LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 65 | 98.87 9 | 99.30 12 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 128 | 97.75 30 | 99.89 22 | 99.62 26 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 67 | 99.18 5 | 99.20 18 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 22 | 97.22 48 | 99.92 14 | 99.77 8 |
|
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 66 | 99.17 6 | 99.05 45 | 98.05 43 | 99.61 11 | 99.52 5 | 93.72 182 | 99.88 19 | 98.72 9 | 99.88 23 | 99.65 24 |
|
Gipuma |  | | 98.07 41 | 98.31 29 | 97.36 152 | 99.76 5 | 96.28 70 | 98.51 23 | 99.10 33 | 98.76 23 | 96.79 202 | 99.34 17 | 96.61 79 | 98.82 308 | 96.38 76 | 99.50 119 | 96.98 318 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 52 | 98.76 11 | 98.89 81 | 98.49 28 | 99.38 17 | 99.14 33 | 95.44 130 | 99.84 29 | 96.47 73 | 99.80 36 | 99.47 64 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 46 | 99.69 2 | 99.57 6 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 184 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 63 | 98.54 20 | 99.22 15 | 96.23 115 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 3 | 98.89 3 | 99.95 5 | 99.84 5 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 80 | 99.68 9 | 94.82 131 | 98.10 50 | 99.21 16 | 96.91 88 | 99.75 2 | 99.45 9 | 95.82 109 | 99.92 5 | 98.80 4 | 99.96 4 | 99.89 1 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 63 | 98.45 27 | 99.12 30 | 95.83 142 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 5 | 98.77 5 | 99.94 8 | 99.82 6 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 98 | 99.64 11 | 94.20 157 | 98.67 13 | 99.14 28 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 84 | 99.91 13 | 99.27 2 | 99.93 10 | 99.73 15 |
|
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 69 | 98.67 13 | 99.02 54 | 96.50 103 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 5 | 98.73 7 | 99.95 5 | 99.86 2 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 39 | 98.65 16 | 99.19 20 | 95.62 150 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 14 | 98.59 11 | 99.91 17 | 99.77 8 |
|
FOURS1 | | | | | | 99.59 14 | 98.20 4 | 99.03 7 | 99.25 14 | 98.96 18 | 98.87 41 | | | | | | |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 56 | 99.58 15 | 95.67 91 | 98.45 27 | 99.15 26 | 99.33 5 | 99.30 21 | 99.00 41 | 97.27 38 | 99.92 5 | 97.64 34 | 99.92 14 | 99.75 13 |
|
EGC-MVSNET | | | 83.08 340 | 77.93 343 | 98.53 51 | 99.57 16 | 97.55 27 | 98.33 33 | 98.57 163 | 4.71 376 | 10.38 377 | 98.90 50 | 95.60 122 | 99.50 189 | 95.69 108 | 99.61 79 | 98.55 233 |
|
Baseline_NR-MVSNet | | | 97.72 77 | 97.79 57 | 97.50 134 | 99.56 17 | 93.29 187 | 95.44 195 | 98.86 92 | 98.20 38 | 98.37 77 | 99.24 20 | 94.69 152 | 99.55 175 | 95.98 94 | 99.79 38 | 99.65 24 |
|
SixPastTwentyTwo | | | 97.49 94 | 97.57 83 | 97.26 158 | 99.56 17 | 92.33 205 | 98.28 37 | 96.97 282 | 98.30 34 | 99.45 14 | 99.35 16 | 88.43 269 | 99.89 17 | 98.01 20 | 99.76 44 | 99.54 40 |
|
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 60 | 99.55 19 | 95.47 103 | 98.49 24 | 99.13 29 | 99.22 8 | 99.22 27 | 98.96 45 | 97.35 34 | 99.92 5 | 97.79 28 | 99.93 10 | 99.79 7 |
|
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 19 | 96.12 74 | 98.48 26 | 99.10 33 | 99.36 4 | 99.29 23 | 99.06 39 | 97.27 38 | 99.93 3 | 97.71 32 | 99.91 17 | 99.70 18 |
|
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 21 | 97.48 32 | 98.35 30 | 99.03 52 | 95.88 137 | 97.88 139 | 98.22 112 | 98.15 12 | 99.74 79 | 96.50 72 | 99.62 73 | 99.42 83 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 21 | 98.06 8 | 99.34 4 | 99.44 10 | 98.85 20 | 99.00 37 | 99.20 23 | 97.42 32 | 99.59 162 | 97.21 50 | 99.76 44 | 99.40 86 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 105 | 99.52 23 | 94.58 141 | 98.28 37 | 99.00 62 | 97.57 63 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 189 | 97.09 56 | 99.75 48 | 99.50 47 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 131 | 99.51 24 | 93.39 186 | 98.20 45 | 98.87 89 | 98.23 36 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 175 | 96.52 70 | 99.53 105 | 99.60 27 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 24 | 96.61 57 | 98.55 19 | 99.17 21 | 99.05 13 | 99.17 29 | 98.79 55 | 95.47 128 | 99.89 17 | 97.95 21 | 99.91 17 | 99.75 13 |
|
PMVS |  | 89.60 17 | 96.71 145 | 96.97 122 | 95.95 226 | 99.51 24 | 97.81 17 | 97.42 94 | 97.49 263 | 97.93 46 | 95.95 246 | 98.58 69 | 96.88 66 | 96.91 364 | 89.59 293 | 99.36 162 | 93.12 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MP-MVS-pluss | | | 97.69 79 | 97.36 97 | 98.70 39 | 99.50 27 | 96.84 49 | 95.38 202 | 98.99 65 | 92.45 254 | 98.11 111 | 98.31 92 | 97.25 41 | 99.77 57 | 96.60 66 | 99.62 73 | 99.48 61 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 126 | 99.49 28 | 93.10 192 | 98.35 30 | 99.21 16 | 98.43 29 | 98.89 40 | 98.83 54 | 94.30 167 | 99.81 36 | 97.87 24 | 99.91 17 | 99.77 8 |
|
VPNet | | | 97.26 110 | 97.49 90 | 96.59 193 | 99.47 29 | 90.58 240 | 96.27 148 | 98.53 166 | 97.77 49 | 98.46 70 | 98.41 83 | 94.59 158 | 99.68 128 | 94.61 171 | 99.29 185 | 99.52 44 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 69 | 99.46 30 | 95.22 119 | 98.27 39 | 98.84 101 | 99.05 13 | 99.01 36 | 98.65 67 | 95.37 131 | 99.90 14 | 97.57 36 | 99.91 17 | 99.77 8 |
|
XXY-MVS | | | 97.54 90 | 97.70 64 | 97.07 167 | 99.46 30 | 92.21 209 | 97.22 103 | 99.00 62 | 94.93 180 | 98.58 59 | 98.92 48 | 97.31 36 | 99.41 219 | 94.44 178 | 99.43 145 | 99.59 28 |
|
zzz-MVS | | | 98.01 45 | 97.66 69 | 99.06 4 | 99.44 32 | 97.90 12 | 95.66 185 | 98.73 131 | 97.69 59 | 97.90 136 | 97.96 142 | 95.81 113 | 99.82 33 | 96.13 83 | 99.61 79 | 99.45 71 |
|
MTAPA | | | 98.14 34 | 97.84 53 | 99.06 4 | 99.44 32 | 97.90 12 | 97.25 100 | 98.73 131 | 97.69 59 | 97.90 136 | 97.96 142 | 95.81 113 | 99.82 33 | 96.13 83 | 99.61 79 | 99.45 71 |
|
SteuartSystems-ACMMP | | | 98.02 44 | 97.76 61 | 98.79 31 | 99.43 34 | 97.21 43 | 97.15 106 | 98.90 80 | 96.58 99 | 98.08 117 | 97.87 156 | 97.02 53 | 99.76 62 | 95.25 139 | 99.59 85 | 99.40 86 |
Skip Steuart: Steuart Systems R&D Blog. |
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 131 | 99.43 34 | 93.54 182 | 98.23 40 | 99.05 45 | 97.40 75 | 99.37 18 | 99.08 37 | 98.79 5 | 99.47 197 | 97.74 31 | 99.71 58 | 99.50 47 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
HPM-MVS |  | | 98.11 38 | 97.83 55 | 98.92 22 | 99.42 36 | 97.46 33 | 98.57 17 | 99.05 45 | 95.43 159 | 97.41 167 | 97.50 190 | 97.98 15 | 99.79 43 | 95.58 119 | 99.57 90 | 99.50 47 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
K. test v3 | | | 96.44 159 | 96.28 160 | 96.95 172 | 99.41 37 | 91.53 225 | 97.65 76 | 90.31 360 | 98.89 19 | 98.93 39 | 99.36 14 | 84.57 298 | 99.92 5 | 97.81 26 | 99.56 93 | 99.39 88 |
|
VDDNet | | | 96.98 123 | 96.84 130 | 97.41 148 | 99.40 38 | 93.26 188 | 97.94 57 | 95.31 317 | 99.26 7 | 98.39 76 | 99.18 27 | 87.85 278 | 99.62 154 | 95.13 151 | 99.09 213 | 99.35 100 |
|
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 97 | 99.39 39 | 95.22 119 | 97.55 83 | 99.20 18 | 98.21 37 | 99.25 25 | 98.51 76 | 98.21 11 | 99.40 221 | 94.79 165 | 99.72 55 | 99.32 103 |
|
TSAR-MVS + MP. | | | 97.42 99 | 97.23 107 | 98.00 96 | 99.38 40 | 95.00 126 | 97.63 78 | 98.20 206 | 93.00 242 | 98.16 105 | 98.06 132 | 95.89 104 | 99.72 90 | 95.67 110 | 99.10 212 | 99.28 117 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
FIs | | | 97.93 56 | 98.07 36 | 97.48 138 | 99.38 40 | 92.95 195 | 98.03 55 | 99.11 31 | 98.04 44 | 98.62 53 | 98.66 65 | 93.75 181 | 99.78 47 | 97.23 47 | 99.84 29 | 99.73 15 |
|
lessismore_v0 | | | | | 97.05 168 | 99.36 42 | 92.12 213 | | 84.07 372 | | 98.77 48 | 98.98 43 | 85.36 292 | 99.74 79 | 97.34 46 | 99.37 159 | 99.30 109 |
|
Anonymous20240521 | | | 97.07 117 | 97.51 87 | 95.76 234 | 99.35 43 | 88.18 277 | 97.78 66 | 98.40 183 | 97.11 83 | 98.34 83 | 99.04 40 | 89.58 256 | 99.79 43 | 98.09 18 | 99.93 10 | 99.30 109 |
|
ACMMP_NAP | | | 97.89 62 | 97.63 76 | 98.67 41 | 99.35 43 | 96.84 49 | 96.36 144 | 98.79 118 | 95.07 173 | 97.88 139 | 98.35 88 | 97.24 42 | 99.72 90 | 96.05 87 | 99.58 87 | 99.45 71 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 89 | 99.33 45 | 95.21 121 | 98.04 53 | 99.46 9 | 97.32 78 | 97.82 147 | 99.11 34 | 96.75 73 | 99.86 22 | 97.84 25 | 99.36 162 | 99.15 142 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 206 | 99.33 45 | 89.64 251 | 97.92 60 | 99.56 7 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 32 | 97.55 37 | 99.98 2 | 99.77 8 |
|
ZNCC-MVS | | | 97.92 57 | 97.62 78 | 98.83 26 | 99.32 47 | 97.24 41 | 97.45 90 | 98.84 101 | 95.76 144 | 96.93 197 | 97.43 196 | 97.26 40 | 99.79 43 | 96.06 85 | 99.53 105 | 99.45 71 |
|
MP-MVS |  | | 97.64 82 | 97.18 110 | 99.00 12 | 99.32 47 | 97.77 18 | 97.49 89 | 98.73 131 | 96.27 112 | 95.59 261 | 97.75 168 | 96.30 97 | 99.78 47 | 93.70 212 | 99.48 127 | 99.45 71 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PVSNet_Blended_VisFu | | | 95.95 178 | 95.80 180 | 96.42 204 | 99.28 49 | 90.62 239 | 95.31 208 | 99.08 39 | 88.40 300 | 96.97 195 | 98.17 117 | 92.11 219 | 99.78 47 | 93.64 213 | 99.21 194 | 98.86 201 |
|
tfpnnormal | | | 97.72 77 | 97.97 43 | 96.94 173 | 99.26 50 | 92.23 208 | 97.83 65 | 98.45 173 | 98.25 35 | 99.13 31 | 98.66 65 | 96.65 76 | 99.69 121 | 93.92 204 | 99.62 73 | 98.91 190 |
|
MSP-MVS | | | 97.45 97 | 96.92 127 | 99.03 8 | 99.26 50 | 97.70 19 | 97.66 75 | 98.89 81 | 95.65 148 | 98.51 63 | 96.46 265 | 92.15 217 | 99.81 36 | 95.14 149 | 98.58 266 | 99.58 29 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
testgi | | | 96.07 172 | 96.50 153 | 94.80 274 | 99.26 50 | 87.69 290 | 95.96 169 | 98.58 162 | 95.08 172 | 98.02 125 | 96.25 276 | 97.92 16 | 97.60 361 | 88.68 307 | 98.74 251 | 99.11 157 |
|
IS-MVSNet | | | 96.93 125 | 96.68 139 | 97.70 117 | 99.25 53 | 94.00 163 | 98.57 17 | 96.74 291 | 98.36 31 | 98.14 109 | 97.98 141 | 88.23 271 | 99.71 104 | 93.10 224 | 99.72 55 | 99.38 90 |
|
DVP-MVS |  | | 97.78 73 | 97.65 71 | 98.16 81 | 99.24 54 | 95.51 98 | 96.74 127 | 98.23 202 | 95.92 134 | 98.40 74 | 98.28 101 | 97.06 50 | 99.71 104 | 95.48 124 | 99.52 110 | 99.26 122 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 99.24 54 | 95.51 98 | 96.89 120 | 98.89 81 | 95.92 134 | 98.64 52 | 98.31 92 | 97.06 50 | | | | |
|
test_0728_SECOND | | | | | 98.25 75 | 99.23 56 | 95.49 102 | 96.74 127 | 98.89 81 | | | | | 99.75 69 | 95.48 124 | 99.52 110 | 99.53 43 |
|
GST-MVS | | | 97.82 70 | 97.49 90 | 98.81 29 | 99.23 56 | 97.25 40 | 97.16 105 | 98.79 118 | 95.96 131 | 97.53 153 | 97.40 198 | 96.93 60 | 99.77 57 | 95.04 155 | 99.35 167 | 99.42 83 |
|
ACMMP |  | | 98.05 42 | 97.75 63 | 98.93 21 | 99.23 56 | 97.60 23 | 98.09 51 | 98.96 73 | 95.75 146 | 97.91 135 | 98.06 132 | 96.89 64 | 99.76 62 | 95.32 135 | 99.57 90 | 99.43 82 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
KD-MVS_self_test | | | 97.86 66 | 98.07 36 | 97.25 159 | 99.22 59 | 92.81 198 | 97.55 83 | 98.94 76 | 97.10 84 | 98.85 42 | 98.88 51 | 95.03 143 | 99.67 133 | 97.39 45 | 99.65 68 | 99.26 122 |
|
SED-MVS | | | 97.94 53 | 97.90 47 | 98.07 89 | 99.22 59 | 95.35 109 | 96.79 124 | 98.83 108 | 96.11 121 | 99.08 32 | 98.24 107 | 97.87 20 | 99.72 90 | 95.44 128 | 99.51 115 | 99.14 145 |
|
IU-MVS | | | | | | 99.22 59 | 95.40 104 | | 98.14 218 | 85.77 325 | 98.36 80 | | | | 95.23 141 | 99.51 115 | 99.49 55 |
|
test_241102_ONE | | | | | | 99.22 59 | 95.35 109 | | 98.83 108 | 96.04 126 | 99.08 32 | 98.13 119 | 97.87 20 | 99.33 242 | | | |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 65 | 99.22 59 | 95.66 92 | 97.90 61 | 99.08 39 | 98.31 33 | 99.02 35 | 98.74 59 | 97.68 24 | 99.61 160 | 97.77 29 | 99.85 28 | 99.70 18 |
|
region2R | | | 97.92 57 | 97.59 81 | 98.92 22 | 99.22 59 | 97.55 27 | 97.60 79 | 98.84 101 | 96.00 129 | 97.22 171 | 97.62 180 | 96.87 68 | 99.76 62 | 95.48 124 | 99.43 145 | 99.46 66 |
|
mPP-MVS | | | 97.91 60 | 97.53 85 | 99.04 7 | 99.22 59 | 97.87 15 | 97.74 72 | 98.78 122 | 96.04 126 | 97.10 181 | 97.73 171 | 96.53 84 | 99.78 47 | 95.16 146 | 99.50 119 | 99.46 66 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 66 | 97.35 37 | 97.96 56 | 99.16 22 | 98.34 32 | 98.78 46 | 98.52 75 | 97.32 35 | 99.45 204 | 94.08 195 | 99.67 65 | 99.13 148 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMMPR | | | 97.95 51 | 97.62 78 | 98.94 18 | 99.20 67 | 97.56 26 | 97.59 80 | 98.83 108 | 96.05 124 | 97.46 164 | 97.63 179 | 96.77 72 | 99.76 62 | 95.61 116 | 99.46 132 | 99.49 55 |
|
PGM-MVS | | | 97.88 63 | 97.52 86 | 98.96 16 | 99.20 67 | 97.62 22 | 97.09 111 | 99.06 43 | 95.45 157 | 97.55 152 | 97.94 147 | 97.11 44 | 99.78 47 | 94.77 168 | 99.46 132 | 99.48 61 |
|
test_0402 | | | 97.84 67 | 97.97 43 | 97.47 139 | 99.19 69 | 94.07 160 | 96.71 132 | 98.73 131 | 98.66 25 | 98.56 60 | 98.41 83 | 96.84 70 | 99.69 121 | 94.82 163 | 99.81 33 | 98.64 223 |
|
EPP-MVSNet | | | 96.84 131 | 96.58 143 | 97.65 121 | 99.18 70 | 93.78 173 | 98.68 12 | 96.34 295 | 97.91 47 | 97.30 169 | 98.06 132 | 88.46 268 | 99.85 26 | 93.85 206 | 99.40 155 | 99.32 103 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 71 | 98.10 6 | 97.73 74 | 99.11 31 | 97.76 52 | 98.62 53 | 98.27 105 | 97.88 19 | 99.80 42 | 95.67 110 | 99.50 119 | 99.38 90 |
|
XVG-ACMP-BASELINE | | | 97.58 88 | 97.28 103 | 98.49 53 | 99.16 71 | 96.90 48 | 96.39 141 | 98.98 68 | 95.05 174 | 98.06 119 | 98.02 136 | 95.86 105 | 99.56 171 | 94.37 183 | 99.64 70 | 99.00 173 |
|
CHOSEN 1792x2688 | | | 94.10 256 | 93.41 263 | 96.18 217 | 99.16 71 | 90.04 245 | 92.15 320 | 98.68 146 | 79.90 357 | 96.22 234 | 97.83 159 | 87.92 277 | 99.42 210 | 89.18 299 | 99.65 68 | 99.08 162 |
|
HFP-MVS | | | 97.94 53 | 97.64 74 | 98.83 26 | 99.15 74 | 97.50 30 | 97.59 80 | 98.84 101 | 96.05 124 | 97.49 158 | 97.54 185 | 97.07 48 | 99.70 113 | 95.61 116 | 99.46 132 | 99.30 109 |
|
#test# | | | 97.62 84 | 97.22 108 | 98.83 26 | 99.15 74 | 97.50 30 | 96.81 123 | 98.84 101 | 94.25 202 | 97.49 158 | 97.54 185 | 97.07 48 | 99.70 113 | 94.37 183 | 99.46 132 | 99.30 109 |
|
XVS | | | 97.96 47 | 97.63 76 | 98.94 18 | 99.15 74 | 97.66 20 | 97.77 67 | 98.83 108 | 97.42 71 | 96.32 227 | 97.64 178 | 96.49 87 | 99.72 90 | 95.66 112 | 99.37 159 | 99.45 71 |
|
X-MVStestdata | | | 92.86 282 | 90.83 307 | 98.94 18 | 99.15 74 | 97.66 20 | 97.77 67 | 98.83 108 | 97.42 71 | 96.32 227 | 36.50 374 | 96.49 87 | 99.72 90 | 95.66 112 | 99.37 159 | 99.45 71 |
|
LPG-MVS_test | | | 97.94 53 | 97.67 68 | 98.74 35 | 99.15 74 | 97.02 44 | 97.09 111 | 99.02 54 | 95.15 169 | 98.34 83 | 98.23 109 | 97.91 17 | 99.70 113 | 94.41 180 | 99.73 52 | 99.50 47 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 74 | 97.02 44 | | 99.02 54 | 95.15 169 | 98.34 83 | 98.23 109 | 97.91 17 | 99.70 113 | 94.41 180 | 99.73 52 | 99.50 47 |
|
RPSCF | | | 97.87 64 | 97.51 87 | 98.95 17 | 99.15 74 | 98.43 3 | 97.56 82 | 99.06 43 | 96.19 118 | 98.48 67 | 98.70 62 | 94.72 151 | 99.24 261 | 94.37 183 | 99.33 177 | 99.17 138 |
|
ACMM | | 93.33 11 | 98.05 42 | 97.79 57 | 98.85 25 | 99.15 74 | 97.55 27 | 96.68 133 | 98.83 108 | 95.21 165 | 98.36 80 | 98.13 119 | 98.13 14 | 99.62 154 | 96.04 88 | 99.54 102 | 99.39 88 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
FMVSNet1 | | | 97.95 51 | 98.08 35 | 97.56 126 | 99.14 82 | 93.67 176 | 98.23 40 | 98.66 151 | 97.41 74 | 99.00 37 | 99.19 24 | 95.47 128 | 99.73 85 | 95.83 103 | 99.76 44 | 99.30 109 |
|
Vis-MVSNet (Re-imp) | | | 95.11 211 | 94.85 212 | 95.87 231 | 99.12 83 | 89.17 259 | 97.54 88 | 94.92 319 | 96.50 103 | 96.58 214 | 97.27 213 | 83.64 303 | 99.48 194 | 88.42 310 | 99.67 65 | 98.97 177 |
|
dcpmvs_2 | | | 97.12 115 | 97.99 42 | 94.51 287 | 99.11 84 | 84.00 338 | 97.75 70 | 99.65 4 | 97.38 76 | 99.14 30 | 98.42 82 | 95.16 138 | 99.96 2 | 95.52 120 | 99.78 41 | 99.58 29 |
|
OPM-MVS | | | 97.54 90 | 97.25 104 | 98.41 58 | 99.11 84 | 96.61 57 | 95.24 215 | 98.46 172 | 94.58 192 | 98.10 114 | 98.07 127 | 97.09 47 | 99.39 226 | 95.16 146 | 99.44 137 | 99.21 131 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 84 | 97.89 14 | 99.47 3 | 99.32 11 | 99.08 10 | 97.87 142 | 99.67 2 | 96.47 89 | 99.92 5 | 97.88 23 | 99.98 2 | 99.85 3 |
|
AllTest | | | 97.20 114 | 96.92 127 | 98.06 91 | 99.08 87 | 96.16 72 | 97.14 108 | 99.16 22 | 94.35 198 | 97.78 148 | 98.07 127 | 95.84 106 | 99.12 276 | 91.41 249 | 99.42 148 | 98.91 190 |
|
TestCases | | | | | 98.06 91 | 99.08 87 | 96.16 72 | | 99.16 22 | 94.35 198 | 97.78 148 | 98.07 127 | 95.84 106 | 99.12 276 | 91.41 249 | 99.42 148 | 98.91 190 |
|
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 57 | 99.07 89 | 95.87 82 | 96.73 131 | 99.05 45 | 98.67 24 | 98.84 43 | 98.45 80 | 97.58 28 | 99.88 19 | 96.45 74 | 99.86 25 | 99.54 40 |
|
test1111 | | | 94.53 241 | 94.81 216 | 93.72 301 | 99.06 90 | 81.94 350 | 98.31 34 | 83.87 373 | 96.37 108 | 98.49 66 | 99.17 29 | 81.49 309 | 99.73 85 | 96.64 64 | 99.86 25 | 99.49 55 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 117 | 99.06 90 | 93.80 171 | 97.76 69 | 99.00 62 | 98.40 30 | 99.07 34 | 98.98 43 | 96.89 64 | 99.75 69 | 97.19 53 | 99.79 38 | 99.55 39 |
|
114514_t | | | 93.96 260 | 93.22 267 | 96.19 216 | 99.06 90 | 90.97 233 | 95.99 166 | 98.94 76 | 73.88 370 | 93.43 320 | 96.93 236 | 92.38 215 | 99.37 232 | 89.09 300 | 99.28 186 | 98.25 264 |
|
EG-PatchMatch MVS | | | 97.69 79 | 97.79 57 | 97.40 149 | 99.06 90 | 93.52 183 | 95.96 169 | 98.97 72 | 94.55 193 | 98.82 44 | 98.76 58 | 97.31 36 | 99.29 253 | 97.20 52 | 99.44 137 | 99.38 90 |
|
test_one_0601 | | | | | | 99.05 94 | 95.50 101 | | 98.87 89 | 97.21 82 | 98.03 123 | 98.30 96 | 96.93 60 | | | | |
|
ACMP | | 92.54 13 | 97.47 96 | 97.10 114 | 98.55 50 | 99.04 95 | 96.70 53 | 96.24 152 | 98.89 81 | 93.71 218 | 97.97 130 | 97.75 168 | 97.44 30 | 99.63 146 | 93.22 221 | 99.70 61 | 99.32 103 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
test_part2 | | | | | | 99.03 96 | 96.07 76 | | | | 98.08 117 | | | | | | |
|
XVG-OURS-SEG-HR | | | 97.38 102 | 97.07 117 | 98.30 69 | 99.01 97 | 97.41 36 | 94.66 245 | 99.02 54 | 95.20 166 | 98.15 107 | 97.52 188 | 98.83 4 | 98.43 341 | 94.87 161 | 96.41 333 | 99.07 164 |
|
XVG-OURS | | | 97.12 115 | 96.74 136 | 98.26 72 | 98.99 98 | 97.45 34 | 93.82 281 | 99.05 45 | 95.19 167 | 98.32 88 | 97.70 174 | 95.22 137 | 98.41 342 | 94.27 188 | 98.13 281 | 98.93 185 |
|
CP-MVS | | | 97.92 57 | 97.56 84 | 98.99 13 | 98.99 98 | 97.82 16 | 97.93 58 | 98.96 73 | 96.11 121 | 96.89 200 | 97.45 194 | 96.85 69 | 99.78 47 | 95.19 142 | 99.63 72 | 99.38 90 |
|
test2506 | | | 89.86 320 | 89.16 325 | 91.97 334 | 98.95 100 | 76.83 367 | 98.54 20 | 61.07 381 | 96.20 116 | 97.07 186 | 99.16 30 | 55.19 380 | 99.69 121 | 96.43 75 | 99.83 31 | 99.38 90 |
|
ECVR-MVS |  | | 94.37 247 | 94.48 234 | 94.05 298 | 98.95 100 | 83.10 342 | 98.31 34 | 82.48 374 | 96.20 116 | 98.23 98 | 99.16 30 | 81.18 312 | 99.66 139 | 95.95 95 | 99.83 31 | 99.38 90 |
|
CSCG | | | 97.40 101 | 97.30 100 | 97.69 119 | 98.95 100 | 94.83 130 | 97.28 99 | 98.99 65 | 96.35 111 | 98.13 110 | 95.95 293 | 95.99 102 | 99.66 139 | 94.36 186 | 99.73 52 | 98.59 229 |
|
SF-MVS | | | 97.60 86 | 97.39 95 | 98.22 77 | 98.93 103 | 95.69 88 | 97.05 113 | 99.10 33 | 95.32 162 | 97.83 145 | 97.88 154 | 96.44 91 | 99.72 90 | 94.59 175 | 99.39 156 | 99.25 126 |
|
HyFIR lowres test | | | 93.72 265 | 92.65 280 | 96.91 176 | 98.93 103 | 91.81 222 | 91.23 337 | 98.52 167 | 82.69 345 | 96.46 221 | 96.52 263 | 80.38 317 | 99.90 14 | 90.36 283 | 98.79 246 | 99.03 170 |
|
PM-MVS | | | 97.36 105 | 97.10 114 | 98.14 85 | 98.91 105 | 96.77 51 | 96.20 154 | 98.63 157 | 93.82 215 | 98.54 61 | 98.33 90 | 93.98 175 | 99.05 286 | 95.99 93 | 99.45 136 | 98.61 228 |
|
CPTT-MVS | | | 96.69 146 | 96.08 169 | 98.49 53 | 98.89 106 | 96.64 56 | 97.25 100 | 98.77 123 | 92.89 248 | 96.01 245 | 97.13 220 | 92.23 216 | 99.67 133 | 92.24 233 | 99.34 170 | 99.17 138 |
|
patch_mono-2 | | | 96.59 151 | 96.93 125 | 95.55 244 | 98.88 107 | 87.12 300 | 94.47 252 | 99.30 12 | 94.12 207 | 96.65 212 | 98.41 83 | 94.98 146 | 99.87 21 | 95.81 105 | 99.78 41 | 99.66 22 |
|
GeoE | | | 97.75 75 | 97.70 64 | 97.89 102 | 98.88 107 | 94.53 142 | 97.10 110 | 98.98 68 | 95.75 146 | 97.62 150 | 97.59 182 | 97.61 27 | 99.77 57 | 96.34 78 | 99.44 137 | 99.36 98 |
|
DPE-MVS |  | | 97.64 82 | 97.35 98 | 98.50 52 | 98.85 109 | 96.18 71 | 95.21 217 | 98.99 65 | 95.84 141 | 98.78 46 | 98.08 125 | 96.84 70 | 99.81 36 | 93.98 202 | 99.57 90 | 99.52 44 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
SMA-MVS |  | | 97.48 95 | 97.11 113 | 98.60 46 | 98.83 110 | 96.67 54 | 96.74 127 | 98.73 131 | 91.61 265 | 98.48 67 | 98.36 87 | 96.53 84 | 99.68 128 | 95.17 144 | 99.54 102 | 99.45 71 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
SR-MVS-dyc-post | | | 98.14 34 | 97.84 53 | 99.02 9 | 98.81 111 | 98.05 9 | 97.55 83 | 98.86 92 | 97.77 49 | 98.20 100 | 98.07 127 | 96.60 81 | 99.76 62 | 95.49 121 | 99.20 195 | 99.26 122 |
|
RE-MVS-def | | | | 97.88 51 | | 98.81 111 | 98.05 9 | 97.55 83 | 98.86 92 | 97.77 49 | 98.20 100 | 98.07 127 | 96.94 58 | | 95.49 121 | 99.20 195 | 99.26 122 |
|
UniMVSNet (Re) | | | 97.83 68 | 97.65 71 | 98.35 64 | 98.80 113 | 95.86 83 | 95.92 173 | 99.04 51 | 97.51 68 | 98.22 99 | 97.81 163 | 94.68 154 | 99.78 47 | 97.14 55 | 99.75 48 | 99.41 85 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 99 | 98.79 114 | 94.37 149 | 98.84 10 | 99.15 26 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 121 | 99.72 90 | 98.12 16 | 99.86 25 | 99.73 15 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 47 | 98.79 31 | 98.79 114 | 97.31 38 | 97.55 83 | 98.92 78 | 97.72 56 | 98.25 95 | 98.13 119 | 97.10 45 | 99.75 69 | 95.44 128 | 99.24 193 | 99.32 103 |
|
test1172 | | | 98.08 39 | 97.76 61 | 99.05 6 | 98.78 116 | 98.07 7 | 97.41 95 | 98.85 96 | 97.57 63 | 98.15 107 | 97.96 142 | 96.60 81 | 99.76 62 | 95.30 136 | 99.18 199 | 99.33 102 |
|
DeepC-MVS | | 95.41 4 | 97.82 70 | 97.70 64 | 98.16 81 | 98.78 116 | 95.72 86 | 96.23 153 | 99.02 54 | 93.92 214 | 98.62 53 | 98.99 42 | 97.69 23 | 99.62 154 | 96.18 82 | 99.87 24 | 99.15 142 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 98.00 46 | 97.66 69 | 99.01 11 | 98.77 118 | 97.93 11 | 97.38 96 | 98.83 108 | 97.32 78 | 98.06 119 | 97.85 157 | 96.65 76 | 99.77 57 | 95.00 158 | 99.11 210 | 99.32 103 |
|
MCST-MVS | | | 96.24 165 | 95.80 180 | 97.56 126 | 98.75 119 | 94.13 159 | 94.66 245 | 98.17 212 | 90.17 283 | 96.21 235 | 96.10 286 | 95.14 139 | 99.43 209 | 94.13 194 | 98.85 241 | 99.13 148 |
|
DU-MVS | | | 97.79 72 | 97.60 80 | 98.36 62 | 98.73 120 | 95.78 84 | 95.65 188 | 98.87 89 | 97.57 63 | 98.31 90 | 97.83 159 | 94.69 152 | 99.85 26 | 97.02 59 | 99.71 58 | 99.46 66 |
|
NR-MVSNet | | | 97.96 47 | 97.86 52 | 98.26 72 | 98.73 120 | 95.54 96 | 98.14 48 | 98.73 131 | 97.79 48 | 99.42 15 | 97.83 159 | 94.40 165 | 99.78 47 | 95.91 98 | 99.76 44 | 99.46 66 |
|
Anonymous20231206 | | | 95.27 205 | 95.06 203 | 95.88 230 | 98.72 122 | 89.37 256 | 95.70 181 | 97.85 239 | 88.00 305 | 96.98 194 | 97.62 180 | 91.95 224 | 99.34 239 | 89.21 298 | 99.53 105 | 98.94 181 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 55 | 98.72 122 | 96.04 77 | 98.07 52 | 99.10 33 | 95.96 131 | 98.59 58 | 98.69 63 | 96.94 58 | 99.81 36 | 96.64 64 | 99.58 87 | 99.57 34 |
|
UniMVSNet_NR-MVSNet | | | 97.83 68 | 97.65 71 | 98.37 61 | 98.72 122 | 95.78 84 | 95.66 185 | 99.02 54 | 98.11 40 | 98.31 90 | 97.69 176 | 94.65 156 | 99.85 26 | 97.02 59 | 99.71 58 | 99.48 61 |
|
tttt0517 | | | 93.31 276 | 92.56 283 | 95.57 241 | 98.71 125 | 87.86 284 | 97.44 91 | 87.17 368 | 95.79 143 | 97.47 163 | 96.84 241 | 64.12 369 | 99.81 36 | 96.20 81 | 99.32 179 | 99.02 172 |
|
v8 | | | 97.60 86 | 98.06 38 | 96.23 213 | 98.71 125 | 89.44 255 | 97.43 93 | 98.82 116 | 97.29 80 | 98.74 49 | 99.10 35 | 93.86 177 | 99.68 128 | 98.61 10 | 99.94 8 | 99.56 37 |
|
HQP_MVS | | | 96.66 149 | 96.33 159 | 97.68 120 | 98.70 127 | 94.29 151 | 96.50 137 | 98.75 127 | 96.36 109 | 96.16 237 | 96.77 247 | 91.91 228 | 99.46 200 | 92.59 230 | 99.20 195 | 99.28 117 |
|
plane_prior7 | | | | | | 98.70 127 | 94.67 139 | | | | | | | | | | |
|
Anonymous20240529 | | | 97.96 47 | 98.04 39 | 97.71 115 | 98.69 129 | 94.28 154 | 97.86 63 | 98.31 196 | 98.79 22 | 99.23 26 | 98.86 53 | 95.76 116 | 99.61 160 | 95.49 121 | 99.36 162 | 99.23 129 |
|
VDD-MVS | | | 97.37 103 | 97.25 104 | 97.74 113 | 98.69 129 | 94.50 145 | 97.04 114 | 95.61 311 | 98.59 26 | 98.51 63 | 98.72 60 | 92.54 210 | 99.58 164 | 96.02 90 | 99.49 123 | 99.12 153 |
|
DROMVSNet | | | 97.90 61 | 97.94 46 | 97.79 109 | 98.66 131 | 95.14 122 | 98.31 34 | 99.66 3 | 97.57 63 | 95.95 246 | 97.01 232 | 96.99 55 | 99.82 33 | 97.66 33 | 99.64 70 | 98.39 245 |
|
HPM-MVS++ |  | | 96.99 120 | 96.38 156 | 98.81 29 | 98.64 132 | 97.59 24 | 95.97 168 | 98.20 206 | 95.51 155 | 95.06 270 | 96.53 261 | 94.10 172 | 99.70 113 | 94.29 187 | 99.15 201 | 99.13 148 |
|
ab-mvs | | | 96.59 151 | 96.59 142 | 96.60 192 | 98.64 132 | 92.21 209 | 98.35 30 | 97.67 251 | 94.45 194 | 96.99 192 | 98.79 55 | 94.96 147 | 99.49 191 | 90.39 282 | 99.07 216 | 98.08 273 |
|
F-COLMAP | | | 95.30 204 | 94.38 239 | 98.05 94 | 98.64 132 | 96.04 77 | 95.61 191 | 98.66 151 | 89.00 293 | 93.22 324 | 96.40 269 | 92.90 198 | 99.35 237 | 87.45 324 | 97.53 308 | 98.77 212 |
|
ITE_SJBPF | | | | | 97.85 106 | 98.64 132 | 96.66 55 | | 98.51 169 | 95.63 149 | 97.22 171 | 97.30 212 | 95.52 124 | 98.55 335 | 90.97 259 | 98.90 233 | 98.34 253 |
|
v148 | | | 96.58 153 | 96.97 122 | 95.42 250 | 98.63 136 | 87.57 291 | 95.09 222 | 97.90 236 | 95.91 136 | 98.24 97 | 97.96 142 | 93.42 187 | 99.39 226 | 96.04 88 | 99.52 110 | 99.29 116 |
|
ETH3D-3000-0.1 | | | 96.89 130 | 96.46 154 | 98.16 81 | 98.62 137 | 95.69 88 | 95.96 169 | 98.98 68 | 93.36 226 | 97.04 188 | 97.31 211 | 94.93 148 | 99.63 146 | 92.60 228 | 99.34 170 | 99.17 138 |
|
UnsupCasMVSNet_bld | | | 94.72 230 | 94.26 241 | 96.08 220 | 98.62 137 | 90.54 243 | 93.38 296 | 98.05 231 | 90.30 281 | 97.02 190 | 96.80 246 | 89.54 257 | 99.16 272 | 88.44 309 | 96.18 336 | 98.56 231 |
|
DP-MVS | | | 97.87 64 | 97.89 50 | 97.81 108 | 98.62 137 | 94.82 131 | 97.13 109 | 98.79 118 | 98.98 17 | 98.74 49 | 98.49 77 | 95.80 115 | 99.49 191 | 95.04 155 | 99.44 137 | 99.11 157 |
|
v10 | | | 97.55 89 | 97.97 43 | 96.31 210 | 98.60 140 | 89.64 251 | 97.44 91 | 99.02 54 | 96.60 97 | 98.72 51 | 99.16 30 | 93.48 186 | 99.72 90 | 98.76 6 | 99.92 14 | 99.58 29 |
|
Test_1112_low_res | | | 93.53 272 | 92.86 272 | 95.54 245 | 98.60 140 | 88.86 265 | 92.75 308 | 98.69 144 | 82.66 346 | 92.65 334 | 96.92 238 | 84.75 296 | 99.56 171 | 90.94 260 | 97.76 294 | 98.19 269 |
|
V42 | | | 97.04 118 | 97.16 111 | 96.68 190 | 98.59 142 | 91.05 230 | 96.33 146 | 98.36 188 | 94.60 189 | 97.99 126 | 98.30 96 | 93.32 188 | 99.62 154 | 97.40 44 | 99.53 105 | 99.38 90 |
|
1112_ss | | | 94.12 255 | 93.42 262 | 96.23 213 | 98.59 142 | 90.85 234 | 94.24 260 | 98.85 96 | 85.49 327 | 92.97 327 | 94.94 315 | 86.01 288 | 99.64 144 | 91.78 243 | 97.92 288 | 98.20 268 |
|
v2v482 | | | 96.78 138 | 97.06 118 | 95.95 226 | 98.57 144 | 88.77 268 | 95.36 203 | 98.26 199 | 95.18 168 | 97.85 144 | 98.23 109 | 92.58 207 | 99.63 146 | 97.80 27 | 99.69 62 | 99.45 71 |
|
WR-MVS | | | 96.90 128 | 96.81 132 | 97.16 161 | 98.56 145 | 92.20 211 | 94.33 255 | 98.12 221 | 97.34 77 | 98.20 100 | 97.33 209 | 92.81 199 | 99.75 69 | 94.79 165 | 99.81 33 | 99.54 40 |
|
APD-MVS |  | | 97.00 119 | 96.53 149 | 98.41 58 | 98.55 146 | 96.31 68 | 96.32 147 | 98.77 123 | 92.96 247 | 97.44 166 | 97.58 184 | 95.84 106 | 99.74 79 | 91.96 236 | 99.35 167 | 99.19 135 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
Patchmatch-RL test | | | 94.66 234 | 94.49 233 | 95.19 257 | 98.54 147 | 88.91 263 | 92.57 312 | 98.74 129 | 91.46 268 | 98.32 88 | 97.75 168 | 77.31 333 | 98.81 310 | 96.06 85 | 99.61 79 | 97.85 292 |
|
9.14 | | | | 96.69 138 | | 98.53 148 | | 96.02 164 | 98.98 68 | 93.23 231 | 97.18 175 | 97.46 193 | 96.47 89 | 99.62 154 | 92.99 225 | 99.32 179 | |
|
baseline | | | 97.44 98 | 97.78 60 | 96.43 203 | 98.52 149 | 90.75 238 | 96.84 121 | 99.03 52 | 96.51 102 | 97.86 143 | 98.02 136 | 96.67 75 | 99.36 234 | 97.09 56 | 99.47 129 | 99.19 135 |
|
casdiffmvs | | | 97.50 93 | 97.81 56 | 96.56 197 | 98.51 150 | 91.04 231 | 95.83 177 | 99.09 38 | 97.23 81 | 98.33 87 | 98.30 96 | 97.03 52 | 99.37 232 | 96.58 68 | 99.38 158 | 99.28 117 |
|
IterMVS-LS | | | 96.92 126 | 97.29 101 | 95.79 233 | 98.51 150 | 88.13 280 | 95.10 220 | 98.66 151 | 96.99 85 | 98.46 70 | 98.68 64 | 92.55 208 | 99.74 79 | 96.91 62 | 99.79 38 | 99.50 47 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS Recon | | | 95.55 191 | 95.13 198 | 96.80 182 | 98.51 150 | 93.99 164 | 94.60 247 | 98.69 144 | 90.20 282 | 95.78 255 | 96.21 279 | 92.73 202 | 98.98 295 | 90.58 276 | 98.86 239 | 97.42 309 |
|
h-mvs33 | | | 96.29 163 | 95.63 186 | 98.26 72 | 98.50 153 | 96.11 75 | 96.90 119 | 97.09 277 | 96.58 99 | 97.21 173 | 98.19 114 | 84.14 299 | 99.78 47 | 95.89 99 | 96.17 337 | 98.89 194 |
|
test20.03 | | | 96.58 153 | 96.61 141 | 96.48 201 | 98.49 154 | 91.72 223 | 95.68 184 | 97.69 250 | 96.81 91 | 98.27 94 | 97.92 150 | 94.18 171 | 98.71 319 | 90.78 266 | 99.66 67 | 99.00 173 |
|
plane_prior1 | | | | | | 98.49 154 | | | | | | | | | | | |
|
xxxxxxxxxxxxxcwj | | | 97.24 112 | 97.03 120 | 97.89 102 | 98.48 156 | 94.71 135 | 94.53 250 | 99.07 42 | 95.02 176 | 97.83 145 | 97.88 154 | 96.44 91 | 99.72 90 | 94.59 175 | 99.39 156 | 99.25 126 |
|
save fliter | | | | | | 98.48 156 | 94.71 135 | 94.53 250 | 98.41 181 | 95.02 176 | | | | | | | |
|
CS-MVS-test | | | 97.69 79 | 97.49 90 | 98.31 67 | 98.48 156 | 96.61 57 | 97.21 104 | 99.53 8 | 98.10 41 | 96.05 241 | 95.33 308 | 95.49 125 | 99.86 22 | 97.49 40 | 99.74 50 | 98.45 241 |
|
MDA-MVSNet-bldmvs | | | 95.69 185 | 95.67 184 | 95.74 235 | 98.48 156 | 88.76 269 | 92.84 305 | 97.25 269 | 96.00 129 | 97.59 151 | 97.95 146 | 91.38 233 | 99.46 200 | 93.16 223 | 96.35 334 | 98.99 176 |
|
UnsupCasMVSNet_eth | | | 95.91 179 | 95.73 183 | 96.44 202 | 98.48 156 | 91.52 226 | 95.31 208 | 98.45 173 | 95.76 144 | 97.48 161 | 97.54 185 | 89.53 259 | 98.69 321 | 94.43 179 | 94.61 352 | 99.13 148 |
|
testtj | | | 96.69 146 | 96.13 165 | 98.36 62 | 98.46 161 | 96.02 79 | 96.44 139 | 98.70 141 | 94.26 201 | 96.79 202 | 97.13 220 | 94.07 173 | 99.75 69 | 90.53 277 | 98.80 245 | 99.31 108 |
|
CS-MVS | | | 98.08 39 | 98.01 41 | 98.29 71 | 98.46 161 | 96.58 60 | 98.53 22 | 99.69 2 | 98.07 42 | 96.04 242 | 97.18 218 | 96.88 66 | 99.86 22 | 97.48 41 | 99.74 50 | 98.43 242 |
|
ZD-MVS | | | | | | 98.43 163 | 95.94 81 | | 98.56 164 | 90.72 277 | 96.66 210 | 97.07 226 | 95.02 144 | 99.74 79 | 91.08 256 | 98.93 231 | |
|
thisisatest0530 | | | 92.71 285 | 91.76 293 | 95.56 243 | 98.42 164 | 88.23 275 | 96.03 163 | 87.35 367 | 94.04 210 | 96.56 216 | 95.47 306 | 64.03 370 | 99.77 57 | 94.78 167 | 99.11 210 | 98.68 222 |
|
v1144 | | | 96.84 131 | 97.08 116 | 96.13 219 | 98.42 164 | 89.28 258 | 95.41 199 | 98.67 149 | 94.21 203 | 97.97 130 | 98.31 92 | 93.06 193 | 99.65 141 | 98.06 19 | 99.62 73 | 99.45 71 |
|
plane_prior6 | | | | | | 98.38 166 | 94.37 149 | | | | | | 91.91 228 | | | | |
|
FPMVS | | | 89.92 319 | 88.63 327 | 93.82 299 | 98.37 167 | 96.94 47 | 91.58 328 | 93.34 333 | 88.00 305 | 90.32 352 | 97.10 224 | 70.87 361 | 91.13 373 | 71.91 371 | 96.16 338 | 93.39 363 |
|
PAPM_NR | | | 94.61 237 | 94.17 246 | 95.96 224 | 98.36 168 | 91.23 228 | 95.93 172 | 97.95 233 | 92.98 243 | 93.42 321 | 94.43 327 | 90.53 242 | 98.38 345 | 87.60 320 | 96.29 335 | 98.27 262 |
|
MVS_111021_HR | | | 96.73 142 | 96.54 148 | 97.27 156 | 98.35 169 | 93.66 179 | 93.42 293 | 98.36 188 | 94.74 184 | 96.58 214 | 96.76 249 | 96.54 83 | 98.99 293 | 94.87 161 | 99.27 188 | 99.15 142 |
|
TAMVS | | | 95.49 193 | 94.94 206 | 97.16 161 | 98.31 170 | 93.41 185 | 95.07 225 | 96.82 287 | 91.09 274 | 97.51 155 | 97.82 162 | 89.96 252 | 99.42 210 | 88.42 310 | 99.44 137 | 98.64 223 |
|
OMC-MVS | | | 96.48 157 | 96.00 172 | 97.91 101 | 98.30 171 | 96.01 80 | 94.86 237 | 98.60 159 | 91.88 262 | 97.18 175 | 97.21 217 | 96.11 100 | 99.04 287 | 90.49 281 | 99.34 170 | 98.69 220 |
|
新几何1 | | | | | 97.25 159 | 98.29 172 | 94.70 138 | | 97.73 247 | 77.98 363 | 94.83 277 | 96.67 254 | 92.08 221 | 99.45 204 | 88.17 314 | 98.65 260 | 97.61 303 |
|
jason | | | 94.39 246 | 94.04 250 | 95.41 252 | 98.29 172 | 87.85 286 | 92.74 310 | 96.75 290 | 85.38 332 | 95.29 266 | 96.15 281 | 88.21 272 | 99.65 141 | 94.24 189 | 99.34 170 | 98.74 214 |
jason: jason. |
v1192 | | | 96.83 134 | 97.06 118 | 96.15 218 | 98.28 174 | 89.29 257 | 95.36 203 | 98.77 123 | 93.73 217 | 98.11 111 | 98.34 89 | 93.02 197 | 99.67 133 | 98.35 14 | 99.58 87 | 99.50 47 |
|
CDPH-MVS | | | 95.45 198 | 94.65 222 | 97.84 107 | 98.28 174 | 94.96 127 | 93.73 285 | 98.33 193 | 85.03 335 | 95.44 263 | 96.60 257 | 95.31 134 | 99.44 207 | 90.01 287 | 99.13 206 | 99.11 157 |
|
MVS_111021_LR | | | 96.82 135 | 96.55 146 | 97.62 123 | 98.27 176 | 95.34 111 | 93.81 283 | 98.33 193 | 94.59 191 | 96.56 216 | 96.63 256 | 96.61 79 | 98.73 317 | 94.80 164 | 99.34 170 | 98.78 209 |
|
CLD-MVS | | | 95.47 196 | 95.07 201 | 96.69 189 | 98.27 176 | 92.53 202 | 91.36 331 | 98.67 149 | 91.22 273 | 95.78 255 | 94.12 331 | 95.65 120 | 98.98 295 | 90.81 264 | 99.72 55 | 98.57 230 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
1121 | | | 94.26 248 | 93.26 265 | 97.27 156 | 98.26 178 | 94.73 133 | 95.86 174 | 97.71 249 | 77.96 364 | 94.53 284 | 96.71 251 | 91.93 226 | 99.40 221 | 87.71 316 | 98.64 261 | 97.69 300 |
|
Anonymous202405211 | | | 96.34 162 | 95.98 174 | 97.43 146 | 98.25 179 | 93.85 169 | 96.74 127 | 94.41 324 | 97.72 56 | 98.37 77 | 98.03 135 | 87.15 282 | 99.53 180 | 94.06 196 | 99.07 216 | 98.92 189 |
|
pmmvs-eth3d | | | 96.49 156 | 96.18 164 | 97.42 147 | 98.25 179 | 94.29 151 | 94.77 242 | 98.07 229 | 89.81 286 | 97.97 130 | 98.33 90 | 93.11 192 | 99.08 283 | 95.46 127 | 99.84 29 | 98.89 194 |
|
v144192 | | | 96.69 146 | 96.90 129 | 96.03 221 | 98.25 179 | 88.92 262 | 95.49 193 | 98.77 123 | 93.05 240 | 98.09 115 | 98.29 100 | 92.51 212 | 99.70 113 | 98.11 17 | 99.56 93 | 99.47 64 |
|
ambc | | | | | 96.56 197 | 98.23 182 | 91.68 224 | 97.88 62 | 98.13 220 | | 98.42 73 | 98.56 72 | 94.22 170 | 99.04 287 | 94.05 199 | 99.35 167 | 98.95 179 |
|
thres100view900 | | | 91.76 301 | 91.26 300 | 93.26 310 | 98.21 183 | 84.50 333 | 96.39 141 | 90.39 358 | 96.87 89 | 96.33 226 | 93.08 340 | 73.44 353 | 99.42 210 | 78.85 362 | 97.74 295 | 95.85 344 |
|
v1921920 | | | 96.72 143 | 96.96 124 | 95.99 222 | 98.21 183 | 88.79 267 | 95.42 197 | 98.79 118 | 93.22 232 | 98.19 103 | 98.26 106 | 92.68 203 | 99.70 113 | 98.34 15 | 99.55 99 | 99.49 55 |
|
thres600view7 | | | 92.03 297 | 91.43 295 | 93.82 299 | 98.19 185 | 84.61 332 | 96.27 148 | 90.39 358 | 96.81 91 | 96.37 225 | 93.11 336 | 73.44 353 | 99.49 191 | 80.32 358 | 97.95 287 | 97.36 310 |
|
PatchMatch-RL | | | 94.61 237 | 93.81 257 | 97.02 171 | 98.19 185 | 95.72 86 | 93.66 286 | 97.23 270 | 88.17 303 | 94.94 275 | 95.62 302 | 91.43 232 | 98.57 332 | 87.36 325 | 97.68 301 | 96.76 331 |
|
LF4IMVS | | | 96.07 172 | 95.63 186 | 97.36 152 | 98.19 185 | 95.55 95 | 95.44 195 | 98.82 116 | 92.29 256 | 95.70 259 | 96.55 259 | 92.63 206 | 98.69 321 | 91.75 245 | 99.33 177 | 97.85 292 |
|
v1240 | | | 96.74 140 | 97.02 121 | 95.91 229 | 98.18 188 | 88.52 270 | 95.39 201 | 98.88 87 | 93.15 238 | 98.46 70 | 98.40 86 | 92.80 200 | 99.71 104 | 98.45 13 | 99.49 123 | 99.49 55 |
|
TAPA-MVS | | 93.32 12 | 94.93 218 | 94.23 242 | 97.04 169 | 98.18 188 | 94.51 143 | 95.22 216 | 98.73 131 | 81.22 352 | 96.25 233 | 95.95 293 | 93.80 180 | 98.98 295 | 89.89 289 | 98.87 237 | 97.62 302 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test222 | | | | | | 98.17 190 | 93.24 189 | 92.74 310 | 97.61 261 | 75.17 368 | 94.65 281 | 96.69 253 | 90.96 238 | | | 98.66 258 | 97.66 301 |
|
MIMVSNet | | | 93.42 273 | 92.86 272 | 95.10 260 | 98.17 190 | 88.19 276 | 98.13 49 | 93.69 327 | 92.07 257 | 95.04 273 | 98.21 113 | 80.95 315 | 99.03 290 | 81.42 356 | 98.06 284 | 98.07 275 |
|
原ACMM1 | | | | | 96.58 194 | 98.16 192 | 92.12 213 | | 98.15 217 | 85.90 323 | 93.49 316 | 96.43 266 | 92.47 213 | 99.38 229 | 87.66 319 | 98.62 262 | 98.23 265 |
|
testdata | | | | | 95.70 238 | 98.16 192 | 90.58 240 | | 97.72 248 | 80.38 355 | 95.62 260 | 97.02 230 | 92.06 222 | 98.98 295 | 89.06 302 | 98.52 267 | 97.54 305 |
|
MVP-Stereo | | | 95.69 185 | 95.28 194 | 96.92 174 | 98.15 194 | 93.03 193 | 95.64 190 | 98.20 206 | 90.39 280 | 96.63 213 | 97.73 171 | 91.63 231 | 99.10 281 | 91.84 242 | 97.31 316 | 98.63 225 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
SD-MVS | | | 97.37 103 | 97.70 64 | 96.35 207 | 98.14 195 | 95.13 123 | 96.54 136 | 98.92 78 | 95.94 133 | 99.19 28 | 98.08 125 | 97.74 22 | 95.06 370 | 95.24 140 | 99.54 102 | 98.87 200 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
EU-MVSNet | | | 94.25 249 | 94.47 235 | 93.60 304 | 98.14 195 | 82.60 345 | 97.24 102 | 92.72 340 | 85.08 333 | 98.48 67 | 98.94 46 | 82.59 306 | 98.76 315 | 97.47 42 | 99.53 105 | 99.44 81 |
|
NP-MVS | | | | | | 98.14 195 | 93.72 175 | | | | | 95.08 311 | | | | | |
|
LCM-MVSNet-Re | | | 97.33 106 | 97.33 99 | 97.32 154 | 98.13 198 | 93.79 172 | 96.99 117 | 99.65 4 | 96.74 93 | 99.47 13 | 98.93 47 | 96.91 63 | 99.84 29 | 90.11 285 | 99.06 219 | 98.32 254 |
|
ETH3 D test6400 | | | 94.77 225 | 93.87 256 | 97.47 139 | 98.12 199 | 93.73 174 | 94.56 249 | 98.70 141 | 85.45 330 | 94.70 280 | 95.93 295 | 91.77 230 | 99.63 146 | 86.45 330 | 99.14 202 | 99.05 168 |
|
3Dnovator+ | | 96.13 3 | 97.73 76 | 97.59 81 | 98.15 84 | 98.11 200 | 95.60 94 | 98.04 53 | 98.70 141 | 98.13 39 | 96.93 197 | 98.45 80 | 95.30 135 | 99.62 154 | 95.64 114 | 98.96 225 | 99.24 128 |
|
VNet | | | 96.84 131 | 96.83 131 | 96.88 177 | 98.06 201 | 92.02 216 | 96.35 145 | 97.57 262 | 97.70 58 | 97.88 139 | 97.80 164 | 92.40 214 | 99.54 178 | 94.73 170 | 98.96 225 | 99.08 162 |
|
test_part1 | | | 96.77 139 | 96.53 149 | 97.47 139 | 98.04 202 | 92.92 196 | 97.93 58 | 98.85 96 | 98.83 21 | 99.30 21 | 99.07 38 | 79.25 320 | 99.79 43 | 97.59 35 | 99.93 10 | 99.69 20 |
|
LFMVS | | | 95.32 203 | 94.88 211 | 96.62 191 | 98.03 203 | 91.47 227 | 97.65 76 | 90.72 357 | 99.11 9 | 97.89 138 | 98.31 92 | 79.20 321 | 99.48 194 | 93.91 205 | 99.12 209 | 98.93 185 |
|
tfpn200view9 | | | 91.55 303 | 91.00 302 | 93.21 313 | 98.02 204 | 84.35 335 | 95.70 181 | 90.79 355 | 96.26 113 | 95.90 251 | 92.13 353 | 73.62 350 | 99.42 210 | 78.85 362 | 97.74 295 | 95.85 344 |
|
thres400 | | | 91.68 302 | 91.00 302 | 93.71 302 | 98.02 204 | 84.35 335 | 95.70 181 | 90.79 355 | 96.26 113 | 95.90 251 | 92.13 353 | 73.62 350 | 99.42 210 | 78.85 362 | 97.74 295 | 97.36 310 |
|
OPU-MVS | | | | | 97.64 122 | 98.01 206 | 95.27 114 | 96.79 124 | | | | 97.35 207 | 96.97 56 | 98.51 338 | 91.21 255 | 99.25 190 | 99.14 145 |
|
xiu_mvs_v1_base_debu | | | 95.62 188 | 95.96 175 | 94.60 281 | 98.01 206 | 88.42 271 | 93.99 274 | 98.21 203 | 92.98 243 | 95.91 248 | 94.53 323 | 96.39 93 | 99.72 90 | 95.43 131 | 98.19 278 | 95.64 348 |
|
xiu_mvs_v1_base | | | 95.62 188 | 95.96 175 | 94.60 281 | 98.01 206 | 88.42 271 | 93.99 274 | 98.21 203 | 92.98 243 | 95.91 248 | 94.53 323 | 96.39 93 | 99.72 90 | 95.43 131 | 98.19 278 | 95.64 348 |
|
xiu_mvs_v1_base_debi | | | 95.62 188 | 95.96 175 | 94.60 281 | 98.01 206 | 88.42 271 | 93.99 274 | 98.21 203 | 92.98 243 | 95.91 248 | 94.53 323 | 96.39 93 | 99.72 90 | 95.43 131 | 98.19 278 | 95.64 348 |
|
CNVR-MVS | | | 96.92 126 | 96.55 146 | 98.03 95 | 98.00 210 | 95.54 96 | 94.87 236 | 98.17 212 | 94.60 189 | 96.38 224 | 97.05 228 | 95.67 119 | 99.36 234 | 95.12 152 | 99.08 214 | 99.19 135 |
|
PLC |  | 91.02 16 | 94.05 259 | 92.90 271 | 97.51 131 | 98.00 210 | 95.12 124 | 94.25 259 | 98.25 200 | 86.17 319 | 91.48 345 | 95.25 309 | 91.01 236 | 99.19 266 | 85.02 343 | 96.69 328 | 98.22 266 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
GBi-Net | | | 96.99 120 | 96.80 133 | 97.56 126 | 97.96 212 | 93.67 176 | 98.23 40 | 98.66 151 | 95.59 152 | 97.99 126 | 99.19 24 | 89.51 260 | 99.73 85 | 94.60 172 | 99.44 137 | 99.30 109 |
|
test1 | | | 96.99 120 | 96.80 133 | 97.56 126 | 97.96 212 | 93.67 176 | 98.23 40 | 98.66 151 | 95.59 152 | 97.99 126 | 99.19 24 | 89.51 260 | 99.73 85 | 94.60 172 | 99.44 137 | 99.30 109 |
|
FMVSNet2 | | | 96.72 143 | 96.67 140 | 96.87 178 | 97.96 212 | 91.88 219 | 97.15 106 | 98.06 230 | 95.59 152 | 98.50 65 | 98.62 68 | 89.51 260 | 99.65 141 | 94.99 159 | 99.60 83 | 99.07 164 |
|
BH-untuned | | | 94.69 231 | 94.75 219 | 94.52 286 | 97.95 215 | 87.53 292 | 94.07 271 | 97.01 280 | 93.99 211 | 97.10 181 | 95.65 300 | 92.65 205 | 98.95 300 | 87.60 320 | 96.74 327 | 97.09 314 |
|
ETH3D cwj APD-0.16 | | | 96.23 166 | 95.61 188 | 98.09 88 | 97.91 216 | 95.65 93 | 94.94 233 | 98.74 129 | 91.31 271 | 96.02 244 | 97.08 225 | 94.05 174 | 99.69 121 | 91.51 248 | 98.94 229 | 98.93 185 |
|
DPM-MVS | | | 93.68 267 | 92.77 278 | 96.42 204 | 97.91 216 | 92.54 201 | 91.17 338 | 97.47 266 | 84.99 336 | 93.08 326 | 94.74 319 | 89.90 253 | 99.00 291 | 87.54 322 | 98.09 283 | 97.72 298 |
|
QAPM | | | 95.88 181 | 95.57 189 | 96.80 182 | 97.90 218 | 91.84 221 | 98.18 47 | 98.73 131 | 88.41 299 | 96.42 222 | 98.13 119 | 94.73 150 | 99.75 69 | 88.72 305 | 98.94 229 | 98.81 205 |
|
TinyColmap | | | 96.00 177 | 96.34 158 | 94.96 265 | 97.90 218 | 87.91 283 | 94.13 269 | 98.49 170 | 94.41 195 | 98.16 105 | 97.76 165 | 96.29 98 | 98.68 324 | 90.52 278 | 99.42 148 | 98.30 258 |
|
HQP-NCC | | | | | | 97.85 220 | | 94.26 256 | | 93.18 234 | 92.86 329 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 220 | | 94.26 256 | | 93.18 234 | 92.86 329 | | | | | | |
|
N_pmnet | | | 95.18 208 | 94.23 242 | 98.06 91 | 97.85 220 | 96.55 61 | 92.49 314 | 91.63 348 | 89.34 289 | 98.09 115 | 97.41 197 | 90.33 245 | 99.06 285 | 91.58 247 | 99.31 181 | 98.56 231 |
|
HQP-MVS | | | 95.17 210 | 94.58 230 | 96.92 174 | 97.85 220 | 92.47 203 | 94.26 256 | 98.43 176 | 93.18 234 | 92.86 329 | 95.08 311 | 90.33 245 | 99.23 263 | 90.51 279 | 98.74 251 | 99.05 168 |
|
hse-mvs2 | | | 95.77 184 | 95.09 200 | 97.79 109 | 97.84 224 | 95.51 98 | 95.66 185 | 95.43 316 | 96.58 99 | 97.21 173 | 96.16 280 | 84.14 299 | 99.54 178 | 95.89 99 | 96.92 320 | 98.32 254 |
|
TEST9 | | | | | | 97.84 224 | 95.23 116 | 93.62 287 | 98.39 184 | 86.81 315 | 93.78 303 | 95.99 288 | 94.68 154 | 99.52 184 | | | |
|
train_agg | | | 95.46 197 | 94.66 221 | 97.88 104 | 97.84 224 | 95.23 116 | 93.62 287 | 98.39 184 | 87.04 313 | 93.78 303 | 95.99 288 | 94.58 159 | 99.52 184 | 91.76 244 | 98.90 233 | 98.89 194 |
|
MSLP-MVS++ | | | 96.42 161 | 96.71 137 | 95.57 241 | 97.82 227 | 90.56 242 | 95.71 180 | 98.84 101 | 94.72 185 | 96.71 208 | 97.39 202 | 94.91 149 | 98.10 356 | 95.28 137 | 99.02 221 | 98.05 282 |
|
test_8 | | | | | | 97.81 228 | 95.07 125 | 93.54 290 | 98.38 186 | 87.04 313 | 93.71 307 | 95.96 292 | 94.58 159 | 99.52 184 | | | |
|
NCCC | | | 96.52 155 | 95.99 173 | 98.10 87 | 97.81 228 | 95.68 90 | 95.00 231 | 98.20 206 | 95.39 160 | 95.40 265 | 96.36 272 | 93.81 179 | 99.45 204 | 93.55 215 | 98.42 271 | 99.17 138 |
|
WTY-MVS | | | 93.55 271 | 93.00 270 | 95.19 257 | 97.81 228 | 87.86 284 | 93.89 279 | 96.00 301 | 89.02 292 | 94.07 296 | 95.44 307 | 86.27 286 | 99.33 242 | 87.69 318 | 96.82 324 | 98.39 245 |
|
CNLPA | | | 95.04 214 | 94.47 235 | 96.75 185 | 97.81 228 | 95.25 115 | 94.12 270 | 97.89 237 | 94.41 195 | 94.57 282 | 95.69 298 | 90.30 248 | 98.35 348 | 86.72 329 | 98.76 249 | 96.64 334 |
|
AUN-MVS | | | 93.95 262 | 92.69 279 | 97.74 113 | 97.80 232 | 95.38 106 | 95.57 192 | 95.46 315 | 91.26 272 | 92.64 335 | 96.10 286 | 74.67 344 | 99.55 175 | 93.72 211 | 96.97 319 | 98.30 258 |
|
EIA-MVS | | | 96.04 174 | 95.77 182 | 96.85 179 | 97.80 232 | 92.98 194 | 96.12 158 | 99.16 22 | 94.65 187 | 93.77 305 | 91.69 358 | 95.68 118 | 99.67 133 | 94.18 191 | 98.85 241 | 97.91 290 |
|
agg_prior1 | | | 95.39 200 | 94.60 227 | 97.75 112 | 97.80 232 | 94.96 127 | 93.39 295 | 98.36 188 | 87.20 311 | 93.49 316 | 95.97 291 | 94.65 156 | 99.53 180 | 91.69 246 | 98.86 239 | 98.77 212 |
|
agg_prior | | | | | | 97.80 232 | 94.96 127 | | 98.36 188 | | 93.49 316 | | | 99.53 180 | | | |
|
旧先验1 | | | | | | 97.80 232 | 93.87 167 | | 97.75 246 | | | 97.04 229 | 93.57 185 | | | 98.68 255 | 98.72 217 |
|
PCF-MVS | | 89.43 18 | 92.12 296 | 90.64 310 | 96.57 196 | 97.80 232 | 93.48 184 | 89.88 355 | 98.45 173 | 74.46 369 | 96.04 242 | 95.68 299 | 90.71 241 | 99.31 246 | 73.73 368 | 99.01 223 | 96.91 322 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
test_prior3 | | | 95.91 179 | 95.39 192 | 97.46 142 | 97.79 238 | 94.26 155 | 93.33 298 | 98.42 179 | 94.21 203 | 94.02 298 | 96.25 276 | 93.64 183 | 99.34 239 | 91.90 238 | 98.96 225 | 98.79 207 |
|
test_prior | | | | | 97.46 142 | 97.79 238 | 94.26 155 | | 98.42 179 | | | | | 99.34 239 | | | 98.79 207 |
|
PVSNet_BlendedMVS | | | 95.02 217 | 94.93 208 | 95.27 254 | 97.79 238 | 87.40 295 | 94.14 268 | 98.68 146 | 88.94 294 | 94.51 285 | 98.01 138 | 93.04 194 | 99.30 249 | 89.77 291 | 99.49 123 | 99.11 157 |
|
PVSNet_Blended | | | 93.96 260 | 93.65 259 | 94.91 266 | 97.79 238 | 87.40 295 | 91.43 330 | 98.68 146 | 84.50 340 | 94.51 285 | 94.48 326 | 93.04 194 | 99.30 249 | 89.77 291 | 98.61 263 | 98.02 285 |
|
USDC | | | 94.56 239 | 94.57 232 | 94.55 285 | 97.78 242 | 86.43 310 | 92.75 308 | 98.65 156 | 85.96 321 | 96.91 199 | 97.93 149 | 90.82 239 | 98.74 316 | 90.71 271 | 99.59 85 | 98.47 238 |
|
alignmvs | | | 96.01 176 | 95.52 190 | 97.50 134 | 97.77 243 | 94.71 135 | 96.07 160 | 96.84 285 | 97.48 69 | 96.78 206 | 94.28 330 | 85.50 291 | 99.40 221 | 96.22 80 | 98.73 254 | 98.40 243 |
|
ETV-MVS | | | 96.13 171 | 95.90 178 | 96.82 181 | 97.76 244 | 93.89 166 | 95.40 200 | 98.95 75 | 95.87 138 | 95.58 262 | 91.00 364 | 96.36 96 | 99.72 90 | 93.36 216 | 98.83 243 | 96.85 325 |
|
D2MVS | | | 95.18 208 | 95.17 197 | 95.21 256 | 97.76 244 | 87.76 289 | 94.15 266 | 97.94 234 | 89.77 287 | 96.99 192 | 97.68 177 | 87.45 280 | 99.14 274 | 95.03 157 | 99.81 33 | 98.74 214 |
|
DVP-MVS++ | | | 97.96 47 | 97.90 47 | 98.12 86 | 97.75 246 | 95.40 104 | 99.03 7 | 98.89 81 | 96.62 95 | 98.62 53 | 98.30 96 | 96.97 56 | 99.75 69 | 95.70 106 | 99.25 190 | 99.21 131 |
|
MSC_two_6792asdad | | | | | 98.22 77 | 97.75 246 | 95.34 111 | | 98.16 215 | | | | | 99.75 69 | 95.87 101 | 99.51 115 | 99.57 34 |
|
No_MVS | | | | | 98.22 77 | 97.75 246 | 95.34 111 | | 98.16 215 | | | | | 99.75 69 | 95.87 101 | 99.51 115 | 99.57 34 |
|
TSAR-MVS + GP. | | | 96.47 158 | 96.12 166 | 97.49 137 | 97.74 249 | 95.23 116 | 94.15 266 | 96.90 284 | 93.26 230 | 98.04 122 | 96.70 252 | 94.41 164 | 98.89 303 | 94.77 168 | 99.14 202 | 98.37 247 |
|
3Dnovator | | 96.53 2 | 97.61 85 | 97.64 74 | 97.50 134 | 97.74 249 | 93.65 180 | 98.49 24 | 98.88 87 | 96.86 90 | 97.11 180 | 98.55 73 | 95.82 109 | 99.73 85 | 95.94 96 | 99.42 148 | 99.13 148 |
|
sss | | | 94.22 250 | 93.72 258 | 95.74 235 | 97.71 251 | 89.95 247 | 93.84 280 | 96.98 281 | 88.38 301 | 93.75 306 | 95.74 297 | 87.94 273 | 98.89 303 | 91.02 258 | 98.10 282 | 98.37 247 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 140 | 96.51 152 | 97.44 145 | 97.69 252 | 94.15 158 | 96.02 164 | 98.43 176 | 93.17 237 | 97.30 169 | 97.38 204 | 95.48 127 | 99.28 255 | 93.74 209 | 99.34 170 | 98.88 198 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
IterMVS-SCA-FT | | | 95.86 182 | 96.19 163 | 94.85 271 | 97.68 253 | 85.53 318 | 92.42 316 | 97.63 259 | 96.99 85 | 98.36 80 | 98.54 74 | 87.94 273 | 99.75 69 | 97.07 58 | 99.08 214 | 99.27 121 |
|
MVSFormer | | | 96.14 170 | 96.36 157 | 95.49 247 | 97.68 253 | 87.81 287 | 98.67 13 | 99.02 54 | 96.50 103 | 94.48 287 | 96.15 281 | 86.90 283 | 99.92 5 | 98.73 7 | 99.13 206 | 98.74 214 |
|
lupinMVS | | | 93.77 263 | 93.28 264 | 95.24 255 | 97.68 253 | 87.81 287 | 92.12 321 | 96.05 299 | 84.52 339 | 94.48 287 | 95.06 313 | 86.90 283 | 99.63 146 | 93.62 214 | 99.13 206 | 98.27 262 |
|
Fast-Effi-MVS+ | | | 95.49 193 | 95.07 201 | 96.75 185 | 97.67 256 | 92.82 197 | 94.22 262 | 98.60 159 | 91.61 265 | 93.42 321 | 92.90 343 | 96.73 74 | 99.70 113 | 92.60 228 | 97.89 291 | 97.74 297 |
|
canonicalmvs | | | 97.23 113 | 97.21 109 | 97.30 155 | 97.65 257 | 94.39 147 | 97.84 64 | 99.05 45 | 97.42 71 | 96.68 209 | 93.85 333 | 97.63 26 | 99.33 242 | 96.29 79 | 98.47 270 | 98.18 270 |
|
CDS-MVSNet | | | 94.88 221 | 94.12 247 | 97.14 163 | 97.64 258 | 93.57 181 | 93.96 277 | 97.06 279 | 90.05 284 | 96.30 230 | 96.55 259 | 86.10 287 | 99.47 197 | 90.10 286 | 99.31 181 | 98.40 243 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
pmmvs5 | | | 94.63 236 | 94.34 240 | 95.50 246 | 97.63 259 | 88.34 274 | 94.02 272 | 97.13 275 | 87.15 312 | 95.22 268 | 97.15 219 | 87.50 279 | 99.27 257 | 93.99 201 | 99.26 189 | 98.88 198 |
|
test12 | | | | | 97.46 142 | 97.61 260 | 94.07 160 | | 97.78 245 | | 93.57 314 | | 93.31 189 | 99.42 210 | | 98.78 247 | 98.89 194 |
|
PMMVS2 | | | 93.66 268 | 94.07 248 | 92.45 329 | 97.57 261 | 80.67 355 | 86.46 364 | 96.00 301 | 93.99 211 | 97.10 181 | 97.38 204 | 89.90 253 | 97.82 358 | 88.76 304 | 99.47 129 | 98.86 201 |
|
BH-RMVSNet | | | 94.56 239 | 94.44 238 | 94.91 266 | 97.57 261 | 87.44 294 | 93.78 284 | 96.26 296 | 93.69 219 | 96.41 223 | 96.50 264 | 92.10 220 | 99.00 291 | 85.96 332 | 97.71 298 | 98.31 256 |
|
bset_n11_16_dypcd | | | 94.53 241 | 93.95 254 | 96.25 212 | 97.56 263 | 89.85 248 | 88.52 361 | 91.32 350 | 94.90 181 | 97.51 155 | 96.38 271 | 82.34 307 | 99.78 47 | 97.22 48 | 99.80 36 | 99.12 153 |
|
PVSNet | | 86.72 19 | 91.10 307 | 90.97 304 | 91.49 336 | 97.56 263 | 78.04 361 | 87.17 363 | 94.60 322 | 84.65 338 | 92.34 339 | 92.20 352 | 87.37 281 | 98.47 339 | 85.17 342 | 97.69 300 | 97.96 287 |
|
DELS-MVS | | | 96.17 169 | 96.23 161 | 95.99 222 | 97.55 265 | 90.04 245 | 92.38 318 | 98.52 167 | 94.13 206 | 96.55 218 | 97.06 227 | 94.99 145 | 99.58 164 | 95.62 115 | 99.28 186 | 98.37 247 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
IterMVS | | | 95.42 199 | 95.83 179 | 94.20 295 | 97.52 266 | 83.78 340 | 92.41 317 | 97.47 266 | 95.49 156 | 98.06 119 | 98.49 77 | 87.94 273 | 99.58 164 | 96.02 90 | 99.02 221 | 99.23 129 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CL-MVSNet_self_test | | | 95.04 214 | 94.79 218 | 95.82 232 | 97.51 267 | 89.79 249 | 91.14 339 | 96.82 287 | 93.05 240 | 96.72 207 | 96.40 269 | 90.82 239 | 99.16 272 | 91.95 237 | 98.66 258 | 98.50 236 |
|
new-patchmatchnet | | | 95.67 187 | 96.58 143 | 92.94 321 | 97.48 268 | 80.21 356 | 92.96 304 | 98.19 211 | 94.83 182 | 98.82 44 | 98.79 55 | 93.31 189 | 99.51 188 | 95.83 103 | 99.04 220 | 99.12 153 |
|
MDA-MVSNet_test_wron | | | 94.73 226 | 94.83 215 | 94.42 289 | 97.48 268 | 85.15 325 | 90.28 349 | 95.87 305 | 92.52 251 | 97.48 161 | 97.76 165 | 91.92 227 | 99.17 271 | 93.32 217 | 96.80 326 | 98.94 181 |
|
PHI-MVS | | | 96.96 124 | 96.53 149 | 98.25 75 | 97.48 268 | 96.50 62 | 96.76 126 | 98.85 96 | 93.52 221 | 96.19 236 | 96.85 240 | 95.94 103 | 99.42 210 | 93.79 208 | 99.43 145 | 98.83 203 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 128 | 96.43 155 | 98.31 67 | 97.48 268 | 97.23 42 | 92.56 313 | 98.60 159 | 92.84 249 | 98.54 61 | 97.40 198 | 96.64 78 | 98.78 312 | 94.40 182 | 99.41 154 | 98.93 185 |
|
thres200 | | | 91.00 309 | 90.42 313 | 92.77 323 | 97.47 272 | 83.98 339 | 94.01 273 | 91.18 353 | 95.12 171 | 95.44 263 | 91.21 362 | 73.93 346 | 99.31 246 | 77.76 365 | 97.63 305 | 95.01 354 |
|
YYNet1 | | | 94.73 226 | 94.84 213 | 94.41 290 | 97.47 272 | 85.09 327 | 90.29 348 | 95.85 306 | 92.52 251 | 97.53 153 | 97.76 165 | 91.97 223 | 99.18 267 | 93.31 218 | 96.86 323 | 98.95 179 |
|
Effi-MVS+ | | | 96.19 168 | 96.01 171 | 96.71 187 | 97.43 274 | 92.19 212 | 96.12 158 | 99.10 33 | 95.45 157 | 93.33 323 | 94.71 320 | 97.23 43 | 99.56 171 | 93.21 222 | 97.54 307 | 98.37 247 |
|
pmmvs4 | | | 94.82 223 | 94.19 245 | 96.70 188 | 97.42 275 | 92.75 200 | 92.09 323 | 96.76 289 | 86.80 316 | 95.73 258 | 97.22 216 | 89.28 263 | 98.89 303 | 93.28 219 | 99.14 202 | 98.46 240 |
|
MSDG | | | 95.33 202 | 95.13 198 | 95.94 228 | 97.40 276 | 91.85 220 | 91.02 342 | 98.37 187 | 95.30 163 | 96.31 229 | 95.99 288 | 94.51 162 | 98.38 345 | 89.59 293 | 97.65 304 | 97.60 304 |
|
EI-MVSNet-Vis-set | | | 97.32 107 | 97.39 95 | 97.11 164 | 97.36 277 | 92.08 215 | 95.34 205 | 97.65 255 | 97.74 53 | 98.29 93 | 98.11 123 | 95.05 140 | 99.68 128 | 97.50 39 | 99.50 119 | 99.56 37 |
|
PS-MVSNAJ | | | 94.10 256 | 94.47 235 | 93.00 318 | 97.35 278 | 84.88 329 | 91.86 325 | 97.84 241 | 91.96 260 | 94.17 292 | 92.50 350 | 95.82 109 | 99.71 104 | 91.27 252 | 97.48 310 | 94.40 358 |
|
Regformer-3 | | | 97.25 111 | 97.29 101 | 97.11 164 | 97.35 278 | 92.32 206 | 95.26 212 | 97.62 260 | 97.67 61 | 98.17 104 | 97.89 152 | 95.05 140 | 99.56 171 | 97.16 54 | 99.42 148 | 99.46 66 |
|
Regformer-4 | | | 97.53 92 | 97.47 93 | 97.71 115 | 97.35 278 | 93.91 165 | 95.26 212 | 98.14 218 | 97.97 45 | 98.34 83 | 97.89 152 | 95.49 125 | 99.71 104 | 97.41 43 | 99.42 148 | 99.51 46 |
|
diffmvs | | | 96.04 174 | 96.23 161 | 95.46 249 | 97.35 278 | 88.03 282 | 93.42 293 | 99.08 39 | 94.09 209 | 96.66 210 | 96.93 236 | 93.85 178 | 99.29 253 | 96.01 92 | 98.67 256 | 99.06 166 |
|
EI-MVSNet-UG-set | | | 97.32 107 | 97.40 94 | 97.09 166 | 97.34 282 | 92.01 217 | 95.33 206 | 97.65 255 | 97.74 53 | 98.30 92 | 98.14 118 | 95.04 142 | 99.69 121 | 97.55 37 | 99.52 110 | 99.58 29 |
|
baseline1 | | | 93.14 280 | 92.64 281 | 94.62 280 | 97.34 282 | 87.20 299 | 96.67 134 | 93.02 335 | 94.71 186 | 96.51 219 | 95.83 296 | 81.64 308 | 98.60 331 | 90.00 288 | 88.06 367 | 98.07 275 |
|
AdaColmap |  | | 95.11 211 | 94.62 226 | 96.58 194 | 97.33 284 | 94.45 146 | 94.92 234 | 98.08 225 | 93.15 238 | 93.98 301 | 95.53 305 | 94.34 166 | 99.10 281 | 85.69 335 | 98.61 263 | 96.20 342 |
|
xiu_mvs_v2_base | | | 94.22 250 | 94.63 225 | 92.99 319 | 97.32 285 | 84.84 330 | 92.12 321 | 97.84 241 | 91.96 260 | 94.17 292 | 93.43 334 | 96.07 101 | 99.71 104 | 91.27 252 | 97.48 310 | 94.42 357 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 269 | 93.05 268 | 95.42 250 | 97.31 286 | 91.21 229 | 95.08 224 | 96.68 293 | 81.56 349 | 96.88 201 | 96.41 267 | 90.44 244 | 99.25 260 | 85.39 339 | 97.67 302 | 95.80 346 |
|
EI-MVSNet | | | 96.63 150 | 96.93 125 | 95.74 235 | 97.26 287 | 88.13 280 | 95.29 210 | 97.65 255 | 96.99 85 | 97.94 133 | 98.19 114 | 92.55 208 | 99.58 164 | 96.91 62 | 99.56 93 | 99.50 47 |
|
CVMVSNet | | | 92.33 292 | 92.79 275 | 90.95 340 | 97.26 287 | 75.84 370 | 95.29 210 | 92.33 343 | 81.86 347 | 96.27 231 | 98.19 114 | 81.44 310 | 98.46 340 | 94.23 190 | 98.29 276 | 98.55 233 |
|
Regformer-1 | | | 97.27 109 | 97.16 111 | 97.61 124 | 97.21 289 | 93.86 168 | 94.85 238 | 98.04 232 | 97.62 62 | 98.03 123 | 97.50 190 | 95.34 132 | 99.63 146 | 96.52 70 | 99.31 181 | 99.35 100 |
|
Regformer-2 | | | 97.41 100 | 97.24 106 | 97.93 100 | 97.21 289 | 94.72 134 | 94.85 238 | 98.27 197 | 97.74 53 | 98.11 111 | 97.50 190 | 95.58 123 | 99.69 121 | 96.57 69 | 99.31 181 | 99.37 97 |
|
Fast-Effi-MVS+-dtu | | | 96.44 159 | 96.12 166 | 97.39 150 | 97.18 291 | 94.39 147 | 95.46 194 | 98.73 131 | 96.03 128 | 94.72 278 | 94.92 317 | 96.28 99 | 99.69 121 | 93.81 207 | 97.98 286 | 98.09 272 |
|
OpenMVS |  | 94.22 8 | 95.48 195 | 95.20 195 | 96.32 209 | 97.16 292 | 91.96 218 | 97.74 72 | 98.84 101 | 87.26 309 | 94.36 289 | 98.01 138 | 93.95 176 | 99.67 133 | 90.70 272 | 98.75 250 | 97.35 312 |
|
BH-w/o | | | 92.14 295 | 91.94 289 | 92.73 324 | 97.13 293 | 85.30 321 | 92.46 315 | 95.64 308 | 89.33 290 | 94.21 291 | 92.74 346 | 89.60 255 | 98.24 351 | 81.68 355 | 94.66 351 | 94.66 356 |
|
MG-MVS | | | 94.08 258 | 94.00 251 | 94.32 292 | 97.09 294 | 85.89 315 | 93.19 302 | 95.96 303 | 92.52 251 | 94.93 276 | 97.51 189 | 89.54 257 | 98.77 313 | 87.52 323 | 97.71 298 | 98.31 256 |
|
thisisatest0515 | | | 90.43 312 | 89.18 324 | 94.17 297 | 97.07 295 | 85.44 319 | 89.75 356 | 87.58 366 | 88.28 302 | 93.69 309 | 91.72 357 | 65.27 368 | 99.58 164 | 90.59 275 | 98.67 256 | 97.50 307 |
|
MVS-HIRNet | | | 88.40 330 | 90.20 315 | 82.99 355 | 97.01 296 | 60.04 379 | 93.11 303 | 85.61 371 | 84.45 341 | 88.72 361 | 99.09 36 | 84.72 297 | 98.23 352 | 82.52 354 | 96.59 331 | 90.69 370 |
|
GA-MVS | | | 92.83 283 | 92.15 288 | 94.87 270 | 96.97 297 | 87.27 298 | 90.03 350 | 96.12 298 | 91.83 263 | 94.05 297 | 94.57 321 | 76.01 340 | 98.97 299 | 92.46 232 | 97.34 315 | 98.36 252 |
|
test_yl | | | 94.40 244 | 94.00 251 | 95.59 239 | 96.95 298 | 89.52 253 | 94.75 243 | 95.55 313 | 96.18 119 | 96.79 202 | 96.14 283 | 81.09 313 | 99.18 267 | 90.75 267 | 97.77 292 | 98.07 275 |
|
DCV-MVSNet | | | 94.40 244 | 94.00 251 | 95.59 239 | 96.95 298 | 89.52 253 | 94.75 243 | 95.55 313 | 96.18 119 | 96.79 202 | 96.14 283 | 81.09 313 | 99.18 267 | 90.75 267 | 97.77 292 | 98.07 275 |
|
MVS_Test | | | 96.27 164 | 96.79 135 | 94.73 277 | 96.94 300 | 86.63 307 | 96.18 155 | 98.33 193 | 94.94 178 | 96.07 240 | 98.28 101 | 95.25 136 | 99.26 258 | 97.21 50 | 97.90 290 | 98.30 258 |
|
MAR-MVS | | | 94.21 252 | 93.03 269 | 97.76 111 | 96.94 300 | 97.44 35 | 96.97 118 | 97.15 274 | 87.89 307 | 92.00 342 | 92.73 347 | 92.14 218 | 99.12 276 | 83.92 348 | 97.51 309 | 96.73 332 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
Effi-MVS+-dtu | | | 96.81 136 | 96.09 168 | 98.99 13 | 96.90 302 | 98.69 2 | 96.42 140 | 98.09 223 | 95.86 139 | 95.15 269 | 95.54 304 | 94.26 168 | 99.81 36 | 94.06 196 | 98.51 269 | 98.47 238 |
|
mvs-test1 | | | 96.20 167 | 95.50 191 | 98.32 65 | 96.90 302 | 98.16 5 | 95.07 225 | 98.09 223 | 95.86 139 | 93.63 310 | 94.32 329 | 94.26 168 | 99.71 104 | 94.06 196 | 97.27 318 | 97.07 315 |
|
MS-PatchMatch | | | 94.83 222 | 94.91 210 | 94.57 284 | 96.81 304 | 87.10 301 | 94.23 261 | 97.34 268 | 88.74 297 | 97.14 177 | 97.11 223 | 91.94 225 | 98.23 352 | 92.99 225 | 97.92 288 | 98.37 247 |
|
UGNet | | | 96.81 136 | 96.56 145 | 97.58 125 | 96.64 305 | 93.84 170 | 97.75 70 | 97.12 276 | 96.47 106 | 93.62 311 | 98.88 51 | 93.22 191 | 99.53 180 | 95.61 116 | 99.69 62 | 99.36 98 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
API-MVS | | | 95.09 213 | 95.01 205 | 95.31 253 | 96.61 306 | 94.02 162 | 96.83 122 | 97.18 273 | 95.60 151 | 95.79 253 | 94.33 328 | 94.54 161 | 98.37 347 | 85.70 334 | 98.52 267 | 93.52 361 |
|
PAPM | | | 87.64 336 | 85.84 341 | 93.04 316 | 96.54 307 | 84.99 328 | 88.42 362 | 95.57 312 | 79.52 358 | 83.82 370 | 93.05 342 | 80.57 316 | 98.41 342 | 62.29 374 | 92.79 358 | 95.71 347 |
|
FMVSNet3 | | | 95.26 206 | 94.94 206 | 96.22 215 | 96.53 308 | 90.06 244 | 95.99 166 | 97.66 253 | 94.11 208 | 97.99 126 | 97.91 151 | 80.22 318 | 99.63 146 | 94.60 172 | 99.44 137 | 98.96 178 |
|
HY-MVS | | 91.43 15 | 92.58 286 | 91.81 292 | 94.90 268 | 96.49 309 | 88.87 264 | 97.31 97 | 94.62 321 | 85.92 322 | 90.50 351 | 96.84 241 | 85.05 293 | 99.40 221 | 83.77 351 | 95.78 342 | 96.43 339 |
|
TR-MVS | | | 92.54 287 | 92.20 287 | 93.57 305 | 96.49 309 | 86.66 306 | 93.51 291 | 94.73 320 | 89.96 285 | 94.95 274 | 93.87 332 | 90.24 250 | 98.61 329 | 81.18 357 | 94.88 349 | 95.45 352 |
|
ET-MVSNet_ETH3D | | | 91.12 306 | 89.67 318 | 95.47 248 | 96.41 311 | 89.15 261 | 91.54 329 | 90.23 361 | 89.07 291 | 86.78 369 | 92.84 344 | 69.39 364 | 99.44 207 | 94.16 192 | 96.61 330 | 97.82 294 |
|
CANet | | | 95.86 182 | 95.65 185 | 96.49 200 | 96.41 311 | 90.82 235 | 94.36 254 | 98.41 181 | 94.94 178 | 92.62 337 | 96.73 250 | 92.68 203 | 99.71 104 | 95.12 152 | 99.60 83 | 98.94 181 |
|
mvs_anonymous | | | 95.36 201 | 96.07 170 | 93.21 313 | 96.29 313 | 81.56 351 | 94.60 247 | 97.66 253 | 93.30 229 | 96.95 196 | 98.91 49 | 93.03 196 | 99.38 229 | 96.60 66 | 97.30 317 | 98.69 220 |
|
MVS_0304 | | | 95.50 192 | 95.05 204 | 96.84 180 | 96.28 314 | 93.12 191 | 97.00 116 | 96.16 297 | 95.03 175 | 89.22 359 | 97.70 174 | 90.16 251 | 99.48 194 | 94.51 177 | 99.34 170 | 97.93 289 |
|
SCA | | | 93.38 275 | 93.52 261 | 92.96 320 | 96.24 315 | 81.40 352 | 93.24 300 | 94.00 326 | 91.58 267 | 94.57 282 | 96.97 233 | 87.94 273 | 99.42 210 | 89.47 295 | 97.66 303 | 98.06 279 |
|
LS3D | | | 97.77 74 | 97.50 89 | 98.57 48 | 96.24 315 | 97.58 25 | 98.45 27 | 98.85 96 | 98.58 27 | 97.51 155 | 97.94 147 | 95.74 117 | 99.63 146 | 95.19 142 | 98.97 224 | 98.51 235 |
|
new_pmnet | | | 92.34 291 | 91.69 294 | 94.32 292 | 96.23 317 | 89.16 260 | 92.27 319 | 92.88 337 | 84.39 342 | 95.29 266 | 96.35 273 | 85.66 290 | 96.74 368 | 84.53 346 | 97.56 306 | 97.05 316 |
|
MVE |  | 73.61 22 | 86.48 338 | 85.92 340 | 88.18 352 | 96.23 317 | 85.28 323 | 81.78 370 | 75.79 376 | 86.01 320 | 82.53 372 | 91.88 355 | 92.74 201 | 87.47 375 | 71.42 372 | 94.86 350 | 91.78 366 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
c3_l | | | 95.20 207 | 95.32 193 | 94.83 273 | 96.19 319 | 86.43 310 | 91.83 326 | 98.35 192 | 93.47 223 | 97.36 168 | 97.26 214 | 88.69 266 | 99.28 255 | 95.41 134 | 99.36 162 | 98.78 209 |
|
DSMNet-mixed | | | 92.19 294 | 91.83 291 | 93.25 311 | 96.18 320 | 83.68 341 | 96.27 148 | 93.68 329 | 76.97 367 | 92.54 338 | 99.18 27 | 89.20 265 | 98.55 335 | 83.88 349 | 98.60 265 | 97.51 306 |
|
miper_lstm_enhance | | | 94.81 224 | 94.80 217 | 94.85 271 | 96.16 321 | 86.45 309 | 91.14 339 | 98.20 206 | 93.49 222 | 97.03 189 | 97.37 206 | 84.97 295 | 99.26 258 | 95.28 137 | 99.56 93 | 98.83 203 |
|
our_test_3 | | | 94.20 254 | 94.58 230 | 93.07 315 | 96.16 321 | 81.20 353 | 90.42 347 | 96.84 285 | 90.72 277 | 97.14 177 | 97.13 220 | 90.47 243 | 99.11 279 | 94.04 200 | 98.25 277 | 98.91 190 |
|
ppachtmachnet_test | | | 94.49 243 | 94.84 213 | 93.46 307 | 96.16 321 | 82.10 347 | 90.59 345 | 97.48 265 | 90.53 279 | 97.01 191 | 97.59 182 | 91.01 236 | 99.36 234 | 93.97 203 | 99.18 199 | 98.94 181 |
|
Patchmatch-test | | | 93.60 270 | 93.25 266 | 94.63 279 | 96.14 324 | 87.47 293 | 96.04 162 | 94.50 323 | 93.57 220 | 96.47 220 | 96.97 233 | 76.50 336 | 98.61 329 | 90.67 273 | 98.41 272 | 97.81 296 |
|
wuyk23d | | | 93.25 278 | 95.20 195 | 87.40 354 | 96.07 325 | 95.38 106 | 97.04 114 | 94.97 318 | 95.33 161 | 99.70 5 | 98.11 123 | 98.14 13 | 91.94 372 | 77.76 365 | 99.68 64 | 74.89 372 |
|
eth_miper_zixun_eth | | | 94.89 220 | 94.93 208 | 94.75 276 | 95.99 326 | 86.12 313 | 91.35 332 | 98.49 170 | 93.40 224 | 97.12 179 | 97.25 215 | 86.87 285 | 99.35 237 | 95.08 154 | 98.82 244 | 98.78 209 |
|
CANet_DTU | | | 94.65 235 | 94.21 244 | 95.96 224 | 95.90 327 | 89.68 250 | 93.92 278 | 97.83 243 | 93.19 233 | 90.12 354 | 95.64 301 | 88.52 267 | 99.57 170 | 93.27 220 | 99.47 129 | 98.62 226 |
|
DIV-MVS_self_test | | | 94.73 226 | 94.64 223 | 95.01 263 | 95.86 328 | 87.00 302 | 91.33 333 | 98.08 225 | 93.34 227 | 97.10 181 | 97.34 208 | 84.02 301 | 99.31 246 | 95.15 148 | 99.55 99 | 98.72 217 |
|
cl____ | | | 94.73 226 | 94.64 223 | 95.01 263 | 95.85 329 | 87.00 302 | 91.33 333 | 98.08 225 | 93.34 227 | 97.10 181 | 97.33 209 | 84.01 302 | 99.30 249 | 95.14 149 | 99.56 93 | 98.71 219 |
|
MVSTER | | | 94.21 252 | 93.93 255 | 95.05 262 | 95.83 330 | 86.46 308 | 95.18 218 | 97.65 255 | 92.41 255 | 97.94 133 | 98.00 140 | 72.39 356 | 99.58 164 | 96.36 77 | 99.56 93 | 99.12 153 |
|
FMVSNet5 | | | 93.39 274 | 92.35 285 | 96.50 199 | 95.83 330 | 90.81 237 | 97.31 97 | 98.27 197 | 92.74 250 | 96.27 231 | 98.28 101 | 62.23 371 | 99.67 133 | 90.86 262 | 99.36 162 | 99.03 170 |
|
miper_ehance_all_eth | | | 94.69 231 | 94.70 220 | 94.64 278 | 95.77 332 | 86.22 312 | 91.32 335 | 98.24 201 | 91.67 264 | 97.05 187 | 96.65 255 | 88.39 270 | 99.22 265 | 94.88 160 | 98.34 273 | 98.49 237 |
|
PVSNet_0 | | 81.89 21 | 84.49 339 | 83.21 342 | 88.34 351 | 95.76 333 | 74.97 373 | 83.49 367 | 92.70 341 | 78.47 362 | 87.94 364 | 86.90 371 | 83.38 304 | 96.63 369 | 73.44 369 | 66.86 375 | 93.40 362 |
|
PAPR | | | 92.22 293 | 91.27 299 | 95.07 261 | 95.73 334 | 88.81 266 | 91.97 324 | 97.87 238 | 85.80 324 | 90.91 347 | 92.73 347 | 91.16 234 | 98.33 349 | 79.48 359 | 95.76 343 | 98.08 273 |
|
baseline2 | | | 89.65 322 | 88.44 329 | 93.25 311 | 95.62 335 | 82.71 343 | 93.82 281 | 85.94 370 | 88.89 295 | 87.35 367 | 92.54 349 | 71.23 359 | 99.33 242 | 86.01 331 | 94.60 353 | 97.72 298 |
|
CHOSEN 280x420 | | | 89.98 317 | 89.19 323 | 92.37 330 | 95.60 336 | 81.13 354 | 86.22 365 | 97.09 277 | 81.44 351 | 87.44 366 | 93.15 335 | 73.99 345 | 99.47 197 | 88.69 306 | 99.07 216 | 96.52 338 |
|
ADS-MVSNet2 | | | 91.47 304 | 90.51 312 | 94.36 291 | 95.51 337 | 85.63 316 | 95.05 228 | 95.70 307 | 83.46 343 | 92.69 332 | 96.84 241 | 79.15 322 | 99.41 219 | 85.66 336 | 90.52 362 | 98.04 283 |
|
ADS-MVSNet | | | 90.95 310 | 90.26 314 | 93.04 316 | 95.51 337 | 82.37 346 | 95.05 228 | 93.41 332 | 83.46 343 | 92.69 332 | 96.84 241 | 79.15 322 | 98.70 320 | 85.66 336 | 90.52 362 | 98.04 283 |
|
CR-MVSNet | | | 93.29 277 | 92.79 275 | 94.78 275 | 95.44 339 | 88.15 278 | 96.18 155 | 97.20 271 | 84.94 337 | 94.10 294 | 98.57 70 | 77.67 328 | 99.39 226 | 95.17 144 | 95.81 339 | 96.81 329 |
|
RPMNet | | | 94.68 233 | 94.60 227 | 94.90 268 | 95.44 339 | 88.15 278 | 96.18 155 | 98.86 92 | 97.43 70 | 94.10 294 | 98.49 77 | 79.40 319 | 99.76 62 | 95.69 108 | 95.81 339 | 96.81 329 |
|
1314 | | | 92.38 290 | 92.30 286 | 92.64 325 | 95.42 341 | 85.15 325 | 95.86 174 | 96.97 282 | 85.40 331 | 90.62 348 | 93.06 341 | 91.12 235 | 97.80 359 | 86.74 328 | 95.49 346 | 94.97 355 |
|
RRT_test8_iter05 | | | 92.46 288 | 92.52 284 | 92.29 332 | 95.33 342 | 77.43 364 | 95.73 179 | 98.55 165 | 94.41 195 | 97.46 164 | 97.72 173 | 57.44 374 | 99.74 79 | 96.92 61 | 99.14 202 | 99.69 20 |
|
tpm | | | 91.08 308 | 90.85 306 | 91.75 335 | 95.33 342 | 78.09 360 | 95.03 230 | 91.27 352 | 88.75 296 | 93.53 315 | 97.40 198 | 71.24 358 | 99.30 249 | 91.25 254 | 93.87 355 | 97.87 291 |
|
IB-MVS | | 85.98 20 | 88.63 328 | 86.95 337 | 93.68 303 | 95.12 344 | 84.82 331 | 90.85 343 | 90.17 362 | 87.55 308 | 88.48 362 | 91.34 361 | 58.01 373 | 99.59 162 | 87.24 326 | 93.80 356 | 96.63 336 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PatchT | | | 93.75 264 | 93.57 260 | 94.29 294 | 95.05 345 | 87.32 297 | 96.05 161 | 92.98 336 | 97.54 67 | 94.25 290 | 98.72 60 | 75.79 341 | 99.24 261 | 95.92 97 | 95.81 339 | 96.32 340 |
|
tpm2 | | | 88.47 329 | 87.69 333 | 90.79 341 | 94.98 346 | 77.34 365 | 95.09 222 | 91.83 346 | 77.51 366 | 89.40 357 | 96.41 267 | 67.83 366 | 98.73 317 | 83.58 353 | 92.60 360 | 96.29 341 |
|
Patchmtry | | | 95.03 216 | 94.59 229 | 96.33 208 | 94.83 347 | 90.82 235 | 96.38 143 | 97.20 271 | 96.59 98 | 97.49 158 | 98.57 70 | 77.67 328 | 99.38 229 | 92.95 227 | 99.62 73 | 98.80 206 |
|
MVS | | | 90.02 315 | 89.20 322 | 92.47 328 | 94.71 348 | 86.90 304 | 95.86 174 | 96.74 291 | 64.72 372 | 90.62 348 | 92.77 345 | 92.54 210 | 98.39 344 | 79.30 360 | 95.56 345 | 92.12 365 |
|
CostFormer | | | 89.75 321 | 89.25 319 | 91.26 339 | 94.69 349 | 78.00 362 | 95.32 207 | 91.98 345 | 81.50 350 | 90.55 350 | 96.96 235 | 71.06 360 | 98.89 303 | 88.59 308 | 92.63 359 | 96.87 323 |
|
PatchmatchNet |  | | 91.98 298 | 91.87 290 | 92.30 331 | 94.60 350 | 79.71 357 | 95.12 219 | 93.59 331 | 89.52 288 | 93.61 312 | 97.02 230 | 77.94 326 | 99.18 267 | 90.84 263 | 94.57 354 | 98.01 286 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpm cat1 | | | 88.01 333 | 87.33 334 | 90.05 346 | 94.48 351 | 76.28 369 | 94.47 252 | 94.35 325 | 73.84 371 | 89.26 358 | 95.61 303 | 73.64 349 | 98.30 350 | 84.13 347 | 86.20 370 | 95.57 351 |
|
MDTV_nov1_ep13 | | | | 91.28 298 | | 94.31 352 | 73.51 374 | 94.80 240 | 93.16 334 | 86.75 317 | 93.45 319 | 97.40 198 | 76.37 337 | 98.55 335 | 88.85 303 | 96.43 332 | |
|
cl22 | | | 93.25 278 | 92.84 274 | 94.46 288 | 94.30 353 | 86.00 314 | 91.09 341 | 96.64 294 | 90.74 276 | 95.79 253 | 96.31 274 | 78.24 325 | 98.77 313 | 94.15 193 | 98.34 273 | 98.62 226 |
|
cascas | | | 91.89 299 | 91.35 297 | 93.51 306 | 94.27 354 | 85.60 317 | 88.86 360 | 98.61 158 | 79.32 359 | 92.16 341 | 91.44 360 | 89.22 264 | 98.12 355 | 90.80 265 | 97.47 312 | 96.82 328 |
|
test-LLR | | | 89.97 318 | 89.90 316 | 90.16 344 | 94.24 355 | 74.98 371 | 89.89 352 | 89.06 363 | 92.02 258 | 89.97 355 | 90.77 365 | 73.92 347 | 98.57 332 | 91.88 240 | 97.36 313 | 96.92 320 |
|
test-mter | | | 87.92 334 | 87.17 335 | 90.16 344 | 94.24 355 | 74.98 371 | 89.89 352 | 89.06 363 | 86.44 318 | 89.97 355 | 90.77 365 | 54.96 381 | 98.57 332 | 91.88 240 | 97.36 313 | 96.92 320 |
|
pmmvs3 | | | 90.00 316 | 88.90 326 | 93.32 308 | 94.20 357 | 85.34 320 | 91.25 336 | 92.56 342 | 78.59 361 | 93.82 302 | 95.17 310 | 67.36 367 | 98.69 321 | 89.08 301 | 98.03 285 | 95.92 343 |
|
tpmrst | | | 90.31 313 | 90.61 311 | 89.41 347 | 94.06 358 | 72.37 376 | 95.06 227 | 93.69 327 | 88.01 304 | 92.32 340 | 96.86 239 | 77.45 330 | 98.82 308 | 91.04 257 | 87.01 369 | 97.04 317 |
|
test0.0.03 1 | | | 90.11 314 | 89.21 321 | 92.83 322 | 93.89 359 | 86.87 305 | 91.74 327 | 88.74 365 | 92.02 258 | 94.71 279 | 91.14 363 | 73.92 347 | 94.48 371 | 83.75 352 | 92.94 357 | 97.16 313 |
|
JIA-IIPM | | | 91.79 300 | 90.69 309 | 95.11 259 | 93.80 360 | 90.98 232 | 94.16 265 | 91.78 347 | 96.38 107 | 90.30 353 | 99.30 18 | 72.02 357 | 98.90 301 | 88.28 312 | 90.17 364 | 95.45 352 |
|
miper_enhance_ethall | | | 93.14 280 | 92.78 277 | 94.20 295 | 93.65 361 | 85.29 322 | 89.97 351 | 97.85 239 | 85.05 334 | 96.15 239 | 94.56 322 | 85.74 289 | 99.14 274 | 93.74 209 | 98.34 273 | 98.17 271 |
|
TESTMET0.1,1 | | | 87.20 337 | 86.57 339 | 89.07 348 | 93.62 362 | 72.84 375 | 89.89 352 | 87.01 369 | 85.46 329 | 89.12 360 | 90.20 367 | 56.00 379 | 97.72 360 | 90.91 261 | 96.92 320 | 96.64 334 |
|
CMPMVS |  | 73.10 23 | 92.74 284 | 91.39 296 | 96.77 184 | 93.57 363 | 94.67 139 | 94.21 263 | 97.67 251 | 80.36 356 | 93.61 312 | 96.60 257 | 82.85 305 | 97.35 362 | 84.86 344 | 98.78 247 | 98.29 261 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
RRT_MVS | | | 94.90 219 | 94.07 248 | 97.39 150 | 93.18 364 | 93.21 190 | 95.26 212 | 97.49 263 | 93.94 213 | 98.25 95 | 97.85 157 | 72.96 355 | 99.84 29 | 97.90 22 | 99.78 41 | 99.14 145 |
|
DWT-MVSNet_test | | | 87.92 334 | 86.77 338 | 91.39 337 | 93.18 364 | 78.62 359 | 95.10 220 | 91.42 349 | 85.58 326 | 88.00 363 | 88.73 369 | 60.60 372 | 98.90 301 | 90.60 274 | 87.70 368 | 96.65 333 |
|
E-PMN | | | 89.52 323 | 89.78 317 | 88.73 349 | 93.14 366 | 77.61 363 | 83.26 368 | 92.02 344 | 94.82 183 | 93.71 307 | 93.11 336 | 75.31 342 | 96.81 365 | 85.81 333 | 96.81 325 | 91.77 367 |
|
PMMVS | | | 92.39 289 | 91.08 301 | 96.30 211 | 93.12 367 | 92.81 198 | 90.58 346 | 95.96 303 | 79.17 360 | 91.85 344 | 92.27 351 | 90.29 249 | 98.66 326 | 89.85 290 | 96.68 329 | 97.43 308 |
|
EMVS | | | 89.06 325 | 89.22 320 | 88.61 350 | 93.00 368 | 77.34 365 | 82.91 369 | 90.92 354 | 94.64 188 | 92.63 336 | 91.81 356 | 76.30 338 | 97.02 363 | 83.83 350 | 96.90 322 | 91.48 368 |
|
dp | | | 88.08 332 | 88.05 330 | 88.16 353 | 92.85 369 | 68.81 378 | 94.17 264 | 92.88 337 | 85.47 328 | 91.38 346 | 96.14 283 | 68.87 365 | 98.81 310 | 86.88 327 | 83.80 372 | 96.87 323 |
|
gg-mvs-nofinetune | | | 88.28 331 | 86.96 336 | 92.23 333 | 92.84 370 | 84.44 334 | 98.19 46 | 74.60 377 | 99.08 10 | 87.01 368 | 99.47 8 | 56.93 375 | 98.23 352 | 78.91 361 | 95.61 344 | 94.01 359 |
|
tpmvs | | | 90.79 311 | 90.87 305 | 90.57 343 | 92.75 371 | 76.30 368 | 95.79 178 | 93.64 330 | 91.04 275 | 91.91 343 | 96.26 275 | 77.19 334 | 98.86 307 | 89.38 297 | 89.85 365 | 96.56 337 |
|
EPMVS | | | 89.26 324 | 88.55 328 | 91.39 337 | 92.36 372 | 79.11 358 | 95.65 188 | 79.86 375 | 88.60 298 | 93.12 325 | 96.53 261 | 70.73 362 | 98.10 356 | 90.75 267 | 89.32 366 | 96.98 318 |
|
gm-plane-assit | | | | | | 91.79 373 | 71.40 377 | | | 81.67 348 | | 90.11 368 | | 98.99 293 | 84.86 344 | | |
|
GG-mvs-BLEND | | | | | 90.60 342 | 91.00 374 | 84.21 337 | 98.23 40 | 72.63 380 | | 82.76 371 | 84.11 372 | 56.14 378 | 96.79 366 | 72.20 370 | 92.09 361 | 90.78 369 |
|
DeepMVS_CX |  | | | | 77.17 356 | 90.94 375 | 85.28 323 | | 74.08 379 | 52.51 373 | 80.87 374 | 88.03 370 | 75.25 343 | 70.63 376 | 59.23 375 | 84.94 371 | 75.62 371 |
|
EPNet_dtu | | | 91.39 305 | 90.75 308 | 93.31 309 | 90.48 376 | 82.61 344 | 94.80 240 | 92.88 337 | 93.39 225 | 81.74 373 | 94.90 318 | 81.36 311 | 99.11 279 | 88.28 312 | 98.87 237 | 98.21 267 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
KD-MVS_2432*1600 | | | 88.93 326 | 87.74 331 | 92.49 326 | 88.04 377 | 81.99 348 | 89.63 357 | 95.62 309 | 91.35 269 | 95.06 270 | 93.11 336 | 56.58 376 | 98.63 327 | 85.19 340 | 95.07 347 | 96.85 325 |
|
miper_refine_blended | | | 88.93 326 | 87.74 331 | 92.49 326 | 88.04 377 | 81.99 348 | 89.63 357 | 95.62 309 | 91.35 269 | 95.06 270 | 93.11 336 | 56.58 376 | 98.63 327 | 85.19 340 | 95.07 347 | 96.85 325 |
|
EPNet | | | 93.72 265 | 92.62 282 | 97.03 170 | 87.61 379 | 92.25 207 | 96.27 148 | 91.28 351 | 96.74 93 | 87.65 365 | 97.39 202 | 85.00 294 | 99.64 144 | 92.14 234 | 99.48 127 | 99.20 134 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_method | | | 66.88 341 | 66.13 344 | 69.11 357 | 62.68 380 | 25.73 382 | 49.76 371 | 96.04 300 | 14.32 375 | 64.27 376 | 91.69 358 | 73.45 352 | 88.05 374 | 76.06 367 | 66.94 374 | 93.54 360 |
|
tmp_tt | | | 57.23 342 | 62.50 345 | 41.44 358 | 34.77 381 | 49.21 381 | 83.93 366 | 60.22 382 | 15.31 374 | 71.11 375 | 79.37 373 | 70.09 363 | 44.86 377 | 64.76 373 | 82.93 373 | 30.25 373 |
|
test123 | | | 12.59 344 | 15.49 347 | 3.87 359 | 6.07 382 | 2.55 383 | 90.75 344 | 2.59 384 | 2.52 377 | 5.20 379 | 13.02 376 | 4.96 382 | 1.85 379 | 5.20 376 | 9.09 376 | 7.23 374 |
|
testmvs | | | 12.33 345 | 15.23 348 | 3.64 360 | 5.77 383 | 2.23 384 | 88.99 359 | 3.62 383 | 2.30 378 | 5.29 378 | 13.09 375 | 4.52 383 | 1.95 378 | 5.16 377 | 8.32 377 | 6.75 375 |
|
test_blank | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
eth-test2 | | | | | | 0.00 384 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 384 | | | | | | | | | | | |
|
uanet_test | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
DCPMVS | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
cdsmvs_eth3d_5k | | | 24.22 343 | 32.30 346 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 98.10 222 | 0.00 379 | 0.00 380 | 95.06 313 | 97.54 29 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
pcd_1.5k_mvsjas | | | 7.98 346 | 10.65 349 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 95.82 109 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet-low-res | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
sosnet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uncertanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
Regformer | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
ab-mvs-re | | | 7.91 347 | 10.55 350 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 94.94 315 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
uanet | | | 0.00 348 | 0.00 351 | 0.00 361 | 0.00 384 | 0.00 385 | 0.00 372 | 0.00 385 | 0.00 379 | 0.00 380 | 0.00 379 | 0.00 384 | 0.00 380 | 0.00 378 | 0.00 378 | 0.00 376 |
|
PC_three_1452 | | | | | | | | | | 87.24 310 | 98.37 77 | 97.44 195 | 97.00 54 | 96.78 367 | 92.01 235 | 99.25 190 | 99.21 131 |
|
test_241102_TWO | | | | | | | | | 98.83 108 | 96.11 121 | 98.62 53 | 98.24 107 | 96.92 62 | 99.72 90 | 95.44 128 | 99.49 123 | 99.49 55 |
|
test_0728_THIRD | | | | | | | | | | 96.62 95 | 98.40 74 | 98.28 101 | 97.10 45 | 99.71 104 | 95.70 106 | 99.62 73 | 99.58 29 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 279 |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 327 | | | | 98.06 279 |
|
sam_mvs | | | | | | | | | | | | | 77.38 331 | | | | |
|
MTGPA |  | | | | | | | | 98.73 131 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 232 | | | | 10.37 378 | 76.21 339 | 99.04 287 | 89.47 295 | | |
|
test_post | | | | | | | | | | | | 10.87 377 | 76.83 335 | 99.07 284 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 241 | 77.36 332 | 99.42 210 | | | |
|
MTMP | | | | | | | | 96.55 135 | 74.60 377 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 251 | 98.89 236 | 99.00 173 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 284 | 98.90 233 | 99.10 161 |
|
test_prior4 | | | | | | | 95.38 106 | 93.61 289 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 298 | | 94.21 203 | 94.02 298 | 96.25 276 | 93.64 183 | | 91.90 238 | 98.96 225 | |
|
旧先验2 | | | | | | | | 93.35 297 | | 77.95 365 | 95.77 257 | | | 98.67 325 | 90.74 270 | | |
|
新几何2 | | | | | | | | 93.43 292 | | | | | | | | | |
|
无先验 | | | | | | | | 93.20 301 | 97.91 235 | 80.78 353 | | | | 99.40 221 | 87.71 316 | | 97.94 288 |
|
原ACMM2 | | | | | | | | 92.82 306 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 200 | 87.84 315 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 132 | | | | |
|
testdata1 | | | | | | | | 92.77 307 | | 93.78 216 | | | | | | | |
|
plane_prior5 | | | | | | | | | 98.75 127 | | | | | 99.46 200 | 92.59 230 | 99.20 195 | 99.28 117 |
|
plane_prior4 | | | | | | | | | | | | 96.77 247 | | | | | |
|
plane_prior3 | | | | | | | 94.51 143 | | | 95.29 164 | 96.16 237 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 137 | | 96.36 109 | | | | | | | |
|
plane_prior | | | | | | | 94.29 151 | 95.42 197 | | 94.31 200 | | | | | | 98.93 231 | |
|
n2 | | | | | | | | | 0.00 385 | | | | | | | | |
|
nn | | | | | | | | | 0.00 385 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 212 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 225 | | | | | | | | |
|
door | | | | | | | | | 97.81 244 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 203 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 279 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 328 | | | 99.23 263 | | | 99.06 166 |
|
HQP3-MVS | | | | | | | | | 98.43 176 | | | | | | | 98.74 251 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 245 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 380 | 94.89 235 | | 80.59 354 | 94.02 298 | | 78.66 324 | | 85.50 338 | | 97.82 294 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 110 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 99 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 162 | | | | |
|