This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6498.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12697.75 3099.89 2299.62 25
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4799.92 1499.77 8
XVG-OURS-SEG-HR97.38 10197.07 11598.30 6899.01 9697.41 3694.66 24499.02 5295.20 16598.15 10697.52 18698.83 498.43 33994.87 15996.41 33199.07 162
ACMH93.61 998.44 2298.76 1397.51 13099.43 3493.54 18198.23 4099.05 4397.40 7499.37 1899.08 3798.79 599.47 19597.74 3199.71 5599.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2099.22 1396.23 11399.71 499.48 798.77 699.93 298.89 399.95 599.84 5
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 599.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)98.38 2598.67 1797.51 13099.51 2493.39 18598.20 4598.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6999.53 10299.60 26
pm-mvs198.47 2198.67 1797.86 10499.52 2394.58 14098.28 3799.00 6097.57 6299.27 2499.22 2298.32 999.50 18797.09 5599.75 4699.50 45
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6298.45 2799.12 2895.83 14099.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
ACMH+93.58 1098.23 3298.31 2997.98 9699.39 3995.22 11897.55 8299.20 1698.21 3799.25 2598.51 7698.21 1199.40 21994.79 16399.72 5299.32 101
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2197.48 3298.35 3099.03 5095.88 13597.88 13898.22 11098.15 1299.74 7696.50 7199.62 7099.42 81
wuyk23d93.25 27695.20 19387.40 35296.07 32395.38 10597.04 11394.97 31695.33 16099.70 598.11 12198.14 1391.94 37077.76 36399.68 6174.89 370
ACMM93.33 1198.05 4297.79 5698.85 2599.15 7497.55 2796.68 13298.83 10695.21 16498.36 7998.13 11798.13 1499.62 15296.04 8799.54 9999.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 3897.83 5498.92 2299.42 3697.46 3398.57 1799.05 4395.43 15897.41 16697.50 18897.98 1599.79 4095.58 11799.57 8799.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 17096.50 15194.80 27399.26 5087.69 29095.96 16898.58 16095.08 17198.02 12496.25 27497.92 1697.60 35988.68 30598.74 24999.11 155
LPG-MVS_test97.94 5397.67 6798.74 3599.15 7497.02 4497.09 11099.02 5295.15 16898.34 8298.23 10797.91 1799.70 11094.41 17899.73 4999.50 45
LGP-MVS_train98.74 3599.15 7497.02 4499.02 5295.15 16898.34 8298.23 10797.91 1799.70 11094.41 17899.73 4999.50 45
abl_698.42 2398.19 3299.09 399.16 7198.10 697.73 7399.11 2997.76 5198.62 5298.27 10397.88 1999.80 3995.67 10899.50 11699.38 88
SED-MVS97.94 5397.90 4698.07 8899.22 5995.35 10896.79 12398.83 10696.11 11999.08 3198.24 10597.87 2099.72 8795.44 12599.51 11299.14 143
test_241102_ONE99.22 5995.35 10898.83 10696.04 12499.08 3198.13 11797.87 2099.33 240
SD-MVS97.37 10297.70 6396.35 20798.14 19295.13 12296.54 13598.92 7695.94 13199.19 2898.08 12397.74 2295.06 36895.24 13899.54 9998.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 7097.70 6398.16 8098.78 11495.72 8596.23 15299.02 5293.92 21298.62 5298.99 4297.69 2399.62 15296.18 8199.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 1898.62 2198.32 6599.22 5995.66 9197.90 6199.08 3798.31 3399.02 3498.74 5997.68 2499.61 15897.77 2999.85 2899.70 18
ANet_high98.31 2898.94 696.41 20699.33 4589.64 25197.92 6099.56 699.27 699.66 899.50 697.67 2599.83 2997.55 3799.98 299.77 8
canonicalmvs97.23 11297.21 10797.30 15497.65 25594.39 14697.84 6499.05 4397.42 7096.68 20893.85 33197.63 2699.33 24096.29 7898.47 26898.18 267
GeoE97.75 7597.70 6397.89 10198.88 10694.53 14197.10 10998.98 6695.75 14497.62 14997.59 18097.61 2799.77 5496.34 7799.44 13499.36 96
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5799.07 8895.87 8196.73 13099.05 4398.67 2498.84 4298.45 8097.58 2899.88 1896.45 7399.86 2599.54 38
cdsmvs_eth3d_5k24.22 34132.30 3440.00 3590.00 3820.00 3830.00 37098.10 2200.00 3770.00 37895.06 31197.54 290.00 3780.00 3760.00 3760.00 374
ACMP92.54 1397.47 9597.10 11298.55 5099.04 9496.70 5396.24 15198.89 7993.71 21697.97 12997.75 16697.44 3099.63 14493.22 21999.70 5899.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6898.67 1399.02 5296.50 10199.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
TDRefinement98.90 598.86 899.02 999.54 2198.06 899.34 499.44 998.85 2099.00 3699.20 2397.42 3299.59 16097.21 4999.76 4299.40 84
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3998.65 1699.19 1895.62 14899.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
PS-CasMVS98.73 1198.85 1098.39 6099.55 1995.47 10298.49 2499.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6697.35 3797.96 5699.16 2098.34 3298.78 4598.52 7597.32 3599.45 20294.08 19399.67 6299.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 7997.79 5697.40 14899.06 8993.52 18295.96 16898.97 7094.55 19298.82 4398.76 5897.31 3699.29 25197.20 5199.44 13499.38 88
XXY-MVS97.54 8997.70 6397.07 16699.46 3092.21 20997.22 10299.00 6094.93 17998.58 5898.92 4897.31 3699.41 21794.44 17699.43 14299.59 27
PEN-MVS98.75 1098.85 1098.44 5699.58 1595.67 9098.45 2799.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
DTE-MVSNet98.79 898.86 898.59 4799.55 1996.12 7398.48 2699.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
ZNCC-MVS97.92 5797.62 7798.83 2699.32 4797.24 4197.45 8998.84 9995.76 14296.93 19697.43 19497.26 4099.79 4096.06 8499.53 10299.45 69
MP-MVS-pluss97.69 7997.36 9598.70 3999.50 2796.84 4995.38 20198.99 6392.45 25298.11 11098.31 9097.25 4199.77 5496.60 6599.62 7099.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 6297.63 7598.67 4199.35 4396.84 4996.36 14398.79 11695.07 17297.88 13898.35 8697.24 4299.72 8796.05 8699.58 8499.45 69
Effi-MVS+96.19 16696.01 16996.71 18697.43 27292.19 21296.12 15799.10 3195.45 15693.33 32194.71 31897.23 4399.56 16993.21 22097.54 30598.37 244
PGM-MVS97.88 6397.52 8598.96 1699.20 6797.62 2297.09 11099.06 4195.45 15697.55 15197.94 14597.11 4499.78 4494.77 16699.46 12999.48 59
test_0728_THIRD96.62 9398.40 7398.28 9997.10 4599.71 10195.70 10499.62 7099.58 28
APD-MVS_3200maxsize98.13 3797.90 4698.79 3198.79 11297.31 3897.55 8298.92 7697.72 5598.25 9498.13 11797.10 4599.75 6695.44 12599.24 19099.32 101
OPM-MVS97.54 8997.25 10298.41 5899.11 8496.61 5795.24 21498.46 17094.58 19198.10 11398.07 12597.09 4799.39 22495.16 14499.44 13499.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS97.94 5397.64 7398.83 2699.15 7497.50 3097.59 7998.84 9996.05 12297.49 15797.54 18397.07 4899.70 11095.61 11499.46 12999.30 107
#test#97.62 8397.22 10698.83 2699.15 7497.50 3096.81 12298.84 9994.25 20197.49 15797.54 18397.07 4899.70 11094.37 18199.46 12999.30 107
DVP-MVScopyleft97.78 7397.65 7098.16 8099.24 5495.51 9796.74 12698.23 20095.92 13298.40 7398.28 9997.06 5099.71 10195.48 12199.52 10799.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5495.51 9796.89 11998.89 7995.92 13298.64 5198.31 9097.06 50
casdiffmvs97.50 9297.81 5596.56 19798.51 14891.04 23195.83 17699.09 3697.23 7998.33 8698.30 9497.03 5299.37 23096.58 6799.38 15599.28 115
SteuartSystems-ACMMP98.02 4497.76 6098.79 3199.43 3497.21 4397.15 10598.90 7896.58 9798.08 11697.87 15497.02 5399.76 5995.25 13799.59 8299.40 84
Skip Steuart: Steuart Systems R&D Blog.
PC_three_145287.24 30898.37 7697.44 19397.00 5496.78 36592.01 23399.25 18799.21 129
DROMVSNet97.90 6197.94 4597.79 10898.66 12995.14 12198.31 3499.66 397.57 6295.95 24397.01 23096.99 5599.82 3097.66 3399.64 6798.39 242
DVP-MVS++97.96 4797.90 4698.12 8597.75 24495.40 10399.03 798.89 7996.62 9398.62 5298.30 9496.97 5699.75 6695.70 10499.25 18799.21 129
OPU-MVS97.64 12198.01 20395.27 11396.79 12397.35 20596.97 5698.51 33691.21 25399.25 18799.14 143
RE-MVS-def97.88 5098.81 10998.05 997.55 8298.86 9097.77 4898.20 9998.07 12596.94 5895.49 11899.20 19299.26 120
APDe-MVS98.14 3498.03 4098.47 5598.72 12096.04 7698.07 5299.10 3195.96 12998.59 5798.69 6396.94 5899.81 3396.64 6399.58 8499.57 32
test_one_060199.05 9395.50 10098.87 8797.21 8098.03 12298.30 9496.93 60
GST-MVS97.82 7097.49 8998.81 2999.23 5697.25 4097.16 10498.79 11695.96 12997.53 15297.40 19696.93 6099.77 5495.04 15399.35 16499.42 81
test_241102_TWO98.83 10696.11 11998.62 5298.24 10596.92 6299.72 8795.44 12599.49 12099.49 53
LCM-MVSNet-Re97.33 10597.33 9797.32 15398.13 19593.79 17196.99 11699.65 496.74 9199.47 1398.93 4796.91 6399.84 2690.11 28399.06 21798.32 251
VPA-MVSNet98.27 2998.46 2497.70 11699.06 8993.80 17097.76 6999.00 6098.40 3099.07 3398.98 4396.89 6499.75 6697.19 5299.79 3899.55 37
ACMMPcopyleft98.05 4297.75 6298.93 2199.23 5697.60 2398.09 5198.96 7195.75 14497.91 13498.06 13096.89 6499.76 5995.32 13399.57 8799.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS98.08 3998.01 4198.29 7098.46 15896.58 5998.53 2299.69 298.07 4196.04 23997.18 21696.88 6699.86 2097.48 4099.74 4898.43 239
PMVScopyleft89.60 1796.71 14396.97 12095.95 22699.51 2497.81 1797.42 9397.49 26197.93 4595.95 24398.58 6996.88 6696.91 36289.59 29199.36 15993.12 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 5797.59 8098.92 2299.22 5997.55 2797.60 7898.84 9996.00 12797.22 17097.62 17896.87 6899.76 5995.48 12199.43 14299.46 64
CP-MVS97.92 5797.56 8398.99 1398.99 9797.82 1697.93 5898.96 7196.11 11996.89 19997.45 19296.85 6999.78 4495.19 14099.63 6999.38 88
DPE-MVScopyleft97.64 8197.35 9698.50 5298.85 10796.18 7095.21 21698.99 6395.84 13998.78 4598.08 12396.84 7099.81 3393.98 20099.57 8799.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 6797.97 4297.47 13899.19 6994.07 15996.71 13198.73 12998.66 2598.56 5998.41 8296.84 7099.69 11894.82 16199.81 3398.64 221
ACMMPR97.95 5197.62 7798.94 1899.20 6797.56 2697.59 7998.83 10696.05 12297.46 16397.63 17796.77 7299.76 5995.61 11499.46 12999.49 53
Vis-MVSNetpermissive98.27 2998.34 2898.07 8899.33 4595.21 12098.04 5399.46 897.32 7697.82 14699.11 3496.75 7399.86 2097.84 2599.36 15999.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 19195.07 19996.75 18497.67 25492.82 19794.22 26098.60 15791.61 26393.42 31992.90 34196.73 7499.70 11092.60 22697.89 28997.74 294
baseline97.44 9797.78 5996.43 20398.52 14790.75 23896.84 12099.03 5096.51 10097.86 14298.02 13496.67 7599.36 23297.09 5599.47 12699.19 133
SR-MVS98.00 4697.66 6899.01 1198.77 11697.93 1197.38 9598.83 10697.32 7698.06 11897.85 15596.65 7699.77 5495.00 15699.11 20899.32 101
tfpnnormal97.72 7797.97 4296.94 17299.26 5092.23 20897.83 6598.45 17198.25 3599.13 3098.66 6596.65 7699.69 11893.92 20299.62 7098.91 188
DeepPCF-MVS94.58 596.90 12696.43 15398.31 6797.48 26697.23 4292.56 31198.60 15792.84 24798.54 6097.40 19696.64 7898.78 31094.40 18099.41 15198.93 183
MVS_111021_LR96.82 13396.55 14497.62 12298.27 17395.34 11093.81 28198.33 19194.59 19096.56 21496.63 25496.61 7998.73 31594.80 16299.34 16798.78 207
Gipumacopyleft98.07 4198.31 2997.36 15199.76 596.28 6998.51 2399.10 3198.76 2396.79 20199.34 1796.61 7998.82 30696.38 7599.50 11696.98 316
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test117298.08 3997.76 6099.05 698.78 11498.07 797.41 9498.85 9497.57 6298.15 10697.96 14096.60 8199.76 5995.30 13499.18 19799.33 100
SR-MVS-dyc-post98.14 3497.84 5299.02 998.81 10998.05 997.55 8298.86 9097.77 4898.20 9998.07 12596.60 8199.76 5995.49 11899.20 19299.26 120
MVS_111021_HR96.73 14096.54 14697.27 15598.35 16693.66 17893.42 29198.36 18694.74 18396.58 21296.76 24796.54 8398.99 29194.87 15999.27 18599.15 140
SMA-MVScopyleft97.48 9497.11 11198.60 4698.83 10896.67 5496.74 12698.73 12991.61 26398.48 6698.36 8596.53 8499.68 12695.17 14299.54 9999.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1198.99 597.95 9799.64 1194.20 15698.67 1399.14 2699.08 1099.42 1599.23 2196.53 8499.91 1299.27 299.93 1099.73 15
mPP-MVS97.91 6097.53 8499.04 799.22 5997.87 1597.74 7198.78 12096.04 12497.10 18097.73 16996.53 8499.78 4495.16 14499.50 11699.46 64
XVS97.96 4797.63 7598.94 1899.15 7497.66 2097.77 6798.83 10697.42 7096.32 22597.64 17696.49 8799.72 8795.66 11099.37 15699.45 69
X-MVStestdata92.86 28090.83 30598.94 1899.15 7497.66 2097.77 6798.83 10697.42 7096.32 22536.50 37296.49 8799.72 8795.66 11099.37 15699.45 69
9.1496.69 13598.53 14696.02 16398.98 6693.23 22997.18 17497.46 19196.47 8999.62 15292.99 22399.32 176
UA-Net98.88 798.76 1399.22 299.11 8497.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8999.92 497.88 2399.98 299.85 3
xxxxxxxxxxxxxcwj97.24 11197.03 11897.89 10198.48 15494.71 13494.53 24999.07 4095.02 17597.83 14497.88 15296.44 9199.72 8794.59 17399.39 15399.25 124
SF-MVS97.60 8597.39 9398.22 7698.93 10295.69 8797.05 11299.10 3195.32 16197.83 14497.88 15296.44 9199.72 8794.59 17399.39 15399.25 124
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 28098.01 20388.42 27193.99 27298.21 20192.98 24195.91 24594.53 32196.39 9399.72 8795.43 12898.19 27695.64 346
xiu_mvs_v1_base95.62 18695.96 17394.60 28098.01 20388.42 27193.99 27298.21 20192.98 24195.91 24594.53 32196.39 9399.72 8795.43 12898.19 27695.64 346
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 28098.01 20388.42 27193.99 27298.21 20192.98 24195.91 24594.53 32196.39 9399.72 8795.43 12898.19 27695.64 346
ETV-MVS96.13 16995.90 17696.82 18097.76 24293.89 16595.40 19998.95 7395.87 13695.58 25991.00 36296.36 9699.72 8793.36 21498.83 24196.85 323
MP-MVScopyleft97.64 8197.18 10899.00 1299.32 4797.77 1897.49 8898.73 12996.27 11095.59 25897.75 16696.30 9799.78 4493.70 21099.48 12499.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 17596.34 15694.96 26497.90 21587.91 28394.13 26798.49 16894.41 19498.16 10497.76 16396.29 9898.68 32290.52 27699.42 14598.30 255
Fast-Effi-MVS+-dtu96.44 15796.12 16497.39 14997.18 28994.39 14695.46 19398.73 12996.03 12694.72 27594.92 31596.28 9999.69 11893.81 20597.98 28498.09 269
OMC-MVS96.48 15596.00 17097.91 10098.30 16896.01 7994.86 23698.60 15791.88 26097.18 17497.21 21596.11 10099.04 28590.49 27999.34 16798.69 218
xiu_mvs_v2_base94.22 24894.63 22392.99 31797.32 28384.84 32992.12 31997.84 23991.96 25894.17 28993.43 33296.07 10199.71 10191.27 25097.48 30894.42 355
CSCG97.40 10097.30 9897.69 11898.95 9994.83 12997.28 9898.99 6396.35 10998.13 10995.95 29195.99 10299.66 13794.36 18499.73 4998.59 227
PHI-MVS96.96 12296.53 14798.25 7497.48 26696.50 6196.76 12598.85 9493.52 21996.19 23496.85 23895.94 10399.42 20893.79 20699.43 14298.83 201
TSAR-MVS + MP.97.42 9897.23 10598.00 9599.38 4095.00 12597.63 7798.20 20493.00 24098.16 10498.06 13095.89 10499.72 8795.67 10899.10 21099.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 8797.28 10198.49 5399.16 7196.90 4896.39 14098.98 6695.05 17398.06 11898.02 13495.86 10599.56 16994.37 18199.64 6799.00 171
AllTest97.20 11396.92 12498.06 9099.08 8696.16 7197.14 10799.16 2094.35 19797.78 14798.07 12595.84 10699.12 27491.41 24799.42 14598.91 188
TestCases98.06 9099.08 8696.16 7199.16 2094.35 19797.78 14798.07 12595.84 10699.12 27491.41 24799.42 14598.91 188
APD-MVScopyleft97.00 11796.53 14798.41 5898.55 14496.31 6796.32 14698.77 12192.96 24597.44 16597.58 18295.84 10699.74 7691.96 23499.35 16499.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 34410.65 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37795.82 1090.00 3780.00 3760.00 3760.00 374
PS-MVSNAJss98.53 1998.63 1998.21 7999.68 994.82 13098.10 5099.21 1496.91 8699.75 299.45 995.82 10999.92 498.80 499.96 499.89 1
PS-MVSNAJ94.10 25494.47 23393.00 31697.35 27684.88 32891.86 32397.84 23991.96 25894.17 28992.50 34895.82 10999.71 10191.27 25097.48 30894.40 356
3Dnovator96.53 297.61 8497.64 7397.50 13397.74 24793.65 17998.49 2498.88 8596.86 8897.11 17998.55 7395.82 10999.73 8295.94 9599.42 14599.13 146
zzz-MVS98.01 4597.66 6899.06 499.44 3297.90 1295.66 18498.73 12997.69 5897.90 13597.96 14095.81 11399.82 3096.13 8299.61 7699.45 69
MTAPA98.14 3497.84 5299.06 499.44 3297.90 1297.25 9998.73 12997.69 5897.90 13597.96 14095.81 11399.82 3096.13 8299.61 7699.45 69
DP-MVS97.87 6497.89 4997.81 10798.62 13594.82 13097.13 10898.79 11698.98 1798.74 4898.49 7795.80 11599.49 18995.04 15399.44 13499.11 155
Anonymous2024052997.96 4798.04 3997.71 11498.69 12794.28 15397.86 6398.31 19498.79 2299.23 2698.86 5395.76 11699.61 15895.49 11899.36 15999.23 127
LS3D97.77 7497.50 8898.57 4896.24 31397.58 2598.45 2798.85 9498.58 2797.51 15497.94 14595.74 11799.63 14495.19 14098.97 22298.51 233
EIA-MVS96.04 17295.77 18096.85 17897.80 23092.98 19496.12 15799.16 2094.65 18693.77 30291.69 35695.68 11899.67 13194.18 18998.85 23997.91 287
CNVR-MVS96.92 12496.55 14498.03 9498.00 20795.54 9594.87 23598.17 21094.60 18896.38 22297.05 22695.67 11999.36 23295.12 15099.08 21299.19 133
CLD-MVS95.47 19495.07 19996.69 18898.27 17392.53 20291.36 32998.67 14791.22 27195.78 25294.12 32995.65 12098.98 29390.81 26299.72 5298.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 1798.76 1397.94 9898.79 11294.37 14898.84 1099.15 2499.37 399.67 699.43 1195.61 12199.72 8798.12 1699.86 2599.73 15
EGC-MVSNET83.08 33877.93 34198.53 5199.57 1697.55 2798.33 3398.57 1614.71 37410.38 37598.90 5095.60 12299.50 18795.69 10699.61 7698.55 231
Regformer-297.41 9997.24 10497.93 9997.21 28794.72 13394.85 23798.27 19597.74 5298.11 11097.50 18895.58 12399.69 11896.57 6899.31 17899.37 95
ITE_SJBPF97.85 10598.64 13096.66 5598.51 16795.63 14797.22 17097.30 21095.52 12498.55 33390.97 25798.90 23198.34 250
CS-MVS-test96.62 14996.59 13996.69 18897.88 21793.16 19097.21 10399.53 795.61 14993.72 30495.33 30695.49 12599.69 11895.37 13299.19 19697.22 310
Regformer-497.53 9197.47 9197.71 11497.35 27693.91 16495.26 21198.14 21697.97 4498.34 8297.89 15095.49 12599.71 10197.41 4299.42 14599.51 44
DeepC-MVS_fast94.34 796.74 13896.51 15097.44 14497.69 25094.15 15796.02 16398.43 17493.17 23597.30 16897.38 20295.48 12799.28 25393.74 20799.34 16798.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1598.62 2198.75 3399.51 2496.61 5798.55 1999.17 1999.05 1399.17 2998.79 5595.47 12899.89 1697.95 2199.91 1799.75 13
FMVSNet197.95 5198.08 3597.56 12599.14 8293.67 17598.23 4098.66 14997.41 7399.00 3699.19 2495.47 12899.73 8295.83 10299.76 4299.30 107
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1198.89 7998.49 2899.38 1799.14 3395.44 13099.84 2696.47 7299.80 3699.47 62
CP-MVSNet98.42 2398.46 2498.30 6899.46 3095.22 11898.27 3998.84 9999.05 1399.01 3598.65 6795.37 13199.90 1397.57 3699.91 1799.77 8
Regformer-197.27 10897.16 10997.61 12397.21 28793.86 16794.85 23798.04 23097.62 6198.03 12297.50 18895.34 13299.63 14496.52 6999.31 17899.35 98
segment_acmp95.34 132
CDPH-MVS95.45 19694.65 22097.84 10698.28 17194.96 12693.73 28398.33 19185.03 33395.44 26096.60 25595.31 13499.44 20590.01 28599.13 20499.11 155
3Dnovator+96.13 397.73 7697.59 8098.15 8398.11 19795.60 9398.04 5398.70 13998.13 3996.93 19698.45 8095.30 13599.62 15295.64 11298.96 22399.24 126
MVS_Test96.27 16296.79 13294.73 27696.94 29886.63 30696.18 15498.33 19194.94 17796.07 23898.28 9995.25 13699.26 25697.21 4997.90 28898.30 255
XVG-OURS97.12 11496.74 13398.26 7198.99 9797.45 3493.82 27999.05 4395.19 16698.32 8797.70 17295.22 13798.41 34094.27 18698.13 27998.93 183
MCST-MVS96.24 16395.80 17897.56 12598.75 11794.13 15894.66 24498.17 21090.17 28196.21 23396.10 28495.14 13899.43 20794.13 19298.85 23999.13 146
EI-MVSNet-Vis-set97.32 10697.39 9397.11 16397.36 27592.08 21595.34 20497.65 25397.74 5298.29 9298.11 12195.05 13999.68 12697.50 3999.50 11699.56 35
Regformer-397.25 11097.29 9997.11 16397.35 27692.32 20695.26 21197.62 25897.67 6098.17 10397.89 15095.05 13999.56 16997.16 5399.42 14599.46 64
EI-MVSNet-UG-set97.32 10697.40 9297.09 16597.34 28092.01 21795.33 20597.65 25397.74 5298.30 9198.14 11695.04 14199.69 11897.55 3799.52 10799.58 28
KD-MVS_self_test97.86 6698.07 3697.25 15899.22 5992.81 19897.55 8298.94 7497.10 8298.85 4198.88 5195.03 14299.67 13197.39 4499.65 6599.26 120
ZD-MVS98.43 16095.94 8098.56 16290.72 27596.66 20997.07 22495.02 14399.74 7691.08 25498.93 229
DELS-MVS96.17 16796.23 15995.99 22297.55 26390.04 24592.38 31698.52 16594.13 20596.55 21697.06 22594.99 14499.58 16295.62 11399.28 18398.37 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ab-mvs96.59 15096.59 13996.60 19298.64 13092.21 20998.35 3097.67 24994.45 19396.99 19198.79 5594.96 14599.49 18990.39 28099.07 21498.08 270
ETH3D-3000-0.196.89 12896.46 15298.16 8098.62 13595.69 8795.96 16898.98 6693.36 22497.04 18797.31 20994.93 14699.63 14492.60 22699.34 16799.17 136
MSLP-MVS++96.42 15996.71 13495.57 24197.82 22590.56 24295.71 17998.84 9994.72 18496.71 20797.39 20094.91 14798.10 35495.28 13599.02 21998.05 279
QAPM95.88 17995.57 18796.80 18197.90 21591.84 22198.18 4798.73 12988.41 29796.42 22098.13 11794.73 14899.75 6688.72 30398.94 22798.81 203
RPSCF97.87 6497.51 8698.95 1799.15 7498.43 397.56 8199.06 4196.19 11698.48 6698.70 6294.72 14999.24 25994.37 18199.33 17499.17 136
DU-MVS97.79 7297.60 7998.36 6298.73 11895.78 8395.65 18798.87 8797.57 6298.31 8997.83 15794.69 15099.85 2397.02 5899.71 5599.46 64
Baseline_NR-MVSNet97.72 7797.79 5697.50 13399.56 1793.29 18695.44 19498.86 9098.20 3898.37 7699.24 2094.69 15099.55 17395.98 9399.79 3899.65 23
TEST997.84 22295.23 11593.62 28598.39 18286.81 31393.78 30095.99 28694.68 15299.52 182
UniMVSNet (Re)97.83 6897.65 7098.35 6498.80 11195.86 8295.92 17299.04 4997.51 6798.22 9897.81 16194.68 15299.78 4497.14 5499.75 4699.41 83
agg_prior195.39 19894.60 22597.75 11197.80 23094.96 12693.39 29398.36 18687.20 30993.49 31495.97 28994.65 15499.53 17891.69 24498.86 23798.77 210
UniMVSNet_NR-MVSNet97.83 6897.65 7098.37 6198.72 12095.78 8395.66 18499.02 5298.11 4098.31 8997.69 17494.65 15499.85 2397.02 5899.71 5599.48 59
VPNet97.26 10997.49 8996.59 19399.47 2990.58 24096.27 14798.53 16497.77 4898.46 6998.41 8294.59 15699.68 12694.61 16999.29 18299.52 42
train_agg95.46 19594.66 21997.88 10397.84 22295.23 11593.62 28598.39 18287.04 31193.78 30095.99 28694.58 15799.52 18291.76 24298.90 23198.89 192
test_897.81 22695.07 12493.54 28898.38 18487.04 31193.71 30595.96 29094.58 15799.52 182
API-MVS95.09 21195.01 20395.31 25296.61 30494.02 16196.83 12197.18 27195.60 15095.79 25094.33 32694.54 15998.37 34585.70 33298.52 26593.52 359
Test By Simon94.51 160
MSDG95.33 20095.13 19695.94 22897.40 27491.85 22091.02 34098.37 18595.30 16296.31 22795.99 28694.51 16098.38 34389.59 29197.65 30297.60 301
TSAR-MVS + GP.96.47 15696.12 16497.49 13697.74 24795.23 11594.15 26496.90 28293.26 22898.04 12196.70 25094.41 16298.89 30194.77 16699.14 20098.37 244
NR-MVSNet97.96 4797.86 5198.26 7198.73 11895.54 9598.14 4898.73 12997.79 4799.42 1597.83 15794.40 16399.78 4495.91 9799.76 4299.46 64
AdaColmapbinary95.11 20994.62 22496.58 19497.33 28294.45 14594.92 23398.08 22393.15 23693.98 29895.53 30394.34 16499.10 27985.69 33398.61 26196.20 340
FC-MVSNet-test98.16 3398.37 2797.56 12599.49 2893.10 19298.35 3099.21 1498.43 2998.89 3998.83 5494.30 16599.81 3397.87 2499.91 1799.77 8
Effi-MVS+-dtu96.81 13496.09 16698.99 1396.90 30098.69 296.42 13998.09 22195.86 13795.15 26695.54 30294.26 16699.81 3394.06 19498.51 26798.47 236
mvs-test196.20 16595.50 18998.32 6596.90 30098.16 595.07 22498.09 22195.86 13793.63 30894.32 32794.26 16699.71 10194.06 19497.27 31697.07 313
ambc96.56 19798.23 17991.68 22497.88 6298.13 21898.42 7298.56 7294.22 16899.04 28594.05 19799.35 16498.95 177
test20.0396.58 15196.61 13896.48 20198.49 15291.72 22395.68 18397.69 24896.81 8998.27 9397.92 14894.18 16998.71 31790.78 26499.66 6499.00 171
HPM-MVS++copyleft96.99 11896.38 15498.81 2998.64 13097.59 2495.97 16798.20 20495.51 15495.06 26796.53 25994.10 17099.70 11094.29 18599.15 19999.13 146
testtj96.69 14496.13 16398.36 6298.46 15896.02 7896.44 13898.70 13994.26 20096.79 20197.13 21894.07 17199.75 6690.53 27598.80 24399.31 106
ETH3D cwj APD-0.1696.23 16495.61 18698.09 8797.91 21395.65 9294.94 23298.74 12791.31 26996.02 24197.08 22394.05 17299.69 11891.51 24698.94 22798.93 183
PM-MVS97.36 10497.10 11298.14 8498.91 10496.77 5196.20 15398.63 15593.82 21398.54 6098.33 8893.98 17399.05 28495.99 9299.45 13398.61 226
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20997.16 29091.96 21897.74 7198.84 9987.26 30794.36 28698.01 13693.95 17499.67 13190.70 27098.75 24897.35 309
v897.60 8598.06 3896.23 21398.71 12389.44 25597.43 9298.82 11497.29 7898.74 4899.10 3593.86 17599.68 12698.61 1099.94 899.56 35
diffmvs96.04 17296.23 15995.46 24897.35 27688.03 28293.42 29199.08 3794.09 20796.66 20996.93 23493.85 17699.29 25196.01 9198.67 25499.06 164
NCCC96.52 15395.99 17198.10 8697.81 22695.68 8995.00 23098.20 20495.39 15995.40 26296.36 27093.81 17799.45 20293.55 21398.42 26999.17 136
TAPA-MVS93.32 1294.93 21694.23 24097.04 16898.18 18594.51 14295.22 21598.73 12981.22 35096.25 23195.95 29193.80 17898.98 29389.89 28798.87 23597.62 299
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 5698.07 3697.48 13799.38 4092.95 19598.03 5599.11 2998.04 4398.62 5298.66 6593.75 17999.78 4497.23 4699.84 2999.73 15
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4398.05 4299.61 1199.52 593.72 18099.88 1898.72 999.88 2399.65 23
test_prior395.91 17795.39 19097.46 14197.79 23694.26 15493.33 29698.42 17794.21 20294.02 29596.25 27493.64 18199.34 23791.90 23698.96 22398.79 205
test_prior293.33 29694.21 20294.02 29596.25 27493.64 18191.90 23698.96 223
旧先验197.80 23093.87 16697.75 24497.04 22793.57 18398.68 25398.72 215
v1097.55 8897.97 4296.31 21098.60 13889.64 25197.44 9099.02 5296.60 9598.72 5099.16 3093.48 18499.72 8798.76 699.92 1499.58 28
v14896.58 15196.97 12095.42 24998.63 13487.57 29195.09 22197.90 23495.91 13498.24 9697.96 14093.42 18599.39 22496.04 8799.52 10799.29 114
V4297.04 11697.16 10996.68 19098.59 14091.05 23096.33 14598.36 18694.60 18897.99 12598.30 9493.32 18699.62 15297.40 4399.53 10299.38 88
new-patchmatchnet95.67 18596.58 14192.94 31997.48 26680.21 35492.96 30298.19 20994.83 18198.82 4398.79 5593.31 18799.51 18695.83 10299.04 21899.12 151
test1297.46 14197.61 25894.07 15997.78 24393.57 31293.31 18799.42 20898.78 24598.89 192
UGNet96.81 13496.56 14397.58 12496.64 30393.84 16997.75 7097.12 27496.47 10493.62 30998.88 5193.22 18999.53 17895.61 11499.69 5999.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 15496.18 16297.42 14698.25 17694.29 15094.77 24198.07 22789.81 28497.97 12998.33 8893.11 19099.08 28195.46 12499.84 2998.89 192
v114496.84 12997.08 11496.13 21998.42 16189.28 25895.41 19898.67 14794.21 20297.97 12998.31 9093.06 19199.65 13998.06 1999.62 7099.45 69
PVSNet_BlendedMVS95.02 21594.93 20695.27 25397.79 23687.40 29594.14 26698.68 14488.94 29294.51 28298.01 13693.04 19299.30 24789.77 28999.49 12099.11 155
PVSNet_Blended93.96 25893.65 25794.91 26597.79 23687.40 29591.43 32898.68 14484.50 33894.51 28294.48 32493.04 19299.30 24789.77 28998.61 26198.02 282
mvs_anonymous95.36 19996.07 16893.21 31196.29 31181.56 34994.60 24697.66 25193.30 22796.95 19598.91 4993.03 19499.38 22796.60 6597.30 31598.69 218
v119296.83 13297.06 11696.15 21898.28 17189.29 25795.36 20298.77 12193.73 21598.11 11098.34 8793.02 19599.67 13198.35 1499.58 8499.50 45
F-COLMAP95.30 20294.38 23798.05 9398.64 13096.04 7695.61 19098.66 14989.00 29193.22 32296.40 26792.90 19699.35 23587.45 32297.53 30698.77 210
WR-MVS96.90 12696.81 12997.16 16098.56 14392.20 21194.33 25398.12 21997.34 7598.20 9997.33 20792.81 19799.75 6694.79 16399.81 3399.54 38
v124096.74 13897.02 11995.91 22998.18 18588.52 27095.39 20098.88 8593.15 23698.46 6998.40 8492.80 19899.71 10198.45 1399.49 12099.49 53
MVEpermissive73.61 2286.48 33685.92 33888.18 35096.23 31585.28 32281.78 36875.79 37486.01 31882.53 37091.88 35392.74 19987.47 37371.42 37094.86 34891.78 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 18995.13 19696.80 18198.51 14893.99 16394.60 24698.69 14290.20 28095.78 25296.21 27792.73 20098.98 29390.58 27498.86 23797.42 306
CANet95.86 18095.65 18396.49 20096.41 30990.82 23594.36 25298.41 17994.94 17792.62 33596.73 24892.68 20199.71 10195.12 15099.60 8098.94 179
v192192096.72 14196.96 12295.99 22298.21 18088.79 26795.42 19698.79 11693.22 23098.19 10298.26 10492.68 20199.70 11098.34 1599.55 9699.49 53
BH-untuned94.69 22994.75 21794.52 28597.95 21287.53 29294.07 26997.01 27893.99 20997.10 18095.65 29892.65 20398.95 29887.60 31896.74 32597.09 312
LF4IMVS96.07 17095.63 18497.36 15198.19 18295.55 9495.44 19498.82 11492.29 25495.70 25696.55 25792.63 20498.69 31991.75 24399.33 17497.85 289
v2v48296.78 13697.06 11695.95 22698.57 14288.77 26895.36 20298.26 19795.18 16797.85 14398.23 10792.58 20599.63 14497.80 2799.69 5999.45 69
EI-MVSNet96.63 14896.93 12395.74 23597.26 28588.13 28095.29 20997.65 25396.99 8397.94 13298.19 11292.55 20699.58 16296.91 6199.56 9099.50 45
IterMVS-LS96.92 12497.29 9995.79 23398.51 14888.13 28095.10 21998.66 14996.99 8398.46 6998.68 6492.55 20699.74 7696.91 6199.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 10297.25 10297.74 11298.69 12794.50 14497.04 11395.61 30998.59 2698.51 6298.72 6092.54 20899.58 16296.02 8999.49 12099.12 151
MVS90.02 31389.20 32092.47 32694.71 34686.90 30395.86 17396.74 28964.72 37090.62 34692.77 34392.54 20898.39 34279.30 35895.56 34392.12 363
v14419296.69 14496.90 12696.03 22198.25 17688.92 26295.49 19298.77 12193.05 23898.09 11498.29 9892.51 21099.70 11098.11 1799.56 9099.47 62
原ACMM196.58 19498.16 18992.12 21398.15 21585.90 32193.49 31496.43 26492.47 21199.38 22787.66 31798.62 26098.23 262
VNet96.84 12996.83 12896.88 17698.06 19892.02 21696.35 14497.57 26097.70 5797.88 13897.80 16292.40 21299.54 17694.73 16898.96 22399.08 160
114514_t93.96 25893.22 26596.19 21699.06 8990.97 23395.99 16598.94 7473.88 36893.43 31896.93 23492.38 21399.37 23089.09 29899.28 18398.25 261
CPTT-MVS96.69 14496.08 16798.49 5398.89 10596.64 5697.25 9998.77 12192.89 24696.01 24297.13 21892.23 21499.67 13192.24 23199.34 16799.17 136
MSP-MVS97.45 9696.92 12499.03 899.26 5097.70 1997.66 7498.89 7995.65 14698.51 6296.46 26392.15 21599.81 3395.14 14798.58 26499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 25093.03 26797.76 11096.94 29897.44 3596.97 11797.15 27287.89 30592.00 34092.73 34592.14 21699.12 27483.92 34697.51 30796.73 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20499.28 4990.62 23995.31 20799.08 3788.40 29896.97 19498.17 11592.11 21799.78 4493.64 21199.21 19198.86 199
BH-RMVSNet94.56 23794.44 23694.91 26597.57 25987.44 29493.78 28296.26 29493.69 21796.41 22196.50 26292.10 21899.00 28985.96 33097.71 29698.31 253
新几何197.25 15898.29 16994.70 13797.73 24577.98 36194.83 27496.67 25292.08 21999.45 20288.17 31298.65 25897.61 300
testdata95.70 23898.16 18990.58 24097.72 24680.38 35395.62 25797.02 22892.06 22098.98 29389.06 30098.52 26597.54 302
YYNet194.73 22494.84 21194.41 28897.47 27085.09 32690.29 34695.85 30492.52 24997.53 15297.76 16391.97 22199.18 26593.31 21696.86 32198.95 177
Anonymous2023120695.27 20395.06 20195.88 23098.72 12089.37 25695.70 18097.85 23788.00 30396.98 19397.62 17891.95 22299.34 23789.21 29699.53 10298.94 179
MS-PatchMatch94.83 22094.91 20894.57 28396.81 30287.10 30094.23 25997.34 26688.74 29597.14 17697.11 22191.94 22398.23 35092.99 22397.92 28698.37 244
112194.26 24693.26 26397.27 15598.26 17594.73 13295.86 17397.71 24777.96 36294.53 28196.71 24991.93 22499.40 21987.71 31498.64 25997.69 297
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28797.48 26685.15 32490.28 34795.87 30392.52 24997.48 16097.76 16391.92 22599.17 26993.32 21596.80 32498.94 179
HQP_MVS96.66 14796.33 15797.68 11998.70 12594.29 15096.50 13698.75 12596.36 10796.16 23596.77 24591.91 22699.46 19892.59 22899.20 19299.28 115
plane_prior698.38 16394.37 14891.91 226
ETH3 D test640094.77 22393.87 25497.47 13898.12 19693.73 17394.56 24898.70 13985.45 32894.70 27795.93 29391.77 22899.63 14486.45 32899.14 20099.05 166
MVP-Stereo95.69 18395.28 19296.92 17398.15 19193.03 19395.64 18998.20 20490.39 27896.63 21197.73 16991.63 22999.10 27991.84 24097.31 31498.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 23593.81 25597.02 17098.19 18295.72 8593.66 28497.23 26888.17 30194.94 27295.62 30091.43 23098.57 33087.36 32397.68 29996.76 329
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23598.48 15488.76 26992.84 30397.25 26796.00 12797.59 15097.95 14491.38 23199.46 19893.16 22196.35 33298.99 174
PAPR92.22 29191.27 29795.07 26095.73 33288.81 26691.97 32297.87 23685.80 32290.91 34592.73 34591.16 23298.33 34779.48 35795.76 34198.08 270
131492.38 28892.30 28492.64 32395.42 33985.15 32495.86 17396.97 28085.40 32990.62 34693.06 33991.12 23397.80 35786.74 32695.49 34494.97 353
ppachtmachnet_test94.49 24194.84 21193.46 30596.16 31982.10 34590.59 34397.48 26390.53 27797.01 19097.59 18091.01 23499.36 23293.97 20199.18 19798.94 179
PLCcopyleft91.02 1694.05 25792.90 26997.51 13098.00 20795.12 12394.25 25798.25 19886.17 31791.48 34395.25 30791.01 23499.19 26485.02 34196.69 32698.22 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 18793.24 18892.74 30897.61 25975.17 36694.65 27896.69 25190.96 23698.66 25697.66 298
CL-MVSNet_self_test95.04 21294.79 21695.82 23297.51 26589.79 24991.14 33796.82 28593.05 23896.72 20696.40 26790.82 23799.16 27091.95 23598.66 25698.50 234
USDC94.56 23794.57 23094.55 28497.78 24086.43 30992.75 30698.65 15485.96 31996.91 19897.93 14790.82 23798.74 31490.71 26999.59 8298.47 236
PCF-MVS89.43 1892.12 29490.64 30896.57 19697.80 23093.48 18389.88 35398.45 17174.46 36796.04 23995.68 29790.71 23999.31 24473.73 36699.01 22196.91 320
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 23594.17 24495.96 22498.36 16591.23 22895.93 17197.95 23192.98 24193.42 31994.43 32590.53 24098.38 34387.60 31896.29 33398.27 259
our_test_394.20 25294.58 22893.07 31396.16 31981.20 35190.42 34596.84 28390.72 27597.14 17697.13 21890.47 24199.11 27794.04 19898.25 27598.91 188
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24997.31 28491.21 22995.08 22396.68 29181.56 34796.88 20096.41 26590.44 24299.25 25885.39 33797.67 30095.80 344
HQP2-MVS90.33 243
N_pmnet95.18 20694.23 24098.06 9097.85 21896.55 6092.49 31291.63 34689.34 28798.09 11497.41 19590.33 24399.06 28391.58 24599.31 17898.56 229
HQP-MVS95.17 20894.58 22896.92 17397.85 21892.47 20394.26 25498.43 17493.18 23292.86 32795.08 30990.33 24399.23 26190.51 27798.74 24999.05 166
CNLPA95.04 21294.47 23396.75 18497.81 22695.25 11494.12 26897.89 23594.41 19494.57 27995.69 29690.30 24698.35 34686.72 32798.76 24796.64 332
PMMVS92.39 28791.08 29996.30 21193.12 36592.81 19890.58 34495.96 30179.17 35891.85 34292.27 34990.29 24798.66 32489.85 28896.68 32797.43 305
TR-MVS92.54 28592.20 28593.57 30396.49 30786.66 30593.51 28994.73 31889.96 28394.95 27193.87 33090.24 24898.61 32781.18 35594.88 34795.45 350
MVS_030495.50 19095.05 20296.84 17996.28 31293.12 19197.00 11596.16 29595.03 17489.22 35797.70 17290.16 24999.48 19294.51 17599.34 16797.93 286
TAMVS95.49 19194.94 20497.16 16098.31 16793.41 18495.07 22496.82 28591.09 27297.51 15497.82 16089.96 25099.42 20888.42 30899.44 13498.64 221
DPM-MVS93.68 26592.77 27696.42 20497.91 21392.54 20191.17 33697.47 26484.99 33493.08 32494.74 31789.90 25199.00 28987.54 32098.09 28197.72 295
PMMVS293.66 26694.07 24692.45 32797.57 25980.67 35386.46 36296.00 29993.99 20997.10 18097.38 20289.90 25197.82 35688.76 30299.47 12698.86 199
BH-w/o92.14 29391.94 28792.73 32297.13 29185.30 32092.46 31395.64 30689.33 28894.21 28892.74 34489.60 25398.24 34981.68 35394.66 34994.66 354
Anonymous2024052197.07 11597.51 8695.76 23499.35 4388.18 27797.78 6698.40 18197.11 8198.34 8299.04 4089.58 25499.79 4098.09 1899.93 1099.30 107
UnsupCasMVSNet_bld94.72 22894.26 23996.08 22098.62 13590.54 24393.38 29498.05 22990.30 27997.02 18996.80 24489.54 25599.16 27088.44 30796.18 33498.56 229
MG-MVS94.08 25694.00 24994.32 29097.09 29285.89 31493.19 30095.96 30192.52 24994.93 27397.51 18789.54 25598.77 31187.52 32197.71 29698.31 253
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20298.48 15491.52 22695.31 20798.45 17195.76 14297.48 16097.54 18389.53 25798.69 31994.43 17794.61 35099.13 146
GBi-Net96.99 11896.80 13097.56 12597.96 20993.67 17598.23 4098.66 14995.59 15197.99 12599.19 2489.51 25899.73 8294.60 17099.44 13499.30 107
test196.99 11896.80 13097.56 12597.96 20993.67 17598.23 4098.66 14995.59 15197.99 12599.19 2489.51 25899.73 8294.60 17099.44 13499.30 107
FMVSNet296.72 14196.67 13796.87 17797.96 20991.88 21997.15 10598.06 22895.59 15198.50 6498.62 6889.51 25899.65 13994.99 15799.60 8099.07 162
pmmvs494.82 22194.19 24396.70 18797.42 27392.75 20092.09 32196.76 28786.80 31495.73 25597.22 21489.28 26198.89 30193.28 21799.14 20098.46 238
cascas91.89 29791.35 29593.51 30494.27 35285.60 31688.86 35898.61 15679.32 35792.16 33991.44 35889.22 26298.12 35390.80 26397.47 31096.82 326
DSMNet-mixed92.19 29291.83 28993.25 30996.18 31883.68 33996.27 14793.68 32776.97 36592.54 33699.18 2789.20 26398.55 33383.88 34798.60 26397.51 303
c3_l95.20 20595.32 19194.83 27296.19 31786.43 30991.83 32498.35 19093.47 22197.36 16797.26 21288.69 26499.28 25395.41 13199.36 15998.78 207
CANet_DTU94.65 23394.21 24295.96 22495.90 32589.68 25093.92 27697.83 24193.19 23190.12 35295.64 29988.52 26599.57 16893.27 21899.47 12698.62 224
EPP-MVSNet96.84 12996.58 14197.65 12099.18 7093.78 17298.68 1296.34 29397.91 4697.30 16898.06 13088.46 26699.85 2393.85 20499.40 15299.32 101
SixPastTwentyTwo97.49 9397.57 8297.26 15799.56 1792.33 20598.28 3796.97 28098.30 3499.45 1499.35 1688.43 26799.89 1698.01 2099.76 4299.54 38
miper_ehance_all_eth94.69 22994.70 21894.64 27795.77 33086.22 31191.32 33398.24 19991.67 26297.05 18696.65 25388.39 26899.22 26394.88 15898.34 27198.49 235
IS-MVSNet96.93 12396.68 13697.70 11699.25 5394.00 16298.57 1796.74 28998.36 3198.14 10897.98 13988.23 26999.71 10193.10 22299.72 5299.38 88
jason94.39 24494.04 24895.41 25198.29 16987.85 28692.74 30896.75 28885.38 33095.29 26396.15 27988.21 27099.65 13994.24 18799.34 16798.74 212
jason: jason.
IterMVS-SCA-FT95.86 18096.19 16194.85 27097.68 25185.53 31792.42 31497.63 25796.99 8398.36 7998.54 7487.94 27199.75 6697.07 5799.08 21299.27 119
SCA93.38 27393.52 25992.96 31896.24 31381.40 35093.24 29894.00 32491.58 26594.57 27996.97 23187.94 27199.42 20889.47 29397.66 30198.06 276
sss94.22 24893.72 25695.74 23597.71 24989.95 24793.84 27896.98 27988.38 29993.75 30395.74 29587.94 27198.89 30191.02 25698.10 28098.37 244
IterMVS95.42 19795.83 17794.20 29397.52 26483.78 33892.41 31597.47 26495.49 15598.06 11898.49 7787.94 27199.58 16296.02 8999.02 21999.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 25493.41 26196.18 21799.16 7190.04 24592.15 31898.68 14479.90 35596.22 23297.83 15787.92 27599.42 20889.18 29799.65 6599.08 160
VDDNet96.98 12196.84 12797.41 14799.40 3893.26 18797.94 5795.31 31599.26 798.39 7599.18 2787.85 27699.62 15295.13 14999.09 21199.35 98
pmmvs594.63 23494.34 23895.50 24597.63 25788.34 27494.02 27097.13 27387.15 31095.22 26597.15 21787.50 27799.27 25593.99 19999.26 18698.88 196
D2MVS95.18 20695.17 19595.21 25597.76 24287.76 28994.15 26497.94 23289.77 28596.99 19197.68 17587.45 27899.14 27295.03 15599.81 3398.74 212
PVSNet86.72 1991.10 30590.97 30291.49 33497.56 26178.04 35987.17 36194.60 32084.65 33692.34 33792.20 35087.37 27998.47 33785.17 34097.69 29897.96 284
Anonymous20240521196.34 16095.98 17297.43 14598.25 17693.85 16896.74 12694.41 32297.72 5598.37 7698.03 13387.15 28099.53 17894.06 19499.07 21498.92 187
MVSFormer96.14 16896.36 15595.49 24697.68 25187.81 28798.67 1399.02 5296.50 10194.48 28496.15 27986.90 28199.92 498.73 799.13 20498.74 212
lupinMVS93.77 26193.28 26295.24 25497.68 25187.81 28792.12 31996.05 29784.52 33794.48 28495.06 31186.90 28199.63 14493.62 21299.13 20498.27 259
eth_miper_zixun_eth94.89 21894.93 20694.75 27595.99 32486.12 31291.35 33098.49 16893.40 22297.12 17897.25 21386.87 28399.35 23595.08 15298.82 24298.78 207
WTY-MVS93.55 26993.00 26895.19 25697.81 22687.86 28493.89 27796.00 29989.02 29094.07 29395.44 30586.27 28499.33 24087.69 31696.82 32298.39 242
CDS-MVSNet94.88 21994.12 24597.14 16297.64 25693.57 18093.96 27597.06 27790.05 28296.30 22896.55 25786.10 28599.47 19590.10 28499.31 17898.40 240
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 25393.42 26096.23 21398.59 14090.85 23494.24 25898.85 9485.49 32592.97 32594.94 31386.01 28699.64 14291.78 24197.92 28698.20 265
miper_enhance_ethall93.14 27892.78 27594.20 29393.65 35985.29 32189.97 34997.85 23785.05 33296.15 23794.56 32085.74 28799.14 27293.74 20798.34 27198.17 268
new_pmnet92.34 28991.69 29294.32 29096.23 31589.16 26092.27 31792.88 33584.39 34095.29 26396.35 27185.66 28896.74 36684.53 34497.56 30497.05 314
alignmvs96.01 17495.52 18897.50 13397.77 24194.71 13496.07 15996.84 28397.48 6896.78 20594.28 32885.50 28999.40 21996.22 7998.73 25298.40 240
lessismore_v097.05 16799.36 4292.12 21384.07 37098.77 4798.98 4385.36 29099.74 7697.34 4599.37 15699.30 107
HY-MVS91.43 1592.58 28491.81 29094.90 26796.49 30788.87 26497.31 9694.62 31985.92 32090.50 34996.84 23985.05 29199.40 21983.77 34995.78 34096.43 337
EPNet93.72 26392.62 28097.03 16987.61 37792.25 20796.27 14791.28 34996.74 9187.65 36397.39 20085.00 29299.64 14292.14 23299.48 12499.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 22294.80 21594.85 27096.16 31986.45 30891.14 33798.20 20493.49 22097.03 18897.37 20484.97 29399.26 25695.28 13599.56 9098.83 201
Test_1112_low_res93.53 27092.86 27095.54 24498.60 13888.86 26592.75 30698.69 14282.66 34492.65 33296.92 23684.75 29499.56 16990.94 25897.76 29298.19 266
MVS-HIRNet88.40 32890.20 31382.99 35397.01 29460.04 37793.11 30185.61 36984.45 33988.72 35999.09 3684.72 29598.23 35082.52 35296.59 32990.69 368
K. test v396.44 15796.28 15896.95 17199.41 3791.53 22597.65 7590.31 35898.89 1998.93 3899.36 1484.57 29699.92 497.81 2699.56 9099.39 86
h-mvs3396.29 16195.63 18498.26 7198.50 15196.11 7496.90 11897.09 27596.58 9797.21 17298.19 11284.14 29799.78 4495.89 9896.17 33598.89 192
hse-mvs295.77 18295.09 19897.79 10897.84 22295.51 9795.66 18495.43 31496.58 9797.21 17296.16 27884.14 29799.54 17695.89 9896.92 31898.32 251
DIV-MVS_self_test94.73 22494.64 22195.01 26295.86 32687.00 30191.33 33198.08 22393.34 22597.10 18097.34 20684.02 29999.31 24495.15 14699.55 9698.72 215
cl____94.73 22494.64 22195.01 26295.85 32787.00 30191.33 33198.08 22393.34 22597.10 18097.33 20784.01 30099.30 24795.14 14799.56 9098.71 217
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 23199.12 8389.17 25997.54 8794.92 31796.50 10196.58 21297.27 21183.64 30199.48 19288.42 30899.67 6298.97 175
PVSNet_081.89 2184.49 33783.21 34088.34 34995.76 33174.97 37183.49 36592.70 33978.47 36087.94 36286.90 36983.38 30296.63 36773.44 36766.86 37393.40 360
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18393.57 36194.67 13894.21 26197.67 24980.36 35493.61 31096.60 25582.85 30397.35 36084.86 34298.78 24598.29 258
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet94.25 24794.47 23393.60 30298.14 19282.60 34397.24 10192.72 33885.08 33198.48 6698.94 4682.59 30498.76 31397.47 4199.53 10299.44 79
bset_n11_16_dypcd94.53 23993.95 25296.25 21297.56 26189.85 24888.52 35991.32 34894.90 18097.51 15496.38 26982.34 30599.78 4497.22 4799.80 3699.12 151
baseline193.14 27892.64 27994.62 27997.34 28087.20 29996.67 13393.02 33394.71 18596.51 21795.83 29481.64 30698.60 32990.00 28688.06 36598.07 272
test111194.53 23994.81 21493.72 29999.06 8981.94 34898.31 3483.87 37196.37 10698.49 6599.17 2981.49 30799.73 8296.64 6399.86 2599.49 53
CVMVSNet92.33 29092.79 27390.95 33897.26 28575.84 36895.29 20992.33 34181.86 34596.27 22998.19 11281.44 30898.46 33894.23 18898.29 27498.55 231
EPNet_dtu91.39 30390.75 30693.31 30790.48 37482.61 34294.80 23992.88 33593.39 22381.74 37194.90 31681.36 30999.11 27788.28 31098.87 23598.21 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft94.37 24594.48 23294.05 29698.95 9983.10 34098.31 3482.48 37296.20 11498.23 9799.16 3081.18 31099.66 13795.95 9499.83 3199.38 88
test_yl94.40 24294.00 24995.59 23996.95 29689.52 25394.75 24295.55 31196.18 11796.79 20196.14 28181.09 31199.18 26590.75 26597.77 29098.07 272
DCV-MVSNet94.40 24294.00 24995.59 23996.95 29689.52 25394.75 24295.55 31196.18 11796.79 20196.14 28181.09 31199.18 26590.75 26597.77 29098.07 272
MIMVSNet93.42 27192.86 27095.10 25998.17 18788.19 27698.13 4993.69 32592.07 25595.04 27098.21 11180.95 31399.03 28881.42 35498.06 28298.07 272
PAPM87.64 33485.84 33993.04 31496.54 30584.99 32788.42 36095.57 31079.52 35683.82 36893.05 34080.57 31498.41 34062.29 37292.79 35695.71 345
HyFIR lowres test93.72 26392.65 27896.91 17598.93 10291.81 22291.23 33598.52 16582.69 34396.46 21996.52 26180.38 31599.90 1390.36 28198.79 24499.03 168
FMVSNet395.26 20494.94 20496.22 21596.53 30690.06 24495.99 16597.66 25194.11 20697.99 12597.91 14980.22 31699.63 14494.60 17099.44 13498.96 176
RPMNet94.68 23194.60 22594.90 26795.44 33788.15 27896.18 15498.86 9097.43 6994.10 29198.49 7779.40 31799.76 5995.69 10695.81 33796.81 327
test_part196.77 13796.53 14797.47 13898.04 19992.92 19697.93 5898.85 9498.83 2199.30 2199.07 3879.25 31899.79 4097.59 3599.93 1099.69 20
LFMVS95.32 20194.88 20996.62 19198.03 20091.47 22797.65 7590.72 35599.11 997.89 13798.31 9079.20 31999.48 19293.91 20399.12 20798.93 183
ADS-MVSNet291.47 30290.51 31094.36 28995.51 33585.63 31595.05 22795.70 30583.46 34192.69 33096.84 23979.15 32099.41 21785.66 33490.52 36098.04 280
ADS-MVSNet90.95 30890.26 31293.04 31495.51 33582.37 34495.05 22793.41 33083.46 34192.69 33096.84 23979.15 32098.70 31885.66 33490.52 36098.04 280
MDTV_nov1_ep13_2view57.28 37894.89 23480.59 35294.02 29578.66 32285.50 33697.82 291
cl2293.25 27692.84 27294.46 28694.30 35186.00 31391.09 33996.64 29290.74 27495.79 25096.31 27278.24 32398.77 31194.15 19198.34 27198.62 224
PatchmatchNetpermissive91.98 29691.87 28892.30 32994.60 34879.71 35595.12 21893.59 32989.52 28693.61 31097.02 22877.94 32499.18 26590.84 26194.57 35298.01 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 32598.06 276
CR-MVSNet93.29 27592.79 27394.78 27495.44 33788.15 27896.18 15497.20 26984.94 33594.10 29198.57 7077.67 32699.39 22495.17 14295.81 33796.81 327
Patchmtry95.03 21494.59 22796.33 20894.83 34590.82 23596.38 14297.20 26996.59 9697.49 15798.57 7077.67 32699.38 22792.95 22599.62 7098.80 204
tpmrst90.31 31190.61 30989.41 34594.06 35672.37 37495.06 22693.69 32588.01 30292.32 33896.86 23777.45 32898.82 30691.04 25587.01 36797.04 315
sam_mvs77.38 329
patchmatchnet-post96.84 23977.36 33099.42 208
Patchmatch-RL test94.66 23294.49 23195.19 25698.54 14588.91 26392.57 31098.74 12791.46 26698.32 8797.75 16677.31 33198.81 30896.06 8499.61 7697.85 289
tpmvs90.79 30990.87 30390.57 34192.75 36976.30 36695.79 17793.64 32891.04 27391.91 34196.26 27377.19 33298.86 30589.38 29589.85 36396.56 335
test_post10.87 37576.83 33399.07 282
Patchmatch-test93.60 26893.25 26494.63 27896.14 32287.47 29396.04 16194.50 32193.57 21896.47 21896.97 23176.50 33498.61 32790.67 27198.41 27097.81 293
MDTV_nov1_ep1391.28 29694.31 35073.51 37294.80 23993.16 33286.75 31593.45 31797.40 19676.37 33598.55 33388.85 30196.43 330
EMVS89.06 32389.22 31888.61 34893.00 36677.34 36382.91 36790.92 35294.64 18792.63 33491.81 35476.30 33697.02 36183.83 34896.90 32091.48 366
test_post194.98 23110.37 37676.21 33799.04 28589.47 293
GA-MVS92.83 28192.15 28694.87 26996.97 29587.27 29890.03 34896.12 29691.83 26194.05 29494.57 31976.01 33898.97 29792.46 23097.34 31398.36 249
PatchT93.75 26293.57 25894.29 29295.05 34387.32 29796.05 16092.98 33497.54 6694.25 28798.72 6075.79 33999.24 25995.92 9695.81 33796.32 338
E-PMN89.52 32189.78 31588.73 34793.14 36477.61 36183.26 36692.02 34294.82 18293.71 30593.11 33475.31 34096.81 36385.81 33196.81 32391.77 365
DeepMVS_CXcopyleft77.17 35490.94 37385.28 32274.08 37752.51 37180.87 37288.03 36875.25 34170.63 37459.23 37384.94 36975.62 369
AUN-MVS93.95 26092.69 27797.74 11297.80 23095.38 10595.57 19195.46 31391.26 27092.64 33396.10 28474.67 34299.55 17393.72 20996.97 31798.30 255
CHOSEN 280x42089.98 31589.19 32192.37 32895.60 33481.13 35286.22 36397.09 27581.44 34987.44 36493.15 33373.99 34399.47 19588.69 30499.07 21496.52 336
thres20091.00 30790.42 31192.77 32197.47 27083.98 33794.01 27191.18 35195.12 17095.44 26091.21 36073.93 34499.31 24477.76 36397.63 30395.01 352
test-LLR89.97 31689.90 31490.16 34294.24 35374.98 36989.89 35089.06 36192.02 25689.97 35390.77 36373.92 34598.57 33091.88 23897.36 31196.92 318
test0.0.03 190.11 31289.21 31992.83 32093.89 35786.87 30491.74 32588.74 36392.02 25694.71 27691.14 36173.92 34594.48 36983.75 35092.94 35597.16 311
tpm cat188.01 33187.33 33290.05 34494.48 34976.28 36794.47 25194.35 32373.84 36989.26 35695.61 30173.64 34798.30 34884.13 34586.20 36895.57 349
tfpn200view991.55 30191.00 30093.21 31198.02 20184.35 33495.70 18090.79 35396.26 11195.90 24892.13 35173.62 34899.42 20878.85 36097.74 29395.85 342
thres40091.68 30091.00 30093.71 30098.02 20184.35 33495.70 18090.79 35396.26 11195.90 24892.13 35173.62 34899.42 20878.85 36097.74 29397.36 307
test_method66.88 33966.13 34269.11 35562.68 37825.73 38049.76 36996.04 29814.32 37364.27 37491.69 35673.45 35088.05 37276.06 36566.94 37293.54 358
thres100view90091.76 29991.26 29893.26 30898.21 18084.50 33296.39 14090.39 35696.87 8796.33 22493.08 33873.44 35199.42 20878.85 36097.74 29395.85 342
thres600view792.03 29591.43 29393.82 29798.19 18284.61 33196.27 14790.39 35696.81 8996.37 22393.11 33473.44 35199.49 18980.32 35697.95 28597.36 307
RRT_MVS94.90 21794.07 24697.39 14993.18 36293.21 18995.26 21197.49 26193.94 21198.25 9497.85 15572.96 35399.84 2697.90 2299.78 4199.14 143
MVSTER94.21 25093.93 25395.05 26195.83 32886.46 30795.18 21797.65 25392.41 25397.94 13298.00 13872.39 35499.58 16296.36 7699.56 9099.12 151
JIA-IIPM91.79 29890.69 30795.11 25893.80 35890.98 23294.16 26391.78 34596.38 10590.30 35199.30 1872.02 35598.90 29988.28 31090.17 36295.45 350
tpm91.08 30690.85 30491.75 33395.33 34078.09 35895.03 22991.27 35088.75 29493.53 31397.40 19671.24 35699.30 24791.25 25293.87 35397.87 288
baseline289.65 32088.44 32793.25 30995.62 33382.71 34193.82 27985.94 36888.89 29387.35 36592.54 34771.23 35799.33 24086.01 32994.60 35197.72 295
CostFormer89.75 31989.25 31791.26 33794.69 34778.00 36095.32 20691.98 34381.50 34890.55 34896.96 23371.06 35898.89 30188.59 30692.63 35796.87 321
FPMVS89.92 31788.63 32593.82 29798.37 16496.94 4791.58 32693.34 33188.00 30390.32 35097.10 22270.87 35991.13 37171.91 36996.16 33693.39 361
EPMVS89.26 32288.55 32691.39 33592.36 37079.11 35695.65 18779.86 37388.60 29693.12 32396.53 25970.73 36098.10 35490.75 26589.32 36496.98 316
tmp_tt57.23 34062.50 34341.44 35634.77 37949.21 37983.93 36460.22 38015.31 37271.11 37379.37 37170.09 36144.86 37564.76 37182.93 37130.25 371
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24796.41 30989.15 26191.54 32790.23 35989.07 28986.78 36792.84 34269.39 36299.44 20594.16 19096.61 32897.82 291
dp88.08 33088.05 32888.16 35192.85 36768.81 37694.17 26292.88 33585.47 32691.38 34496.14 28168.87 36398.81 30886.88 32583.80 37096.87 321
tpm288.47 32787.69 33190.79 33994.98 34477.34 36395.09 22191.83 34477.51 36489.40 35596.41 26567.83 36498.73 31583.58 35192.60 35896.29 339
pmmvs390.00 31488.90 32493.32 30694.20 35585.34 31991.25 33492.56 34078.59 35993.82 29995.17 30867.36 36598.69 31989.08 29998.03 28395.92 341
thisisatest051590.43 31089.18 32294.17 29597.07 29385.44 31889.75 35487.58 36488.28 30093.69 30791.72 35565.27 36699.58 16290.59 27398.67 25497.50 304
tttt051793.31 27492.56 28195.57 24198.71 12387.86 28497.44 9087.17 36695.79 14197.47 16296.84 23964.12 36799.81 3396.20 8099.32 17699.02 170
thisisatest053092.71 28391.76 29195.56 24398.42 16188.23 27596.03 16287.35 36594.04 20896.56 21495.47 30464.03 36899.77 5494.78 16599.11 20898.68 220
FMVSNet593.39 27292.35 28396.50 19995.83 32890.81 23797.31 9698.27 19592.74 24896.27 22998.28 9962.23 36999.67 13190.86 26099.36 15999.03 168
DWT-MVSNet_test87.92 33286.77 33691.39 33593.18 36278.62 35795.10 21991.42 34785.58 32488.00 36188.73 36760.60 37098.90 29990.60 27287.70 36696.65 331
IB-MVS85.98 2088.63 32686.95 33593.68 30195.12 34284.82 33090.85 34190.17 36087.55 30688.48 36091.34 35958.01 37199.59 16087.24 32493.80 35496.63 334
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_test8_iter0592.46 28692.52 28292.29 33095.33 34077.43 36295.73 17898.55 16394.41 19497.46 16397.72 17157.44 37299.74 7696.92 6099.14 20099.69 20
gg-mvs-nofinetune88.28 32986.96 33492.23 33192.84 36884.44 33398.19 4674.60 37599.08 1087.01 36699.47 856.93 37398.23 35078.91 35995.61 34294.01 357
KD-MVS_2432*160088.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26793.11 33456.58 37498.63 32585.19 33895.07 34596.85 323
miper_refine_blended88.93 32487.74 32992.49 32488.04 37581.99 34689.63 35595.62 30791.35 26795.06 26793.11 33456.58 37498.63 32585.19 33895.07 34596.85 323
GG-mvs-BLEND90.60 34091.00 37284.21 33698.23 4072.63 37882.76 36984.11 37056.14 37696.79 36472.20 36892.09 35990.78 367
TESTMET0.1,187.20 33586.57 33789.07 34693.62 36072.84 37389.89 35087.01 36785.46 32789.12 35890.20 36556.00 37797.72 35890.91 25996.92 31896.64 332
test250689.86 31889.16 32391.97 33298.95 9976.83 36598.54 2061.07 37996.20 11497.07 18599.16 3055.19 37899.69 11896.43 7499.83 3199.38 88
test-mter87.92 33287.17 33390.16 34294.24 35374.98 36989.89 35089.06 36186.44 31689.97 35390.77 36354.96 37998.57 33091.88 23897.36 31196.92 318
test12312.59 34215.49 3453.87 3576.07 3802.55 38190.75 3422.59 3822.52 3755.20 37713.02 3744.96 3801.85 3775.20 3749.09 3747.23 372
testmvs12.33 34315.23 3463.64 3585.77 3812.23 38288.99 3573.62 3812.30 3765.29 37613.09 3734.52 3811.95 3765.16 3758.32 3756.75 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.91 34510.55 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37894.94 3130.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
MSC_two_6792asdad98.22 7697.75 24495.34 11098.16 21399.75 6695.87 10099.51 11299.57 32
No_MVS98.22 7697.75 24495.34 11098.16 21399.75 6695.87 10099.51 11299.57 32
eth-test20.00 382
eth-test0.00 382
IU-MVS99.22 5995.40 10398.14 21685.77 32398.36 7995.23 13999.51 11299.49 53
save fliter98.48 15494.71 13494.53 24998.41 17995.02 175
test_0728_SECOND98.25 7499.23 5695.49 10196.74 12698.89 7999.75 6695.48 12199.52 10799.53 41
GSMVS98.06 276
test_part299.03 9596.07 7598.08 116
MTGPAbinary98.73 129
MTMP96.55 13474.60 375
gm-plane-assit91.79 37171.40 37581.67 34690.11 36698.99 29184.86 342
test9_res91.29 24998.89 23499.00 171
agg_prior290.34 28298.90 23199.10 159
agg_prior97.80 23094.96 12698.36 18693.49 31499.53 178
test_prior495.38 10593.61 287
test_prior97.46 14197.79 23694.26 15498.42 17799.34 23798.79 205
旧先验293.35 29577.95 36395.77 25498.67 32390.74 268
新几何293.43 290
无先验93.20 29997.91 23380.78 35199.40 21987.71 31497.94 285
原ACMM292.82 304
testdata299.46 19887.84 313
testdata192.77 30593.78 214
plane_prior798.70 12594.67 138
plane_prior598.75 12599.46 19892.59 22899.20 19299.28 115
plane_prior496.77 245
plane_prior394.51 14295.29 16396.16 235
plane_prior296.50 13696.36 107
plane_prior198.49 152
plane_prior94.29 15095.42 19694.31 19998.93 229
n20.00 383
nn0.00 383
door-mid98.17 210
test1198.08 223
door97.81 242
HQP5-MVS92.47 203
HQP-NCC97.85 21894.26 25493.18 23292.86 327
ACMP_Plane97.85 21894.26 25493.18 23292.86 327
BP-MVS90.51 277
HQP4-MVS92.87 32699.23 26199.06 164
HQP3-MVS98.43 17498.74 249
NP-MVS98.14 19293.72 17495.08 309
ACMMP++_ref99.52 107
ACMMP++99.55 96