285.53 23593.90 18895.45 19291.30 13298.59 18389.51 16298.62 14997.31 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MCST-MVS92.91 15592.51 16594.10 14097.52 11785.72 17491.36 22597.13 14480.33 28492.91 22194.24 23891.23 13598.72 16189.99 15397.93 22097.86 170
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 11079.49 25794.86 10097.12 14589.59 15896.87 6497.65 5590.40 15698.34 20689.08 17499.35 5798.75 85
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7897.12 14591.84 10197.28 4898.46 2595.30 3497.71 25990.17 14799.42 4798.99 53
save fliter97.46 12288.05 12292.04 19597.08 14787.63 203
CDPH-MVS92.67 16591.83 17995.18 9796.94 14488.46 11590.70 23997.07 14877.38 30992.34 24095.08 20792.67 10198.88 12985.74 23098.57 15398.20 136
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 27084.10 19395.70 6797.03 14982.44 27291.14 26196.42 13488.47 17798.38 20285.95 22997.47 24095.55 279
原ACMM192.87 18396.91 14784.22 19097.01 15076.84 31489.64 29094.46 23188.00 18598.70 16781.53 27498.01 21695.70 273
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8797.00 15191.85 9897.40 4697.35 7795.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CANet92.38 17391.99 17593.52 16493.82 28783.46 20091.14 22897.00 15189.81 15386.47 32794.04 24587.90 18899.21 8289.50 16398.27 18797.90 166
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9393.58 3794.09 12996.99 15391.05 12692.40 23595.22 20191.03 14299.25 7792.11 9498.69 14497.90 166
v114493.50 13393.81 12692.57 19696.28 18679.61 25591.86 21296.96 15486.95 21595.91 11196.32 14587.65 19098.96 12093.51 4798.88 11999.13 39
MVS_Test92.57 17093.29 14590.40 26393.53 28975.85 30892.52 16996.96 15488.73 17792.35 23896.70 11990.77 14498.37 20592.53 8895.49 28896.99 221
PVSNet_BlendedMVS90.35 21989.96 22491.54 22794.81 25578.80 27190.14 25796.93 15679.43 29288.68 30795.06 20886.27 21598.15 22380.27 28498.04 21397.68 186
PVSNet_Blended88.74 25688.16 26090.46 26294.81 25578.80 27186.64 32596.93 15674.67 32288.68 30789.18 33786.27 21598.15 22380.27 28496.00 27694.44 303
TEST996.45 17389.46 9190.60 24196.92 15879.09 29890.49 26994.39 23491.31 13198.88 129
train_agg92.71 16491.83 17995.35 8696.45 17389.46 9190.60 24196.92 15879.37 29390.49 26994.39 23491.20 13798.88 12988.66 18498.43 16697.72 183
NCCC94.08 12493.54 13995.70 7696.49 17189.90 8492.39 17996.91 16090.64 13792.33 24194.60 22790.58 15298.96 12090.21 14697.70 23198.23 132
test_896.37 17589.14 9890.51 24496.89 16179.37 29390.42 27194.36 23691.20 13798.82 139
agg_prior192.60 16791.76 18295.10 10096.20 19288.89 10390.37 24896.88 16279.67 29090.21 27494.41 23291.30 13298.78 15188.46 18798.37 17897.64 189
agg_prior96.20 19288.89 10396.88 16290.21 27498.78 151
MSC_two_6792asdad95.90 6396.54 16689.57 8996.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6396.54 16689.57 8996.87 16499.41 3694.06 3099.30 6598.72 91
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22499.60 2599.10 44
IU-MVS98.51 4686.66 15296.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23894.75 16397.12 9091.85 11799.40 4393.45 5398.33 18098.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS94.58 10494.29 11695.46 8496.94 14489.35 9791.81 21496.80 16989.66 15593.90 18895.44 19392.80 9898.72 16192.74 8298.52 15998.32 125
cascas87.02 29086.28 29189.25 28891.56 32576.45 30284.33 34496.78 17071.01 34286.89 32685.91 35681.35 25596.94 28983.09 25895.60 28594.35 305
IterMVS-LS93.78 12994.28 11792.27 20396.27 18779.21 26491.87 20896.78 17091.77 10796.57 7897.07 9287.15 19998.74 15991.99 9999.03 10698.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052995.50 6795.83 6294.50 12697.33 12885.93 17095.19 8996.77 17296.64 1997.61 3598.05 3793.23 8398.79 14788.60 18599.04 10598.78 82
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9396.76 17393.97 5497.77 2898.57 1995.72 1897.90 23988.89 17899.23 7999.08 45
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9486.50 15492.00 19896.74 17488.16 19096.93 6297.61 5793.04 9197.90 23991.60 11298.12 20698.03 150
1112_ss88.42 26087.41 26991.45 22896.69 15680.99 23189.72 27096.72 17573.37 33087.00 32590.69 31977.38 28398.20 21781.38 27593.72 32195.15 285
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19396.68 17693.82 5896.29 8998.56 2090.10 16297.75 25790.10 15199.66 2199.24 31
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31676.84 29886.91 31796.67 17785.21 23994.41 17193.92 25179.53 26798.26 21389.76 15897.02 25298.06 144
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26688.25 11792.05 19496.65 17889.62 15690.08 27791.23 30992.56 10398.60 18186.30 22696.27 27296.90 224
test1196.65 178
RRT_test8_iter0588.21 26388.17 25888.33 30391.62 32366.82 35891.73 21796.60 18086.34 22194.14 17695.38 19947.72 37199.11 9591.78 10698.26 18899.06 47
LF4IMVS92.72 16392.02 17494.84 10895.65 23191.99 5592.92 15796.60 18085.08 24592.44 23393.62 25986.80 20896.35 31086.81 21498.25 19196.18 252
GBi-Net93.21 14692.96 15193.97 14495.40 24084.29 18795.99 5596.56 18288.63 18095.10 14798.53 2181.31 25698.98 11586.74 21598.38 17398.65 97
test193.21 14692.96 15193.97 14495.40 24084.29 18795.99 5596.56 18288.63 18095.10 14798.53 2181.31 25698.98 11586.74 21598.38 17398.65 97
FMVSNet194.84 9495.13 8693.97 14497.60 11384.29 18795.99 5596.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8998.65 97
ITE_SJBPF95.95 5797.34 12793.36 4196.55 18591.93 9494.82 16095.39 19791.99 11497.08 28585.53 23297.96 21897.41 202
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23982.53 21389.25 28496.52 18685.00 24689.91 28288.55 34192.94 9298.84 13784.72 24695.44 29096.22 250
V4293.43 13693.58 13692.97 17795.34 24481.22 22892.67 16596.49 18787.25 20996.20 9796.37 14287.32 19698.85 13692.39 9398.21 19798.85 76
PLCcopyleft85.34 1590.40 21588.92 24194.85 10796.53 16990.02 8091.58 21996.48 18880.16 28586.14 32992.18 29385.73 22098.25 21476.87 31694.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
c3_l91.32 19891.42 19091.00 24592.29 30976.79 29987.52 30896.42 18985.76 23294.72 16693.89 25382.73 24198.16 22290.93 12598.55 15498.04 147
Regformer-294.86 9294.55 10795.77 7192.83 30289.98 8191.87 20896.40 19094.38 4796.19 9995.04 20992.47 10799.04 10793.49 4898.31 18398.28 129
USDC89.02 24789.08 23788.84 29395.07 24974.50 31988.97 28796.39 19173.21 33193.27 20796.28 14882.16 24896.39 30777.55 31098.80 13495.62 278
ambc92.98 17696.88 14883.01 20995.92 6096.38 19296.41 8097.48 6588.26 17997.80 25089.96 15498.93 11698.12 142
PAPM_NR91.03 20190.81 20591.68 22396.73 15581.10 23093.72 14096.35 19388.19 18988.77 30492.12 29685.09 22597.25 28082.40 26693.90 31896.68 233
v2v48293.29 14093.63 13492.29 20296.35 18078.82 26991.77 21696.28 19488.45 18495.70 12196.26 15086.02 21898.90 12693.02 7598.81 13299.14 38
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23686.36 16192.24 18996.27 19588.88 17689.90 28392.69 28291.65 12398.32 20777.38 31397.64 23492.72 337
Test_1112_low_res87.50 27886.58 28490.25 26796.80 15477.75 28487.53 30796.25 19669.73 34886.47 32793.61 26075.67 29697.88 24179.95 28993.20 32695.11 287
test1294.43 13295.95 21386.75 14896.24 19789.76 28889.79 16698.79 14797.95 21997.75 182
PAPR87.65 27486.77 28290.27 26692.85 30177.38 28988.56 29796.23 19876.82 31584.98 33589.75 33086.08 21797.16 28372.33 34093.35 32496.26 249
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15786.96 14589.30 28196.23 19888.36 18793.57 19794.60 22793.45 7597.77 25490.23 14498.38 17398.03 150
XXY-MVS92.58 16893.16 15090.84 25197.75 10079.84 24891.87 20896.22 20085.94 22895.53 12797.68 5392.69 10094.48 33983.21 25797.51 23898.21 135
MSDG90.82 20390.67 20991.26 23494.16 27683.08 20786.63 32696.19 20190.60 13991.94 24891.89 29989.16 17295.75 32180.96 28294.51 31094.95 291
miper_ehance_all_eth90.48 21290.42 21590.69 25491.62 32376.57 30186.83 32096.18 20283.38 25894.06 18192.66 28482.20 24798.04 22889.79 15797.02 25297.45 200
TinyColmap92.00 18392.76 15789.71 27995.62 23477.02 29390.72 23896.17 20387.70 20195.26 14096.29 14792.54 10496.45 30581.77 27198.77 13795.66 275
DPM-MVS89.35 24288.40 25092.18 20996.13 20184.20 19186.96 31696.15 20475.40 32087.36 32291.55 30783.30 23498.01 23282.17 26996.62 26694.32 306
HyFIR lowres test87.19 28685.51 29692.24 20497.12 13980.51 23585.03 33696.06 20566.11 35891.66 25292.98 27570.12 31499.14 8975.29 32595.23 29697.07 216
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22881.56 22289.92 26496.05 20683.22 26091.26 25790.74 31691.55 12598.82 13989.29 16695.91 27893.62 323
Regformer-494.90 8994.67 10395.59 7892.78 30489.02 10092.39 17995.91 20994.50 4396.41 8095.56 18692.10 11199.01 11294.23 2698.14 20398.74 88
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26594.64 26780.24 23689.69 27195.88 21085.77 23193.94 18795.69 17781.99 25092.98 35484.21 25091.30 34597.62 190
CANet_DTU89.85 23689.17 23591.87 21692.20 31280.02 24590.79 23695.87 21186.02 22782.53 35191.77 30280.01 26498.57 18685.66 23197.70 23197.01 220
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7595.85 21296.47 2193.40 20297.46 6695.31 3395.47 32786.18 22898.78 13689.11 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Regformer-194.55 10594.33 11595.19 9692.83 30288.54 11391.87 20895.84 21393.99 5295.95 10795.04 20992.00 11398.79 14793.14 7198.31 18398.23 132
alignmvs93.26 14392.85 15494.50 12695.70 22787.45 13193.45 14795.76 21491.58 11495.25 14292.42 29181.96 25198.72 16191.61 11197.87 22397.33 210
无先验89.94 26395.75 21570.81 34498.59 18381.17 27994.81 292
WR-MVS93.49 13493.72 13092.80 18697.57 11580.03 24490.14 25795.68 21693.70 6096.62 7595.39 19787.21 19899.04 10787.50 20499.64 2399.33 25
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 22095.62 21791.84 10195.74 11897.10 9189.31 17098.32 20785.07 24199.06 9798.93 63
Anonymous2024052192.86 15993.57 13790.74 25396.57 16375.50 31294.15 12695.60 21889.38 16195.90 11297.90 4780.39 26397.96 23792.60 8799.68 1898.75 85
xiu_mvs_v2_base89.00 24989.19 23488.46 30194.86 25374.63 31686.97 31595.60 21880.88 28087.83 31788.62 34091.04 14198.81 14482.51 26594.38 31191.93 343
PS-MVSNAJ88.86 25388.99 24088.48 30094.88 25174.71 31486.69 32495.60 21880.88 28087.83 31787.37 34890.77 14498.82 13982.52 26494.37 31291.93 343
CHOSEN 1792x268887.19 28685.92 29491.00 24597.13 13879.41 25884.51 34295.60 21864.14 36290.07 27994.81 21978.26 27797.14 28473.34 33495.38 29396.46 241
miper_enhance_ethall88.42 26087.87 26390.07 27288.67 35675.52 31185.10 33595.59 22275.68 31692.49 23189.45 33478.96 26997.88 24187.86 20097.02 25296.81 228
MVP-Stereo90.07 23088.92 24193.54 16296.31 18486.49 15590.93 23395.59 22279.80 28691.48 25395.59 18180.79 26097.39 27678.57 30491.19 34696.76 231
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cdsmvs_eth3d_5k23.35 34031.13 3430.00 3580.00 3810.00 3820.00 36995.58 2240.00 3760.00 37791.15 31093.43 770.00 3770.00 3750.00 3750.00 373
CNLPA91.72 18791.20 19693.26 17196.17 19591.02 6791.14 22895.55 22590.16 14790.87 26393.56 26286.31 21494.40 34279.92 29397.12 24994.37 304
FMVSNet292.78 16192.73 16092.95 17995.40 24081.98 21794.18 12595.53 22688.63 18096.05 10497.37 7181.31 25698.81 14487.38 20898.67 14798.06 144
ab-mvs92.40 17292.62 16291.74 22097.02 14081.65 22195.84 6395.50 22786.95 21592.95 22097.56 5990.70 14997.50 26779.63 29497.43 24196.06 256
MVS_111021_LR93.66 13193.28 14794.80 10996.25 19090.95 6990.21 25395.43 22887.91 19393.74 19394.40 23392.88 9696.38 30890.39 13398.28 18697.07 216
tfpnnormal94.27 11794.87 9392.48 20097.71 10480.88 23394.55 11595.41 22993.70 6096.67 7397.72 5291.40 12898.18 22087.45 20599.18 8698.36 123
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26096.67 394.00 13295.41 22989.94 14991.93 24992.13 29590.12 15998.97 11987.68 20297.48 23997.67 187
mvs-test193.07 15191.80 18196.89 3994.74 26095.83 692.17 19095.41 22989.94 14989.85 28490.59 32290.12 15998.88 12987.68 20295.66 28495.97 259
cl____90.65 20990.56 21290.91 24991.85 31876.98 29686.75 32295.36 23285.53 23594.06 18194.89 21677.36 28597.98 23690.27 14298.98 10897.76 180
DIV-MVS_self_test90.65 20990.56 21290.91 24991.85 31876.99 29586.75 32295.36 23285.52 23794.06 18194.89 21677.37 28497.99 23590.28 14198.97 11297.76 180
testgi90.38 21791.34 19387.50 31397.49 11971.54 33889.43 27695.16 23488.38 18694.54 16994.68 22692.88 9693.09 35371.60 34597.85 22497.88 168
v14892.87 15893.29 14591.62 22496.25 19077.72 28591.28 22695.05 23589.69 15495.93 11096.04 15987.34 19598.38 20290.05 15297.99 21798.78 82
miper_lstm_enhance89.90 23589.80 22790.19 27191.37 32777.50 28783.82 34995.00 23684.84 24993.05 21694.96 21376.53 29495.20 33589.96 15498.67 14797.86 170
VNet92.67 16592.96 15191.79 21896.27 18780.15 23891.95 20094.98 23792.19 8894.52 17096.07 15887.43 19497.39 27684.83 24398.38 17397.83 173
FMVSNet390.78 20590.32 21792.16 21093.03 29979.92 24792.54 16894.95 23886.17 22595.10 14796.01 16169.97 31598.75 15686.74 21598.38 17397.82 175
BH-untuned90.68 20890.90 20190.05 27495.98 21179.57 25690.04 26094.94 23987.91 19394.07 18093.00 27387.76 18997.78 25379.19 30095.17 29792.80 335
RRT_MVS91.36 19690.05 22395.29 9289.21 35188.15 11992.51 17394.89 24086.73 21795.54 12695.68 17861.82 35099.30 7094.91 1399.13 9498.43 120
D2MVS89.93 23489.60 23290.92 24794.03 28178.40 27488.69 29494.85 24178.96 30093.08 21495.09 20674.57 29896.94 28988.19 19098.96 11497.41 202
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5994.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
旧先验196.20 19284.17 19294.82 24395.57 18589.57 16897.89 22296.32 246
API-MVS91.52 19291.61 18491.26 23494.16 27686.26 16594.66 10794.82 24391.17 12492.13 24591.08 31290.03 16597.06 28679.09 30197.35 24490.45 352
FMVSNet587.82 27086.56 28591.62 22492.31 30879.81 25193.49 14594.81 24583.26 25991.36 25596.93 10152.77 36797.49 26976.07 32198.03 21497.55 195
MAR-MVS90.32 22188.87 24494.66 11694.82 25491.85 5894.22 12494.75 24680.91 27987.52 32188.07 34486.63 21197.87 24476.67 31796.21 27394.25 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
mvs_anonymous90.37 21891.30 19487.58 31292.17 31368.00 35289.84 26894.73 24783.82 25793.22 21197.40 6987.54 19297.40 27587.94 19895.05 29997.34 209
Regformer-394.28 11694.23 12194.46 13092.78 30486.28 16492.39 17994.70 24893.69 6395.97 10595.56 18691.34 12998.48 19793.45 5398.14 20398.62 105
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30785.87 17192.42 17794.69 24993.67 6496.13 10195.84 16991.20 13798.86 13493.78 3898.23 19499.03 49
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30685.98 16992.44 17594.69 24993.70 6096.12 10295.81 17091.24 13498.86 13493.76 4198.22 19698.98 58
EI-MVSNet92.99 15393.26 14992.19 20692.12 31479.21 26492.32 18494.67 25191.77 10795.24 14395.85 16687.14 20098.49 19391.99 9998.26 18898.86 73
MVSTER89.32 24388.75 24591.03 24290.10 34176.62 30090.85 23494.67 25182.27 27395.24 14395.79 17161.09 35398.49 19390.49 13098.26 18897.97 159
新几何193.17 17397.16 13587.29 13494.43 25367.95 35391.29 25694.94 21486.97 20398.23 21581.06 28197.75 22693.98 314
112190.26 22389.23 23393.34 16797.15 13787.40 13291.94 20294.39 25467.88 35491.02 26294.91 21586.91 20698.59 18381.17 27997.71 23094.02 313
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21288.77 35585.42 17790.31 25194.38 25570.02 34788.00 31593.30 26773.78 30294.03 34775.96 32396.54 26796.83 227
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14382.88 23899.35 5988.19 19099.52 3798.96 60
testdata91.03 24296.87 14982.01 21694.28 25771.55 33892.46 23295.42 19485.65 22297.38 27882.64 26297.27 24593.70 321
UGNet93.08 14992.50 16694.79 11093.87 28587.99 12495.07 9394.26 25890.64 13787.33 32397.67 5486.89 20798.49 19388.10 19398.71 14197.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS84.98 30284.30 30287.01 31691.03 32977.69 28691.94 20294.16 25959.36 36784.23 34187.50 34785.66 22196.80 29571.79 34293.05 33186.54 359
131486.46 29386.33 29086.87 31891.65 32274.54 31791.94 20294.10 26074.28 32484.78 33787.33 34983.03 23795.00 33678.72 30291.16 34791.06 349
cl2289.02 24788.50 24890.59 25889.76 34376.45 30286.62 32794.03 26182.98 26692.65 22792.49 28572.05 30897.53 26588.93 17597.02 25297.78 178
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15596.19 15382.07 24999.57 1387.28 20998.89 11798.65 97
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27695.52 23778.88 26887.39 30994.02 26379.32 29693.06 21594.02 24780.72 26194.27 34475.16 32693.08 33096.54 234
h-mvs3392.89 15691.99 17595.58 7996.97 14290.55 7593.94 13594.01 26489.23 16693.95 18596.19 15376.88 29099.14 8991.02 12195.71 28397.04 219
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22487.86 12790.83 23593.98 26578.23 30694.02 18496.22 15282.62 24496.83 29486.57 22098.33 18097.29 212
BH-RMVSNet90.47 21390.44 21490.56 25995.21 24778.65 27389.15 28593.94 26688.21 18892.74 22594.22 23986.38 21397.88 24178.67 30395.39 29295.14 286
test22296.95 14385.27 17988.83 29093.61 26765.09 36190.74 26694.85 21884.62 22897.36 24393.91 315
CDS-MVSNet89.55 23988.22 25793.53 16395.37 24386.49 15589.26 28293.59 26879.76 28891.15 26092.31 29277.12 28698.38 20277.51 31197.92 22195.71 272
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
new-patchmatchnet88.97 25090.79 20683.50 34094.28 27555.83 37485.34 33493.56 26986.18 22495.47 12895.73 17683.10 23696.51 30385.40 23398.06 21198.16 137
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28479.22 26387.56 30593.51 27091.53 11695.37 13396.62 12478.65 27298.90 12691.89 10494.95 30097.70 184
Anonymous2023120688.77 25588.29 25390.20 27096.31 18478.81 27089.56 27493.49 27174.26 32592.38 23695.58 18482.21 24695.43 32972.07 34198.75 14096.34 245
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24794.58 26881.21 22991.10 23093.41 27277.03 31393.41 20093.99 24983.23 23597.80 25079.93 29194.80 30493.74 320
VDD-MVS94.37 11194.37 11394.40 13397.49 11986.07 16893.97 13493.28 27394.49 4496.24 9397.78 4987.99 18698.79 14788.92 17699.14 9198.34 124
jason89.17 24588.32 25191.70 22295.73 22680.07 24188.10 29993.22 27471.98 33790.09 27692.79 27978.53 27598.56 18787.43 20697.06 25096.46 241
jason: jason.
PAPM81.91 32180.11 33187.31 31593.87 28572.32 33684.02 34793.22 27469.47 34976.13 36889.84 32572.15 30797.23 28153.27 36989.02 35292.37 340
BH-w/o87.21 28487.02 27887.79 31194.77 25777.27 29187.90 30093.21 27681.74 27789.99 28188.39 34383.47 23296.93 29171.29 34692.43 33889.15 353
ppachtmachnet_test88.61 25888.64 24688.50 29991.76 32070.99 34284.59 34192.98 27779.30 29792.38 23693.53 26379.57 26697.45 27186.50 22397.17 24897.07 216
IterMVS90.18 22490.16 21890.21 26993.15 29575.98 30787.56 30592.97 27886.43 22094.09 17896.40 13678.32 27697.43 27287.87 19994.69 30797.23 213
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test20.0390.80 20490.85 20490.63 25695.63 23379.24 26289.81 26992.87 27989.90 15194.39 17296.40 13685.77 21995.27 33473.86 33299.05 10097.39 206
CR-MVSNet87.89 26787.12 27690.22 26891.01 33078.93 26692.52 16992.81 28073.08 33289.10 29596.93 10167.11 32197.64 26288.80 17992.70 33494.08 308
Patchmtry90.11 22789.92 22590.66 25590.35 33977.00 29492.96 15692.81 28090.25 14694.74 16496.93 10167.11 32197.52 26685.17 23498.98 10897.46 199
GA-MVS87.70 27186.82 28090.31 26493.27 29277.22 29284.72 34092.79 28285.11 24489.82 28590.07 32366.80 32497.76 25684.56 24794.27 31595.96 260
sss87.23 28386.82 28088.46 30193.96 28277.94 27986.84 31992.78 28377.59 30887.61 32091.83 30178.75 27191.92 35777.84 30794.20 31695.52 280
Patchmatch-RL test88.81 25488.52 24789.69 28095.33 24579.94 24686.22 33092.71 28478.46 30495.80 11594.18 24166.25 32995.33 33289.22 17198.53 15893.78 318
test_yl90.11 22789.73 23091.26 23494.09 27979.82 24990.44 24592.65 28590.90 12893.19 21293.30 26773.90 30098.03 22982.23 26796.87 25895.93 261
DCV-MVSNet90.11 22789.73 23091.26 23494.09 27979.82 24990.44 24592.65 28590.90 12893.19 21293.30 26773.90 30098.03 22982.23 26796.87 25895.93 261
CL-MVSNet_self_test90.04 23289.90 22690.47 26095.24 24677.81 28386.60 32892.62 28785.64 23493.25 21093.92 25183.84 23196.06 31779.93 29198.03 21497.53 196
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21990.87 7290.97 23292.61 28888.04 19294.61 16793.79 25688.08 18297.81 24989.41 16498.39 17196.50 239
TAMVS90.16 22589.05 23893.49 16596.49 17186.37 16090.34 25092.55 28980.84 28292.99 21894.57 22981.94 25298.20 21773.51 33398.21 19795.90 264
MS-PatchMatch88.05 26687.75 26488.95 29093.28 29177.93 28087.88 30192.49 29075.42 31992.57 23093.59 26180.44 26294.24 34681.28 27692.75 33394.69 298
MG-MVS89.54 24089.80 22788.76 29494.88 25172.47 33589.60 27292.44 29185.82 23089.48 29195.98 16282.85 23997.74 25881.87 27095.27 29596.08 255
MVS_030490.96 20290.15 22193.37 16693.17 29487.06 14093.62 14392.43 29289.60 15782.25 35295.50 18982.56 24597.83 24884.41 24997.83 22595.22 283
lupinMVS88.34 26287.31 27091.45 22894.74 26080.06 24287.23 31092.27 29371.10 34188.83 29891.15 31077.02 28798.53 19086.67 21896.75 26395.76 270
pmmvs587.87 26887.14 27590.07 27293.26 29376.97 29788.89 28992.18 29473.71 32988.36 31093.89 25376.86 29296.73 29780.32 28396.81 26096.51 236
PM-MVS93.33 13892.67 16195.33 8896.58 16294.06 2092.26 18792.18 29485.92 22996.22 9596.61 12585.64 22395.99 31990.35 13698.23 19495.93 261
pmmvs488.95 25187.70 26692.70 18994.30 27485.60 17587.22 31192.16 29674.62 32389.75 28994.19 24077.97 27996.41 30682.71 26196.36 27196.09 254
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26580.16 23785.49 33392.14 29790.41 14494.93 15695.79 17185.10 22496.93 29185.15 23694.19 31797.57 192
door-mid92.13 298
WTY-MVS86.93 29186.50 28988.24 30494.96 25074.64 31587.19 31292.07 29978.29 30588.32 31191.59 30678.06 27894.27 34474.88 32793.15 32895.80 268
AUN-MVS90.05 23188.30 25295.32 9196.09 20290.52 7692.42 17792.05 30082.08 27588.45 30992.86 27665.76 33198.69 16988.91 17796.07 27496.75 232
hse-mvs292.24 17891.20 19695.38 8596.16 19690.65 7492.52 16992.01 30189.23 16693.95 18592.99 27476.88 29098.69 16991.02 12196.03 27596.81 228
TR-MVS87.70 27187.17 27489.27 28794.11 27879.26 26188.69 29491.86 30281.94 27690.69 26789.79 32882.82 24097.42 27372.65 33991.98 34291.14 348
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7791.78 30397.19 1296.32 8698.60 1884.24 22998.75 15687.09 21298.83 12998.81 79
Anonymous20240521192.58 16892.50 16692.83 18596.55 16583.22 20392.43 17691.64 30494.10 5195.59 12496.64 12381.88 25397.50 26785.12 23898.52 15997.77 179
HY-MVS82.50 1886.81 29285.93 29389.47 28193.63 28877.93 28094.02 13191.58 30575.68 31683.64 34493.64 25877.40 28297.42 27371.70 34492.07 34193.05 332
door91.26 306
PatchMatch-RL89.18 24488.02 26292.64 19195.90 21792.87 4688.67 29691.06 30780.34 28390.03 28091.67 30483.34 23394.42 34176.35 32094.84 30390.64 351
ADS-MVSNet284.01 30782.20 31589.41 28389.04 35276.37 30487.57 30390.98 30872.71 33584.46 33892.45 28768.08 31796.48 30470.58 35183.97 36095.38 281
KD-MVS_2432*160082.17 31880.75 32586.42 32182.04 37470.09 34681.75 35590.80 30982.56 26890.37 27289.30 33542.90 37696.11 31574.47 32892.55 33693.06 330
miper_refine_blended82.17 31880.75 32586.42 32182.04 37470.09 34681.75 35590.80 30982.56 26890.37 27289.30 33542.90 37696.11 31574.47 32892.55 33693.06 330
wuyk23d87.83 26990.79 20678.96 34990.46 33888.63 10892.72 16290.67 31191.65 11398.68 1197.64 5696.06 1677.53 37059.84 36599.41 5270.73 368
our_test_387.55 27687.59 26787.44 31491.76 32070.48 34383.83 34890.55 31279.79 28792.06 24792.17 29478.63 27495.63 32284.77 24494.73 30596.22 250
test_method50.44 33848.94 34154.93 35339.68 37712.38 37928.59 36890.09 3136.82 37241.10 37478.41 36654.41 36370.69 37250.12 37051.26 37281.72 366
EU-MVSNet87.39 28086.71 28389.44 28293.40 29076.11 30594.93 9990.00 31457.17 36895.71 12097.37 7164.77 33797.68 26192.67 8594.37 31294.52 301
CHOSEN 280x42080.04 33277.97 33886.23 32490.13 34074.53 31872.87 36389.59 31566.38 35776.29 36785.32 35856.96 35995.36 33069.49 35494.72 30688.79 356
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30892.22 31073.71 32480.71 35888.84 31682.52 27094.88 15995.14 20382.70 24293.61 34983.28 25693.80 32096.46 241
YYNet188.17 26488.24 25587.93 30892.21 31173.62 32580.75 35788.77 31782.51 27194.99 15495.11 20582.70 24293.70 34883.33 25593.83 31996.48 240
PVSNet76.22 2082.89 31382.37 31384.48 33593.96 28264.38 36778.60 36088.61 31871.50 33984.43 34086.36 35474.27 29994.60 33869.87 35393.69 32294.46 302
MIMVSNet87.13 28886.54 28688.89 29296.05 20576.11 30594.39 11988.51 31981.37 27888.27 31296.75 11472.38 30695.52 32465.71 36195.47 28995.03 288
tpmvs84.22 30683.97 30584.94 33187.09 36365.18 36291.21 22788.35 32082.87 26785.21 33290.96 31465.24 33596.75 29679.60 29785.25 35992.90 334
EPNet_dtu85.63 29784.37 30189.40 28486.30 36674.33 32191.64 21888.26 32184.84 24972.96 37089.85 32471.27 31197.69 26076.60 31897.62 23596.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat180.61 33079.46 33384.07 33888.78 35465.06 36589.26 28288.23 32262.27 36581.90 35789.66 33262.70 34895.29 33371.72 34380.60 36791.86 345
baseline187.62 27587.31 27088.54 29894.71 26474.27 32293.10 15388.20 32386.20 22392.18 24493.04 27273.21 30395.52 32479.32 29885.82 35895.83 266
CVMVSNet85.16 30084.72 29886.48 31992.12 31470.19 34492.32 18488.17 32456.15 36990.64 26895.85 16667.97 31996.69 29888.78 18090.52 34992.56 338
SCA87.43 27987.21 27388.10 30692.01 31771.98 33789.43 27688.11 32582.26 27488.71 30592.83 27778.65 27297.59 26379.61 29593.30 32594.75 295
tpmrst82.85 31482.93 31282.64 34287.65 35758.99 37290.14 25787.90 32675.54 31883.93 34291.63 30566.79 32695.36 33081.21 27881.54 36693.57 326
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23897.66 11077.32 29094.33 12187.66 32791.20 12392.99 21895.13 20475.40 29798.28 20977.86 30699.19 8497.99 155
bset_n11_16_dypcd89.99 23389.15 23692.53 19894.75 25881.34 22684.19 34587.56 32885.13 24293.77 19092.46 28672.82 30499.01 11292.46 9099.21 8297.23 213
MDTV_nov1_ep1383.88 30689.42 34961.52 37088.74 29387.41 32973.99 32784.96 33694.01 24865.25 33495.53 32378.02 30593.16 327
PatchmatchNetpermissive85.22 29984.64 29986.98 31789.51 34869.83 34990.52 24387.34 33078.87 30187.22 32492.74 28166.91 32396.53 30181.77 27186.88 35794.58 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet88.90 25287.25 27293.83 15394.40 27393.81 3584.73 33887.09 33179.36 29593.26 20892.43 29079.29 26891.68 35877.50 31297.22 24796.00 258
EPNet89.80 23888.25 25494.45 13183.91 37286.18 16693.87 13687.07 33291.16 12580.64 36194.72 22478.83 27098.89 12885.17 23498.89 11798.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test86.10 29586.01 29286.38 32390.63 33474.22 32389.57 27386.69 33385.73 23389.81 28692.83 27765.24 33591.04 36077.82 30995.78 28293.88 317
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 12086.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19998.73 90
CostFormer83.09 31182.21 31485.73 32589.27 35067.01 35390.35 24986.47 33570.42 34583.52 34693.23 27061.18 35296.85 29377.21 31488.26 35593.34 328
thres20085.85 29685.18 29787.88 31094.44 27172.52 33489.08 28686.21 33688.57 18391.44 25488.40 34264.22 33898.00 23368.35 35595.88 28193.12 329
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21893.04 29881.28 22787.17 31386.14 33779.57 29183.65 34388.66 33957.10 35898.18 22087.74 20195.40 29195.90 264
PatchT87.51 27788.17 25885.55 32690.64 33366.91 35492.02 19786.09 33892.20 8789.05 29797.16 8864.15 33996.37 30989.21 17292.98 33293.37 327
DWT-MVSNet_test80.74 32879.18 33485.43 32887.51 36066.87 35589.87 26786.01 33974.20 32680.86 36080.62 36548.84 36996.68 30081.54 27383.14 36492.75 336
tfpn200view987.05 28986.52 28788.67 29695.77 22272.94 33091.89 20586.00 34090.84 13092.61 22889.80 32663.93 34098.28 20971.27 34796.54 26794.79 293
thres40087.20 28586.52 28789.24 28995.77 22272.94 33091.89 20586.00 34090.84 13092.61 22889.80 32663.93 34098.28 20971.27 34796.54 26796.51 236
IB-MVS77.21 1983.11 31081.05 32189.29 28691.15 32875.85 30885.66 33286.00 34079.70 28982.02 35686.61 35148.26 37098.39 20077.84 30792.22 33993.63 322
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMMVS83.00 31281.11 32088.66 29783.81 37386.44 15882.24 35485.65 34361.75 36682.07 35485.64 35779.75 26591.59 35975.99 32293.09 32987.94 358
tpm84.38 30584.08 30485.30 33090.47 33763.43 36989.34 27985.63 34477.24 31287.62 31995.03 21161.00 35497.30 27979.26 29991.09 34895.16 284
LFMVS91.33 19791.16 19991.82 21796.27 18779.36 25995.01 9685.61 34596.04 2994.82 16097.06 9372.03 30998.46 19984.96 24298.70 14397.65 188
FPMVS84.50 30483.28 30888.16 30596.32 18394.49 1585.76 33185.47 34683.09 26385.20 33394.26 23763.79 34286.58 36763.72 36391.88 34483.40 362
tpm281.46 32280.35 32984.80 33289.90 34265.14 36390.44 24585.36 34765.82 36082.05 35592.44 28957.94 35796.69 29870.71 35088.49 35492.56 338
thres100view90087.35 28186.89 27988.72 29596.14 19873.09 32993.00 15585.31 34892.13 8993.26 20890.96 31463.42 34398.28 20971.27 34796.54 26794.79 293
thres600view787.66 27387.10 27789.36 28596.05 20573.17 32792.72 16285.31 34891.89 9693.29 20590.97 31363.42 34398.39 20073.23 33596.99 25796.51 236
dp79.28 33378.62 33681.24 34585.97 36756.45 37386.91 31785.26 35072.97 33381.45 35989.17 33856.01 36295.45 32873.19 33676.68 36891.82 346
PMMVS281.31 32383.44 30774.92 35190.52 33646.49 37669.19 36585.23 35184.30 25487.95 31694.71 22576.95 28984.36 36964.07 36298.09 20993.89 316
ADS-MVSNet82.25 31681.55 31784.34 33689.04 35265.30 36187.57 30385.13 35272.71 33584.46 33892.45 28768.08 31792.33 35670.58 35183.97 36095.38 281
test-LLR83.58 30883.17 30984.79 33389.68 34566.86 35683.08 35084.52 35383.07 26482.85 34984.78 35962.86 34693.49 35082.85 25994.86 30194.03 311
test-mter81.21 32580.01 33284.79 33389.68 34566.86 35683.08 35084.52 35373.85 32882.85 34984.78 35943.66 37593.49 35082.85 25994.86 30194.03 311
JIA-IIPM85.08 30183.04 31091.19 23987.56 35886.14 16789.40 27884.44 35588.98 17282.20 35397.95 4256.82 36096.15 31376.55 31983.45 36291.30 347
thisisatest053088.69 25787.52 26892.20 20596.33 18279.36 25992.81 16084.01 35686.44 21993.67 19492.68 28353.62 36699.25 7789.65 16198.45 16598.00 152
tttt051789.81 23788.90 24392.55 19797.00 14179.73 25395.03 9583.65 35789.88 15295.30 13794.79 22353.64 36599.39 4891.99 9998.79 13598.54 111
thisisatest051584.72 30382.99 31189.90 27692.96 30075.33 31384.36 34383.42 35877.37 31088.27 31286.65 35053.94 36498.72 16182.56 26397.40 24295.67 274
PVSNet_070.34 2174.58 33672.96 33979.47 34890.63 33466.24 36073.26 36183.40 35963.67 36478.02 36578.35 36772.53 30589.59 36456.68 36760.05 37182.57 365
pmmvs380.83 32778.96 33586.45 32087.23 36277.48 28884.87 33782.31 36063.83 36385.03 33489.50 33349.66 36893.10 35273.12 33795.10 29888.78 357
E-PMN80.72 32980.86 32480.29 34785.11 36968.77 35172.96 36281.97 36187.76 19883.25 34883.01 36362.22 34989.17 36577.15 31594.31 31482.93 363
test0.0.03 182.48 31581.47 31985.48 32789.70 34473.57 32684.73 33881.64 36283.07 26488.13 31486.61 35162.86 34689.10 36666.24 36090.29 35093.77 319
baseline283.38 30981.54 31888.90 29191.38 32672.84 33288.78 29181.22 36378.97 29979.82 36387.56 34561.73 35197.80 25074.30 33090.05 35196.05 257
EMVS80.35 33180.28 33080.54 34684.73 37169.07 35072.54 36480.73 36487.80 19781.66 35881.73 36462.89 34589.84 36375.79 32494.65 30882.71 364
TESTMET0.1,179.09 33478.04 33782.25 34387.52 35964.03 36883.08 35080.62 36570.28 34680.16 36283.22 36244.13 37490.56 36179.95 28993.36 32392.15 341
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4577.49 28199.11 9592.62 8698.08 21098.74 88
new_pmnet81.22 32481.01 32381.86 34490.92 33270.15 34584.03 34680.25 36770.83 34385.97 33089.78 32967.93 32084.65 36867.44 35791.90 34390.78 350
test111190.39 21690.61 21089.74 27898.04 8371.50 33995.59 7179.72 36889.41 16095.94 10998.14 3270.79 31298.81 14488.52 18699.32 6298.90 69
ECVR-MVScopyleft90.12 22690.16 21890.00 27597.81 9672.68 33395.76 6678.54 36989.04 17095.36 13498.10 3470.51 31398.64 17787.10 21199.18 8698.67 95
MVS-HIRNet78.83 33580.60 32773.51 35293.07 29647.37 37587.10 31478.00 37068.94 35077.53 36697.26 8171.45 31094.62 33763.28 36488.74 35378.55 367
DSMNet-mixed82.21 31781.56 31684.16 33789.57 34770.00 34890.65 24077.66 37154.99 37083.30 34797.57 5877.89 28090.50 36266.86 35995.54 28791.97 342
EPMVS81.17 32680.37 32883.58 33985.58 36865.08 36490.31 25171.34 37277.31 31185.80 33191.30 30859.38 35592.70 35579.99 28882.34 36592.96 333
gg-mvs-nofinetune82.10 32081.02 32285.34 32987.46 36171.04 34094.74 10467.56 37396.44 2279.43 36498.99 645.24 37296.15 31367.18 35892.17 34088.85 355
GG-mvs-BLEND83.24 34185.06 37071.03 34194.99 9865.55 37474.09 36975.51 36844.57 37394.46 34059.57 36687.54 35684.24 361
MVEpermissive59.87 2373.86 33772.65 34077.47 35087.00 36574.35 32061.37 36760.93 37567.27 35569.69 37186.49 35381.24 25972.33 37156.45 36883.45 36285.74 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250685.42 29884.57 30087.96 30797.81 9666.53 35996.14 5056.35 37689.04 17093.55 19898.10 3442.88 37898.68 17188.09 19499.18 8698.67 95
MTMP94.82 10154.62 377
DeepMVS_CXcopyleft53.83 35470.38 37664.56 36648.52 37833.01 37165.50 37274.21 36956.19 36146.64 37338.45 37270.07 36950.30 369
tmp_tt37.97 33944.33 34218.88 35511.80 37821.54 37863.51 36645.66 3794.23 37351.34 37350.48 37059.08 35622.11 37444.50 37168.35 37013.00 370
testmvs9.02 34211.42 3451.81 3572.77 3801.13 38179.44 3591.90 3801.18 3752.65 3766.80 3721.95 3800.87 3762.62 3743.45 3743.44 372
test1239.49 34112.01 3441.91 3562.87 3791.30 38082.38 3531.34 3811.36 3742.84 3756.56 3732.45 3790.97 3752.73 3735.56 3733.47 371
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.56 34310.09 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37690.77 1440.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
n20.00 382
nn0.00 382
ab-mvs-re7.56 34310.08 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37790.69 3190.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
PC_three_145275.31 32195.87 11395.75 17592.93 9396.34 31287.18 21098.68 14598.04 147
eth-test20.00 381
eth-test0.00 381
OPU-MVS95.15 9896.84 15089.43 9395.21 8595.66 17993.12 8798.06 22786.28 22798.61 15097.95 160
test_0728_THIRD93.26 6897.40 4697.35 7794.69 5599.34 6293.88 3499.42 4798.89 70
GSMVS94.75 295
test_part298.21 7089.41 9496.72 71
sam_mvs166.64 32794.75 295
sam_mvs66.41 328
test_post190.21 2535.85 37565.36 33396.00 31879.61 295
test_post6.07 37465.74 33295.84 320
patchmatchnet-post91.71 30366.22 33097.59 263
gm-plane-assit87.08 36459.33 37171.22 34083.58 36197.20 28273.95 331
test9_res88.16 19298.40 16897.83 173
agg_prior287.06 21398.36 17997.98 156
test_prior489.91 8390.74 237
test_prior290.21 25389.33 16490.77 26494.81 21990.41 15488.21 18898.55 154
旧先验290.00 26268.65 35192.71 22696.52 30285.15 236
新几何290.02 261
原ACMM289.34 279
testdata298.03 22980.24 286
segment_acmp92.14 110
testdata188.96 28888.44 185
plane_prior797.71 10488.68 107
plane_prior697.21 13388.23 11886.93 204
plane_prior495.59 181
plane_prior388.43 11690.35 14593.31 203
plane_prior294.56 11391.74 109
plane_prior197.38 125
plane_prior88.12 12093.01 15488.98 17298.06 211
HQP5-MVS84.89 182
HQP-NCC96.36 17791.37 22287.16 21088.81 300
ACMP_Plane96.36 17791.37 22287.16 21088.81 300
BP-MVS86.55 221
HQP4-MVS88.81 30098.61 17998.15 138
HQP2-MVS84.76 226
NP-MVS96.82 15187.10 13993.40 265
MDTV_nov1_ep13_2view42.48 37788.45 29867.22 35683.56 34566.80 32472.86 33894.06 310
ACMMP++_ref98.82 130
ACMMP++99.25 76
Test By Simon90.61 150