This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
DTE-MVSNet96.74 1597.43 594.67 10699.13 584.68 17096.51 2897.94 7298.14 398.67 1298.32 2895.04 4399.69 293.27 5799.82 799.62 10
PS-CasMVS96.69 1897.43 594.49 11999.13 584.09 18096.61 2497.97 6697.91 598.64 1398.13 3195.24 3599.65 393.39 5299.84 399.72 2
PEN-MVS96.69 1897.39 894.61 10899.16 384.50 17196.54 2798.05 5198.06 498.64 1398.25 3095.01 4699.65 392.95 7099.83 599.68 4
K. test v393.37 13193.27 13993.66 14598.05 7682.62 19794.35 10886.62 31396.05 2797.51 3798.85 1276.59 27999.65 393.21 5998.20 18198.73 87
CP-MVSNet96.19 4496.80 1794.38 12598.99 1383.82 18496.31 3997.53 10297.60 698.34 1997.52 5791.98 10799.63 693.08 6699.81 899.70 3
WR-MVS_H96.60 2397.05 1495.24 8799.02 1186.44 14596.78 2198.08 4597.42 898.48 1697.86 4491.76 11199.63 694.23 2699.84 399.66 6
PS-MVSNAJss96.01 4996.04 4895.89 6198.82 2288.51 10495.57 6597.88 7388.72 16298.81 698.86 1090.77 13699.60 895.43 1199.53 3399.57 13
MVSFormer92.18 17092.23 16092.04 20294.74 23980.06 22797.15 1197.37 11088.98 15688.83 27692.79 26177.02 27599.60 896.41 496.75 24596.46 222
test_djsdf96.62 2196.49 2597.01 3198.55 3991.77 5697.15 1197.37 11088.98 15698.26 2098.86 1093.35 7499.60 896.41 499.45 4199.66 6
SixPastTwentyTwo94.91 8495.21 7893.98 13398.52 4483.19 19195.93 5294.84 22894.86 3498.49 1598.74 1681.45 24399.60 894.69 1699.39 5299.15 36
mvs_tets96.83 896.71 1997.17 2598.83 2192.51 4596.58 2697.61 9687.57 18898.80 798.90 996.50 1099.59 1296.15 799.47 3799.40 20
UA-Net97.35 497.24 1197.69 598.22 6793.87 2698.42 498.19 3196.95 1395.46 12099.23 493.45 6999.57 1395.34 1299.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1896.96 3499.03 1091.85 5497.98 598.01 6094.15 4498.93 399.07 588.07 17399.57 1395.86 999.69 1499.46 17
EPP-MVSNet93.91 12193.68 12694.59 11398.08 7585.55 16397.44 894.03 24794.22 4394.94 14396.19 14382.07 23899.57 1387.28 19198.89 10898.65 90
jajsoiax96.59 2596.42 2697.12 2798.76 2692.49 4696.44 3397.42 10886.96 19798.71 1098.72 1795.36 3099.56 1695.92 899.45 4199.32 25
v7n96.82 997.31 1095.33 8298.54 4186.81 13596.83 1898.07 4896.59 1998.46 1798.43 2792.91 8699.52 1796.25 699.76 1099.65 8
DPE-MVS95.89 5195.88 5495.92 6097.93 8689.83 7793.46 13298.30 2092.37 7297.75 2796.95 8995.14 3899.51 1891.74 9799.28 6798.41 114
DVP-MVS95.34 7094.63 9897.48 1298.67 2794.05 1896.41 3598.18 3291.26 11395.12 13495.15 18886.60 20299.50 1993.43 5196.81 24298.89 68
anonymousdsp96.74 1596.42 2697.68 798.00 8194.03 2196.97 1597.61 9687.68 18598.45 1898.77 1594.20 6299.50 1996.70 399.40 5199.53 14
APDe-MVS96.46 3096.64 2195.93 5897.68 10089.38 8696.90 1798.41 1392.52 6997.43 4097.92 4095.11 4099.50 1994.45 1999.30 6198.92 66
PGM-MVS96.32 3995.94 5197.43 1798.59 3593.84 2895.33 7198.30 2091.40 11095.76 10696.87 9695.26 3499.45 2292.77 7299.21 7599.00 50
ZNCC-MVS96.42 3496.20 3797.07 2898.80 2592.79 4396.08 4798.16 3891.74 10195.34 12496.36 13395.68 1999.44 2394.41 2199.28 6798.97 58
TranMVSNet+NR-MVSNet96.07 4896.26 3495.50 7798.26 6587.69 11993.75 12497.86 7495.96 2997.48 3897.14 8295.33 3199.44 2390.79 11499.76 1099.38 21
Vis-MVSNetpermissive95.50 6495.48 6795.56 7698.11 7389.40 8595.35 6998.22 2992.36 7394.11 16498.07 3292.02 10399.44 2393.38 5397.67 21597.85 159
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS96.70 1796.42 2697.54 998.05 7694.69 896.13 4598.07 4895.17 3296.82 6096.73 10795.09 4299.43 2692.99 6998.71 12998.50 106
GST-MVS96.24 4295.99 5097.00 3298.65 2892.71 4495.69 6198.01 6092.08 8295.74 10896.28 13895.22 3699.42 2793.17 6199.06 8798.88 70
MP-MVScopyleft96.14 4595.68 6397.51 1198.81 2394.06 1696.10 4697.78 8692.73 6493.48 18296.72 10894.23 6199.42 2791.99 8999.29 6299.05 47
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.46 3096.05 4797.69 598.62 3094.65 996.45 3197.74 8792.59 6895.47 11896.68 11094.50 5699.42 2793.10 6499.26 6998.99 52
HPM-MVScopyleft96.81 1196.62 2297.36 2298.89 1893.53 3497.51 798.44 992.35 7495.95 10096.41 12596.71 899.42 2793.99 3199.36 5499.13 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS96.44 3396.08 4597.54 998.29 6294.62 1096.80 1998.08 4592.67 6795.08 13896.39 13094.77 5099.42 2793.17 6199.44 4398.58 103
region2R96.41 3596.09 4497.38 2198.62 3093.81 3196.32 3897.96 6792.26 7795.28 12896.57 11795.02 4599.41 3293.63 3999.11 8598.94 61
ACMMPR96.46 3096.14 4197.41 1998.60 3393.82 2996.30 4197.96 6792.35 7495.57 11596.61 11594.93 4999.41 3293.78 3599.15 8099.00 50
UniMVSNet_NR-MVSNet95.35 6995.21 7895.76 6897.69 9988.59 10092.26 17297.84 7894.91 3396.80 6195.78 16290.42 14599.41 3291.60 10399.58 2999.29 27
DU-MVS95.28 7495.12 8295.75 6997.75 9288.59 10092.58 15497.81 8193.99 4696.80 6195.90 15390.10 15399.41 3291.60 10399.58 2999.26 28
testtj94.81 9294.42 10396.01 5297.23 12190.51 7094.77 9297.85 7791.29 11294.92 14595.66 16691.71 11299.40 3688.07 17698.25 17398.11 134
TSAR-MVS + MP.94.96 8394.75 9295.57 7598.86 2088.69 9696.37 3696.81 15585.23 22194.75 15097.12 8391.85 10999.40 3693.45 4798.33 16298.62 98
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FC-MVSNet-test95.32 7195.88 5493.62 14698.49 5381.77 20495.90 5498.32 1793.93 4997.53 3697.56 5488.48 16699.40 3692.91 7199.83 599.68 4
abl_697.31 597.12 1397.86 398.54 4195.32 796.61 2498.35 1695.81 3097.55 3497.44 6296.51 999.40 3694.06 3099.23 7398.85 75
ACMMPcopyleft96.61 2296.34 3197.43 1798.61 3293.88 2596.95 1698.18 3292.26 7796.33 7896.84 9995.10 4199.40 3693.47 4699.33 5799.02 49
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tttt051789.81 22188.90 22892.55 18797.00 13079.73 23895.03 8583.65 33689.88 14395.30 12694.79 20953.64 34599.39 4191.99 8998.79 12398.54 104
MP-MVS-pluss96.08 4795.92 5396.57 4399.06 991.21 6193.25 13698.32 1787.89 17996.86 5897.38 6595.55 2499.39 4195.47 1099.47 3799.11 40
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
XVS96.49 2796.18 3897.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16096.49 11994.56 5499.39 4193.57 4099.05 9098.93 62
X-MVStestdata90.70 19788.45 23497.44 1598.56 3693.99 2296.50 2997.95 6994.58 3694.38 16026.89 34894.56 5499.39 4193.57 4099.05 9098.93 62
APD-MVS_3200maxsize96.82 996.65 2097.32 2397.95 8593.82 2996.31 3998.25 2495.51 3196.99 5697.05 8795.63 2199.39 4193.31 5498.88 11098.75 84
test_0728_SECOND94.88 9898.55 3986.72 13795.20 7798.22 2999.38 4693.44 4999.31 5998.53 105
zzz-MVS96.47 2996.14 4197.47 1398.95 1594.05 1893.69 12697.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
MTAPA96.65 2096.38 3097.47 1398.95 1594.05 1895.88 5597.62 9394.46 4096.29 8296.94 9093.56 6799.37 4794.29 2499.42 4598.99 52
SteuartSystems-ACMMP96.40 3696.30 3296.71 4098.63 2991.96 5295.70 5998.01 6093.34 6096.64 6796.57 11794.99 4799.36 4993.48 4599.34 5598.82 77
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS96.00 5096.41 2994.76 10398.51 4586.97 13195.21 7598.10 4291.95 8497.63 3097.25 7596.48 1199.35 5093.29 5599.29 6297.95 147
test_241102_TWO98.10 4291.95 8497.54 3597.25 7595.37 2799.35 5093.29 5599.25 7098.49 107
CS-MVS92.54 16292.31 15993.23 16195.89 19984.07 18193.58 12998.48 888.60 16690.41 25386.23 33292.00 10499.35 5087.54 18598.06 19396.26 230
IS-MVSNet94.49 10394.35 10794.92 9798.25 6686.46 14497.13 1394.31 24296.24 2396.28 8596.36 13382.88 22799.35 5088.19 17299.52 3598.96 59
MSP-MVS95.82 5596.18 3894.72 10598.51 4586.69 13895.20 7797.00 13991.85 9097.40 4397.35 7095.58 2299.34 5493.44 4999.31 5998.13 132
test_0728_THIRD93.26 6197.40 4397.35 7094.69 5199.34 5493.88 3299.42 4598.89 68
UniMVSNet (Re)95.32 7195.15 8095.80 6597.79 9088.91 9292.91 14498.07 4893.46 5896.31 8095.97 15290.14 14999.34 5492.11 8499.64 2199.16 35
HPM-MVS_fast97.01 796.89 1597.39 2099.12 793.92 2497.16 1098.17 3593.11 6296.48 7297.36 6996.92 699.34 5494.31 2399.38 5398.92 66
APD-MVScopyleft95.00 8194.69 9495.93 5897.38 11690.88 6794.59 9897.81 8189.22 15495.46 12096.17 14593.42 7299.34 5489.30 15198.87 11397.56 181
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NR-MVSNet95.28 7495.28 7695.26 8697.75 9287.21 12695.08 8297.37 11093.92 5097.65 2995.90 15390.10 15399.33 5990.11 13599.66 1999.26 28
xxxxxxxxxxxxxcwj95.03 7994.93 8595.33 8297.46 11388.05 11292.04 18098.42 1287.63 18696.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
SF-MVS95.88 5395.88 5495.87 6298.12 7289.65 8095.58 6498.56 791.84 9396.36 7696.68 11094.37 5999.32 6092.41 8199.05 9098.64 94
RRT_MVS91.36 18690.05 20995.29 8589.21 32988.15 10992.51 15994.89 22686.73 20095.54 11695.68 16561.82 33199.30 6294.91 1399.13 8498.43 112
SMA-MVS95.77 5695.54 6596.47 4898.27 6491.19 6295.09 8197.79 8586.48 20197.42 4297.51 5994.47 5899.29 6393.55 4299.29 6298.93 62
FIs94.90 8595.35 7193.55 14998.28 6381.76 20595.33 7198.14 3993.05 6397.07 5097.18 8087.65 18099.29 6391.72 9899.69 1499.61 11
LPG-MVS_test96.38 3896.23 3596.84 3898.36 6092.13 4995.33 7198.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
LGP-MVS_train96.84 3898.36 6092.13 4998.25 2491.78 9797.07 5097.22 7896.38 1399.28 6592.07 8799.59 2599.11 40
HFP-MVS96.39 3796.17 4097.04 2998.51 4593.37 3596.30 4197.98 6392.35 7495.63 11296.47 12095.37 2799.27 6793.78 3599.14 8198.48 108
#test#95.89 5195.51 6697.04 2998.51 4593.37 3595.14 8097.98 6389.34 15195.63 11296.47 12095.37 2799.27 6791.99 8999.14 8198.48 108
thisisatest053088.69 24287.52 25292.20 19496.33 16679.36 24392.81 14784.01 33586.44 20293.67 17892.68 26553.62 34699.25 6989.65 14798.45 15098.00 141
ACMMP_NAP96.21 4396.12 4396.49 4798.90 1791.42 5994.57 10198.03 5690.42 13496.37 7597.35 7095.68 1999.25 6994.44 2099.34 5598.80 79
HPM-MVS++copyleft95.02 8094.39 10496.91 3697.88 8793.58 3394.09 11596.99 14191.05 11892.40 21695.22 18791.03 13499.25 6992.11 8498.69 13297.90 153
ETH3D cwj APD-0.1693.99 12093.38 13595.80 6596.82 13889.92 7492.72 14998.02 5884.73 23393.65 17995.54 17591.68 11399.22 7288.78 16498.49 14998.26 123
CANet92.38 16591.99 16693.52 15393.82 26583.46 18791.14 21297.00 13989.81 14486.47 30494.04 23087.90 17899.21 7389.50 14998.27 16997.90 153
LS3D96.11 4695.83 5896.95 3594.75 23894.20 1497.34 997.98 6397.31 1095.32 12596.77 10193.08 8299.20 7491.79 9598.16 18397.44 186
ETV-MVS92.99 14692.74 14993.72 14495.86 20086.30 15092.33 16897.84 7891.70 10492.81 20486.17 33392.22 9999.19 7588.03 17797.73 20995.66 256
EIA-MVS92.35 16692.03 16493.30 15995.81 20383.97 18292.80 14898.17 3587.71 18389.79 26687.56 32291.17 13299.18 7687.97 17897.27 22796.77 212
3Dnovator+92.74 295.86 5495.77 6196.13 5096.81 14090.79 6996.30 4197.82 8096.13 2494.74 15197.23 7791.33 12199.16 7793.25 5898.30 16798.46 110
Anonymous2023121196.60 2397.13 1295.00 9597.46 11386.35 14997.11 1498.24 2797.58 798.72 898.97 793.15 8099.15 7893.18 6099.74 1299.50 16
v1094.68 9795.27 7792.90 17396.57 15180.15 22394.65 9797.57 9990.68 12797.43 4098.00 3688.18 17099.15 7894.84 1599.55 3299.41 19
HyFIR lowres test87.19 27185.51 28092.24 19397.12 12880.51 22085.03 31996.06 19266.11 33591.66 23392.98 25870.12 29699.14 8075.29 30495.23 27597.07 200
ETH3 D test640091.91 17491.25 18593.89 13996.59 14984.41 17292.10 17797.72 8978.52 28191.82 23193.78 24188.70 16499.13 8183.61 23398.39 15398.14 130
test_040295.73 5796.22 3694.26 12798.19 6985.77 16093.24 13797.24 12696.88 1597.69 2897.77 4794.12 6399.13 8191.54 10699.29 6297.88 155
ACMP88.15 1395.71 5895.43 7096.54 4498.17 7091.73 5794.24 11198.08 4589.46 14996.61 6996.47 12095.85 1799.12 8390.45 11999.56 3198.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_test8_iter0588.21 24888.17 24288.33 28691.62 30166.82 33591.73 20196.60 16786.34 20494.14 16395.38 18547.72 35199.11 8491.78 9698.26 17099.06 46
lessismore_v093.87 14198.05 7683.77 18580.32 34597.13 4997.91 4277.49 26999.11 8492.62 7898.08 19298.74 85
ETH3D-3000-0.194.86 8894.55 10095.81 6397.61 10389.72 7894.05 11698.37 1488.09 17595.06 13995.85 15592.58 9399.10 8690.33 12698.99 9898.62 98
9.1494.81 8997.49 11094.11 11498.37 1487.56 18995.38 12296.03 14994.66 5299.08 8790.70 11698.97 103
UniMVSNet_ETH3D97.13 697.72 395.35 8099.51 287.38 12297.70 697.54 10198.16 298.94 299.33 297.84 499.08 8790.73 11599.73 1399.59 12
v894.65 9895.29 7592.74 17896.65 14579.77 23794.59 9897.17 13091.86 8997.47 3997.93 3988.16 17199.08 8794.32 2299.47 3799.38 21
PVSNet_Blended_VisFu91.63 17991.20 18692.94 17197.73 9583.95 18392.14 17697.46 10678.85 28092.35 21994.98 19884.16 22099.08 8786.36 20596.77 24495.79 250
v124093.29 13393.71 12492.06 20196.01 19177.89 26591.81 19897.37 11085.12 22596.69 6596.40 12686.67 20099.07 9194.51 1898.76 12699.22 31
v192192093.26 13693.61 12892.19 19596.04 19078.31 25991.88 19197.24 12685.17 22396.19 9296.19 14386.76 19999.05 9294.18 2898.84 11599.22 31
MIMVSNet195.52 6395.45 6895.72 7099.14 489.02 9096.23 4496.87 15393.73 5297.87 2598.49 2490.73 14099.05 9286.43 20499.60 2399.10 43
DeepC-MVS91.39 495.43 6695.33 7395.71 7197.67 10190.17 7193.86 12298.02 5887.35 19096.22 8897.99 3794.48 5799.05 9292.73 7599.68 1797.93 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419293.20 14193.54 13192.16 19896.05 18678.26 26091.95 18497.14 13184.98 22995.96 9996.11 14687.08 19199.04 9593.79 3498.84 11599.17 34
Regformer-294.86 8894.55 10095.77 6792.83 28089.98 7391.87 19296.40 17794.38 4296.19 9295.04 19592.47 9899.04 9593.49 4498.31 16598.28 121
WR-MVS93.49 12893.72 12392.80 17797.57 10680.03 22990.14 24195.68 20393.70 5396.62 6895.39 18387.21 18899.04 9587.50 18699.64 2199.33 24
v119293.49 12893.78 12192.62 18496.16 18079.62 23991.83 19797.22 12886.07 20996.10 9696.38 13187.22 18799.02 9894.14 2998.88 11099.22 31
LCM-MVSNet-Re94.20 11594.58 9993.04 16495.91 19783.13 19393.79 12399.19 292.00 8398.84 598.04 3493.64 6699.02 9881.28 25698.54 14296.96 205
Regformer-494.90 8594.67 9695.59 7492.78 28289.02 9092.39 16495.91 19694.50 3896.41 7395.56 17392.10 10299.01 10094.23 2698.14 18598.74 85
ACMM88.83 996.30 4196.07 4696.97 3398.39 5692.95 4194.74 9398.03 5690.82 12397.15 4896.85 9796.25 1599.00 10193.10 6499.33 5798.95 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS94.74 9494.12 11596.60 4298.15 7193.01 3995.84 5697.66 9189.21 15593.28 18995.46 17788.89 16398.98 10289.80 14298.82 11997.80 164
GBi-Net93.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
test193.21 13992.96 14293.97 13495.40 22184.29 17395.99 4896.56 16988.63 16395.10 13598.53 2181.31 24598.98 10286.74 19598.38 15598.65 90
FMVSNet194.84 9095.13 8193.97 13497.60 10484.29 17395.99 4896.56 16992.38 7197.03 5598.53 2190.12 15098.98 10288.78 16499.16 7998.65 90
Effi-MVS+-dtu93.90 12292.60 15497.77 494.74 23996.67 394.00 11895.41 21589.94 14091.93 23092.13 27690.12 15098.97 10687.68 18397.48 22197.67 174
v114493.50 12793.81 11992.57 18696.28 17079.61 24091.86 19696.96 14286.95 19895.91 10396.32 13587.65 18098.96 10793.51 4398.88 11099.13 38
NCCC94.08 11793.54 13195.70 7296.49 15589.90 7692.39 16496.91 14990.64 12892.33 22294.60 21390.58 14498.96 10790.21 13297.70 21398.23 124
test_241102_ONE98.51 4586.97 13198.10 4291.85 9097.63 3097.03 8896.48 1198.95 109
nrg03096.32 3996.55 2495.62 7397.83 8988.55 10295.77 5898.29 2392.68 6598.03 2497.91 4295.13 3998.95 10993.85 3399.49 3699.36 23
HQP_MVS94.26 11293.93 11795.23 8897.71 9688.12 11094.56 10297.81 8191.74 10193.31 18695.59 16886.93 19498.95 10989.26 15598.51 14698.60 101
plane_prior597.81 8198.95 10989.26 15598.51 14698.60 101
IterMVS-SCA-FT91.65 17891.55 17591.94 20393.89 26279.22 24787.56 28993.51 25591.53 10895.37 12396.62 11478.65 26098.90 11391.89 9494.95 27997.70 171
v2v48293.29 13393.63 12792.29 19196.35 16478.82 25391.77 20096.28 18188.45 16895.70 11196.26 14086.02 20898.90 11393.02 6798.81 12199.14 37
EPNet89.80 22288.25 23894.45 12283.91 35086.18 15393.87 12187.07 31191.16 11780.64 33894.72 21078.83 25898.89 11585.17 21498.89 10898.28 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvs-test193.07 14491.80 17196.89 3794.74 23995.83 692.17 17595.41 21589.94 14089.85 26390.59 30190.12 15098.88 11687.68 18395.66 26395.97 241
TEST996.45 15789.46 8190.60 22596.92 14779.09 27690.49 25094.39 21991.31 12298.88 116
train_agg92.71 15591.83 16995.35 8096.45 15789.46 8190.60 22596.92 14779.37 27190.49 25094.39 21991.20 12898.88 11688.66 16798.43 15197.72 170
CDPH-MVS92.67 15691.83 16995.18 9096.94 13288.46 10590.70 22397.07 13677.38 28792.34 22195.08 19392.67 9298.88 11685.74 21098.57 13898.20 127
QAPM92.88 14992.77 14793.22 16295.82 20183.31 18896.45 3197.35 11783.91 23793.75 17596.77 10189.25 16198.88 11684.56 22797.02 23497.49 183
EI-MVSNet-UG-set94.35 10794.27 11294.59 11392.46 28585.87 15892.42 16394.69 23593.67 5796.13 9495.84 15891.20 12898.86 12193.78 3598.23 17699.03 48
EI-MVSNet-Vis-set94.36 10694.28 11094.61 10892.55 28485.98 15692.44 16194.69 23593.70 5396.12 9595.81 15991.24 12598.86 12193.76 3898.22 17898.98 57
V4293.43 13093.58 12992.97 16895.34 22581.22 21392.67 15296.49 17487.25 19296.20 9096.37 13287.32 18698.85 12392.39 8398.21 17998.85 75
Fast-Effi-MVS+91.28 18990.86 19292.53 18895.45 22082.53 19889.25 26896.52 17385.00 22889.91 26188.55 31892.94 8598.84 12484.72 22695.44 26996.22 232
TDRefinement97.68 397.60 497.93 299.02 1195.95 598.61 398.81 497.41 997.28 4598.46 2594.62 5398.84 12494.64 1799.53 3398.99 52
xiu_mvs_v1_base_debu91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
xiu_mvs_v1_base_debi91.47 18391.52 17691.33 21995.69 20981.56 20789.92 24896.05 19383.22 24191.26 23890.74 29591.55 11698.82 12689.29 15295.91 25893.62 303
test_896.37 15989.14 8890.51 22896.89 15079.37 27190.42 25294.36 22191.20 12898.82 126
PS-MVSNAJ88.86 23888.99 22588.48 28394.88 23174.71 29586.69 30895.60 20580.88 25887.83 29487.37 32590.77 13698.82 12682.52 24494.37 29191.93 321
xiu_mvs_v2_base89.00 23489.19 21988.46 28494.86 23374.63 29786.97 29995.60 20580.88 25887.83 29488.62 31791.04 13398.81 13182.51 24594.38 29091.93 321
FMVSNet292.78 15292.73 15192.95 17095.40 22181.98 20294.18 11395.53 21288.63 16396.05 9797.37 6681.31 24598.81 13187.38 19098.67 13398.06 135
Anonymous2024052995.50 6495.83 5894.50 11797.33 11985.93 15795.19 7996.77 15996.64 1897.61 3398.05 3393.23 7798.79 13388.60 16899.04 9598.78 81
Regformer-194.55 10194.33 10895.19 8992.83 28088.54 10391.87 19295.84 20093.99 4695.95 10095.04 19592.00 10498.79 13393.14 6398.31 16598.23 124
VDD-MVS94.37 10594.37 10694.40 12497.49 11086.07 15593.97 12093.28 25894.49 3996.24 8697.78 4587.99 17698.79 13388.92 16199.14 8198.34 116
test1294.43 12395.95 19486.75 13696.24 18489.76 26789.79 15798.79 13397.95 20197.75 169
agg_prior192.60 15891.76 17295.10 9396.20 17688.89 9390.37 23296.88 15179.67 26890.21 25494.41 21791.30 12398.78 13788.46 16998.37 16097.64 176
agg_prior96.20 17688.89 9396.88 15190.21 25498.78 137
CSCG94.69 9694.75 9294.52 11697.55 10787.87 11695.01 8697.57 9992.68 6596.20 9093.44 24891.92 10898.78 13789.11 15999.24 7296.92 206
PHI-MVS94.34 10893.80 12095.95 5595.65 21291.67 5894.82 9097.86 7487.86 18093.04 19994.16 22791.58 11598.78 13790.27 12998.96 10597.41 187
COLMAP_ROBcopyleft91.06 596.75 1496.62 2297.13 2698.38 5794.31 1296.79 2098.32 1796.69 1696.86 5897.56 5495.48 2598.77 14190.11 13599.44 4398.31 119
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet94.03 11894.27 11293.31 15898.87 1982.36 19995.51 6791.78 28597.19 1196.32 7998.60 1884.24 21998.75 14287.09 19298.83 11898.81 78
114514_t90.51 20189.80 21292.63 18398.00 8182.24 20093.40 13497.29 12265.84 33689.40 27194.80 20886.99 19298.75 14283.88 23298.61 13696.89 208
FMVSNet390.78 19590.32 20592.16 19893.03 27779.92 23292.54 15594.95 22486.17 20895.10 13596.01 15069.97 29798.75 14286.74 19598.38 15597.82 162
IterMVS-LS93.78 12394.28 11092.27 19296.27 17179.21 24891.87 19296.78 15791.77 9996.57 7197.07 8587.15 18998.74 14591.99 8999.03 9798.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS92.05 17292.16 16191.72 20994.44 24980.13 22587.62 28697.25 12587.34 19192.22 22493.18 25589.54 15998.73 14689.67 14698.20 18196.30 228
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest051584.72 28782.99 29489.90 26092.96 27875.33 29484.36 32683.42 33777.37 28888.27 28986.65 32753.94 34498.72 14782.56 24397.40 22495.67 255
alignmvs93.26 13692.85 14594.50 11795.70 20887.45 12093.45 13395.76 20191.58 10695.25 13092.42 27281.96 24098.72 14791.61 10297.87 20597.33 195
MCST-MVS92.91 14892.51 15594.10 13097.52 10885.72 16191.36 20997.13 13380.33 26292.91 20394.24 22391.23 12698.72 14789.99 13997.93 20297.86 157
XVG-ACMP-BASELINE95.68 5995.34 7296.69 4198.40 5593.04 3894.54 10598.05 5190.45 13396.31 8096.76 10392.91 8698.72 14791.19 11099.42 4598.32 117
CNVR-MVS94.58 10094.29 10995.46 7996.94 13289.35 8791.81 19896.80 15689.66 14693.90 17395.44 17992.80 9098.72 14792.74 7498.52 14498.32 117
DP-MVS95.62 6095.84 5794.97 9697.16 12488.62 9994.54 10597.64 9296.94 1496.58 7097.32 7393.07 8398.72 14790.45 11998.84 11597.57 179
testing_294.03 11894.38 10593.00 16696.79 14281.41 21192.87 14696.96 14285.88 21397.06 5397.92 4091.18 13198.71 15391.72 9899.04 9598.87 71
原ACMM192.87 17496.91 13484.22 17697.01 13876.84 29289.64 26994.46 21688.00 17598.70 15481.53 25498.01 19895.70 254
ANet_high94.83 9196.28 3390.47 24596.65 14573.16 30994.33 10998.74 596.39 2298.09 2398.93 893.37 7398.70 15490.38 12299.68 1799.53 14
test_prior393.29 13392.85 14594.61 10895.95 19487.23 12490.21 23797.36 11589.33 15290.77 24594.81 20590.41 14698.68 15688.21 17098.55 13997.93 149
test_prior94.61 10895.95 19487.23 12497.36 11598.68 15697.93 149
Effi-MVS+92.79 15192.74 14992.94 17195.10 22883.30 18994.00 11897.53 10291.36 11189.35 27290.65 30094.01 6498.66 15887.40 18995.30 27396.88 209
canonicalmvs94.59 9994.69 9494.30 12695.60 21687.03 13095.59 6398.24 2791.56 10795.21 13392.04 27894.95 4898.66 15891.45 10797.57 21997.20 199
3Dnovator92.54 394.80 9394.90 8694.47 12095.47 21987.06 12896.63 2397.28 12491.82 9694.34 16297.41 6390.60 14398.65 16092.47 8098.11 18997.70 171
ACMH+88.43 1196.48 2896.82 1695.47 7898.54 4189.06 8995.65 6298.61 696.10 2598.16 2197.52 5796.90 798.62 16190.30 12799.60 2398.72 88
HQP4-MVS88.81 27898.61 16298.15 129
LTVRE_ROB93.87 197.93 298.16 297.26 2498.81 2393.86 2799.07 298.98 397.01 1298.92 498.78 1495.22 3698.61 16296.85 299.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Fast-Effi-MVS+-dtu92.77 15392.16 16194.58 11594.66 24588.25 10792.05 17996.65 16589.62 14790.08 25791.23 28892.56 9498.60 16486.30 20696.27 25496.90 207
HQP-MVS92.09 17191.49 17993.88 14096.36 16184.89 16891.37 20697.31 11987.16 19388.81 27893.40 24984.76 21698.60 16486.55 20197.73 20998.14 130
无先验89.94 24795.75 20270.81 32198.59 16681.17 25994.81 273
112190.26 21189.23 21893.34 15697.15 12687.40 12191.94 18694.39 24067.88 33191.02 24394.91 20186.91 19698.59 16681.17 25997.71 21294.02 293
DeepC-MVS_fast89.96 793.73 12493.44 13394.60 11296.14 18187.90 11593.36 13597.14 13185.53 21893.90 17395.45 17891.30 12398.59 16689.51 14898.62 13597.31 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU89.85 22089.17 22091.87 20492.20 29080.02 23090.79 22095.87 19886.02 21082.53 32891.77 28180.01 25298.57 16985.66 21197.70 21397.01 203
OPM-MVS95.61 6195.45 6896.08 5198.49 5391.00 6492.65 15397.33 11890.05 13996.77 6396.85 9795.04 4398.56 17092.77 7299.06 8798.70 89
jason89.17 23088.32 23691.70 21095.73 20780.07 22688.10 28393.22 25971.98 31490.09 25692.79 26178.53 26398.56 17087.43 18897.06 23296.46 222
jason: jason.
F-COLMAP92.28 16891.06 18995.95 5597.52 10891.90 5393.53 13097.18 12983.98 23688.70 28494.04 23088.41 16898.55 17280.17 26795.99 25797.39 191
lupinMVS88.34 24787.31 25491.45 21694.74 23980.06 22787.23 29492.27 27771.10 31888.83 27691.15 28977.02 27598.53 17386.67 19896.75 24595.76 251
PCF-MVS84.52 1789.12 23187.71 24993.34 15696.06 18585.84 15986.58 31297.31 11968.46 32993.61 18093.89 23787.51 18398.52 17467.85 33398.11 18995.66 256
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet95.14 7895.67 6493.58 14897.76 9183.15 19294.58 10097.58 9893.39 5997.05 5498.04 3493.25 7698.51 17589.75 14599.59 2599.08 44
EI-MVSNet92.99 14693.26 14092.19 19592.12 29279.21 24892.32 16994.67 23791.77 9995.24 13195.85 15587.14 19098.49 17691.99 8998.26 17098.86 72
casdiffmvs94.32 10994.80 9092.85 17596.05 18681.44 21092.35 16798.05 5191.53 10895.75 10796.80 10093.35 7498.49 17691.01 11298.32 16498.64 94
MVSTER89.32 22788.75 23091.03 23090.10 31976.62 28290.85 21894.67 23782.27 25295.24 13195.79 16061.09 33498.49 17690.49 11898.26 17097.97 146
UGNet93.08 14292.50 15694.79 10293.87 26387.99 11495.07 8394.26 24490.64 12887.33 30097.67 5086.89 19798.49 17688.10 17598.71 12997.91 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Regformer-394.28 11094.23 11494.46 12192.78 28286.28 15192.39 16494.70 23493.69 5695.97 9895.56 17391.34 12098.48 18093.45 4798.14 18598.62 98
baseline94.26 11294.80 9092.64 18196.08 18480.99 21693.69 12698.04 5590.80 12494.89 14696.32 13593.19 7898.48 18091.68 10198.51 14698.43 112
LFMVS91.33 18791.16 18891.82 20596.27 17179.36 24395.01 8685.61 32496.04 2894.82 14897.06 8672.03 29398.46 18284.96 22298.70 13197.65 175
thres600view787.66 25887.10 26189.36 26896.05 18673.17 30892.72 14985.31 32791.89 8893.29 18890.97 29263.42 32498.39 18373.23 31296.99 23996.51 217
IB-MVS77.21 1983.11 29481.05 30489.29 26991.15 30675.85 29085.66 31586.00 31979.70 26782.02 33386.61 32848.26 35098.39 18377.84 28692.22 31693.63 302
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v14892.87 15093.29 13691.62 21296.25 17477.72 26791.28 21095.05 22189.69 14595.93 10296.04 14887.34 18598.38 18590.05 13897.99 19998.78 81
CDS-MVSNet89.55 22388.22 24193.53 15295.37 22486.49 14289.26 26693.59 25379.76 26691.15 24192.31 27377.12 27498.38 18577.51 29097.92 20395.71 253
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 16992.13 16392.68 18094.53 24884.10 17995.70 5997.03 13782.44 25191.14 24296.42 12488.47 16798.38 18585.95 20997.47 22295.55 260
MVS_Test92.57 16193.29 13690.40 24793.53 26775.85 29092.52 15696.96 14288.73 16192.35 21996.70 10990.77 13698.37 18892.53 7995.49 26796.99 204
VPNet93.08 14293.76 12291.03 23098.60 3375.83 29291.51 20495.62 20491.84 9395.74 10897.10 8489.31 16098.32 18985.07 22199.06 8798.93 62
AdaColmapbinary91.63 17991.36 18292.47 19095.56 21786.36 14892.24 17496.27 18288.88 16089.90 26292.69 26491.65 11498.32 18977.38 29297.64 21692.72 315
thres100view90087.35 26686.89 26388.72 27896.14 18173.09 31093.00 14185.31 32792.13 8193.26 19190.96 29363.42 32498.28 19171.27 32496.54 24994.79 274
tfpn200view987.05 27486.52 27188.67 27995.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24994.79 274
thres40087.20 27086.52 27189.24 27295.77 20472.94 31191.89 18986.00 31990.84 12192.61 20989.80 30563.93 32198.28 19171.27 32496.54 24996.51 217
Vis-MVSNet (Re-imp)90.42 20490.16 20691.20 22697.66 10277.32 27294.33 10987.66 30791.20 11592.99 20095.13 19075.40 28298.28 19177.86 28599.19 7697.99 142
eth_miper_zixun_eth90.72 19690.61 19991.05 22992.04 29476.84 28086.91 30196.67 16485.21 22294.41 15893.92 23679.53 25598.26 19589.76 14497.02 23498.06 135
PLCcopyleft85.34 1590.40 20588.92 22694.85 9996.53 15390.02 7291.58 20396.48 17580.16 26386.14 30692.18 27485.73 21098.25 19676.87 29594.61 28896.30 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
新几何193.17 16397.16 12487.29 12394.43 23967.95 33091.29 23794.94 20086.97 19398.23 19781.06 26197.75 20893.98 294
pmmvs696.80 1297.36 995.15 9199.12 787.82 11896.68 2297.86 7496.10 2598.14 2299.28 397.94 398.21 19891.38 10999.69 1499.42 18
1112_ss88.42 24587.41 25391.45 21696.69 14480.99 21689.72 25496.72 16273.37 30787.00 30290.69 29877.38 27198.20 19981.38 25593.72 30095.15 266
DP-MVS Recon92.31 16791.88 16893.60 14797.18 12386.87 13491.10 21497.37 11084.92 23092.08 22794.08 22988.59 16598.20 19983.50 23498.14 18595.73 252
TAMVS90.16 21389.05 22293.49 15496.49 15586.37 14790.34 23492.55 27380.84 26092.99 20094.57 21581.94 24198.20 19973.51 31098.21 17995.90 246
ET-MVSNet_ETH3D86.15 27984.27 28691.79 20693.04 27681.28 21287.17 29786.14 31679.57 26983.65 32088.66 31657.10 33998.18 20287.74 18295.40 27095.90 246
tfpnnormal94.27 11194.87 8892.48 18997.71 9680.88 21894.55 10495.41 21593.70 5396.67 6697.72 4891.40 11998.18 20287.45 18799.18 7898.36 115
cl_fuxian91.32 18891.42 18091.00 23392.29 28776.79 28187.52 29296.42 17685.76 21694.72 15393.89 23782.73 23098.16 20490.93 11398.55 13998.04 138
PVSNet_BlendedMVS90.35 20889.96 21091.54 21594.81 23578.80 25590.14 24196.93 14579.43 27088.68 28595.06 19486.27 20598.15 20580.27 26498.04 19697.68 173
PVSNet_Blended88.74 24188.16 24490.46 24694.81 23578.80 25586.64 30996.93 14574.67 29988.68 28589.18 31486.27 20598.15 20580.27 26496.00 25694.44 283
OMC-MVS94.22 11493.69 12595.81 6397.25 12091.27 6092.27 17197.40 10987.10 19694.56 15595.42 18093.74 6598.11 20786.62 19998.85 11498.06 135
DeepPCF-MVS90.46 694.20 11593.56 13096.14 4995.96 19392.96 4089.48 25997.46 10685.14 22496.23 8795.42 18093.19 7898.08 20890.37 12398.76 12697.38 193
OPU-MVS95.15 9196.84 13789.43 8395.21 7595.66 16693.12 8198.06 20986.28 20798.61 13697.95 147
miper_ehance_all_eth90.48 20290.42 20390.69 24091.62 30176.57 28386.83 30496.18 18983.38 23994.06 16892.66 26682.20 23698.04 21089.79 14397.02 23497.45 185
test_yl90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
DCV-MVSNet90.11 21489.73 21591.26 22294.09 25779.82 23490.44 22992.65 27090.90 11993.19 19493.30 25173.90 28598.03 21182.23 24796.87 24095.93 243
testdata298.03 21180.24 266
DPM-MVS89.35 22688.40 23592.18 19796.13 18384.20 17786.96 30096.15 19175.40 29887.36 29991.55 28683.30 22398.01 21482.17 24996.62 24894.32 286
thres20085.85 28185.18 28187.88 29294.44 24972.52 31489.08 27086.21 31588.57 16791.44 23588.40 31964.22 31998.00 21568.35 33295.88 26193.12 309
ACMH88.36 1296.59 2597.43 594.07 13198.56 3685.33 16596.33 3798.30 2094.66 3598.72 898.30 2997.51 598.00 21594.87 1499.59 2598.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl-mvsnet190.65 19990.56 20090.91 23791.85 29676.99 27786.75 30695.36 21885.52 22094.06 16894.89 20277.37 27297.99 21790.28 12898.97 10397.76 167
cl-mvsnet_90.65 19990.56 20090.91 23791.85 29676.98 27886.75 30695.36 21885.53 21894.06 16894.89 20277.36 27397.98 21890.27 12998.98 9997.76 167
TAPA-MVS88.58 1092.49 16391.75 17394.73 10496.50 15489.69 7992.91 14497.68 9078.02 28592.79 20594.10 22890.85 13597.96 21984.76 22598.16 18396.54 215
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TransMVSNet (Re)95.27 7696.04 4892.97 16898.37 5981.92 20395.07 8396.76 16093.97 4897.77 2698.57 1995.72 1897.90 22088.89 16299.23 7399.08 44
EG-PatchMatch MVS94.54 10294.67 9694.14 12997.87 8886.50 14192.00 18396.74 16188.16 17496.93 5797.61 5293.04 8497.90 22091.60 10398.12 18898.03 139
miper_enhance_ethall88.42 24587.87 24790.07 25788.67 33475.52 29385.10 31895.59 20875.68 29492.49 21289.45 31378.96 25797.88 22287.86 18197.02 23496.81 211
BH-RMVSNet90.47 20390.44 20290.56 24495.21 22778.65 25789.15 26993.94 25188.21 17292.74 20694.22 22486.38 20397.88 22278.67 28295.39 27195.14 267
Test_1112_low_res87.50 26386.58 26890.25 25196.80 14177.75 26687.53 29196.25 18369.73 32586.47 30493.61 24475.67 28197.88 22279.95 26993.20 30595.11 268
MAR-MVS90.32 21088.87 22994.66 10794.82 23491.85 5494.22 11294.75 23280.91 25787.52 29888.07 32186.63 20197.87 22576.67 29696.21 25594.25 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest94.88 8794.51 10296.00 5398.02 7992.17 4795.26 7498.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
TestCases96.00 5398.02 7992.17 4798.43 1090.48 13195.04 14096.74 10592.54 9597.86 22685.11 21998.98 9997.98 143
CLD-MVS91.82 17591.41 18193.04 16496.37 15983.65 18686.82 30597.29 12284.65 23492.27 22389.67 31092.20 10097.85 22883.95 23199.47 3797.62 177
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS_030490.96 19290.15 20893.37 15593.17 27287.06 12893.62 12892.43 27689.60 14882.25 32995.50 17682.56 23497.83 22984.41 22997.83 20795.22 264
TSAR-MVS + GP.93.07 14492.41 15895.06 9495.82 20190.87 6890.97 21692.61 27288.04 17694.61 15493.79 24088.08 17297.81 23089.41 15098.39 15396.50 220
ambc92.98 16796.88 13583.01 19595.92 5396.38 17996.41 7397.48 6088.26 16997.80 23189.96 14098.93 10798.12 133
baseline283.38 29381.54 30188.90 27491.38 30472.84 31388.78 27581.22 34278.97 27779.82 34087.56 32261.73 33297.80 23174.30 30790.05 32896.05 239
OpenMVS_ROBcopyleft85.12 1689.52 22589.05 22290.92 23594.58 24781.21 21491.10 21493.41 25777.03 29193.41 18393.99 23483.23 22497.80 23179.93 27194.80 28393.74 300
BH-untuned90.68 19890.90 19090.05 25995.98 19279.57 24190.04 24494.94 22587.91 17794.07 16793.00 25787.76 17997.78 23479.19 27995.17 27692.80 313
RPSCF95.58 6294.89 8797.62 897.58 10596.30 495.97 5197.53 10292.42 7093.41 18397.78 4591.21 12797.77 23591.06 11197.06 23298.80 79
MVS_111021_HR93.63 12693.42 13494.26 12796.65 14586.96 13389.30 26596.23 18588.36 17193.57 18194.60 21393.45 6997.77 23590.23 13198.38 15598.03 139
GA-MVS87.70 25686.82 26490.31 24893.27 27077.22 27484.72 32392.79 26785.11 22689.82 26490.07 30266.80 30697.76 23784.56 22794.27 29495.96 242
Baseline_NR-MVSNet94.47 10495.09 8392.60 18598.50 5280.82 21992.08 17896.68 16393.82 5196.29 8298.56 2090.10 15397.75 23890.10 13799.66 1999.24 30
MG-MVS89.54 22489.80 21288.76 27794.88 23172.47 31589.60 25692.44 27585.82 21489.48 27095.98 15182.85 22897.74 23981.87 25095.27 27496.08 237
pm-mvs195.43 6695.94 5193.93 13798.38 5785.08 16795.46 6897.12 13491.84 9397.28 4598.46 2595.30 3397.71 24090.17 13399.42 4598.99 52
EPNet_dtu85.63 28284.37 28489.40 26786.30 34474.33 30291.64 20288.26 30084.84 23172.96 34789.85 30371.27 29597.69 24176.60 29797.62 21796.18 234
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet87.39 26586.71 26789.44 26593.40 26876.11 28794.93 8990.00 29357.17 34595.71 11097.37 6664.77 31897.68 24292.67 7794.37 29194.52 281
CR-MVSNet87.89 25287.12 26090.22 25291.01 30878.93 25092.52 15692.81 26573.08 30989.10 27396.93 9267.11 30397.64 24388.80 16392.70 31394.08 288
RPMNet89.30 22889.00 22490.22 25291.01 30878.93 25092.52 15687.85 30691.91 8789.10 27396.89 9568.84 29897.64 24390.17 13392.70 31394.08 288
patchmatchnet-post91.71 28266.22 31297.59 245
SCA87.43 26487.21 25788.10 28992.01 29571.98 31789.43 26088.11 30482.26 25388.71 28392.83 25978.65 26097.59 24579.61 27493.30 30494.75 276
cl-mvsnet289.02 23288.50 23390.59 24389.76 32176.45 28486.62 31194.03 24782.98 24792.65 20892.49 26772.05 29297.53 24788.93 16097.02 23497.78 165
Patchmtry90.11 21489.92 21190.66 24190.35 31777.00 27692.96 14292.81 26590.25 13794.74 15196.93 9267.11 30397.52 24885.17 21498.98 9997.46 184
Anonymous20240521192.58 15992.50 15692.83 17696.55 15283.22 19092.43 16291.64 28694.10 4595.59 11496.64 11381.88 24297.50 24985.12 21898.52 14497.77 166
ab-mvs92.40 16492.62 15391.74 20897.02 12981.65 20695.84 5695.50 21386.95 19892.95 20297.56 5490.70 14197.50 24979.63 27397.43 22396.06 238
FMVSNet587.82 25586.56 26991.62 21292.31 28679.81 23693.49 13194.81 23183.26 24091.36 23696.93 9252.77 34797.49 25176.07 30098.03 19797.55 182
diffmvs91.74 17691.93 16791.15 22893.06 27578.17 26188.77 27697.51 10586.28 20592.42 21593.96 23588.04 17497.46 25290.69 11796.67 24797.82 162
ppachtmachnet_test88.61 24388.64 23188.50 28291.76 29870.99 32184.59 32492.98 26279.30 27592.38 21793.53 24779.57 25497.45 25386.50 20397.17 23097.07 200
IterMVS90.18 21290.16 20690.21 25493.15 27375.98 28987.56 28992.97 26386.43 20394.09 16596.40 12678.32 26497.43 25487.87 18094.69 28697.23 198
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HY-MVS82.50 1886.81 27785.93 27789.47 26493.63 26677.93 26394.02 11791.58 28775.68 29483.64 32193.64 24277.40 27097.42 25571.70 32192.07 31893.05 310
TR-MVS87.70 25687.17 25889.27 27094.11 25679.26 24588.69 27891.86 28481.94 25490.69 24889.79 30782.82 22997.42 25572.65 31691.98 31991.14 326
mvs_anonymous90.37 20791.30 18487.58 29492.17 29168.00 32989.84 25294.73 23383.82 23893.22 19397.40 6487.54 18297.40 25787.94 17995.05 27897.34 194
MVP-Stereo90.07 21788.92 22693.54 15196.31 16886.49 14290.93 21795.59 20879.80 26491.48 23495.59 16880.79 24997.39 25878.57 28391.19 32396.76 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VNet92.67 15692.96 14291.79 20696.27 17180.15 22391.95 18494.98 22392.19 8094.52 15796.07 14787.43 18497.39 25884.83 22398.38 15597.83 160
testdata91.03 23096.87 13682.01 20194.28 24371.55 31592.46 21395.42 18085.65 21297.38 26082.64 24297.27 22793.70 301
tpm84.38 28984.08 28785.30 31090.47 31563.43 34589.34 26385.63 32377.24 29087.62 29695.03 19761.00 33597.30 26179.26 27891.09 32595.16 265
PAPM_NR91.03 19190.81 19491.68 21196.73 14381.10 21593.72 12596.35 18088.19 17388.77 28292.12 27785.09 21597.25 26282.40 24693.90 29796.68 214
PAPM81.91 30380.11 31287.31 29793.87 26372.32 31684.02 32993.22 25969.47 32676.13 34589.84 30472.15 29197.23 26353.27 34689.02 32992.37 318
gm-plane-assit87.08 34259.33 34771.22 31783.58 33997.20 26473.95 308
PAPR87.65 25986.77 26690.27 25092.85 27977.38 27188.56 28196.23 18576.82 29384.98 31289.75 30986.08 20797.16 26572.33 31793.35 30396.26 230
CHOSEN 1792x268887.19 27185.92 27891.00 23397.13 12779.41 24284.51 32595.60 20564.14 33990.07 25894.81 20578.26 26597.14 26673.34 31195.38 27296.46 222
ITE_SJBPF95.95 5597.34 11893.36 3796.55 17291.93 8694.82 14895.39 18391.99 10697.08 26785.53 21297.96 20097.41 187
API-MVS91.52 18291.61 17491.26 22294.16 25486.26 15294.66 9694.82 22991.17 11692.13 22691.08 29190.03 15697.06 26879.09 28097.35 22690.45 330
XVG-OURS-SEG-HR95.38 6895.00 8496.51 4598.10 7494.07 1592.46 16098.13 4190.69 12693.75 17596.25 14198.03 297.02 26992.08 8695.55 26598.45 111
XVG-OURS94.72 9594.12 11596.50 4698.00 8194.23 1391.48 20598.17 3590.72 12595.30 12696.47 12087.94 17796.98 27091.41 10897.61 21898.30 120
D2MVS89.93 21889.60 21790.92 23594.03 25978.40 25888.69 27894.85 22778.96 27893.08 19695.09 19274.57 28396.94 27188.19 17298.96 10597.41 187
cascas87.02 27586.28 27589.25 27191.56 30376.45 28484.33 32796.78 15771.01 31986.89 30385.91 33481.35 24496.94 27183.09 23895.60 26494.35 285
MDA-MVSNet-bldmvs91.04 19090.88 19191.55 21494.68 24480.16 22285.49 31692.14 28190.41 13594.93 14495.79 16085.10 21496.93 27385.15 21694.19 29697.57 179
BH-w/o87.21 26987.02 26287.79 29394.77 23777.27 27387.90 28493.21 26181.74 25589.99 26088.39 32083.47 22196.93 27371.29 32392.43 31589.15 331
CostFormer83.09 29582.21 29785.73 30589.27 32867.01 33090.35 23386.47 31470.42 32283.52 32393.23 25461.18 33396.85 27577.21 29388.26 33293.34 308
pmmvs-eth3d91.54 18190.73 19793.99 13295.76 20687.86 11790.83 21993.98 25078.23 28494.02 17196.22 14282.62 23396.83 27686.57 20098.33 16297.29 197
MVS84.98 28684.30 28587.01 29891.03 30777.69 26891.94 18694.16 24559.36 34484.23 31887.50 32485.66 21196.80 27771.79 31993.05 31086.54 337
tpmvs84.22 29083.97 28884.94 31187.09 34165.18 33891.21 21188.35 29982.87 24885.21 30990.96 29365.24 31696.75 27879.60 27685.25 33692.90 312
pmmvs587.87 25387.14 25990.07 25793.26 27176.97 27988.89 27392.18 27873.71 30688.36 28793.89 23776.86 27896.73 27980.32 26396.81 24296.51 217
CVMVSNet85.16 28484.72 28286.48 30192.12 29270.19 32392.32 16988.17 30356.15 34690.64 24995.85 15567.97 30196.69 28088.78 16490.52 32692.56 316
tpm281.46 30480.35 31084.80 31289.90 32065.14 33990.44 22985.36 32665.82 33782.05 33292.44 27057.94 33896.69 28070.71 32788.49 33192.56 316
DWT-MVSNet_test80.74 31079.18 31585.43 30887.51 33866.87 33289.87 25186.01 31874.20 30380.86 33780.62 34348.84 34996.68 28281.54 25383.14 34192.75 314
PatchmatchNetpermissive85.22 28384.64 28386.98 29989.51 32669.83 32690.52 22787.34 30978.87 27987.22 30192.74 26366.91 30596.53 28381.77 25186.88 33494.58 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
旧先验290.00 24668.65 32892.71 20796.52 28485.15 216
new-patchmatchnet88.97 23590.79 19583.50 32094.28 25355.83 35085.34 31793.56 25486.18 20795.47 11895.73 16383.10 22596.51 28585.40 21398.06 19398.16 128
ADS-MVSNet284.01 29182.20 29889.41 26689.04 33076.37 28687.57 28790.98 29072.71 31284.46 31592.45 26868.08 29996.48 28670.58 32883.97 33795.38 262
TinyColmap92.00 17392.76 14889.71 26295.62 21577.02 27590.72 22296.17 19087.70 18495.26 12996.29 13792.54 9596.45 28781.77 25198.77 12595.66 256
pmmvs488.95 23687.70 25092.70 17994.30 25285.60 16287.22 29592.16 28074.62 30089.75 26894.19 22577.97 26796.41 28882.71 24196.36 25396.09 236
USDC89.02 23289.08 22188.84 27695.07 22974.50 30088.97 27196.39 17873.21 30893.27 19096.28 13882.16 23796.39 28977.55 28998.80 12295.62 259
MVS_111021_LR93.66 12593.28 13894.80 10196.25 17490.95 6590.21 23795.43 21487.91 17793.74 17794.40 21892.88 8896.38 29090.39 12198.28 16897.07 200
PatchT87.51 26288.17 24285.55 30690.64 31166.91 33192.02 18286.09 31792.20 7989.05 27597.16 8164.15 32096.37 29189.21 15892.98 31193.37 307
MSLP-MVS++93.25 13893.88 11891.37 21896.34 16582.81 19693.11 13897.74 8789.37 15094.08 16695.29 18690.40 14896.35 29290.35 12498.25 17394.96 271
LF4IMVS92.72 15492.02 16594.84 10095.65 21291.99 5192.92 14396.60 16785.08 22792.44 21493.62 24386.80 19896.35 29286.81 19498.25 17396.18 234
gg-mvs-nofinetune82.10 30281.02 30585.34 30987.46 33971.04 31994.74 9367.56 35096.44 2179.43 34198.99 645.24 35296.15 29467.18 33592.17 31788.85 333
JIA-IIPM85.08 28583.04 29391.19 22787.56 33686.14 15489.40 26284.44 33488.98 15682.20 33097.95 3856.82 34196.15 29476.55 29883.45 33991.30 325
test_post190.21 2375.85 35265.36 31496.00 29679.61 274
PM-MVS93.33 13292.67 15295.33 8296.58 15094.06 1692.26 17292.18 27885.92 21296.22 8896.61 11585.64 21395.99 29790.35 12498.23 17695.93 243
test_post6.07 35165.74 31395.84 298
MSDG90.82 19390.67 19891.26 22294.16 25483.08 19486.63 31096.19 18890.60 13091.94 22991.89 27989.16 16295.75 29980.96 26294.51 28994.95 272
our_test_387.55 26187.59 25187.44 29691.76 29870.48 32283.83 33090.55 29279.79 26592.06 22892.17 27578.63 26295.63 30084.77 22494.73 28496.22 232
MDTV_nov1_ep1383.88 28989.42 32761.52 34688.74 27787.41 30873.99 30484.96 31394.01 23365.25 31595.53 30178.02 28493.16 306
baseline187.62 26087.31 25488.54 28194.71 24374.27 30393.10 13988.20 30286.20 20692.18 22593.04 25673.21 28895.52 30279.32 27785.82 33595.83 248
MIMVSNet87.13 27386.54 27088.89 27596.05 18676.11 28794.39 10788.51 29881.37 25688.27 28996.75 10472.38 29095.52 30265.71 33895.47 26895.03 269
Gipumacopyleft95.31 7395.80 6093.81 14397.99 8490.91 6696.42 3497.95 6996.69 1691.78 23298.85 1291.77 11095.49 30491.72 9899.08 8695.02 270
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft87.21 1494.97 8295.33 7393.91 13898.97 1497.16 295.54 6695.85 19996.47 2093.40 18597.46 6195.31 3295.47 30586.18 20898.78 12489.11 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp79.28 31578.62 31781.24 32585.97 34556.45 34986.91 30185.26 32972.97 31081.45 33689.17 31556.01 34395.45 30673.19 31376.68 34591.82 324
Anonymous2023120688.77 24088.29 23790.20 25596.31 16878.81 25489.56 25893.49 25674.26 30292.38 21795.58 17182.21 23595.43 30772.07 31898.75 12896.34 226
CHOSEN 280x42080.04 31477.97 31986.23 30490.13 31874.53 29972.87 34389.59 29466.38 33476.29 34485.32 33656.96 34095.36 30869.49 33194.72 28588.79 334
tpmrst82.85 29882.93 29582.64 32287.65 33558.99 34890.14 24187.90 30575.54 29683.93 31991.63 28466.79 30895.36 30881.21 25881.54 34393.57 306
Patchmatch-RL test88.81 23988.52 23289.69 26395.33 22679.94 23186.22 31392.71 26978.46 28295.80 10594.18 22666.25 31195.33 31089.22 15798.53 14393.78 298
tpm cat180.61 31279.46 31484.07 31888.78 33265.06 34189.26 26688.23 30162.27 34281.90 33489.66 31162.70 32995.29 31171.72 32080.60 34491.86 323
test20.0390.80 19490.85 19390.63 24295.63 21479.24 24689.81 25392.87 26489.90 14294.39 15996.40 12685.77 20995.27 31273.86 30999.05 9097.39 191
miper_lstm_enhance89.90 21989.80 21290.19 25691.37 30577.50 26983.82 33195.00 22284.84 23193.05 19894.96 19976.53 28095.20 31389.96 14098.67 13397.86 157
131486.46 27886.33 27486.87 30091.65 30074.54 29891.94 18694.10 24674.28 30184.78 31487.33 32683.03 22695.00 31478.72 28191.16 32491.06 327
MVS-HIRNet78.83 31780.60 30873.51 33293.07 27447.37 35187.10 29878.00 34768.94 32777.53 34397.26 7471.45 29494.62 31563.28 34188.74 33078.55 344
PVSNet76.22 2082.89 29782.37 29684.48 31593.96 26064.38 34378.60 34088.61 29771.50 31684.43 31786.36 33174.27 28494.60 31669.87 33093.69 30194.46 282
XXY-MVS92.58 15993.16 14190.84 23997.75 9279.84 23391.87 19296.22 18785.94 21195.53 11797.68 4992.69 9194.48 31783.21 23797.51 22098.21 126
GG-mvs-BLEND83.24 32185.06 34871.03 32094.99 8865.55 35174.09 34675.51 34544.57 35394.46 31859.57 34387.54 33384.24 339
PatchMatch-RL89.18 22988.02 24692.64 18195.90 19892.87 4288.67 28091.06 28980.34 26190.03 25991.67 28383.34 22294.42 31976.35 29994.84 28290.64 329
CNLPA91.72 17791.20 18693.26 16096.17 17991.02 6391.14 21295.55 21190.16 13890.87 24493.56 24686.31 20494.40 32079.92 27297.12 23194.37 284
SD-MVS95.19 7795.73 6293.55 14996.62 14888.88 9594.67 9598.05 5191.26 11397.25 4796.40 12695.42 2694.36 32192.72 7699.19 7697.40 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UnsupCasMVSNet_bld88.50 24488.03 24589.90 26095.52 21878.88 25287.39 29394.02 24979.32 27493.06 19794.02 23280.72 25094.27 32275.16 30593.08 30996.54 215
WTY-MVS86.93 27686.50 27388.24 28794.96 23074.64 29687.19 29692.07 28378.29 28388.32 28891.59 28578.06 26694.27 32274.88 30693.15 30795.80 249
MS-PatchMatch88.05 25187.75 24888.95 27393.28 26977.93 26387.88 28592.49 27475.42 29792.57 21193.59 24580.44 25194.24 32481.28 25692.75 31294.69 279
CMPMVSbinary68.83 2287.28 26785.67 27992.09 20088.77 33385.42 16490.31 23594.38 24170.02 32488.00 29293.30 25173.78 28794.03 32575.96 30296.54 24996.83 210
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet188.17 24988.24 23987.93 29092.21 28973.62 30680.75 33788.77 29682.51 25094.99 14295.11 19182.70 23193.70 32683.33 23593.83 29896.48 221
MDA-MVSNet_test_wron88.16 25088.23 24087.93 29092.22 28873.71 30580.71 33888.84 29582.52 24994.88 14795.14 18982.70 23193.61 32783.28 23693.80 29996.46 222
test-LLR83.58 29283.17 29284.79 31389.68 32366.86 33383.08 33284.52 33283.07 24582.85 32684.78 33762.86 32793.49 32882.85 23994.86 28094.03 291
test-mter81.21 30780.01 31384.79 31389.68 32366.86 33383.08 33284.52 33273.85 30582.85 32684.78 33743.66 35593.49 32882.85 23994.86 28094.03 291
pmmvs380.83 30978.96 31686.45 30287.23 34077.48 27084.87 32082.31 33963.83 34085.03 31189.50 31249.66 34893.10 33073.12 31495.10 27788.78 335
testgi90.38 20691.34 18387.50 29597.49 11071.54 31889.43 26095.16 22088.38 17094.54 15694.68 21292.88 8893.09 33171.60 32297.85 20697.88 155
UnsupCasMVSNet_eth90.33 20990.34 20490.28 24994.64 24680.24 22189.69 25595.88 19785.77 21593.94 17295.69 16481.99 23992.98 33284.21 23091.30 32297.62 177
EPMVS81.17 30880.37 30983.58 31985.58 34665.08 34090.31 23571.34 34977.31 28985.80 30891.30 28759.38 33692.70 33379.99 26882.34 34292.96 311
ADS-MVSNet82.25 30081.55 30084.34 31689.04 33065.30 33787.57 28785.13 33172.71 31284.46 31592.45 26868.08 29992.33 33470.58 32883.97 33795.38 262
sss87.23 26886.82 26488.46 28493.96 26077.94 26286.84 30392.78 26877.59 28687.61 29791.83 28078.75 25991.92 33577.84 28694.20 29595.52 261
N_pmnet88.90 23787.25 25693.83 14294.40 25193.81 3184.73 32187.09 31079.36 27393.26 19192.43 27179.29 25691.68 33677.50 29197.22 22996.00 240
PMMVS83.00 29681.11 30388.66 28083.81 35186.44 14582.24 33685.65 32261.75 34382.07 33185.64 33579.75 25391.59 33775.99 30193.09 30887.94 336
Patchmatch-test86.10 28086.01 27686.38 30390.63 31274.22 30489.57 25786.69 31285.73 21789.81 26592.83 25965.24 31691.04 33877.82 28895.78 26293.88 297
TESTMET0.1,179.09 31678.04 31882.25 32387.52 33764.03 34483.08 33280.62 34470.28 32380.16 33983.22 34044.13 35490.56 33979.95 26993.36 30292.15 319
DSMNet-mixed82.21 30181.56 29984.16 31789.57 32570.00 32590.65 22477.66 34854.99 34783.30 32497.57 5377.89 26890.50 34066.86 33695.54 26691.97 320
EMVS80.35 31380.28 31180.54 32684.73 34969.07 32772.54 34480.73 34387.80 18181.66 33581.73 34262.89 32689.84 34175.79 30394.65 28782.71 342
PVSNet_070.34 2174.58 31872.96 32079.47 32890.63 31266.24 33673.26 34183.40 33863.67 34178.02 34278.35 34472.53 28989.59 34256.68 34460.05 34882.57 343
E-PMN80.72 31180.86 30780.29 32785.11 34768.77 32872.96 34281.97 34087.76 18283.25 32583.01 34162.22 33089.17 34377.15 29494.31 29382.93 341
test0.0.03 182.48 29981.47 30285.48 30789.70 32273.57 30784.73 32181.64 34183.07 24588.13 29186.61 32862.86 32789.10 34466.24 33790.29 32793.77 299
FPMVS84.50 28883.28 29188.16 28896.32 16794.49 1185.76 31485.47 32583.09 24485.20 31094.26 22263.79 32386.58 34563.72 34091.88 32183.40 340
new_pmnet81.22 30681.01 30681.86 32490.92 31070.15 32484.03 32880.25 34670.83 32085.97 30789.78 30867.93 30284.65 34667.44 33491.90 32090.78 328
PMMVS281.31 30583.44 29074.92 33190.52 31446.49 35269.19 34585.23 33084.30 23587.95 29394.71 21176.95 27784.36 34764.07 33998.09 19193.89 296
wuyk23d87.83 25490.79 19578.96 32990.46 31688.63 9892.72 14990.67 29191.65 10598.68 1197.64 5196.06 1677.53 34859.84 34299.41 5070.73 345
MVEpermissive59.87 2373.86 31972.65 32177.47 33087.00 34374.35 30161.37 34760.93 35267.27 33269.69 34886.49 33081.24 24872.33 34956.45 34583.45 33985.74 338
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft53.83 33370.38 35264.56 34248.52 35433.01 34865.50 34974.21 34656.19 34246.64 35038.45 34870.07 34650.30 346
tmp_tt37.97 32044.33 32218.88 33411.80 35321.54 35463.51 34645.66 3554.23 34951.34 35050.48 34759.08 33722.11 35144.50 34768.35 34713.00 347
test1239.49 32212.01 3241.91 3352.87 3541.30 35582.38 3351.34 3571.36 3502.84 3516.56 3502.45 3560.97 3522.73 3495.56 3493.47 348
testmvs9.02 32311.42 3251.81 3362.77 3551.13 35679.44 3391.90 3561.18 3512.65 3526.80 3491.95 3570.87 3532.62 3503.45 3503.44 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.14 390.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k23.35 32131.13 3230.00 3370.00 3560.00 3570.00 34895.58 2100.00 3520.00 35391.15 28993.43 710.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas7.56 32410.09 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35390.77 1360.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.56 32410.08 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35390.69 2980.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS98.51 4586.66 14096.83 15472.74 31195.83 10493.00 6899.29 6298.64 94
save fliter97.46 11388.05 11292.04 18097.08 13587.63 186
test072698.51 4586.69 13895.34 7098.18 3291.85 9097.63 3097.37 6695.58 22
GSMVS94.75 276
test_part298.21 6889.41 8496.72 64
sam_mvs166.64 30994.75 276
sam_mvs66.41 310
MTGPAbinary97.62 93
MTMP94.82 9054.62 353
test9_res88.16 17498.40 15297.83 160
agg_prior287.06 19398.36 16197.98 143
test_prior489.91 7590.74 221
test_prior290.21 23789.33 15290.77 24594.81 20590.41 14688.21 17098.55 139
新几何290.02 245
旧先验196.20 17684.17 17894.82 22995.57 17289.57 15897.89 20496.32 227
原ACMM289.34 263
test22296.95 13185.27 16688.83 27493.61 25265.09 33890.74 24794.85 20484.62 21897.36 22593.91 295
segment_acmp92.14 101
testdata188.96 27288.44 169
plane_prior797.71 9688.68 97
plane_prior697.21 12288.23 10886.93 194
plane_prior495.59 168
plane_prior388.43 10690.35 13693.31 186
plane_prior294.56 10291.74 101
plane_prior197.38 116
plane_prior88.12 11093.01 14088.98 15698.06 193
n20.00 358
nn0.00 358
door-mid92.13 282
test1196.65 165
door91.26 288
HQP5-MVS84.89 168
HQP-NCC96.36 16191.37 20687.16 19388.81 278
ACMP_Plane96.36 16191.37 20687.16 19388.81 278
BP-MVS86.55 201
HQP3-MVS97.31 11997.73 209
HQP2-MVS84.76 216
NP-MVS96.82 13887.10 12793.40 249
MDTV_nov1_ep13_2view42.48 35388.45 28267.22 33383.56 32266.80 30672.86 31594.06 290
ACMMP++_ref98.82 119
ACMMP++99.25 70
Test By Simon90.61 142