This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5299.27 199.54 1
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11293.91 4580.07 9086.75 16293.26 11093.64 290.93 20384.60 5990.75 25993.97 98
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3791.86 395.09 6487.54 1898.02 4093.71 112
ACMH+77.89 1190.73 3091.50 2388.44 8093.00 8276.26 12089.65 6695.55 787.72 2393.89 2794.94 4591.62 493.44 12978.35 12598.76 495.61 47
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5594.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
PMVScopyleft80.48 690.08 4190.66 4788.34 8396.71 392.97 190.31 5189.57 18088.51 1990.11 9395.12 4290.98 788.92 25177.55 14097.07 8683.13 316
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 3190.99 4089.63 5695.03 3583.53 4989.62 6793.35 6679.20 10093.83 2893.60 10790.81 892.96 14685.02 5498.45 1992.41 162
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 6091.14 3483.96 16392.50 9570.36 17189.55 6893.84 5081.89 6994.70 1395.44 3490.69 988.31 26183.33 7198.30 2693.20 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5495.13 4190.65 1095.34 5488.06 998.15 3595.95 40
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6490.64 1187.16 2897.60 6692.73 147
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 7694.05 4079.03 10392.87 4693.74 10490.60 1295.21 6182.87 7698.76 494.87 64
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 6893.94 9790.55 1395.73 3088.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6490.72 4684.31 15497.00 264.33 21989.67 6588.38 19788.84 1594.29 1997.57 390.48 1491.26 19372.57 19397.65 6297.34 14
SED-MVS90.46 3791.64 1986.93 9994.18 5072.65 13990.47 4993.69 5483.77 4494.11 2394.27 7290.28 1595.84 2286.03 4497.92 4892.29 170
test_241102_ONE94.18 5072.65 13993.69 5483.62 4694.11 2393.78 10390.28 1595.50 47
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4194.02 8890.15 1795.67 3386.82 3297.34 7992.19 176
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8185.17 3692.47 2695.05 1587.65 2493.21 4294.39 7090.09 1895.08 6586.67 3397.60 6694.18 91
DVP-MVScopyleft90.06 4391.32 3086.29 11294.16 5372.56 14590.54 4691.01 14083.61 4793.75 3194.65 5489.76 1995.78 2786.42 3497.97 4590.55 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 14590.63 4593.90 4683.61 4793.75 3194.49 6189.76 19
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6786.15 2393.37 1095.10 1490.28 992.11 6095.03 4389.75 2194.93 6979.95 10798.27 2795.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 5383.77 4493.49 3894.27 7289.27 2295.84 2286.03 4497.82 5392.04 179
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5794.14 8389.15 2395.62 3487.35 2398.24 2894.56 75
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117292.40 792.41 792.37 694.68 4589.04 691.98 3193.62 5790.14 1193.63 3694.16 8288.83 2495.51 4487.11 3097.54 7292.54 157
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6488.83 2495.51 4487.16 2897.60 6692.73 147
APDe-MVS91.22 2491.92 1389.14 6592.97 8378.04 9292.84 1694.14 3583.33 5193.90 2595.73 2688.77 2696.41 187.60 1697.98 4492.98 138
test_one_060193.85 6373.27 13594.11 3786.57 2793.47 4094.64 5788.42 27
ACMMP_NAP90.65 3191.07 3889.42 6095.93 1679.54 7989.95 5893.68 5677.65 11791.97 6594.89 4688.38 2895.45 4989.27 397.87 5293.27 127
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9394.51 2175.79 14192.94 4494.96 4488.36 2995.01 6790.70 298.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7193.96 9388.35 3095.56 3787.74 1197.74 5892.85 142
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4493.29 7377.00 12591.47 7193.96 9388.35 3095.56 3784.88 5597.74 5892.85 142
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 7994.00 8988.26 3295.71 3187.28 2698.39 2192.55 156
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3893.48 6382.82 5892.60 5393.97 9088.19 3396.29 487.61 1598.20 3294.39 84
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5593.90 4680.32 8691.74 6994.41 6788.17 3495.98 1186.37 3697.99 4293.96 99
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3594.17 9686.07 4398.48 1897.22 17
DPE-MVScopyleft90.53 3591.08 3688.88 6793.38 7378.65 8889.15 7794.05 4084.68 3893.90 2594.11 8588.13 3696.30 384.51 6097.81 5491.70 191
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 5189.97 5289.27 6294.76 4179.86 7586.76 11692.78 9578.78 10692.51 5493.64 10688.13 3693.84 11084.83 5797.55 6994.10 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9588.06 7881.90 20392.22 10562.28 24484.66 14589.15 18683.54 4989.85 10297.32 488.08 3886.80 27770.43 21097.30 8196.62 27
mvs_tets89.78 5289.27 6391.30 2893.51 6984.79 4189.89 6090.63 15070.00 21894.55 1596.67 1187.94 3993.59 12184.27 6295.97 12795.52 48
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2894.22 2780.14 8991.29 7693.97 9087.93 4095.87 1888.65 497.96 4794.12 94
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8494.21 7787.75 4195.87 1887.60 1697.71 6093.83 104
wuyk23d75.13 26079.30 21462.63 34075.56 34975.18 12580.89 23573.10 32875.06 15194.76 1295.32 3587.73 4252.85 36934.16 36897.11 8559.85 365
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 9983.09 5491.54 7094.25 7687.67 4395.51 4487.21 2798.11 3693.12 133
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7394.17 8187.51 4495.87 1887.74 1197.76 5693.99 97
test_0728_THIRD85.33 3293.75 3194.65 5487.44 4595.78 2787.41 2198.21 3092.98 138
9.1489.29 6291.84 12188.80 8495.32 1175.14 15091.07 7892.89 12187.27 4693.78 11283.69 6897.55 69
PS-CasMVS90.06 4391.92 1384.47 14996.56 758.83 28389.04 7892.74 9691.40 596.12 496.06 2287.23 4795.57 3679.42 11698.74 699.00 2
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3693.74 5280.98 7991.38 7493.80 10087.20 4895.80 2487.10 3197.69 6193.93 100
PEN-MVS90.03 4591.88 1684.48 14896.57 658.88 28088.95 7993.19 7791.62 496.01 696.16 2087.02 4995.60 3578.69 12198.72 998.97 3
DTE-MVSNet89.98 4791.91 1584.21 15696.51 857.84 28888.93 8192.84 9391.92 396.16 396.23 1886.95 5095.99 1079.05 11898.57 1598.80 6
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7193.75 6477.44 10286.31 12495.27 1270.80 20792.28 5893.80 10086.89 5194.64 7885.52 4897.51 7494.30 87
SF-MVS90.27 3990.80 4588.68 7592.86 8777.09 10991.19 4195.74 581.38 7492.28 5893.80 10086.89 5194.64 7885.52 4897.51 7494.30 87
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2793.03 8582.59 6088.52 13194.37 7186.74 5395.41 5186.32 3798.21 3093.19 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8091.81 11984.07 4092.00 6394.40 6886.63 5495.28 5788.59 598.31 2492.30 168
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3091.81 11984.07 4092.00 6394.40 6886.63 5495.28 5788.59 598.31 2492.30 168
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9794.03 8786.57 5695.80 2487.35 2397.62 6494.20 89
X-MVStestdata85.04 12182.70 16592.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9716.05 37286.57 5695.80 2487.35 2397.62 6494.20 89
canonicalmvs85.50 11186.14 10583.58 17287.97 20467.13 19587.55 10094.32 2273.44 16888.47 13287.54 24086.45 5891.06 20075.76 16093.76 19392.54 157
TranMVSNet+NR-MVSNet87.86 7988.76 7385.18 13694.02 5864.13 22084.38 15291.29 13284.88 3792.06 6293.84 9986.45 5893.73 11373.22 18498.66 1197.69 9
test_040288.65 7089.58 5985.88 12492.55 9372.22 15384.01 15889.44 18288.63 1894.38 1895.77 2586.38 6093.59 12179.84 10895.21 15591.82 188
APD-MVScopyleft89.54 5689.63 5789.26 6392.57 9281.34 6690.19 5393.08 8180.87 8191.13 7793.19 11186.22 6195.97 1282.23 8397.18 8490.45 221
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6789.88 5386.22 11591.63 12577.07 11089.82 6193.77 5178.90 10492.88 4592.29 14186.11 6290.22 22586.24 4197.24 8291.36 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10580.48 7091.85 11671.22 20490.38 8992.98 11686.06 6396.11 681.99 8596.75 97
jajsoiax89.41 5888.81 7291.19 3293.38 7384.72 4289.70 6290.29 16469.27 22294.39 1796.38 1586.02 6493.52 12583.96 6495.92 13295.34 52
nrg03087.85 8088.49 7485.91 12290.07 17169.73 17487.86 9794.20 2874.04 16092.70 5294.66 5385.88 6591.50 18479.72 11097.32 8096.50 30
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4293.24 7675.37 14892.84 4895.28 3685.58 6696.09 787.92 1097.76 5693.88 102
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6389.08 6589.37 6193.64 6879.07 8388.54 8994.20 2873.53 16689.71 10694.82 4985.09 6795.77 2984.17 6398.03 3993.26 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj89.51 5789.48 6089.59 5892.26 10280.80 6990.14 5493.54 6183.37 5090.57 8892.55 13384.99 6896.15 581.26 9196.61 10191.83 187
GeoE85.45 11385.81 11184.37 15090.08 16967.07 19685.86 13091.39 13072.33 18987.59 14590.25 19784.85 6992.37 16178.00 13491.94 23693.66 114
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 13991.10 197.53 7396.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 7189.01 6687.36 9591.30 13977.50 10187.55 10092.97 8887.95 2289.62 11092.87 12284.56 7193.89 10777.65 13896.62 10090.70 213
LS3D90.60 3390.34 5091.38 2789.03 18584.23 4793.58 694.68 1990.65 790.33 9193.95 9684.50 7295.37 5380.87 9795.50 14694.53 78
ETH3D-3000-0.188.85 6988.96 6988.52 7691.94 11577.27 10888.71 8695.26 1376.08 13290.66 8792.69 12884.48 7393.83 11183.38 7097.48 7694.47 79
DROMVSNet88.01 7688.32 7687.09 9789.28 18072.03 15590.31 5196.31 380.88 8085.12 19389.67 20884.47 7495.46 4882.56 7996.26 11793.77 110
anonymousdsp89.73 5388.88 7092.27 989.82 17586.67 1790.51 4890.20 16769.87 21995.06 1196.14 2184.28 7593.07 14487.68 1396.34 11297.09 19
OMC-MVS88.19 7487.52 8490.19 4991.94 11581.68 6387.49 10293.17 7876.02 13588.64 12891.22 16684.24 7693.37 13277.97 13697.03 8795.52 48
ETH3D cwj APD-0.1687.83 8187.62 8388.47 7891.21 14278.20 9087.26 10594.54 2072.05 19488.89 12292.31 14083.86 7794.24 9081.59 9096.87 9192.97 141
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 12793.60 6080.16 8889.13 12193.44 10883.82 7890.98 20183.86 6695.30 15493.60 119
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7293.98 4279.68 9392.09 6193.89 9883.80 7993.10 14382.67 7898.04 3793.64 117
CDPH-MVS86.17 10385.54 11788.05 8892.25 10375.45 12383.85 16492.01 11165.91 25586.19 17491.75 15683.77 8094.98 6877.43 14396.71 9893.73 111
Effi-MVS+83.90 15184.01 14883.57 17387.22 22165.61 20986.55 12192.40 10278.64 10981.34 25784.18 29583.65 8192.93 14874.22 17187.87 29192.17 177
MVS_111021_HR84.63 12884.34 14485.49 13390.18 16875.86 12279.23 26087.13 21773.35 16985.56 18889.34 21183.60 8290.50 21876.64 14994.05 18990.09 229
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9488.22 2088.53 13097.64 283.45 8394.55 8586.02 4698.60 1396.67 26
AdaColmapbinary83.66 15483.69 15383.57 17390.05 17272.26 15286.29 12690.00 17278.19 11481.65 25287.16 24783.40 8494.24 9061.69 27694.76 17484.21 298
LCM-MVSNet-Re83.48 15885.06 12478.75 25285.94 24955.75 30580.05 24494.27 2376.47 12896.09 594.54 5983.31 8589.75 24159.95 28894.89 16990.75 211
Regformer-286.74 9286.08 10688.73 7284.18 27479.20 8283.52 17489.33 18483.33 5189.92 10185.07 28383.23 8693.16 13983.39 6992.72 22193.83 104
TransMVSNet (Re)84.02 14785.74 11378.85 25091.00 15055.20 31082.29 21287.26 21379.65 9488.38 13595.52 3383.00 8786.88 27567.97 23396.60 10294.45 82
CNVR-MVS87.81 8287.68 8288.21 8592.87 8577.30 10785.25 13791.23 13477.31 12287.07 15591.47 16282.94 8894.71 7584.67 5896.27 11692.62 154
DeepPCF-MVS81.24 587.28 8586.21 10490.49 4391.48 13684.90 3983.41 17992.38 10470.25 21589.35 11890.68 18782.85 8994.57 8279.55 11295.95 12992.00 181
v7n90.13 4090.96 4187.65 9291.95 11371.06 16689.99 5793.05 8286.53 2894.29 1996.27 1782.69 9094.08 10086.25 4097.63 6397.82 8
AllTest87.97 7887.40 8789.68 5491.59 12683.40 5089.50 7195.44 979.47 9588.00 14093.03 11482.66 9191.47 18570.81 20296.14 12194.16 92
TestCases89.68 5491.59 12683.40 5095.44 979.47 9588.00 14093.03 11482.66 9191.47 18570.81 20296.14 12194.16 92
RPSCF88.00 7786.93 9491.22 3190.08 16989.30 589.68 6491.11 13779.26 9989.68 10794.81 5282.44 9387.74 26576.54 15088.74 28196.61 28
ITE_SJBPF90.11 5090.72 15784.97 3890.30 16181.56 7290.02 9691.20 16882.40 9490.81 20973.58 18194.66 17594.56 75
Fast-Effi-MVS+81.04 19280.57 19582.46 19887.50 21663.22 22978.37 27189.63 17868.01 23581.87 24682.08 31882.31 9592.65 15567.10 23688.30 28791.51 197
baseline85.20 11685.93 10883.02 18286.30 24162.37 24284.55 14793.96 4374.48 15787.12 15192.03 14682.30 9691.94 17478.39 12394.21 18494.74 71
casdiffmvs85.21 11585.85 11083.31 17786.17 24662.77 23583.03 19093.93 4474.69 15488.21 13892.68 12982.29 9791.89 17777.87 13793.75 19595.27 56
Anonymous2023121188.40 7289.62 5884.73 14490.46 16365.27 21088.86 8293.02 8687.15 2593.05 4397.10 682.28 9892.02 17376.70 14897.99 4296.88 23
Regformer-186.00 10485.50 11887.49 9384.18 27476.90 11283.52 17487.94 20782.18 6589.19 11985.07 28382.28 9891.89 17782.40 8192.72 22193.69 113
Anonymous2024052986.20 10287.13 8883.42 17590.19 16764.55 21784.55 14790.71 14785.85 3189.94 10095.24 3982.13 10090.40 22069.19 22196.40 11095.31 54
agg_prior185.72 10985.20 12387.28 9691.58 12977.69 9883.69 17090.30 16166.29 25284.32 20991.07 17382.13 10093.18 13781.02 9496.36 11190.98 204
Regformer-486.41 9685.71 11488.52 7684.27 27077.57 10084.07 15588.00 20582.82 5889.84 10385.48 27182.06 10292.77 15283.83 6791.04 24895.22 60
CLD-MVS83.18 16482.64 16784.79 14289.05 18467.82 19377.93 27592.52 10068.33 23285.07 19481.54 32382.06 10292.96 14669.35 21797.91 5093.57 120
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9979.70 7783.94 16090.32 15865.41 26684.49 20590.97 17682.03 10493.63 117
segment_acmp81.94 105
train_agg85.98 10685.28 12188.07 8792.34 9979.70 7783.94 16090.32 15865.79 25684.49 20590.97 17681.93 10693.63 11781.21 9296.54 10490.88 208
test_892.09 10978.87 8583.82 16590.31 16065.79 25684.36 20890.96 17881.93 10693.44 129
test_prior386.31 9886.31 10186.32 11090.59 16071.99 15683.37 18092.85 9175.43 14584.58 20391.57 15881.92 10894.17 9679.54 11396.97 8892.80 144
test_prior283.37 18075.43 14584.58 20391.57 15881.92 10879.54 11396.97 88
EGC-MVSNET74.79 26769.99 30189.19 6494.89 3987.00 1491.89 3586.28 2301.09 3732.23 37595.98 2381.87 11089.48 24279.76 10995.96 12891.10 201
CP-MVSNet89.27 6190.91 4384.37 15096.34 958.61 28588.66 8892.06 11090.78 695.67 795.17 4081.80 11195.54 4179.00 11998.69 1098.95 4
MVS_111021_LR84.28 13983.76 15285.83 12689.23 18283.07 5380.99 23483.56 26172.71 18286.07 17889.07 21881.75 11286.19 28777.11 14693.36 20288.24 253
test_djsdf89.62 5489.01 6691.45 2592.36 9882.98 5591.98 3190.08 17071.54 19894.28 2196.54 1381.57 11394.27 8786.26 3896.49 10697.09 19
cdsmvs_eth3d_5k20.81 34027.75 3430.00 3590.00 3820.00 3830.00 37085.44 2400.00 3770.00 37882.82 31181.46 1140.00 3780.00 3760.00 3760.00 374
WR-MVS_H89.91 5091.31 3185.71 12896.32 1062.39 24189.54 7093.31 7090.21 1095.57 995.66 2981.42 11595.90 1580.94 9698.80 398.84 5
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 2992.30 10579.74 9287.50 14792.38 13681.42 11593.28 13483.07 7397.24 8291.67 192
CS-MVS-test85.00 12385.28 12184.17 15987.84 20766.12 20587.30 10495.67 677.63 11980.02 27485.85 26781.34 11795.41 5178.18 13093.71 19690.99 203
pm-mvs183.69 15384.95 12779.91 23690.04 17359.66 27082.43 20787.44 21075.52 14487.85 14295.26 3881.25 11885.65 29468.74 22696.04 12494.42 83
DVP-MVS++90.07 4291.09 3587.00 9891.55 13272.64 14196.19 294.10 3885.33 3293.49 3894.64 5781.12 11995.88 1687.41 2195.94 13092.48 159
OPU-MVS88.27 8491.89 11777.83 9690.47 4991.22 16681.12 11994.68 7674.48 16995.35 14992.29 170
ETH3 D test640085.09 11984.87 12885.75 12790.80 15569.34 17885.90 12893.31 7065.43 26286.11 17789.95 20380.92 12194.86 7175.90 15895.57 14493.05 135
NCCC87.36 8486.87 9588.83 6892.32 10178.84 8686.58 12091.09 13878.77 10784.85 19990.89 18080.85 12295.29 5581.14 9395.32 15192.34 166
TAPA-MVS77.73 1285.71 11084.83 12988.37 8288.78 19179.72 7687.15 10893.50 6269.17 22385.80 18489.56 20980.76 12392.13 16773.21 18995.51 14593.25 129
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 17181.41 18685.90 12385.60 25176.53 11783.07 18989.62 17973.02 17979.11 28283.51 30080.74 12490.24 22468.76 22589.29 27290.94 206
PC_three_145258.96 30190.06 9491.33 16480.66 12593.03 14575.78 15995.94 13092.48 159
VPA-MVSNet83.47 15984.73 13079.69 24190.29 16557.52 29281.30 23088.69 19276.29 12987.58 14694.44 6380.60 12687.20 27066.60 24196.82 9594.34 86
Regformer-385.06 12084.67 13586.22 11584.27 27073.43 13384.07 15585.26 24480.77 8288.62 12985.48 27180.56 12790.39 22181.99 8591.04 24894.85 68
ETV-MVS84.31 13783.91 15185.52 13188.58 19370.40 17084.50 15193.37 6478.76 10884.07 21678.72 34280.39 12895.13 6373.82 17892.98 21491.04 202
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6291.27 13378.20 11386.69 16592.28 14280.36 12995.06 6686.17 4296.49 10690.22 224
ANet_high83.17 16585.68 11575.65 29281.24 30145.26 36079.94 24692.91 8983.83 4391.33 7596.88 1080.25 13085.92 29068.89 22495.89 13395.76 42
EI-MVSNet-Vis-set85.12 11884.53 13886.88 10084.01 27772.76 13883.91 16385.18 24680.44 8388.75 12685.49 27080.08 13191.92 17582.02 8490.85 25795.97 38
DeepC-MVS_fast80.27 886.23 10085.65 11687.96 8991.30 13976.92 11187.19 10691.99 11270.56 21084.96 19590.69 18680.01 13295.14 6278.37 12495.78 13991.82 188
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12184.44 14086.85 10183.87 28072.52 14783.82 16585.15 24780.27 8788.75 12685.45 27479.95 13391.90 17681.92 8790.80 25896.13 33
MCST-MVS84.36 13583.93 15085.63 12991.59 12671.58 16383.52 17492.13 10861.82 28383.96 21789.75 20779.93 13493.46 12878.33 12694.34 18291.87 186
TSAR-MVS + MP.88.14 7587.82 8089.09 6695.72 2276.74 11492.49 2591.19 13667.85 24086.63 16694.84 4879.58 13595.96 1387.62 1494.50 17894.56 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10590.74 15672.63 14390.69 14882.76 23379.20 13694.80 7395.32 15192.27 172
CSCG86.26 9986.47 9985.60 13090.87 15374.26 12987.98 9491.85 11680.35 8589.54 11688.01 23179.09 13792.13 16775.51 16195.06 16290.41 222
Test By Simon79.09 137
PHI-MVS86.38 9785.81 11188.08 8688.44 19777.34 10589.35 7593.05 8273.15 17784.76 20087.70 23778.87 13994.18 9480.67 10196.29 11392.73 147
EG-PatchMatch MVS84.08 14584.11 14683.98 16292.22 10572.61 14482.20 21887.02 22272.63 18388.86 12391.02 17478.52 14091.11 19873.41 18391.09 24688.21 254
Effi-MVS+-dtu85.82 10883.38 15593.14 387.13 22391.15 287.70 9988.42 19574.57 15583.56 22385.65 26878.49 14194.21 9272.04 19692.88 21694.05 96
mvs-test184.55 13182.12 17591.84 2087.13 22389.54 485.05 14088.42 19574.57 15580.60 26382.98 30678.49 14193.98 10472.04 19689.77 26892.00 181
Vis-MVSNetpermissive86.86 8986.58 9887.72 9092.09 10977.43 10487.35 10392.09 10978.87 10584.27 21494.05 8678.35 14393.65 11580.54 10391.58 24292.08 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11992.86 8767.02 19782.55 20391.56 12383.08 5590.92 8191.82 15378.25 14493.99 10274.16 17298.35 2297.49 13
MSLP-MVS++85.00 12386.03 10781.90 20391.84 12171.56 16486.75 11793.02 8675.95 13887.12 15189.39 21077.98 14589.40 24777.46 14194.78 17184.75 293
API-MVS82.28 17482.61 16981.30 21286.29 24269.79 17288.71 8687.67 20978.42 11282.15 24284.15 29677.98 14591.59 18365.39 25092.75 21882.51 323
DP-MVS Recon84.05 14683.22 15786.52 10791.73 12475.27 12483.23 18692.40 10272.04 19582.04 24388.33 22777.91 14793.95 10566.17 24395.12 16090.34 223
UniMVSNet (Re)86.87 8886.98 9386.55 10693.11 8068.48 18783.80 16792.87 9080.37 8489.61 11291.81 15477.72 14894.18 9475.00 16898.53 1696.99 22
PCF-MVS74.62 1582.15 17780.92 19485.84 12589.43 17772.30 15180.53 23991.82 11857.36 31387.81 14389.92 20577.67 14993.63 11758.69 29395.08 16191.58 195
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10486.22 10385.34 13493.24 7764.56 21682.21 21690.46 15380.99 7888.42 13391.97 14777.56 15093.85 10872.46 19498.65 1297.61 10
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14181.66 6491.25 3994.13 3688.89 1388.83 12594.26 7577.55 15195.86 2184.88 5595.87 13495.24 57
MVS_Test82.47 17283.22 15780.22 23282.62 29157.75 29082.54 20491.96 11471.16 20582.89 23292.52 13577.41 15290.50 21880.04 10687.84 29292.40 163
EIA-MVS82.19 17681.23 18985.10 13887.95 20569.17 18483.22 18793.33 6770.42 21178.58 28579.77 33977.29 15394.20 9371.51 19988.96 27791.93 185
xiu_mvs_v2_base77.19 24076.75 24278.52 25687.01 22961.30 25175.55 30687.12 22061.24 28974.45 31678.79 34177.20 15490.93 20364.62 25884.80 32183.32 312
DU-MVS86.80 9186.99 9286.21 11793.24 7767.02 19783.16 18892.21 10681.73 7090.92 8191.97 14777.20 15493.99 10274.16 17298.35 2297.61 10
Baseline_NR-MVSNet84.00 14885.90 10978.29 26291.47 13753.44 31982.29 21287.00 22579.06 10289.55 11495.72 2877.20 15486.14 28872.30 19598.51 1795.28 55
TinyColmap81.25 18982.34 17477.99 26785.33 25560.68 26282.32 21188.33 19871.26 20286.97 15892.22 14577.10 15786.98 27462.37 26995.17 15786.31 277
F-COLMAP84.97 12583.42 15489.63 5692.39 9783.40 5088.83 8391.92 11573.19 17680.18 27389.15 21677.04 15893.28 13465.82 24892.28 22792.21 175
114514_t83.10 16682.54 17184.77 14392.90 8469.10 18586.65 11890.62 15154.66 32481.46 25490.81 18376.98 15994.38 8672.62 19296.18 11990.82 210
xiu_mvs_v1_base_debu80.84 19580.14 20682.93 18588.31 19871.73 15979.53 25187.17 21465.43 26279.59 27682.73 31376.94 16090.14 23073.22 18488.33 28386.90 272
xiu_mvs_v1_base80.84 19580.14 20682.93 18588.31 19871.73 15979.53 25187.17 21465.43 26279.59 27682.73 31376.94 16090.14 23073.22 18488.33 28386.90 272
xiu_mvs_v1_base_debi80.84 19580.14 20682.93 18588.31 19871.73 15979.53 25187.17 21465.43 26279.59 27682.73 31376.94 16090.14 23073.22 18488.33 28386.90 272
pcd_1.5k_mvsjas6.41 3438.55 3460.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37776.94 1600.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss88.31 7387.90 7989.56 5993.31 7577.96 9587.94 9691.97 11370.73 20994.19 2296.67 1176.94 16094.57 8283.07 7396.28 11496.15 32
PS-MVSNAJ77.04 24276.53 24478.56 25587.09 22861.40 24975.26 30887.13 21761.25 28874.38 31877.22 35076.94 16090.94 20264.63 25784.83 32083.35 311
MIMVSNet183.63 15584.59 13680.74 22394.06 5762.77 23582.72 19784.53 25777.57 12090.34 9095.92 2476.88 16685.83 29261.88 27497.42 7793.62 118
原ACMM184.60 14792.81 9074.01 13091.50 12562.59 27782.73 23490.67 18876.53 16794.25 8969.24 21895.69 14285.55 284
MSDG80.06 21479.99 21080.25 23183.91 27968.04 19177.51 28389.19 18577.65 11781.94 24483.45 30276.37 16886.31 28563.31 26586.59 30186.41 275
Gipumacopyleft84.44 13486.33 10078.78 25184.20 27373.57 13289.55 6890.44 15484.24 3984.38 20794.89 4676.35 16980.40 32576.14 15496.80 9682.36 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
CS-MVS82.02 17982.63 16880.19 23384.80 26057.56 29182.39 20994.72 1871.24 20380.22 27284.89 28775.85 17094.56 8476.08 15593.49 20188.46 252
XXY-MVS74.44 27176.19 24769.21 32184.61 26252.43 32871.70 32877.18 29860.73 29480.60 26390.96 17875.44 17169.35 35056.13 30688.33 28385.86 282
FMVSNet184.55 13185.45 11981.85 20590.27 16661.05 25586.83 11388.27 20078.57 11089.66 10995.64 3075.43 17290.68 21369.09 22295.33 15093.82 106
CANet83.79 15282.85 16386.63 10486.17 24672.21 15483.76 16891.43 12777.24 12374.39 31787.45 24275.36 17395.42 5077.03 14792.83 21792.25 174
ab-mvs79.67 21580.56 19676.99 27788.48 19556.93 29684.70 14486.06 23368.95 22780.78 26293.08 11375.30 17484.62 30356.78 30290.90 25589.43 236
DELS-MVS81.44 18781.25 18782.03 20184.27 27062.87 23476.47 29792.49 10170.97 20681.64 25383.83 29775.03 17592.70 15374.29 17092.22 23090.51 220
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 22178.10 22881.07 21785.17 25660.22 26582.21 21690.57 15262.51 27875.32 31284.61 29174.99 17692.30 16459.48 29188.04 28990.68 214
CNLPA83.55 15783.10 16184.90 14089.34 17983.87 4884.54 14988.77 19079.09 10183.54 22488.66 22474.87 17781.73 31966.84 23992.29 22689.11 242
HQP_MVS87.75 8387.43 8688.70 7493.45 7076.42 11889.45 7393.61 5879.44 9786.55 16792.95 11974.84 17895.22 5980.78 9995.83 13594.46 80
plane_prior692.61 9176.54 11574.84 178
FC-MVSNet-test85.93 10787.05 9182.58 19492.25 10356.44 30085.75 13193.09 8077.33 12191.94 6694.65 5474.78 18093.41 13175.11 16798.58 1497.88 7
VDD-MVS84.23 14284.58 13783.20 17991.17 14665.16 21283.25 18484.97 25479.79 9187.18 15094.27 7274.77 18190.89 20669.24 21896.54 10493.55 123
BH-untuned80.96 19380.99 19280.84 22288.55 19468.23 18880.33 24288.46 19472.79 18186.55 16786.76 25274.72 18291.77 18161.79 27588.99 27682.52 322
VPNet80.25 20881.68 18175.94 29192.46 9647.98 35176.70 29281.67 27473.45 16784.87 19892.82 12374.66 18386.51 28261.66 27796.85 9293.33 124
tfpnnormal81.79 18482.95 16278.31 26088.93 18855.40 30680.83 23782.85 26576.81 12685.90 18394.14 8374.58 18486.51 28266.82 24095.68 14393.01 137
KD-MVS_self_test81.93 18383.14 16078.30 26184.75 26152.75 32380.37 24189.42 18370.24 21690.26 9293.39 10974.55 18586.77 27868.61 22896.64 9995.38 51
V4283.47 15983.37 15683.75 16883.16 28663.33 22781.31 22890.23 16669.51 22190.91 8390.81 18374.16 18692.29 16580.06 10590.22 26595.62 46
3Dnovator80.37 784.80 12684.71 13385.06 13986.36 23974.71 12688.77 8590.00 17275.65 14384.96 19593.17 11274.06 18791.19 19578.28 12791.09 24689.29 240
v1086.54 9487.10 8984.84 14188.16 20363.28 22886.64 11992.20 10775.42 14792.81 5094.50 6074.05 18894.06 10183.88 6596.28 11497.17 18
旧先验191.97 11271.77 15881.78 27391.84 15173.92 18993.65 19883.61 306
mvs_anonymous78.13 23078.76 21976.23 29079.24 32650.31 34478.69 26684.82 25561.60 28783.09 23192.82 12373.89 19087.01 27168.33 23186.41 30391.37 198
MAR-MVS80.24 20978.74 22084.73 14486.87 23378.18 9185.75 13187.81 20865.67 26177.84 29078.50 34373.79 19190.53 21761.59 27990.87 25685.49 286
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13685.39 12081.25 21395.13 3359.32 27385.42 13681.11 27686.41 2987.41 14896.21 1973.61 19290.61 21666.33 24296.85 9293.81 109
FIs85.35 11486.27 10282.60 19391.86 11857.31 29385.10 13993.05 8275.83 14091.02 8093.97 9073.57 19392.91 15073.97 17598.02 4097.58 12
v114484.54 13384.72 13284.00 16187.67 21262.55 23982.97 19290.93 14370.32 21489.80 10490.99 17573.50 19493.48 12781.69 8994.65 17695.97 38
diffmvs80.40 20480.48 19980.17 23479.02 32960.04 26677.54 28290.28 16566.65 25082.40 23787.33 24573.50 19487.35 26977.98 13589.62 27093.13 132
PAPM_NR83.23 16383.19 15983.33 17690.90 15265.98 20688.19 9290.78 14678.13 11580.87 26187.92 23573.49 19692.42 15870.07 21288.40 28291.60 194
v886.22 10186.83 9684.36 15287.82 20862.35 24386.42 12291.33 13176.78 12792.73 5194.48 6273.41 19793.72 11483.10 7295.41 14797.01 21
EI-MVSNet82.61 16982.42 17383.20 17983.25 28463.66 22383.50 17785.07 24876.06 13386.55 16785.10 28073.41 19790.25 22278.15 13390.67 26195.68 44
IterMVS-LS84.73 12784.98 12683.96 16387.35 21863.66 22383.25 18489.88 17476.06 13389.62 11092.37 13973.40 19992.52 15778.16 13194.77 17395.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419284.24 14184.41 14183.71 16987.59 21561.57 24882.95 19391.03 13967.82 24189.80 10490.49 19273.28 20093.51 12681.88 8894.89 16996.04 37
BH-RMVSNet80.53 20080.22 20481.49 21187.19 22266.21 20477.79 27886.23 23174.21 15983.69 21988.50 22573.25 20190.75 21063.18 26687.90 29087.52 264
PLCcopyleft73.85 1682.09 17880.31 20087.45 9490.86 15480.29 7285.88 12990.65 14968.17 23476.32 30086.33 25773.12 20292.61 15661.40 28090.02 26789.44 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 7980.37 7191.91 3493.11 7981.10 7795.32 1097.24 572.94 20394.85 7285.07 5297.78 5597.26 15
WR-MVS83.56 15684.40 14281.06 21893.43 7254.88 31178.67 26785.02 25181.24 7590.74 8591.56 16072.85 20491.08 19968.00 23298.04 3797.23 16
VNet79.31 21680.27 20176.44 28587.92 20653.95 31575.58 30584.35 25874.39 15882.23 24090.72 18572.84 20584.39 30560.38 28793.98 19090.97 205
QAPM82.59 17082.59 17082.58 19486.44 23466.69 20189.94 5990.36 15767.97 23784.94 19792.58 13272.71 20692.18 16670.63 20887.73 29388.85 249
v119284.57 13084.69 13484.21 15687.75 21062.88 23383.02 19191.43 12769.08 22589.98 9990.89 18072.70 20793.62 12082.41 8094.97 16696.13 33
OpenMVScopyleft76.72 1381.98 18282.00 17881.93 20284.42 26668.22 18988.50 9089.48 18166.92 24781.80 25091.86 14972.59 20890.16 22771.19 20191.25 24587.40 266
TSAR-MVS + GP.83.95 14982.69 16687.72 9089.27 18181.45 6583.72 16981.58 27574.73 15385.66 18586.06 26272.56 20992.69 15475.44 16395.21 15589.01 248
alignmvs83.94 15083.98 14983.80 16587.80 20967.88 19284.54 14991.42 12973.27 17588.41 13487.96 23272.33 21090.83 20876.02 15794.11 18792.69 151
HQP2-MVS72.10 211
HQP-MVS84.61 12984.06 14786.27 11391.19 14370.66 16884.77 14192.68 9773.30 17280.55 26690.17 20172.10 21194.61 8077.30 14494.47 17993.56 121
testgi72.36 28574.61 25965.59 33480.56 31342.82 36768.29 33973.35 32566.87 24881.84 24789.93 20472.08 21366.92 35846.05 35392.54 22387.01 271
v192192084.23 14284.37 14383.79 16687.64 21461.71 24782.91 19491.20 13567.94 23890.06 9490.34 19472.04 21493.59 12182.32 8294.91 16796.07 35
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11189.16 12092.25 14372.03 21596.36 288.21 890.93 25492.98 138
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16881.93 17985.19 13582.08 29280.15 7385.53 13488.76 19168.01 23585.58 18787.75 23671.80 21686.85 27674.02 17493.87 19288.58 251
v124084.30 13884.51 13983.65 17087.65 21361.26 25282.85 19591.54 12467.94 23890.68 8690.65 18971.71 21793.64 11682.84 7794.78 17196.07 35
ambc82.98 18390.55 16264.86 21388.20 9189.15 18689.40 11793.96 9371.67 21891.38 19278.83 12096.55 10392.71 150
112180.86 19479.81 21184.02 16093.93 6078.70 8781.64 22380.18 28355.43 32183.67 22091.15 16971.29 21991.41 19067.95 23493.06 21181.96 328
新几何182.95 18493.96 5978.56 8980.24 28255.45 32083.93 21891.08 17171.19 22088.33 26065.84 24793.07 21081.95 329
v14882.31 17382.48 17281.81 20885.59 25259.66 27081.47 22686.02 23472.85 18088.05 13990.65 18970.73 22190.91 20575.15 16691.79 23794.87 64
v2v48284.09 14484.24 14583.62 17187.13 22361.40 24982.71 19889.71 17672.19 19389.55 11491.41 16370.70 22293.20 13681.02 9493.76 19396.25 31
UGNet82.78 16781.64 18286.21 11786.20 24576.24 12186.86 11185.68 23877.07 12473.76 32092.82 12369.64 22391.82 18069.04 22393.69 19790.56 218
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 18581.59 18481.79 20980.86 30759.15 27778.61 26890.18 16868.36 23187.20 14987.11 24969.39 22491.62 18278.16 13194.43 18194.60 74
MG-MVS80.32 20780.94 19378.47 25888.18 20152.62 32682.29 21285.01 25272.01 19679.24 28192.54 13469.36 22593.36 13370.65 20789.19 27589.45 234
IS-MVSNet86.66 9386.82 9786.17 11992.05 11166.87 19991.21 4088.64 19386.30 3089.60 11392.59 13069.22 22694.91 7073.89 17697.89 5196.72 24
PVSNet_BlendedMVS78.80 22277.84 23081.65 21084.43 26463.41 22579.49 25490.44 15461.70 28675.43 31087.07 25069.11 22791.44 18760.68 28592.24 22890.11 228
PVSNet_Blended76.49 25075.40 25479.76 23884.43 26463.41 22575.14 30990.44 15457.36 31375.43 31078.30 34469.11 22791.44 18760.68 28587.70 29484.42 296
BH-w/o76.57 24876.07 24978.10 26586.88 23265.92 20777.63 28086.33 22965.69 26080.89 26079.95 33668.97 22990.74 21153.01 32785.25 31377.62 348
MVS73.21 27972.59 28175.06 29680.97 30460.81 26181.64 22385.92 23646.03 35871.68 32977.54 34668.47 23089.77 23955.70 30985.39 31074.60 353
miper_ehance_all_eth80.34 20680.04 20981.24 21579.82 31958.95 27977.66 27989.66 17765.75 25985.99 18285.11 27968.29 23191.42 18976.03 15692.03 23293.33 124
Anonymous20240521180.51 20181.19 19078.49 25788.48 19557.26 29476.63 29382.49 26781.21 7684.30 21292.24 14467.99 23286.24 28662.22 27095.13 15891.98 184
testdata79.54 24492.87 8572.34 15080.14 28459.91 29985.47 19091.75 15667.96 23385.24 29668.57 23092.18 23181.06 342
test_part187.15 8787.82 8085.15 13788.88 18963.04 23187.98 9494.85 1682.52 6193.61 3795.73 2667.51 23495.71 3180.48 10498.83 296.69 25
DPM-MVS80.10 21379.18 21582.88 18890.71 15869.74 17378.87 26490.84 14460.29 29775.64 30985.92 26567.28 23593.11 14271.24 20091.79 23785.77 283
PVSNet_Blended_VisFu81.55 18680.49 19884.70 14691.58 12973.24 13684.21 15391.67 12262.86 27680.94 25987.16 24767.27 23692.87 15169.82 21488.94 27887.99 258
MDA-MVSNet-bldmvs77.47 23776.90 24179.16 24879.03 32864.59 21466.58 34675.67 30873.15 17788.86 12388.99 21966.94 23781.23 32164.71 25588.22 28891.64 193
CL-MVSNet_self_test76.81 24577.38 23575.12 29586.90 23151.34 33573.20 32380.63 28168.30 23381.80 25088.40 22666.92 23880.90 32255.35 31394.90 16893.12 133
test22293.31 7576.54 11579.38 25577.79 29552.59 33482.36 23890.84 18266.83 23991.69 23981.25 337
TR-MVS76.77 24675.79 25079.72 24086.10 24865.79 20877.14 28683.02 26365.20 26781.40 25582.10 31766.30 24090.73 21255.57 31085.27 31282.65 318
OpenMVS_ROBcopyleft70.19 1777.77 23677.46 23378.71 25384.39 26761.15 25381.18 23282.52 26662.45 28083.34 22687.37 24366.20 24188.66 25764.69 25685.02 31586.32 276
EPP-MVSNet85.47 11285.04 12586.77 10391.52 13569.37 17791.63 3787.98 20681.51 7387.05 15691.83 15266.18 24295.29 5570.75 20596.89 9095.64 45
SixPastTwentyTwo87.20 8687.45 8586.45 10892.52 9469.19 18387.84 9888.05 20381.66 7194.64 1496.53 1465.94 24394.75 7483.02 7596.83 9495.41 50
PatchMatch-RL74.48 26973.22 27478.27 26387.70 21185.26 3575.92 30270.09 34364.34 27176.09 30381.25 32565.87 24478.07 33153.86 32183.82 32571.48 356
EPNet80.37 20578.41 22586.23 11476.75 34073.28 13487.18 10777.45 29776.24 13168.14 34088.93 22065.41 24593.85 10869.47 21696.12 12391.55 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS80.20 21079.00 21683.78 16788.17 20286.66 1881.31 22866.81 35569.64 22088.33 13690.19 19964.58 24683.63 31171.99 19890.03 26681.06 342
miper_enhance_ethall77.83 23376.93 24080.51 22776.15 34658.01 28775.47 30788.82 18958.05 30783.59 22280.69 32764.41 24791.20 19473.16 19092.03 23292.33 167
eth_miper_zixun_eth80.84 19580.22 20482.71 19181.41 29960.98 25877.81 27790.14 16967.31 24586.95 15987.24 24664.26 24892.31 16375.23 16591.61 24094.85 68
test20.0373.75 27574.59 26171.22 31481.11 30351.12 33970.15 33472.10 33470.42 21180.28 27191.50 16164.21 24974.72 34246.96 35194.58 17787.82 263
cascas76.29 25374.81 25880.72 22584.47 26362.94 23273.89 31887.34 21155.94 31875.16 31476.53 35363.97 25091.16 19665.00 25290.97 25388.06 256
TAMVS78.08 23176.36 24583.23 17890.62 15972.87 13779.08 26180.01 28561.72 28581.35 25686.92 25163.96 25188.78 25550.61 33593.01 21388.04 257
GBi-Net82.02 17982.07 17681.85 20586.38 23661.05 25586.83 11388.27 20072.43 18486.00 17995.64 3063.78 25290.68 21365.95 24493.34 20393.82 106
test182.02 17982.07 17681.85 20586.38 23661.05 25586.83 11388.27 20072.43 18486.00 17995.64 3063.78 25290.68 21365.95 24493.34 20393.82 106
FMVSNet281.31 18881.61 18380.41 22986.38 23658.75 28483.93 16286.58 22872.43 18487.65 14492.98 11663.78 25290.22 22566.86 23793.92 19192.27 172
USDC76.63 24776.73 24376.34 28783.46 28257.20 29580.02 24588.04 20452.14 33983.65 22191.25 16563.24 25586.65 28154.66 31894.11 18785.17 288
DIV-MVS_self_test80.43 20280.23 20281.02 21979.99 31759.25 27477.07 28887.02 22267.38 24386.19 17489.22 21363.09 25690.16 22776.32 15195.80 13793.66 114
cl____80.42 20380.23 20281.02 21979.99 31759.25 27477.07 28887.02 22267.37 24486.18 17689.21 21463.08 25790.16 22776.31 15295.80 13793.65 116
h-mvs3384.25 14082.76 16488.72 7391.82 12382.60 5884.00 15984.98 25371.27 20086.70 16390.55 19163.04 25893.92 10678.26 12894.20 18589.63 231
hse-mvs283.47 15981.81 18088.47 7891.03 14982.27 5982.61 19983.69 25971.27 20086.70 16386.05 26363.04 25892.41 15978.26 12893.62 20090.71 212
MVS_030478.17 22977.23 23780.99 22184.13 27669.07 18681.39 22780.81 27976.28 13067.53 34589.11 21762.87 26086.77 27860.90 28492.01 23587.13 269
new-patchmatchnet70.10 30073.37 27360.29 34781.23 30216.95 37759.54 35774.62 31362.93 27580.97 25887.93 23462.83 26171.90 34555.24 31495.01 16492.00 181
K. test v385.14 11784.73 13086.37 10991.13 14769.63 17685.45 13576.68 30284.06 4292.44 5696.99 862.03 26294.65 7780.58 10293.24 20694.83 70
lessismore_v085.95 12191.10 14870.99 16770.91 34191.79 6794.42 6661.76 26392.93 14879.52 11593.03 21293.93 100
131473.22 27872.56 28375.20 29480.41 31657.84 28881.64 22385.36 24151.68 34273.10 32376.65 35261.45 26485.19 29763.54 26279.21 34782.59 319
CANet_DTU77.81 23577.05 23880.09 23581.37 30059.90 26883.26 18388.29 19969.16 22467.83 34383.72 29860.93 26589.47 24369.22 22089.70 26990.88 208
pmmvs-eth3d78.42 22877.04 23982.57 19687.44 21774.41 12880.86 23679.67 28655.68 31984.69 20190.31 19660.91 26685.42 29562.20 27191.59 24187.88 261
UnsupCasMVSNet_eth71.63 29272.30 28569.62 31976.47 34352.70 32570.03 33580.97 27859.18 30079.36 27988.21 22960.50 26769.12 35158.33 29677.62 35287.04 270
IterMVS-SCA-FT80.64 19979.41 21384.34 15383.93 27869.66 17576.28 29981.09 27772.43 18486.47 17390.19 19960.46 26893.15 14177.45 14286.39 30490.22 224
SCA73.32 27672.57 28275.58 29381.62 29655.86 30378.89 26371.37 34061.73 28474.93 31583.42 30360.46 26887.01 27158.11 29882.63 33583.88 300
jason77.42 23875.75 25182.43 19987.10 22769.27 17977.99 27481.94 27251.47 34377.84 29085.07 28360.32 27089.00 24970.74 20689.27 27489.03 246
jason: jason.
1112_ss74.82 26673.74 26778.04 26689.57 17660.04 26676.49 29687.09 22154.31 32573.66 32179.80 33760.25 27186.76 28058.37 29484.15 32487.32 267
HY-MVS64.64 1873.03 28072.47 28474.71 29783.36 28354.19 31382.14 21981.96 27156.76 31769.57 33786.21 26160.03 27284.83 30249.58 34082.65 33385.11 289
Anonymous2023120671.38 29371.88 28769.88 31786.31 24054.37 31270.39 33374.62 31352.57 33576.73 29688.76 22159.94 27372.06 34444.35 35693.23 20783.23 314
IterMVS76.91 24376.34 24678.64 25480.91 30564.03 22176.30 29879.03 29064.88 26983.11 22989.16 21559.90 27484.46 30468.61 22885.15 31487.42 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 30170.44 29668.90 32273.76 35953.42 32058.99 36067.20 35158.42 30487.10 15385.39 27659.82 27567.32 35559.79 28983.50 32785.96 279
MDA-MVSNet_test_wron70.05 30270.44 29668.88 32373.84 35853.47 31858.93 36167.28 35058.43 30387.09 15485.40 27559.80 27667.25 35659.66 29083.54 32685.92 281
PMMVS61.65 32760.38 33365.47 33665.40 37469.26 18063.97 35161.73 36336.80 36960.11 36368.43 36259.42 27766.35 36048.97 34278.57 34960.81 364
CDS-MVSNet77.32 23975.40 25483.06 18189.00 18672.48 14877.90 27682.17 27060.81 29278.94 28383.49 30159.30 27888.76 25654.64 31992.37 22587.93 260
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 30769.68 30267.82 32879.42 32351.15 33867.82 34375.79 30654.15 32677.47 29585.36 27859.26 27970.64 34748.46 34479.35 34581.66 331
Anonymous2024052180.18 21181.25 18776.95 27883.15 28760.84 26082.46 20685.99 23568.76 22986.78 16093.73 10559.13 28077.44 33273.71 17997.55 6992.56 155
WTY-MVS67.91 31168.35 30966.58 33280.82 30948.12 35065.96 34772.60 33053.67 32971.20 33181.68 32258.97 28169.06 35248.57 34381.67 33682.55 320
cl2278.97 21978.21 22781.24 21577.74 33359.01 27877.46 28587.13 21765.79 25684.32 20985.10 28058.96 28290.88 20775.36 16492.03 23293.84 103
MVSFormer82.23 17581.57 18584.19 15885.54 25369.26 18091.98 3190.08 17071.54 19876.23 30185.07 28358.69 28394.27 8786.26 3888.77 27989.03 246
lupinMVS76.37 25274.46 26282.09 20085.54 25369.26 18076.79 29080.77 28050.68 34976.23 30182.82 31158.69 28388.94 25069.85 21388.77 27988.07 255
Test_1112_low_res73.90 27473.08 27576.35 28690.35 16455.95 30173.40 32286.17 23250.70 34873.14 32285.94 26458.31 28585.90 29156.51 30483.22 32887.20 268
test_yl78.71 22478.51 22379.32 24684.32 26858.84 28178.38 26985.33 24275.99 13682.49 23586.57 25358.01 28690.02 23662.74 26792.73 21989.10 243
DCV-MVSNet78.71 22478.51 22379.32 24684.32 26858.84 28178.38 26985.33 24275.99 13682.49 23586.57 25358.01 28690.02 23662.74 26792.73 21989.10 243
sss66.92 31367.26 31365.90 33377.23 33651.10 34064.79 34871.72 33852.12 34070.13 33580.18 33457.96 28865.36 36350.21 33681.01 34181.25 337
ppachtmachnet_test74.73 26874.00 26676.90 28080.71 31156.89 29871.53 32978.42 29258.24 30579.32 28082.92 31057.91 28984.26 30665.60 24991.36 24489.56 233
MVP-Stereo75.81 25673.51 27182.71 19189.35 17873.62 13180.06 24385.20 24560.30 29673.96 31987.94 23357.89 29089.45 24552.02 33074.87 35785.06 290
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 29070.06 30076.92 27986.39 23553.97 31476.62 29486.62 22753.44 33063.97 35884.73 29057.79 29192.34 16239.65 36381.33 33984.45 295
LFMVS80.15 21280.56 19678.89 24989.19 18355.93 30285.22 13873.78 32282.96 5684.28 21392.72 12757.38 29290.07 23463.80 26095.75 14090.68 214
Vis-MVSNet (Re-imp)77.82 23477.79 23177.92 26888.82 19051.29 33783.28 18271.97 33574.04 16082.23 24089.78 20657.38 29289.41 24657.22 30195.41 14793.05 135
CHOSEN 1792x268872.45 28470.56 29478.13 26490.02 17463.08 23068.72 33883.16 26242.99 36475.92 30585.46 27357.22 29485.18 29849.87 33981.67 33686.14 278
miper_lstm_enhance76.45 25176.10 24877.51 27476.72 34160.97 25964.69 34985.04 25063.98 27283.20 22888.22 22856.67 29578.79 33073.22 18493.12 20992.78 146
our_test_371.85 28971.59 28972.62 30880.71 31153.78 31669.72 33671.71 33958.80 30278.03 28780.51 33256.61 29678.84 32962.20 27186.04 30785.23 287
baseline173.26 27773.54 27072.43 31084.92 25847.79 35279.89 24774.00 31865.93 25478.81 28486.28 26056.36 29781.63 32056.63 30379.04 34887.87 262
pmmvs474.92 26472.98 27780.73 22484.95 25771.71 16276.23 30077.59 29652.83 33377.73 29386.38 25556.35 29884.97 29957.72 30087.05 29885.51 285
MVEpermissive40.22 2351.82 33850.47 34155.87 35062.66 37651.91 33131.61 36839.28 37740.65 36550.76 37174.98 35756.24 29944.67 37233.94 36964.11 36871.04 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet70.20 29868.80 30774.38 29980.91 30584.81 4059.12 35976.45 30455.06 32275.31 31382.36 31655.74 30054.82 36847.02 34987.24 29783.52 307
MS-PatchMatch70.93 29570.22 29873.06 30581.85 29562.50 24073.82 31977.90 29452.44 33675.92 30581.27 32455.67 30181.75 31855.37 31277.70 35174.94 352
DSMNet-mixed60.98 33261.61 33159.09 34972.88 36445.05 36174.70 31346.61 37626.20 37065.34 35190.32 19555.46 30263.12 36641.72 36081.30 34069.09 360
pmmvs570.73 29670.07 29972.72 30677.03 33952.73 32474.14 31575.65 30950.36 35172.17 32785.37 27755.42 30380.67 32452.86 32887.59 29584.77 292
CMPMVSbinary59.41 2075.12 26173.57 26979.77 23775.84 34867.22 19481.21 23182.18 26950.78 34776.50 29787.66 23855.20 30482.99 31362.17 27390.64 26489.09 245
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet71.09 29471.59 28969.57 32087.23 22050.07 34578.91 26271.83 33660.20 29871.26 33091.76 15555.08 30576.09 33641.06 36187.02 29982.54 321
bset_n11_16_dypcd79.19 21777.97 22982.86 18985.81 25066.85 20075.02 31079.31 28766.07 25383.50 22583.37 30555.04 30692.10 17078.63 12294.99 16589.63 231
PVSNet_051.08 2256.10 33554.97 34059.48 34875.12 35453.28 32155.16 36261.89 36144.30 36159.16 36462.48 36754.22 30765.91 36235.40 36747.01 37059.25 366
EPNet_dtu72.87 28271.33 29377.49 27577.72 33460.55 26382.35 21075.79 30666.49 25158.39 36881.06 32653.68 30885.98 28953.55 32292.97 21585.95 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 33759.27 33744.74 35364.30 37512.32 37840.60 36649.79 37453.19 33165.06 35584.81 28853.60 30949.76 37032.68 37089.41 27172.15 355
HyFIR lowres test75.12 26172.66 28082.50 19791.44 13865.19 21172.47 32587.31 21246.79 35580.29 26984.30 29452.70 31092.10 17051.88 33486.73 30090.22 224
test111178.53 22678.85 21777.56 27392.22 10547.49 35382.61 19969.24 34772.43 18485.28 19194.20 7851.91 31190.07 23465.36 25196.45 10895.11 61
ECVR-MVScopyleft78.44 22778.63 22177.88 26991.85 11948.95 34783.68 17169.91 34572.30 19184.26 21594.20 7851.89 31289.82 23863.58 26196.02 12594.87 64
FMVSNet378.80 22278.55 22279.57 24382.89 29056.89 29881.76 22085.77 23769.04 22686.00 17990.44 19351.75 31390.09 23365.95 24493.34 20391.72 190
D2MVS76.84 24475.67 25380.34 23080.48 31562.16 24673.50 32084.80 25657.61 31182.24 23987.54 24051.31 31487.65 26670.40 21193.19 20891.23 200
AUN-MVS81.18 19078.78 21888.39 8190.93 15182.14 6082.51 20583.67 26064.69 27080.29 26985.91 26651.07 31592.38 16076.29 15393.63 19990.65 216
PVSNet58.17 2166.41 31865.63 32168.75 32481.96 29349.88 34662.19 35572.51 33251.03 34568.04 34175.34 35650.84 31674.77 34045.82 35482.96 32981.60 332
GA-MVS75.83 25574.61 25979.48 24581.87 29459.25 27473.42 32182.88 26468.68 23079.75 27581.80 32050.62 31789.46 24466.85 23885.64 30989.72 230
FPMVS72.29 28772.00 28673.14 30488.63 19285.00 3774.65 31467.39 34971.94 19777.80 29287.66 23850.48 31875.83 33849.95 33779.51 34358.58 367
MVS-HIRNet61.16 33062.92 32755.87 35079.09 32735.34 37271.83 32757.98 36946.56 35659.05 36591.14 17049.95 31976.43 33538.74 36471.92 36155.84 368
CVMVSNet72.62 28371.41 29276.28 28883.25 28460.34 26483.50 17779.02 29137.77 36876.33 29985.10 28049.60 32087.41 26870.54 20977.54 35381.08 340
RPMNet78.88 22078.28 22680.68 22679.58 32062.64 23782.58 20194.16 3174.80 15275.72 30792.59 13048.69 32195.56 3773.48 18282.91 33183.85 303
tpmrst66.28 31966.69 31765.05 33772.82 36539.33 36878.20 27270.69 34253.16 33267.88 34280.36 33348.18 32274.75 34158.13 29770.79 36281.08 340
CR-MVSNet74.00 27373.04 27676.85 28279.58 32062.64 23782.58 20176.90 29950.50 35075.72 30792.38 13648.07 32384.07 30768.72 22782.91 33183.85 303
Patchmtry76.56 24977.46 23373.83 30179.37 32546.60 35782.41 20876.90 29973.81 16385.56 18892.38 13648.07 32383.98 30863.36 26495.31 15390.92 207
ADS-MVSNet265.87 32163.64 32672.55 30973.16 36256.92 29767.10 34474.81 31249.74 35266.04 34882.97 30746.71 32577.26 33342.29 35869.96 36483.46 308
ADS-MVSNet61.90 32662.19 32961.03 34673.16 36236.42 37167.10 34461.75 36249.74 35266.04 34882.97 30746.71 32563.21 36542.29 35869.96 36483.46 308
PatchmatchNetpermissive69.71 30568.83 30672.33 31177.66 33553.60 31779.29 25669.99 34457.66 31072.53 32582.93 30946.45 32780.08 32760.91 28372.09 36083.31 313
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 28671.55 29174.70 29883.48 28151.60 33475.02 31073.71 32370.14 21778.56 28680.57 33046.20 32888.20 26246.99 35089.29 27284.32 297
sam_mvs146.11 32983.88 300
tfpn200view974.86 26574.23 26476.74 28386.24 24352.12 32979.24 25873.87 32073.34 17081.82 24884.60 29246.02 33088.80 25251.98 33190.99 25089.31 238
thres40075.14 25974.23 26477.86 27086.24 24352.12 32979.24 25873.87 32073.34 17081.82 24884.60 29246.02 33088.80 25251.98 33190.99 25092.66 152
baseline269.77 30466.89 31478.41 25979.51 32258.09 28676.23 30069.57 34657.50 31264.82 35677.45 34846.02 33088.44 25853.08 32477.83 35088.70 250
patchmatchnet-post81.71 32145.93 33387.01 271
sam_mvs45.92 334
Patchmatch-RL test74.48 26973.68 26876.89 28184.83 25966.54 20272.29 32669.16 34857.70 30986.76 16186.33 25745.79 33582.59 31469.63 21590.65 26381.54 333
thres100view90075.45 25775.05 25776.66 28487.27 21951.88 33281.07 23373.26 32675.68 14283.25 22786.37 25645.54 33688.80 25251.98 33190.99 25089.31 238
thres600view775.97 25475.35 25677.85 27187.01 22951.84 33380.45 24073.26 32675.20 14983.10 23086.31 25945.54 33689.05 24855.03 31692.24 22892.66 152
tpm cat166.76 31665.21 32271.42 31377.09 33850.62 34378.01 27373.68 32444.89 36068.64 33879.00 34045.51 33882.42 31749.91 33870.15 36381.23 339
test_post3.10 37445.43 33977.22 334
MDTV_nov1_ep1368.29 31078.03 33243.87 36474.12 31672.22 33352.17 33767.02 34685.54 26945.36 34080.85 32355.73 30784.42 323
tpmvs70.16 29969.56 30371.96 31274.71 35748.13 34979.63 24975.45 31165.02 26870.26 33481.88 31945.34 34185.68 29358.34 29575.39 35682.08 327
MDTV_nov1_ep13_2view27.60 37670.76 33146.47 35761.27 36045.20 34249.18 34183.75 305
test_post178.85 2653.13 37345.19 34380.13 32658.11 298
CostFormer69.98 30368.68 30873.87 30077.14 33750.72 34279.26 25774.51 31551.94 34170.97 33384.75 28945.16 34487.49 26755.16 31579.23 34683.40 310
RRT_MVS83.25 16281.08 19189.74 5380.55 31479.32 8186.41 12386.69 22672.33 18987.00 15791.08 17144.98 34595.55 4084.47 6196.24 11894.36 85
Patchmatch-test65.91 32067.38 31261.48 34575.51 35043.21 36668.84 33763.79 35962.48 27972.80 32483.42 30344.89 34659.52 36748.27 34686.45 30281.70 330
EU-MVSNet75.12 26174.43 26377.18 27683.11 28859.48 27285.71 13382.43 26839.76 36785.64 18688.76 22144.71 34787.88 26473.86 17785.88 30884.16 299
PatchT70.52 29772.76 27963.79 33979.38 32433.53 37377.63 28065.37 35773.61 16571.77 32892.79 12644.38 34875.65 33964.53 25985.37 31182.18 326
test-LLR67.21 31266.74 31668.63 32576.45 34455.21 30867.89 34067.14 35262.43 28165.08 35372.39 35843.41 34969.37 34861.00 28184.89 31881.31 335
test0.0.03 164.66 32364.36 32465.57 33575.03 35546.89 35664.69 34961.58 36462.43 28171.18 33277.54 34643.41 34968.47 35340.75 36282.65 33381.35 334
MVSTER77.09 24175.70 25281.25 21375.27 35361.08 25477.49 28485.07 24860.78 29386.55 16788.68 22343.14 35190.25 22273.69 18090.67 26192.42 161
tpm67.95 31068.08 31167.55 32978.74 33143.53 36575.60 30467.10 35454.92 32372.23 32688.10 23042.87 35275.97 33752.21 32980.95 34283.15 315
tpm268.45 30966.83 31573.30 30378.93 33048.50 34879.76 24871.76 33747.50 35469.92 33683.60 29942.07 35388.40 25948.44 34579.51 34383.01 317
EMVS61.10 33160.81 33261.99 34265.96 37355.86 30353.10 36458.97 36767.06 24656.89 36963.33 36640.98 35467.03 35754.79 31786.18 30663.08 362
new_pmnet55.69 33657.66 33849.76 35275.47 35130.59 37459.56 35651.45 37343.62 36362.49 35975.48 35540.96 35549.15 37137.39 36672.52 35969.55 359
E-PMN61.59 32861.62 33061.49 34466.81 37255.40 30653.77 36360.34 36566.80 24958.90 36665.50 36540.48 35666.12 36155.72 30886.25 30562.95 363
EPMVS62.47 32462.63 32862.01 34170.63 36938.74 36974.76 31252.86 37253.91 32867.71 34480.01 33539.40 35766.60 35955.54 31168.81 36780.68 344
tmp_tt20.25 34124.50 3447.49 3564.47 3798.70 37934.17 36725.16 3791.00 37432.43 37318.49 37139.37 3589.21 37521.64 37243.75 3714.57 371
thisisatest053079.07 21877.33 23684.26 15587.13 22364.58 21583.66 17275.95 30568.86 22885.22 19287.36 24438.10 35993.57 12475.47 16294.28 18394.62 72
ET-MVSNet_ETH3D75.28 25872.77 27882.81 19083.03 28968.11 19077.09 28776.51 30360.67 29577.60 29480.52 33138.04 36091.15 19770.78 20490.68 26089.17 241
tttt051781.07 19179.58 21285.52 13188.99 18766.45 20387.03 11075.51 31073.76 16488.32 13790.20 19837.96 36194.16 9979.36 11795.13 15895.93 41
thisisatest051573.00 28170.52 29580.46 22881.45 29859.90 26873.16 32474.31 31757.86 30876.08 30477.78 34537.60 36292.12 16965.00 25291.45 24389.35 237
FMVSNet572.10 28871.69 28873.32 30281.57 29753.02 32276.77 29178.37 29363.31 27376.37 29891.85 15036.68 36378.98 32847.87 34792.45 22487.95 259
dp60.70 33360.29 33561.92 34372.04 36738.67 37070.83 33064.08 35851.28 34460.75 36177.28 34936.59 36471.58 34647.41 34862.34 36975.52 351
CHOSEN 280x42059.08 33456.52 33966.76 33176.51 34264.39 21849.62 36559.00 36643.86 36255.66 37068.41 36335.55 36568.21 35443.25 35776.78 35567.69 361
RRT_test8_iter0578.08 23177.52 23279.75 23980.84 30852.54 32780.61 23888.96 18867.77 24284.62 20289.29 21233.89 36692.10 17077.59 13994.15 18694.62 72
IB-MVS62.13 1971.64 29168.97 30579.66 24280.80 31062.26 24573.94 31776.90 29963.27 27468.63 33976.79 35133.83 36791.84 17959.28 29287.26 29684.88 291
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 30666.64 31877.70 27273.19 36171.24 16575.67 30365.56 35670.42 21165.18 35292.97 11833.64 36883.06 31253.52 32369.61 36678.79 347
DWT-MVSNet_test66.43 31764.37 32372.63 30774.86 35650.86 34176.52 29572.74 32954.06 32765.50 35068.30 36432.13 36984.84 30161.63 27873.59 35882.19 325
DeepMVS_CXcopyleft24.13 35532.95 37729.49 37521.63 38012.07 37137.95 37245.07 37030.84 37019.21 37417.94 37333.06 37323.69 370
gg-mvs-nofinetune68.96 30869.11 30468.52 32776.12 34745.32 35983.59 17355.88 37086.68 2664.62 35797.01 730.36 37183.97 30944.78 35582.94 33076.26 350
GG-mvs-BLEND67.16 33073.36 36046.54 35884.15 15455.04 37158.64 36761.95 36829.93 37283.87 31038.71 36576.92 35471.07 357
test_method30.46 33929.60 34233.06 35417.99 3783.84 38013.62 36973.92 3192.79 37218.29 37453.41 36928.53 37343.25 37322.56 37135.27 37252.11 369
test-mter65.00 32263.79 32568.63 32576.45 34455.21 30867.89 34067.14 35250.98 34665.08 35372.39 35828.27 37469.37 34861.00 28184.89 31881.31 335
TESTMET0.1,161.29 32960.32 33464.19 33872.06 36651.30 33667.89 34062.09 36045.27 35960.65 36269.01 36127.93 37564.74 36456.31 30581.65 33876.53 349
test250674.12 27273.39 27276.28 28891.85 11944.20 36384.06 15748.20 37572.30 19181.90 24594.20 7827.22 37689.77 23964.81 25496.02 12594.87 64
pmmvs362.47 32460.02 33669.80 31871.58 36864.00 22270.52 33258.44 36839.77 36666.05 34775.84 35427.10 37772.28 34346.15 35284.77 32273.11 354
KD-MVS_2432*160066.87 31465.81 31970.04 31567.50 37047.49 35362.56 35379.16 28861.21 29077.98 28880.61 32825.29 37882.48 31553.02 32584.92 31680.16 345
miper_refine_blended66.87 31465.81 31970.04 31567.50 37047.49 35362.56 35379.16 28861.21 29077.98 28880.61 32825.29 37882.48 31553.02 32584.92 31680.16 345
test1236.27 3448.08 3470.84 3571.11 3810.57 38162.90 3520.82 3810.54 3751.07 3772.75 3761.26 3800.30 3761.04 3741.26 3751.66 372
testmvs5.91 3457.65 3480.72 3581.20 3800.37 38259.14 3580.67 3820.49 3761.11 3762.76 3750.94 3810.24 3771.02 3751.47 3741.55 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re6.65 3428.87 3450.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37879.80 3370.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 13277.99 9391.01 14096.05 887.45 1998.17 3392.40 163
No_MVS88.81 6991.55 13277.99 9391.01 14096.05 887.45 1998.17 3392.40 163
eth-test20.00 382
eth-test0.00 382
IU-MVS94.18 5072.64 14190.82 14556.98 31589.67 10885.78 4797.92 4893.28 126
save fliter93.75 6477.44 10286.31 12489.72 17570.80 207
test_0728_SECOND86.79 10294.25 4972.45 14990.54 4694.10 3895.88 1686.42 3497.97 4592.02 180
GSMVS83.88 300
test_part293.86 6277.77 9792.84 48
MTGPAbinary91.81 119
MTMP90.66 4333.14 378
gm-plane-assit75.42 35244.97 36252.17 33772.36 36087.90 26354.10 320
test9_res80.83 9896.45 10890.57 217
agg_prior279.68 11196.16 12090.22 224
agg_prior91.58 12977.69 9890.30 16184.32 20993.18 137
test_prior478.97 8484.59 146
test_prior86.32 11090.59 16071.99 15692.85 9194.17 9692.80 144
旧先验281.73 22156.88 31686.54 17284.90 30072.81 191
新几何281.72 222
无先验82.81 19685.62 23958.09 30691.41 19067.95 23484.48 294
原ACMM282.26 215
testdata286.43 28463.52 263
testdata179.62 25073.95 162
plane_prior793.45 7077.31 106
plane_prior593.61 5895.22 5980.78 9995.83 13594.46 80
plane_prior492.95 119
plane_prior376.85 11377.79 11686.55 167
plane_prior289.45 7379.44 97
plane_prior192.83 89
plane_prior76.42 11887.15 10875.94 13995.03 163
n20.00 383
nn0.00 383
door-mid74.45 316
test1191.46 126
door72.57 331
HQP5-MVS70.66 168
HQP-NCC91.19 14384.77 14173.30 17280.55 266
ACMP_Plane91.19 14384.77 14173.30 17280.55 266
BP-MVS77.30 144
HQP4-MVS80.56 26594.61 8093.56 121
HQP3-MVS92.68 9794.47 179
NP-MVS91.95 11374.55 12790.17 201
ACMMP++_ref95.74 141
ACMMP++97.35 78