This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4799.81 296.38 5898.87 799.30 899.01 1699.63 999.66 399.27 299.68 11097.75 2999.89 2099.62 24
UniMVSNet_ETH3D99.12 399.28 398.65 4199.77 396.34 6099.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4399.92 1299.77 8
XVG-OURS-SEG-HR97.38 9597.07 10798.30 6599.01 9097.41 3194.66 22799.02 4995.20 14798.15 9797.52 17398.83 498.43 31794.87 14096.41 31099.07 148
ACMH93.61 998.44 2298.76 1397.51 11899.43 3293.54 16598.23 3299.05 4097.40 6799.37 1899.08 3498.79 599.47 17597.74 3099.71 4999.50 42
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 598.94 698.75 3199.69 896.48 5698.54 1899.22 1096.23 9999.71 499.48 798.77 699.93 298.89 399.95 599.84 5
LTVRE_ROB96.88 199.18 299.34 298.72 3699.71 796.99 4199.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 16398.58 1299.95 599.66 21
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TransMVSNet (Re)98.38 2598.67 1797.51 11899.51 2293.39 16998.20 3798.87 8198.23 3499.48 1299.27 1998.47 899.55 15596.52 6399.53 9399.60 25
pm-mvs198.47 2198.67 1797.86 9599.52 2194.58 12598.28 2999.00 5797.57 5799.27 2399.22 2298.32 999.50 16897.09 5099.75 4199.50 42
jajsoiax98.77 998.79 1298.74 3399.66 1096.48 5698.45 2399.12 2595.83 12499.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
ACMH+93.58 1098.23 3298.31 2997.98 8899.39 3795.22 10497.55 7299.20 1398.21 3599.25 2498.51 7098.21 1199.40 19994.79 14499.72 4699.32 94
HPM-MVS_fast98.32 2798.13 3398.88 2299.54 1997.48 2798.35 2699.03 4795.88 11997.88 12798.22 10298.15 1299.74 6396.50 6599.62 6299.42 77
wuyk23d93.25 26195.20 18387.40 33196.07 30095.38 9497.04 9794.97 29495.33 14299.70 598.11 11298.14 1391.94 34777.76 33999.68 5574.89 346
ACMM93.33 1198.05 3997.79 5098.85 2399.15 7097.55 2396.68 11598.83 9595.21 14698.36 7498.13 10898.13 1499.62 13496.04 7999.54 9099.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 3797.83 4898.92 2099.42 3497.46 2898.57 1599.05 4095.43 14097.41 15397.50 17597.98 1599.79 3895.58 10299.57 7899.50 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 16096.50 14194.80 25699.26 4787.69 27095.96 15398.58 14995.08 15398.02 11396.25 25597.92 1697.60 33788.68 28398.74 23199.11 141
LPG-MVS_test97.94 4997.67 6098.74 3399.15 7097.02 3997.09 9499.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
LGP-MVS_train98.74 3399.15 7097.02 3999.02 4995.15 15098.34 7798.23 9997.91 1799.70 9694.41 15999.73 4399.50 42
abl_698.42 2398.19 3299.09 399.16 6798.10 597.73 6399.11 2697.76 4698.62 5098.27 9597.88 1999.80 3795.67 9399.50 10599.38 85
SED-MVS97.94 4997.90 4398.07 8099.22 5695.35 9696.79 10698.83 9596.11 10399.08 3098.24 9797.87 2099.72 7295.44 10899.51 10399.14 130
test_241102_ONE99.22 5695.35 9698.83 9596.04 10899.08 3098.13 10897.87 2099.33 221
SD-MVS97.37 9697.70 5796.35 19498.14 17795.13 10796.54 11898.92 7195.94 11599.19 2798.08 11497.74 2295.06 34595.24 11999.54 9098.87 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 6497.70 5798.16 7398.78 10495.72 7796.23 13699.02 4993.92 19598.62 5098.99 3797.69 2399.62 13496.18 7399.87 2299.15 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 1898.62 2198.32 6299.22 5695.66 8397.90 5299.08 3498.31 3199.02 3398.74 5397.68 2499.61 14097.77 2899.85 2599.70 18
ANet_high98.31 2898.94 696.41 19399.33 4289.64 23297.92 5199.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3499.98 299.77 8
canonicalmvs97.23 10697.21 9997.30 14197.65 23494.39 13097.84 5599.05 4097.42 6396.68 19193.85 30997.63 2699.33 22196.29 7098.47 24998.18 246
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5499.07 8495.87 7396.73 11399.05 4098.67 2298.84 3998.45 7497.58 2799.88 1896.45 6799.86 2399.54 35
cdsmvs_eth3d_5k24.22 32132.30 3230.00 3370.00 3560.00 3570.00 34898.10 2050.00 3520.00 35395.06 28997.54 280.00 3540.00 3510.00 3510.00 350
ACMP92.54 1397.47 8897.10 10498.55 4899.04 8896.70 4896.24 13598.89 7493.71 19997.97 11897.75 15497.44 2999.63 12693.22 20099.70 5299.32 94
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1198.74 1698.69 3899.63 1296.30 6298.67 1199.02 4996.50 8899.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
TDRefinement98.90 598.86 899.02 899.54 1998.06 699.34 499.44 698.85 1999.00 3599.20 2397.42 3199.59 14297.21 4499.76 3799.40 80
anonymousdsp98.72 1498.63 1998.99 1199.62 1397.29 3498.65 1499.19 1595.62 13199.35 1999.37 1297.38 3299.90 1398.59 1199.91 1599.77 8
PS-CasMVS98.73 1198.85 1098.39 5799.55 1795.47 9298.49 2099.13 2499.22 899.22 2698.96 4097.35 3399.92 497.79 2799.93 1099.79 7
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4299.21 6297.35 3297.96 4899.16 1798.34 3098.78 4298.52 6997.32 3499.45 18294.08 17499.67 5699.13 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 7297.79 5097.40 13599.06 8593.52 16695.96 15398.97 6694.55 17498.82 4098.76 5297.31 3599.29 23297.20 4699.44 12399.38 85
XXY-MVS97.54 8297.70 5797.07 15299.46 2892.21 19197.22 8899.00 5794.93 16198.58 5598.92 4497.31 3599.41 19794.44 15799.43 13099.59 26
PEN-MVS98.75 1098.85 1098.44 5399.58 1495.67 8298.45 2399.15 2199.33 599.30 2199.00 3697.27 3799.92 497.64 3299.92 1299.75 13
DTE-MVSNet98.79 898.86 898.59 4599.55 1796.12 6798.48 2299.10 2899.36 499.29 2299.06 3597.27 3799.93 297.71 3199.91 1599.70 18
ZNCC-MVS97.92 5397.62 7098.83 2499.32 4497.24 3697.45 7698.84 8795.76 12696.93 18097.43 18097.26 3999.79 3896.06 7699.53 9399.45 65
MP-MVS-pluss97.69 7297.36 8798.70 3799.50 2596.84 4495.38 18498.99 6092.45 23498.11 10098.31 8497.25 4099.77 4896.60 5999.62 6299.48 55
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 5797.63 6898.67 3999.35 4196.84 4496.36 12798.79 10595.07 15497.88 12798.35 8097.24 4199.72 7296.05 7899.58 7599.45 65
Effi-MVS+96.19 15696.01 15996.71 17297.43 24992.19 19496.12 14199.10 2895.45 13893.33 29994.71 29697.23 4299.56 15193.21 20197.54 28698.37 225
PGM-MVS97.88 5897.52 7898.96 1499.20 6397.62 1897.09 9499.06 3895.45 13897.55 13997.94 13397.11 4399.78 4094.77 14799.46 11899.48 55
test_0728_THIRD96.62 8398.40 6998.28 9197.10 4499.71 8795.70 9199.62 6299.58 27
APD-MVS_3200maxsize98.13 3697.90 4398.79 2998.79 10297.31 3397.55 7298.92 7197.72 5098.25 8898.13 10897.10 4499.75 5695.44 10899.24 17699.32 94
OPM-MVS97.54 8297.25 9498.41 5599.11 8096.61 5295.24 19798.46 15894.58 17398.10 10398.07 11697.09 4699.39 20495.16 12599.44 12399.21 118
HFP-MVS97.94 4997.64 6698.83 2499.15 7097.50 2597.59 6998.84 8796.05 10697.49 14497.54 17097.07 4799.70 9695.61 9999.46 11899.30 100
#test#97.62 7697.22 9898.83 2499.15 7097.50 2596.81 10598.84 8794.25 18397.49 14497.54 17097.07 4799.70 9694.37 16299.46 11899.30 100
MSP-MVS97.78 6797.65 6398.16 7399.24 5195.51 8996.74 10998.23 18795.92 11698.40 6998.28 9197.06 4999.71 8795.48 10499.52 9899.26 112
test072699.24 5195.51 8996.89 10298.89 7495.92 11698.64 4998.31 8497.06 49
casdiffmvs97.50 8597.81 4996.56 18498.51 13691.04 21395.83 16199.09 3397.23 7298.33 8098.30 8897.03 5199.37 21196.58 6199.38 14399.28 107
SteuartSystems-ACMMP98.02 4197.76 5498.79 2999.43 3297.21 3897.15 9098.90 7396.58 8698.08 10697.87 14297.02 5299.76 5295.25 11899.59 7399.40 80
Skip Steuart: Steuart Systems R&D Blog.
OPU-MVS97.64 10998.01 18795.27 9996.79 10697.35 19196.97 5398.51 31491.21 23299.25 17599.14 130
APDe-MVS98.14 3498.03 3998.47 5298.72 10996.04 6998.07 4499.10 2895.96 11398.59 5498.69 5796.94 5499.81 3196.64 5899.58 7599.57 31
GST-MVS97.82 6497.49 8198.81 2799.23 5397.25 3597.16 8998.79 10595.96 11397.53 14097.40 18296.93 5599.77 4895.04 13499.35 15299.42 77
test_241102_TWO98.83 9596.11 10398.62 5098.24 9796.92 5699.72 7295.44 10899.49 10999.49 50
LCM-MVSNet-Re97.33 9997.33 8997.32 14098.13 18093.79 15596.99 10099.65 296.74 8199.47 1398.93 4396.91 5799.84 2590.11 26199.06 19998.32 232
VPA-MVSNet98.27 2998.46 2497.70 10499.06 8593.80 15497.76 5999.00 5798.40 2899.07 3298.98 3896.89 5899.75 5697.19 4799.79 3399.55 34
ACMMPcopyleft98.05 3997.75 5598.93 1999.23 5397.60 1998.09 4398.96 6795.75 12897.91 12398.06 11996.89 5899.76 5295.32 11599.57 7899.43 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PMVScopyleft89.60 1796.71 13596.97 11295.95 21299.51 2297.81 1397.42 8097.49 24697.93 4295.95 22498.58 6396.88 6096.91 34089.59 26999.36 14793.12 338
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 5397.59 7398.92 2099.22 5697.55 2397.60 6898.84 8796.00 11197.22 15797.62 16696.87 6199.76 5295.48 10499.43 13099.46 60
CP-MVS97.92 5397.56 7698.99 1198.99 9197.82 1297.93 5098.96 6796.11 10396.89 18397.45 17996.85 6299.78 4095.19 12199.63 6199.38 85
DPE-MVS97.64 7497.35 8898.50 4998.85 9996.18 6495.21 19998.99 6095.84 12398.78 4298.08 11496.84 6399.81 3193.98 18199.57 7899.52 39
test_040297.84 6197.97 4097.47 12699.19 6594.07 14396.71 11498.73 11898.66 2398.56 5698.41 7696.84 6399.69 10494.82 14299.81 2998.64 206
ACMMPR97.95 4797.62 7098.94 1699.20 6397.56 2297.59 6998.83 9596.05 10697.46 15097.63 16596.77 6599.76 5295.61 9999.46 11899.49 50
Vis-MVSNetpermissive98.27 2998.34 2898.07 8099.33 4295.21 10698.04 4599.46 597.32 6997.82 13599.11 3196.75 6699.86 2097.84 2499.36 14799.15 127
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 18195.07 18896.75 17097.67 23392.82 18094.22 24398.60 14691.61 24593.42 29792.90 31796.73 6799.70 9692.60 20797.89 27097.74 273
baseline97.44 9097.78 5396.43 19098.52 13590.75 22196.84 10399.03 4796.51 8797.86 13198.02 12396.67 6899.36 21397.09 5099.47 11599.19 120
SR-MVS98.00 4397.66 6199.01 998.77 10597.93 797.38 8198.83 9597.32 6998.06 10897.85 14396.65 6999.77 4895.00 13799.11 19099.32 94
tfpnnormal97.72 7097.97 4096.94 15899.26 4792.23 19097.83 5698.45 15998.25 3399.13 2998.66 5996.65 6999.69 10493.92 18399.62 6298.91 174
DeepPCF-MVS94.58 596.90 11996.43 14398.31 6497.48 24397.23 3792.56 29498.60 14692.84 22998.54 5797.40 18296.64 7198.78 29094.40 16199.41 13998.93 169
MVS_111021_LR96.82 12696.55 13597.62 11098.27 15895.34 9893.81 26498.33 17894.59 17296.56 19696.63 23796.61 7298.73 29594.80 14399.34 15598.78 192
Gipumacopyleft98.07 3898.31 2997.36 13899.76 596.28 6398.51 1999.10 2898.76 2196.79 18599.34 1796.61 7298.82 28696.38 6899.50 10596.98 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_111021_HR96.73 13296.54 13797.27 14298.35 15193.66 16293.42 27498.36 17394.74 16596.58 19496.76 23096.54 7498.99 27194.87 14099.27 17399.15 127
SMA-MVS97.48 8797.11 10398.60 4498.83 10096.67 4996.74 10998.73 11891.61 24598.48 6298.36 7996.53 7599.68 11095.17 12399.54 9099.45 65
v7n98.73 1198.99 597.95 8999.64 1194.20 14098.67 1199.14 2399.08 1099.42 1599.23 2196.53 7599.91 1299.27 299.93 1099.73 15
mPP-MVS97.91 5697.53 7799.04 699.22 5697.87 1197.74 6198.78 10996.04 10897.10 16597.73 15796.53 7599.78 4095.16 12599.50 10599.46 60
XVS97.96 4497.63 6898.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20797.64 16496.49 7899.72 7295.66 9599.37 14499.45 65
X-MVStestdata92.86 26590.83 28998.94 1699.15 7097.66 1697.77 5798.83 9597.42 6396.32 20736.50 34896.49 7899.72 7295.66 9599.37 14499.45 65
9.1496.69 12798.53 13496.02 14798.98 6393.23 21297.18 15997.46 17896.47 8099.62 13492.99 20499.32 164
UA-Net98.88 798.76 1399.22 299.11 8097.89 1099.47 399.32 799.08 1097.87 13099.67 296.47 8099.92 497.88 2299.98 299.85 3
xxxxxxxxxxxxxcwj97.24 10597.03 11097.89 9398.48 14194.71 11994.53 23299.07 3795.02 15797.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
SF-MVS97.60 7897.39 8598.22 7198.93 9495.69 7997.05 9699.10 2895.32 14397.83 13397.88 14096.44 8299.72 7294.59 15499.39 14199.25 113
xiu_mvs_v1_base_debu95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
xiu_mvs_v1_base_debi95.62 17695.96 16394.60 26498.01 18788.42 25293.99 25598.21 18892.98 22395.91 22594.53 29996.39 8499.72 7295.43 11198.19 25795.64 323
ETV-MVS96.13 15995.90 16696.82 16697.76 22493.89 14995.40 18298.95 6995.87 12095.58 23991.00 33796.36 8799.72 7293.36 19498.83 22396.85 302
testing_297.43 9197.71 5696.60 17898.91 9690.85 21696.01 14998.54 15194.78 16498.78 4298.96 4096.35 8899.54 15797.25 4199.82 2899.40 80
MP-MVScopyleft97.64 7497.18 10099.00 1099.32 4497.77 1497.49 7598.73 11896.27 9695.59 23897.75 15496.30 8999.78 4093.70 19099.48 11399.45 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 16596.34 14694.96 24897.90 19987.91 26394.13 25098.49 15694.41 17698.16 9597.76 15196.29 9098.68 30290.52 25499.42 13398.30 235
Fast-Effi-MVS+-dtu96.44 14896.12 15497.39 13697.18 26694.39 13095.46 17698.73 11896.03 11094.72 25394.92 29396.28 9199.69 10493.81 18697.98 26598.09 248
OMC-MVS96.48 14696.00 16097.91 9298.30 15396.01 7294.86 21998.60 14691.88 24297.18 15997.21 20196.11 9299.04 26590.49 25799.34 15598.69 203
xiu_mvs_v2_base94.22 23394.63 21092.99 29997.32 26084.84 30992.12 30297.84 22491.96 24094.17 26793.43 31096.07 9399.71 8791.27 22997.48 28994.42 332
CS-MVS95.86 17095.59 17696.69 17497.85 20193.14 17496.42 12299.25 994.17 18793.56 29090.76 34096.05 9499.72 7293.28 19798.91 21297.21 289
CSCG97.40 9497.30 9097.69 10698.95 9394.83 11497.28 8498.99 6096.35 9598.13 9995.95 27095.99 9599.66 12094.36 16599.73 4398.59 212
PHI-MVS96.96 11596.53 13898.25 6997.48 24396.50 5596.76 10898.85 8493.52 20296.19 21696.85 22195.94 9699.42 18893.79 18799.43 13098.83 186
TSAR-MVS + MP.97.42 9297.23 9798.00 8799.38 3895.00 11097.63 6798.20 19193.00 22298.16 9598.06 11995.89 9799.72 7295.67 9399.10 19299.28 107
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 8097.28 9398.49 5099.16 6796.90 4396.39 12498.98 6395.05 15598.06 10898.02 12395.86 9899.56 15194.37 16299.64 6099.00 157
AllTest97.20 10796.92 11698.06 8299.08 8296.16 6597.14 9299.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
TestCases98.06 8299.08 8296.16 6599.16 1794.35 17997.78 13698.07 11695.84 9999.12 25491.41 22699.42 13398.91 174
APD-MVScopyleft97.00 11096.53 13898.41 5598.55 13296.31 6196.32 13098.77 11092.96 22797.44 15297.58 16995.84 9999.74 6391.96 21499.35 15299.19 120
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 32410.65 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35395.82 1020.00 3540.00 3510.00 3510.00 350
PS-MVSNAJss98.53 1998.63 1998.21 7299.68 994.82 11598.10 4299.21 1196.91 7699.75 299.45 995.82 10299.92 498.80 499.96 499.89 1
PS-MVSNAJ94.10 24094.47 21893.00 29897.35 25384.88 30891.86 30697.84 22491.96 24094.17 26792.50 32495.82 10299.71 8791.27 22997.48 28994.40 333
3Dnovator96.53 297.61 7797.64 6697.50 12197.74 22693.65 16398.49 2098.88 7996.86 7897.11 16498.55 6795.82 10299.73 6895.94 8699.42 13399.13 133
zzz-MVS98.01 4297.66 6199.06 499.44 3097.90 895.66 16998.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
MTAPA98.14 3497.84 4799.06 499.44 3097.90 897.25 8598.73 11897.69 5397.90 12497.96 12995.81 10699.82 2996.13 7499.61 6899.45 65
DP-MVS97.87 5997.89 4597.81 9898.62 12394.82 11597.13 9398.79 10598.98 1798.74 4698.49 7195.80 10899.49 16995.04 13499.44 12399.11 141
Anonymous2024052997.96 4498.04 3897.71 10298.69 11694.28 13797.86 5498.31 18198.79 2099.23 2598.86 4795.76 10999.61 14095.49 10399.36 14799.23 116
LS3D97.77 6897.50 8098.57 4696.24 29097.58 2198.45 2398.85 8498.58 2597.51 14297.94 13395.74 11099.63 12695.19 12198.97 20498.51 217
EIA-MVS96.04 16295.77 17096.85 16497.80 21392.98 17896.12 14199.16 1794.65 16893.77 28091.69 33295.68 11199.67 11594.18 17098.85 22197.91 266
CNVR-MVS96.92 11796.55 13598.03 8698.00 19195.54 8794.87 21898.17 19794.60 17096.38 20497.05 21095.67 11299.36 21395.12 13199.08 19499.19 120
CLD-MVS95.47 18495.07 18896.69 17498.27 15892.53 18491.36 31298.67 13691.22 25095.78 23294.12 30795.65 11398.98 27390.81 24099.72 4698.57 213
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 1798.76 1397.94 9098.79 10294.37 13298.84 899.15 2199.37 399.67 699.43 1195.61 11499.72 7298.12 1699.86 2399.73 15
Regformer-297.41 9397.24 9697.93 9197.21 26494.72 11894.85 22098.27 18297.74 4798.11 10097.50 17595.58 11599.69 10496.57 6299.31 16699.37 90
ITE_SJBPF97.85 9698.64 11896.66 5098.51 15595.63 13097.22 15797.30 19695.52 11698.55 31190.97 23598.90 21398.34 231
Regformer-497.53 8497.47 8397.71 10297.35 25393.91 14895.26 19498.14 20197.97 4198.34 7797.89 13895.49 11799.71 8797.41 3899.42 13399.51 41
DeepC-MVS_fast94.34 796.74 13096.51 14097.44 13197.69 22994.15 14196.02 14798.43 16293.17 21897.30 15597.38 18895.48 11899.28 23493.74 18899.34 15598.88 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1598.62 2198.75 3199.51 2296.61 5298.55 1799.17 1699.05 1399.17 2898.79 4995.47 11999.89 1697.95 2099.91 1599.75 13
FMVSNet197.95 4798.08 3597.56 11399.14 7893.67 15998.23 3298.66 13897.41 6699.00 3599.19 2495.47 11999.73 6895.83 8999.76 3799.30 100
MIMVSNet198.51 2098.45 2698.67 3999.72 696.71 4798.76 998.89 7498.49 2699.38 1799.14 3095.44 12199.84 2596.47 6699.80 3299.47 58
CP-MVSNet98.42 2398.46 2498.30 6599.46 2895.22 10498.27 3198.84 8799.05 1399.01 3498.65 6195.37 12299.90 1397.57 3399.91 1599.77 8
Regformer-197.27 10297.16 10197.61 11197.21 26493.86 15194.85 22098.04 21597.62 5698.03 11297.50 17595.34 12399.63 12696.52 6399.31 16699.35 92
segment_acmp95.34 123
CDPH-MVS95.45 18694.65 20797.84 9798.28 15694.96 11193.73 26698.33 17885.03 31095.44 24096.60 23895.31 12599.44 18590.01 26399.13 18699.11 141
3Dnovator+96.13 397.73 6997.59 7398.15 7698.11 18295.60 8598.04 4598.70 12898.13 3796.93 18098.45 7495.30 12699.62 13495.64 9798.96 20599.24 115
MVS_Test96.27 15296.79 12494.73 26096.94 27586.63 28696.18 13898.33 17894.94 15996.07 22098.28 9195.25 12799.26 23797.21 4497.90 26998.30 235
XVG-OURS97.12 10896.74 12598.26 6798.99 9197.45 2993.82 26299.05 4095.19 14898.32 8197.70 16095.22 12898.41 31894.27 16798.13 26098.93 169
MCST-MVS96.24 15395.80 16897.56 11398.75 10694.13 14294.66 22798.17 19790.17 25996.21 21596.10 26495.14 12999.43 18794.13 17398.85 22199.13 133
EI-MVSNet-Vis-set97.32 10097.39 8597.11 14997.36 25292.08 19795.34 18797.65 23897.74 4798.29 8698.11 11295.05 13099.68 11097.50 3699.50 10599.56 32
Regformer-397.25 10497.29 9197.11 14997.35 25392.32 18895.26 19497.62 24397.67 5598.17 9497.89 13895.05 13099.56 15197.16 4899.42 13399.46 60
EI-MVSNet-UG-set97.32 10097.40 8497.09 15197.34 25792.01 19995.33 18897.65 23897.74 4798.30 8598.14 10795.04 13299.69 10497.55 3499.52 9899.58 27
DELS-MVS96.17 15796.23 14995.99 20897.55 24190.04 22892.38 29998.52 15394.13 18896.55 19897.06 20994.99 13399.58 14495.62 9899.28 17198.37 225
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ab-mvs96.59 14196.59 13196.60 17898.64 11892.21 19198.35 2697.67 23494.45 17596.99 17598.79 4994.96 13499.49 16990.39 25899.07 19698.08 249
ETH3D-3000-0.196.89 12196.46 14298.16 7398.62 12395.69 7995.96 15398.98 6393.36 20797.04 17197.31 19594.93 13599.63 12692.60 20799.34 15599.17 123
MSLP-MVS++96.42 15096.71 12695.57 22597.82 20890.56 22595.71 16498.84 8794.72 16696.71 19097.39 18694.91 13698.10 33295.28 11699.02 20198.05 258
QAPM95.88 16995.57 17796.80 16797.90 19991.84 20398.18 3998.73 11888.41 27596.42 20298.13 10894.73 13799.75 5688.72 28198.94 20998.81 188
RPSCF97.87 5997.51 7998.95 1599.15 7098.43 397.56 7199.06 3896.19 10098.48 6298.70 5694.72 13899.24 24094.37 16299.33 16299.17 123
DU-MVS97.79 6697.60 7298.36 5998.73 10795.78 7595.65 17198.87 8197.57 5798.31 8397.83 14594.69 13999.85 2297.02 5399.71 4999.46 60
Baseline_NR-MVSNet97.72 7097.79 5097.50 12199.56 1593.29 17095.44 17798.86 8398.20 3698.37 7299.24 2094.69 13999.55 15595.98 8599.79 3399.65 22
TEST997.84 20695.23 10193.62 26898.39 16986.81 29093.78 27895.99 26594.68 14199.52 163
UniMVSNet (Re)97.83 6297.65 6398.35 6198.80 10195.86 7495.92 15799.04 4697.51 6098.22 9197.81 14994.68 14199.78 4097.14 4999.75 4199.41 79
agg_prior195.39 18894.60 21297.75 10097.80 21394.96 11193.39 27698.36 17387.20 28693.49 29295.97 26894.65 14399.53 15991.69 22398.86 21998.77 195
UniMVSNet_NR-MVSNet97.83 6297.65 6398.37 5898.72 10995.78 7595.66 16999.02 4998.11 3898.31 8397.69 16294.65 14399.85 2297.02 5399.71 4999.48 55
VPNet97.26 10397.49 8196.59 18099.47 2790.58 22396.27 13198.53 15297.77 4598.46 6598.41 7694.59 14599.68 11094.61 15099.29 17099.52 39
train_agg95.46 18594.66 20697.88 9497.84 20695.23 10193.62 26898.39 16987.04 28893.78 27895.99 26594.58 14699.52 16391.76 22198.90 21398.89 178
test_897.81 20995.07 10993.54 27198.38 17187.04 28893.71 28295.96 26994.58 14699.52 163
API-MVS95.09 20195.01 19295.31 23696.61 28194.02 14596.83 10497.18 25695.60 13295.79 23094.33 30494.54 14898.37 32385.70 31098.52 24693.52 335
Test By Simon94.51 149
MSDG95.33 19095.13 18695.94 21497.40 25191.85 20291.02 32298.37 17295.30 14496.31 20995.99 26594.51 14998.38 32189.59 26997.65 28397.60 280
TSAR-MVS + GP.96.47 14796.12 15497.49 12497.74 22695.23 10194.15 24796.90 26693.26 21198.04 11196.70 23394.41 15198.89 28194.77 14799.14 18298.37 225
NR-MVSNet97.96 4497.86 4698.26 6798.73 10795.54 8798.14 4098.73 11897.79 4499.42 1597.83 14594.40 15299.78 4095.91 8899.76 3799.46 60
AdaColmapbinary95.11 19994.62 21196.58 18197.33 25994.45 12994.92 21698.08 20893.15 21993.98 27695.53 28294.34 15399.10 25985.69 31198.61 24296.20 317
FC-MVSNet-test98.16 3398.37 2797.56 11399.49 2693.10 17698.35 2699.21 1198.43 2798.89 3898.83 4894.30 15499.81 3197.87 2399.91 1599.77 8
Effi-MVS+-dtu96.81 12796.09 15698.99 1196.90 27798.69 296.42 12298.09 20695.86 12195.15 24695.54 28194.26 15599.81 3194.06 17598.51 24898.47 219
mvs-test196.20 15595.50 17998.32 6296.90 27798.16 495.07 20798.09 20695.86 12193.63 28594.32 30594.26 15599.71 8794.06 17597.27 29797.07 292
ambc96.56 18498.23 16491.68 20697.88 5398.13 20398.42 6898.56 6694.22 15799.04 26594.05 17899.35 15298.95 163
test20.0396.58 14296.61 13096.48 18898.49 13991.72 20595.68 16897.69 23396.81 7998.27 8797.92 13694.18 15898.71 29790.78 24299.66 5899.00 157
HPM-MVS++copyleft96.99 11196.38 14498.81 2798.64 11897.59 2095.97 15298.20 19195.51 13695.06 24796.53 24294.10 15999.70 9694.29 16699.15 18199.13 133
testtj96.69 13696.13 15398.36 5998.46 14596.02 7196.44 12198.70 12894.26 18296.79 18597.13 20394.07 16099.75 5690.53 25398.80 22599.31 99
ETH3D cwj APD-0.1696.23 15495.61 17598.09 7997.91 19795.65 8494.94 21598.74 11691.31 24996.02 22297.08 20894.05 16199.69 10491.51 22598.94 20998.93 169
PM-MVS97.36 9897.10 10498.14 7798.91 9696.77 4696.20 13798.63 14493.82 19698.54 5798.33 8293.98 16299.05 26495.99 8499.45 12298.61 211
OpenMVScopyleft94.22 895.48 18395.20 18396.32 19697.16 26791.96 20097.74 6198.84 8787.26 28594.36 26498.01 12593.95 16399.67 11590.70 24898.75 23097.35 288
v897.60 7898.06 3796.23 19998.71 11289.44 23697.43 7998.82 10397.29 7198.74 4699.10 3293.86 16499.68 11098.61 1099.94 899.56 32
diffmvs96.04 16296.23 14995.46 23297.35 25388.03 26293.42 27499.08 3494.09 19096.66 19296.93 21793.85 16599.29 23296.01 8398.67 23699.06 150
NCCC96.52 14495.99 16198.10 7897.81 20995.68 8195.00 21398.20 19195.39 14195.40 24296.36 25193.81 16699.45 18293.55 19398.42 25099.17 123
TAPA-MVS93.32 1294.93 20594.23 22597.04 15498.18 17094.51 12695.22 19898.73 11881.22 32796.25 21395.95 27093.80 16798.98 27389.89 26598.87 21797.62 278
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 5298.07 3697.48 12599.38 3892.95 17998.03 4799.11 2698.04 4098.62 5098.66 5993.75 16899.78 4097.23 4299.84 2699.73 15
OurMVSNet-221017-098.61 1698.61 2398.63 4399.77 396.35 5999.17 699.05 4098.05 3999.61 1199.52 593.72 16999.88 1898.72 999.88 2199.65 22
test_prior395.91 16795.39 18097.46 12897.79 21894.26 13893.33 27998.42 16594.21 18494.02 27396.25 25593.64 17099.34 21891.90 21598.96 20598.79 190
test_prior293.33 27994.21 18494.02 27396.25 25593.64 17091.90 21598.96 205
旧先验197.80 21393.87 15097.75 22997.04 21193.57 17298.68 23598.72 200
v1097.55 8197.97 4096.31 19798.60 12689.64 23297.44 7799.02 4996.60 8498.72 4899.16 2993.48 17399.72 7298.76 699.92 1299.58 27
v14896.58 14296.97 11295.42 23398.63 12287.57 27195.09 20497.90 21995.91 11898.24 9097.96 12993.42 17499.39 20496.04 7999.52 9899.29 106
V4297.04 10997.16 10196.68 17698.59 12891.05 21296.33 12998.36 17394.60 17097.99 11498.30 8893.32 17599.62 13497.40 3999.53 9399.38 85
new-patchmatchnet95.67 17596.58 13292.94 30197.48 24380.21 33092.96 28598.19 19694.83 16298.82 4098.79 4993.31 17699.51 16795.83 8999.04 20099.12 138
test1297.46 12897.61 23794.07 14397.78 22893.57 28993.31 17699.42 18898.78 22798.89 178
UGNet96.81 12796.56 13497.58 11296.64 28093.84 15397.75 6097.12 25996.47 9193.62 28698.88 4693.22 17899.53 15995.61 9999.69 5399.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 14596.18 15297.42 13398.25 16194.29 13494.77 22498.07 21289.81 26297.97 11898.33 8293.11 17999.08 26195.46 10799.84 2698.89 178
v114496.84 12297.08 10696.13 20598.42 14689.28 23995.41 18198.67 13694.21 18497.97 11898.31 8493.06 18099.65 12198.06 1899.62 6299.45 65
PVSNet_BlendedMVS95.02 20494.93 19595.27 23797.79 21887.40 27594.14 24998.68 13388.94 27094.51 26098.01 12593.04 18199.30 22889.77 26799.49 10999.11 141
PVSNet_Blended93.96 24493.65 24294.91 24997.79 21887.40 27591.43 31198.68 13384.50 31594.51 26094.48 30293.04 18199.30 22889.77 26798.61 24298.02 261
mvs_anonymous95.36 18996.07 15893.21 29396.29 28881.56 32594.60 22997.66 23693.30 21096.95 17998.91 4593.03 18399.38 20896.60 5997.30 29698.69 203
v119296.83 12597.06 10896.15 20498.28 15689.29 23895.36 18598.77 11093.73 19898.11 10098.34 8193.02 18499.67 11598.35 1499.58 7599.50 42
F-COLMAP95.30 19294.38 22298.05 8598.64 11896.04 6995.61 17498.66 13889.00 26993.22 30096.40 25092.90 18599.35 21687.45 30097.53 28798.77 195
WR-MVS96.90 11996.81 12197.16 14698.56 13192.20 19394.33 23698.12 20497.34 6898.20 9297.33 19392.81 18699.75 5694.79 14499.81 2999.54 35
v124096.74 13097.02 11195.91 21598.18 17088.52 25195.39 18398.88 7993.15 21998.46 6598.40 7892.80 18799.71 8798.45 1399.49 10999.49 50
MVEpermissive73.61 2286.48 31885.92 31988.18 32996.23 29285.28 30281.78 34775.79 35086.01 29582.53 34791.88 32992.74 18887.47 34971.42 34594.86 32491.78 340
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 17995.13 18696.80 16798.51 13693.99 14794.60 22998.69 13190.20 25895.78 23296.21 25892.73 18998.98 27390.58 25298.86 21997.42 285
CANet95.86 17095.65 17396.49 18796.41 28690.82 21894.36 23598.41 16794.94 15992.62 31296.73 23192.68 19099.71 8795.12 13199.60 7198.94 165
v192192096.72 13396.96 11495.99 20898.21 16588.79 24895.42 17998.79 10593.22 21398.19 9398.26 9692.68 19099.70 9698.34 1599.55 8799.49 50
BH-untuned94.69 21894.75 20494.52 26997.95 19687.53 27294.07 25297.01 26293.99 19297.10 16595.65 27792.65 19298.95 27887.60 29696.74 30497.09 291
LF4IMVS96.07 16095.63 17497.36 13898.19 16795.55 8695.44 17798.82 10392.29 23695.70 23696.55 24092.63 19398.69 29991.75 22299.33 16297.85 268
v2v48296.78 12997.06 10895.95 21298.57 13088.77 24995.36 18598.26 18495.18 14997.85 13298.23 9992.58 19499.63 12697.80 2699.69 5399.45 65
EI-MVSNet96.63 14096.93 11595.74 21997.26 26288.13 26095.29 19297.65 23896.99 7397.94 12198.19 10492.55 19599.58 14496.91 5699.56 8199.50 42
IterMVS-LS96.92 11797.29 9195.79 21898.51 13688.13 26095.10 20298.66 13896.99 7398.46 6598.68 5892.55 19599.74 6396.91 5699.79 3399.50 42
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 9697.25 9497.74 10198.69 11694.50 12897.04 9795.61 28998.59 2498.51 5998.72 5492.54 19799.58 14496.02 8199.49 10999.12 138
MVS90.02 29889.20 30492.47 30694.71 32386.90 28395.86 15896.74 27264.72 34790.62 32392.77 31992.54 19798.39 32079.30 33495.56 32192.12 339
v14419296.69 13696.90 11896.03 20798.25 16188.92 24395.49 17598.77 11093.05 22198.09 10498.29 9092.51 19999.70 9698.11 1799.56 8199.47 58
原ACMM196.58 18198.16 17492.12 19598.15 20085.90 29893.49 29296.43 24792.47 20099.38 20887.66 29598.62 24198.23 241
VNet96.84 12296.83 12096.88 16298.06 18392.02 19896.35 12897.57 24597.70 5297.88 12797.80 15092.40 20199.54 15794.73 14998.96 20599.08 146
114514_t93.96 24493.22 25096.19 20299.06 8590.97 21595.99 15098.94 7073.88 34593.43 29696.93 21792.38 20299.37 21189.09 27699.28 17198.25 240
CPTT-MVS96.69 13696.08 15798.49 5098.89 9896.64 5197.25 8598.77 11092.89 22896.01 22397.13 20392.23 20399.67 11592.24 21299.34 15599.17 123
DVP-MVS97.45 8996.92 11699.03 799.26 4797.70 1597.66 6498.89 7495.65 12998.51 5996.46 24692.15 20499.81 3195.14 12898.58 24599.58 27
MAR-MVS94.21 23693.03 25297.76 9996.94 27597.44 3096.97 10197.15 25787.89 28392.00 31792.73 32192.14 20599.12 25483.92 32297.51 28896.73 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 16695.80 16896.42 19199.28 4690.62 22295.31 19099.08 3488.40 27696.97 17898.17 10692.11 20699.78 4093.64 19199.21 17798.86 184
BH-RMVSNet94.56 22594.44 22194.91 24997.57 23887.44 27493.78 26596.26 27793.69 20096.41 20396.50 24592.10 20799.00 26985.96 30897.71 27798.31 233
新几何197.25 14598.29 15494.70 12297.73 23077.98 33894.83 25296.67 23592.08 20899.45 18288.17 29098.65 23997.61 279
testdata95.70 22298.16 17490.58 22397.72 23180.38 33095.62 23797.02 21292.06 20998.98 27389.06 27898.52 24697.54 281
YYNet194.73 21394.84 20094.41 27297.47 24785.09 30690.29 32895.85 28692.52 23197.53 14097.76 15191.97 21099.18 24693.31 19696.86 30098.95 163
Anonymous2023120695.27 19395.06 19095.88 21698.72 10989.37 23795.70 16597.85 22288.00 28196.98 17797.62 16691.95 21199.34 21889.21 27499.53 9398.94 165
MS-PatchMatch94.83 20994.91 19794.57 26796.81 27987.10 28094.23 24297.34 25188.74 27397.14 16197.11 20691.94 21298.23 32892.99 20497.92 26798.37 225
112194.26 23193.26 24897.27 14298.26 16094.73 11795.86 15897.71 23277.96 33994.53 25996.71 23291.93 21399.40 19987.71 29298.64 24097.69 276
MDA-MVSNet_test_wron94.73 21394.83 20294.42 27197.48 24385.15 30490.28 32995.87 28592.52 23197.48 14797.76 15191.92 21499.17 25093.32 19596.80 30398.94 165
HQP_MVS96.66 13996.33 14797.68 10798.70 11494.29 13496.50 11998.75 11496.36 9396.16 21796.77 22891.91 21599.46 17892.59 20999.20 17899.28 107
plane_prior698.38 14894.37 13291.91 215
ETH3 D test640094.77 21293.87 23997.47 12698.12 18193.73 15794.56 23198.70 12885.45 30594.70 25595.93 27291.77 21799.63 12686.45 30699.14 18299.05 152
MVP-Stereo95.69 17395.28 18296.92 15998.15 17693.03 17795.64 17398.20 19190.39 25696.63 19397.73 15791.63 21899.10 25991.84 21997.31 29598.63 208
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 22393.81 24097.02 15698.19 16795.72 7793.66 26797.23 25388.17 27994.94 25095.62 27991.43 21998.57 30887.36 30197.68 28096.76 306
MDA-MVSNet-bldmvs95.69 17395.67 17295.74 21998.48 14188.76 25092.84 28697.25 25296.00 11197.59 13897.95 13291.38 22099.46 17893.16 20296.35 31198.99 160
PAPR92.22 27691.27 28195.07 24495.73 30988.81 24791.97 30597.87 22185.80 29990.91 32292.73 32191.16 22198.33 32579.48 33395.76 31998.08 249
131492.38 27392.30 26892.64 30595.42 31685.15 30495.86 15896.97 26485.40 30690.62 32393.06 31591.12 22297.80 33586.74 30495.49 32294.97 330
ppachtmachnet_test94.49 22794.84 20093.46 28796.16 29682.10 32490.59 32597.48 24890.53 25597.01 17497.59 16891.01 22399.36 21393.97 18299.18 18098.94 165
PLCcopyleft91.02 1694.05 24392.90 25497.51 11898.00 19195.12 10894.25 24098.25 18586.17 29491.48 32095.25 28591.01 22399.19 24585.02 31796.69 30598.22 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 17293.24 17292.74 29197.61 24475.17 34394.65 25696.69 23490.96 22598.66 23897.66 277
USDC94.56 22594.57 21694.55 26897.78 22286.43 28992.75 28998.65 14385.96 29696.91 18297.93 13590.82 22698.74 29490.71 24799.59 7398.47 219
PCF-MVS89.43 1892.12 27990.64 29296.57 18397.80 21393.48 16789.88 33598.45 15974.46 34496.04 22195.68 27690.71 22799.31 22573.73 34199.01 20396.91 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 22394.17 22995.96 21098.36 15091.23 21095.93 15697.95 21692.98 22393.42 29794.43 30390.53 22898.38 32187.60 29696.29 31298.27 238
our_test_394.20 23894.58 21493.07 29596.16 29681.20 32790.42 32796.84 26790.72 25497.14 16197.13 20390.47 22999.11 25794.04 17998.25 25698.91 174
OpenMVS_ROBcopyleft91.80 1493.64 25293.05 25195.42 23397.31 26191.21 21195.08 20696.68 27481.56 32496.88 18496.41 24890.44 23099.25 23985.39 31597.67 28195.80 321
HQP2-MVS90.33 231
N_pmnet95.18 19694.23 22598.06 8297.85 20196.55 5492.49 29591.63 32589.34 26598.09 10497.41 18190.33 23199.06 26391.58 22499.31 16698.56 214
HQP-MVS95.17 19894.58 21496.92 15997.85 20192.47 18594.26 23798.43 16293.18 21592.86 30595.08 28790.33 23199.23 24290.51 25598.74 23199.05 152
CNLPA95.04 20294.47 21896.75 17097.81 20995.25 10094.12 25197.89 22094.41 17694.57 25795.69 27590.30 23498.35 32486.72 30598.76 22996.64 309
PMMVS92.39 27291.08 28396.30 19893.12 34292.81 18190.58 32695.96 28379.17 33591.85 31992.27 32590.29 23598.66 30489.85 26696.68 30697.43 284
TR-MVS92.54 27092.20 26993.57 28596.49 28486.66 28593.51 27294.73 29689.96 26194.95 24993.87 30890.24 23698.61 30581.18 33194.88 32395.45 327
MVS_030495.50 18095.05 19196.84 16596.28 28993.12 17597.00 9996.16 27895.03 15689.22 33497.70 16090.16 23799.48 17294.51 15699.34 15597.93 265
TAMVS95.49 18194.94 19397.16 14698.31 15293.41 16895.07 20796.82 26991.09 25197.51 14297.82 14889.96 23899.42 18888.42 28699.44 12398.64 206
DPM-MVS93.68 25092.77 26196.42 19197.91 19792.54 18391.17 31997.47 24984.99 31193.08 30294.74 29589.90 23999.00 26987.54 29898.09 26297.72 274
PMMVS293.66 25194.07 23192.45 30797.57 23880.67 32986.46 34196.00 28193.99 19297.10 16597.38 18889.90 23997.82 33488.76 28099.47 11598.86 184
BH-w/o92.14 27891.94 27192.73 30497.13 26885.30 30092.46 29695.64 28889.33 26694.21 26692.74 32089.60 24198.24 32781.68 32994.66 32594.66 331
UnsupCasMVSNet_bld94.72 21794.26 22496.08 20698.62 12390.54 22693.38 27798.05 21490.30 25797.02 17396.80 22789.54 24299.16 25188.44 28596.18 31398.56 214
MG-MVS94.08 24294.00 23594.32 27497.09 26985.89 29493.19 28395.96 28392.52 23194.93 25197.51 17489.54 24298.77 29187.52 29997.71 27798.31 233
UnsupCasMVSNet_eth95.91 16795.73 17196.44 18998.48 14191.52 20895.31 19098.45 15995.76 12697.48 14797.54 17089.53 24498.69 29994.43 15894.61 32699.13 133
GBi-Net96.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
test196.99 11196.80 12297.56 11397.96 19393.67 15998.23 3298.66 13895.59 13397.99 11499.19 2489.51 24599.73 6894.60 15199.44 12399.30 100
FMVSNet296.72 13396.67 12996.87 16397.96 19391.88 20197.15 9098.06 21395.59 13398.50 6198.62 6289.51 24599.65 12194.99 13899.60 7199.07 148
pmmvs494.82 21094.19 22896.70 17397.42 25092.75 18292.09 30496.76 27086.80 29195.73 23597.22 20089.28 24898.89 28193.28 19799.14 18298.46 221
cascas91.89 28291.35 27993.51 28694.27 32985.60 29688.86 33898.61 14579.32 33492.16 31691.44 33389.22 24998.12 33190.80 24197.47 29196.82 303
DSMNet-mixed92.19 27791.83 27393.25 29196.18 29583.68 31996.27 13193.68 30676.97 34292.54 31399.18 2789.20 25098.55 31183.88 32398.60 24497.51 282
cl_fuxian95.20 19595.32 18194.83 25596.19 29486.43 28991.83 30798.35 17793.47 20497.36 15497.26 19888.69 25199.28 23495.41 11499.36 14798.78 192
CANet_DTU94.65 22194.21 22795.96 21095.90 30289.68 23193.92 25997.83 22693.19 21490.12 32995.64 27888.52 25299.57 15093.27 19999.47 11598.62 209
EPP-MVSNet96.84 12296.58 13297.65 10899.18 6693.78 15698.68 1096.34 27697.91 4397.30 15598.06 11988.46 25399.85 2293.85 18599.40 14099.32 94
SixPastTwentyTwo97.49 8697.57 7597.26 14499.56 1592.33 18798.28 2996.97 26498.30 3299.45 1499.35 1688.43 25499.89 1698.01 1999.76 3799.54 35
miper_ehance_all_eth94.69 21894.70 20594.64 26195.77 30786.22 29191.32 31698.24 18691.67 24497.05 17096.65 23688.39 25599.22 24494.88 13998.34 25298.49 218
IS-MVSNet96.93 11696.68 12897.70 10499.25 5094.00 14698.57 1596.74 27298.36 2998.14 9897.98 12888.23 25699.71 8793.10 20399.72 4699.38 85
jason94.39 23094.04 23395.41 23598.29 15487.85 26692.74 29196.75 27185.38 30795.29 24396.15 25988.21 25799.65 12194.24 16899.34 15598.74 197
jason: jason.
IterMVS-SCA-FT95.86 17096.19 15194.85 25397.68 23085.53 29792.42 29797.63 24296.99 7398.36 7498.54 6887.94 25899.75 5697.07 5299.08 19499.27 111
SCA93.38 25893.52 24492.96 30096.24 29081.40 32693.24 28194.00 30291.58 24794.57 25796.97 21487.94 25899.42 18889.47 27197.66 28298.06 255
sss94.22 23393.72 24195.74 21997.71 22889.95 23093.84 26196.98 26388.38 27793.75 28195.74 27487.94 25898.89 28191.02 23498.10 26198.37 225
IterMVS95.42 18795.83 16794.20 27797.52 24283.78 31892.41 29897.47 24995.49 13798.06 10898.49 7187.94 25899.58 14496.02 8199.02 20199.23 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 24093.41 24696.18 20399.16 6790.04 22892.15 30198.68 13379.90 33296.22 21497.83 14587.92 26299.42 18889.18 27599.65 5999.08 146
VDDNet96.98 11496.84 11997.41 13499.40 3693.26 17197.94 4995.31 29399.26 798.39 7199.18 2787.85 26399.62 13495.13 13099.09 19399.35 92
pmmvs594.63 22294.34 22395.50 22997.63 23688.34 25594.02 25397.13 25887.15 28795.22 24597.15 20287.50 26499.27 23693.99 18099.26 17498.88 181
D2MVS95.18 19695.17 18595.21 23997.76 22487.76 26994.15 24797.94 21789.77 26396.99 17597.68 16387.45 26599.14 25295.03 13699.81 2998.74 197
PVSNet86.72 1991.10 29090.97 28691.49 31397.56 24078.04 33587.17 34094.60 29884.65 31392.34 31492.20 32687.37 26698.47 31585.17 31697.69 27997.96 263
Anonymous20240521196.34 15195.98 16297.43 13298.25 16193.85 15296.74 10994.41 30097.72 5098.37 7298.03 12287.15 26799.53 15994.06 17599.07 19698.92 173
MVSFormer96.14 15896.36 14595.49 23097.68 23087.81 26798.67 1199.02 4996.50 8894.48 26296.15 25986.90 26899.92 498.73 799.13 18698.74 197
lupinMVS93.77 24693.28 24795.24 23897.68 23087.81 26792.12 30296.05 28084.52 31494.48 26295.06 28986.90 26899.63 12693.62 19299.13 18698.27 238
eth_miper_zixun_eth94.89 20794.93 19594.75 25995.99 30186.12 29291.35 31398.49 15693.40 20597.12 16397.25 19986.87 27099.35 21695.08 13398.82 22498.78 192
WTY-MVS93.55 25493.00 25395.19 24097.81 20987.86 26493.89 26096.00 28189.02 26894.07 27195.44 28486.27 27199.33 22187.69 29496.82 30198.39 224
CDS-MVSNet94.88 20894.12 23097.14 14897.64 23593.57 16493.96 25897.06 26190.05 26096.30 21096.55 24086.10 27299.47 17590.10 26299.31 16698.40 222
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 23993.42 24596.23 19998.59 12890.85 21694.24 24198.85 8485.49 30292.97 30394.94 29186.01 27399.64 12491.78 22097.92 26798.20 244
miper_enhance_ethall93.14 26392.78 26094.20 27793.65 33685.29 30189.97 33197.85 22285.05 30996.15 21994.56 29885.74 27499.14 25293.74 18898.34 25298.17 247
new_pmnet92.34 27491.69 27694.32 27496.23 29289.16 24192.27 30092.88 31484.39 31795.29 24396.35 25285.66 27596.74 34384.53 32097.56 28597.05 293
alignmvs96.01 16495.52 17897.50 12197.77 22394.71 11996.07 14396.84 26797.48 6196.78 18994.28 30685.50 27699.40 19996.22 7198.73 23498.40 222
lessismore_v097.05 15399.36 4092.12 19584.07 34898.77 4598.98 3885.36 27799.74 6397.34 4099.37 14499.30 100
HY-MVS91.43 1592.58 26991.81 27494.90 25196.49 28488.87 24597.31 8294.62 29785.92 29790.50 32696.84 22285.05 27899.40 19983.77 32595.78 31896.43 314
EPNet93.72 24892.62 26497.03 15587.61 35292.25 18996.27 13191.28 32796.74 8187.65 34097.39 18685.00 27999.64 12492.14 21399.48 11399.20 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 21194.80 20394.85 25396.16 29686.45 28891.14 32098.20 19193.49 20397.03 17297.37 19084.97 28099.26 23795.28 11699.56 8198.83 186
Test_1112_low_res93.53 25592.86 25595.54 22898.60 12688.86 24692.75 28998.69 13182.66 32192.65 31096.92 21984.75 28199.56 15190.94 23697.76 27398.19 245
MVS-HIRNet88.40 31090.20 29782.99 33297.01 27160.04 35293.11 28485.61 34784.45 31688.72 33699.09 3384.72 28298.23 32882.52 32896.59 30890.69 344
K. test v396.44 14896.28 14896.95 15799.41 3591.53 20797.65 6590.31 33698.89 1898.93 3799.36 1484.57 28399.92 497.81 2599.56 8199.39 83
cl-mvsnet194.73 21394.64 20895.01 24695.86 30387.00 28191.33 31498.08 20893.34 20897.10 16597.34 19284.02 28499.31 22595.15 12799.55 8798.72 200
cl-mvsnet_94.73 21394.64 20895.01 24695.85 30487.00 28191.33 31498.08 20893.34 20897.10 16597.33 19384.01 28599.30 22895.14 12899.56 8198.71 202
Vis-MVSNet (Re-imp)95.11 19994.85 19995.87 21799.12 7989.17 24097.54 7494.92 29596.50 8896.58 19497.27 19783.64 28699.48 17288.42 28699.67 5698.97 161
PVSNet_081.89 2184.49 31983.21 32188.34 32895.76 30874.97 34683.49 34492.70 31878.47 33787.94 33986.90 34583.38 28796.63 34473.44 34266.86 34893.40 336
CMPMVSbinary73.10 2392.74 26791.39 27896.77 16993.57 33894.67 12394.21 24497.67 23480.36 33193.61 28796.60 23882.85 28897.35 33884.86 31898.78 22798.29 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EU-MVSNet94.25 23294.47 21893.60 28498.14 17782.60 32297.24 8792.72 31785.08 30898.48 6298.94 4282.59 28998.76 29397.47 3799.53 9399.44 75
baseline193.14 26392.64 26394.62 26397.34 25787.20 27996.67 11693.02 31294.71 16796.51 19995.83 27381.64 29098.60 30790.00 26488.06 34198.07 251
CVMVSNet92.33 27592.79 25890.95 31797.26 26275.84 34395.29 19292.33 32081.86 32296.27 21198.19 10481.44 29198.46 31694.23 16998.29 25598.55 216
EPNet_dtu91.39 28890.75 29093.31 28990.48 35182.61 32194.80 22292.88 31493.39 20681.74 34894.90 29481.36 29299.11 25788.28 28898.87 21798.21 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
DCV-MVSNet94.40 22894.00 23595.59 22396.95 27389.52 23494.75 22595.55 29196.18 10196.79 18596.14 26181.09 29399.18 24690.75 24397.77 27198.07 251
MIMVSNet93.42 25692.86 25595.10 24398.17 17288.19 25798.13 4193.69 30492.07 23795.04 24898.21 10380.95 29599.03 26881.42 33098.06 26398.07 251
PAPM87.64 31685.84 32093.04 29696.54 28284.99 30788.42 33995.57 29079.52 33383.82 34593.05 31680.57 29698.41 31862.29 34792.79 33295.71 322
HyFIR lowres test93.72 24892.65 26296.91 16198.93 9491.81 20491.23 31898.52 15382.69 32096.46 20196.52 24480.38 29799.90 1390.36 25998.79 22699.03 154
FMVSNet395.26 19494.94 19396.22 20196.53 28390.06 22795.99 15097.66 23694.11 18997.99 11497.91 13780.22 29899.63 12694.60 15199.44 12398.96 162
RPMNet94.22 23394.03 23494.78 25795.44 31488.15 25896.18 13893.73 30397.43 6294.10 26998.49 7179.40 29999.39 20495.69 9295.81 31596.81 304
LFMVS95.32 19194.88 19896.62 17798.03 18491.47 20997.65 6590.72 33399.11 997.89 12698.31 8479.20 30099.48 17293.91 18499.12 18998.93 169
ADS-MVSNet291.47 28790.51 29494.36 27395.51 31285.63 29595.05 21095.70 28783.46 31892.69 30896.84 22279.15 30199.41 19785.66 31290.52 33698.04 259
ADS-MVSNet90.95 29390.26 29693.04 29695.51 31282.37 32395.05 21093.41 30983.46 31892.69 30896.84 22279.15 30198.70 29885.66 31290.52 33698.04 259
MDTV_nov1_ep13_2view57.28 35394.89 21780.59 32994.02 27378.66 30385.50 31497.82 270
cl-mvsnet293.25 26192.84 25794.46 27094.30 32886.00 29391.09 32196.64 27590.74 25395.79 23096.31 25378.24 30498.77 29194.15 17298.34 25298.62 209
PatchmatchNetpermissive91.98 28191.87 27292.30 30994.60 32579.71 33195.12 20193.59 30889.52 26493.61 28797.02 21277.94 30599.18 24690.84 23994.57 32898.01 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 30698.06 255
CR-MVSNet93.29 26092.79 25894.78 25795.44 31488.15 25896.18 13897.20 25484.94 31294.10 26998.57 6477.67 30799.39 20495.17 12395.81 31596.81 304
Patchmtry95.03 20394.59 21396.33 19594.83 32290.82 21896.38 12697.20 25496.59 8597.49 14498.57 6477.67 30799.38 20892.95 20699.62 6298.80 189
tpmrst90.31 29690.61 29389.41 32494.06 33372.37 34995.06 20993.69 30488.01 28092.32 31596.86 22077.45 30998.82 28691.04 23387.01 34397.04 294
sam_mvs77.38 310
patchmatchnet-post96.84 22277.36 31199.42 188
Patchmatch-RL test94.66 22094.49 21795.19 24098.54 13388.91 24492.57 29398.74 11691.46 24898.32 8197.75 15477.31 31298.81 28896.06 7699.61 6897.85 268
tpmvs90.79 29490.87 28790.57 32092.75 34676.30 34195.79 16293.64 30791.04 25291.91 31896.26 25477.19 31398.86 28589.38 27389.85 33996.56 312
test_post10.87 35176.83 31499.07 262
Patchmatch-test93.60 25393.25 24994.63 26296.14 29987.47 27396.04 14594.50 29993.57 20196.47 20096.97 21476.50 31598.61 30590.67 24998.41 25197.81 272
MDTV_nov1_ep1391.28 28094.31 32773.51 34794.80 22293.16 31186.75 29293.45 29597.40 18276.37 31698.55 31188.85 27996.43 309
EMVS89.06 30789.22 30288.61 32793.00 34377.34 33982.91 34690.92 33094.64 16992.63 31191.81 33076.30 31797.02 33983.83 32496.90 29991.48 342
test_post194.98 21410.37 35276.21 31899.04 26589.47 271
GA-MVS92.83 26692.15 27094.87 25296.97 27287.27 27890.03 33096.12 27991.83 24394.05 27294.57 29776.01 31998.97 27792.46 21197.34 29498.36 230
PatchT93.75 24793.57 24394.29 27695.05 32087.32 27796.05 14492.98 31397.54 5994.25 26598.72 5475.79 32099.24 24095.92 8795.81 31596.32 315
E-PMN89.52 30589.78 29988.73 32693.14 34177.61 33783.26 34592.02 32194.82 16393.71 28293.11 31275.31 32196.81 34185.81 30996.81 30291.77 341
DeepMVS_CXcopyleft77.17 33390.94 35085.28 30274.08 35352.51 34880.87 34988.03 34475.25 32270.63 35059.23 34884.94 34575.62 345
CHOSEN 280x42089.98 30089.19 30592.37 30895.60 31181.13 32886.22 34297.09 26081.44 32687.44 34193.15 31173.99 32399.47 17588.69 28299.07 19696.52 313
thres20091.00 29290.42 29592.77 30397.47 24783.98 31794.01 25491.18 32995.12 15295.44 24091.21 33573.93 32499.31 22577.76 33997.63 28495.01 329
test-LLR89.97 30189.90 29890.16 32194.24 33074.98 34489.89 33289.06 33992.02 23889.97 33090.77 33873.92 32598.57 30891.88 21797.36 29296.92 297
test0.0.03 190.11 29789.21 30392.83 30293.89 33486.87 28491.74 30888.74 34192.02 23894.71 25491.14 33673.92 32594.48 34683.75 32692.94 33197.16 290
tpm cat188.01 31387.33 31390.05 32394.48 32676.28 34294.47 23494.35 30173.84 34689.26 33395.61 28073.64 32798.30 32684.13 32186.20 34495.57 326
tfpn200view991.55 28691.00 28493.21 29398.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27495.85 319
thres40091.68 28591.00 28493.71 28298.02 18584.35 31495.70 16590.79 33196.26 9795.90 22892.13 32773.62 32899.42 18878.85 33697.74 27497.36 286
thres100view90091.76 28491.26 28293.26 29098.21 16584.50 31296.39 12490.39 33496.87 7796.33 20693.08 31473.44 33099.42 18878.85 33697.74 27495.85 319
thres600view792.03 28091.43 27793.82 28098.19 16784.61 31196.27 13190.39 33496.81 7996.37 20593.11 31273.44 33099.49 16980.32 33297.95 26697.36 286
RRT_MVS94.90 20694.07 23197.39 13693.18 33993.21 17395.26 19497.49 24693.94 19498.25 8897.85 14372.96 33299.84 2597.90 2199.78 3699.14 130
MVSTER94.21 23693.93 23895.05 24595.83 30586.46 28795.18 20097.65 23892.41 23597.94 12198.00 12772.39 33399.58 14496.36 6999.56 8199.12 138
JIA-IIPM91.79 28390.69 29195.11 24293.80 33590.98 21494.16 24691.78 32496.38 9290.30 32899.30 1872.02 33498.90 27988.28 28890.17 33895.45 327
tpm91.08 29190.85 28891.75 31295.33 31778.09 33495.03 21291.27 32888.75 27293.53 29197.40 18271.24 33599.30 22891.25 23193.87 32997.87 267
baseline289.65 30488.44 31093.25 29195.62 31082.71 32093.82 26285.94 34688.89 27187.35 34292.54 32371.23 33699.33 22186.01 30794.60 32797.72 274
CostFormer89.75 30389.25 30191.26 31694.69 32478.00 33695.32 18991.98 32281.50 32590.55 32596.96 21671.06 33798.89 28188.59 28492.63 33396.87 300
FPMVS89.92 30288.63 30893.82 28098.37 14996.94 4291.58 30993.34 31088.00 28190.32 32797.10 20770.87 33891.13 34871.91 34496.16 31493.39 337
EPMVS89.26 30688.55 30991.39 31492.36 34779.11 33295.65 17179.86 34988.60 27493.12 30196.53 24270.73 33998.10 33290.75 24389.32 34096.98 295
tmp_tt57.23 32062.50 32241.44 33434.77 35349.21 35483.93 34360.22 35515.31 34971.11 35079.37 34770.09 34044.86 35164.76 34682.93 34730.25 347
ET-MVSNet_ETH3D91.12 28989.67 30095.47 23196.41 28689.15 24291.54 31090.23 33789.07 26786.78 34492.84 31869.39 34199.44 18594.16 17196.61 30797.82 270
dp88.08 31288.05 31188.16 33092.85 34468.81 35194.17 24592.88 31485.47 30391.38 32196.14 26168.87 34298.81 28886.88 30383.80 34696.87 300
tpm288.47 30987.69 31290.79 31894.98 32177.34 33995.09 20491.83 32377.51 34189.40 33296.41 24867.83 34398.73 29583.58 32792.60 33496.29 316
pmmvs390.00 29988.90 30793.32 28894.20 33285.34 29991.25 31792.56 31978.59 33693.82 27795.17 28667.36 34498.69 29989.08 27798.03 26495.92 318
thisisatest051590.43 29589.18 30694.17 27997.07 27085.44 29889.75 33687.58 34288.28 27893.69 28491.72 33165.27 34599.58 14490.59 25198.67 23697.50 283
tttt051793.31 25992.56 26595.57 22598.71 11287.86 26497.44 7787.17 34495.79 12597.47 14996.84 22264.12 34699.81 3196.20 7299.32 16499.02 156
thisisatest053092.71 26891.76 27595.56 22798.42 14688.23 25696.03 14687.35 34394.04 19196.56 19695.47 28364.03 34799.77 4894.78 14699.11 19098.68 205
FMVSNet593.39 25792.35 26796.50 18695.83 30590.81 22097.31 8298.27 18292.74 23096.27 21198.28 9162.23 34899.67 11590.86 23899.36 14799.03 154
DWT-MVSNet_test87.92 31486.77 31791.39 31493.18 33978.62 33395.10 20291.42 32685.58 30188.00 33888.73 34360.60 34998.90 27990.60 25087.70 34296.65 308
IB-MVS85.98 2088.63 30886.95 31693.68 28395.12 31984.82 31090.85 32390.17 33887.55 28488.48 33791.34 33458.01 35099.59 14287.24 30293.80 33096.63 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
RRT_test8_iter0592.46 27192.52 26692.29 31095.33 31777.43 33895.73 16398.55 15094.41 17697.46 15097.72 15957.44 35199.74 6396.92 5599.14 18299.69 20
gg-mvs-nofinetune88.28 31186.96 31592.23 31192.84 34584.44 31398.19 3874.60 35199.08 1087.01 34399.47 856.93 35298.23 32878.91 33595.61 32094.01 334
GG-mvs-BLEND90.60 31991.00 34984.21 31698.23 3272.63 35482.76 34684.11 34656.14 35396.79 34272.20 34392.09 33590.78 343
TESTMET0.1,187.20 31786.57 31889.07 32593.62 33772.84 34889.89 33287.01 34585.46 30489.12 33590.20 34156.00 35497.72 33690.91 23796.92 29896.64 309
test-mter87.92 31487.17 31490.16 32194.24 33074.98 34489.89 33289.06 33986.44 29389.97 33090.77 33854.96 35598.57 30891.88 21797.36 29296.92 297
test12312.59 32215.49 3243.87 3356.07 3542.55 35590.75 3242.59 3572.52 3505.20 35213.02 3504.96 3561.85 3535.20 3499.09 3497.23 348
testmvs12.33 32315.23 3253.64 3365.77 3552.23 35688.99 3373.62 3562.30 3515.29 35113.09 3494.52 3571.95 3525.16 3508.32 3506.75 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34898.84 870.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re7.91 32510.55 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35394.94 2910.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.22 5695.40 9398.14 20185.77 30098.36 7495.23 12099.51 10399.49 50
save fliter98.48 14194.71 11994.53 23298.41 16795.02 157
test_0728_SECOND98.25 6999.23 5395.49 9196.74 10998.89 7499.75 5695.48 10499.52 9899.53 38
GSMVS98.06 255
test_part299.03 8996.07 6898.08 106
MTGPAbinary98.73 118
MTMP96.55 11774.60 351
gm-plane-assit91.79 34871.40 35081.67 32390.11 34298.99 27184.86 318
test9_res91.29 22898.89 21699.00 157
agg_prior290.34 26098.90 21399.10 145
agg_prior97.80 21394.96 11198.36 17393.49 29299.53 159
test_prior495.38 9493.61 270
test_prior97.46 12897.79 21894.26 13898.42 16599.34 21898.79 190
旧先验293.35 27877.95 34095.77 23498.67 30390.74 246
新几何293.43 273
无先验93.20 28297.91 21880.78 32899.40 19987.71 29297.94 264
原ACMM292.82 287
testdata299.46 17887.84 291
testdata192.77 28893.78 197
plane_prior798.70 11494.67 123
plane_prior598.75 11499.46 17892.59 20999.20 17899.28 107
plane_prior496.77 228
plane_prior394.51 12695.29 14596.16 217
plane_prior296.50 11996.36 93
plane_prior198.49 139
plane_prior94.29 13495.42 17994.31 18198.93 211
n20.00 358
nn0.00 358
door-mid98.17 197
test1198.08 208
door97.81 227
HQP5-MVS92.47 185
HQP-NCC97.85 20194.26 23793.18 21592.86 305
ACMP_Plane97.85 20194.26 23793.18 21592.86 305
BP-MVS90.51 255
HQP4-MVS92.87 30499.23 24299.06 150
HQP3-MVS98.43 16298.74 231
NP-MVS98.14 17793.72 15895.08 287
ACMMP++_ref99.52 98
ACMMP++99.55 87