This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
DTE-MVSNet96.74 1797.43 594.67 10999.13 584.68 17596.51 2897.94 7698.14 398.67 1298.32 2995.04 4499.69 293.27 6199.82 899.62 10
PS-CasMVS96.69 2097.43 594.49 12299.13 584.09 18596.61 2497.97 7097.91 598.64 1398.13 3295.24 3699.65 393.39 5599.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11199.16 384.50 17696.54 2798.05 5598.06 498.64 1398.25 3195.01 4799.65 392.95 7499.83 699.68 4
K. test v393.37 13493.27 14393.66 14998.05 7882.62 20394.35 11386.62 32296.05 2797.51 3898.85 1276.59 28499.65 393.21 6398.20 18798.73 88
CP-MVSNet96.19 4696.80 1794.38 12898.99 1383.82 18996.31 4197.53 10797.60 698.34 1997.52 5891.98 11199.63 693.08 7099.81 999.70 3
WR-MVS_H96.60 2597.05 1495.24 9099.02 1186.44 15096.78 2198.08 4897.42 898.48 1697.86 4491.76 11599.63 694.23 2699.84 399.66 6
PS-MVSNAJss96.01 5196.04 5195.89 6398.82 2288.51 10995.57 6897.88 7788.72 16798.81 698.86 1090.77 13999.60 895.43 1199.53 3499.57 13
MVSFormer92.18 17392.23 16492.04 20794.74 24780.06 23397.15 1197.37 11588.98 16188.83 28592.79 26877.02 28099.60 896.41 496.75 25296.46 229
test_djsdf96.62 2396.49 2897.01 3398.55 3991.77 5997.15 1197.37 11588.98 16198.26 2198.86 1093.35 7799.60 896.41 499.45 4299.66 6
SixPastTwentyTwo94.91 8695.21 8193.98 13698.52 4483.19 19695.93 5594.84 23394.86 3898.49 1598.74 1681.45 24899.60 894.69 1699.39 5399.15 37
mvs_tets96.83 996.71 1997.17 2798.83 2192.51 4896.58 2697.61 10087.57 19398.80 798.90 996.50 1099.59 1296.15 799.47 3899.40 21
UA-Net97.35 497.24 1197.69 598.22 6793.87 2998.42 498.19 3196.95 1395.46 12499.23 493.45 7299.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1091.85 5797.98 598.01 6494.15 4898.93 399.07 588.07 17799.57 1395.86 999.69 1599.46 18
EPP-MVSNet93.91 12493.68 13094.59 11698.08 7585.55 16897.44 894.03 25294.22 4794.94 14796.19 14782.07 24399.57 1387.28 19898.89 11098.65 91
jajsoiax96.59 2796.42 2997.12 2998.76 2692.49 4996.44 3397.42 11386.96 20298.71 1098.72 1795.36 3199.56 1695.92 899.45 4299.32 26
v7n96.82 1097.31 1095.33 8498.54 4186.81 14096.83 1898.07 5196.59 1998.46 1798.43 2792.91 8999.52 1796.25 699.76 1199.65 8
DPE-MVS95.89 5395.88 5795.92 6297.93 8989.83 8293.46 13798.30 2092.37 7697.75 2896.95 9295.14 3999.51 1891.74 10299.28 6998.41 116
MSP-MVS95.34 7294.63 10297.48 1498.67 2794.05 2196.41 3598.18 3291.26 11795.12 13895.15 19386.60 20699.50 1993.43 5396.81 24998.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
anonymousdsp96.74 1796.42 2997.68 798.00 8494.03 2496.97 1597.61 10087.68 19098.45 1898.77 1594.20 6599.50 1996.70 399.40 5299.53 14
APDe-MVS96.46 3296.64 2295.93 6097.68 10389.38 9196.90 1798.41 1392.52 7397.43 4197.92 4195.11 4199.50 1994.45 1999.30 6398.92 67
PGM-MVS96.32 4195.94 5497.43 1998.59 3593.84 3195.33 7598.30 2091.40 11495.76 11096.87 9995.26 3599.45 2292.77 7699.21 7799.00 51
ZNCC-MVS96.42 3696.20 4097.07 3098.80 2592.79 4696.08 4998.16 3891.74 10595.34 12896.36 13795.68 1999.44 2394.41 2199.28 6998.97 59
test_part194.39 10794.55 10493.92 14196.14 18582.86 20195.54 6998.09 4795.36 3598.27 2098.36 2875.91 28699.44 2393.41 5499.84 399.47 17
TranMVSNet+NR-MVSNet96.07 5096.26 3795.50 7998.26 6587.69 12493.75 12997.86 7895.96 2997.48 3997.14 8395.33 3299.44 2390.79 11899.76 1199.38 22
Vis-MVSNetpermissive95.50 6695.48 7095.56 7898.11 7389.40 9095.35 7398.22 2992.36 7794.11 16998.07 3392.02 10799.44 2393.38 5697.67 22297.85 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS96.70 1996.42 2997.54 1198.05 7894.69 1196.13 4798.07 5195.17 3696.82 6496.73 11195.09 4399.43 2792.99 7398.71 13498.50 108
test117296.79 1596.52 2797.60 998.03 8194.87 1096.07 5098.06 5495.76 3196.89 6096.85 10094.85 5199.42 2893.35 5798.81 12598.53 106
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 8994.85 5199.42 2893.49 4498.84 11798.00 143
GST-MVS96.24 4495.99 5397.00 3498.65 2892.71 4795.69 6498.01 6492.08 8695.74 11296.28 14295.22 3799.42 2893.17 6599.06 9098.88 71
MP-MVScopyleft96.14 4795.68 6697.51 1398.81 2394.06 1996.10 4897.78 9092.73 6893.48 18896.72 11294.23 6499.42 2891.99 9499.29 6499.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.46 3296.05 5097.69 598.62 3094.65 1296.45 3197.74 9192.59 7295.47 12296.68 11494.50 5999.42 2893.10 6899.26 7198.99 53
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1893.53 3797.51 798.44 992.35 7895.95 10496.41 12996.71 899.42 2893.99 3199.36 5599.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS96.44 3596.08 4897.54 1198.29 6294.62 1396.80 1998.08 4892.67 7195.08 14296.39 13494.77 5399.42 2893.17 6599.44 4498.58 104
region2R96.41 3796.09 4797.38 2398.62 3093.81 3496.32 4097.96 7192.26 8195.28 13296.57 12195.02 4699.41 3593.63 3999.11 8898.94 62
ACMMPR96.46 3296.14 4497.41 2198.60 3393.82 3296.30 4397.96 7192.35 7895.57 11996.61 11994.93 5099.41 3593.78 3599.15 8399.00 51
UniMVSNet_NR-MVSNet95.35 7195.21 8195.76 7097.69 10288.59 10592.26 17797.84 8294.91 3796.80 6595.78 16790.42 14899.41 3591.60 10799.58 3099.29 28
DU-MVS95.28 7695.12 8595.75 7197.75 9588.59 10592.58 15897.81 8593.99 5096.80 6595.90 15790.10 15799.41 3591.60 10799.58 3099.26 29
RPMNet90.31 21490.14 21390.81 24591.01 31678.93 25792.52 16098.12 4191.91 9189.10 28296.89 9868.84 30599.41 3590.17 13792.70 32194.08 295
testtj94.81 9494.42 10896.01 5497.23 12590.51 7494.77 9797.85 8191.29 11694.92 14995.66 17191.71 11699.40 4088.07 18398.25 17998.11 136
TSAR-MVS + MP.94.96 8594.75 9595.57 7798.86 2088.69 10196.37 3696.81 16085.23 22694.75 15597.12 8491.85 11399.40 4093.45 4998.33 16898.62 99
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FC-MVSNet-test95.32 7395.88 5793.62 15098.49 5381.77 21095.90 5798.32 1793.93 5397.53 3797.56 5588.48 17099.40 4092.91 7599.83 699.68 4
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3597.44 6396.51 999.40 4094.06 3099.23 7598.85 75
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3293.88 2896.95 1698.18 3292.26 8196.33 8296.84 10395.10 4299.40 4093.47 4899.33 5999.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZD-MVS97.23 12590.32 7597.54 10584.40 24194.78 15495.79 16492.76 9499.39 4588.72 17398.40 157
tttt051789.81 22888.90 23492.55 19097.00 13579.73 24495.03 8983.65 34589.88 14795.30 13094.79 21453.64 35399.39 4591.99 9498.79 12898.54 105
MP-MVS-pluss96.08 4995.92 5696.57 4599.06 991.21 6493.25 14198.32 1787.89 18496.86 6297.38 6695.55 2499.39 4595.47 1099.47 3899.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
XVS96.49 2996.18 4197.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16596.49 12394.56 5799.39 4593.57 4099.05 9398.93 63
X-MVStestdata90.70 20088.45 24097.44 1798.56 3693.99 2596.50 2997.95 7394.58 4094.38 16526.89 35894.56 5799.39 4593.57 4099.05 9398.93 63
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 8893.82 3296.31 4198.25 2495.51 3496.99 5897.05 8895.63 2199.39 4593.31 5898.88 11298.75 84
test_0728_SECOND94.88 10198.55 3986.72 14295.20 8198.22 2999.38 5193.44 5199.31 6198.53 106
zzz-MVS96.47 3196.14 4497.47 1598.95 1594.05 2193.69 13197.62 9794.46 4496.29 8696.94 9393.56 7099.37 5294.29 2499.42 4698.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1594.05 2195.88 5897.62 9794.46 4496.29 8696.94 9393.56 7099.37 5294.29 2499.42 4698.99 53
SteuartSystems-ACMMP96.40 3896.30 3596.71 4298.63 2991.96 5595.70 6298.01 6493.34 6496.64 7196.57 12194.99 4899.36 5493.48 4799.34 5798.82 77
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS96.00 5296.41 3294.76 10698.51 4586.97 13695.21 7998.10 4491.95 8897.63 3197.25 7696.48 1199.35 5593.29 5999.29 6497.95 151
test_241102_TWO98.10 4491.95 8897.54 3697.25 7695.37 2899.35 5593.29 5999.25 7298.49 109
CS-MVS92.54 16592.31 16393.23 16595.89 20584.07 18693.58 13498.48 888.60 17190.41 26086.23 34292.00 10899.35 5587.54 19298.06 19996.26 237
IS-MVSNet94.49 10594.35 11194.92 10098.25 6686.46 14997.13 1394.31 24796.24 2396.28 8996.36 13782.88 23299.35 5588.19 17999.52 3698.96 60
DVP-MVS95.82 5796.18 4194.72 10898.51 4586.69 14395.20 8197.00 14591.85 9497.40 4497.35 7195.58 2299.34 5993.44 5199.31 6198.13 134
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6597.40 4497.35 7194.69 5499.34 5993.88 3299.42 4698.89 69
UniMVSNet (Re)95.32 7395.15 8395.80 6797.79 9388.91 9792.91 14998.07 5193.46 6296.31 8495.97 15690.14 15399.34 5992.11 8999.64 2299.16 36
HPM-MVS_fast97.01 796.89 1597.39 2299.12 793.92 2797.16 1098.17 3593.11 6696.48 7697.36 7096.92 699.34 5994.31 2399.38 5498.92 67
APD-MVScopyleft95.00 8394.69 9895.93 6097.38 12090.88 7094.59 10397.81 8589.22 15995.46 12496.17 14993.42 7599.34 5989.30 15598.87 11597.56 185
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NR-MVSNet95.28 7695.28 7995.26 8997.75 9587.21 13195.08 8697.37 11593.92 5497.65 3095.90 15790.10 15799.33 6490.11 13999.66 2099.26 29
xxxxxxxxxxxxxcwj95.03 8194.93 8895.33 8497.46 11788.05 11792.04 18598.42 1287.63 19196.36 8096.68 11494.37 6299.32 6592.41 8699.05 9398.64 95
SF-MVS95.88 5595.88 5795.87 6498.12 7289.65 8595.58 6798.56 791.84 9796.36 8096.68 11494.37 6299.32 6592.41 8699.05 9398.64 95
RRT_MVS91.36 18990.05 21495.29 8889.21 33788.15 11492.51 16394.89 23186.73 20595.54 12095.68 17061.82 33999.30 6794.91 1399.13 8798.43 114
SMA-MVScopyleft95.77 5895.54 6896.47 5098.27 6491.19 6595.09 8597.79 8986.48 20697.42 4397.51 6094.47 6199.29 6893.55 4299.29 6498.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs94.90 8795.35 7493.55 15398.28 6381.76 21195.33 7598.14 3993.05 6797.07 5197.18 8187.65 18499.29 6891.72 10399.69 1599.61 11
LPG-MVS_test96.38 4096.23 3896.84 4098.36 6092.13 5295.33 7598.25 2491.78 10197.07 5197.22 7996.38 1399.28 7092.07 9299.59 2699.11 41
LGP-MVS_train96.84 4098.36 6092.13 5298.25 2491.78 10197.07 5197.22 7996.38 1399.28 7092.07 9299.59 2699.11 41
HFP-MVS96.39 3996.17 4397.04 3198.51 4593.37 3896.30 4397.98 6792.35 7895.63 11696.47 12495.37 2899.27 7293.78 3599.14 8498.48 110
#test#95.89 5395.51 6997.04 3198.51 4593.37 3895.14 8497.98 6789.34 15695.63 11696.47 12495.37 2899.27 7291.99 9499.14 8498.48 110
thisisatest053088.69 24887.52 25992.20 19896.33 17079.36 25092.81 15184.01 34486.44 20793.67 18492.68 27253.62 35499.25 7489.65 15198.45 15598.00 143
ACMMP_NAP96.21 4596.12 4696.49 4998.90 1791.42 6294.57 10698.03 6090.42 13896.37 7997.35 7195.68 1999.25 7494.44 2099.34 5798.80 79
HPM-MVS++copyleft95.02 8294.39 10996.91 3897.88 9093.58 3694.09 12096.99 14791.05 12292.40 22395.22 19291.03 13799.25 7492.11 8998.69 13797.90 157
ETH3D cwj APD-0.1693.99 12393.38 13995.80 6796.82 14389.92 7992.72 15398.02 6284.73 23993.65 18595.54 18091.68 11799.22 7788.78 17098.49 15498.26 125
CANet92.38 16891.99 17093.52 15793.82 27383.46 19291.14 21797.00 14589.81 14886.47 31494.04 23587.90 18299.21 7889.50 15398.27 17597.90 157
LS3D96.11 4895.83 6196.95 3794.75 24594.20 1797.34 997.98 6797.31 1095.32 12996.77 10593.08 8599.20 7991.79 10098.16 18997.44 191
ETV-MVS92.99 14992.74 15393.72 14895.86 20686.30 15592.33 17397.84 8291.70 10892.81 21186.17 34392.22 10399.19 8088.03 18497.73 21695.66 263
EIA-MVS92.35 16992.03 16893.30 16395.81 20983.97 18792.80 15298.17 3587.71 18889.79 27587.56 33291.17 13599.18 8187.97 18597.27 23496.77 218
3Dnovator+92.74 295.86 5695.77 6496.13 5296.81 14590.79 7296.30 4397.82 8496.13 2494.74 15697.23 7891.33 12599.16 8293.25 6298.30 17398.46 112
Anonymous2023121196.60 2597.13 1295.00 9897.46 11786.35 15497.11 1498.24 2797.58 798.72 898.97 793.15 8399.15 8393.18 6499.74 1399.50 16
v1094.68 9995.27 8092.90 17696.57 15580.15 22994.65 10297.57 10390.68 13197.43 4198.00 3788.18 17499.15 8394.84 1599.55 3399.41 20
HyFIR lowres test87.19 27785.51 28792.24 19797.12 13380.51 22685.03 32596.06 19766.11 34591.66 24092.98 26470.12 30399.14 8575.29 31295.23 28397.07 206
ETH3 D test640091.91 17791.25 18993.89 14396.59 15384.41 17792.10 18297.72 9378.52 29191.82 23893.78 24788.70 16899.13 8683.61 24098.39 15998.14 132
test_040295.73 5996.22 3994.26 13098.19 6985.77 16593.24 14297.24 13196.88 1597.69 2997.77 4794.12 6699.13 8691.54 11099.29 6497.88 159
ACMP88.15 1395.71 6095.43 7396.54 4698.17 7091.73 6094.24 11698.08 4889.46 15496.61 7396.47 12495.85 1799.12 8890.45 12399.56 3298.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_test8_iter0588.21 25488.17 24988.33 29291.62 30966.82 34591.73 20696.60 17286.34 20994.14 16895.38 19047.72 35999.11 8991.78 10198.26 17699.06 47
lessismore_v093.87 14598.05 7883.77 19080.32 35497.13 5097.91 4277.49 27499.11 8992.62 8298.08 19898.74 86
ETH3D-3000-0.194.86 9094.55 10495.81 6597.61 10789.72 8394.05 12198.37 1488.09 18095.06 14395.85 15992.58 9799.10 9190.33 13098.99 10098.62 99
9.1494.81 9297.49 11494.11 11998.37 1487.56 19495.38 12696.03 15394.66 5599.08 9290.70 12098.97 105
UniMVSNet_ETH3D97.13 697.72 395.35 8299.51 287.38 12797.70 697.54 10598.16 298.94 299.33 297.84 499.08 9290.73 11999.73 1499.59 12
v894.65 10095.29 7892.74 18196.65 14979.77 24394.59 10397.17 13591.86 9397.47 4097.93 4088.16 17599.08 9294.32 2299.47 3899.38 22
PVSNet_Blended_VisFu91.63 18291.20 19092.94 17497.73 9883.95 18892.14 18197.46 11178.85 29092.35 22694.98 20384.16 22499.08 9286.36 21296.77 25195.79 257
v124093.29 13693.71 12892.06 20696.01 19777.89 27291.81 20397.37 11585.12 23196.69 6996.40 13086.67 20499.07 9694.51 1898.76 13199.22 32
v192192093.26 13993.61 13292.19 19996.04 19678.31 26691.88 19697.24 13185.17 22896.19 9696.19 14786.76 20399.05 9794.18 2898.84 11799.22 32
MIMVSNet195.52 6595.45 7195.72 7299.14 489.02 9596.23 4696.87 15893.73 5697.87 2698.49 2490.73 14399.05 9786.43 21199.60 2499.10 44
DeepC-MVS91.39 495.43 6895.33 7695.71 7397.67 10490.17 7693.86 12798.02 6287.35 19596.22 9297.99 3894.48 6099.05 9792.73 7999.68 1897.93 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419293.20 14493.54 13592.16 20396.05 19278.26 26791.95 18997.14 13684.98 23595.96 10396.11 15087.08 19599.04 10093.79 3498.84 11799.17 35
Regformer-294.86 9094.55 10495.77 6992.83 28889.98 7891.87 19796.40 18294.38 4696.19 9695.04 20092.47 10299.04 10093.49 4498.31 17198.28 123
WR-MVS93.49 13193.72 12792.80 18097.57 11080.03 23590.14 24695.68 20893.70 5796.62 7295.39 18887.21 19299.04 10087.50 19399.64 2299.33 25
v119293.49 13193.78 12592.62 18796.16 18479.62 24591.83 20297.22 13386.07 21496.10 10096.38 13587.22 19199.02 10394.14 2998.88 11299.22 32
LCM-MVSNet-Re94.20 11894.58 10393.04 16895.91 20383.13 19893.79 12899.19 292.00 8798.84 598.04 3593.64 6999.02 10381.28 26398.54 14796.96 211
bset_n11_16_dypcd89.99 22489.15 22792.53 19194.75 24581.34 21784.19 33487.56 31685.13 23093.77 18092.46 27572.82 29599.01 10592.46 8599.21 7797.23 203
Regformer-494.90 8794.67 10095.59 7692.78 29089.02 9592.39 16995.91 20194.50 4296.41 7795.56 17892.10 10699.01 10594.23 2698.14 19198.74 86
ACMM88.83 996.30 4396.07 4996.97 3598.39 5692.95 4494.74 9898.03 6090.82 12797.15 4996.85 10096.25 1599.00 10793.10 6899.33 5998.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS94.74 9694.12 11996.60 4498.15 7193.01 4295.84 5997.66 9589.21 16093.28 19595.46 18288.89 16798.98 10889.80 14698.82 12397.80 168
GBi-Net93.21 14292.96 14693.97 13795.40 22784.29 17895.99 5196.56 17488.63 16895.10 13998.53 2181.31 25098.98 10886.74 20298.38 16198.65 91
test193.21 14292.96 14693.97 13795.40 22784.29 17895.99 5196.56 17488.63 16895.10 13998.53 2181.31 25098.98 10886.74 20298.38 16198.65 91
FMVSNet194.84 9295.13 8493.97 13797.60 10884.29 17895.99 5196.56 17492.38 7597.03 5598.53 2190.12 15498.98 10888.78 17099.16 8298.65 91
Effi-MVS+-dtu93.90 12592.60 15897.77 494.74 24796.67 394.00 12395.41 22089.94 14491.93 23792.13 28490.12 15498.97 11287.68 19097.48 22897.67 178
v114493.50 13093.81 12392.57 18996.28 17479.61 24691.86 20196.96 14886.95 20395.91 10796.32 13987.65 18498.96 11393.51 4398.88 11299.13 39
NCCC94.08 12193.54 13595.70 7496.49 15989.90 8192.39 16996.91 15490.64 13292.33 22994.60 21890.58 14798.96 11390.21 13697.70 22098.23 126
test_241102_ONE98.51 4586.97 13698.10 4491.85 9497.63 3197.03 8996.48 1198.95 115
nrg03096.32 4196.55 2695.62 7597.83 9288.55 10795.77 6198.29 2392.68 6998.03 2597.91 4295.13 4098.95 11593.85 3399.49 3799.36 24
HQP_MVS94.26 11593.93 12195.23 9197.71 9988.12 11594.56 10797.81 8591.74 10593.31 19295.59 17386.93 19898.95 11589.26 15998.51 15198.60 102
plane_prior597.81 8598.95 11589.26 15998.51 15198.60 102
IterMVS-SCA-FT91.65 18191.55 17991.94 20893.89 27079.22 25487.56 29493.51 26091.53 11295.37 12796.62 11878.65 26598.90 11991.89 9994.95 28797.70 175
v2v48293.29 13693.63 13192.29 19596.35 16878.82 26091.77 20596.28 18688.45 17395.70 11596.26 14486.02 21298.90 11993.02 7198.81 12599.14 38
EPNet89.80 22988.25 24594.45 12583.91 35886.18 15893.87 12687.07 32091.16 12180.64 34894.72 21578.83 26398.89 12185.17 22198.89 11098.28 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs-test193.07 14791.80 17596.89 3994.74 24795.83 692.17 18095.41 22089.94 14489.85 27290.59 30990.12 15498.88 12287.68 19095.66 27195.97 248
TEST996.45 16189.46 8690.60 23096.92 15279.09 28690.49 25794.39 22491.31 12698.88 122
train_agg92.71 15891.83 17395.35 8296.45 16189.46 8690.60 23096.92 15279.37 28190.49 25794.39 22491.20 13298.88 12288.66 17498.43 15697.72 174
CDPH-MVS92.67 15991.83 17395.18 9396.94 13788.46 11090.70 22897.07 14277.38 29792.34 22895.08 19892.67 9698.88 12285.74 21798.57 14398.20 129
QAPM92.88 15292.77 15193.22 16695.82 20783.31 19396.45 3197.35 12283.91 24493.75 18196.77 10589.25 16598.88 12284.56 23497.02 24197.49 188
EI-MVSNet-UG-set94.35 11094.27 11694.59 11692.46 29385.87 16392.42 16794.69 24093.67 6196.13 9895.84 16291.20 13298.86 12793.78 3598.23 18299.03 49
EI-MVSNet-Vis-set94.36 10994.28 11494.61 11192.55 29285.98 16192.44 16594.69 24093.70 5796.12 9995.81 16391.24 12998.86 12793.76 3898.22 18498.98 58
V4293.43 13393.58 13392.97 17195.34 23181.22 21992.67 15696.49 17987.25 19796.20 9496.37 13687.32 19098.85 12992.39 8898.21 18598.85 75
Fast-Effi-MVS+91.28 19290.86 19692.53 19195.45 22682.53 20489.25 27396.52 17885.00 23489.91 27088.55 32892.94 8898.84 13084.72 23395.44 27796.22 239
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4698.46 2594.62 5698.84 13094.64 1799.53 3498.99 53
xiu_mvs_v1_base_debu91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
xiu_mvs_v1_base91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
xiu_mvs_v1_base_debi91.47 18691.52 18091.33 22495.69 21581.56 21389.92 25396.05 19883.22 24891.26 24590.74 30391.55 12098.82 13289.29 15695.91 26693.62 310
test_896.37 16389.14 9390.51 23396.89 15579.37 28190.42 25994.36 22691.20 13298.82 132
PS-MVSNAJ88.86 24488.99 23188.48 28994.88 23874.71 30386.69 31395.60 21080.88 26887.83 30487.37 33590.77 13998.82 13282.52 25194.37 29991.93 330
xiu_mvs_v2_base89.00 24089.19 22588.46 29094.86 24074.63 30586.97 30495.60 21080.88 26887.83 30488.62 32791.04 13698.81 13782.51 25294.38 29891.93 330
FMVSNet292.78 15592.73 15592.95 17395.40 22781.98 20894.18 11895.53 21788.63 16896.05 10197.37 6781.31 25098.81 13787.38 19798.67 13898.06 137
Anonymous2024052995.50 6695.83 6194.50 12097.33 12385.93 16295.19 8396.77 16496.64 1897.61 3498.05 3493.23 8098.79 13988.60 17599.04 9898.78 81
Regformer-194.55 10394.33 11295.19 9292.83 28888.54 10891.87 19795.84 20593.99 5095.95 10495.04 20092.00 10898.79 13993.14 6798.31 17198.23 126
VDD-MVS94.37 10894.37 11094.40 12797.49 11486.07 16093.97 12593.28 26394.49 4396.24 9097.78 4587.99 18098.79 13988.92 16699.14 8498.34 118
test1294.43 12695.95 20086.75 14196.24 18989.76 27689.79 16198.79 13997.95 20897.75 173
agg_prior192.60 16191.76 17695.10 9696.20 18088.89 9890.37 23796.88 15679.67 27890.21 26394.41 22291.30 12798.78 14388.46 17698.37 16697.64 180
agg_prior96.20 18088.89 9896.88 15690.21 26398.78 143
CSCG94.69 9894.75 9594.52 11997.55 11187.87 12195.01 9097.57 10392.68 6996.20 9493.44 25491.92 11298.78 14389.11 16399.24 7496.92 212
PHI-MVS94.34 11193.80 12495.95 5795.65 21891.67 6194.82 9597.86 7887.86 18593.04 20694.16 23291.58 11998.78 14390.27 13398.96 10797.41 192
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5794.31 1596.79 2098.32 1796.69 1696.86 6297.56 5595.48 2598.77 14790.11 13999.44 4498.31 121
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet94.03 12294.27 11693.31 16298.87 1982.36 20595.51 7191.78 29297.19 1196.32 8398.60 1884.24 22398.75 14887.09 19998.83 12298.81 78
114514_t90.51 20489.80 21892.63 18698.00 8482.24 20693.40 13997.29 12765.84 34689.40 28094.80 21386.99 19698.75 14883.88 23998.61 14196.89 214
FMVSNet390.78 19890.32 20992.16 20393.03 28579.92 23892.54 15994.95 22986.17 21395.10 13996.01 15469.97 30498.75 14886.74 20298.38 16197.82 166
IterMVS-LS93.78 12694.28 11492.27 19696.27 17579.21 25591.87 19796.78 16291.77 10396.57 7597.07 8687.15 19398.74 15191.99 9499.03 9998.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS92.05 17592.16 16591.72 21494.44 25780.13 23187.62 29197.25 13087.34 19692.22 23193.18 26189.54 16398.73 15289.67 15098.20 18796.30 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest051584.72 29382.99 30189.90 26692.96 28675.33 30284.36 33283.42 34677.37 29888.27 29986.65 33753.94 35298.72 15382.56 25097.40 23195.67 262
alignmvs93.26 13992.85 14994.50 12095.70 21487.45 12593.45 13895.76 20691.58 11095.25 13492.42 28081.96 24598.72 15391.61 10697.87 21297.33 200
MCST-MVS92.91 15192.51 15994.10 13397.52 11285.72 16691.36 21497.13 13880.33 27292.91 21094.24 22891.23 13098.72 15389.99 14397.93 20997.86 161
XVG-ACMP-BASELINE95.68 6195.34 7596.69 4398.40 5593.04 4194.54 11098.05 5590.45 13796.31 8496.76 10792.91 8998.72 15391.19 11499.42 4698.32 119
CNVR-MVS94.58 10294.29 11395.46 8196.94 13789.35 9291.81 20396.80 16189.66 15093.90 17895.44 18492.80 9398.72 15392.74 7898.52 14998.32 119
DP-MVS95.62 6295.84 6094.97 9997.16 12988.62 10494.54 11097.64 9696.94 1496.58 7497.32 7493.07 8698.72 15390.45 12398.84 11797.57 183
原ACMM192.87 17796.91 13984.22 18197.01 14476.84 30289.64 27894.46 22188.00 17998.70 15981.53 26198.01 20595.70 261
ANet_high94.83 9396.28 3690.47 25196.65 14973.16 31794.33 11498.74 596.39 2298.09 2498.93 893.37 7698.70 15990.38 12699.68 1899.53 14
AUN-MVS90.05 22288.30 24395.32 8796.09 18990.52 7392.42 16792.05 29082.08 26388.45 29692.86 26565.76 32098.69 16188.91 16796.07 26396.75 220
test_prior393.29 13692.85 14994.61 11195.95 20087.23 12990.21 24297.36 12089.33 15790.77 25294.81 21090.41 14998.68 16288.21 17798.55 14497.93 153
test_prior94.61 11195.95 20087.23 12997.36 12098.68 16297.93 153
Effi-MVS+92.79 15492.74 15392.94 17495.10 23583.30 19494.00 12397.53 10791.36 11589.35 28190.65 30894.01 6798.66 16487.40 19695.30 28196.88 215
canonicalmvs94.59 10194.69 9894.30 12995.60 22287.03 13595.59 6698.24 2791.56 11195.21 13792.04 28694.95 4998.66 16491.45 11197.57 22697.20 205
3Dnovator92.54 394.80 9594.90 8994.47 12395.47 22587.06 13396.63 2397.28 12991.82 10094.34 16797.41 6490.60 14698.65 16692.47 8498.11 19597.70 175
ACMH+88.43 1196.48 3096.82 1695.47 8098.54 4189.06 9495.65 6598.61 696.10 2598.16 2297.52 5896.90 798.62 16790.30 13199.60 2498.72 89
HQP4-MVS88.81 28798.61 16898.15 131
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2393.86 3099.07 298.98 397.01 1298.92 498.78 1495.22 3798.61 16896.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Fast-Effi-MVS+-dtu92.77 15692.16 16594.58 11894.66 25388.25 11292.05 18496.65 17089.62 15190.08 26691.23 29692.56 9898.60 17086.30 21396.27 26196.90 213
HQP-MVS92.09 17491.49 18393.88 14496.36 16584.89 17391.37 21197.31 12487.16 19888.81 28793.40 25584.76 22098.60 17086.55 20897.73 21698.14 132
无先验89.94 25295.75 20770.81 33198.59 17281.17 26694.81 280
112190.26 21589.23 22493.34 16097.15 13187.40 12691.94 19194.39 24567.88 34191.02 25094.91 20686.91 20098.59 17281.17 26697.71 21994.02 300
DeepC-MVS_fast89.96 793.73 12793.44 13794.60 11596.14 18587.90 12093.36 14097.14 13685.53 22393.90 17895.45 18391.30 12798.59 17289.51 15298.62 14097.31 201
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU89.85 22789.17 22691.87 20992.20 29880.02 23690.79 22595.87 20386.02 21582.53 33891.77 28980.01 25798.57 17585.66 21897.70 22097.01 209
OPM-MVS95.61 6395.45 7196.08 5398.49 5391.00 6792.65 15797.33 12390.05 14396.77 6796.85 10095.04 4498.56 17692.77 7699.06 9098.70 90
jason89.17 23688.32 24291.70 21595.73 21380.07 23288.10 28893.22 26471.98 32490.09 26592.79 26878.53 26898.56 17687.43 19597.06 23996.46 229
jason: jason.
F-COLMAP92.28 17191.06 19395.95 5797.52 11291.90 5693.53 13597.18 13483.98 24388.70 29394.04 23588.41 17298.55 17880.17 27495.99 26597.39 196
lupinMVS88.34 25387.31 26191.45 22194.74 24780.06 23387.23 29992.27 28371.10 32888.83 28591.15 29777.02 28098.53 17986.67 20596.75 25295.76 258
PCF-MVS84.52 1789.12 23787.71 25693.34 16096.06 19185.84 16486.58 31897.31 12468.46 33993.61 18693.89 24387.51 18798.52 18067.85 34398.11 19595.66 263
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet95.14 8095.67 6793.58 15297.76 9483.15 19794.58 10597.58 10293.39 6397.05 5498.04 3593.25 7998.51 18189.75 14999.59 2699.08 45
EI-MVSNet92.99 14993.26 14492.19 19992.12 30079.21 25592.32 17494.67 24291.77 10395.24 13595.85 15987.14 19498.49 18291.99 9498.26 17698.86 72
casdiffmvs94.32 11294.80 9392.85 17896.05 19281.44 21692.35 17298.05 5591.53 11295.75 11196.80 10493.35 7798.49 18291.01 11698.32 17098.64 95
MVSTER89.32 23488.75 23691.03 23590.10 32776.62 29090.85 22394.67 24282.27 26195.24 13595.79 16461.09 34298.49 18290.49 12298.26 17697.97 150
UGNet93.08 14592.50 16094.79 10593.87 27187.99 11995.07 8794.26 24990.64 13287.33 31097.67 5086.89 20198.49 18288.10 18298.71 13497.91 156
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-394.28 11394.23 11894.46 12492.78 29086.28 15692.39 16994.70 23993.69 6095.97 10295.56 17891.34 12498.48 18693.45 4998.14 19198.62 99
baseline94.26 11594.80 9392.64 18496.08 19080.99 22293.69 13198.04 5990.80 12894.89 15096.32 13993.19 8198.48 18691.68 10598.51 15198.43 114
LFMVS91.33 19091.16 19291.82 21096.27 17579.36 25095.01 9085.61 33396.04 2894.82 15297.06 8772.03 30098.46 18884.96 22998.70 13697.65 179
thres600view787.66 26487.10 26889.36 27496.05 19273.17 31692.72 15385.31 33691.89 9293.29 19490.97 30063.42 33298.39 18973.23 32296.99 24696.51 224
IB-MVS77.21 1983.11 30081.05 31189.29 27591.15 31475.85 29885.66 32186.00 32879.70 27782.02 34386.61 33848.26 35898.39 18977.84 29492.22 32693.63 309
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v14892.87 15393.29 14091.62 21796.25 17877.72 27591.28 21595.05 22689.69 14995.93 10696.04 15287.34 18998.38 19190.05 14297.99 20698.78 81
CDS-MVSNet89.55 23088.22 24893.53 15695.37 23086.49 14789.26 27193.59 25879.76 27691.15 24892.31 28177.12 27998.38 19177.51 29897.92 21095.71 260
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 17292.13 16792.68 18394.53 25684.10 18495.70 6297.03 14382.44 26091.14 24996.42 12888.47 17198.38 19185.95 21697.47 22995.55 267
MVS_Test92.57 16493.29 14090.40 25493.53 27575.85 29892.52 16096.96 14888.73 16692.35 22696.70 11390.77 13998.37 19492.53 8395.49 27596.99 210
DIV-MVS_2432*160094.10 12094.73 9792.19 19997.66 10579.49 24894.86 9497.12 13989.59 15396.87 6197.65 5190.40 15198.34 19589.08 16499.35 5698.75 84
VPNet93.08 14593.76 12691.03 23598.60 3375.83 30091.51 20995.62 20991.84 9795.74 11297.10 8589.31 16498.32 19685.07 22899.06 9098.93 63
AdaColmapbinary91.63 18291.36 18692.47 19495.56 22386.36 15392.24 17996.27 18788.88 16589.90 27192.69 27191.65 11898.32 19677.38 30097.64 22392.72 324
thres100view90087.35 27286.89 27088.72 28496.14 18573.09 31893.00 14685.31 33692.13 8593.26 19790.96 30163.42 33298.28 19871.27 33496.54 25694.79 281
tfpn200view987.05 28086.52 27888.67 28595.77 21072.94 31991.89 19486.00 32890.84 12592.61 21689.80 31363.93 32998.28 19871.27 33496.54 25694.79 281
thres40087.20 27686.52 27889.24 27895.77 21072.94 31991.89 19486.00 32890.84 12592.61 21689.80 31363.93 32998.28 19871.27 33496.54 25696.51 224
Vis-MVSNet (Re-imp)90.42 20790.16 21091.20 23197.66 10577.32 28094.33 11487.66 31591.20 11992.99 20795.13 19575.40 28898.28 19877.86 29399.19 7997.99 146
eth_miper_zixun_eth90.72 19990.61 20391.05 23492.04 30276.84 28886.91 30696.67 16985.21 22794.41 16393.92 24179.53 26098.26 20289.76 14897.02 24198.06 137
PLCcopyleft85.34 1590.40 20888.92 23294.85 10296.53 15790.02 7791.58 20896.48 18080.16 27386.14 31692.18 28285.73 21498.25 20376.87 30394.61 29696.30 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
新几何193.17 16797.16 12987.29 12894.43 24467.95 34091.29 24494.94 20586.97 19798.23 20481.06 26897.75 21593.98 301
pmmvs696.80 1397.36 995.15 9499.12 787.82 12396.68 2297.86 7896.10 2598.14 2399.28 397.94 398.21 20591.38 11399.69 1599.42 19
1112_ss88.42 25187.41 26091.45 22196.69 14880.99 22289.72 25996.72 16773.37 31787.00 31290.69 30677.38 27698.20 20681.38 26293.72 30895.15 273
DP-MVS Recon92.31 17091.88 17293.60 15197.18 12886.87 13991.10 21997.37 11584.92 23692.08 23494.08 23488.59 16998.20 20683.50 24198.14 19195.73 259
TAMVS90.16 21789.05 22993.49 15896.49 15986.37 15290.34 23992.55 27980.84 27092.99 20794.57 22081.94 24698.20 20673.51 32098.21 18595.90 253
ET-MVSNet_ETH3D86.15 28584.27 29391.79 21193.04 28481.28 21887.17 30286.14 32579.57 27983.65 33088.66 32657.10 34798.18 20987.74 18995.40 27895.90 253
tfpnnormal94.27 11494.87 9192.48 19397.71 9980.88 22494.55 10995.41 22093.70 5796.67 7097.72 4891.40 12398.18 20987.45 19499.18 8198.36 117
cl_fuxian91.32 19191.42 18491.00 23892.29 29576.79 28987.52 29796.42 18185.76 22094.72 15893.89 24382.73 23598.16 21190.93 11798.55 14498.04 140
PVSNet_BlendedMVS90.35 21189.96 21591.54 22094.81 24278.80 26290.14 24696.93 15079.43 28088.68 29495.06 19986.27 20998.15 21280.27 27198.04 20297.68 177
PVSNet_Blended88.74 24788.16 25190.46 25394.81 24278.80 26286.64 31496.93 15074.67 30988.68 29489.18 32486.27 20998.15 21280.27 27196.00 26494.44 290
OMC-MVS94.22 11793.69 12995.81 6597.25 12491.27 6392.27 17697.40 11487.10 20194.56 16095.42 18593.74 6898.11 21486.62 20698.85 11698.06 137
DeepPCF-MVS90.46 694.20 11893.56 13496.14 5195.96 19992.96 4389.48 26497.46 11185.14 22996.23 9195.42 18593.19 8198.08 21590.37 12798.76 13197.38 198
OPU-MVS95.15 9496.84 14289.43 8895.21 7995.66 17193.12 8498.06 21686.28 21498.61 14197.95 151
miper_ehance_all_eth90.48 20590.42 20790.69 24691.62 30976.57 29186.83 30996.18 19483.38 24694.06 17392.66 27382.20 24198.04 21789.79 14797.02 24197.45 190
test_yl90.11 21889.73 22191.26 22794.09 26579.82 24090.44 23492.65 27590.90 12393.19 20193.30 25773.90 29198.03 21882.23 25496.87 24795.93 250
DCV-MVSNet90.11 21889.73 22191.26 22794.09 26579.82 24090.44 23492.65 27590.90 12393.19 20193.30 25773.90 29198.03 21882.23 25496.87 24795.93 250
testdata298.03 21880.24 273
DPM-MVS89.35 23388.40 24192.18 20296.13 18884.20 18286.96 30596.15 19675.40 30887.36 30991.55 29483.30 22898.01 22182.17 25696.62 25594.32 293
thres20085.85 28785.18 28887.88 29894.44 25772.52 32289.08 27586.21 32488.57 17291.44 24288.40 32964.22 32798.00 22268.35 34295.88 26993.12 316
ACMH88.36 1296.59 2797.43 594.07 13498.56 3685.33 17096.33 3998.30 2094.66 3998.72 898.30 3097.51 598.00 22294.87 1499.59 2698.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl-mvsnet190.65 20290.56 20490.91 24291.85 30476.99 28586.75 31195.36 22385.52 22594.06 17394.89 20777.37 27797.99 22490.28 13298.97 10597.76 171
cl-mvsnet_90.65 20290.56 20490.91 24291.85 30476.98 28686.75 31195.36 22385.53 22394.06 17394.89 20777.36 27897.98 22590.27 13398.98 10197.76 171
TAPA-MVS88.58 1092.49 16691.75 17794.73 10796.50 15889.69 8492.91 14997.68 9478.02 29592.79 21294.10 23390.85 13897.96 22684.76 23298.16 18996.54 222
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TransMVSNet (Re)95.27 7896.04 5192.97 17198.37 5981.92 20995.07 8796.76 16593.97 5297.77 2798.57 1995.72 1897.90 22788.89 16899.23 7599.08 45
EG-PatchMatch MVS94.54 10494.67 10094.14 13297.87 9186.50 14692.00 18896.74 16688.16 17996.93 5997.61 5393.04 8797.90 22791.60 10798.12 19498.03 141
miper_enhance_ethall88.42 25187.87 25490.07 26388.67 34275.52 30185.10 32495.59 21375.68 30492.49 21989.45 32178.96 26297.88 22987.86 18897.02 24196.81 217
BH-RMVSNet90.47 20690.44 20690.56 25095.21 23478.65 26489.15 27493.94 25688.21 17792.74 21394.22 22986.38 20797.88 22978.67 29095.39 27995.14 274
Test_1112_low_res87.50 26986.58 27590.25 25896.80 14677.75 27487.53 29696.25 18869.73 33586.47 31493.61 25075.67 28797.88 22979.95 27693.20 31395.11 275
MAR-MVS90.32 21388.87 23594.66 11094.82 24191.85 5794.22 11794.75 23780.91 26787.52 30888.07 33186.63 20597.87 23276.67 30496.21 26294.25 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest94.88 8994.51 10796.00 5598.02 8292.17 5095.26 7898.43 1090.48 13595.04 14496.74 10992.54 9997.86 23385.11 22698.98 10197.98 147
TestCases96.00 5598.02 8292.17 5098.43 1090.48 13595.04 14496.74 10992.54 9997.86 23385.11 22698.98 10197.98 147
CLD-MVS91.82 17891.41 18593.04 16896.37 16383.65 19186.82 31097.29 12784.65 24092.27 23089.67 31892.20 10497.85 23583.95 23899.47 3897.62 181
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030490.96 19590.15 21293.37 15993.17 28087.06 13393.62 13392.43 28289.60 15282.25 33995.50 18182.56 23997.83 23684.41 23697.83 21495.22 271
TSAR-MVS + GP.93.07 14792.41 16295.06 9795.82 20790.87 7190.97 22192.61 27888.04 18194.61 15993.79 24688.08 17697.81 23789.41 15498.39 15996.50 227
ambc92.98 17096.88 14083.01 20095.92 5696.38 18496.41 7797.48 6188.26 17397.80 23889.96 14498.93 10998.12 135
baseline283.38 29981.54 30888.90 28091.38 31272.84 32188.78 28081.22 35178.97 28779.82 35087.56 33261.73 34097.80 23874.30 31790.05 33896.05 246
OpenMVS_ROBcopyleft85.12 1689.52 23289.05 22990.92 24094.58 25581.21 22091.10 21993.41 26277.03 30193.41 18993.99 23983.23 22997.80 23879.93 27894.80 29193.74 307
BH-untuned90.68 20190.90 19490.05 26595.98 19879.57 24790.04 24994.94 23087.91 18294.07 17293.00 26387.76 18397.78 24179.19 28795.17 28492.80 322
RPSCF95.58 6494.89 9097.62 897.58 10996.30 495.97 5497.53 10792.42 7493.41 18997.78 4591.21 13197.77 24291.06 11597.06 23998.80 79
MVS_111021_HR93.63 12993.42 13894.26 13096.65 14986.96 13889.30 27096.23 19088.36 17693.57 18794.60 21893.45 7297.77 24290.23 13598.38 16198.03 141
GA-MVS87.70 26286.82 27190.31 25593.27 27877.22 28284.72 32992.79 27285.11 23289.82 27390.07 31066.80 31397.76 24484.56 23494.27 30295.96 249
Baseline_NR-MVSNet94.47 10695.09 8692.60 18898.50 5280.82 22592.08 18396.68 16893.82 5596.29 8698.56 2090.10 15797.75 24590.10 14199.66 2099.24 31
MG-MVS89.54 23189.80 21888.76 28394.88 23872.47 32389.60 26192.44 28185.82 21889.48 27995.98 15582.85 23397.74 24681.87 25795.27 28296.08 244
pm-mvs195.43 6895.94 5493.93 14098.38 5785.08 17295.46 7297.12 13991.84 9797.28 4698.46 2595.30 3497.71 24790.17 13799.42 4698.99 53
EPNet_dtu85.63 28884.37 29189.40 27386.30 35274.33 31091.64 20788.26 30984.84 23772.96 35789.85 31171.27 30297.69 24876.60 30597.62 22496.18 241
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet87.39 27186.71 27489.44 27193.40 27676.11 29594.93 9390.00 30257.17 35595.71 11497.37 6764.77 32697.68 24992.67 8194.37 29994.52 288
CR-MVSNet87.89 25887.12 26790.22 25991.01 31678.93 25792.52 16092.81 27073.08 31989.10 28296.93 9567.11 31097.64 25088.80 16992.70 32194.08 295
patchmatchnet-post91.71 29066.22 31997.59 251
SCA87.43 27087.21 26488.10 29592.01 30371.98 32589.43 26588.11 31382.26 26288.71 29292.83 26678.65 26597.59 25179.61 28293.30 31294.75 283
cl-mvsnet289.02 23888.50 23990.59 24989.76 32976.45 29286.62 31694.03 25282.98 25492.65 21592.49 27472.05 29997.53 25388.93 16597.02 24197.78 169
Patchmtry90.11 21889.92 21690.66 24790.35 32577.00 28492.96 14792.81 27090.25 14194.74 15696.93 9567.11 31097.52 25485.17 22198.98 10197.46 189
Anonymous20240521192.58 16292.50 16092.83 17996.55 15683.22 19592.43 16691.64 29394.10 4995.59 11896.64 11781.88 24797.50 25585.12 22598.52 14997.77 170
ab-mvs92.40 16792.62 15791.74 21397.02 13481.65 21295.84 5995.50 21886.95 20392.95 20997.56 5590.70 14497.50 25579.63 28197.43 23096.06 245
FMVSNet587.82 26186.56 27691.62 21792.31 29479.81 24293.49 13694.81 23683.26 24791.36 24396.93 9552.77 35597.49 25776.07 30898.03 20397.55 186
diffmvs91.74 17991.93 17191.15 23393.06 28378.17 26888.77 28197.51 11086.28 21092.42 22293.96 24088.04 17897.46 25890.69 12196.67 25497.82 166
ppachtmachnet_test88.61 24988.64 23788.50 28891.76 30670.99 32984.59 33092.98 26779.30 28592.38 22493.53 25379.57 25997.45 25986.50 21097.17 23797.07 206
IterMVS90.18 21690.16 21090.21 26093.15 28175.98 29787.56 29492.97 26886.43 20894.09 17096.40 13078.32 26997.43 26087.87 18794.69 29497.23 203
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HY-MVS82.50 1886.81 28385.93 28489.47 27093.63 27477.93 27094.02 12291.58 29475.68 30483.64 33193.64 24877.40 27597.42 26171.70 33192.07 32893.05 319
TR-MVS87.70 26287.17 26589.27 27694.11 26479.26 25288.69 28391.86 29181.94 26490.69 25589.79 31582.82 23497.42 26172.65 32691.98 32991.14 335
mvs_anonymous90.37 21091.30 18887.58 30092.17 29968.00 33989.84 25794.73 23883.82 24593.22 20097.40 6587.54 18697.40 26387.94 18695.05 28697.34 199
MVP-Stereo90.07 22188.92 23293.54 15596.31 17286.49 14790.93 22295.59 21379.80 27491.48 24195.59 17380.79 25497.39 26478.57 29191.19 33396.76 219
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VNet92.67 15992.96 14691.79 21196.27 17580.15 22991.95 18994.98 22892.19 8494.52 16296.07 15187.43 18897.39 26484.83 23098.38 16197.83 164
testdata91.03 23596.87 14182.01 20794.28 24871.55 32592.46 22095.42 18585.65 21697.38 26682.64 24997.27 23493.70 308
tpm84.38 29584.08 29485.30 31890.47 32363.43 35589.34 26885.63 33277.24 30087.62 30695.03 20261.00 34397.30 26779.26 28691.09 33595.16 272
PAPM_NR91.03 19490.81 19891.68 21696.73 14781.10 22193.72 13096.35 18588.19 17888.77 29192.12 28585.09 21997.25 26882.40 25393.90 30596.68 221
PAPM81.91 31180.11 32187.31 30393.87 27172.32 32484.02 33693.22 26469.47 33676.13 35589.84 31272.15 29897.23 26953.27 35689.02 33992.37 327
gm-plane-assit87.08 35059.33 35771.22 32783.58 34997.20 27073.95 318
PAPR87.65 26586.77 27390.27 25792.85 28777.38 27988.56 28696.23 19076.82 30384.98 32289.75 31786.08 21197.16 27172.33 32793.35 31196.26 237
CHOSEN 1792x268887.19 27785.92 28591.00 23897.13 13279.41 24984.51 33195.60 21064.14 34990.07 26794.81 21078.26 27097.14 27273.34 32195.38 28096.46 229
ITE_SJBPF95.95 5797.34 12293.36 4096.55 17791.93 9094.82 15295.39 18891.99 11097.08 27385.53 21997.96 20797.41 192
API-MVS91.52 18591.61 17891.26 22794.16 26286.26 15794.66 10194.82 23491.17 12092.13 23391.08 29990.03 16097.06 27479.09 28897.35 23390.45 339
XVG-OURS-SEG-HR95.38 7095.00 8796.51 4798.10 7494.07 1892.46 16498.13 4090.69 13093.75 18196.25 14598.03 297.02 27592.08 9195.55 27398.45 113
XVG-OURS94.72 9794.12 11996.50 4898.00 8494.23 1691.48 21098.17 3590.72 12995.30 13096.47 12487.94 18196.98 27691.41 11297.61 22598.30 122
D2MVS89.93 22589.60 22390.92 24094.03 26778.40 26588.69 28394.85 23278.96 28893.08 20395.09 19774.57 28996.94 27788.19 17998.96 10797.41 192
cascas87.02 28186.28 28289.25 27791.56 31176.45 29284.33 33396.78 16271.01 32986.89 31385.91 34481.35 24996.94 27783.09 24595.60 27294.35 292
MDA-MVSNet-bldmvs91.04 19390.88 19591.55 21994.68 25280.16 22885.49 32292.14 28790.41 13994.93 14895.79 16485.10 21896.93 27985.15 22394.19 30497.57 183
BH-w/o87.21 27587.02 26987.79 29994.77 24477.27 28187.90 28993.21 26681.74 26589.99 26988.39 33083.47 22696.93 27971.29 33392.43 32589.15 340
CostFormer83.09 30182.21 30485.73 31389.27 33667.01 34090.35 23886.47 32370.42 33283.52 33393.23 26061.18 34196.85 28177.21 30188.26 34293.34 315
pmmvs-eth3d91.54 18490.73 20193.99 13595.76 21287.86 12290.83 22493.98 25578.23 29494.02 17696.22 14682.62 23896.83 28286.57 20798.33 16897.29 202
MVS84.98 29284.30 29287.01 30491.03 31577.69 27691.94 19194.16 25059.36 35484.23 32887.50 33485.66 21596.80 28371.79 32993.05 31886.54 346
tpmvs84.22 29683.97 29584.94 31987.09 34965.18 34891.21 21688.35 30882.87 25585.21 31990.96 30165.24 32496.75 28479.60 28485.25 34692.90 321
pmmvs587.87 25987.14 26690.07 26393.26 27976.97 28788.89 27892.18 28473.71 31688.36 29793.89 24376.86 28396.73 28580.32 27096.81 24996.51 224
CVMVSNet85.16 29084.72 28986.48 30792.12 30070.19 33192.32 17488.17 31256.15 35690.64 25695.85 15967.97 30896.69 28688.78 17090.52 33692.56 325
tpm281.46 31280.35 31984.80 32089.90 32865.14 34990.44 23485.36 33565.82 34782.05 34292.44 27857.94 34696.69 28670.71 33788.49 34192.56 325
DWT-MVSNet_test80.74 31879.18 32485.43 31687.51 34666.87 34289.87 25686.01 32774.20 31380.86 34780.62 35348.84 35796.68 28881.54 26083.14 35192.75 323
PatchmatchNetpermissive85.22 28984.64 29086.98 30589.51 33469.83 33690.52 23287.34 31878.87 28987.22 31192.74 27066.91 31296.53 28981.77 25886.88 34494.58 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
旧先验290.00 25168.65 33892.71 21496.52 29085.15 223
new-patchmatchnet88.97 24190.79 19983.50 32894.28 26155.83 36085.34 32393.56 25986.18 21295.47 12295.73 16883.10 23096.51 29185.40 22098.06 19998.16 130
ADS-MVSNet284.01 29782.20 30589.41 27289.04 33876.37 29487.57 29290.98 29772.71 32284.46 32592.45 27668.08 30696.48 29270.58 33883.97 34795.38 269
TinyColmap92.00 17692.76 15289.71 26895.62 22177.02 28390.72 22796.17 19587.70 18995.26 13396.29 14192.54 9996.45 29381.77 25898.77 13095.66 263
pmmvs488.95 24287.70 25792.70 18294.30 26085.60 16787.22 30092.16 28674.62 31089.75 27794.19 23077.97 27296.41 29482.71 24896.36 26096.09 243
USDC89.02 23889.08 22888.84 28295.07 23674.50 30888.97 27696.39 18373.21 31893.27 19696.28 14282.16 24296.39 29577.55 29798.80 12795.62 266
MVS_111021_LR93.66 12893.28 14294.80 10496.25 17890.95 6890.21 24295.43 21987.91 18293.74 18394.40 22392.88 9196.38 29690.39 12598.28 17497.07 206
PatchT87.51 26888.17 24985.55 31490.64 31966.91 34192.02 18786.09 32692.20 8389.05 28497.16 8264.15 32896.37 29789.21 16292.98 31993.37 314
MSLP-MVS++93.25 14193.88 12291.37 22396.34 16982.81 20293.11 14397.74 9189.37 15594.08 17195.29 19190.40 15196.35 29890.35 12898.25 17994.96 278
LF4IMVS92.72 15792.02 16994.84 10395.65 21891.99 5492.92 14896.60 17285.08 23392.44 22193.62 24986.80 20296.35 29886.81 20198.25 17996.18 241
gg-mvs-nofinetune82.10 31081.02 31285.34 31787.46 34771.04 32794.74 9867.56 35996.44 2179.43 35198.99 645.24 36096.15 30067.18 34592.17 32788.85 342
JIA-IIPM85.08 29183.04 30091.19 23287.56 34486.14 15989.40 26784.44 34388.98 16182.20 34097.95 3956.82 34996.15 30076.55 30683.45 34991.30 334
KD-MVS_2432*160082.17 30880.75 31586.42 30982.04 36070.09 33381.75 34490.80 29882.56 25690.37 26189.30 32242.90 36496.11 30274.47 31592.55 32393.06 317
miper_refine_blended82.17 30880.75 31586.42 30982.04 36070.09 33381.75 34490.80 29882.56 25690.37 26189.30 32242.90 36496.11 30274.47 31592.55 32393.06 317
CL-MVSNet_2432*160090.04 22389.90 21790.47 25195.24 23377.81 27386.60 31792.62 27785.64 22293.25 19993.92 24183.84 22596.06 30479.93 27898.03 20397.53 187
test_post190.21 2425.85 36265.36 32296.00 30579.61 282
PM-MVS93.33 13592.67 15695.33 8496.58 15494.06 1992.26 17792.18 28485.92 21796.22 9296.61 11985.64 21795.99 30690.35 12898.23 18295.93 250
test_post6.07 36165.74 32195.84 307
MSDG90.82 19690.67 20291.26 22794.16 26283.08 19986.63 31596.19 19390.60 13491.94 23691.89 28789.16 16695.75 30880.96 26994.51 29794.95 279
our_test_387.55 26787.59 25887.44 30291.76 30670.48 33083.83 33790.55 30179.79 27592.06 23592.17 28378.63 26795.63 30984.77 23194.73 29296.22 239
MDTV_nov1_ep1383.88 29689.42 33561.52 35688.74 28287.41 31773.99 31484.96 32394.01 23865.25 32395.53 31078.02 29293.16 314
baseline187.62 26687.31 26188.54 28794.71 25174.27 31193.10 14488.20 31186.20 21192.18 23293.04 26273.21 29495.52 31179.32 28585.82 34595.83 255
MIMVSNet87.13 27986.54 27788.89 28196.05 19276.11 29594.39 11288.51 30781.37 26688.27 29996.75 10872.38 29795.52 31165.71 34895.47 27695.03 276
Gipumacopyleft95.31 7595.80 6393.81 14797.99 8790.91 6996.42 3497.95 7396.69 1691.78 23998.85 1291.77 11495.49 31391.72 10399.08 8995.02 277
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft87.21 1494.97 8495.33 7693.91 14298.97 1497.16 295.54 6995.85 20496.47 2093.40 19197.46 6295.31 3395.47 31486.18 21598.78 12989.11 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp79.28 32378.62 32681.24 33385.97 35356.45 35986.91 30685.26 33872.97 32081.45 34689.17 32556.01 35195.45 31573.19 32376.68 35591.82 333
Anonymous2023120688.77 24688.29 24490.20 26196.31 17278.81 26189.56 26393.49 26174.26 31292.38 22495.58 17682.21 24095.43 31672.07 32898.75 13396.34 233
CHOSEN 280x42080.04 32277.97 32886.23 31290.13 32674.53 30772.87 35289.59 30366.38 34476.29 35485.32 34656.96 34895.36 31769.49 34194.72 29388.79 343
tpmrst82.85 30482.93 30282.64 33087.65 34358.99 35890.14 24687.90 31475.54 30683.93 32991.63 29266.79 31595.36 31781.21 26581.54 35393.57 313
Patchmatch-RL test88.81 24588.52 23889.69 26995.33 23279.94 23786.22 31992.71 27478.46 29295.80 10994.18 23166.25 31895.33 31989.22 16198.53 14893.78 305
tpm cat180.61 32079.46 32384.07 32688.78 34065.06 35189.26 27188.23 31062.27 35281.90 34489.66 31962.70 33795.29 32071.72 33080.60 35491.86 332
test20.0390.80 19790.85 19790.63 24895.63 22079.24 25389.81 25892.87 26989.90 14694.39 16496.40 13085.77 21395.27 32173.86 31999.05 9397.39 196
miper_lstm_enhance89.90 22689.80 21890.19 26291.37 31377.50 27783.82 33895.00 22784.84 23793.05 20594.96 20476.53 28595.20 32289.96 14498.67 13897.86 161
131486.46 28486.33 28186.87 30691.65 30874.54 30691.94 19194.10 25174.28 31184.78 32487.33 33683.03 23195.00 32378.72 28991.16 33491.06 336
MVS-HIRNet78.83 32580.60 31773.51 34093.07 28247.37 36187.10 30378.00 35668.94 33777.53 35397.26 7571.45 30194.62 32463.28 35188.74 34078.55 353
PVSNet76.22 2082.89 30382.37 30384.48 32393.96 26864.38 35378.60 34988.61 30671.50 32684.43 32786.36 34174.27 29094.60 32569.87 34093.69 30994.46 289
XXY-MVS92.58 16293.16 14590.84 24497.75 9579.84 23991.87 19796.22 19285.94 21695.53 12197.68 4992.69 9594.48 32683.21 24497.51 22798.21 128
GG-mvs-BLEND83.24 32985.06 35671.03 32894.99 9265.55 36074.09 35675.51 35544.57 36194.46 32759.57 35387.54 34384.24 348
PatchMatch-RL89.18 23588.02 25392.64 18495.90 20492.87 4588.67 28591.06 29680.34 27190.03 26891.67 29183.34 22794.42 32876.35 30794.84 29090.64 338
CNLPA91.72 18091.20 19093.26 16496.17 18391.02 6691.14 21795.55 21690.16 14290.87 25193.56 25286.31 20894.40 32979.92 28097.12 23894.37 291
SD-MVS95.19 7995.73 6593.55 15396.62 15288.88 10094.67 10098.05 5591.26 11797.25 4896.40 13095.42 2694.36 33092.72 8099.19 7997.40 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UnsupCasMVSNet_bld88.50 25088.03 25289.90 26695.52 22478.88 25987.39 29894.02 25479.32 28493.06 20494.02 23780.72 25594.27 33175.16 31393.08 31796.54 222
WTY-MVS86.93 28286.50 28088.24 29394.96 23774.64 30487.19 30192.07 28978.29 29388.32 29891.59 29378.06 27194.27 33174.88 31493.15 31595.80 256
MS-PatchMatch88.05 25787.75 25588.95 27993.28 27777.93 27087.88 29092.49 28075.42 30792.57 21893.59 25180.44 25694.24 33381.28 26392.75 32094.69 286
CMPMVSbinary68.83 2287.28 27385.67 28692.09 20588.77 34185.42 16990.31 24094.38 24670.02 33488.00 30293.30 25773.78 29394.03 33475.96 31096.54 25696.83 216
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet188.17 25588.24 24687.93 29692.21 29773.62 31480.75 34688.77 30582.51 25994.99 14695.11 19682.70 23693.70 33583.33 24293.83 30696.48 228
MDA-MVSNet_test_wron88.16 25688.23 24787.93 29692.22 29673.71 31380.71 34788.84 30482.52 25894.88 15195.14 19482.70 23693.61 33683.28 24393.80 30796.46 229
test-LLR83.58 29883.17 29984.79 32189.68 33166.86 34383.08 33984.52 34183.07 25282.85 33684.78 34762.86 33593.49 33782.85 24694.86 28894.03 298
test-mter81.21 31580.01 32284.79 32189.68 33166.86 34383.08 33984.52 34173.85 31582.85 33684.78 34743.66 36393.49 33782.85 24694.86 28894.03 298
pmmvs380.83 31778.96 32586.45 30887.23 34877.48 27884.87 32682.31 34863.83 35085.03 32189.50 32049.66 35693.10 33973.12 32495.10 28588.78 344
testgi90.38 20991.34 18787.50 30197.49 11471.54 32689.43 26595.16 22588.38 17594.54 16194.68 21792.88 9193.09 34071.60 33297.85 21397.88 159
UnsupCasMVSNet_eth90.33 21290.34 20890.28 25694.64 25480.24 22789.69 26095.88 20285.77 21993.94 17795.69 16981.99 24492.98 34184.21 23791.30 33297.62 181
EPMVS81.17 31680.37 31883.58 32785.58 35465.08 35090.31 24071.34 35877.31 29985.80 31891.30 29559.38 34492.70 34279.99 27582.34 35292.96 320
ADS-MVSNet82.25 30681.55 30784.34 32489.04 33865.30 34787.57 29285.13 34072.71 32284.46 32592.45 27668.08 30692.33 34370.58 33883.97 34795.38 269
sss87.23 27486.82 27188.46 29093.96 26877.94 26986.84 30892.78 27377.59 29687.61 30791.83 28878.75 26491.92 34477.84 29494.20 30395.52 268
N_pmnet88.90 24387.25 26393.83 14694.40 25993.81 3484.73 32787.09 31979.36 28393.26 19792.43 27979.29 26191.68 34577.50 29997.22 23696.00 247
PMMVS83.00 30281.11 31088.66 28683.81 35986.44 15082.24 34385.65 33161.75 35382.07 34185.64 34579.75 25891.59 34675.99 30993.09 31687.94 345
Patchmatch-test86.10 28686.01 28386.38 31190.63 32074.22 31289.57 26286.69 32185.73 22189.81 27492.83 26665.24 32491.04 34777.82 29695.78 27093.88 304
TESTMET0.1,179.09 32478.04 32782.25 33187.52 34564.03 35483.08 33980.62 35370.28 33380.16 34983.22 35044.13 36290.56 34879.95 27693.36 31092.15 328
DSMNet-mixed82.21 30781.56 30684.16 32589.57 33370.00 33590.65 22977.66 35754.99 35783.30 33497.57 5477.89 27390.50 34966.86 34695.54 27491.97 329
EMVS80.35 32180.28 32080.54 33484.73 35769.07 33772.54 35380.73 35287.80 18681.66 34581.73 35262.89 33489.84 35075.79 31194.65 29582.71 351
PVSNet_070.34 2174.58 32672.96 32979.47 33690.63 32066.24 34673.26 35083.40 34763.67 35178.02 35278.35 35472.53 29689.59 35156.68 35460.05 35882.57 352
E-PMN80.72 31980.86 31480.29 33585.11 35568.77 33872.96 35181.97 34987.76 18783.25 33583.01 35162.22 33889.17 35277.15 30294.31 30182.93 350
test0.0.03 182.48 30581.47 30985.48 31589.70 33073.57 31584.73 32781.64 35083.07 25288.13 30186.61 33862.86 33589.10 35366.24 34790.29 33793.77 306
FPMVS84.50 29483.28 29888.16 29496.32 17194.49 1485.76 32085.47 33483.09 25185.20 32094.26 22763.79 33186.58 35463.72 35091.88 33183.40 349
new_pmnet81.22 31481.01 31381.86 33290.92 31870.15 33284.03 33580.25 35570.83 33085.97 31789.78 31667.93 30984.65 35567.44 34491.90 33090.78 337
PMMVS281.31 31383.44 29774.92 33990.52 32246.49 36269.19 35485.23 33984.30 24287.95 30394.71 21676.95 28284.36 35664.07 34998.09 19793.89 303
wuyk23d87.83 26090.79 19978.96 33790.46 32488.63 10392.72 15390.67 30091.65 10998.68 1197.64 5296.06 1677.53 35759.84 35299.41 5170.73 354
MVEpermissive59.87 2373.86 32772.65 33077.47 33887.00 35174.35 30961.37 35660.93 36167.27 34269.69 35886.49 34081.24 25372.33 35856.45 35583.45 34985.74 347
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 34170.38 36264.56 35248.52 36333.01 35865.50 35974.21 35656.19 35046.64 35938.45 35870.07 35650.30 355
tmp_tt37.97 32844.33 33118.88 34211.80 36321.54 36463.51 35545.66 3644.23 35951.34 36050.48 35759.08 34522.11 36044.50 35768.35 35713.00 356
test1239.49 33012.01 3331.91 3432.87 3641.30 36582.38 3421.34 3661.36 3602.84 3616.56 3602.45 3660.97 3612.73 3595.56 3593.47 357
testmvs9.02 33111.42 3341.81 3442.77 3651.13 36679.44 3481.90 3651.18 3612.65 3626.80 3591.95 3670.87 3622.62 3603.45 3603.44 358
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
cdsmvs_eth3d_5k23.35 32931.13 3320.00 3450.00 3660.00 3670.00 35795.58 2150.00 3620.00 36391.15 29793.43 740.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.56 33210.09 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36390.77 1390.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
ab-mvs-re7.56 33210.08 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36390.69 3060.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
RE-MVS-def96.66 2098.07 7695.27 896.37 3698.12 4195.66 3297.00 5697.03 8995.40 2793.49 4498.84 11798.00 143
IU-MVS98.51 4586.66 14596.83 15972.74 32195.83 10893.00 7299.29 6498.64 95
save fliter97.46 11788.05 11792.04 18597.08 14187.63 191
test072698.51 4586.69 14395.34 7498.18 3291.85 9497.63 3197.37 6795.58 22
GSMVS94.75 283
test_part298.21 6889.41 8996.72 68
sam_mvs166.64 31694.75 283
sam_mvs66.41 317
MTGPAbinary97.62 97
MTMP94.82 9554.62 362
test9_res88.16 18198.40 15797.83 164
agg_prior287.06 20098.36 16797.98 147
test_prior489.91 8090.74 226
test_prior290.21 24289.33 15790.77 25294.81 21090.41 14988.21 17798.55 144
新几何290.02 250
旧先验196.20 18084.17 18394.82 23495.57 17789.57 16297.89 21196.32 234
原ACMM289.34 268
test22296.95 13685.27 17188.83 27993.61 25765.09 34890.74 25494.85 20984.62 22297.36 23293.91 302
segment_acmp92.14 105
testdata188.96 27788.44 174
plane_prior797.71 9988.68 102
plane_prior697.21 12788.23 11386.93 198
plane_prior495.59 173
plane_prior388.43 11190.35 14093.31 192
plane_prior294.56 10791.74 105
plane_prior197.38 120
plane_prior88.12 11593.01 14588.98 16198.06 199
n20.00 367
nn0.00 367
door-mid92.13 288
test1196.65 170
door91.26 295
HQP5-MVS84.89 173
HQP-NCC96.36 16591.37 21187.16 19888.81 287
ACMP_Plane96.36 16591.37 21187.16 19888.81 287
BP-MVS86.55 208
HQP3-MVS97.31 12497.73 216
HQP2-MVS84.76 220
NP-MVS96.82 14387.10 13293.40 255
MDTV_nov1_ep13_2view42.48 36388.45 28767.22 34383.56 33266.80 31372.86 32594.06 297
ACMMP++_ref98.82 123
ACMMP++99.25 72
Test By Simon90.61 145