APDe-MVS | | | 91.22 25 | 91.92 14 | 89.14 65 | 92.97 81 | 78.04 87 | 92.84 15 | 94.14 32 | 83.33 49 | 93.90 25 | 95.73 26 | 88.77 27 | 96.41 1 | 87.60 16 | 97.98 42 | 92.98 132 |
|
MSP-MVS | | | 89.08 65 | 88.16 76 | 91.83 21 | 95.76 17 | 86.14 22 | 92.75 16 | 93.90 41 | 78.43 107 | 89.16 116 | 92.25 136 | 72.03 209 | 96.36 2 | 88.21 8 | 90.93 237 | 92.98 132 |
|
DPE-MVS | | | 90.53 36 | 91.08 36 | 88.88 67 | 93.38 71 | 78.65 83 | 89.15 74 | 94.05 35 | 84.68 36 | 93.90 25 | 94.11 80 | 88.13 36 | 96.30 3 | 84.51 58 | 97.81 52 | 91.70 180 |
|
SteuartSystems-ACMMP | | | 91.16 27 | 91.36 27 | 90.55 42 | 93.91 60 | 80.97 63 | 91.49 36 | 93.48 58 | 82.82 56 | 92.60 50 | 93.97 85 | 88.19 33 | 96.29 4 | 87.61 15 | 98.20 32 | 94.39 81 |
Skip Steuart: Steuart Systems R&D Blog. |
testtj | | | 89.51 57 | 89.48 60 | 89.59 59 | 92.26 100 | 80.80 64 | 90.14 51 | 93.54 56 | 83.37 48 | 90.57 86 | 92.55 126 | 84.99 68 | 96.15 5 | 81.26 88 | 96.61 97 | 91.83 176 |
|
ZD-MVS | | | | | | 92.22 103 | 80.48 65 | | 91.85 111 | 71.22 193 | 90.38 87 | 92.98 109 | 86.06 63 | 96.11 6 | 81.99 82 | 96.75 94 | |
|
SMA-MVS | | | 90.31 39 | 90.48 49 | 89.83 52 | 95.31 30 | 79.52 75 | 90.98 40 | 93.24 71 | 75.37 143 | 92.84 45 | 95.28 35 | 85.58 66 | 96.09 7 | 87.92 10 | 97.76 54 | 93.88 99 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
test_part1 | | | 93.54 2 | 94.85 2 | 89.62 58 | 94.83 39 | 74.49 121 | 94.02 4 | 97.02 2 | 92.06 2 | 96.94 2 | 98.50 2 | 95.09 2 | 96.03 8 | 85.83 44 | 99.33 1 | 98.33 7 |
|
DTE-MVSNet | | | 89.98 47 | 91.91 16 | 84.21 148 | 96.51 8 | 57.84 276 | 88.93 78 | 92.84 88 | 91.92 3 | 96.16 3 | 96.23 19 | 86.95 50 | 95.99 9 | 79.05 113 | 98.57 15 | 98.80 6 |
|
PGM-MVS | | | 91.20 26 | 90.95 42 | 91.93 15 | 95.67 22 | 85.85 28 | 90.00 52 | 93.90 41 | 80.32 82 | 91.74 66 | 94.41 65 | 88.17 34 | 95.98 10 | 86.37 33 | 97.99 40 | 93.96 96 |
|
APD-MVS | | | 89.54 56 | 89.63 57 | 89.26 64 | 92.57 90 | 81.34 61 | 90.19 50 | 93.08 76 | 80.87 77 | 91.13 75 | 93.19 104 | 86.22 61 | 95.97 11 | 82.23 80 | 97.18 81 | 90.45 207 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
TSAR-MVS + MP. | | | 88.14 75 | 87.82 79 | 89.09 66 | 95.72 21 | 76.74 107 | 92.49 24 | 91.19 130 | 67.85 226 | 86.63 158 | 94.84 47 | 79.58 130 | 95.96 12 | 87.62 14 | 94.50 166 | 94.56 71 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 32 | 95.54 3 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 13 | 85.07 50 | 99.27 2 | 99.54 1 |
|
WR-MVS_H | | | 89.91 50 | 91.31 32 | 85.71 121 | 96.32 10 | 62.39 230 | 89.54 67 | 93.31 65 | 90.21 10 | 95.57 9 | 95.66 28 | 81.42 112 | 95.90 14 | 80.94 93 | 98.80 3 | 98.84 5 |
|
test_0728_SECOND | | | | | 86.79 95 | 94.25 48 | 72.45 141 | 90.54 44 | 94.10 34 | | | | | 95.88 15 | 86.42 31 | 97.97 43 | 92.02 169 |
|
ZNCC-MVS | | | 91.26 24 | 91.34 30 | 91.01 35 | 95.73 20 | 83.05 52 | 92.18 27 | 94.22 24 | 80.14 85 | 91.29 74 | 93.97 85 | 87.93 40 | 95.87 16 | 88.65 4 | 97.96 45 | 94.12 91 |
|
region2R | | | 91.44 21 | 91.30 33 | 91.87 19 | 95.75 18 | 85.90 26 | 92.63 20 | 93.30 67 | 81.91 65 | 90.88 82 | 94.21 75 | 87.75 41 | 95.87 16 | 87.60 16 | 97.71 58 | 93.83 101 |
|
ACMMPR | | | 91.49 18 | 91.35 29 | 91.92 16 | 95.74 19 | 85.88 27 | 92.58 21 | 93.25 70 | 81.99 63 | 91.40 71 | 94.17 76 | 87.51 44 | 95.87 16 | 87.74 11 | 97.76 54 | 93.99 94 |
|
3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 56 | 90.92 36 | 91.27 132 | 81.66 59 | 91.25 37 | 94.13 33 | 88.89 13 | 88.83 121 | 94.26 73 | 77.55 146 | 95.86 19 | 84.88 53 | 95.87 123 | 95.24 56 |
|
SED-MVS | | | 90.46 38 | 91.64 20 | 86.93 92 | 94.18 49 | 72.65 132 | 90.47 47 | 93.69 49 | 83.77 42 | 94.11 23 | 94.27 70 | 90.28 16 | 95.84 20 | 86.03 41 | 97.92 46 | 92.29 159 |
|
test_241102_TWO | | | | | | | | | 93.71 48 | 83.77 42 | 93.49 37 | 94.27 70 | 89.27 23 | 95.84 20 | 86.03 41 | 97.82 51 | 92.04 168 |
|
GST-MVS | | | 90.96 29 | 91.01 39 | 90.82 38 | 95.45 27 | 82.73 55 | 91.75 34 | 93.74 47 | 80.98 76 | 91.38 72 | 93.80 95 | 87.20 48 | 95.80 22 | 87.10 28 | 97.69 59 | 93.93 97 |
|
XVS | | | 91.54 16 | 91.36 27 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 18 | 93.33 62 | 85.07 33 | 89.99 93 | 94.03 82 | 86.57 56 | 95.80 22 | 87.35 20 | 97.62 62 | 94.20 86 |
|
X-MVStestdata | | | 85.04 118 | 82.70 161 | 92.08 10 | 95.64 23 | 86.25 19 | 92.64 18 | 93.33 62 | 85.07 33 | 89.99 93 | 16.05 353 | 86.57 56 | 95.80 22 | 87.35 20 | 97.62 62 | 94.20 86 |
|
DVP-MVS | | | 90.06 43 | 91.32 31 | 86.29 105 | 94.16 52 | 72.56 137 | 90.54 44 | 91.01 134 | 83.61 45 | 93.75 31 | 94.65 53 | 89.76 20 | 95.78 25 | 86.42 31 | 97.97 43 | 90.55 205 |
|
test_0728_THIRD | | | | | | | | | | 85.33 31 | 93.75 31 | 94.65 53 | 87.44 45 | 95.78 25 | 87.41 19 | 98.21 30 | 92.98 132 |
|
DeepC-MVS | | 82.31 4 | 89.15 63 | 89.08 65 | 89.37 62 | 93.64 66 | 79.07 78 | 88.54 86 | 94.20 25 | 73.53 161 | 89.71 102 | 94.82 48 | 85.09 67 | 95.77 27 | 84.17 61 | 98.03 37 | 93.26 123 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS | | | 92.13 10 | 92.20 12 | 91.91 17 | 95.58 25 | 84.67 41 | 93.51 7 | 94.85 15 | 82.88 55 | 91.77 65 | 93.94 92 | 90.55 14 | 95.73 28 | 88.50 7 | 98.23 29 | 95.33 52 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 91.67 15 | 91.58 22 | 91.96 14 | 95.29 31 | 87.62 12 | 93.38 8 | 93.36 60 | 83.16 51 | 91.06 77 | 94.00 84 | 88.26 32 | 95.71 29 | 87.28 23 | 98.39 21 | 92.55 149 |
|
SR-MVS | | | 92.23 9 | 92.34 10 | 91.91 17 | 94.89 38 | 87.85 11 | 92.51 23 | 93.87 44 | 88.20 21 | 93.24 38 | 94.02 83 | 90.15 18 | 95.67 30 | 86.82 29 | 97.34 76 | 92.19 165 |
|
ACMMP | | | 91.91 13 | 91.87 18 | 92.03 13 | 95.53 26 | 85.91 25 | 93.35 10 | 94.16 28 | 82.52 59 | 92.39 54 | 94.14 78 | 89.15 24 | 95.62 31 | 87.35 20 | 98.24 28 | 94.56 71 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
PEN-MVS | | | 90.03 45 | 91.88 17 | 84.48 141 | 96.57 6 | 58.88 268 | 88.95 76 | 93.19 72 | 91.62 4 | 96.01 6 | 96.16 21 | 87.02 49 | 95.60 32 | 78.69 116 | 98.72 9 | 98.97 3 |
|
PS-CasMVS | | | 90.06 43 | 91.92 14 | 84.47 142 | 96.56 7 | 58.83 271 | 89.04 75 | 92.74 91 | 91.40 5 | 96.12 4 | 96.06 23 | 87.23 47 | 95.57 33 | 79.42 111 | 98.74 6 | 99.00 2 |
|
HFP-MVS | | | 91.30 22 | 91.39 26 | 91.02 33 | 95.43 28 | 84.66 42 | 92.58 21 | 93.29 68 | 81.99 63 | 91.47 69 | 93.96 88 | 88.35 30 | 95.56 34 | 87.74 11 | 97.74 56 | 92.85 136 |
|
#test# | | | 90.49 37 | 90.31 51 | 91.02 33 | 95.43 28 | 84.66 42 | 90.65 42 | 93.29 68 | 77.00 120 | 91.47 69 | 93.96 88 | 88.35 30 | 95.56 34 | 84.88 53 | 97.74 56 | 92.85 136 |
|
RPMNet | | | 78.88 211 | 78.28 216 | 80.68 217 | 79.58 302 | 62.64 226 | 82.58 192 | 94.16 28 | 74.80 147 | 75.72 289 | 92.59 123 | 48.69 306 | 95.56 34 | 73.48 169 | 82.91 312 | 83.85 286 |
|
RRT_MVS | | | 83.25 158 | 81.08 184 | 89.74 53 | 80.55 296 | 79.32 76 | 86.41 118 | 86.69 218 | 72.33 184 | 87.00 152 | 91.08 163 | 44.98 330 | 95.55 37 | 84.47 59 | 96.24 112 | 94.36 82 |
|
CP-MVSNet | | | 89.27 61 | 90.91 43 | 84.37 143 | 96.34 9 | 58.61 273 | 88.66 85 | 92.06 105 | 90.78 6 | 95.67 7 | 95.17 39 | 81.80 108 | 95.54 38 | 79.00 114 | 98.69 10 | 98.95 4 |
|
CS-MVS | | | 83.43 157 | 83.04 158 | 84.59 140 | 87.87 193 | 66.61 191 | 85.57 128 | 94.90 14 | 73.02 174 | 81.12 244 | 78.56 324 | 80.00 127 | 95.52 39 | 73.04 178 | 93.29 189 | 91.62 183 |
|
LPG-MVS_test | | | 91.47 20 | 91.68 19 | 90.82 38 | 94.75 41 | 81.69 56 | 90.00 52 | 94.27 20 | 82.35 60 | 93.67 34 | 94.82 48 | 91.18 6 | 95.52 39 | 85.36 48 | 98.73 7 | 95.23 57 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 41 | 81.69 56 | | 94.27 20 | 82.35 60 | 93.67 34 | 94.82 48 | 91.18 6 | 95.52 39 | 85.36 48 | 98.73 7 | 95.23 57 |
|
test1172 | | | 92.40 8 | 92.41 8 | 92.37 6 | 94.68 44 | 89.04 6 | 91.98 30 | 93.62 52 | 90.14 11 | 93.63 36 | 94.16 77 | 88.83 25 | 95.51 42 | 87.11 27 | 97.54 69 | 92.54 150 |
|
SR-MVS-dyc-post | | | 92.41 7 | 92.41 8 | 92.39 5 | 94.13 54 | 88.95 8 | 92.87 13 | 94.16 28 | 88.75 16 | 93.79 29 | 94.43 62 | 88.83 25 | 95.51 42 | 87.16 25 | 97.60 64 | 92.73 141 |
|
mPP-MVS | | | 91.69 14 | 91.47 25 | 92.37 6 | 96.04 12 | 88.48 10 | 92.72 17 | 92.60 94 | 83.09 52 | 91.54 68 | 94.25 74 | 87.67 43 | 95.51 42 | 87.21 24 | 98.11 34 | 93.12 128 |
|
test_241102_ONE | | | | | | 94.18 49 | 72.65 132 | | 93.69 49 | 83.62 44 | 94.11 23 | 93.78 98 | 90.28 16 | 95.50 45 | | | |
|
ACMMP_NAP | | | 90.65 32 | 91.07 38 | 89.42 61 | 95.93 15 | 79.54 74 | 89.95 55 | 93.68 51 | 77.65 113 | 91.97 62 | 94.89 45 | 88.38 28 | 95.45 46 | 89.27 3 | 97.87 50 | 93.27 122 |
|
CANet | | | 83.79 148 | 82.85 160 | 86.63 97 | 86.17 232 | 72.21 146 | 83.76 162 | 91.43 122 | 77.24 118 | 74.39 299 | 87.45 230 | 75.36 168 | 95.42 47 | 77.03 137 | 92.83 201 | 92.25 163 |
|
MP-MVS | | | 91.14 28 | 90.91 43 | 91.83 21 | 96.18 11 | 86.88 14 | 92.20 26 | 93.03 80 | 82.59 58 | 88.52 127 | 94.37 69 | 86.74 53 | 95.41 48 | 86.32 34 | 98.21 30 | 93.19 126 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
LS3D | | | 90.60 34 | 90.34 50 | 91.38 27 | 89.03 172 | 84.23 45 | 93.58 5 | 94.68 16 | 90.65 7 | 90.33 89 | 93.95 91 | 84.50 71 | 95.37 49 | 80.87 94 | 95.50 135 | 94.53 75 |
|
HPM-MVS_fast | | | 92.50 6 | 92.54 7 | 92.37 6 | 95.93 15 | 85.81 30 | 92.99 12 | 94.23 23 | 85.21 32 | 92.51 51 | 95.13 40 | 90.65 11 | 95.34 50 | 88.06 9 | 98.15 33 | 95.95 40 |
|
NCCC | | | 87.36 83 | 86.87 93 | 88.83 68 | 92.32 99 | 78.84 81 | 86.58 115 | 91.09 132 | 78.77 103 | 84.85 189 | 90.89 172 | 80.85 117 | 95.29 51 | 81.14 90 | 95.32 140 | 92.34 155 |
|
EPP-MVSNet | | | 85.47 110 | 85.04 121 | 86.77 96 | 91.52 126 | 69.37 168 | 91.63 35 | 87.98 198 | 81.51 70 | 87.05 151 | 91.83 145 | 66.18 234 | 95.29 51 | 70.75 193 | 96.89 87 | 95.64 45 |
|
zzz-MVS | | | 91.27 23 | 91.26 34 | 91.29 29 | 96.59 4 | 86.29 17 | 88.94 77 | 91.81 114 | 84.07 38 | 92.00 60 | 94.40 66 | 86.63 54 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 157 |
|
MTAPA | | | 91.52 17 | 91.60 21 | 91.29 29 | 96.59 4 | 86.29 17 | 92.02 29 | 91.81 114 | 84.07 38 | 92.00 60 | 94.40 66 | 86.63 54 | 95.28 53 | 88.59 5 | 98.31 24 | 92.30 157 |
|
HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 71 | 93.45 68 | 76.42 111 | 89.45 70 | 93.61 53 | 79.44 93 | 86.55 159 | 92.95 112 | 74.84 173 | 95.22 55 | 80.78 96 | 95.83 124 | 94.46 77 |
|
plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 55 | 80.78 96 | 95.83 124 | 94.46 77 |
|
ACMP | | 79.16 10 | 90.54 35 | 90.60 48 | 90.35 46 | 94.36 46 | 80.98 62 | 89.16 73 | 94.05 35 | 79.03 99 | 92.87 43 | 93.74 99 | 90.60 13 | 95.21 57 | 82.87 74 | 98.76 4 | 94.87 62 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DeepC-MVS_fast | | 80.27 8 | 86.23 98 | 85.65 113 | 87.96 84 | 91.30 130 | 76.92 104 | 87.19 101 | 91.99 107 | 70.56 199 | 84.96 185 | 90.69 178 | 80.01 126 | 95.14 58 | 78.37 118 | 95.78 128 | 91.82 177 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETV-MVS | | | 84.31 134 | 83.91 148 | 85.52 124 | 88.58 179 | 70.40 161 | 84.50 147 | 93.37 59 | 78.76 104 | 84.07 205 | 78.72 323 | 80.39 122 | 95.13 59 | 73.82 166 | 92.98 198 | 91.04 191 |
|
abl_6 | | | 93.02 5 | 93.16 5 | 92.60 4 | 94.73 43 | 88.99 7 | 93.26 11 | 94.19 27 | 89.11 12 | 94.43 16 | 95.27 36 | 91.86 4 | 95.09 60 | 87.54 18 | 98.02 38 | 93.71 108 |
|
APD-MVS_3200maxsize | | | 92.05 11 | 92.24 11 | 91.48 24 | 93.02 79 | 85.17 34 | 92.47 25 | 95.05 13 | 87.65 24 | 93.21 39 | 94.39 68 | 90.09 19 | 95.08 61 | 86.67 30 | 97.60 64 | 94.18 88 |
|
HPM-MVS++ | | | 88.93 68 | 88.45 75 | 90.38 45 | 94.92 36 | 85.85 28 | 89.70 59 | 91.27 127 | 78.20 109 | 86.69 157 | 92.28 135 | 80.36 123 | 95.06 62 | 86.17 39 | 96.49 102 | 90.22 210 |
|
MP-MVS-pluss | | | 90.81 30 | 91.08 36 | 89.99 51 | 95.97 13 | 79.88 69 | 88.13 90 | 94.51 18 | 75.79 136 | 92.94 41 | 94.96 43 | 88.36 29 | 95.01 63 | 90.70 2 | 98.40 20 | 95.09 60 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CDPH-MVS | | | 86.17 101 | 85.54 114 | 88.05 83 | 92.25 101 | 75.45 116 | 83.85 158 | 92.01 106 | 65.91 241 | 86.19 166 | 91.75 149 | 83.77 78 | 94.98 64 | 77.43 133 | 96.71 95 | 93.73 107 |
|
COLMAP_ROB | | 83.01 3 | 91.97 12 | 91.95 13 | 92.04 12 | 93.68 65 | 86.15 21 | 93.37 9 | 95.10 12 | 90.28 9 | 92.11 57 | 95.03 42 | 89.75 22 | 94.93 65 | 79.95 103 | 98.27 27 | 95.04 61 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
IS-MVSNet | | | 86.66 91 | 86.82 95 | 86.17 112 | 92.05 108 | 66.87 189 | 91.21 38 | 88.64 185 | 86.30 29 | 89.60 109 | 92.59 123 | 69.22 220 | 94.91 66 | 73.89 164 | 97.89 49 | 96.72 25 |
|
ETH3 D test6400 | | | 85.09 116 | 84.87 124 | 85.75 120 | 90.80 144 | 69.34 169 | 85.90 123 | 93.31 65 | 65.43 248 | 86.11 169 | 89.95 193 | 80.92 116 | 94.86 67 | 75.90 147 | 95.57 133 | 93.05 129 |
|
OurMVSNet-221017-0 | | | 90.01 46 | 89.74 55 | 90.83 37 | 93.16 77 | 80.37 66 | 91.91 33 | 93.11 74 | 81.10 74 | 95.32 10 | 97.24 6 | 72.94 197 | 94.85 68 | 85.07 50 | 97.78 53 | 97.26 16 |
|
test12 | | | | | 86.57 98 | 90.74 145 | 72.63 135 | | 90.69 140 | | 82.76 221 | | 79.20 131 | 94.80 69 | | 95.32 140 | 92.27 161 |
|
SixPastTwentyTwo | | | 87.20 85 | 87.45 83 | 86.45 101 | 92.52 92 | 69.19 174 | 87.84 94 | 88.05 195 | 81.66 68 | 94.64 14 | 96.53 15 | 65.94 235 | 94.75 70 | 83.02 73 | 96.83 91 | 95.41 50 |
|
CNVR-MVS | | | 87.81 81 | 87.68 80 | 88.21 80 | 92.87 83 | 77.30 100 | 85.25 132 | 91.23 128 | 77.31 117 | 87.07 150 | 91.47 155 | 82.94 86 | 94.71 71 | 84.67 56 | 96.27 111 | 92.62 148 |
|
OPU-MVS | | | | | 88.27 79 | 91.89 114 | 77.83 89 | 90.47 47 | | | | 91.22 158 | 81.12 115 | 94.68 72 | 74.48 157 | 95.35 138 | 92.29 159 |
|
K. test v3 | | | 85.14 114 | 84.73 126 | 86.37 102 | 91.13 138 | 69.63 167 | 85.45 130 | 76.68 285 | 84.06 40 | 92.44 53 | 96.99 9 | 62.03 252 | 94.65 73 | 80.58 99 | 93.24 190 | 94.83 66 |
|
xxxxxxxxxxxxxcwj | | | 89.04 66 | 89.13 64 | 88.79 69 | 93.75 62 | 77.44 95 | 86.31 119 | 95.27 10 | 70.80 196 | 92.28 55 | 93.80 95 | 86.89 51 | 94.64 74 | 85.52 46 | 97.51 71 | 94.30 84 |
|
SF-MVS | | | 90.27 40 | 90.80 45 | 88.68 72 | 92.86 85 | 77.09 102 | 91.19 39 | 95.74 4 | 81.38 71 | 92.28 55 | 93.80 95 | 86.89 51 | 94.64 74 | 85.52 46 | 97.51 71 | 94.30 84 |
|
HQP4-MVS | | | | | | | | | | | 80.56 252 | | | 94.61 76 | | | 93.56 116 |
|
HQP-MVS | | | 84.61 125 | 84.06 144 | 86.27 106 | 91.19 134 | 70.66 159 | 84.77 136 | 92.68 92 | 73.30 167 | 80.55 253 | 90.17 191 | 72.10 205 | 94.61 76 | 77.30 134 | 94.47 167 | 93.56 116 |
|
PS-MVSNAJss | | | 88.31 73 | 87.90 78 | 89.56 60 | 93.31 73 | 77.96 88 | 87.94 92 | 91.97 108 | 70.73 198 | 94.19 22 | 96.67 12 | 76.94 155 | 94.57 78 | 83.07 71 | 96.28 109 | 96.15 32 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 84 | 86.21 102 | 90.49 43 | 91.48 127 | 84.90 37 | 83.41 172 | 92.38 99 | 70.25 204 | 89.35 114 | 90.68 179 | 82.85 87 | 94.57 78 | 79.55 107 | 95.95 120 | 92.00 170 |
|
UA-Net | | | 91.49 18 | 91.53 23 | 91.39 26 | 94.98 35 | 82.95 54 | 93.52 6 | 92.79 89 | 88.22 20 | 88.53 126 | 97.64 3 | 83.45 81 | 94.55 80 | 86.02 43 | 98.60 13 | 96.67 26 |
|
114514_t | | | 83.10 162 | 82.54 166 | 84.77 135 | 92.90 82 | 69.10 176 | 86.65 113 | 90.62 143 | 54.66 306 | 81.46 240 | 90.81 175 | 76.98 154 | 94.38 81 | 72.62 180 | 96.18 113 | 90.82 198 |
|
MVSFormer | | | 82.23 171 | 81.57 179 | 84.19 150 | 85.54 238 | 69.26 171 | 91.98 30 | 90.08 163 | 71.54 190 | 76.23 283 | 85.07 268 | 58.69 272 | 94.27 82 | 86.26 35 | 88.77 262 | 89.03 230 |
|
test_djsdf | | | 89.62 54 | 89.01 66 | 91.45 25 | 92.36 96 | 82.98 53 | 91.98 30 | 90.08 163 | 71.54 190 | 94.28 21 | 96.54 14 | 81.57 110 | 94.27 82 | 86.26 35 | 96.49 102 | 97.09 20 |
|
原ACMM1 | | | | | 84.60 139 | 92.81 88 | 74.01 124 | | 91.50 120 | 62.59 262 | 82.73 222 | 90.67 180 | 76.53 162 | 94.25 84 | 69.24 206 | 95.69 131 | 85.55 267 |
|
ETH3D cwj APD-0.16 | | | 87.83 80 | 87.62 81 | 88.47 75 | 91.21 133 | 78.20 85 | 87.26 100 | 94.54 17 | 72.05 186 | 88.89 118 | 92.31 133 | 83.86 75 | 94.24 85 | 81.59 87 | 96.87 88 | 92.97 135 |
|
AdaColmap | | | 83.66 150 | 83.69 150 | 83.57 164 | 90.05 160 | 72.26 144 | 86.29 121 | 90.00 165 | 78.19 110 | 81.65 238 | 87.16 235 | 83.40 82 | 94.24 85 | 61.69 260 | 94.76 162 | 84.21 281 |
|
Effi-MVS+-dtu | | | 85.82 106 | 83.38 152 | 93.14 3 | 87.13 209 | 91.15 2 | 87.70 95 | 88.42 187 | 74.57 150 | 83.56 212 | 85.65 253 | 78.49 136 | 94.21 87 | 72.04 184 | 92.88 200 | 94.05 93 |
|
EIA-MVS | | | 82.19 172 | 81.23 182 | 85.10 130 | 87.95 191 | 69.17 175 | 83.22 180 | 93.33 62 | 70.42 200 | 78.58 269 | 79.77 320 | 77.29 148 | 94.20 88 | 71.51 187 | 88.96 260 | 91.93 174 |
|
UniMVSNet (Re) | | | 86.87 86 | 86.98 91 | 86.55 99 | 93.11 78 | 68.48 178 | 83.80 161 | 92.87 85 | 80.37 80 | 89.61 108 | 91.81 147 | 77.72 143 | 94.18 89 | 75.00 156 | 98.53 16 | 96.99 23 |
|
PHI-MVS | | | 86.38 95 | 85.81 109 | 88.08 81 | 88.44 183 | 77.34 98 | 89.35 72 | 93.05 77 | 73.15 172 | 84.76 190 | 87.70 225 | 78.87 134 | 94.18 89 | 80.67 98 | 96.29 108 | 92.73 141 |
|
test_prior3 | | | 86.31 96 | 86.31 99 | 86.32 103 | 90.59 149 | 71.99 147 | 83.37 173 | 92.85 86 | 75.43 140 | 84.58 193 | 91.57 151 | 81.92 106 | 94.17 91 | 79.54 108 | 96.97 85 | 92.80 138 |
|
test_prior | | | | | 86.32 103 | 90.59 149 | 71.99 147 | | 92.85 86 | | | | | 94.17 91 | | | 92.80 138 |
|
TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 2 | 96.46 3 | 90.58 8 | 92.86 44 | 96.29 17 | 88.16 35 | 94.17 91 | 86.07 40 | 98.48 18 | 97.22 18 |
|
tttt0517 | | | 81.07 184 | 79.58 205 | 85.52 124 | 88.99 174 | 66.45 193 | 87.03 105 | 75.51 293 | 73.76 159 | 88.32 133 | 90.20 188 | 37.96 346 | 94.16 94 | 79.36 112 | 95.13 147 | 95.93 41 |
|
v7n | | | 90.13 41 | 90.96 41 | 87.65 87 | 91.95 110 | 71.06 157 | 89.99 54 | 93.05 77 | 86.53 27 | 94.29 19 | 96.27 18 | 82.69 88 | 94.08 95 | 86.25 37 | 97.63 61 | 97.82 9 |
|
v10 | | | 86.54 92 | 87.10 87 | 84.84 133 | 88.16 189 | 63.28 218 | 86.64 114 | 92.20 102 | 75.42 142 | 92.81 47 | 94.50 58 | 74.05 182 | 94.06 96 | 83.88 63 | 96.28 109 | 97.17 19 |
|
UniMVSNet_NR-MVSNet | | | 86.84 88 | 87.06 88 | 86.17 112 | 92.86 85 | 67.02 187 | 82.55 194 | 91.56 118 | 83.08 53 | 90.92 79 | 91.82 146 | 78.25 139 | 93.99 97 | 74.16 160 | 98.35 22 | 97.49 14 |
|
DU-MVS | | | 86.80 89 | 86.99 90 | 86.21 110 | 93.24 75 | 67.02 187 | 83.16 181 | 92.21 101 | 81.73 67 | 90.92 79 | 91.97 140 | 77.20 149 | 93.99 97 | 74.16 160 | 98.35 22 | 97.61 11 |
|
mvs-test1 | | | 84.55 127 | 82.12 170 | 91.84 20 | 87.13 209 | 89.54 4 | 85.05 135 | 88.42 187 | 74.57 150 | 80.60 250 | 82.98 289 | 78.49 136 | 93.98 99 | 72.04 184 | 89.77 251 | 92.00 170 |
|
DP-MVS Recon | | | 84.05 142 | 83.22 154 | 86.52 100 | 91.73 118 | 75.27 117 | 83.23 179 | 92.40 97 | 72.04 187 | 82.04 231 | 88.33 215 | 77.91 142 | 93.95 100 | 66.17 230 | 95.12 149 | 90.34 209 |
|
DP-MVS | | | 88.60 71 | 89.01 66 | 87.36 90 | 91.30 130 | 77.50 94 | 87.55 96 | 92.97 83 | 87.95 22 | 89.62 106 | 92.87 115 | 84.56 70 | 93.89 101 | 77.65 128 | 96.62 96 | 90.70 200 |
|
NR-MVSNet | | | 86.00 102 | 86.22 101 | 85.34 127 | 93.24 75 | 64.56 205 | 82.21 204 | 90.46 145 | 80.99 75 | 88.42 129 | 91.97 140 | 77.56 145 | 93.85 102 | 72.46 182 | 98.65 12 | 97.61 11 |
|
EPNet | | | 80.37 198 | 78.41 215 | 86.23 107 | 76.75 322 | 73.28 128 | 87.18 102 | 77.45 280 | 76.24 126 | 68.14 322 | 88.93 209 | 65.41 237 | 93.85 102 | 69.47 204 | 96.12 117 | 91.55 186 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 63 | 94.76 40 | 79.86 70 | 86.76 111 | 92.78 90 | 78.78 102 | 92.51 51 | 93.64 100 | 88.13 36 | 93.84 104 | 84.83 55 | 97.55 67 | 94.10 92 |
|
ETH3D-3000-0.1 | | | 88.85 69 | 88.96 69 | 88.52 73 | 91.94 112 | 77.27 101 | 88.71 83 | 95.26 11 | 76.08 127 | 90.66 85 | 92.69 121 | 84.48 72 | 93.83 105 | 83.38 68 | 97.48 73 | 94.47 76 |
|
9.14 | | | | 89.29 62 | | 91.84 116 | | 88.80 81 | 95.32 9 | 75.14 145 | 91.07 76 | 92.89 114 | 87.27 46 | 93.78 106 | 83.69 66 | 97.55 67 | |
|
TranMVSNet+NR-MVSNet | | | 87.86 78 | 88.76 73 | 85.18 129 | 94.02 57 | 64.13 209 | 84.38 148 | 91.29 126 | 84.88 35 | 92.06 59 | 93.84 94 | 86.45 58 | 93.73 107 | 73.22 171 | 98.66 11 | 97.69 10 |
|
v8 | | | 86.22 99 | 86.83 94 | 84.36 144 | 87.82 194 | 62.35 232 | 86.42 117 | 91.33 125 | 76.78 122 | 92.73 48 | 94.48 60 | 73.41 191 | 93.72 108 | 83.10 70 | 95.41 136 | 97.01 22 |
|
Vis-MVSNet | | | 86.86 87 | 86.58 96 | 87.72 85 | 92.09 106 | 77.43 97 | 87.35 99 | 92.09 104 | 78.87 101 | 84.27 204 | 94.05 81 | 78.35 138 | 93.65 109 | 80.54 100 | 91.58 225 | 92.08 167 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v1240 | | | 84.30 135 | 84.51 136 | 83.65 161 | 87.65 199 | 61.26 241 | 82.85 188 | 91.54 119 | 67.94 224 | 90.68 84 | 90.65 181 | 71.71 211 | 93.64 110 | 82.84 75 | 94.78 159 | 96.07 35 |
|
TEST9 | | | | | | 92.34 97 | 79.70 72 | 83.94 154 | 90.32 150 | 65.41 252 | 84.49 195 | 90.97 168 | 82.03 102 | 93.63 111 | | | |
|
train_agg | | | 85.98 104 | 85.28 118 | 88.07 82 | 92.34 97 | 79.70 72 | 83.94 154 | 90.32 150 | 65.79 242 | 84.49 195 | 90.97 168 | 81.93 104 | 93.63 111 | 81.21 89 | 96.54 100 | 90.88 196 |
|
PCF-MVS | | 74.62 15 | 82.15 173 | 80.92 187 | 85.84 118 | 89.43 165 | 72.30 143 | 80.53 227 | 91.82 113 | 57.36 295 | 87.81 139 | 89.92 195 | 77.67 144 | 93.63 111 | 58.69 277 | 95.08 150 | 91.58 185 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
v1192 | | | 84.57 126 | 84.69 130 | 84.21 148 | 87.75 196 | 62.88 222 | 83.02 184 | 91.43 122 | 69.08 213 | 89.98 95 | 90.89 172 | 72.70 201 | 93.62 114 | 82.41 77 | 94.97 154 | 96.13 33 |
|
v1921920 | | | 84.23 138 | 84.37 140 | 83.79 157 | 87.64 200 | 61.71 236 | 82.91 187 | 91.20 129 | 67.94 224 | 90.06 91 | 90.34 185 | 72.04 208 | 93.59 115 | 82.32 79 | 94.91 155 | 96.07 35 |
|
mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 28 | 93.51 67 | 84.79 39 | 89.89 57 | 90.63 142 | 70.00 206 | 94.55 15 | 96.67 12 | 87.94 39 | 93.59 115 | 84.27 60 | 95.97 119 | 95.52 48 |
|
test_0402 | | | 88.65 70 | 89.58 59 | 85.88 117 | 92.55 91 | 72.22 145 | 84.01 153 | 89.44 175 | 88.63 18 | 94.38 18 | 95.77 25 | 86.38 60 | 93.59 115 | 79.84 104 | 95.21 144 | 91.82 177 |
|
thisisatest0530 | | | 79.07 209 | 77.33 224 | 84.26 147 | 87.13 209 | 64.58 204 | 83.66 165 | 75.95 288 | 68.86 216 | 85.22 183 | 87.36 232 | 38.10 344 | 93.57 118 | 75.47 150 | 94.28 171 | 94.62 68 |
|
jajsoiax | | | 89.41 58 | 88.81 72 | 91.19 32 | 93.38 71 | 84.72 40 | 89.70 59 | 90.29 157 | 69.27 210 | 94.39 17 | 96.38 16 | 86.02 64 | 93.52 119 | 83.96 62 | 95.92 121 | 95.34 51 |
|
v144192 | | | 84.24 137 | 84.41 138 | 83.71 160 | 87.59 201 | 61.57 237 | 82.95 186 | 91.03 133 | 67.82 227 | 89.80 100 | 90.49 183 | 73.28 194 | 93.51 120 | 81.88 85 | 94.89 156 | 96.04 37 |
|
v1144 | | | 84.54 129 | 84.72 128 | 84.00 152 | 87.67 198 | 62.55 228 | 82.97 185 | 90.93 135 | 70.32 203 | 89.80 100 | 90.99 167 | 73.50 188 | 93.48 121 | 81.69 86 | 94.65 164 | 95.97 38 |
|
MCST-MVS | | | 84.36 131 | 83.93 147 | 85.63 122 | 91.59 120 | 71.58 154 | 83.52 167 | 92.13 103 | 61.82 268 | 83.96 206 | 89.75 197 | 79.93 129 | 93.46 122 | 78.33 120 | 94.34 170 | 91.87 175 |
|
test_8 | | | | | | 92.09 106 | 78.87 80 | 83.82 159 | 90.31 152 | 65.79 242 | 84.36 198 | 90.96 170 | 81.93 104 | 93.44 123 | | | |
|
ACMH+ | | 77.89 11 | 90.73 31 | 91.50 24 | 88.44 76 | 93.00 80 | 76.26 113 | 89.65 63 | 95.55 5 | 87.72 23 | 93.89 27 | 94.94 44 | 91.62 5 | 93.44 123 | 78.35 119 | 98.76 4 | 95.61 47 |
|
FC-MVSNet-test | | | 85.93 105 | 87.05 89 | 82.58 185 | 92.25 101 | 56.44 287 | 85.75 125 | 93.09 75 | 77.33 116 | 91.94 63 | 94.65 53 | 74.78 175 | 93.41 125 | 75.11 155 | 98.58 14 | 97.88 8 |
|
OMC-MVS | | | 88.19 74 | 87.52 82 | 90.19 49 | 91.94 112 | 81.68 58 | 87.49 98 | 93.17 73 | 76.02 130 | 88.64 124 | 91.22 158 | 84.24 74 | 93.37 126 | 77.97 126 | 97.03 84 | 95.52 48 |
|
MG-MVS | | | 80.32 200 | 80.94 186 | 78.47 248 | 88.18 187 | 52.62 312 | 82.29 200 | 85.01 242 | 72.01 188 | 79.24 265 | 92.54 127 | 69.36 219 | 93.36 127 | 70.65 195 | 89.19 258 | 89.45 218 |
|
CPTT-MVS | | | 89.39 59 | 88.98 68 | 90.63 41 | 95.09 33 | 86.95 13 | 92.09 28 | 92.30 100 | 79.74 88 | 87.50 142 | 92.38 129 | 81.42 112 | 93.28 128 | 83.07 71 | 97.24 79 | 91.67 181 |
|
F-COLMAP | | | 84.97 121 | 83.42 151 | 89.63 56 | 92.39 95 | 83.40 48 | 88.83 80 | 91.92 110 | 73.19 171 | 80.18 258 | 89.15 205 | 77.04 153 | 93.28 128 | 65.82 235 | 92.28 211 | 92.21 164 |
|
v2v482 | | | 84.09 140 | 84.24 142 | 83.62 162 | 87.13 209 | 61.40 238 | 82.71 191 | 89.71 169 | 72.19 185 | 89.55 110 | 91.41 156 | 70.70 216 | 93.20 130 | 81.02 91 | 93.76 180 | 96.25 31 |
|
agg_prior1 | | | 85.72 107 | 85.20 119 | 87.28 91 | 91.58 123 | 77.69 91 | 83.69 164 | 90.30 154 | 66.29 238 | 84.32 199 | 91.07 165 | 82.13 98 | 93.18 131 | 81.02 91 | 96.36 106 | 90.98 192 |
|
agg_prior | | | | | | 91.58 123 | 77.69 91 | | 90.30 154 | | 84.32 199 | | | 93.18 131 | | | |
|
Regformer-2 | | | 86.74 90 | 86.08 104 | 88.73 70 | 84.18 257 | 79.20 77 | 83.52 167 | 89.33 176 | 83.33 49 | 89.92 97 | 85.07 268 | 83.23 84 | 93.16 133 | 83.39 67 | 92.72 205 | 93.83 101 |
|
LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 23 | 93.73 64 | 85.72 31 | 96.79 1 | 95.51 6 | 88.86 14 | 95.63 8 | 96.99 9 | 84.81 69 | 93.16 133 | 91.10 1 | 97.53 70 | 96.58 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
IterMVS-SCA-FT | | | 80.64 192 | 79.41 206 | 84.34 145 | 83.93 261 | 69.66 166 | 76.28 286 | 81.09 264 | 72.43 180 | 86.47 165 | 90.19 189 | 60.46 258 | 93.15 135 | 77.45 132 | 86.39 287 | 90.22 210 |
|
DPM-MVS | | | 80.10 205 | 79.18 208 | 82.88 180 | 90.71 147 | 69.74 164 | 78.87 251 | 90.84 136 | 60.29 280 | 75.64 291 | 85.92 252 | 67.28 228 | 93.11 136 | 71.24 188 | 91.79 220 | 85.77 266 |
|
XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 44 | 94.91 37 | 84.50 44 | 89.49 69 | 93.98 37 | 79.68 89 | 92.09 58 | 93.89 93 | 83.80 77 | 93.10 137 | 82.67 76 | 98.04 35 | 93.64 112 |
|
anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 9 | 89.82 163 | 86.67 15 | 90.51 46 | 90.20 160 | 69.87 207 | 95.06 11 | 96.14 22 | 84.28 73 | 93.07 138 | 87.68 13 | 96.34 107 | 97.09 20 |
|
ACMM | | 79.39 9 | 90.65 32 | 90.99 40 | 89.63 56 | 95.03 34 | 83.53 47 | 89.62 64 | 93.35 61 | 79.20 96 | 93.83 28 | 93.60 101 | 90.81 9 | 92.96 139 | 85.02 52 | 98.45 19 | 92.41 153 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
CLD-MVS | | | 83.18 160 | 82.64 163 | 84.79 134 | 89.05 171 | 67.82 184 | 77.93 262 | 92.52 95 | 68.33 219 | 85.07 184 | 81.54 306 | 82.06 100 | 92.96 139 | 69.35 205 | 97.91 48 | 93.57 115 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
Effi-MVS+ | | | 83.90 147 | 84.01 145 | 83.57 164 | 87.22 207 | 65.61 198 | 86.55 116 | 92.40 97 | 78.64 105 | 81.34 243 | 84.18 279 | 83.65 79 | 92.93 141 | 74.22 159 | 87.87 274 | 92.17 166 |
|
lessismore_v0 | | | | | 85.95 114 | 91.10 139 | 70.99 158 | | 70.91 323 | | 91.79 64 | 94.42 64 | 61.76 253 | 92.93 141 | 79.52 110 | 93.03 196 | 93.93 97 |
|
FIs | | | 85.35 111 | 86.27 100 | 82.60 184 | 91.86 115 | 57.31 280 | 85.10 134 | 93.05 77 | 75.83 135 | 91.02 78 | 93.97 85 | 73.57 187 | 92.91 143 | 73.97 163 | 98.02 38 | 97.58 13 |
|
PVSNet_Blended_VisFu | | | 81.55 180 | 80.49 191 | 84.70 138 | 91.58 123 | 73.24 129 | 84.21 149 | 91.67 117 | 62.86 261 | 80.94 246 | 87.16 235 | 67.27 229 | 92.87 144 | 69.82 202 | 88.94 261 | 87.99 241 |
|
Regformer-4 | | | 86.41 94 | 85.71 111 | 88.52 73 | 84.27 253 | 77.57 93 | 84.07 151 | 88.00 197 | 82.82 56 | 89.84 99 | 85.48 256 | 82.06 100 | 92.77 145 | 83.83 65 | 91.04 231 | 95.22 59 |
|
DELS-MVS | | | 81.44 181 | 81.25 181 | 82.03 192 | 84.27 253 | 62.87 223 | 76.47 284 | 92.49 96 | 70.97 195 | 81.64 239 | 83.83 281 | 75.03 170 | 92.70 146 | 74.29 158 | 92.22 214 | 90.51 206 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
TSAR-MVS + GP. | | | 83.95 145 | 82.69 162 | 87.72 85 | 89.27 168 | 81.45 60 | 83.72 163 | 81.58 262 | 74.73 148 | 85.66 177 | 86.06 250 | 72.56 203 | 92.69 147 | 75.44 151 | 95.21 144 | 89.01 232 |
|
Fast-Effi-MVS+ | | | 81.04 185 | 80.57 188 | 82.46 189 | 87.50 202 | 63.22 219 | 78.37 258 | 89.63 171 | 68.01 221 | 81.87 233 | 82.08 301 | 82.31 93 | 92.65 148 | 67.10 223 | 88.30 270 | 91.51 187 |
|
PLC | | 73.85 16 | 82.09 174 | 80.31 193 | 87.45 89 | 90.86 143 | 80.29 67 | 85.88 124 | 90.65 141 | 68.17 220 | 76.32 282 | 86.33 245 | 73.12 196 | 92.61 149 | 61.40 264 | 90.02 250 | 89.44 219 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
IterMVS-LS | | | 84.73 123 | 84.98 122 | 83.96 154 | 87.35 204 | 63.66 213 | 83.25 177 | 89.88 167 | 76.06 128 | 89.62 106 | 92.37 132 | 73.40 193 | 92.52 150 | 78.16 122 | 94.77 161 | 95.69 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PAPM_NR | | | 83.23 159 | 83.19 156 | 83.33 168 | 90.90 141 | 65.98 195 | 88.19 89 | 90.78 138 | 78.13 111 | 80.87 248 | 87.92 223 | 73.49 190 | 92.42 151 | 70.07 200 | 88.40 265 | 91.60 184 |
|
PAPM | | | 71.77 276 | 70.06 287 | 76.92 265 | 86.39 221 | 53.97 301 | 76.62 281 | 86.62 219 | 53.44 312 | 63.97 340 | 84.73 274 | 57.79 280 | 92.34 152 | 39.65 344 | 81.33 320 | 84.45 278 |
|
eth_miper_zixun_eth | | | 80.84 188 | 80.22 197 | 82.71 182 | 81.41 281 | 60.98 247 | 77.81 264 | 90.14 162 | 67.31 231 | 86.95 154 | 87.24 234 | 64.26 240 | 92.31 153 | 75.23 153 | 91.61 223 | 94.85 64 |
|
PAPR | | | 78.84 212 | 78.10 218 | 81.07 208 | 85.17 241 | 60.22 253 | 82.21 204 | 90.57 144 | 62.51 263 | 75.32 294 | 84.61 275 | 74.99 171 | 92.30 154 | 59.48 275 | 88.04 272 | 90.68 201 |
|
V42 | | | 83.47 155 | 83.37 153 | 83.75 159 | 83.16 269 | 63.33 217 | 81.31 216 | 90.23 159 | 69.51 209 | 90.91 81 | 90.81 175 | 74.16 180 | 92.29 155 | 80.06 101 | 90.22 248 | 95.62 46 |
|
QAPM | | | 82.59 166 | 82.59 165 | 82.58 185 | 86.44 220 | 66.69 190 | 89.94 56 | 90.36 149 | 67.97 223 | 84.94 187 | 92.58 125 | 72.71 200 | 92.18 156 | 70.63 196 | 87.73 276 | 88.85 233 |
|
CSCG | | | 86.26 97 | 86.47 97 | 85.60 123 | 90.87 142 | 74.26 123 | 87.98 91 | 91.85 111 | 80.35 81 | 89.54 112 | 88.01 219 | 79.09 132 | 92.13 157 | 75.51 149 | 95.06 151 | 90.41 208 |
|
TAPA-MVS | | 77.73 12 | 85.71 108 | 84.83 125 | 88.37 77 | 88.78 177 | 79.72 71 | 87.15 103 | 93.50 57 | 69.17 211 | 85.80 176 | 89.56 198 | 80.76 118 | 92.13 157 | 73.21 176 | 95.51 134 | 93.25 124 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
thisisatest0515 | | | 73.00 267 | 70.52 282 | 80.46 219 | 81.45 280 | 59.90 256 | 73.16 309 | 74.31 300 | 57.86 290 | 76.08 286 | 77.78 327 | 37.60 347 | 92.12 159 | 65.00 238 | 91.45 226 | 89.35 221 |
|
RRT_test8_iter05 | | | 78.08 220 | 77.52 221 | 79.75 229 | 80.84 290 | 52.54 313 | 80.61 226 | 88.96 180 | 67.77 228 | 84.62 192 | 89.29 201 | 33.89 351 | 92.10 160 | 77.59 129 | 94.15 173 | 94.62 68 |
|
HyFIR lowres test | | | 75.12 249 | 72.66 267 | 82.50 188 | 91.44 129 | 65.19 200 | 72.47 310 | 87.31 204 | 46.79 337 | 80.29 256 | 84.30 278 | 52.70 298 | 92.10 160 | 51.88 315 | 86.73 283 | 90.22 210 |
|
Anonymous20231211 | | | 88.40 72 | 89.62 58 | 84.73 136 | 90.46 152 | 65.27 199 | 88.86 79 | 93.02 81 | 87.15 25 | 93.05 40 | 97.10 7 | 82.28 96 | 92.02 162 | 76.70 139 | 97.99 40 | 96.88 24 |
|
testing_2 | | | 84.36 131 | 84.64 132 | 83.50 166 | 86.74 219 | 63.97 212 | 84.56 142 | 90.31 152 | 66.22 239 | 91.62 67 | 94.55 56 | 75.88 165 | 91.95 163 | 77.02 138 | 94.89 156 | 94.56 71 |
|
baseline | | | 85.20 113 | 85.93 106 | 83.02 174 | 86.30 227 | 62.37 231 | 84.55 143 | 93.96 38 | 74.48 152 | 87.12 146 | 92.03 139 | 82.30 94 | 91.94 164 | 78.39 117 | 94.21 172 | 94.74 67 |
|
EI-MVSNet-Vis-set | | | 85.12 115 | 84.53 135 | 86.88 93 | 84.01 260 | 72.76 131 | 83.91 157 | 85.18 236 | 80.44 79 | 88.75 122 | 85.49 255 | 80.08 125 | 91.92 165 | 82.02 81 | 90.85 240 | 95.97 38 |
|
EI-MVSNet-UG-set | | | 85.04 118 | 84.44 137 | 86.85 94 | 83.87 263 | 72.52 139 | 83.82 159 | 85.15 237 | 80.27 83 | 88.75 122 | 85.45 259 | 79.95 128 | 91.90 166 | 81.92 84 | 90.80 241 | 96.13 33 |
|
Regformer-1 | | | 86.00 102 | 85.50 115 | 87.49 88 | 84.18 257 | 76.90 105 | 83.52 167 | 87.94 199 | 82.18 62 | 89.19 115 | 85.07 268 | 82.28 96 | 91.89 167 | 82.40 78 | 92.72 205 | 93.69 109 |
|
casdiffmvs | | | 85.21 112 | 85.85 108 | 83.31 169 | 86.17 232 | 62.77 224 | 83.03 183 | 93.93 39 | 74.69 149 | 88.21 134 | 92.68 122 | 82.29 95 | 91.89 167 | 77.87 127 | 93.75 182 | 95.27 55 |
|
IB-MVS | | 62.13 19 | 71.64 277 | 68.97 291 | 79.66 232 | 80.80 292 | 62.26 234 | 73.94 303 | 76.90 282 | 63.27 259 | 68.63 321 | 76.79 333 | 33.83 352 | 91.84 169 | 59.28 276 | 87.26 279 | 84.88 274 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
UGNet | | | 82.78 163 | 81.64 176 | 86.21 110 | 86.20 231 | 76.24 114 | 86.86 106 | 85.68 228 | 77.07 119 | 73.76 302 | 92.82 116 | 69.64 217 | 91.82 170 | 69.04 211 | 93.69 183 | 90.56 204 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
BH-untuned | | | 80.96 186 | 80.99 185 | 80.84 213 | 88.55 180 | 68.23 179 | 80.33 229 | 88.46 186 | 72.79 177 | 86.55 159 | 86.76 240 | 74.72 177 | 91.77 171 | 61.79 259 | 88.99 259 | 82.52 305 |
|
cl_fuxian | | | 81.64 179 | 81.59 178 | 81.79 200 | 80.86 289 | 59.15 265 | 78.61 255 | 90.18 161 | 68.36 218 | 87.20 144 | 87.11 237 | 69.39 218 | 91.62 172 | 78.16 122 | 94.43 169 | 94.60 70 |
|
API-MVS | | | 82.28 170 | 82.61 164 | 81.30 203 | 86.29 228 | 69.79 163 | 88.71 83 | 87.67 201 | 78.42 108 | 82.15 230 | 84.15 280 | 77.98 140 | 91.59 173 | 65.39 237 | 92.75 202 | 82.51 306 |
|
nrg030 | | | 87.85 79 | 88.49 74 | 85.91 115 | 90.07 159 | 69.73 165 | 87.86 93 | 94.20 25 | 74.04 155 | 92.70 49 | 94.66 52 | 85.88 65 | 91.50 174 | 79.72 105 | 97.32 77 | 96.50 30 |
|
AllTest | | | 87.97 77 | 87.40 85 | 89.68 54 | 91.59 120 | 83.40 48 | 89.50 68 | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 107 | 82.66 89 | 91.47 175 | 70.81 190 | 96.14 115 | 94.16 89 |
|
TestCases | | | | | 89.68 54 | 91.59 120 | 83.40 48 | | 95.44 7 | 79.47 91 | 88.00 136 | 93.03 107 | 82.66 89 | 91.47 175 | 70.81 190 | 96.14 115 | 94.16 89 |
|
PVSNet_BlendedMVS | | | 78.80 213 | 77.84 219 | 81.65 201 | 84.43 247 | 63.41 215 | 79.49 241 | 90.44 146 | 61.70 271 | 75.43 292 | 87.07 238 | 69.11 221 | 91.44 177 | 60.68 269 | 92.24 212 | 90.11 214 |
|
PVSNet_Blended | | | 76.49 238 | 75.40 242 | 79.76 228 | 84.43 247 | 63.41 215 | 75.14 296 | 90.44 146 | 57.36 295 | 75.43 292 | 78.30 326 | 69.11 221 | 91.44 177 | 60.68 269 | 87.70 277 | 84.42 279 |
|
miper_ehance_all_eth | | | 80.34 199 | 80.04 202 | 81.24 206 | 79.82 301 | 58.95 267 | 77.66 266 | 89.66 170 | 65.75 245 | 85.99 174 | 85.11 264 | 68.29 225 | 91.42 179 | 76.03 145 | 92.03 216 | 93.33 119 |
|
æ— å…ˆéªŒ | | | | | | | | 82.81 189 | 85.62 229 | 58.09 288 | | | | 91.41 180 | 67.95 221 | | 84.48 277 |
|
1121 | | | 80.86 187 | 79.81 204 | 84.02 151 | 93.93 59 | 78.70 82 | 81.64 211 | 80.18 269 | 55.43 303 | 83.67 209 | 91.15 161 | 71.29 213 | 91.41 180 | 67.95 221 | 93.06 195 | 81.96 311 |
|
ambc | | | | | 82.98 175 | 90.55 151 | 64.86 202 | 88.20 88 | 89.15 178 | | 89.40 113 | 93.96 88 | 71.67 212 | 91.38 182 | 78.83 115 | 96.55 99 | 92.71 144 |
|
UniMVSNet_ETH3D | | | 89.12 64 | 90.72 46 | 84.31 146 | 97.00 2 | 64.33 208 | 89.67 62 | 88.38 189 | 88.84 15 | 94.29 19 | 97.57 4 | 90.48 15 | 91.26 183 | 72.57 181 | 97.65 60 | 97.34 15 |
|
miper_enhance_ethall | | | 77.83 222 | 76.93 228 | 80.51 218 | 76.15 328 | 58.01 275 | 75.47 294 | 88.82 181 | 58.05 289 | 83.59 211 | 80.69 310 | 64.41 239 | 91.20 184 | 73.16 177 | 92.03 216 | 92.33 156 |
|
3Dnovator | | 80.37 7 | 84.80 122 | 84.71 129 | 85.06 131 | 86.36 225 | 74.71 119 | 88.77 82 | 90.00 165 | 75.65 138 | 84.96 185 | 93.17 105 | 74.06 181 | 91.19 185 | 78.28 121 | 91.09 229 | 89.29 224 |
|
cascas | | | 76.29 241 | 74.81 246 | 80.72 216 | 84.47 246 | 62.94 221 | 73.89 304 | 87.34 203 | 55.94 300 | 75.16 296 | 76.53 335 | 63.97 242 | 91.16 186 | 65.00 238 | 90.97 236 | 88.06 239 |
|
ET-MVSNet_ETH3D | | | 75.28 246 | 72.77 265 | 82.81 181 | 83.03 271 | 68.11 181 | 77.09 274 | 76.51 286 | 60.67 278 | 77.60 276 | 80.52 312 | 38.04 345 | 91.15 187 | 70.78 192 | 90.68 243 | 89.17 225 |
|
EG-PatchMatch MVS | | | 84.08 141 | 84.11 143 | 83.98 153 | 92.22 103 | 72.61 136 | 82.20 206 | 87.02 214 | 72.63 179 | 88.86 119 | 91.02 166 | 78.52 135 | 91.11 188 | 73.41 170 | 91.09 229 | 88.21 237 |
|
WR-MVS | | | 83.56 152 | 84.40 139 | 81.06 209 | 93.43 70 | 54.88 298 | 78.67 254 | 85.02 241 | 81.24 72 | 90.74 83 | 91.56 153 | 72.85 198 | 91.08 189 | 68.00 219 | 98.04 35 | 97.23 17 |
|
canonicalmvs | | | 85.50 109 | 86.14 103 | 83.58 163 | 87.97 190 | 67.13 186 | 87.55 96 | 94.32 19 | 73.44 163 | 88.47 128 | 87.54 228 | 86.45 58 | 91.06 190 | 75.76 148 | 93.76 180 | 92.54 150 |
|
XVG-OURS | | | 89.18 62 | 88.83 71 | 90.23 48 | 94.28 47 | 86.11 23 | 85.91 122 | 93.60 55 | 80.16 84 | 89.13 117 | 93.44 102 | 83.82 76 | 90.98 191 | 83.86 64 | 95.30 143 | 93.60 114 |
|
PS-MVSNAJ | | | 77.04 231 | 76.53 232 | 78.56 245 | 87.09 214 | 61.40 238 | 75.26 295 | 87.13 209 | 61.25 273 | 74.38 300 | 77.22 332 | 76.94 155 | 90.94 192 | 64.63 242 | 84.83 301 | 83.35 294 |
|
xiu_mvs_v2_base | | | 77.19 229 | 76.75 230 | 78.52 246 | 87.01 215 | 61.30 240 | 75.55 293 | 87.12 212 | 61.24 274 | 74.45 298 | 78.79 322 | 77.20 149 | 90.93 193 | 64.62 243 | 84.80 302 | 83.32 295 |
|
XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 47 | 94.47 45 | 85.95 24 | 86.84 107 | 93.91 40 | 80.07 86 | 86.75 156 | 93.26 103 | 93.64 3 | 90.93 193 | 84.60 57 | 90.75 242 | 93.97 95 |
|
v148 | | | 82.31 169 | 82.48 167 | 81.81 199 | 85.59 237 | 59.66 258 | 81.47 214 | 86.02 225 | 72.85 176 | 88.05 135 | 90.65 181 | 70.73 215 | 90.91 195 | 75.15 154 | 91.79 220 | 94.87 62 |
|
VDD-MVS | | | 84.23 138 | 84.58 134 | 83.20 171 | 91.17 137 | 65.16 201 | 83.25 177 | 84.97 243 | 79.79 87 | 87.18 145 | 94.27 70 | 74.77 176 | 90.89 196 | 69.24 206 | 96.54 100 | 93.55 118 |
|
cl-mvsnet2 | | | 78.97 210 | 78.21 217 | 81.24 206 | 77.74 315 | 59.01 266 | 77.46 272 | 87.13 209 | 65.79 242 | 84.32 199 | 85.10 265 | 58.96 271 | 90.88 197 | 75.36 152 | 92.03 216 | 93.84 100 |
|
alignmvs | | | 83.94 146 | 83.98 146 | 83.80 156 | 87.80 195 | 67.88 183 | 84.54 145 | 91.42 124 | 73.27 170 | 88.41 130 | 87.96 220 | 72.33 204 | 90.83 198 | 76.02 146 | 94.11 174 | 92.69 145 |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 146 | 84.97 36 | | 90.30 154 | 81.56 69 | 90.02 92 | 91.20 160 | 82.40 92 | 90.81 199 | 73.58 168 | 94.66 163 | 94.56 71 |
|
BH-RMVSNet | | | 80.53 193 | 80.22 197 | 81.49 202 | 87.19 208 | 66.21 194 | 77.79 265 | 86.23 222 | 74.21 154 | 83.69 208 | 88.50 214 | 73.25 195 | 90.75 200 | 63.18 250 | 87.90 273 | 87.52 247 |
|
BH-w/o | | | 76.57 236 | 76.07 237 | 78.10 254 | 86.88 217 | 65.92 196 | 77.63 267 | 86.33 221 | 65.69 246 | 80.89 247 | 79.95 317 | 68.97 223 | 90.74 201 | 53.01 308 | 85.25 296 | 77.62 329 |
|
TR-MVS | | | 76.77 234 | 75.79 238 | 79.72 230 | 86.10 234 | 65.79 197 | 77.14 273 | 83.02 250 | 65.20 253 | 81.40 241 | 82.10 300 | 66.30 232 | 90.73 202 | 55.57 294 | 85.27 295 | 82.65 301 |
|
GBi-Net | | | 82.02 175 | 82.07 171 | 81.85 196 | 86.38 222 | 61.05 244 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 171 | 95.64 29 | 63.78 244 | 90.68 203 | 65.95 231 | 93.34 186 | 93.82 103 |
|
test1 | | | 82.02 175 | 82.07 171 | 81.85 196 | 86.38 222 | 61.05 244 | 86.83 108 | 88.27 192 | 72.43 180 | 86.00 171 | 95.64 29 | 63.78 244 | 90.68 203 | 65.95 231 | 93.34 186 | 93.82 103 |
|
FMVSNet1 | | | 84.55 127 | 85.45 116 | 81.85 196 | 90.27 155 | 61.05 244 | 86.83 108 | 88.27 192 | 78.57 106 | 89.66 105 | 95.64 29 | 75.43 167 | 90.68 203 | 69.09 210 | 95.33 139 | 93.82 103 |
|
VDDNet | | | 84.35 133 | 85.39 117 | 81.25 204 | 95.13 32 | 59.32 261 | 85.42 131 | 81.11 263 | 86.41 28 | 87.41 143 | 96.21 20 | 73.61 186 | 90.61 206 | 66.33 229 | 96.85 89 | 93.81 106 |
|
MAR-MVS | | | 80.24 202 | 78.74 211 | 84.73 136 | 86.87 218 | 78.18 86 | 85.75 125 | 87.81 200 | 65.67 247 | 77.84 272 | 78.50 325 | 73.79 185 | 90.53 207 | 61.59 263 | 90.87 239 | 85.49 269 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS_Test | | | 82.47 168 | 83.22 154 | 80.22 223 | 82.62 273 | 57.75 278 | 82.54 195 | 91.96 109 | 71.16 194 | 82.89 220 | 92.52 128 | 77.41 147 | 90.50 208 | 80.04 102 | 87.84 275 | 92.40 154 |
|
MVS_111021_HR | | | 84.63 124 | 84.34 141 | 85.49 126 | 90.18 157 | 75.86 115 | 79.23 247 | 87.13 209 | 73.35 164 | 85.56 180 | 89.34 200 | 83.60 80 | 90.50 208 | 76.64 140 | 94.05 176 | 90.09 215 |
|
Anonymous20240529 | | | 86.20 100 | 87.13 86 | 83.42 167 | 90.19 156 | 64.55 206 | 84.55 143 | 90.71 139 | 85.85 30 | 89.94 96 | 95.24 38 | 82.13 98 | 90.40 210 | 69.19 209 | 96.40 105 | 95.31 53 |
|
Regformer-3 | | | 85.06 117 | 84.67 131 | 86.22 108 | 84.27 253 | 73.43 127 | 84.07 151 | 85.26 234 | 80.77 78 | 88.62 125 | 85.48 256 | 80.56 121 | 90.39 211 | 81.99 82 | 91.04 231 | 94.85 64 |
|
EI-MVSNet | | | 82.61 165 | 82.42 168 | 83.20 171 | 83.25 267 | 63.66 213 | 83.50 170 | 85.07 238 | 76.06 128 | 86.55 159 | 85.10 265 | 73.41 191 | 90.25 212 | 78.15 124 | 90.67 244 | 95.68 44 |
|
MVSTER | | | 77.09 230 | 75.70 240 | 81.25 204 | 75.27 335 | 61.08 243 | 77.49 271 | 85.07 238 | 60.78 276 | 86.55 159 | 88.68 212 | 43.14 336 | 90.25 212 | 73.69 167 | 90.67 244 | 92.42 152 |
|
Fast-Effi-MVS+-dtu | | | 82.54 167 | 81.41 180 | 85.90 116 | 85.60 236 | 76.53 110 | 83.07 182 | 89.62 172 | 73.02 174 | 79.11 266 | 83.51 284 | 80.74 119 | 90.24 214 | 68.76 213 | 89.29 255 | 90.94 194 |
|
SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 108 | 91.63 119 | 77.07 103 | 89.82 58 | 93.77 46 | 78.90 100 | 92.88 42 | 92.29 134 | 86.11 62 | 90.22 215 | 86.24 38 | 97.24 79 | 91.36 189 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
FMVSNet2 | | | 81.31 182 | 81.61 177 | 80.41 220 | 86.38 222 | 58.75 272 | 83.93 156 | 86.58 220 | 72.43 180 | 87.65 140 | 92.98 109 | 63.78 244 | 90.22 215 | 66.86 224 | 93.92 178 | 92.27 161 |
|
cl-mvsnet_ | | | 80.42 196 | 80.23 195 | 81.02 210 | 79.99 299 | 59.25 262 | 77.07 275 | 87.02 214 | 67.37 230 | 86.18 168 | 89.21 203 | 63.08 249 | 90.16 217 | 76.31 143 | 95.80 126 | 93.65 111 |
|
cl-mvsnet1 | | | 80.43 195 | 80.23 195 | 81.02 210 | 79.99 299 | 59.25 262 | 77.07 275 | 87.02 214 | 67.38 229 | 86.19 166 | 89.22 202 | 63.09 248 | 90.16 217 | 76.32 142 | 95.80 126 | 93.66 110 |
|
OpenMVS | | 76.72 13 | 81.98 177 | 82.00 173 | 81.93 193 | 84.42 249 | 68.22 180 | 88.50 87 | 89.48 174 | 66.92 233 | 81.80 237 | 91.86 142 | 72.59 202 | 90.16 217 | 71.19 189 | 91.25 228 | 87.40 249 |
|
xiu_mvs_v1_base_debu | | | 80.84 188 | 80.14 199 | 82.93 177 | 88.31 184 | 71.73 150 | 79.53 238 | 87.17 206 | 65.43 248 | 79.59 260 | 82.73 296 | 76.94 155 | 90.14 220 | 73.22 171 | 88.33 266 | 86.90 255 |
|
xiu_mvs_v1_base | | | 80.84 188 | 80.14 199 | 82.93 177 | 88.31 184 | 71.73 150 | 79.53 238 | 87.17 206 | 65.43 248 | 79.59 260 | 82.73 296 | 76.94 155 | 90.14 220 | 73.22 171 | 88.33 266 | 86.90 255 |
|
xiu_mvs_v1_base_debi | | | 80.84 188 | 80.14 199 | 82.93 177 | 88.31 184 | 71.73 150 | 79.53 238 | 87.17 206 | 65.43 248 | 79.59 260 | 82.73 296 | 76.94 155 | 90.14 220 | 73.22 171 | 88.33 266 | 86.90 255 |
|
FMVSNet3 | | | 78.80 213 | 78.55 212 | 79.57 233 | 82.89 272 | 56.89 285 | 81.76 208 | 85.77 227 | 69.04 214 | 86.00 171 | 90.44 184 | 51.75 299 | 90.09 223 | 65.95 231 | 93.34 186 | 91.72 179 |
|
LFMVS | | | 80.15 204 | 80.56 189 | 78.89 239 | 89.19 170 | 55.93 289 | 85.22 133 | 73.78 304 | 82.96 54 | 84.28 203 | 92.72 120 | 57.38 281 | 90.07 224 | 63.80 245 | 95.75 129 | 90.68 201 |
|
test_yl | | | 78.71 215 | 78.51 213 | 79.32 236 | 84.32 251 | 58.84 269 | 78.38 256 | 85.33 232 | 75.99 131 | 82.49 223 | 86.57 241 | 58.01 275 | 90.02 225 | 62.74 251 | 92.73 203 | 89.10 227 |
|
DCV-MVSNet | | | 78.71 215 | 78.51 213 | 79.32 236 | 84.32 251 | 58.84 269 | 78.38 256 | 85.33 232 | 75.99 131 | 82.49 223 | 86.57 241 | 58.01 275 | 90.02 225 | 62.74 251 | 92.73 203 | 89.10 227 |
|
MVS | | | 73.21 265 | 72.59 268 | 75.06 280 | 80.97 286 | 60.81 249 | 81.64 211 | 85.92 226 | 46.03 340 | 71.68 311 | 77.54 328 | 68.47 224 | 89.77 227 | 55.70 293 | 85.39 293 | 74.60 334 |
|
LCM-MVSNet-Re | | | 83.48 154 | 85.06 120 | 78.75 242 | 85.94 235 | 55.75 292 | 80.05 231 | 94.27 20 | 76.47 123 | 96.09 5 | 94.54 57 | 83.31 83 | 89.75 228 | 59.95 272 | 94.89 156 | 90.75 199 |
|
CANet_DTU | | | 77.81 224 | 77.05 226 | 80.09 225 | 81.37 282 | 59.90 256 | 83.26 176 | 88.29 191 | 69.16 212 | 67.83 325 | 83.72 282 | 60.93 255 | 89.47 229 | 69.22 208 | 89.70 252 | 90.88 196 |
|
GA-MVS | | | 75.83 243 | 74.61 247 | 79.48 235 | 81.87 276 | 59.25 262 | 73.42 307 | 82.88 251 | 68.68 217 | 79.75 259 | 81.80 303 | 50.62 302 | 89.46 230 | 66.85 225 | 85.64 292 | 89.72 216 |
|
MVP-Stereo | | | 75.81 244 | 73.51 259 | 82.71 182 | 89.35 166 | 73.62 125 | 80.06 230 | 85.20 235 | 60.30 279 | 73.96 301 | 87.94 221 | 57.89 279 | 89.45 231 | 52.02 311 | 74.87 338 | 85.06 273 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Vis-MVSNet (Re-imp) | | | 77.82 223 | 77.79 220 | 77.92 257 | 88.82 176 | 51.29 322 | 83.28 175 | 71.97 317 | 74.04 155 | 82.23 228 | 89.78 196 | 57.38 281 | 89.41 232 | 57.22 285 | 95.41 136 | 93.05 129 |
|
MSLP-MVS++ | | | 85.00 120 | 86.03 105 | 81.90 194 | 91.84 116 | 71.56 155 | 86.75 112 | 93.02 81 | 75.95 133 | 87.12 146 | 89.39 199 | 77.98 140 | 89.40 233 | 77.46 131 | 94.78 159 | 84.75 276 |
|
thres600view7 | | | 75.97 242 | 75.35 244 | 77.85 259 | 87.01 215 | 51.84 319 | 80.45 228 | 73.26 308 | 75.20 144 | 83.10 218 | 86.31 247 | 45.54 321 | 89.05 234 | 55.03 299 | 92.24 212 | 92.66 146 |
|
jason | | | 77.42 227 | 75.75 239 | 82.43 190 | 87.10 213 | 69.27 170 | 77.99 261 | 81.94 259 | 51.47 325 | 77.84 272 | 85.07 268 | 60.32 260 | 89.00 235 | 70.74 194 | 89.27 257 | 89.03 230 |
jason: jason. |
lupinMVS | | | 76.37 240 | 74.46 250 | 82.09 191 | 85.54 238 | 69.26 171 | 76.79 277 | 80.77 267 | 50.68 331 | 76.23 283 | 82.82 294 | 58.69 272 | 88.94 236 | 69.85 201 | 88.77 262 | 88.07 238 |
|
PMVS | | 80.48 6 | 90.08 42 | 90.66 47 | 88.34 78 | 96.71 3 | 92.97 1 | 90.31 49 | 89.57 173 | 88.51 19 | 90.11 90 | 95.12 41 | 90.98 8 | 88.92 237 | 77.55 130 | 97.07 83 | 83.13 299 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
thres100view900 | | | 75.45 245 | 75.05 245 | 76.66 270 | 87.27 205 | 51.88 318 | 81.07 221 | 73.26 308 | 75.68 137 | 83.25 215 | 86.37 244 | 45.54 321 | 88.80 238 | 51.98 312 | 90.99 233 | 89.31 222 |
|
tfpn200view9 | | | 74.86 253 | 74.23 252 | 76.74 269 | 86.24 229 | 52.12 315 | 79.24 245 | 73.87 302 | 73.34 165 | 81.82 235 | 84.60 276 | 46.02 315 | 88.80 238 | 51.98 312 | 90.99 233 | 89.31 222 |
|
thres400 | | | 75.14 247 | 74.23 252 | 77.86 258 | 86.24 229 | 52.12 315 | 79.24 245 | 73.87 302 | 73.34 165 | 81.82 235 | 84.60 276 | 46.02 315 | 88.80 238 | 51.98 312 | 90.99 233 | 92.66 146 |
|
TAMVS | | | 78.08 220 | 76.36 233 | 83.23 170 | 90.62 148 | 72.87 130 | 79.08 248 | 80.01 271 | 61.72 270 | 81.35 242 | 86.92 239 | 63.96 243 | 88.78 241 | 50.61 316 | 93.01 197 | 88.04 240 |
|
CDS-MVSNet | | | 77.32 228 | 75.40 242 | 83.06 173 | 89.00 173 | 72.48 140 | 77.90 263 | 82.17 257 | 60.81 275 | 78.94 267 | 83.49 285 | 59.30 268 | 88.76 242 | 54.64 302 | 92.37 209 | 87.93 243 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
OpenMVS_ROB | | 70.19 17 | 77.77 225 | 77.46 222 | 78.71 243 | 84.39 250 | 61.15 242 | 81.18 220 | 82.52 253 | 62.45 265 | 83.34 214 | 87.37 231 | 66.20 233 | 88.66 243 | 64.69 241 | 85.02 298 | 86.32 259 |
|
baseline2 | | | 69.77 290 | 66.89 300 | 78.41 249 | 79.51 304 | 58.09 274 | 76.23 287 | 69.57 327 | 57.50 294 | 64.82 338 | 77.45 330 | 46.02 315 | 88.44 244 | 53.08 307 | 77.83 331 | 88.70 234 |
|
tpm2 | | | 68.45 295 | 66.83 301 | 73.30 287 | 78.93 312 | 48.50 332 | 79.76 235 | 71.76 319 | 47.50 336 | 69.92 318 | 83.60 283 | 42.07 338 | 88.40 245 | 48.44 326 | 79.51 324 | 83.01 300 |
|
æ–°å‡ ä½•1 | | | | | 82.95 176 | 93.96 58 | 78.56 84 | | 80.24 268 | 55.45 302 | 83.93 207 | 91.08 163 | 71.19 214 | 88.33 246 | 65.84 234 | 93.07 194 | 81.95 312 |
|
ACMH | | 76.49 14 | 89.34 60 | 91.14 35 | 83.96 154 | 92.50 93 | 70.36 162 | 89.55 65 | 93.84 45 | 81.89 66 | 94.70 13 | 95.44 33 | 90.69 10 | 88.31 247 | 83.33 69 | 98.30 26 | 93.20 125 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
thres200 | | | 72.34 272 | 71.55 278 | 74.70 282 | 83.48 264 | 51.60 320 | 75.02 297 | 73.71 305 | 70.14 205 | 78.56 270 | 80.57 311 | 46.20 313 | 88.20 248 | 46.99 331 | 89.29 255 | 84.32 280 |
|
gm-plane-assit | | | | | | 75.42 334 | 44.97 343 | | | 52.17 319 | | 72.36 342 | | 87.90 249 | 54.10 303 | | |
|
EU-MVSNet | | | 75.12 249 | 74.43 251 | 77.18 263 | 83.11 270 | 59.48 260 | 85.71 127 | 82.43 255 | 39.76 349 | 85.64 178 | 88.76 210 | 44.71 332 | 87.88 250 | 73.86 165 | 85.88 291 | 84.16 282 |
|
RPSCF | | | 88.00 76 | 86.93 92 | 91.22 31 | 90.08 158 | 89.30 5 | 89.68 61 | 91.11 131 | 79.26 95 | 89.68 103 | 94.81 51 | 82.44 91 | 87.74 251 | 76.54 141 | 88.74 264 | 96.61 28 |
|
D2MVS | | | 76.84 233 | 75.67 241 | 80.34 221 | 80.48 297 | 62.16 235 | 73.50 306 | 84.80 245 | 57.61 293 | 82.24 227 | 87.54 228 | 51.31 300 | 87.65 252 | 70.40 199 | 93.19 192 | 91.23 190 |
|
CostFormer | | | 69.98 289 | 68.68 294 | 73.87 284 | 77.14 319 | 50.72 327 | 79.26 244 | 74.51 298 | 51.94 323 | 70.97 315 | 84.75 273 | 45.16 329 | 87.49 253 | 55.16 298 | 79.23 327 | 83.40 293 |
|
CVMVSNet | | | 72.62 269 | 71.41 279 | 76.28 274 | 83.25 267 | 60.34 252 | 83.50 170 | 79.02 274 | 37.77 350 | 76.33 281 | 85.10 265 | 49.60 305 | 87.41 254 | 70.54 197 | 77.54 334 | 81.08 323 |
|
diffmvs | | | 80.40 197 | 80.48 192 | 80.17 224 | 79.02 311 | 60.04 254 | 77.54 269 | 90.28 158 | 66.65 236 | 82.40 225 | 87.33 233 | 73.50 188 | 87.35 255 | 77.98 125 | 89.62 253 | 93.13 127 |
|
VPA-MVSNet | | | 83.47 155 | 84.73 126 | 79.69 231 | 90.29 154 | 57.52 279 | 81.30 218 | 88.69 184 | 76.29 124 | 87.58 141 | 94.44 61 | 80.60 120 | 87.20 256 | 66.60 228 | 96.82 92 | 94.34 83 |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 304 | 45.93 318 | 87.01 257 | | | |
|
SCA | | | 73.32 262 | 72.57 269 | 75.58 278 | 81.62 278 | 55.86 290 | 78.89 250 | 71.37 322 | 61.73 269 | 74.93 297 | 83.42 287 | 60.46 258 | 87.01 257 | 58.11 282 | 82.63 316 | 83.88 283 |
|
mvs_anonymous | | | 78.13 219 | 78.76 210 | 76.23 275 | 79.24 308 | 50.31 329 | 78.69 253 | 84.82 244 | 61.60 272 | 83.09 219 | 92.82 116 | 73.89 184 | 87.01 257 | 68.33 218 | 86.41 286 | 91.37 188 |
|
TinyColmap | | | 81.25 183 | 82.34 169 | 77.99 256 | 85.33 240 | 60.68 250 | 82.32 199 | 88.33 190 | 71.26 192 | 86.97 153 | 92.22 138 | 77.10 152 | 86.98 260 | 62.37 253 | 95.17 146 | 86.31 260 |
|
TransMVSNet (Re) | | | 84.02 143 | 85.74 110 | 78.85 240 | 91.00 140 | 55.20 297 | 82.29 200 | 87.26 205 | 79.65 90 | 88.38 131 | 95.52 32 | 83.00 85 | 86.88 261 | 67.97 220 | 96.60 98 | 94.45 79 |
|
LF4IMVS | | | 82.75 164 | 81.93 174 | 85.19 128 | 82.08 274 | 80.15 68 | 85.53 129 | 88.76 183 | 68.01 221 | 85.58 179 | 87.75 224 | 71.80 210 | 86.85 262 | 74.02 162 | 93.87 179 | 88.58 235 |
|
pmmvs6 | | | 86.52 93 | 88.06 77 | 81.90 194 | 92.22 103 | 62.28 233 | 84.66 140 | 89.15 178 | 83.54 47 | 89.85 98 | 97.32 5 | 88.08 38 | 86.80 263 | 70.43 198 | 97.30 78 | 96.62 27 |
|
MVS_0304 | | | 78.17 218 | 77.23 225 | 80.99 212 | 84.13 259 | 69.07 177 | 81.39 215 | 80.81 266 | 76.28 125 | 67.53 327 | 89.11 206 | 62.87 250 | 86.77 264 | 60.90 268 | 92.01 219 | 87.13 252 |
|
1112_ss | | | 74.82 254 | 73.74 255 | 78.04 255 | 89.57 164 | 60.04 254 | 76.49 283 | 87.09 213 | 54.31 307 | 73.66 303 | 79.80 318 | 60.25 261 | 86.76 265 | 58.37 278 | 84.15 305 | 87.32 250 |
|
USDC | | | 76.63 235 | 76.73 231 | 76.34 273 | 83.46 265 | 57.20 282 | 80.02 232 | 88.04 196 | 52.14 321 | 83.65 210 | 91.25 157 | 63.24 247 | 86.65 266 | 54.66 301 | 94.11 174 | 85.17 271 |
|
tfpnnormal | | | 81.79 178 | 82.95 159 | 78.31 250 | 88.93 175 | 55.40 293 | 80.83 225 | 82.85 252 | 76.81 121 | 85.90 175 | 94.14 78 | 74.58 179 | 86.51 267 | 66.82 227 | 95.68 132 | 93.01 131 |
|
VPNet | | | 80.25 201 | 81.68 175 | 75.94 276 | 92.46 94 | 47.98 335 | 76.70 279 | 81.67 261 | 73.45 162 | 84.87 188 | 92.82 116 | 74.66 178 | 86.51 267 | 61.66 261 | 96.85 89 | 93.33 119 |
|
testdata2 | | | | | | | | | | | | | | 86.43 269 | 63.52 247 | | |
|
MSDG | | | 80.06 206 | 79.99 203 | 80.25 222 | 83.91 262 | 68.04 182 | 77.51 270 | 89.19 177 | 77.65 113 | 81.94 232 | 83.45 286 | 76.37 163 | 86.31 270 | 63.31 249 | 86.59 284 | 86.41 258 |
|
Anonymous202405211 | | | 80.51 194 | 81.19 183 | 78.49 247 | 88.48 181 | 57.26 281 | 76.63 280 | 82.49 254 | 81.21 73 | 84.30 202 | 92.24 137 | 67.99 226 | 86.24 271 | 62.22 254 | 95.13 147 | 91.98 173 |
|
MVS_111021_LR | | | 84.28 136 | 83.76 149 | 85.83 119 | 89.23 169 | 83.07 51 | 80.99 222 | 83.56 248 | 72.71 178 | 86.07 170 | 89.07 207 | 81.75 109 | 86.19 272 | 77.11 136 | 93.36 185 | 88.24 236 |
|
Baseline_NR-MVSNet | | | 84.00 144 | 85.90 107 | 78.29 251 | 91.47 128 | 53.44 306 | 82.29 200 | 87.00 217 | 79.06 98 | 89.55 110 | 95.72 27 | 77.20 149 | 86.14 273 | 72.30 183 | 98.51 17 | 95.28 54 |
|
EPNet_dtu | | | 72.87 268 | 71.33 280 | 77.49 262 | 77.72 316 | 60.55 251 | 82.35 198 | 75.79 289 | 66.49 237 | 58.39 350 | 81.06 309 | 53.68 296 | 85.98 274 | 53.55 305 | 92.97 199 | 85.95 263 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ANet_high | | | 83.17 161 | 85.68 112 | 75.65 277 | 81.24 283 | 45.26 341 | 79.94 233 | 92.91 84 | 83.83 41 | 91.33 73 | 96.88 11 | 80.25 124 | 85.92 275 | 68.89 212 | 95.89 122 | 95.76 42 |
|
Test_1112_low_res | | | 73.90 260 | 73.08 262 | 76.35 272 | 90.35 153 | 55.95 288 | 73.40 308 | 86.17 223 | 50.70 330 | 73.14 304 | 85.94 251 | 58.31 274 | 85.90 276 | 56.51 288 | 83.22 309 | 87.20 251 |
|
MIMVSNet1 | | | 83.63 151 | 84.59 133 | 80.74 214 | 94.06 56 | 62.77 224 | 82.72 190 | 84.53 246 | 77.57 115 | 90.34 88 | 95.92 24 | 76.88 161 | 85.83 277 | 61.88 258 | 97.42 74 | 93.62 113 |
|
tpmvs | | | 70.16 285 | 69.56 289 | 71.96 296 | 74.71 339 | 48.13 333 | 79.63 236 | 75.45 294 | 65.02 254 | 70.26 316 | 81.88 302 | 45.34 326 | 85.68 278 | 58.34 279 | 75.39 337 | 82.08 310 |
|
pm-mvs1 | | | 83.69 149 | 84.95 123 | 79.91 226 | 90.04 161 | 59.66 258 | 82.43 196 | 87.44 202 | 75.52 139 | 87.85 138 | 95.26 37 | 81.25 114 | 85.65 279 | 68.74 214 | 96.04 118 | 94.42 80 |
|
pmmvs-eth3d | | | 78.42 217 | 77.04 227 | 82.57 187 | 87.44 203 | 74.41 122 | 80.86 224 | 79.67 272 | 55.68 301 | 84.69 191 | 90.31 187 | 60.91 256 | 85.42 280 | 62.20 255 | 91.59 224 | 87.88 244 |
|
testdata | | | | | 79.54 234 | 92.87 83 | 72.34 142 | | 80.14 270 | 59.91 282 | 85.47 182 | 91.75 149 | 67.96 227 | 85.24 281 | 68.57 217 | 92.18 215 | 81.06 325 |
|
1314 | | | 73.22 264 | 72.56 270 | 75.20 279 | 80.41 298 | 57.84 276 | 81.64 211 | 85.36 231 | 51.68 324 | 73.10 305 | 76.65 334 | 61.45 254 | 85.19 282 | 63.54 246 | 79.21 328 | 82.59 302 |
|
CHOSEN 1792x2688 | | | 72.45 270 | 70.56 281 | 78.13 253 | 90.02 162 | 63.08 220 | 68.72 323 | 83.16 249 | 42.99 346 | 75.92 287 | 85.46 258 | 57.22 283 | 85.18 283 | 49.87 320 | 81.67 317 | 86.14 261 |
|
pmmvs4 | | | 74.92 252 | 72.98 264 | 80.73 215 | 84.95 242 | 71.71 153 | 76.23 287 | 77.59 279 | 52.83 315 | 77.73 275 | 86.38 243 | 56.35 287 | 84.97 284 | 57.72 284 | 87.05 281 | 85.51 268 |
|
旧先验2 | | | | | | | | 81.73 209 | | 56.88 298 | 86.54 164 | | | 84.90 285 | 72.81 179 | | |
|
DWT-MVSNet_test | | | 66.43 301 | 64.37 307 | 72.63 291 | 74.86 338 | 50.86 326 | 76.52 282 | 72.74 311 | 54.06 309 | 65.50 332 | 68.30 346 | 32.13 354 | 84.84 286 | 61.63 262 | 73.59 339 | 82.19 308 |
|
HY-MVS | | 64.64 18 | 73.03 266 | 72.47 271 | 74.71 281 | 83.36 266 | 54.19 300 | 82.14 207 | 81.96 258 | 56.76 299 | 69.57 319 | 86.21 249 | 60.03 262 | 84.83 287 | 49.58 321 | 82.65 314 | 85.11 272 |
|
ab-mvs | | | 79.67 207 | 80.56 189 | 76.99 264 | 88.48 181 | 56.93 283 | 84.70 139 | 86.06 224 | 68.95 215 | 80.78 249 | 93.08 106 | 75.30 169 | 84.62 288 | 56.78 286 | 90.90 238 | 89.43 220 |
|
IterMVS | | | 76.91 232 | 76.34 234 | 78.64 244 | 80.91 287 | 64.03 210 | 76.30 285 | 79.03 273 | 64.88 255 | 83.11 217 | 89.16 204 | 59.90 264 | 84.46 289 | 68.61 216 | 85.15 297 | 87.42 248 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
VNet | | | 79.31 208 | 80.27 194 | 76.44 271 | 87.92 192 | 53.95 302 | 75.58 292 | 84.35 247 | 74.39 153 | 82.23 228 | 90.72 177 | 72.84 199 | 84.39 290 | 60.38 271 | 93.98 177 | 90.97 193 |
|
ppachtmachnet_test | | | 74.73 255 | 74.00 254 | 76.90 266 | 80.71 293 | 56.89 285 | 71.53 314 | 78.42 275 | 58.24 287 | 79.32 264 | 82.92 293 | 57.91 278 | 84.26 291 | 65.60 236 | 91.36 227 | 89.56 217 |
|
CR-MVSNet | | | 74.00 259 | 73.04 263 | 76.85 268 | 79.58 302 | 62.64 226 | 82.58 192 | 76.90 282 | 50.50 332 | 75.72 289 | 92.38 129 | 48.07 308 | 84.07 292 | 68.72 215 | 82.91 312 | 83.85 286 |
|
Patchmtry | | | 76.56 237 | 77.46 222 | 73.83 285 | 79.37 307 | 46.60 338 | 82.41 197 | 76.90 282 | 73.81 158 | 85.56 180 | 92.38 129 | 48.07 308 | 83.98 293 | 63.36 248 | 95.31 142 | 90.92 195 |
|
gg-mvs-nofinetune | | | 68.96 294 | 69.11 290 | 68.52 309 | 76.12 329 | 45.32 340 | 83.59 166 | 55.88 350 | 86.68 26 | 64.62 339 | 97.01 8 | 30.36 356 | 83.97 294 | 44.78 336 | 82.94 311 | 76.26 331 |
|
GG-mvs-BLEND | | | | | 67.16 312 | 73.36 342 | 46.54 339 | 84.15 150 | 55.04 351 | | 58.64 349 | 61.95 350 | 29.93 357 | 83.87 295 | 38.71 346 | 76.92 335 | 71.07 338 |
|
PM-MVS | | | 80.20 203 | 79.00 209 | 83.78 158 | 88.17 188 | 86.66 16 | 81.31 216 | 66.81 335 | 69.64 208 | 88.33 132 | 90.19 189 | 64.58 238 | 83.63 296 | 71.99 186 | 90.03 249 | 81.06 325 |
|
JIA-IIPM | | | 69.41 292 | 66.64 304 | 77.70 260 | 73.19 343 | 71.24 156 | 75.67 290 | 65.56 336 | 70.42 200 | 65.18 334 | 92.97 111 | 33.64 353 | 83.06 297 | 53.52 306 | 69.61 347 | 78.79 328 |
|
CMPMVS | | 59.41 20 | 75.12 249 | 73.57 257 | 79.77 227 | 75.84 330 | 67.22 185 | 81.21 219 | 82.18 256 | 50.78 329 | 76.50 279 | 87.66 226 | 55.20 293 | 82.99 298 | 62.17 257 | 90.64 247 | 89.09 229 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Patchmatch-RL test | | | 74.48 256 | 73.68 256 | 76.89 267 | 84.83 244 | 66.54 192 | 72.29 311 | 69.16 328 | 57.70 291 | 86.76 155 | 86.33 245 | 45.79 320 | 82.59 299 | 69.63 203 | 90.65 246 | 81.54 316 |
|
tpm cat1 | | | 66.76 300 | 65.21 306 | 71.42 297 | 77.09 320 | 50.62 328 | 78.01 260 | 73.68 306 | 44.89 342 | 68.64 320 | 79.00 321 | 45.51 323 | 82.42 300 | 49.91 319 | 70.15 344 | 81.23 322 |
|
MS-PatchMatch | | | 70.93 281 | 70.22 285 | 73.06 289 | 81.85 277 | 62.50 229 | 73.82 305 | 77.90 277 | 52.44 318 | 75.92 287 | 81.27 307 | 55.67 290 | 81.75 301 | 55.37 296 | 77.70 332 | 74.94 333 |
|
CNLPA | | | 83.55 153 | 83.10 157 | 84.90 132 | 89.34 167 | 83.87 46 | 84.54 145 | 88.77 182 | 79.09 97 | 83.54 213 | 88.66 213 | 74.87 172 | 81.73 302 | 66.84 226 | 92.29 210 | 89.11 226 |
|
baseline1 | | | 73.26 263 | 73.54 258 | 72.43 294 | 84.92 243 | 47.79 336 | 79.89 234 | 74.00 301 | 65.93 240 | 78.81 268 | 86.28 248 | 56.36 286 | 81.63 303 | 56.63 287 | 79.04 329 | 87.87 245 |
|
MDA-MVSNet-bldmvs | | | 77.47 226 | 76.90 229 | 79.16 238 | 79.03 310 | 64.59 203 | 66.58 331 | 75.67 291 | 73.15 172 | 88.86 119 | 88.99 208 | 66.94 230 | 81.23 304 | 64.71 240 | 88.22 271 | 91.64 182 |
|
MDTV_nov1_ep13 | | | | 68.29 296 | | 78.03 314 | 43.87 344 | 74.12 302 | 72.22 315 | 52.17 319 | 67.02 328 | 85.54 254 | 45.36 325 | 80.85 305 | 55.73 291 | 84.42 304 | |
|
pmmvs5 | | | 70.73 282 | 70.07 286 | 72.72 290 | 77.03 321 | 52.73 310 | 74.14 301 | 75.65 292 | 50.36 333 | 72.17 309 | 85.37 262 | 55.42 292 | 80.67 306 | 52.86 309 | 87.59 278 | 84.77 275 |
|
Gipuma | | | 84.44 130 | 86.33 98 | 78.78 241 | 84.20 256 | 73.57 126 | 89.55 65 | 90.44 146 | 84.24 37 | 84.38 197 | 94.89 45 | 76.35 164 | 80.40 307 | 76.14 144 | 96.80 93 | 82.36 307 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test_post1 | | | | | | | | 78.85 252 | | | | 3.13 354 | 45.19 328 | 80.13 308 | 58.11 282 | | |
|
PatchmatchNet | | | 69.71 291 | 68.83 292 | 72.33 295 | 77.66 317 | 53.60 304 | 79.29 243 | 69.99 326 | 57.66 292 | 72.53 307 | 82.93 292 | 46.45 312 | 80.08 309 | 60.91 267 | 72.09 341 | 83.31 296 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
FMVSNet5 | | | 72.10 274 | 71.69 275 | 73.32 286 | 81.57 279 | 53.02 309 | 76.77 278 | 78.37 276 | 63.31 258 | 76.37 280 | 91.85 143 | 36.68 348 | 78.98 310 | 47.87 328 | 92.45 208 | 87.95 242 |
|
our_test_3 | | | 71.85 275 | 71.59 276 | 72.62 292 | 80.71 293 | 53.78 303 | 69.72 321 | 71.71 321 | 58.80 284 | 78.03 271 | 80.51 313 | 56.61 285 | 78.84 311 | 62.20 255 | 86.04 290 | 85.23 270 |
|
miper_lstm_enhance | | | 76.45 239 | 76.10 236 | 77.51 261 | 76.72 323 | 60.97 248 | 64.69 334 | 85.04 240 | 63.98 257 | 83.20 216 | 88.22 216 | 56.67 284 | 78.79 312 | 73.22 171 | 93.12 193 | 92.78 140 |
|
PatchMatch-RL | | | 74.48 256 | 73.22 261 | 78.27 252 | 87.70 197 | 85.26 33 | 75.92 289 | 70.09 325 | 64.34 256 | 76.09 285 | 81.25 308 | 65.87 236 | 78.07 313 | 53.86 304 | 83.82 306 | 71.48 337 |
|
ADS-MVSNet2 | | | 65.87 305 | 63.64 310 | 72.55 293 | 73.16 344 | 56.92 284 | 67.10 329 | 74.81 295 | 49.74 334 | 66.04 330 | 82.97 290 | 46.71 310 | 77.26 314 | 42.29 339 | 69.96 345 | 83.46 291 |
|
test_post | | | | | | | | | | | | 3.10 355 | 45.43 324 | 77.22 315 | | | |
|
MVS-HIRNet | | | 61.16 314 | 62.92 311 | 55.87 332 | 79.09 309 | 35.34 352 | 71.83 312 | 57.98 349 | 46.56 338 | 59.05 347 | 91.14 162 | 49.95 304 | 76.43 316 | 38.74 345 | 71.92 342 | 55.84 349 |
|
MIMVSNet | | | 71.09 280 | 71.59 276 | 69.57 302 | 87.23 206 | 50.07 330 | 78.91 249 | 71.83 318 | 60.20 281 | 71.26 312 | 91.76 148 | 55.08 294 | 76.09 317 | 41.06 342 | 87.02 282 | 82.54 304 |
|
tpm | | | 67.95 296 | 68.08 297 | 67.55 311 | 78.74 313 | 43.53 345 | 75.60 291 | 67.10 334 | 54.92 305 | 72.23 308 | 88.10 218 | 42.87 337 | 75.97 318 | 52.21 310 | 80.95 323 | 83.15 298 |
|
FPMVS | | | 72.29 273 | 72.00 273 | 73.14 288 | 88.63 178 | 85.00 35 | 74.65 300 | 67.39 329 | 71.94 189 | 77.80 274 | 87.66 226 | 50.48 303 | 75.83 319 | 49.95 318 | 79.51 324 | 58.58 348 |
|
PatchT | | | 70.52 283 | 72.76 266 | 63.79 321 | 79.38 306 | 33.53 353 | 77.63 267 | 65.37 337 | 73.61 160 | 71.77 310 | 92.79 119 | 44.38 333 | 75.65 320 | 64.53 244 | 85.37 294 | 82.18 309 |
|
PVSNet | | 58.17 21 | 66.41 302 | 65.63 305 | 68.75 306 | 81.96 275 | 49.88 331 | 62.19 338 | 72.51 314 | 51.03 327 | 68.04 323 | 75.34 338 | 50.84 301 | 74.77 321 | 45.82 335 | 82.96 310 | 81.60 315 |
|
tpmrst | | | 66.28 303 | 66.69 303 | 65.05 319 | 72.82 347 | 39.33 348 | 78.20 259 | 70.69 324 | 53.16 314 | 67.88 324 | 80.36 314 | 48.18 307 | 74.75 322 | 58.13 281 | 70.79 343 | 81.08 323 |
|
test20.03 | | | 73.75 261 | 74.59 249 | 71.22 298 | 81.11 285 | 51.12 324 | 70.15 319 | 72.10 316 | 70.42 200 | 80.28 257 | 91.50 154 | 64.21 241 | 74.72 323 | 46.96 332 | 94.58 165 | 87.82 246 |
|
pmmvs3 | | | 62.47 308 | 60.02 320 | 69.80 300 | 71.58 350 | 64.00 211 | 70.52 317 | 58.44 348 | 39.77 348 | 66.05 329 | 75.84 336 | 27.10 360 | 72.28 324 | 46.15 333 | 84.77 303 | 73.11 335 |
|
Anonymous20231206 | | | 71.38 279 | 71.88 274 | 69.88 299 | 86.31 226 | 54.37 299 | 70.39 318 | 74.62 296 | 52.57 317 | 76.73 278 | 88.76 210 | 59.94 263 | 72.06 325 | 44.35 337 | 93.23 191 | 83.23 297 |
|
new-patchmatchnet | | | 70.10 286 | 73.37 260 | 60.29 329 | 81.23 284 | 16.95 357 | 59.54 340 | 74.62 296 | 62.93 260 | 80.97 245 | 87.93 222 | 62.83 251 | 71.90 326 | 55.24 297 | 95.01 153 | 92.00 170 |
|
dp | | | 60.70 317 | 60.29 319 | 61.92 325 | 72.04 349 | 38.67 350 | 70.83 315 | 64.08 338 | 51.28 326 | 60.75 343 | 77.28 331 | 36.59 349 | 71.58 327 | 47.41 329 | 62.34 350 | 75.52 332 |
|
UnsupCasMVSNet_bld | | | 69.21 293 | 69.68 288 | 67.82 310 | 79.42 305 | 51.15 323 | 67.82 328 | 75.79 289 | 54.15 308 | 77.47 277 | 85.36 263 | 59.26 269 | 70.64 328 | 48.46 325 | 79.35 326 | 81.66 314 |
|
test-LLR | | | 67.21 298 | 66.74 302 | 68.63 307 | 76.45 326 | 55.21 295 | 67.89 325 | 67.14 332 | 62.43 266 | 65.08 335 | 72.39 340 | 43.41 334 | 69.37 329 | 61.00 265 | 84.89 299 | 81.31 318 |
|
test-mter | | | 65.00 306 | 63.79 309 | 68.63 307 | 76.45 326 | 55.21 295 | 67.89 325 | 67.14 332 | 50.98 328 | 65.08 335 | 72.39 340 | 28.27 358 | 69.37 329 | 61.00 265 | 84.89 299 | 81.31 318 |
|
XXY-MVS | | | 74.44 258 | 76.19 235 | 69.21 303 | 84.61 245 | 52.43 314 | 71.70 313 | 77.18 281 | 60.73 277 | 80.60 250 | 90.96 170 | 75.44 166 | 69.35 331 | 56.13 290 | 88.33 266 | 85.86 265 |
|
UnsupCasMVSNet_eth | | | 71.63 278 | 72.30 272 | 69.62 301 | 76.47 325 | 52.70 311 | 70.03 320 | 80.97 265 | 59.18 283 | 79.36 263 | 88.21 217 | 60.50 257 | 69.12 332 | 58.33 280 | 77.62 333 | 87.04 253 |
|
WTY-MVS | | | 67.91 297 | 68.35 295 | 66.58 314 | 80.82 291 | 48.12 334 | 65.96 332 | 72.60 312 | 53.67 311 | 71.20 313 | 81.68 305 | 58.97 270 | 69.06 333 | 48.57 324 | 81.67 317 | 82.55 303 |
|
test0.0.03 1 | | | 64.66 307 | 64.36 308 | 65.57 317 | 75.03 337 | 46.89 337 | 64.69 334 | 61.58 344 | 62.43 266 | 71.18 314 | 77.54 328 | 43.41 334 | 68.47 334 | 40.75 343 | 82.65 314 | 81.35 317 |
|
CHOSEN 280x420 | | | 59.08 318 | 56.52 323 | 66.76 313 | 76.51 324 | 64.39 207 | 49.62 348 | 59.00 346 | 43.86 344 | 55.66 352 | 68.41 345 | 35.55 350 | 68.21 335 | 43.25 338 | 76.78 336 | 67.69 342 |
|
YYNet1 | | | 70.06 287 | 70.44 283 | 68.90 304 | 73.76 341 | 53.42 307 | 58.99 343 | 67.20 331 | 58.42 286 | 87.10 148 | 85.39 261 | 59.82 265 | 67.32 336 | 59.79 273 | 83.50 308 | 85.96 262 |
|
MDA-MVSNet_test_wron | | | 70.05 288 | 70.44 283 | 68.88 305 | 73.84 340 | 53.47 305 | 58.93 344 | 67.28 330 | 58.43 285 | 87.09 149 | 85.40 260 | 59.80 266 | 67.25 337 | 59.66 274 | 83.54 307 | 85.92 264 |
|
EMVS | | | 61.10 315 | 60.81 316 | 61.99 324 | 65.96 353 | 55.86 290 | 53.10 347 | 58.97 347 | 67.06 232 | 56.89 351 | 63.33 348 | 40.98 339 | 67.03 338 | 54.79 300 | 86.18 289 | 63.08 343 |
|
testgi | | | 72.36 271 | 74.61 247 | 65.59 316 | 80.56 295 | 42.82 347 | 68.29 324 | 73.35 307 | 66.87 234 | 81.84 234 | 89.93 194 | 72.08 207 | 66.92 339 | 46.05 334 | 92.54 207 | 87.01 254 |
|
EPMVS | | | 62.47 308 | 62.63 312 | 62.01 323 | 70.63 351 | 38.74 349 | 74.76 298 | 52.86 352 | 53.91 310 | 67.71 326 | 80.01 316 | 39.40 342 | 66.60 340 | 55.54 295 | 68.81 348 | 80.68 327 |
|
PMMVS | | | 61.65 311 | 60.38 317 | 65.47 318 | 65.40 354 | 69.26 171 | 63.97 336 | 61.73 343 | 36.80 351 | 60.11 345 | 68.43 344 | 59.42 267 | 66.35 341 | 48.97 323 | 78.57 330 | 60.81 345 |
|
E-PMN | | | 61.59 312 | 61.62 314 | 61.49 326 | 66.81 352 | 55.40 293 | 53.77 346 | 60.34 345 | 66.80 235 | 58.90 348 | 65.50 347 | 40.48 341 | 66.12 342 | 55.72 292 | 86.25 288 | 62.95 344 |
|
PVSNet_0 | | 51.08 22 | 56.10 319 | 54.97 324 | 59.48 330 | 75.12 336 | 53.28 308 | 55.16 345 | 61.89 341 | 44.30 343 | 59.16 346 | 62.48 349 | 54.22 295 | 65.91 343 | 35.40 348 | 47.01 351 | 59.25 347 |
|
sss | | | 66.92 299 | 67.26 299 | 65.90 315 | 77.23 318 | 51.10 325 | 64.79 333 | 71.72 320 | 52.12 322 | 70.13 317 | 80.18 315 | 57.96 277 | 65.36 344 | 50.21 317 | 81.01 322 | 81.25 320 |
|
TESTMET0.1,1 | | | 61.29 313 | 60.32 318 | 64.19 320 | 72.06 348 | 51.30 321 | 67.89 325 | 62.09 340 | 45.27 341 | 60.65 344 | 69.01 343 | 27.93 359 | 64.74 345 | 56.31 289 | 81.65 319 | 76.53 330 |
|
ADS-MVSNet | | | 61.90 310 | 62.19 313 | 61.03 328 | 73.16 344 | 36.42 351 | 67.10 329 | 61.75 342 | 49.74 334 | 66.04 330 | 82.97 290 | 46.71 310 | 63.21 346 | 42.29 339 | 69.96 345 | 83.46 291 |
|
DSMNet-mixed | | | 60.98 316 | 61.61 315 | 59.09 331 | 72.88 346 | 45.05 342 | 74.70 299 | 46.61 355 | 26.20 352 | 65.34 333 | 90.32 186 | 55.46 291 | 63.12 347 | 41.72 341 | 81.30 321 | 69.09 341 |
|
Patchmatch-test | | | 65.91 304 | 67.38 298 | 61.48 327 | 75.51 332 | 43.21 346 | 68.84 322 | 63.79 339 | 62.48 264 | 72.80 306 | 83.42 287 | 44.89 331 | 59.52 348 | 48.27 327 | 86.45 285 | 81.70 313 |
|
N_pmnet | | | 70.20 284 | 68.80 293 | 74.38 283 | 80.91 287 | 84.81 38 | 59.12 342 | 76.45 287 | 55.06 304 | 75.31 295 | 82.36 299 | 55.74 289 | 54.82 349 | 47.02 330 | 87.24 280 | 83.52 290 |
|
wuyk23d | | | 75.13 248 | 79.30 207 | 62.63 322 | 75.56 331 | 75.18 118 | 80.89 223 | 73.10 310 | 75.06 146 | 94.76 12 | 95.32 34 | 87.73 42 | 52.85 350 | 34.16 349 | 97.11 82 | 59.85 346 |
|
PMMVS2 | | | 55.64 321 | 59.27 321 | 44.74 335 | 64.30 355 | 12.32 358 | 40.60 349 | 49.79 354 | 53.19 313 | 65.06 337 | 84.81 272 | 53.60 297 | 49.76 351 | 32.68 351 | 89.41 254 | 72.15 336 |
|
new_pmnet | | | 55.69 320 | 57.66 322 | 49.76 334 | 75.47 333 | 30.59 354 | 59.56 339 | 51.45 353 | 43.62 345 | 62.49 341 | 75.48 337 | 40.96 340 | 49.15 352 | 37.39 347 | 72.52 340 | 69.55 340 |
|
MVE | | 40.22 23 | 51.82 322 | 50.47 325 | 55.87 332 | 62.66 356 | 51.91 317 | 31.61 351 | 39.28 356 | 40.65 347 | 50.76 353 | 74.98 339 | 56.24 288 | 44.67 353 | 33.94 350 | 64.11 349 | 71.04 339 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
DeepMVS_CX | | | | | 24.13 336 | 32.95 357 | 29.49 355 | | 21.63 359 | 12.07 353 | 37.95 354 | 45.07 351 | 30.84 355 | 19.21 354 | 17.94 353 | 33.06 353 | 23.69 350 |
|
tmp_tt | | | 20.25 324 | 24.50 327 | 7.49 337 | 4.47 358 | 8.70 359 | 34.17 350 | 25.16 358 | 1.00 354 | 32.43 355 | 18.49 352 | 39.37 343 | 9.21 355 | 21.64 352 | 43.75 352 | 4.57 351 |
|
test123 | | | 6.27 327 | 8.08 330 | 0.84 338 | 1.11 360 | 0.57 360 | 62.90 337 | 0.82 360 | 0.54 355 | 1.07 357 | 2.75 357 | 1.26 361 | 0.30 356 | 1.04 354 | 1.26 355 | 1.66 352 |
|
testmvs | | | 5.91 328 | 7.65 331 | 0.72 339 | 1.20 359 | 0.37 361 | 59.14 341 | 0.67 361 | 0.49 356 | 1.11 356 | 2.76 356 | 0.94 362 | 0.24 357 | 1.02 355 | 1.47 354 | 1.55 353 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
cdsmvs_eth3d_5k | | | 20.81 323 | 27.75 326 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 85.44 230 | 0.00 357 | 0.00 358 | 82.82 294 | 81.46 111 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 6.41 326 | 8.55 329 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 76.94 155 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 6.65 325 | 8.87 328 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 79.80 318 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
RE-MVS-def | | | | 92.61 6 | | 94.13 54 | 88.95 8 | 92.87 13 | 94.16 28 | 88.75 16 | 93.79 29 | 94.43 62 | 90.64 12 | | 87.16 25 | 97.60 64 | 92.73 141 |
|
IU-MVS | | | | | | 94.18 49 | 72.64 134 | | 90.82 137 | 56.98 297 | 89.67 104 | | | | 85.78 45 | 97.92 46 | 93.28 121 |
|
save fliter | | | | | | 93.75 62 | 77.44 95 | 86.31 119 | 89.72 168 | 70.80 196 | | | | | | | |
|
test0726 | | | | | | 94.16 52 | 72.56 137 | 90.63 43 | 93.90 41 | 83.61 45 | 93.75 31 | 94.49 59 | 89.76 20 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 283 |
|
test_part2 | | | | | | 93.86 61 | 77.77 90 | | | | 92.84 45 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 314 | | | | 83.88 283 |
|
sam_mvs | | | | | | | | | | | | | 45.92 319 | | | | |
|
MTGPA | | | | | | | | | 91.81 114 | | | | | | | | |
|
MTMP | | | | | | | | 90.66 41 | 33.14 357 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 95 | 96.45 104 | 90.57 203 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 106 | 96.16 114 | 90.22 210 |
|
test_prior4 | | | | | | | 78.97 79 | 84.59 141 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 173 | | 75.43 140 | 84.58 193 | 91.57 151 | 81.92 106 | | 79.54 108 | 96.97 85 | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.72 210 | | | | | | | | | |
|
旧先验1 | | | | | | 91.97 109 | 71.77 149 | | 81.78 260 | | | 91.84 144 | 73.92 183 | | | 93.65 184 | 83.61 289 |
|
原ACMM2 | | | | | | | | 82.26 203 | | | | | | | | | |
|
test222 | | | | | | 93.31 73 | 76.54 108 | 79.38 242 | 77.79 278 | 52.59 316 | 82.36 226 | 90.84 174 | 66.83 231 | | | 91.69 222 | 81.25 320 |
|
segment_acmp | | | | | | | | | | | | | 81.94 103 | | | | |
|
testdata1 | | | | | | | | 79.62 237 | | 73.95 157 | | | | | | | |
|
plane_prior7 | | | | | | 93.45 68 | 77.31 99 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 89 | 76.54 108 | | | | | | 74.84 173 | | | | |
|
plane_prior4 | | | | | | | | | | | | 92.95 112 | | | | | |
|
plane_prior3 | | | | | | | 76.85 106 | | | 77.79 112 | 86.55 159 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 70 | | 79.44 93 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 87 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 111 | 87.15 103 | | 75.94 134 | | | | | | 95.03 152 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 299 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 121 | | | | | | | | |
|
door | | | | | | | | | 72.57 313 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 159 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 134 | | 84.77 136 | | 73.30 167 | 80.55 253 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 134 | | 84.77 136 | | 73.30 167 | 80.55 253 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 134 | | |
|
HQP3-MVS | | | | | | | | | 92.68 92 | | | | | | | 94.47 167 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 205 | | | | |
|
NP-MVS | | | | | | 91.95 110 | 74.55 120 | | | | | 90.17 191 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 356 | 70.76 316 | | 46.47 339 | 61.27 342 | | 45.20 327 | | 49.18 322 | | 83.75 288 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 130 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 132 | | | | |
|