This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6598.87 999.30 1299.01 1699.63 999.66 399.27 299.68 12897.75 3099.89 2299.62 26
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6799.18 599.20 1899.67 299.73 399.65 499.15 399.86 2297.22 4899.92 1499.77 8
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6699.17 699.05 4598.05 4399.61 1199.52 593.72 18299.88 1998.72 999.88 2399.65 24
Gipumacopyleft98.07 4198.31 2997.36 15299.76 596.28 7098.51 2399.10 3398.76 2396.79 20299.34 1796.61 7998.82 30896.38 7699.50 11996.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1198.89 8198.49 2899.38 1799.14 3395.44 13099.84 2996.47 7399.80 3699.47 64
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 699.02 1599.62 1099.36 1498.53 799.52 18498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets98.90 598.94 698.75 3399.69 896.48 6398.54 2099.22 1596.23 11599.71 499.48 798.77 699.93 398.89 399.95 599.84 5
PS-MVSNAJss98.53 1998.63 1998.21 8099.68 994.82 13198.10 5099.21 1696.91 8899.75 299.45 995.82 10999.92 598.80 499.96 499.89 1
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6398.45 2799.12 3095.83 14299.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
v7n98.73 1198.99 597.95 9899.64 1194.20 15798.67 1399.14 2899.08 1099.42 1599.23 2196.53 8499.91 1399.27 299.93 1099.73 15
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6998.67 1399.02 5496.50 10399.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3998.65 1699.19 2095.62 15099.35 1999.37 1297.38 3399.90 1498.59 1199.91 1799.77 8
FOURS199.59 1498.20 499.03 799.25 1498.96 1898.87 41
PEN-MVS98.75 1098.85 1098.44 5699.58 1595.67 9198.45 2799.15 2699.33 599.30 2199.00 4197.27 3899.92 597.64 3499.92 1499.75 13
EGC-MVSNET83.08 34077.93 34398.53 5199.57 1697.55 2798.33 3398.57 1634.71 37610.38 37798.90 5095.60 12299.50 18995.69 10899.61 7998.55 233
Baseline_NR-MVSNet97.72 7797.79 5797.50 13499.56 1793.29 18795.44 19598.86 9298.20 3898.37 7799.24 2094.69 15299.55 17595.98 9499.79 3899.65 24
SixPastTwentyTwo97.49 9497.57 8397.26 15899.56 1792.33 20598.28 3796.97 28298.30 3499.45 1499.35 1688.43 26999.89 1798.01 2099.76 4499.54 40
PS-CasMVS98.73 1198.85 1098.39 6099.55 1995.47 10398.49 2499.13 2999.22 899.22 2798.96 4597.35 3499.92 597.79 2899.93 1099.79 7
DTE-MVSNet98.79 898.86 898.59 4799.55 1996.12 7498.48 2699.10 3399.36 499.29 2399.06 3997.27 3899.93 397.71 3299.91 1799.70 18
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2197.48 3298.35 3099.03 5295.88 13797.88 13998.22 11298.15 1299.74 7996.50 7299.62 7399.42 83
TDRefinement98.90 598.86 899.02 999.54 2198.06 899.34 499.44 1098.85 2099.00 3799.20 2397.42 3299.59 16297.21 5099.76 4499.40 86
pm-mvs198.47 2198.67 1797.86 10599.52 2394.58 14198.28 3799.00 6297.57 6399.27 2499.22 2298.32 999.50 18997.09 5699.75 4899.50 47
TransMVSNet (Re)98.38 2598.67 1797.51 13199.51 2493.39 18698.20 4598.87 8998.23 3699.48 1299.27 1998.47 899.55 17596.52 7099.53 10599.60 27
WR-MVS_H98.65 1598.62 2198.75 3399.51 2496.61 5798.55 1999.17 2199.05 1399.17 2998.79 5595.47 12899.89 1797.95 2199.91 1799.75 13
PMVScopyleft89.60 1796.71 14596.97 12295.95 22699.51 2497.81 1797.42 9497.49 26397.93 4695.95 24698.58 6996.88 6696.91 36489.59 29399.36 16293.12 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss97.69 7997.36 9798.70 3999.50 2796.84 4995.38 20298.99 6592.45 25498.11 11198.31 9297.25 4199.77 5796.60 6699.62 7399.48 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test98.16 3398.37 2797.56 12699.49 2893.10 19298.35 3099.21 1698.43 2998.89 4098.83 5494.30 16799.81 3697.87 2499.91 1799.77 8
VPNet97.26 11097.49 9096.59 19399.47 2990.58 24096.27 14898.53 16697.77 4998.46 7098.41 8394.59 15899.68 12894.61 17199.29 18599.52 44
CP-MVSNet98.42 2398.46 2498.30 6999.46 3095.22 11998.27 3998.84 10199.05 1399.01 3698.65 6795.37 13199.90 1497.57 3699.91 1799.77 8
XXY-MVS97.54 9097.70 6497.07 16799.46 3092.21 20997.22 10399.00 6294.93 18098.58 5998.92 4897.31 3699.41 21994.44 17899.43 14599.59 28
zzz-MVS98.01 4597.66 6999.06 499.44 3297.90 1295.66 18598.73 13197.69 5997.90 13697.96 14295.81 11399.82 3396.13 8399.61 7999.45 71
MTAPA98.14 3497.84 5399.06 499.44 3297.90 1297.25 10098.73 13197.69 5997.90 13697.96 14295.81 11399.82 3396.13 8399.61 7999.45 71
SteuartSystems-ACMMP98.02 4497.76 6198.79 3199.43 3497.21 4397.15 10698.90 8096.58 9998.08 11797.87 15697.02 5399.76 6295.25 13999.59 8599.40 86
Skip Steuart: Steuart Systems R&D Blog.
ACMH93.61 998.44 2298.76 1397.51 13199.43 3493.54 18298.23 4099.05 4597.40 7599.37 1899.08 3798.79 599.47 19797.74 3199.71 5899.50 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 3897.83 5598.92 2299.42 3697.46 3398.57 1799.05 4595.43 15997.41 16797.50 19097.98 1599.79 4395.58 11999.57 9099.50 47
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
K. test v396.44 15996.28 16096.95 17299.41 3791.53 22597.65 7690.31 36098.89 1998.93 3999.36 1484.57 29899.92 597.81 2699.56 9399.39 88
VDDNet96.98 12396.84 13097.41 14899.40 3893.26 18897.94 5795.31 31799.26 798.39 7699.18 2787.85 27899.62 15495.13 15199.09 21399.35 100
ACMH+93.58 1098.23 3298.31 2997.98 9799.39 3995.22 11997.55 8399.20 1898.21 3799.25 2598.51 7698.21 1199.40 22194.79 16599.72 5599.32 103
TSAR-MVS + MP.97.42 9997.23 10798.00 9699.38 4095.00 12697.63 7898.20 20693.00 24298.16 10598.06 13295.89 10499.72 9095.67 11099.10 21299.28 117
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs97.93 5698.07 3697.48 13899.38 4092.95 19598.03 5599.11 3198.04 4498.62 5398.66 6593.75 18199.78 4797.23 4799.84 2999.73 15
lessismore_v097.05 16899.36 4292.12 21384.07 37298.77 4898.98 4385.36 29299.74 7997.34 4699.37 15999.30 109
Anonymous2024052197.07 11797.51 8795.76 23499.35 4388.18 27797.78 6698.40 18397.11 8398.34 8399.04 4089.58 25699.79 4398.09 1899.93 1099.30 109
ACMMP_NAP97.89 6297.63 7698.67 4199.35 4396.84 4996.36 14498.79 11895.07 17397.88 13998.35 8897.24 4299.72 9096.05 8799.58 8799.45 71
Vis-MVSNetpermissive98.27 2998.34 2898.07 8999.33 4595.21 12198.04 5399.46 997.32 7897.82 14799.11 3496.75 7399.86 2297.84 2599.36 16299.15 142
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high98.31 2898.94 696.41 20699.33 4589.64 25197.92 6099.56 799.27 699.66 899.50 697.67 2599.83 3297.55 3799.98 299.77 8
ZNCC-MVS97.92 5797.62 7898.83 2699.32 4797.24 4197.45 9098.84 10195.76 14496.93 19797.43 19697.26 4099.79 4396.06 8599.53 10599.45 71
MP-MVScopyleft97.64 8297.18 11099.00 1299.32 4797.77 1897.49 8998.73 13196.27 11295.59 26197.75 16896.30 9799.78 4793.70 21299.48 12799.45 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 17895.80 18096.42 20499.28 4990.62 23995.31 20899.08 3988.40 30096.97 19598.17 11792.11 21999.78 4793.64 21399.21 19498.86 201
tfpnnormal97.72 7797.97 4396.94 17399.26 5092.23 20897.83 6598.45 17398.25 3599.13 3198.66 6596.65 7699.69 12193.92 20499.62 7398.91 190
MSP-MVS97.45 9796.92 12799.03 899.26 5097.70 1997.66 7598.89 8195.65 14898.51 6396.46 26592.15 21799.81 3695.14 14998.58 26699.58 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi96.07 17296.50 15394.80 27499.26 5087.69 29095.96 16998.58 16295.08 17298.02 12596.25 27697.92 1697.60 36188.68 30798.74 25199.11 157
IS-MVSNet96.93 12596.68 13997.70 11799.25 5394.00 16398.57 1796.74 29198.36 3198.14 10997.98 14188.23 27199.71 10493.10 22499.72 5599.38 90
DVP-MVScopyleft97.78 7397.65 7198.16 8199.24 5495.51 9896.74 12798.23 20295.92 13498.40 7498.28 10197.06 5099.71 10495.48 12499.52 11099.26 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 5495.51 9896.89 12098.89 8195.92 13498.64 5298.31 9297.06 50
test_0728_SECOND98.25 7599.23 5695.49 10296.74 12798.89 8199.75 6995.48 12499.52 11099.53 43
GST-MVS97.82 7097.49 9098.81 2999.23 5697.25 4097.16 10598.79 11895.96 13197.53 15397.40 19896.93 6099.77 5795.04 15599.35 16799.42 83
ACMMPcopyleft98.05 4297.75 6398.93 2199.23 5697.60 2398.09 5198.96 7395.75 14697.91 13598.06 13296.89 6499.76 6295.32 13599.57 9099.43 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
KD-MVS_self_test97.86 6698.07 3697.25 15999.22 5992.81 19897.55 8398.94 7697.10 8498.85 4298.88 5195.03 14399.67 13397.39 4599.65 6899.26 122
SED-MVS97.94 5397.90 4798.07 8999.22 5995.35 10996.79 12498.83 10896.11 12199.08 3298.24 10797.87 2099.72 9095.44 12899.51 11599.14 145
IU-MVS99.22 5995.40 10498.14 21885.77 32598.36 8095.23 14199.51 11599.49 55
test_241102_ONE99.22 5995.35 10998.83 10896.04 12699.08 3298.13 11997.87 2099.33 242
nrg03098.54 1898.62 2198.32 6599.22 5995.66 9297.90 6199.08 3998.31 3399.02 3598.74 5997.68 2499.61 16097.77 2999.85 2899.70 18
region2R97.92 5797.59 8198.92 2299.22 5997.55 2797.60 7998.84 10196.00 12997.22 17197.62 18096.87 6899.76 6295.48 12499.43 14599.46 66
mPP-MVS97.91 6097.53 8599.04 799.22 5997.87 1597.74 7298.78 12296.04 12697.10 18197.73 17196.53 8499.78 4795.16 14699.50 11999.46 66
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6697.35 3797.96 5699.16 2298.34 3298.78 4698.52 7597.32 3599.45 20494.08 19599.67 6599.13 148
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR97.95 5197.62 7898.94 1899.20 6797.56 2697.59 8098.83 10896.05 12497.46 16497.63 17996.77 7299.76 6295.61 11699.46 13299.49 55
PGM-MVS97.88 6397.52 8698.96 1699.20 6797.62 2297.09 11199.06 4395.45 15797.55 15297.94 14797.11 4499.78 4794.77 16899.46 13299.48 61
test_040297.84 6797.97 4397.47 13999.19 6994.07 16096.71 13298.73 13198.66 2598.56 6098.41 8396.84 7099.69 12194.82 16399.81 3398.64 223
EPP-MVSNet96.84 13196.58 14397.65 12199.18 7093.78 17398.68 1296.34 29597.91 4797.30 16998.06 13288.46 26899.85 2693.85 20699.40 15599.32 103
abl_698.42 2398.19 3299.09 399.16 7198.10 697.73 7499.11 3197.76 5298.62 5398.27 10597.88 1999.80 4295.67 11099.50 11999.38 90
XVG-ACMP-BASELINE97.58 8897.28 10398.49 5399.16 7196.90 4896.39 14198.98 6895.05 17498.06 11998.02 13695.86 10599.56 17194.37 18399.64 7099.00 173
CHOSEN 1792x268894.10 25693.41 26396.18 21799.16 7190.04 24592.15 32098.68 14679.90 35796.22 23497.83 15987.92 27799.42 21089.18 29999.65 6899.08 162
HFP-MVS97.94 5397.64 7498.83 2699.15 7497.50 3097.59 8098.84 10196.05 12497.49 15897.54 18597.07 4899.70 11395.61 11699.46 13299.30 109
#test#97.62 8497.22 10898.83 2699.15 7497.50 3096.81 12398.84 10194.25 20297.49 15897.54 18597.07 4899.70 11394.37 18399.46 13299.30 109
XVS97.96 4797.63 7698.94 1899.15 7497.66 2097.77 6798.83 10897.42 7196.32 22797.64 17896.49 8799.72 9095.66 11299.37 15999.45 71
X-MVStestdata92.86 28290.83 30798.94 1899.15 7497.66 2097.77 6798.83 10897.42 7196.32 22736.50 37496.49 8799.72 9095.66 11299.37 15999.45 71
LPG-MVS_test97.94 5397.67 6898.74 3599.15 7497.02 4497.09 11199.02 5495.15 16998.34 8398.23 10997.91 1799.70 11394.41 18099.73 5299.50 47
LGP-MVS_train98.74 3599.15 7497.02 4499.02 5495.15 16998.34 8398.23 10997.91 1799.70 11394.41 18099.73 5299.50 47
RPSCF97.87 6497.51 8798.95 1799.15 7498.43 397.56 8299.06 4396.19 11898.48 6798.70 6294.72 15199.24 26194.37 18399.33 17799.17 138
ACMM93.33 1198.05 4297.79 5798.85 2599.15 7497.55 2796.68 13398.83 10895.21 16598.36 8098.13 11998.13 1499.62 15496.04 8899.54 10299.39 88
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet197.95 5198.08 3597.56 12699.14 8293.67 17698.23 4098.66 15197.41 7499.00 3799.19 2495.47 12899.73 8595.83 10399.76 4499.30 109
Vis-MVSNet (Re-imp)95.11 21194.85 21295.87 23199.12 8389.17 25997.54 8894.92 31996.50 10396.58 21497.27 21383.64 30399.48 19488.42 31099.67 6598.97 177
dcpmvs_297.12 11597.99 4294.51 28799.11 8484.00 33897.75 7099.65 497.38 7699.14 3098.42 8295.16 13899.96 295.52 12099.78 4199.58 29
OPM-MVS97.54 9097.25 10498.41 5899.11 8496.61 5795.24 21598.46 17294.58 19298.10 11498.07 12797.09 4799.39 22695.16 14699.44 13799.21 131
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UA-Net98.88 798.76 1399.22 299.11 8497.89 1499.47 399.32 1199.08 1097.87 14299.67 296.47 8999.92 597.88 2399.98 299.85 3
AllTest97.20 11496.92 12798.06 9199.08 8796.16 7297.14 10899.16 2294.35 19897.78 14898.07 12795.84 10699.12 27691.41 24999.42 14898.91 190
TestCases98.06 9199.08 8796.16 7299.16 2294.35 19897.78 14898.07 12795.84 10699.12 27691.41 24999.42 14898.91 190
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5799.07 8995.87 8296.73 13199.05 4598.67 2498.84 4398.45 8097.58 2899.88 1996.45 7499.86 2599.54 40
test111194.53 24194.81 21693.72 30199.06 9081.94 35098.31 3483.87 37396.37 10898.49 6699.17 2981.49 30999.73 8596.64 6499.86 2599.49 55
VPA-MVSNet98.27 2998.46 2497.70 11799.06 9093.80 17197.76 6999.00 6298.40 3099.07 3498.98 4396.89 6499.75 6997.19 5399.79 3899.55 39
114514_t93.96 26093.22 26796.19 21699.06 9090.97 23395.99 16698.94 7673.88 37093.43 32096.93 23692.38 21599.37 23289.09 30099.28 18698.25 264
EG-PatchMatch MVS97.69 7997.79 5797.40 14999.06 9093.52 18395.96 16998.97 7294.55 19398.82 4498.76 5897.31 3699.29 25397.20 5299.44 13799.38 90
test_one_060199.05 9495.50 10198.87 8997.21 8298.03 12398.30 9696.93 60
ACMP92.54 1397.47 9697.10 11498.55 5099.04 9596.70 5396.24 15298.89 8193.71 21897.97 13097.75 16897.44 3099.63 14693.22 22199.70 6199.32 103
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part299.03 9696.07 7698.08 117
XVG-OURS-SEG-HR97.38 10297.07 11798.30 6999.01 9797.41 3694.66 24599.02 5495.20 16698.15 10797.52 18898.83 498.43 34194.87 16196.41 33399.07 164
XVG-OURS97.12 11596.74 13698.26 7298.99 9897.45 3493.82 28199.05 4595.19 16798.32 8897.70 17495.22 13798.41 34294.27 18898.13 28198.93 185
CP-MVS97.92 5797.56 8498.99 1398.99 9897.82 1697.93 5898.96 7396.11 12196.89 20097.45 19496.85 6999.78 4795.19 14299.63 7299.38 90
test250689.86 32089.16 32591.97 33498.95 10076.83 36798.54 2061.07 38196.20 11697.07 18699.16 3055.19 38099.69 12196.43 7599.83 3199.38 90
ECVR-MVScopyleft94.37 24794.48 23494.05 29898.95 10083.10 34298.31 3482.48 37496.20 11698.23 9899.16 3081.18 31299.66 13995.95 9599.83 3199.38 90
CSCG97.40 10197.30 10097.69 11998.95 10094.83 13097.28 9998.99 6596.35 11198.13 11095.95 29395.99 10299.66 13994.36 18699.73 5298.59 229
SF-MVS97.60 8697.39 9598.22 7798.93 10395.69 8897.05 11399.10 3395.32 16297.83 14597.88 15496.44 9199.72 9094.59 17599.39 15699.25 126
HyFIR lowres test93.72 26592.65 28096.91 17698.93 10391.81 22291.23 33798.52 16782.69 34596.46 22196.52 26380.38 31799.90 1490.36 28398.79 24699.03 170
PM-MVS97.36 10597.10 11498.14 8598.91 10596.77 5196.20 15498.63 15793.82 21598.54 6198.33 9093.98 17599.05 28695.99 9399.45 13698.61 228
CPTT-MVS96.69 14696.08 16998.49 5398.89 10696.64 5697.25 10098.77 12392.89 24896.01 24597.13 22092.23 21699.67 13392.24 23399.34 17099.17 138
patch_mono-296.59 15196.93 12595.55 24498.88 10787.12 30094.47 25299.30 1294.12 20796.65 21298.41 8394.98 14699.87 2195.81 10599.78 4199.66 22
GeoE97.75 7597.70 6497.89 10298.88 10794.53 14297.10 11098.98 6895.75 14697.62 15097.59 18297.61 2799.77 5796.34 7899.44 13799.36 98
DPE-MVScopyleft97.64 8297.35 9898.50 5298.85 10996.18 7195.21 21798.99 6595.84 14198.78 4698.08 12596.84 7099.81 3693.98 20299.57 9099.52 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.48 9597.11 11398.60 4698.83 11096.67 5496.74 12798.73 13191.61 26598.48 6798.36 8796.53 8499.68 12895.17 14499.54 10299.45 71
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SR-MVS-dyc-post98.14 3497.84 5399.02 998.81 11198.05 997.55 8398.86 9297.77 4998.20 10098.07 12796.60 8199.76 6295.49 12199.20 19599.26 122
RE-MVS-def97.88 5198.81 11198.05 997.55 8398.86 9297.77 4998.20 10098.07 12796.94 5895.49 12199.20 19599.26 122
UniMVSNet (Re)97.83 6897.65 7198.35 6498.80 11395.86 8395.92 17399.04 5197.51 6898.22 9997.81 16394.68 15499.78 4797.14 5599.75 4899.41 85
Anonymous2023121198.55 1798.76 1397.94 9998.79 11494.37 14998.84 1099.15 2699.37 399.67 699.43 1195.61 12199.72 9098.12 1699.86 2599.73 15
APD-MVS_3200maxsize98.13 3797.90 4798.79 3198.79 11497.31 3897.55 8398.92 7897.72 5698.25 9598.13 11997.10 4599.75 6995.44 12899.24 19399.32 103
test117298.08 3997.76 6199.05 698.78 11698.07 797.41 9598.85 9697.57 6398.15 10797.96 14296.60 8199.76 6295.30 13699.18 19999.33 102
DeepC-MVS95.41 497.82 7097.70 6498.16 8198.78 11695.72 8696.23 15399.02 5493.92 21498.62 5398.99 4297.69 2399.62 15496.18 8299.87 2499.15 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS98.00 4697.66 6999.01 1198.77 11897.93 1197.38 9698.83 10897.32 7898.06 11997.85 15796.65 7699.77 5795.00 15899.11 21099.32 103
MCST-MVS96.24 16595.80 18097.56 12698.75 11994.13 15994.66 24598.17 21290.17 28396.21 23596.10 28695.14 13999.43 20994.13 19498.85 24199.13 148
DU-MVS97.79 7297.60 8098.36 6298.73 12095.78 8495.65 18898.87 8997.57 6398.31 9097.83 15994.69 15299.85 2697.02 5999.71 5899.46 66
NR-MVSNet97.96 4797.86 5298.26 7298.73 12095.54 9698.14 4898.73 13197.79 4899.42 1597.83 15994.40 16599.78 4795.91 9899.76 4499.46 66
Anonymous2023120695.27 20595.06 20395.88 23098.72 12289.37 25695.70 18197.85 23988.00 30596.98 19497.62 18091.95 22499.34 23989.21 29899.53 10598.94 181
APDe-MVS98.14 3498.03 4098.47 5598.72 12296.04 7798.07 5299.10 3395.96 13198.59 5898.69 6396.94 5899.81 3696.64 6499.58 8799.57 34
UniMVSNet_NR-MVSNet97.83 6897.65 7198.37 6198.72 12295.78 8495.66 18599.02 5498.11 4098.31 9097.69 17694.65 15699.85 2697.02 5999.71 5899.48 61
tttt051793.31 27692.56 28395.57 24198.71 12587.86 28497.44 9187.17 36895.79 14397.47 16396.84 24164.12 36999.81 3696.20 8199.32 17999.02 172
v897.60 8698.06 3896.23 21398.71 12589.44 25597.43 9398.82 11697.29 8098.74 4999.10 3593.86 17799.68 12898.61 1099.94 899.56 37
HQP_MVS96.66 14996.33 15997.68 12098.70 12794.29 15196.50 13798.75 12796.36 10996.16 23796.77 24791.91 22899.46 20092.59 23099.20 19599.28 117
plane_prior798.70 12794.67 139
Anonymous2024052997.96 4798.04 3997.71 11598.69 12994.28 15497.86 6398.31 19698.79 2299.23 2698.86 5395.76 11699.61 16095.49 12199.36 16299.23 129
VDD-MVS97.37 10397.25 10497.74 11398.69 12994.50 14597.04 11495.61 31198.59 2698.51 6398.72 6092.54 21099.58 16496.02 9099.49 12399.12 153
DROMVSNet97.90 6197.94 4697.79 10998.66 13195.14 12298.31 3499.66 397.57 6395.95 24697.01 23296.99 5599.82 3397.66 3399.64 7098.39 245
HPM-MVS++copyleft96.99 12096.38 15698.81 2998.64 13297.59 2495.97 16898.20 20695.51 15595.06 27096.53 26194.10 17299.70 11394.29 18799.15 20199.13 148
ab-mvs96.59 15196.59 14296.60 19298.64 13292.21 20998.35 3097.67 25194.45 19496.99 19298.79 5594.96 14799.49 19190.39 28299.07 21698.08 273
F-COLMAP95.30 20494.38 23998.05 9498.64 13296.04 7795.61 19198.66 15189.00 29393.22 32496.40 26992.90 19899.35 23787.45 32497.53 30898.77 212
ITE_SJBPF97.85 10698.64 13296.66 5598.51 16995.63 14997.22 17197.30 21295.52 12498.55 33590.97 25998.90 23398.34 253
v14896.58 15396.97 12295.42 25098.63 13687.57 29195.09 22297.90 23695.91 13698.24 9797.96 14293.42 18799.39 22696.04 8899.52 11099.29 116
ETH3D-3000-0.196.89 13096.46 15498.16 8198.62 13795.69 8895.96 16998.98 6893.36 22697.04 18897.31 21194.93 14899.63 14692.60 22899.34 17099.17 138
UnsupCasMVSNet_bld94.72 23094.26 24196.08 22098.62 13790.54 24393.38 29698.05 23190.30 28197.02 19096.80 24689.54 25799.16 27288.44 30996.18 33698.56 231
DP-MVS97.87 6497.89 5097.81 10898.62 13794.82 13197.13 10998.79 11898.98 1798.74 4998.49 7795.80 11599.49 19195.04 15599.44 13799.11 157
v1097.55 8997.97 4396.31 21098.60 14089.64 25197.44 9199.02 5496.60 9798.72 5199.16 3093.48 18699.72 9098.76 699.92 1499.58 29
Test_1112_low_res93.53 27292.86 27295.54 24598.60 14088.86 26592.75 30898.69 14482.66 34692.65 33496.92 23884.75 29699.56 17190.94 26097.76 29498.19 269
V4297.04 11897.16 11196.68 19098.59 14291.05 23096.33 14698.36 18894.60 18997.99 12698.30 9693.32 18899.62 15497.40 4499.53 10599.38 90
1112_ss94.12 25593.42 26296.23 21398.59 14290.85 23494.24 26098.85 9685.49 32792.97 32794.94 31586.01 28899.64 14491.78 24397.92 28898.20 268
v2v48296.78 13897.06 11895.95 22698.57 14488.77 26895.36 20398.26 19995.18 16897.85 14498.23 10992.58 20799.63 14697.80 2799.69 6299.45 71
WR-MVS96.90 12896.81 13297.16 16198.56 14592.20 21194.33 25598.12 22197.34 7798.20 10097.33 20992.81 19999.75 6994.79 16599.81 3399.54 40
APD-MVScopyleft97.00 11996.53 14998.41 5898.55 14696.31 6896.32 14798.77 12392.96 24797.44 16697.58 18495.84 10699.74 7991.96 23699.35 16799.19 135
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmatch-RL test94.66 23494.49 23395.19 25798.54 14788.91 26392.57 31298.74 12991.46 26898.32 8897.75 16877.31 33398.81 31096.06 8599.61 7997.85 292
9.1496.69 13898.53 14896.02 16498.98 6893.23 23197.18 17597.46 19396.47 8999.62 15492.99 22599.32 179
baseline97.44 9897.78 6096.43 20398.52 14990.75 23896.84 12199.03 5296.51 10297.86 14398.02 13696.67 7599.36 23497.09 5699.47 12999.19 135
casdiffmvs97.50 9397.81 5696.56 19798.51 15091.04 23195.83 17799.09 3897.23 8198.33 8798.30 9697.03 5299.37 23296.58 6899.38 15899.28 117
IterMVS-LS96.92 12697.29 10195.79 23398.51 15088.13 28095.10 22098.66 15196.99 8598.46 7098.68 6492.55 20899.74 7996.91 6299.79 3899.50 47
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 19195.13 19896.80 18298.51 15093.99 16494.60 24798.69 14490.20 28295.78 25596.21 27992.73 20298.98 29590.58 27698.86 23997.42 309
h-mvs3396.29 16395.63 18698.26 7298.50 15396.11 7596.90 11997.09 27796.58 9997.21 17398.19 11484.14 29999.78 4795.89 9996.17 33798.89 194
test20.0396.58 15396.61 14196.48 20198.49 15491.72 22395.68 18497.69 25096.81 9198.27 9497.92 15094.18 17198.71 31990.78 26699.66 6799.00 173
plane_prior198.49 154
xxxxxxxxxxxxxcwj97.24 11297.03 12097.89 10298.48 15694.71 13594.53 25099.07 4295.02 17697.83 14597.88 15496.44 9199.72 9094.59 17599.39 15699.25 126
save fliter98.48 15694.71 13594.53 25098.41 18195.02 176
CS-MVS-test97.69 7997.49 9098.31 6798.48 15696.61 5797.21 10499.53 898.10 4196.05 24195.33 30895.49 12599.86 2297.49 4099.74 5098.45 241
MDA-MVSNet-bldmvs95.69 18595.67 18495.74 23598.48 15688.76 26992.84 30597.25 26996.00 12997.59 15197.95 14691.38 23399.46 20093.16 22396.35 33498.99 176
UnsupCasMVSNet_eth95.91 17995.73 18396.44 20298.48 15691.52 22695.31 20898.45 17395.76 14497.48 16197.54 18589.53 25998.69 32194.43 17994.61 35299.13 148
testtj96.69 14696.13 16598.36 6298.46 16196.02 7996.44 13998.70 14194.26 20196.79 20297.13 22094.07 17399.75 6990.53 27798.80 24599.31 108
CS-MVS98.08 3998.01 4198.29 7198.46 16196.58 6098.53 2299.69 298.07 4296.04 24297.18 21896.88 6699.86 2297.48 4199.74 5098.43 242
ZD-MVS98.43 16395.94 8198.56 16490.72 27796.66 21097.07 22695.02 14499.74 7991.08 25698.93 231
thisisatest053092.71 28591.76 29395.56 24398.42 16488.23 27596.03 16387.35 36794.04 21096.56 21695.47 30664.03 37099.77 5794.78 16799.11 21098.68 222
v114496.84 13197.08 11696.13 21998.42 16489.28 25895.41 19998.67 14994.21 20397.97 13098.31 9293.06 19399.65 14198.06 1999.62 7399.45 71
plane_prior698.38 16694.37 14991.91 228
FPMVS89.92 31988.63 32793.82 29998.37 16796.94 4791.58 32893.34 33388.00 30590.32 35297.10 22470.87 36191.13 37371.91 37196.16 33893.39 363
PAPM_NR94.61 23794.17 24695.96 22498.36 16891.23 22895.93 17297.95 23392.98 24393.42 32194.43 32790.53 24298.38 34587.60 32096.29 33598.27 262
MVS_111021_HR96.73 14296.54 14897.27 15698.35 16993.66 17993.42 29398.36 18894.74 18496.58 21496.76 24996.54 8398.99 29394.87 16199.27 18899.15 142
TAMVS95.49 19394.94 20697.16 16198.31 17093.41 18595.07 22596.82 28791.09 27497.51 15597.82 16289.96 25299.42 21088.42 31099.44 13798.64 223
OMC-MVS96.48 15796.00 17297.91 10198.30 17196.01 8094.86 23798.60 15991.88 26297.18 17597.21 21796.11 10099.04 28790.49 28199.34 17098.69 220
新几何197.25 15998.29 17294.70 13897.73 24777.98 36394.83 27796.67 25492.08 22199.45 20488.17 31498.65 26097.61 303
jason94.39 24694.04 25095.41 25298.29 17287.85 28692.74 31096.75 29085.38 33295.29 26696.15 28188.21 27299.65 14194.24 18999.34 17098.74 214
jason: jason.
v119296.83 13497.06 11896.15 21898.28 17489.29 25795.36 20398.77 12393.73 21798.11 11198.34 8993.02 19799.67 13398.35 1499.58 8799.50 47
CDPH-MVS95.45 19894.65 22297.84 10798.28 17494.96 12793.73 28598.33 19385.03 33595.44 26396.60 25795.31 13499.44 20790.01 28799.13 20699.11 157
MVS_111021_LR96.82 13596.55 14697.62 12398.27 17695.34 11193.81 28398.33 19394.59 19196.56 21696.63 25696.61 7998.73 31794.80 16499.34 17098.78 209
CLD-MVS95.47 19695.07 20196.69 18998.27 17692.53 20291.36 33198.67 14991.22 27395.78 25594.12 33195.65 12098.98 29590.81 26499.72 5598.57 230
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
112194.26 24893.26 26597.27 15698.26 17894.73 13395.86 17497.71 24977.96 36494.53 28496.71 25191.93 22699.40 22187.71 31698.64 26197.69 300
Anonymous20240521196.34 16295.98 17497.43 14698.25 17993.85 16996.74 12794.41 32497.72 5698.37 7798.03 13587.15 28299.53 18094.06 19699.07 21698.92 189
pmmvs-eth3d96.49 15696.18 16497.42 14798.25 17994.29 15194.77 24298.07 22989.81 28697.97 13098.33 9093.11 19299.08 28395.46 12799.84 2998.89 194
v14419296.69 14696.90 12996.03 22198.25 17988.92 26295.49 19398.77 12393.05 24098.09 11598.29 10092.51 21299.70 11398.11 1799.56 9399.47 64
ambc96.56 19798.23 18291.68 22497.88 6298.13 22098.42 7398.56 7294.22 17099.04 28794.05 19999.35 16798.95 179
thres100view90091.76 30191.26 30093.26 31098.21 18384.50 33396.39 14190.39 35896.87 8996.33 22693.08 34073.44 35399.42 21078.85 36297.74 29595.85 344
v192192096.72 14396.96 12495.99 22298.21 18388.79 26795.42 19798.79 11893.22 23298.19 10398.26 10692.68 20399.70 11398.34 1599.55 9999.49 55
thres600view792.03 29791.43 29593.82 29998.19 18584.61 33296.27 14890.39 35896.81 9196.37 22593.11 33673.44 35399.49 19180.32 35897.95 28797.36 310
PatchMatch-RL94.61 23793.81 25797.02 17198.19 18595.72 8693.66 28697.23 27088.17 30394.94 27595.62 30291.43 23298.57 33287.36 32597.68 30196.76 331
LF4IMVS96.07 17295.63 18697.36 15298.19 18595.55 9595.44 19598.82 11692.29 25695.70 25996.55 25992.63 20698.69 32191.75 24599.33 17797.85 292
v124096.74 14097.02 12195.91 22998.18 18888.52 27095.39 20198.88 8793.15 23898.46 7098.40 8692.80 20099.71 10498.45 1399.49 12399.49 55
TAPA-MVS93.32 1294.93 21894.23 24297.04 16998.18 18894.51 14395.22 21698.73 13181.22 35296.25 23395.95 29393.80 18098.98 29589.89 28998.87 23797.62 302
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.17 19093.24 18992.74 31097.61 26175.17 36894.65 28196.69 25390.96 23898.66 25897.66 301
MIMVSNet93.42 27392.86 27295.10 26098.17 19088.19 27698.13 4993.69 32792.07 25795.04 27398.21 11380.95 31599.03 29081.42 35698.06 28498.07 275
原ACMM196.58 19498.16 19292.12 21398.15 21785.90 32393.49 31696.43 26692.47 21399.38 22987.66 31998.62 26298.23 265
testdata95.70 23898.16 19290.58 24097.72 24880.38 35595.62 26097.02 23092.06 22298.98 29589.06 30298.52 26797.54 305
MVP-Stereo95.69 18595.28 19496.92 17498.15 19493.03 19395.64 19098.20 20690.39 28096.63 21397.73 17191.63 23199.10 28191.84 24297.31 31698.63 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS97.37 10397.70 6496.35 20798.14 19595.13 12396.54 13698.92 7895.94 13399.19 2898.08 12597.74 2295.06 37095.24 14099.54 10298.87 200
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet94.25 24994.47 23593.60 30498.14 19582.60 34597.24 10292.72 34085.08 33398.48 6798.94 4682.59 30698.76 31597.47 4299.53 10599.44 81
NP-MVS98.14 19593.72 17595.08 311
LCM-MVSNet-Re97.33 10697.33 9997.32 15498.13 19893.79 17296.99 11799.65 496.74 9399.47 1398.93 4796.91 6399.84 2990.11 28599.06 21998.32 254
ETH3 D test640094.77 22593.87 25697.47 13998.12 19993.73 17494.56 24998.70 14185.45 33094.70 28095.93 29591.77 23099.63 14686.45 33099.14 20299.05 168
3Dnovator+96.13 397.73 7697.59 8198.15 8498.11 20095.60 9498.04 5398.70 14198.13 3996.93 19798.45 8095.30 13599.62 15495.64 11498.96 22599.24 128
VNet96.84 13196.83 13196.88 17798.06 20192.02 21696.35 14597.57 26297.70 5897.88 13997.80 16492.40 21499.54 17894.73 17098.96 22599.08 162
test_part196.77 13996.53 14997.47 13998.04 20292.92 19697.93 5898.85 9698.83 2199.30 2199.07 3879.25 32099.79 4397.59 3599.93 1099.69 20
LFMVS95.32 20394.88 21196.62 19198.03 20391.47 22797.65 7690.72 35799.11 997.89 13898.31 9279.20 32199.48 19493.91 20599.12 20998.93 185
tfpn200view991.55 30391.00 30293.21 31398.02 20484.35 33595.70 18190.79 35596.26 11395.90 25192.13 35373.62 35099.42 21078.85 36297.74 29595.85 344
thres40091.68 30291.00 30293.71 30298.02 20484.35 33595.70 18190.79 35596.26 11395.90 25192.13 35373.62 35099.42 21078.85 36297.74 29597.36 310
OPU-MVS97.64 12298.01 20695.27 11496.79 12497.35 20796.97 5698.51 33891.21 25599.25 19099.14 145
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28198.01 20688.42 27193.99 27498.21 20392.98 24395.91 24894.53 32396.39 9399.72 9095.43 13198.19 27895.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28198.01 20688.42 27193.99 27498.21 20392.98 24395.91 24894.53 32396.39 9399.72 9095.43 13198.19 27895.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28198.01 20688.42 27193.99 27498.21 20392.98 24395.91 24894.53 32396.39 9399.72 9095.43 13198.19 27895.64 348
CNVR-MVS96.92 12696.55 14698.03 9598.00 21095.54 9694.87 23698.17 21294.60 18996.38 22497.05 22895.67 11999.36 23495.12 15299.08 21499.19 135
PLCcopyleft91.02 1694.05 25992.90 27197.51 13198.00 21095.12 12494.25 25998.25 20086.17 31991.48 34595.25 30991.01 23699.19 26685.02 34396.69 32898.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net96.99 12096.80 13397.56 12697.96 21293.67 17698.23 4098.66 15195.59 15297.99 12699.19 2489.51 26099.73 8594.60 17299.44 13799.30 109
test196.99 12096.80 13397.56 12697.96 21293.67 17698.23 4098.66 15195.59 15297.99 12699.19 2489.51 26099.73 8594.60 17299.44 13799.30 109
FMVSNet296.72 14396.67 14096.87 17897.96 21291.88 21997.15 10698.06 23095.59 15298.50 6598.62 6889.51 26099.65 14194.99 15999.60 8399.07 164
BH-untuned94.69 23194.75 21994.52 28697.95 21587.53 29294.07 27197.01 28093.99 21197.10 18195.65 30092.65 20598.95 30087.60 32096.74 32797.09 314
ETH3D cwj APD-0.1696.23 16695.61 18898.09 8897.91 21695.65 9394.94 23398.74 12991.31 27196.02 24497.08 22594.05 17499.69 12191.51 24898.94 22998.93 185
DPM-MVS93.68 26792.77 27896.42 20497.91 21692.54 20191.17 33897.47 26684.99 33693.08 32694.74 31989.90 25399.00 29187.54 32298.09 28397.72 298
QAPM95.88 18195.57 18996.80 18297.90 21891.84 22198.18 4798.73 13188.41 29996.42 22298.13 11994.73 15099.75 6988.72 30598.94 22998.81 205
TinyColmap96.00 17796.34 15894.96 26597.90 21887.91 28394.13 26998.49 17094.41 19598.16 10597.76 16596.29 9898.68 32490.52 27899.42 14898.30 258
HQP-NCC97.85 22094.26 25693.18 23492.86 329
ACMP_Plane97.85 22094.26 25693.18 23492.86 329
N_pmnet95.18 20894.23 24298.06 9197.85 22096.55 6192.49 31491.63 34889.34 28998.09 11597.41 19790.33 24599.06 28591.58 24799.31 18198.56 231
HQP-MVS95.17 21094.58 23096.92 17497.85 22092.47 20394.26 25698.43 17693.18 23492.86 32995.08 31190.33 24599.23 26390.51 27998.74 25199.05 168
hse-mvs295.77 18495.09 20097.79 10997.84 22495.51 9895.66 18595.43 31696.58 9997.21 17396.16 28084.14 29999.54 17895.89 9996.92 32098.32 254
TEST997.84 22495.23 11693.62 28798.39 18486.81 31593.78 30395.99 28894.68 15499.52 184
train_agg95.46 19794.66 22197.88 10497.84 22495.23 11693.62 28798.39 18487.04 31393.78 30395.99 28894.58 15999.52 18491.76 24498.90 23398.89 194
MSLP-MVS++96.42 16196.71 13795.57 24197.82 22790.56 24295.71 18098.84 10194.72 18596.71 20897.39 20294.91 14998.10 35695.28 13799.02 22198.05 282
test_897.81 22895.07 12593.54 29098.38 18687.04 31393.71 30795.96 29294.58 15999.52 184
NCCC96.52 15595.99 17398.10 8797.81 22895.68 9095.00 23198.20 20695.39 16095.40 26596.36 27293.81 17999.45 20493.55 21598.42 27199.17 138
WTY-MVS93.55 27193.00 27095.19 25797.81 22887.86 28493.89 27996.00 30189.02 29294.07 29695.44 30786.27 28699.33 24287.69 31896.82 32498.39 245
CNLPA95.04 21494.47 23596.75 18597.81 22895.25 11594.12 27097.89 23794.41 19594.57 28295.69 29890.30 24898.35 34886.72 32998.76 24996.64 334
AUN-MVS93.95 26292.69 27997.74 11397.80 23295.38 10695.57 19295.46 31591.26 27292.64 33596.10 28674.67 34499.55 17593.72 21196.97 31998.30 258
EIA-MVS96.04 17495.77 18296.85 17997.80 23292.98 19496.12 15899.16 2294.65 18793.77 30591.69 35895.68 11899.67 13394.18 19198.85 24197.91 290
agg_prior195.39 20094.60 22797.75 11297.80 23294.96 12793.39 29598.36 18887.20 31193.49 31695.97 29194.65 15699.53 18091.69 24698.86 23998.77 212
agg_prior97.80 23294.96 12798.36 18893.49 31699.53 180
旧先验197.80 23293.87 16797.75 24697.04 22993.57 18598.68 25598.72 217
PCF-MVS89.43 1892.12 29690.64 31096.57 19697.80 23293.48 18489.88 35598.45 17374.46 36996.04 24295.68 29990.71 24199.31 24673.73 36899.01 22396.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior395.91 17995.39 19297.46 14297.79 23894.26 15593.33 29898.42 17994.21 20394.02 29896.25 27693.64 18399.34 23991.90 23898.96 22598.79 207
test_prior97.46 14297.79 23894.26 15598.42 17999.34 23998.79 207
PVSNet_BlendedMVS95.02 21794.93 20895.27 25497.79 23887.40 29594.14 26898.68 14688.94 29494.51 28598.01 13893.04 19499.30 24989.77 29199.49 12399.11 157
PVSNet_Blended93.96 26093.65 25994.91 26697.79 23887.40 29591.43 33098.68 14684.50 34094.51 28594.48 32693.04 19499.30 24989.77 29198.61 26398.02 285
USDC94.56 23994.57 23294.55 28597.78 24286.43 31092.75 30898.65 15685.96 32196.91 19997.93 14990.82 23998.74 31690.71 27199.59 8598.47 238
alignmvs96.01 17695.52 19097.50 13497.77 24394.71 13596.07 16096.84 28597.48 6996.78 20694.28 33085.50 29199.40 22196.22 8098.73 25498.40 243
ETV-MVS96.13 17195.90 17896.82 18197.76 24493.89 16695.40 20098.95 7595.87 13895.58 26291.00 36496.36 9699.72 9093.36 21698.83 24396.85 325
D2MVS95.18 20895.17 19795.21 25697.76 24487.76 28994.15 26697.94 23489.77 28796.99 19297.68 17787.45 28099.14 27495.03 15799.81 3398.74 214
DVP-MVS++97.96 4797.90 4798.12 8697.75 24695.40 10499.03 798.89 8196.62 9598.62 5398.30 9696.97 5699.75 6995.70 10699.25 19099.21 131
MSC_two_6792asdad98.22 7797.75 24695.34 11198.16 21599.75 6995.87 10199.51 11599.57 34
No_MVS98.22 7797.75 24695.34 11198.16 21599.75 6995.87 10199.51 11599.57 34
TSAR-MVS + GP.96.47 15896.12 16697.49 13797.74 24995.23 11694.15 26696.90 28493.26 23098.04 12296.70 25294.41 16498.89 30394.77 16899.14 20298.37 247
3Dnovator96.53 297.61 8597.64 7497.50 13497.74 24993.65 18098.49 2498.88 8796.86 9097.11 18098.55 7395.82 10999.73 8595.94 9699.42 14899.13 148
sss94.22 25093.72 25895.74 23597.71 25189.95 24793.84 28096.98 28188.38 30193.75 30695.74 29787.94 27398.89 30391.02 25898.10 28298.37 247
DeepC-MVS_fast94.34 796.74 14096.51 15297.44 14597.69 25294.15 15896.02 16498.43 17693.17 23797.30 16997.38 20495.48 12799.28 25593.74 20999.34 17098.88 198
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-SCA-FT95.86 18296.19 16394.85 27197.68 25385.53 31892.42 31697.63 25996.99 8598.36 8098.54 7487.94 27399.75 6997.07 5899.08 21499.27 121
MVSFormer96.14 17096.36 15795.49 24797.68 25387.81 28798.67 1399.02 5496.50 10394.48 28796.15 28186.90 28399.92 598.73 799.13 20698.74 214
lupinMVS93.77 26393.28 26495.24 25597.68 25387.81 28792.12 32196.05 29984.52 33994.48 28795.06 31386.90 28399.63 14693.62 21499.13 20698.27 262
Fast-Effi-MVS+95.49 19395.07 20196.75 18597.67 25692.82 19794.22 26298.60 15991.61 26593.42 32192.90 34396.73 7499.70 11392.60 22897.89 29197.74 297
canonicalmvs97.23 11397.21 10997.30 15597.65 25794.39 14797.84 6499.05 4597.42 7196.68 20993.85 33397.63 2699.33 24296.29 7998.47 27098.18 270
CDS-MVSNet94.88 22194.12 24797.14 16397.64 25893.57 18193.96 27797.06 27990.05 28496.30 23096.55 25986.10 28799.47 19790.10 28699.31 18198.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs594.63 23694.34 24095.50 24697.63 25988.34 27494.02 27297.13 27587.15 31295.22 26897.15 21987.50 27999.27 25793.99 20199.26 18998.88 198
test1297.46 14297.61 26094.07 16097.78 24593.57 31493.31 18999.42 21098.78 24798.89 194
PMMVS293.66 26894.07 24892.45 32997.57 26180.67 35586.46 36496.00 30193.99 21197.10 18197.38 20489.90 25397.82 35888.76 30499.47 12998.86 201
BH-RMVSNet94.56 23994.44 23894.91 26697.57 26187.44 29493.78 28496.26 29693.69 21996.41 22396.50 26492.10 22099.00 29185.96 33297.71 29898.31 256
bset_n11_16_dypcd94.53 24193.95 25496.25 21297.56 26389.85 24888.52 36191.32 35094.90 18197.51 15596.38 27182.34 30799.78 4797.22 4899.80 3699.12 153
PVSNet86.72 1991.10 30790.97 30491.49 33697.56 26378.04 36187.17 36394.60 32284.65 33892.34 33992.20 35287.37 28198.47 33985.17 34297.69 30097.96 287
DELS-MVS96.17 16996.23 16195.99 22297.55 26590.04 24592.38 31898.52 16794.13 20696.55 21897.06 22794.99 14599.58 16495.62 11599.28 18698.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS95.42 19995.83 17994.20 29597.52 26683.78 34092.41 31797.47 26695.49 15698.06 11998.49 7787.94 27399.58 16496.02 9099.02 22199.23 129
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CL-MVSNet_self_test95.04 21494.79 21895.82 23297.51 26789.79 24991.14 33996.82 28793.05 24096.72 20796.40 26990.82 23999.16 27291.95 23798.66 25898.50 236
new-patchmatchnet95.67 18796.58 14392.94 32197.48 26880.21 35692.96 30498.19 21194.83 18298.82 4498.79 5593.31 18999.51 18895.83 10399.04 22099.12 153
MDA-MVSNet_test_wron94.73 22694.83 21594.42 28997.48 26885.15 32590.28 34995.87 30592.52 25197.48 16197.76 16591.92 22799.17 27193.32 21796.80 32698.94 181
PHI-MVS96.96 12496.53 14998.25 7597.48 26896.50 6296.76 12698.85 9693.52 22196.19 23696.85 24095.94 10399.42 21093.79 20899.43 14598.83 203
DeepPCF-MVS94.58 596.90 12896.43 15598.31 6797.48 26897.23 4292.56 31398.60 15992.84 24998.54 6197.40 19896.64 7898.78 31294.40 18299.41 15498.93 185
thres20091.00 30990.42 31392.77 32397.47 27283.98 33994.01 27391.18 35395.12 17195.44 26391.21 36273.93 34699.31 24677.76 36597.63 30595.01 354
YYNet194.73 22694.84 21394.41 29097.47 27285.09 32790.29 34895.85 30692.52 25197.53 15397.76 16591.97 22399.18 26793.31 21896.86 32398.95 179
Effi-MVS+96.19 16896.01 17196.71 18797.43 27492.19 21296.12 15899.10 3395.45 15793.33 32394.71 32097.23 4399.56 17193.21 22297.54 30798.37 247
pmmvs494.82 22394.19 24596.70 18897.42 27592.75 20092.09 32396.76 28986.80 31695.73 25897.22 21689.28 26398.89 30393.28 21999.14 20298.46 240
MSDG95.33 20295.13 19895.94 22897.40 27691.85 22091.02 34298.37 18795.30 16396.31 22995.99 28894.51 16298.38 34589.59 29397.65 30497.60 304
EI-MVSNet-Vis-set97.32 10797.39 9597.11 16497.36 27792.08 21595.34 20597.65 25597.74 5398.29 9398.11 12395.05 14099.68 12897.50 3999.50 11999.56 37
PS-MVSNAJ94.10 25694.47 23593.00 31897.35 27884.88 32991.86 32597.84 24191.96 26094.17 29292.50 35095.82 10999.71 10491.27 25297.48 31094.40 358
Regformer-397.25 11197.29 10197.11 16497.35 27892.32 20695.26 21297.62 26097.67 6198.17 10497.89 15295.05 14099.56 17197.16 5499.42 14899.46 66
Regformer-497.53 9297.47 9397.71 11597.35 27893.91 16595.26 21298.14 21897.97 4598.34 8397.89 15295.49 12599.71 10497.41 4399.42 14899.51 46
diffmvs96.04 17496.23 16195.46 24997.35 27888.03 28293.42 29399.08 3994.09 20996.66 21096.93 23693.85 17899.29 25396.01 9298.67 25699.06 166
EI-MVSNet-UG-set97.32 10797.40 9497.09 16697.34 28292.01 21795.33 20697.65 25597.74 5398.30 9298.14 11895.04 14299.69 12197.55 3799.52 11099.58 29
baseline193.14 28092.64 28194.62 28097.34 28287.20 29996.67 13493.02 33594.71 18696.51 21995.83 29681.64 30898.60 33190.00 28888.06 36798.07 275
AdaColmapbinary95.11 21194.62 22696.58 19497.33 28494.45 14694.92 23498.08 22593.15 23893.98 30195.53 30594.34 16699.10 28185.69 33598.61 26396.20 342
xiu_mvs_v2_base94.22 25094.63 22592.99 31997.32 28584.84 33092.12 32197.84 24191.96 26094.17 29293.43 33496.07 10199.71 10491.27 25297.48 31094.42 357
OpenMVS_ROBcopyleft91.80 1493.64 26993.05 26895.42 25097.31 28691.21 22995.08 22496.68 29381.56 34996.88 20196.41 26790.44 24499.25 26085.39 33997.67 30295.80 346
EI-MVSNet96.63 15096.93 12595.74 23597.26 28788.13 28095.29 21097.65 25596.99 8597.94 13398.19 11492.55 20899.58 16496.91 6299.56 9399.50 47
CVMVSNet92.33 29292.79 27590.95 34097.26 28775.84 37095.29 21092.33 34381.86 34796.27 23198.19 11481.44 31098.46 34094.23 19098.29 27698.55 233
Regformer-197.27 10997.16 11197.61 12497.21 28993.86 16894.85 23898.04 23297.62 6298.03 12397.50 19095.34 13299.63 14696.52 7099.31 18199.35 100
Regformer-297.41 10097.24 10697.93 10097.21 28994.72 13494.85 23898.27 19797.74 5398.11 11197.50 19095.58 12399.69 12196.57 6999.31 18199.37 97
Fast-Effi-MVS+-dtu96.44 15996.12 16697.39 15097.18 29194.39 14795.46 19498.73 13196.03 12894.72 27894.92 31796.28 9999.69 12193.81 20797.98 28698.09 272
OpenMVScopyleft94.22 895.48 19595.20 19596.32 20997.16 29291.96 21897.74 7298.84 10187.26 30994.36 28998.01 13893.95 17699.67 13390.70 27298.75 25097.35 312
BH-w/o92.14 29591.94 28992.73 32497.13 29385.30 32192.46 31595.64 30889.33 29094.21 29192.74 34689.60 25598.24 35181.68 35594.66 35194.66 356
MG-MVS94.08 25894.00 25194.32 29297.09 29485.89 31593.19 30295.96 30392.52 25194.93 27697.51 18989.54 25798.77 31387.52 32397.71 29898.31 256
thisisatest051590.43 31289.18 32494.17 29797.07 29585.44 31989.75 35687.58 36688.28 30293.69 30991.72 35765.27 36899.58 16490.59 27598.67 25697.50 307
MVS-HIRNet88.40 33090.20 31582.99 35597.01 29660.04 37993.11 30385.61 37184.45 34188.72 36199.09 3684.72 29798.23 35282.52 35496.59 33190.69 370
GA-MVS92.83 28392.15 28894.87 27096.97 29787.27 29890.03 35096.12 29891.83 26394.05 29794.57 32176.01 34098.97 29992.46 23297.34 31598.36 252
test_yl94.40 24494.00 25195.59 23996.95 29889.52 25394.75 24395.55 31396.18 11996.79 20296.14 28381.09 31399.18 26790.75 26797.77 29298.07 275
DCV-MVSNet94.40 24494.00 25195.59 23996.95 29889.52 25394.75 24395.55 31396.18 11996.79 20296.14 28381.09 31399.18 26790.75 26797.77 29298.07 275
MVS_Test96.27 16496.79 13594.73 27796.94 30086.63 30796.18 15598.33 19394.94 17896.07 24098.28 10195.25 13699.26 25897.21 5097.90 29098.30 258
MAR-MVS94.21 25293.03 26997.76 11196.94 30097.44 3596.97 11897.15 27487.89 30792.00 34292.73 34792.14 21899.12 27683.92 34897.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu96.81 13696.09 16898.99 1396.90 30298.69 296.42 14098.09 22395.86 13995.15 26995.54 30494.26 16899.81 3694.06 19698.51 26998.47 238
mvs-test196.20 16795.50 19198.32 6596.90 30298.16 595.07 22598.09 22395.86 13993.63 31094.32 32994.26 16899.71 10494.06 19697.27 31897.07 315
MS-PatchMatch94.83 22294.91 21094.57 28496.81 30487.10 30194.23 26197.34 26888.74 29797.14 17797.11 22391.94 22598.23 35292.99 22597.92 28898.37 247
UGNet96.81 13696.56 14597.58 12596.64 30593.84 17097.75 7097.12 27696.47 10693.62 31198.88 5193.22 19199.53 18095.61 11699.69 6299.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS95.09 21395.01 20595.31 25396.61 30694.02 16296.83 12297.18 27395.60 15195.79 25394.33 32894.54 16198.37 34785.70 33498.52 26793.52 361
PAPM87.64 33685.84 34193.04 31696.54 30784.99 32888.42 36295.57 31279.52 35883.82 37093.05 34280.57 31698.41 34262.29 37492.79 35895.71 347
FMVSNet395.26 20694.94 20696.22 21596.53 30890.06 24495.99 16697.66 25394.11 20897.99 12697.91 15180.22 31899.63 14694.60 17299.44 13798.96 178
HY-MVS91.43 1592.58 28691.81 29294.90 26896.49 30988.87 26497.31 9794.62 32185.92 32290.50 35196.84 24185.05 29399.40 22183.77 35195.78 34296.43 339
TR-MVS92.54 28792.20 28793.57 30596.49 30986.66 30693.51 29194.73 32089.96 28594.95 27493.87 33290.24 25098.61 32981.18 35794.88 34995.45 352
ET-MVSNet_ETH3D91.12 30689.67 31895.47 24896.41 31189.15 26191.54 32990.23 36189.07 29186.78 36992.84 34469.39 36499.44 20794.16 19296.61 33097.82 294
CANet95.86 18295.65 18596.49 20096.41 31190.82 23594.36 25498.41 18194.94 17892.62 33796.73 25092.68 20399.71 10495.12 15299.60 8398.94 181
mvs_anonymous95.36 20196.07 17093.21 31396.29 31381.56 35194.60 24797.66 25393.30 22996.95 19698.91 4993.03 19699.38 22996.60 6697.30 31798.69 220
MVS_030495.50 19295.05 20496.84 18096.28 31493.12 19197.00 11696.16 29795.03 17589.22 35997.70 17490.16 25199.48 19494.51 17799.34 17097.93 289
SCA93.38 27593.52 26192.96 32096.24 31581.40 35293.24 30094.00 32691.58 26794.57 28296.97 23387.94 27399.42 21089.47 29597.66 30398.06 279
LS3D97.77 7497.50 8998.57 4896.24 31597.58 2598.45 2798.85 9698.58 2797.51 15597.94 14795.74 11799.63 14695.19 14298.97 22498.51 235
new_pmnet92.34 29191.69 29494.32 29296.23 31789.16 26092.27 31992.88 33784.39 34295.29 26696.35 27385.66 29096.74 36884.53 34697.56 30697.05 316
MVEpermissive73.61 2286.48 33885.92 34088.18 35296.23 31785.28 32381.78 37075.79 37686.01 32082.53 37291.88 35592.74 20187.47 37571.42 37294.86 35091.78 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31091.83 32698.35 19293.47 22397.36 16897.26 21488.69 26699.28 25595.41 13499.36 16298.78 209
DSMNet-mixed92.19 29491.83 29193.25 31196.18 32083.68 34196.27 14893.68 32976.97 36792.54 33899.18 2789.20 26598.55 33583.88 34998.60 26597.51 306
miper_lstm_enhance94.81 22494.80 21794.85 27196.16 32186.45 30991.14 33998.20 20693.49 22297.03 18997.37 20684.97 29599.26 25895.28 13799.56 9398.83 203
our_test_394.20 25494.58 23093.07 31596.16 32181.20 35390.42 34796.84 28590.72 27797.14 17797.13 22090.47 24399.11 27994.04 20098.25 27798.91 190
ppachtmachnet_test94.49 24394.84 21393.46 30796.16 32182.10 34790.59 34597.48 26590.53 27997.01 19197.59 18291.01 23699.36 23493.97 20399.18 19998.94 181
Patchmatch-test93.60 27093.25 26694.63 27996.14 32487.47 29396.04 16294.50 32393.57 22096.47 22096.97 23376.50 33698.61 32990.67 27398.41 27297.81 296
wuyk23d93.25 27895.20 19587.40 35496.07 32595.38 10697.04 11494.97 31895.33 16199.70 598.11 12398.14 1391.94 37277.76 36599.68 6474.89 372
eth_miper_zixun_eth94.89 22094.93 20894.75 27695.99 32686.12 31391.35 33298.49 17093.40 22497.12 17997.25 21586.87 28599.35 23795.08 15498.82 24498.78 209
CANet_DTU94.65 23594.21 24495.96 22495.90 32789.68 25093.92 27897.83 24393.19 23390.12 35495.64 30188.52 26799.57 17093.27 22099.47 12998.62 226
DIV-MVS_self_test94.73 22694.64 22395.01 26395.86 32887.00 30291.33 33398.08 22593.34 22797.10 18197.34 20884.02 30199.31 24695.15 14899.55 9998.72 217
cl____94.73 22694.64 22395.01 26395.85 32987.00 30291.33 33398.08 22593.34 22797.10 18197.33 20984.01 30299.30 24995.14 14999.56 9398.71 219
MVSTER94.21 25293.93 25595.05 26295.83 33086.46 30895.18 21897.65 25592.41 25597.94 13398.00 14072.39 35699.58 16496.36 7799.56 9399.12 153
FMVSNet593.39 27492.35 28596.50 19995.83 33090.81 23797.31 9798.27 19792.74 25096.27 23198.28 10162.23 37199.67 13390.86 26299.36 16299.03 170
miper_ehance_all_eth94.69 23194.70 22094.64 27895.77 33286.22 31291.32 33598.24 20191.67 26497.05 18796.65 25588.39 27099.22 26594.88 16098.34 27398.49 237
PVSNet_081.89 2184.49 33983.21 34288.34 35195.76 33374.97 37383.49 36792.70 34178.47 36287.94 36486.90 37183.38 30496.63 36973.44 36966.86 37593.40 362
PAPR92.22 29391.27 29995.07 26195.73 33488.81 26691.97 32497.87 23885.80 32490.91 34792.73 34791.16 23498.33 34979.48 35995.76 34398.08 273
baseline289.65 32288.44 32993.25 31195.62 33582.71 34393.82 28185.94 37088.89 29587.35 36792.54 34971.23 35999.33 24286.01 33194.60 35397.72 298
CHOSEN 280x42089.98 31789.19 32392.37 33095.60 33681.13 35486.22 36597.09 27781.44 35187.44 36693.15 33573.99 34599.47 19788.69 30699.07 21696.52 338
ADS-MVSNet291.47 30490.51 31294.36 29195.51 33785.63 31695.05 22895.70 30783.46 34392.69 33296.84 24179.15 32299.41 21985.66 33690.52 36298.04 283
ADS-MVSNet90.95 31090.26 31493.04 31695.51 33782.37 34695.05 22893.41 33283.46 34392.69 33296.84 24179.15 32298.70 32085.66 33690.52 36298.04 283
CR-MVSNet93.29 27792.79 27594.78 27595.44 33988.15 27896.18 15597.20 27184.94 33794.10 29498.57 7077.67 32899.39 22695.17 14495.81 33996.81 329
RPMNet94.68 23394.60 22794.90 26895.44 33988.15 27896.18 15598.86 9297.43 7094.10 29498.49 7779.40 31999.76 6295.69 10895.81 33996.81 329
131492.38 29092.30 28692.64 32595.42 34185.15 32595.86 17496.97 28285.40 33190.62 34893.06 34191.12 23597.80 35986.74 32895.49 34694.97 355
RRT_test8_iter0592.46 28892.52 28492.29 33295.33 34277.43 36495.73 17998.55 16594.41 19597.46 16497.72 17357.44 37499.74 7996.92 6199.14 20299.69 20
tpm91.08 30890.85 30691.75 33595.33 34278.09 36095.03 23091.27 35288.75 29693.53 31597.40 19871.24 35899.30 24991.25 25493.87 35597.87 291
IB-MVS85.98 2088.63 32886.95 33793.68 30395.12 34484.82 33190.85 34390.17 36287.55 30888.48 36291.34 36158.01 37399.59 16287.24 32693.80 35696.63 336
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT93.75 26493.57 26094.29 29495.05 34587.32 29796.05 16192.98 33697.54 6794.25 29098.72 6075.79 34199.24 26195.92 9795.81 33996.32 340
tpm288.47 32987.69 33390.79 34194.98 34677.34 36595.09 22291.83 34677.51 36689.40 35796.41 26767.83 36698.73 31783.58 35392.60 36096.29 341
Patchmtry95.03 21694.59 22996.33 20894.83 34790.82 23596.38 14397.20 27196.59 9897.49 15898.57 7077.67 32899.38 22992.95 22799.62 7398.80 206
MVS90.02 31589.20 32292.47 32894.71 34886.90 30495.86 17496.74 29164.72 37290.62 34892.77 34592.54 21098.39 34479.30 36095.56 34592.12 365
CostFormer89.75 32189.25 31991.26 33994.69 34978.00 36295.32 20791.98 34581.50 35090.55 35096.96 23571.06 36098.89 30388.59 30892.63 35996.87 323
PatchmatchNetpermissive91.98 29891.87 29092.30 33194.60 35079.71 35795.12 21993.59 33189.52 28893.61 31297.02 23077.94 32699.18 26790.84 26394.57 35498.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat188.01 33387.33 33490.05 34694.48 35176.28 36994.47 25294.35 32573.84 37189.26 35895.61 30373.64 34998.30 35084.13 34786.20 37095.57 351
MDTV_nov1_ep1391.28 29894.31 35273.51 37494.80 24093.16 33486.75 31793.45 31997.40 19876.37 33798.55 33588.85 30396.43 332
cl2293.25 27892.84 27494.46 28894.30 35386.00 31491.09 34196.64 29490.74 27695.79 25396.31 27478.24 32598.77 31394.15 19398.34 27398.62 226
cascas91.89 29991.35 29793.51 30694.27 35485.60 31788.86 36098.61 15879.32 35992.16 34191.44 36089.22 26498.12 35590.80 26597.47 31296.82 328
test-LLR89.97 31889.90 31690.16 34494.24 35574.98 37189.89 35289.06 36392.02 25889.97 35590.77 36573.92 34798.57 33291.88 24097.36 31396.92 320
test-mter87.92 33487.17 33590.16 34494.24 35574.98 37189.89 35289.06 36386.44 31889.97 35590.77 36554.96 38198.57 33291.88 24097.36 31396.92 320
pmmvs390.00 31688.90 32693.32 30894.20 35785.34 32091.25 33692.56 34278.59 36193.82 30295.17 31067.36 36798.69 32189.08 30198.03 28595.92 343
tpmrst90.31 31390.61 31189.41 34794.06 35872.37 37695.06 22793.69 32788.01 30492.32 34096.86 23977.45 33098.82 30891.04 25787.01 36997.04 317
test0.0.03 190.11 31489.21 32192.83 32293.89 35986.87 30591.74 32788.74 36592.02 25894.71 27991.14 36373.92 34794.48 37183.75 35292.94 35797.16 313
JIA-IIPM91.79 30090.69 30995.11 25993.80 36090.98 23294.16 26591.78 34796.38 10790.30 35399.30 1872.02 35798.90 30188.28 31290.17 36495.45 352
miper_enhance_ethall93.14 28092.78 27794.20 29593.65 36185.29 32289.97 35197.85 23985.05 33496.15 23994.56 32285.74 28999.14 27493.74 20998.34 27398.17 271
TESTMET0.1,187.20 33786.57 33989.07 34893.62 36272.84 37589.89 35287.01 36985.46 32989.12 36090.20 36756.00 37997.72 36090.91 26196.92 32096.64 334
CMPMVSbinary73.10 2392.74 28491.39 29696.77 18493.57 36394.67 13994.21 26397.67 25180.36 35693.61 31296.60 25782.85 30597.35 36284.86 34498.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
RRT_MVS94.90 21994.07 24897.39 15093.18 36493.21 19095.26 21297.49 26393.94 21398.25 9597.85 15772.96 35599.84 2997.90 2299.78 4199.14 145
DWT-MVSNet_test87.92 33486.77 33891.39 33793.18 36478.62 35995.10 22091.42 34985.58 32688.00 36388.73 36960.60 37298.90 30190.60 27487.70 36896.65 333
E-PMN89.52 32389.78 31788.73 34993.14 36677.61 36383.26 36892.02 34494.82 18393.71 30793.11 33675.31 34296.81 36585.81 33396.81 32591.77 367
PMMVS92.39 28991.08 30196.30 21193.12 36792.81 19890.58 34695.96 30379.17 36091.85 34492.27 35190.29 24998.66 32689.85 29096.68 32997.43 308
EMVS89.06 32589.22 32088.61 35093.00 36877.34 36582.91 36990.92 35494.64 18892.63 33691.81 35676.30 33897.02 36383.83 35096.90 32291.48 368
dp88.08 33288.05 33088.16 35392.85 36968.81 37894.17 26492.88 33785.47 32891.38 34696.14 28368.87 36598.81 31086.88 32783.80 37296.87 323
gg-mvs-nofinetune88.28 33186.96 33692.23 33392.84 37084.44 33498.19 4674.60 37799.08 1087.01 36899.47 856.93 37598.23 35278.91 36195.61 34494.01 359
tpmvs90.79 31190.87 30590.57 34392.75 37176.30 36895.79 17893.64 33091.04 27591.91 34396.26 27577.19 33498.86 30789.38 29789.85 36596.56 337
EPMVS89.26 32488.55 32891.39 33792.36 37279.11 35895.65 18879.86 37588.60 29893.12 32596.53 26170.73 36298.10 35690.75 26789.32 36696.98 318
gm-plane-assit91.79 37371.40 37781.67 34890.11 36898.99 29384.86 344
GG-mvs-BLEND90.60 34291.00 37484.21 33798.23 4072.63 38082.76 37184.11 37256.14 37896.79 36672.20 37092.09 36190.78 369
DeepMVS_CXcopyleft77.17 35690.94 37585.28 32374.08 37952.51 37380.87 37488.03 37075.25 34370.63 37659.23 37584.94 37175.62 371
EPNet_dtu91.39 30590.75 30893.31 30990.48 37682.61 34494.80 24092.88 33793.39 22581.74 37394.90 31881.36 31199.11 27988.28 31298.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160088.93 32687.74 33192.49 32688.04 37781.99 34889.63 35795.62 30991.35 26995.06 27093.11 33656.58 37698.63 32785.19 34095.07 34796.85 325
miper_refine_blended88.93 32687.74 33192.49 32688.04 37781.99 34889.63 35795.62 30991.35 26995.06 27093.11 33656.58 37698.63 32785.19 34095.07 34796.85 325
EPNet93.72 26592.62 28297.03 17087.61 37992.25 20796.27 14891.28 35196.74 9387.65 36597.39 20285.00 29499.64 14492.14 23499.48 12799.20 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method66.88 34166.13 34469.11 35762.68 38025.73 38249.76 37196.04 30014.32 37564.27 37691.69 35873.45 35288.05 37476.06 36766.94 37493.54 360
tmp_tt57.23 34262.50 34541.44 35834.77 38149.21 38183.93 36660.22 38215.31 37471.11 37579.37 37370.09 36344.86 37764.76 37382.93 37330.25 373
test12312.59 34415.49 3473.87 3596.07 3822.55 38390.75 3442.59 3842.52 3775.20 37913.02 3764.96 3821.85 3795.20 3769.09 3767.23 374
testmvs12.33 34515.23 3483.64 3605.77 3832.23 38488.99 3593.62 3832.30 3785.29 37813.09 3754.52 3831.95 3785.16 3778.32 3776.75 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
eth-test20.00 384
eth-test0.00 384
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k24.22 34332.30 3460.00 3610.00 3840.00 3850.00 37298.10 2220.00 3790.00 38095.06 31397.54 290.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas7.98 34610.65 3490.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37995.82 1090.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re7.91 34710.55 3500.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38094.94 3150.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
PC_three_145287.24 31098.37 7797.44 19597.00 5496.78 36792.01 23599.25 19099.21 131
test_241102_TWO98.83 10896.11 12198.62 5398.24 10796.92 6299.72 9095.44 12899.49 12399.49 55
test_0728_THIRD96.62 9598.40 7498.28 10197.10 4599.71 10495.70 10699.62 7399.58 29
GSMVS98.06 279
sam_mvs177.80 32798.06 279
sam_mvs77.38 331
MTGPAbinary98.73 131
test_post194.98 23210.37 37876.21 33999.04 28789.47 295
test_post10.87 37776.83 33599.07 284
patchmatchnet-post96.84 24177.36 33299.42 210
MTMP96.55 13574.60 377
test9_res91.29 25198.89 23699.00 173
agg_prior290.34 28498.90 23399.10 161
test_prior495.38 10693.61 289
test_prior293.33 29894.21 20394.02 29896.25 27693.64 18391.90 23898.96 225
旧先验293.35 29777.95 36595.77 25798.67 32590.74 270
新几何293.43 292
无先验93.20 30197.91 23580.78 35399.40 22187.71 31697.94 288
原ACMM292.82 306
testdata299.46 20087.84 315
segment_acmp95.34 132
testdata192.77 30793.78 216
plane_prior598.75 12799.46 20092.59 23099.20 19599.28 117
plane_prior496.77 247
plane_prior394.51 14395.29 16496.16 237
plane_prior296.50 13796.36 109
plane_prior94.29 15195.42 19794.31 20098.93 231
n20.00 385
nn0.00 385
door-mid98.17 212
test1198.08 225
door97.81 244
HQP5-MVS92.47 203
BP-MVS90.51 279
HQP4-MVS92.87 32899.23 26399.06 166
HQP3-MVS98.43 17698.74 251
HQP2-MVS90.33 245
MDTV_nov1_ep13_2view57.28 38094.89 23580.59 35494.02 29878.66 32485.50 33897.82 294
ACMMP++_ref99.52 110
ACMMP++99.55 99
Test By Simon94.51 162