This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 4
test_part199.41 299.62 298.80 3199.76 596.58 5799.49 399.65 299.89 299.94 299.77 299.03 499.92 499.05 399.99 299.90 1
UA-Net98.88 898.76 1499.22 299.11 8197.89 1399.47 499.32 899.08 1197.87 13499.67 396.47 8499.92 497.88 2399.98 399.85 4
ANet_high98.31 2998.94 796.41 19799.33 4389.64 23897.92 5299.56 599.27 799.66 999.50 797.67 2699.83 2997.55 3599.98 399.77 9
PS-MVSNAJss98.53 2098.63 2098.21 7599.68 1094.82 12198.10 4399.21 1296.91 8099.75 399.45 1095.82 10699.92 498.80 599.96 599.89 2
mvs_tets98.90 698.94 798.75 3499.69 996.48 6098.54 1999.22 1196.23 10399.71 599.48 898.77 799.93 298.89 499.95 699.84 6
test_djsdf98.73 1298.74 1798.69 4199.63 1396.30 6698.67 1299.02 5096.50 9299.32 2199.44 1197.43 3199.92 498.73 899.95 699.86 3
LTVRE_ROB96.88 199.18 399.34 398.72 3999.71 896.99 4499.69 299.57 499.02 1699.62 1199.36 1598.53 899.52 16998.58 1399.95 699.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax98.77 1098.79 1398.74 3699.66 1196.48 6098.45 2499.12 2695.83 12899.67 799.37 1398.25 1199.92 498.77 699.94 999.82 7
v897.60 8198.06 3896.23 20398.71 11689.44 24297.43 8298.82 10797.29 7598.74 4799.10 3393.86 16999.68 11598.61 1199.94 999.56 33
v7n98.73 1298.99 697.95 9299.64 1294.20 14698.67 1299.14 2499.08 1199.42 1699.23 2296.53 7999.91 1399.27 299.93 1199.73 16
PS-CasMVS98.73 1298.85 1198.39 6099.55 1895.47 9798.49 2199.13 2599.22 999.22 2798.96 4197.35 3499.92 497.79 2899.93 1199.79 8
UniMVSNet_ETH3D99.12 499.28 498.65 4499.77 396.34 6499.18 699.20 1499.67 399.73 499.65 599.15 399.86 2197.22 4499.92 1399.77 9
v1097.55 8497.97 4196.31 20198.60 13089.64 23897.44 8099.02 5096.60 8898.72 4999.16 3093.48 17899.72 7798.76 799.92 1399.58 28
PEN-MVS98.75 1198.85 1198.44 5699.58 1595.67 8798.45 2499.15 2299.33 699.30 2299.00 3797.27 3899.92 497.64 3399.92 1399.75 14
anonymousdsp98.72 1598.63 2098.99 1399.62 1497.29 3798.65 1599.19 1695.62 13599.35 2099.37 1397.38 3399.90 1498.59 1299.91 1699.77 9
FC-MVSNet-test98.16 3498.37 2897.56 11799.49 2793.10 18298.35 2799.21 1298.43 2898.89 3998.83 4994.30 15999.81 3297.87 2499.91 1699.77 9
DTE-MVSNet98.79 998.86 998.59 4899.55 1896.12 7198.48 2399.10 2999.36 599.29 2399.06 3697.27 3899.93 297.71 3299.91 1699.70 19
CP-MVSNet98.42 2498.46 2598.30 6899.46 2995.22 11098.27 3298.84 9299.05 1499.01 3598.65 6295.37 12699.90 1497.57 3499.91 1699.77 9
WR-MVS_H98.65 1698.62 2298.75 3499.51 2396.61 5598.55 1899.17 1799.05 1499.17 2998.79 5095.47 12399.89 1797.95 2199.91 1699.75 14
pmmvs699.07 599.24 598.56 5099.81 296.38 6298.87 899.30 999.01 1799.63 1099.66 499.27 299.68 11597.75 3099.89 2199.62 25
OurMVSNet-221017-098.61 1798.61 2498.63 4699.77 396.35 6399.17 799.05 4198.05 4099.61 1299.52 693.72 17499.88 1998.72 1099.88 2299.65 23
DeepC-MVS95.41 497.82 6797.70 6198.16 7698.78 10795.72 8296.23 14099.02 5093.92 19998.62 5198.99 3897.69 2499.62 13996.18 7499.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2023121198.55 1898.76 1497.94 9398.79 10594.37 13898.84 999.15 2299.37 499.67 799.43 1295.61 11899.72 7798.12 1799.86 2499.73 16
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 5799.07 8595.87 7896.73 11799.05 4198.67 2398.84 4098.45 7597.58 2899.88 1996.45 6899.86 2499.54 36
nrg03098.54 1998.62 2298.32 6599.22 5795.66 8897.90 5399.08 3598.31 3299.02 3498.74 5497.68 2599.61 14597.77 2999.85 2699.70 19
pmmvs-eth3d96.49 14896.18 15697.42 13798.25 16694.29 14094.77 22998.07 21789.81 26897.97 12298.33 8393.11 18499.08 26695.46 11099.84 2798.89 182
FIs97.93 5598.07 3797.48 12999.38 3992.95 18598.03 4899.11 2798.04 4198.62 5198.66 6093.75 17399.78 4197.23 4399.84 2799.73 16
testing_297.43 9497.71 6096.60 18298.91 9790.85 22296.01 15398.54 15694.78 16898.78 4398.96 4196.35 9299.54 16397.25 4299.82 2999.40 81
D2MVS95.18 19995.17 18995.21 24397.76 23087.76 27594.15 25297.94 22289.77 26996.99 17997.68 16787.45 27099.14 25795.03 14099.81 3098.74 201
WR-MVS96.90 12296.81 12597.16 15098.56 13592.20 19994.33 24198.12 20997.34 7298.20 9397.33 19792.81 19199.75 6094.79 14899.81 3099.54 36
test_040297.84 6497.97 4197.47 13099.19 6694.07 14996.71 11898.73 12298.66 2498.56 5798.41 7796.84 6599.69 10994.82 14699.81 3098.64 210
MIMVSNet198.51 2198.45 2798.67 4299.72 796.71 5098.76 1098.89 7598.49 2799.38 1899.14 3195.44 12599.84 2696.47 6799.80 3399.47 59
VPA-MVSNet98.27 3098.46 2597.70 10899.06 8693.80 16097.76 6099.00 5898.40 2999.07 3398.98 3996.89 6099.75 6097.19 4899.79 3499.55 35
Baseline_NR-MVSNet97.72 7397.79 5397.50 12599.56 1693.29 17695.44 18298.86 8498.20 3798.37 7399.24 2194.69 14499.55 16095.98 8699.79 3499.65 23
IterMVS-LS96.92 12097.29 9595.79 22298.51 14088.13 26695.10 20798.66 14296.99 7798.46 6698.68 5992.55 20099.74 6796.91 5799.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS94.90 20994.07 23697.39 14093.18 34593.21 17995.26 19997.49 25193.94 19898.25 8997.85 14772.96 33899.84 2697.90 2299.78 3799.14 134
NR-MVSNet97.96 4797.86 4898.26 7098.73 11195.54 9298.14 4198.73 12297.79 4599.42 1697.83 14994.40 15799.78 4195.91 8999.76 3899.46 61
SixPastTwentyTwo97.49 8997.57 7997.26 14899.56 1692.33 19398.28 3096.97 26998.30 3399.45 1599.35 1788.43 25999.89 1798.01 2099.76 3899.54 36
FMVSNet197.95 5098.08 3697.56 11799.14 7993.67 16598.23 3398.66 14297.41 7099.00 3699.19 2595.47 12399.73 7395.83 9099.76 3899.30 102
TDRefinement98.90 698.86 999.02 999.54 2098.06 799.34 599.44 798.85 2099.00 3699.20 2497.42 3299.59 14797.21 4599.76 3899.40 81
pm-mvs198.47 2298.67 1897.86 9899.52 2294.58 13198.28 3099.00 5897.57 6099.27 2499.22 2398.32 1099.50 17497.09 5199.75 4299.50 43
UniMVSNet (Re)97.83 6597.65 6798.35 6498.80 10495.86 7995.92 16199.04 4797.51 6498.22 9297.81 15394.68 14699.78 4197.14 5099.75 4299.41 80
LPG-MVS_test97.94 5297.67 6498.74 3699.15 7197.02 4297.09 9899.02 5095.15 15498.34 7898.23 10097.91 1899.70 10194.41 16399.73 4499.50 43
LGP-MVS_train98.74 3699.15 7197.02 4299.02 5095.15 15498.34 7898.23 10097.91 1899.70 10194.41 16399.73 4499.50 43
CSCG97.40 9797.30 9497.69 11098.95 9494.83 12097.28 8898.99 6196.35 9998.13 10395.95 27695.99 9999.66 12594.36 16999.73 4498.59 216
IS-MVSNet96.93 11996.68 13297.70 10899.25 5194.00 15298.57 1696.74 27798.36 3098.14 10297.98 13188.23 26199.71 9293.10 20899.72 4799.38 86
ACMH+93.58 1098.23 3398.31 3097.98 9199.39 3895.22 11097.55 7399.20 1498.21 3699.25 2598.51 7198.21 1299.40 20594.79 14899.72 4799.32 96
CLD-MVS95.47 18795.07 19296.69 17898.27 16392.53 19091.36 31798.67 14091.22 25595.78 23794.12 31395.65 11798.98 27890.81 24699.72 4798.57 217
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6198.72 11395.78 8095.66 17399.02 5098.11 3998.31 8497.69 16694.65 14899.85 2397.02 5499.71 5099.48 56
DU-MVS97.79 6997.60 7698.36 6298.73 11195.78 8095.65 17598.87 8297.57 6098.31 8497.83 14994.69 14499.85 2397.02 5499.71 5099.46 61
ACMH93.61 998.44 2398.76 1497.51 12299.43 3393.54 17198.23 3399.05 4197.40 7199.37 1999.08 3598.79 699.47 18197.74 3199.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.54 1397.47 9197.10 10898.55 5199.04 8996.70 5196.24 13998.89 7593.71 20397.97 12297.75 15897.44 3099.63 13193.22 20599.70 5399.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48296.78 13297.06 11295.95 21698.57 13488.77 25595.36 19098.26 18995.18 15397.85 13698.23 10092.58 19999.63 13197.80 2799.69 5499.45 66
UGNet96.81 13096.56 13897.58 11696.64 28693.84 15997.75 6197.12 26496.47 9593.62 29198.88 4793.22 18399.53 16595.61 10099.69 5499.36 92
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
wuyk23d93.25 26595.20 18787.40 33596.07 30695.38 9997.04 10194.97 30095.33 14699.70 698.11 11398.14 1491.94 35277.76 34599.68 5674.89 351
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22199.12 8089.17 24697.54 7794.92 30196.50 9296.58 19997.27 20183.64 29199.48 17888.42 29299.67 5798.97 165
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4599.21 6397.35 3597.96 4999.16 1898.34 3198.78 4398.52 7097.32 3599.45 18894.08 17899.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0396.58 14596.61 13496.48 19298.49 14391.72 21195.68 17297.69 23896.81 8398.27 8897.92 14094.18 16398.71 30290.78 24899.66 5999.00 161
CHOSEN 1792x268894.10 24393.41 25096.18 20799.16 6890.04 23492.15 30698.68 13779.90 33896.22 21997.83 14987.92 26799.42 19489.18 28199.65 6099.08 150
XVG-ACMP-BASELINE97.58 8397.28 9798.49 5399.16 6896.90 4696.39 12898.98 6495.05 15998.06 11298.02 12695.86 10299.56 15694.37 16699.64 6199.00 161
CP-MVS97.92 5697.56 8098.99 1398.99 9297.82 1597.93 5198.96 6896.11 10796.89 18797.45 18396.85 6499.78 4195.19 12599.63 6299.38 86
test_0728_THIRD96.62 8798.40 7098.28 9297.10 4599.71 9295.70 9299.62 6399.58 28
tfpnnormal97.72 7397.97 4196.94 16299.26 4892.23 19697.83 5798.45 16498.25 3499.13 3098.66 6096.65 7199.69 10993.92 18799.62 6398.91 178
MP-MVS-pluss97.69 7597.36 9198.70 4099.50 2696.84 4795.38 18998.99 6192.45 23898.11 10498.31 8597.25 4199.77 4996.60 6099.62 6399.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 12597.08 11096.13 20998.42 15189.28 24595.41 18698.67 14094.21 18897.97 12298.31 8593.06 18599.65 12698.06 1999.62 6399.45 66
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2097.48 3098.35 2799.03 4895.88 12397.88 13198.22 10398.15 1399.74 6796.50 6699.62 6399.42 78
Patchmtry95.03 20694.59 21896.33 19994.83 32890.82 22496.38 13097.20 25996.59 8997.49 14898.57 6577.67 31299.38 21392.95 21199.62 6398.80 193
zzz-MVS98.01 4597.66 6599.06 499.44 3197.90 1195.66 17398.73 12297.69 5697.90 12897.96 13295.81 11099.82 3096.13 7599.61 6999.45 66
MTAPA98.14 3597.84 4999.06 499.44 3197.90 1197.25 8998.73 12297.69 5697.90 12897.96 13295.81 11099.82 3096.13 7599.61 6999.45 66
Patchmatch-RL test94.66 22494.49 22295.19 24498.54 13788.91 25092.57 29898.74 12091.46 25298.32 8297.75 15877.31 31798.81 29396.06 7799.61 6997.85 273
CANet95.86 17395.65 17796.49 19196.41 29290.82 22494.36 24098.41 17294.94 16392.62 31896.73 23692.68 19599.71 9295.12 13599.60 7298.94 169
FMVSNet296.72 13696.67 13396.87 16797.96 19891.88 20797.15 9498.06 21895.59 13798.50 6298.62 6389.51 25099.65 12694.99 14299.60 7299.07 152
SteuartSystems-ACMMP98.02 4497.76 5798.79 3299.43 3397.21 4197.15 9498.90 7496.58 9098.08 11097.87 14697.02 5399.76 5395.25 12299.59 7499.40 81
Skip Steuart: Steuart Systems R&D Blog.
USDC94.56 22994.57 22194.55 27297.78 22886.43 29592.75 29498.65 14785.96 30296.91 18697.93 13990.82 23198.74 29990.71 25399.59 7498.47 223
ACMMP_NAP97.89 6097.63 7298.67 4299.35 4296.84 4796.36 13198.79 10995.07 15897.88 13198.35 8197.24 4299.72 7796.05 7999.58 7699.45 66
v119296.83 12897.06 11296.15 20898.28 16189.29 24495.36 19098.77 11493.73 20298.11 10498.34 8293.02 18999.67 12098.35 1599.58 7699.50 43
APDe-MVS98.14 3598.03 4098.47 5598.72 11396.04 7398.07 4599.10 2995.96 11798.59 5598.69 5896.94 5599.81 3296.64 5999.58 7699.57 32
DPE-MVS97.64 7797.35 9298.50 5298.85 10096.18 6895.21 20498.99 6195.84 12798.78 4398.08 11596.84 6599.81 3293.98 18599.57 7999.52 40
HPM-MVScopyleft98.11 3997.83 5198.92 2299.42 3597.46 3198.57 1699.05 4195.43 14497.41 15797.50 17997.98 1699.79 3995.58 10399.57 7999.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.05 4297.75 5998.93 2199.23 5497.60 2298.09 4498.96 6895.75 13297.91 12798.06 12296.89 6099.76 5395.32 11899.57 7999.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cl-mvsnet_94.73 21694.64 21295.01 25095.85 31087.00 28791.33 31998.08 21393.34 21297.10 16997.33 19784.01 29099.30 23395.14 13299.56 8298.71 206
miper_lstm_enhance94.81 21494.80 20794.85 25896.16 30286.45 29491.14 32598.20 19693.49 20797.03 17697.37 19484.97 28599.26 24295.28 12099.56 8298.83 190
v14419296.69 13996.90 12296.03 21198.25 16688.92 24995.49 18098.77 11493.05 22598.09 10898.29 9192.51 20499.70 10198.11 1899.56 8299.47 59
EI-MVSNet96.63 14396.93 11995.74 22397.26 26888.13 26695.29 19797.65 24396.99 7797.94 12598.19 10592.55 20099.58 14996.91 5799.56 8299.50 43
K. test v396.44 15196.28 15296.95 16199.41 3691.53 21397.65 6690.31 34198.89 1998.93 3899.36 1584.57 28899.92 497.81 2699.56 8299.39 84
MVSTER94.21 23993.93 24295.05 24995.83 31186.46 29395.18 20597.65 24392.41 23997.94 12598.00 13072.39 33999.58 14996.36 7099.56 8299.12 142
cl-mvsnet194.73 21694.64 21295.01 25095.86 30987.00 28791.33 31998.08 21393.34 21297.10 16997.34 19684.02 28999.31 23095.15 13199.55 8898.72 204
v192192096.72 13696.96 11895.99 21298.21 17088.79 25495.42 18498.79 10993.22 21798.19 9698.26 9792.68 19599.70 10198.34 1699.55 8899.49 51
ACMMP++99.55 88
SMA-MVScopyleft97.48 9097.11 10798.60 4798.83 10196.67 5296.74 11398.73 12291.61 24998.48 6398.36 8096.53 7999.68 11595.17 12799.54 9199.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.37 9997.70 6196.35 19898.14 18295.13 11396.54 12298.92 7295.94 11999.19 2898.08 11597.74 2395.06 35095.24 12399.54 9198.87 187
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM93.33 1198.05 4297.79 5398.85 2599.15 7197.55 2696.68 11998.83 9995.21 15098.36 7598.13 10998.13 1599.62 13996.04 8099.54 9199.39 84
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 5697.62 7498.83 2699.32 4597.24 3997.45 7998.84 9295.76 13096.93 18497.43 18497.26 4099.79 3996.06 7799.53 9499.45 66
Anonymous2023120695.27 19695.06 19495.88 22098.72 11389.37 24395.70 16997.85 22788.00 28796.98 18197.62 17091.95 21699.34 22389.21 28099.53 9498.94 169
V4297.04 11297.16 10596.68 18098.59 13291.05 21896.33 13398.36 17894.60 17497.99 11898.30 8993.32 18099.62 13997.40 4099.53 9499.38 86
EU-MVSNet94.25 23694.47 22393.60 28898.14 18282.60 32897.24 9192.72 32285.08 31498.48 6398.94 4382.59 29498.76 29897.47 3899.53 9499.44 76
TransMVSNet (Re)98.38 2698.67 1897.51 12299.51 2393.39 17598.20 3898.87 8298.23 3599.48 1399.27 2098.47 999.55 16096.52 6499.53 9499.60 26
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11398.23 19295.92 12098.40 7098.28 9297.06 5099.71 9295.48 10799.52 9999.26 114
test_0728_SECOND98.25 7299.23 5495.49 9696.74 11398.89 7599.75 6095.48 10799.52 9999.53 39
v14896.58 14596.97 11695.42 23798.63 12687.57 27795.09 20997.90 22495.91 12298.24 9197.96 13293.42 17999.39 21096.04 8099.52 9999.29 108
EI-MVSNet-UG-set97.32 10397.40 8897.09 15597.34 26392.01 20595.33 19397.65 24397.74 5098.30 8698.14 10895.04 13699.69 10997.55 3599.52 9999.58 28
ACMMP++_ref99.52 99
SED-MVS97.94 5297.90 4498.07 8399.22 5795.35 10296.79 11098.83 9996.11 10799.08 3198.24 9897.87 2199.72 7795.44 11199.51 10499.14 134
IU-MVS99.22 5795.40 9898.14 20685.77 30698.36 7595.23 12499.51 10499.49 51
EI-MVSNet-Vis-set97.32 10397.39 8997.11 15397.36 25892.08 20395.34 19297.65 24397.74 5098.29 8798.11 11395.05 13499.68 11597.50 3799.50 10699.56 33
abl_698.42 2498.19 3399.09 399.16 6898.10 597.73 6499.11 2797.76 4998.62 5198.27 9697.88 2099.80 3895.67 9499.50 10699.38 86
mPP-MVS97.91 5997.53 8199.04 799.22 5797.87 1497.74 6298.78 11396.04 11297.10 16997.73 16196.53 7999.78 4195.16 12999.50 10699.46 61
Gipumacopyleft98.07 4198.31 3097.36 14299.76 596.28 6798.51 2099.10 2998.76 2296.79 18999.34 1896.61 7498.82 29196.38 6999.50 10696.98 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_241102_TWO98.83 9996.11 10798.62 5198.24 9896.92 5899.72 7795.44 11199.49 11099.49 51
v124096.74 13397.02 11595.91 21998.18 17588.52 25795.39 18898.88 8093.15 22398.46 6698.40 7992.80 19299.71 9298.45 1499.49 11099.49 51
VDD-MVS97.37 9997.25 9897.74 10498.69 12094.50 13497.04 10195.61 29498.59 2598.51 6098.72 5592.54 20299.58 14996.02 8299.49 11099.12 142
PVSNet_BlendedMVS95.02 20794.93 19995.27 24197.79 22487.40 28194.14 25498.68 13788.94 27694.51 26598.01 12893.04 18699.30 23389.77 27399.49 11099.11 145
MP-MVScopyleft97.64 7797.18 10499.00 1299.32 4597.77 1797.49 7898.73 12296.27 10095.59 24397.75 15896.30 9399.78 4193.70 19599.48 11499.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet93.72 25292.62 26997.03 15987.61 35892.25 19596.27 13591.28 33296.74 8587.65 34697.39 19085.00 28499.64 12992.14 21899.48 11499.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU94.65 22594.21 23295.96 21495.90 30889.68 23793.92 26497.83 23193.19 21890.12 33595.64 28488.52 25799.57 15593.27 20499.47 11698.62 213
PMMVS293.66 25594.07 23692.45 31197.57 24480.67 33586.46 34696.00 28693.99 19697.10 16997.38 19289.90 24497.82 33988.76 28699.47 11698.86 188
baseline97.44 9397.78 5696.43 19498.52 13990.75 22796.84 10799.03 4896.51 9197.86 13598.02 12696.67 7099.36 21897.09 5199.47 11699.19 124
HFP-MVS97.94 5297.64 7098.83 2699.15 7197.50 2897.59 7098.84 9296.05 11097.49 14897.54 17497.07 4899.70 10195.61 10099.46 11999.30 102
#test#97.62 7997.22 10298.83 2699.15 7197.50 2896.81 10998.84 9294.25 18797.49 14897.54 17497.07 4899.70 10194.37 16699.46 11999.30 102
ACMMPR97.95 5097.62 7498.94 1899.20 6497.56 2597.59 7098.83 9996.05 11097.46 15497.63 16996.77 6799.76 5395.61 10099.46 11999.49 51
PGM-MVS97.88 6197.52 8298.96 1699.20 6497.62 2197.09 9899.06 3995.45 14297.55 14397.94 13797.11 4499.78 4194.77 15199.46 11999.48 56
PM-MVS97.36 10197.10 10898.14 8098.91 9796.77 4996.20 14198.63 14893.82 20098.54 5898.33 8393.98 16799.05 26995.99 8599.45 12398.61 215
OPM-MVS97.54 8597.25 9898.41 5899.11 8196.61 5595.24 20298.46 16394.58 17798.10 10798.07 11797.09 4799.39 21095.16 12999.44 12499.21 122
EG-PatchMatch MVS97.69 7597.79 5397.40 13999.06 8693.52 17295.96 15798.97 6794.55 17898.82 4198.76 5397.31 3699.29 23797.20 4799.44 12499.38 86
GBi-Net96.99 11496.80 12697.56 11797.96 19893.67 16598.23 3398.66 14295.59 13797.99 11899.19 2589.51 25099.73 7394.60 15599.44 12499.30 102
test196.99 11496.80 12697.56 11797.96 19893.67 16598.23 3398.66 14295.59 13797.99 11899.19 2589.51 25099.73 7394.60 15599.44 12499.30 102
FMVSNet395.26 19794.94 19796.22 20596.53 28990.06 23395.99 15497.66 24194.11 19397.99 11897.91 14180.22 30399.63 13194.60 15599.44 12498.96 166
DP-MVS97.87 6297.89 4697.81 10198.62 12794.82 12197.13 9798.79 10998.98 1898.74 4798.49 7295.80 11299.49 17595.04 13899.44 12499.11 145
TAMVS95.49 18494.94 19797.16 15098.31 15793.41 17495.07 21296.82 27491.09 25697.51 14697.82 15289.96 24399.42 19488.42 29299.44 12498.64 210
region2R97.92 5697.59 7798.92 2299.22 5797.55 2697.60 6998.84 9296.00 11597.22 16197.62 17096.87 6399.76 5395.48 10799.43 13199.46 61
XXY-MVS97.54 8597.70 6197.07 15699.46 2992.21 19797.22 9299.00 5894.93 16598.58 5698.92 4597.31 3699.41 20394.44 16199.43 13199.59 27
PHI-MVS96.96 11896.53 14298.25 7297.48 24996.50 5996.76 11298.85 8893.52 20696.19 22196.85 22695.94 10099.42 19493.79 19199.43 13198.83 190
AllTest97.20 11096.92 12098.06 8599.08 8396.16 6997.14 9699.16 1894.35 18397.78 14098.07 11795.84 10399.12 25991.41 23199.42 13498.91 178
TestCases98.06 8599.08 8396.16 6999.16 1894.35 18397.78 14098.07 11795.84 10399.12 25991.41 23199.42 13498.91 178
Regformer-397.25 10797.29 9597.11 15397.35 25992.32 19495.26 19997.62 24897.67 5898.17 9797.89 14295.05 13499.56 15697.16 4999.42 13499.46 61
Regformer-497.53 8797.47 8797.71 10697.35 25993.91 15495.26 19998.14 20697.97 4298.34 7897.89 14295.49 12199.71 9297.41 3999.42 13499.51 42
TinyColmap96.00 16896.34 15094.96 25297.90 20487.91 26994.13 25598.49 16194.41 18098.16 9897.76 15596.29 9498.68 30790.52 26099.42 13498.30 239
3Dnovator96.53 297.61 8097.64 7097.50 12597.74 23293.65 16998.49 2198.88 8096.86 8297.11 16898.55 6895.82 10699.73 7395.94 8799.42 13499.13 137
DeepPCF-MVS94.58 596.90 12296.43 14798.31 6797.48 24997.23 4092.56 29998.60 15092.84 23398.54 5897.40 18696.64 7398.78 29594.40 16599.41 14098.93 173
EPP-MVSNet96.84 12596.58 13697.65 11299.18 6793.78 16298.68 1196.34 28197.91 4497.30 15998.06 12288.46 25899.85 2393.85 18999.40 14199.32 96
xxxxxxxxxxxxxcwj97.24 10897.03 11497.89 9698.48 14594.71 12594.53 23799.07 3895.02 16197.83 13797.88 14496.44 8699.72 7794.59 15899.39 14299.25 117
SF-MVS97.60 8197.39 8998.22 7498.93 9595.69 8497.05 10099.10 2995.32 14797.83 13797.88 14496.44 8699.72 7794.59 15899.39 14299.25 117
casdiffmvs97.50 8897.81 5296.56 18898.51 14091.04 21995.83 16599.09 3497.23 7698.33 8198.30 8997.03 5299.37 21696.58 6299.38 14499.28 109
XVS97.96 4797.63 7298.94 1899.15 7197.66 1997.77 5898.83 9997.42 6796.32 21297.64 16896.49 8299.72 7795.66 9699.37 14599.45 66
X-MVStestdata92.86 26990.83 29498.94 1899.15 7197.66 1997.77 5898.83 9997.42 6796.32 21236.50 35496.49 8299.72 7795.66 9699.37 14599.45 66
lessismore_v097.05 15799.36 4192.12 20184.07 35398.77 4698.98 3985.36 28299.74 6797.34 4199.37 14599.30 102
Anonymous2024052997.96 4798.04 3997.71 10698.69 12094.28 14397.86 5598.31 18698.79 2199.23 2698.86 4895.76 11399.61 14595.49 10499.36 14899.23 120
cl_fuxian95.20 19895.32 18594.83 26096.19 30086.43 29591.83 31298.35 18293.47 20897.36 15897.26 20288.69 25699.28 23995.41 11799.36 14898.78 196
FMVSNet593.39 26192.35 27296.50 19095.83 31190.81 22697.31 8698.27 18792.74 23496.27 21698.28 9262.23 35499.67 12090.86 24499.36 14899.03 158
Vis-MVSNetpermissive98.27 3098.34 2998.07 8399.33 4395.21 11298.04 4699.46 697.32 7397.82 13999.11 3296.75 6899.86 2197.84 2599.36 14899.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMVScopyleft89.60 1796.71 13896.97 11695.95 21699.51 2397.81 1697.42 8397.49 25197.93 4395.95 22998.58 6496.88 6296.91 34589.59 27599.36 14893.12 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GST-MVS97.82 6797.49 8598.81 2999.23 5497.25 3897.16 9398.79 10995.96 11797.53 14497.40 18696.93 5799.77 4995.04 13899.35 15399.42 78
ambc96.56 18898.23 16991.68 21297.88 5498.13 20898.42 6998.56 6794.22 16299.04 27094.05 18299.35 15398.95 167
APD-MVScopyleft97.00 11396.53 14298.41 5898.55 13696.31 6596.32 13498.77 11492.96 23197.44 15697.58 17395.84 10399.74 6791.96 21999.35 15399.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D-3000-0.196.89 12496.46 14698.16 7698.62 12795.69 8495.96 15798.98 6493.36 21197.04 17597.31 19994.93 14099.63 13192.60 21299.34 15699.17 127
MVS_030495.50 18395.05 19596.84 16996.28 29593.12 18197.00 10396.16 28395.03 16089.22 34097.70 16490.16 24299.48 17894.51 16099.34 15697.93 270
jason94.39 23494.04 23895.41 23998.29 15987.85 27292.74 29696.75 27685.38 31395.29 24896.15 26488.21 26299.65 12694.24 17299.34 15698.74 201
jason: jason.
CPTT-MVS96.69 13996.08 16198.49 5398.89 9996.64 5497.25 8998.77 11492.89 23296.01 22897.13 20792.23 20899.67 12092.24 21799.34 15699.17 127
MVS_111021_LR96.82 12996.55 13997.62 11498.27 16395.34 10493.81 26998.33 18394.59 17696.56 20196.63 24296.61 7498.73 30094.80 14799.34 15698.78 196
OMC-MVS96.48 14996.00 16497.91 9598.30 15896.01 7694.86 22498.60 15091.88 24697.18 16397.21 20596.11 9699.04 27090.49 26399.34 15698.69 207
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13597.69 23594.15 14796.02 15198.43 16793.17 22297.30 15997.38 19295.48 12299.28 23993.74 19299.34 15698.88 185
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF97.87 6297.51 8398.95 1799.15 7198.43 397.56 7299.06 3996.19 10498.48 6398.70 5794.72 14399.24 24594.37 16699.33 16399.17 127
LF4IMVS96.07 16395.63 17897.36 14298.19 17295.55 9195.44 18298.82 10792.29 24095.70 24196.55 24592.63 19898.69 30491.75 22799.33 16397.85 273
9.1496.69 13198.53 13896.02 15198.98 6493.23 21697.18 16397.46 18296.47 8499.62 13992.99 20999.32 165
tttt051793.31 26392.56 27095.57 22998.71 11687.86 27097.44 8087.17 34995.79 12997.47 15396.84 22764.12 35299.81 3296.20 7399.32 16599.02 160
Regformer-197.27 10597.16 10597.61 11597.21 27093.86 15794.85 22598.04 22097.62 5998.03 11697.50 17995.34 12799.63 13196.52 6499.31 16799.35 93
Regformer-297.41 9697.24 10097.93 9497.21 27094.72 12494.85 22598.27 18797.74 5098.11 10497.50 17995.58 11999.69 10996.57 6399.31 16799.37 91
N_pmnet95.18 19994.23 23098.06 8597.85 20696.55 5892.49 30091.63 33089.34 27198.09 10897.41 18590.33 23699.06 26891.58 22999.31 16798.56 218
CDS-MVSNet94.88 21194.12 23597.14 15297.64 24193.57 17093.96 26397.06 26690.05 26696.30 21596.55 24586.10 27799.47 18190.10 26899.31 16798.40 226
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VPNet97.26 10697.49 8596.59 18499.47 2890.58 22996.27 13598.53 15797.77 4698.46 6698.41 7794.59 15099.68 11594.61 15499.29 17199.52 40
114514_t93.96 24793.22 25496.19 20699.06 8690.97 22195.99 15498.94 7173.88 35193.43 30196.93 22292.38 20799.37 21689.09 28299.28 17298.25 245
DELS-MVS96.17 16096.23 15395.99 21297.55 24790.04 23492.38 30498.52 15894.13 19296.55 20397.06 21494.99 13899.58 14995.62 9999.28 17298.37 229
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.73 13596.54 14197.27 14698.35 15693.66 16893.42 27998.36 17894.74 16996.58 19996.76 23596.54 7898.99 27694.87 14499.27 17499.15 131
pmmvs594.63 22694.34 22895.50 23397.63 24288.34 26194.02 25897.13 26387.15 29395.22 25097.15 20687.50 26999.27 24193.99 18499.26 17598.88 185
OPU-MVS97.64 11398.01 19295.27 10596.79 11097.35 19596.97 5498.51 31991.21 23799.25 17699.14 134
APD-MVS_3200maxsize98.13 3897.90 4498.79 3298.79 10597.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4599.75 6095.44 11199.24 17799.32 96
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19599.28 4790.62 22895.31 19599.08 3588.40 28296.97 18298.17 10792.11 21199.78 4193.64 19699.21 17898.86 188
SR-MVS-dyc-post98.14 3597.84 4999.02 998.81 10298.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7699.76 5395.49 10499.20 17999.26 114
RE-MVS-def97.88 4798.81 10298.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5595.49 10499.20 17999.26 114
HQP_MVS96.66 14296.33 15197.68 11198.70 11894.29 14096.50 12398.75 11896.36 9796.16 22296.77 23391.91 22099.46 18492.59 21499.20 17999.28 109
plane_prior598.75 11899.46 18492.59 21499.20 17999.28 109
test117298.08 4097.76 5799.05 698.78 10798.07 697.41 8498.85 8897.57 6098.15 10097.96 13296.60 7699.76 5395.30 11999.18 18399.33 95
ppachtmachnet_test94.49 23194.84 20493.46 29196.16 30282.10 33090.59 33097.48 25390.53 26197.01 17897.59 17291.01 22899.36 21893.97 18699.18 18398.94 169
HPM-MVS++copyleft96.99 11496.38 14898.81 2998.64 12297.59 2395.97 15698.20 19695.51 14095.06 25296.53 24794.10 16499.70 10194.29 17099.15 18599.13 137
ETH3 D test640094.77 21593.87 24397.47 13098.12 18693.73 16394.56 23698.70 13285.45 31194.70 26095.93 27891.77 22299.63 13186.45 31299.14 18699.05 156
pmmvs494.82 21394.19 23396.70 17797.42 25692.75 18892.09 30996.76 27586.80 29795.73 24097.22 20489.28 25398.89 28693.28 20299.14 18698.46 225
TSAR-MVS + GP.96.47 15096.12 15897.49 12897.74 23295.23 10794.15 25296.90 27193.26 21598.04 11596.70 23894.41 15698.89 28694.77 15199.14 18698.37 229
RRT_test8_iter0592.46 27592.52 27192.29 31495.33 32377.43 34495.73 16798.55 15594.41 18097.46 15497.72 16357.44 35799.74 6796.92 5699.14 18699.69 21
CDPH-MVS95.45 18994.65 21197.84 10098.28 16194.96 11793.73 27198.33 18385.03 31695.44 24596.60 24395.31 12999.44 19190.01 26999.13 19099.11 145
MVSFormer96.14 16196.36 14995.49 23497.68 23687.81 27398.67 1299.02 5096.50 9294.48 26796.15 26486.90 27399.92 498.73 899.13 19098.74 201
lupinMVS93.77 25093.28 25195.24 24297.68 23687.81 27392.12 30796.05 28584.52 32094.48 26795.06 29586.90 27399.63 13193.62 19799.13 19098.27 243
LFMVS95.32 19494.88 20296.62 18198.03 18991.47 21597.65 6690.72 33899.11 1097.89 13098.31 8579.20 30599.48 17893.91 18899.12 19398.93 173
SR-MVS98.00 4697.66 6599.01 1198.77 10997.93 1097.38 8598.83 9997.32 7398.06 11297.85 14796.65 7199.77 4995.00 14199.11 19499.32 96
thisisatest053092.71 27291.76 28095.56 23198.42 15188.23 26296.03 15087.35 34894.04 19596.56 20195.47 28964.03 35399.77 4994.78 15099.11 19498.68 209
TSAR-MVS + MP.97.42 9597.23 10198.00 9099.38 3995.00 11697.63 6898.20 19693.00 22698.16 9898.06 12295.89 10199.72 7795.67 9499.10 19699.28 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet96.98 11796.84 12397.41 13899.40 3793.26 17797.94 5095.31 29999.26 898.39 7299.18 2887.85 26899.62 13995.13 13499.09 19799.35 93
IterMVS-SCA-FT95.86 17396.19 15594.85 25897.68 23685.53 30392.42 30297.63 24796.99 7798.36 7598.54 6987.94 26399.75 6097.07 5399.08 19899.27 113
CNVR-MVS96.92 12096.55 13998.03 8998.00 19695.54 9294.87 22398.17 20294.60 17496.38 20997.05 21595.67 11699.36 21895.12 13599.08 19899.19 124
Anonymous20240521196.34 15495.98 16697.43 13698.25 16693.85 15896.74 11394.41 30697.72 5398.37 7398.03 12587.15 27299.53 16594.06 17999.07 20098.92 177
CHOSEN 280x42089.98 30489.19 31092.37 31295.60 31781.13 33486.22 34797.09 26581.44 33287.44 34793.15 31773.99 32999.47 18188.69 28899.07 20096.52 318
ab-mvs96.59 14496.59 13596.60 18298.64 12292.21 19798.35 2797.67 23994.45 17996.99 17998.79 5094.96 13999.49 17590.39 26499.07 20098.08 254
LCM-MVSNet-Re97.33 10297.33 9397.32 14498.13 18593.79 16196.99 10499.65 296.74 8599.47 1498.93 4496.91 5999.84 2690.11 26799.06 20398.32 236
new-patchmatchnet95.67 17896.58 13692.94 30597.48 24980.21 33692.96 29098.19 20194.83 16698.82 4198.79 5093.31 18199.51 17395.83 9099.04 20499.12 142
MSLP-MVS++96.42 15396.71 13095.57 22997.82 21390.56 23195.71 16898.84 9294.72 17096.71 19497.39 19094.91 14198.10 33795.28 12099.02 20598.05 263
IterMVS95.42 19095.83 17194.20 28197.52 24883.78 32492.41 30397.47 25495.49 14198.06 11298.49 7287.94 26399.58 14996.02 8299.02 20599.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.43 1892.12 28390.64 29796.57 18797.80 21893.48 17389.88 34098.45 16474.46 35096.04 22695.68 28290.71 23299.31 23073.73 34799.01 20796.91 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D97.77 7197.50 8498.57 4996.24 29697.58 2498.45 2498.85 8898.58 2697.51 14697.94 13795.74 11499.63 13195.19 12598.97 20898.51 221
test_prior395.91 17095.39 18497.46 13297.79 22494.26 14493.33 28498.42 17094.21 18894.02 27896.25 26093.64 17599.34 22391.90 22098.96 20998.79 194
test_prior293.33 28494.21 18894.02 27896.25 26093.64 17591.90 22098.96 209
VNet96.84 12596.83 12496.88 16698.06 18892.02 20496.35 13297.57 25097.70 5597.88 13197.80 15492.40 20699.54 16394.73 15398.96 20999.08 150
3Dnovator+96.13 397.73 7297.59 7798.15 7998.11 18795.60 9098.04 4698.70 13298.13 3896.93 18498.45 7595.30 13099.62 13995.64 9898.96 20999.24 119
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8297.91 20295.65 8994.94 22098.74 12091.31 25396.02 22797.08 21294.05 16699.69 10991.51 23098.94 21398.93 173
QAPM95.88 17295.57 18196.80 17197.90 20491.84 20998.18 4098.73 12288.41 28196.42 20798.13 10994.73 14299.75 6088.72 28798.94 21398.81 192
ZD-MVS98.43 15095.94 7798.56 15490.72 25996.66 19697.07 21395.02 13799.74 6791.08 23898.93 215
plane_prior94.29 14095.42 18494.31 18598.93 215
CS-MVS95.86 17395.59 18096.69 17897.85 20693.14 18096.42 12699.25 1094.17 19193.56 29590.76 34696.05 9899.72 7793.28 20298.91 21797.21 294
train_agg95.46 18894.66 21097.88 9797.84 21195.23 10793.62 27398.39 17487.04 29493.78 28395.99 27194.58 15199.52 16991.76 22698.90 21898.89 182
agg_prior290.34 26698.90 21899.10 149
ITE_SJBPF97.85 9998.64 12296.66 5398.51 16095.63 13497.22 16197.30 20095.52 12098.55 31690.97 24198.90 21898.34 235
test9_res91.29 23398.89 22199.00 161
EPNet_dtu91.39 29290.75 29593.31 29390.48 35782.61 32794.80 22792.88 31993.39 21081.74 35494.90 30081.36 29799.11 26288.28 29498.87 22298.21 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.32 1294.93 20894.23 23097.04 15898.18 17594.51 13295.22 20398.73 12281.22 33396.25 21895.95 27693.80 17298.98 27889.89 27198.87 22297.62 283
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
agg_prior195.39 19194.60 21697.75 10397.80 21894.96 11793.39 28198.36 17887.20 29293.49 29795.97 27494.65 14899.53 16591.69 22898.86 22498.77 199
DP-MVS Recon95.55 18295.13 19096.80 17198.51 14093.99 15394.60 23498.69 13590.20 26495.78 23796.21 26392.73 19498.98 27890.58 25898.86 22497.42 290
EIA-MVS96.04 16595.77 17496.85 16897.80 21892.98 18496.12 14599.16 1894.65 17293.77 28591.69 33895.68 11599.67 12094.18 17498.85 22697.91 271
MCST-MVS96.24 15695.80 17297.56 11798.75 11094.13 14894.66 23298.17 20290.17 26596.21 22096.10 26995.14 13399.43 19394.13 17798.85 22699.13 137
ETV-MVS96.13 16295.90 17096.82 17097.76 23093.89 15595.40 18798.95 7095.87 12495.58 24491.00 34396.36 9199.72 7793.36 19998.83 22896.85 307
eth_miper_zixun_eth94.89 21094.93 19994.75 26395.99 30786.12 29891.35 31898.49 16193.40 20997.12 16797.25 20386.87 27599.35 22195.08 13798.82 22998.78 196
testtj96.69 13996.13 15798.36 6298.46 14996.02 7596.44 12598.70 13294.26 18696.79 18997.13 20794.07 16599.75 6090.53 25998.80 23099.31 101
HyFIR lowres test93.72 25292.65 26796.91 16598.93 9591.81 21091.23 32398.52 15882.69 32696.46 20696.52 24980.38 30299.90 1490.36 26598.79 23199.03 158
test1297.46 13297.61 24394.07 14997.78 23393.57 29493.31 18199.42 19498.78 23298.89 182
CMPMVSbinary73.10 2392.74 27191.39 28396.77 17393.57 34494.67 12994.21 24997.67 23980.36 33793.61 29296.60 24382.85 29397.35 34384.86 32498.78 23298.29 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CNLPA95.04 20594.47 22396.75 17497.81 21495.25 10694.12 25697.89 22594.41 18094.57 26295.69 28190.30 23998.35 32986.72 31198.76 23496.64 314
OpenMVScopyleft94.22 895.48 18695.20 18796.32 20097.16 27391.96 20697.74 6298.84 9287.26 29194.36 26998.01 12893.95 16899.67 12090.70 25498.75 23597.35 293
testgi96.07 16396.50 14594.80 26199.26 4887.69 27695.96 15798.58 15395.08 15798.02 11796.25 26097.92 1797.60 34288.68 28998.74 23699.11 145
HQP3-MVS98.43 16798.74 236
HQP-MVS95.17 20194.58 21996.92 16397.85 20692.47 19194.26 24298.43 16793.18 21992.86 31095.08 29390.33 23699.23 24790.51 26198.74 23699.05 156
alignmvs96.01 16795.52 18297.50 12597.77 22994.71 12596.07 14796.84 27297.48 6596.78 19394.28 31285.50 28199.40 20596.22 7298.73 23998.40 226
旧先验197.80 21893.87 15697.75 23497.04 21693.57 17798.68 24098.72 204
thisisatest051590.43 29989.18 31194.17 28397.07 27685.44 30489.75 34187.58 34788.28 28493.69 28991.72 33765.27 35199.58 14990.59 25798.67 24197.50 288
diffmvs96.04 16596.23 15395.46 23697.35 25988.03 26893.42 27999.08 3594.09 19496.66 19696.93 22293.85 17099.29 23796.01 8498.67 24199.06 154
test22298.17 17793.24 17892.74 29697.61 24975.17 34994.65 26196.69 23990.96 23098.66 24397.66 282
新几何197.25 14998.29 15994.70 12897.73 23577.98 34494.83 25796.67 24092.08 21399.45 18888.17 29698.65 24497.61 284
112194.26 23593.26 25297.27 14698.26 16594.73 12395.86 16297.71 23777.96 34594.53 26496.71 23791.93 21899.40 20587.71 29898.64 24597.69 281
原ACMM196.58 18598.16 17992.12 20198.15 20585.90 30493.49 29796.43 25292.47 20599.38 21387.66 30198.62 24698.23 246
PVSNet_Blended93.96 24793.65 24694.91 25397.79 22487.40 28191.43 31698.68 13784.50 32194.51 26594.48 30893.04 18699.30 23389.77 27398.61 24798.02 266
AdaColmapbinary95.11 20294.62 21596.58 18597.33 26594.45 13594.92 22198.08 21393.15 22393.98 28195.53 28894.34 15899.10 26485.69 31798.61 24796.20 322
DSMNet-mixed92.19 28191.83 27893.25 29596.18 30183.68 32596.27 13593.68 31176.97 34892.54 31999.18 2889.20 25598.55 31683.88 32998.60 24997.51 287
MSP-MVS97.45 9296.92 12099.03 899.26 4897.70 1897.66 6598.89 7595.65 13398.51 6096.46 25192.15 20999.81 3295.14 13298.58 25099.58 28
testdata95.70 22698.16 17990.58 22997.72 23680.38 33695.62 24297.02 21792.06 21498.98 27889.06 28498.52 25197.54 286
API-MVS95.09 20495.01 19695.31 24096.61 28794.02 15196.83 10897.18 26195.60 13695.79 23594.33 31094.54 15398.37 32885.70 31698.52 25193.52 340
Effi-MVS+-dtu96.81 13096.09 16098.99 1396.90 28398.69 296.42 12698.09 21195.86 12595.15 25195.54 28794.26 16099.81 3294.06 17998.51 25398.47 223
canonicalmvs97.23 10997.21 10397.30 14597.65 24094.39 13697.84 5699.05 4197.42 6796.68 19593.85 31597.63 2799.33 22696.29 7198.47 25498.18 251
NCCC96.52 14795.99 16598.10 8197.81 21495.68 8695.00 21898.20 19695.39 14595.40 24796.36 25693.81 17199.45 18893.55 19898.42 25599.17 127
Patchmatch-test93.60 25793.25 25394.63 26696.14 30587.47 27996.04 14994.50 30593.57 20596.47 20596.97 21976.50 32098.61 31090.67 25598.41 25697.81 277
cl-mvsnet293.25 26592.84 26194.46 27494.30 33486.00 29991.09 32696.64 28090.74 25895.79 23596.31 25878.24 30998.77 29694.15 17698.34 25798.62 213
miper_ehance_all_eth94.69 22194.70 20994.64 26595.77 31386.22 29791.32 32198.24 19191.67 24897.05 17496.65 24188.39 26099.22 24994.88 14398.34 25798.49 222
miper_enhance_ethall93.14 26792.78 26494.20 28193.65 34285.29 30789.97 33697.85 22785.05 31596.15 22494.56 30485.74 27999.14 25793.74 19298.34 25798.17 252
CVMVSNet92.33 27992.79 26290.95 32197.26 26875.84 34995.29 19792.33 32581.86 32896.27 21698.19 10581.44 29698.46 32194.23 17398.29 26098.55 220
our_test_394.20 24194.58 21993.07 29996.16 30281.20 33390.42 33296.84 27290.72 25997.14 16597.13 20790.47 23499.11 26294.04 18398.25 26198.91 178
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 26898.01 19288.42 25893.99 26098.21 19392.98 22795.91 23094.53 30596.39 8899.72 7795.43 11498.19 26295.64 328
xiu_mvs_v1_base95.62 17995.96 16794.60 26898.01 19288.42 25893.99 26098.21 19392.98 22795.91 23094.53 30596.39 8899.72 7795.43 11498.19 26295.64 328
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 26898.01 19288.42 25893.99 26098.21 19392.98 22795.91 23094.53 30596.39 8899.72 7795.43 11498.19 26295.64 328
XVG-OURS97.12 11196.74 12998.26 7098.99 9297.45 3293.82 26799.05 4195.19 15298.32 8297.70 16495.22 13298.41 32394.27 17198.13 26598.93 173
sss94.22 23793.72 24595.74 22397.71 23489.95 23693.84 26696.98 26888.38 28393.75 28695.74 28087.94 26398.89 28691.02 24098.10 26698.37 229
DPM-MVS93.68 25492.77 26596.42 19597.91 20292.54 18991.17 32497.47 25484.99 31793.08 30794.74 30189.90 24499.00 27487.54 30498.09 26797.72 279
MIMVSNet93.42 26092.86 25995.10 24798.17 17788.19 26398.13 4293.69 30992.07 24195.04 25398.21 10480.95 30099.03 27381.42 33698.06 26898.07 256
pmmvs390.00 30388.90 31293.32 29294.20 33885.34 30591.25 32292.56 32478.59 34293.82 28295.17 29267.36 35098.69 30489.08 28398.03 26995.92 323
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 14097.18 27294.39 13695.46 18198.73 12296.03 11494.72 25894.92 29996.28 9599.69 10993.81 19097.98 27098.09 253
thres600view792.03 28491.43 28293.82 28498.19 17284.61 31796.27 13590.39 33996.81 8396.37 21093.11 31873.44 33699.49 17580.32 33897.95 27197.36 291
MS-PatchMatch94.83 21294.91 20194.57 27196.81 28587.10 28694.23 24797.34 25688.74 27997.14 16597.11 21091.94 21798.23 33392.99 20997.92 27298.37 229
1112_ss94.12 24293.42 24996.23 20398.59 13290.85 22294.24 24698.85 8885.49 30892.97 30894.94 29786.01 27899.64 12991.78 22597.92 27298.20 249
MVS_Test96.27 15596.79 12894.73 26496.94 28186.63 29296.18 14298.33 18394.94 16396.07 22598.28 9295.25 13199.26 24297.21 4597.90 27498.30 239
Fast-Effi-MVS+95.49 18495.07 19296.75 17497.67 23992.82 18694.22 24898.60 15091.61 24993.42 30292.90 32396.73 6999.70 10192.60 21297.89 27597.74 278
test_yl94.40 23294.00 23995.59 22796.95 27989.52 24094.75 23095.55 29696.18 10596.79 18996.14 26681.09 29899.18 25190.75 24997.77 27698.07 256
DCV-MVSNet94.40 23294.00 23995.59 22796.95 27989.52 24094.75 23095.55 29696.18 10596.79 18996.14 26681.09 29899.18 25190.75 24997.77 27698.07 256
Test_1112_low_res93.53 25992.86 25995.54 23298.60 13088.86 25292.75 29498.69 13582.66 32792.65 31596.92 22484.75 28699.56 15690.94 24297.76 27898.19 250
thres100view90091.76 28891.26 28793.26 29498.21 17084.50 31896.39 12890.39 33996.87 8196.33 21193.08 32073.44 33699.42 19478.85 34297.74 27995.85 324
tfpn200view991.55 29091.00 28993.21 29798.02 19084.35 32095.70 16990.79 33696.26 10195.90 23392.13 33373.62 33499.42 19478.85 34297.74 27995.85 324
thres40091.68 28991.00 28993.71 28698.02 19084.35 32095.70 16990.79 33696.26 10195.90 23392.13 33373.62 33499.42 19478.85 34297.74 27997.36 291
BH-RMVSNet94.56 22994.44 22694.91 25397.57 24487.44 28093.78 27096.26 28293.69 20496.41 20896.50 25092.10 21299.00 27485.96 31497.71 28298.31 237
MG-MVS94.08 24594.00 23994.32 27897.09 27585.89 30093.19 28895.96 28892.52 23594.93 25697.51 17889.54 24798.77 29687.52 30597.71 28298.31 237
PVSNet86.72 1991.10 29490.97 29191.49 31797.56 24678.04 34187.17 34594.60 30484.65 31992.34 32092.20 33287.37 27198.47 32085.17 32297.69 28497.96 268
PatchMatch-RL94.61 22793.81 24497.02 16098.19 17295.72 8293.66 27297.23 25888.17 28594.94 25595.62 28591.43 22498.57 31387.36 30797.68 28596.76 311
OpenMVS_ROBcopyleft91.80 1493.64 25693.05 25595.42 23797.31 26791.21 21795.08 21196.68 27981.56 33096.88 18896.41 25390.44 23599.25 24485.39 32197.67 28695.80 326
SCA93.38 26293.52 24892.96 30496.24 29681.40 33293.24 28694.00 30891.58 25194.57 26296.97 21987.94 26399.42 19489.47 27797.66 28798.06 260
MSDG95.33 19395.13 19095.94 21897.40 25791.85 20891.02 32798.37 17795.30 14896.31 21495.99 27194.51 15498.38 32689.59 27597.65 28897.60 285
thres20091.00 29690.42 30092.77 30797.47 25383.98 32394.01 25991.18 33495.12 15695.44 24591.21 34173.93 33099.31 23077.76 34597.63 28995.01 334
new_pmnet92.34 27891.69 28194.32 27896.23 29889.16 24792.27 30592.88 31984.39 32395.29 24896.35 25785.66 28096.74 34884.53 32697.56 29097.05 298
Effi-MVS+96.19 15996.01 16396.71 17697.43 25592.19 20096.12 14599.10 2995.45 14293.33 30494.71 30297.23 4399.56 15693.21 20697.54 29198.37 229
F-COLMAP95.30 19594.38 22798.05 8898.64 12296.04 7395.61 17898.66 14289.00 27593.22 30596.40 25592.90 19099.35 22187.45 30697.53 29298.77 199
MAR-MVS94.21 23993.03 25697.76 10296.94 28197.44 3396.97 10597.15 26287.89 28992.00 32392.73 32792.14 21099.12 25983.92 32897.51 29396.73 312
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base94.22 23794.63 21492.99 30397.32 26684.84 31592.12 30797.84 22991.96 24494.17 27293.43 31696.07 9799.71 9291.27 23497.48 29494.42 337
PS-MVSNAJ94.10 24394.47 22393.00 30297.35 25984.88 31491.86 31197.84 22991.96 24494.17 27292.50 33095.82 10699.71 9291.27 23497.48 29494.40 338
cascas91.89 28691.35 28493.51 29094.27 33585.60 30288.86 34398.61 14979.32 34092.16 32291.44 33989.22 25498.12 33690.80 24797.47 29696.82 308
test-LLR89.97 30589.90 30390.16 32594.24 33674.98 35089.89 33789.06 34492.02 24289.97 33690.77 34473.92 33198.57 31391.88 22297.36 29796.92 302
test-mter87.92 31887.17 31990.16 32594.24 33674.98 35089.89 33789.06 34486.44 29989.97 33690.77 34454.96 36198.57 31391.88 22297.36 29796.92 302
GA-MVS92.83 27092.15 27594.87 25796.97 27887.27 28490.03 33596.12 28491.83 24794.05 27794.57 30376.01 32498.97 28292.46 21697.34 29998.36 234
MVP-Stereo95.69 17695.28 18696.92 16398.15 18193.03 18395.64 17798.20 19690.39 26296.63 19897.73 16191.63 22399.10 26491.84 22497.31 30098.63 212
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous95.36 19296.07 16293.21 29796.29 29481.56 33194.60 23497.66 24193.30 21496.95 18398.91 4693.03 18899.38 21396.60 6097.30 30198.69 207
mvs-test196.20 15895.50 18398.32 6596.90 28398.16 495.07 21298.09 21195.86 12593.63 29094.32 31194.26 16099.71 9294.06 17997.27 30297.07 297
AUN-MVS93.95 24992.69 26697.74 10497.80 21895.38 9995.57 17995.46 29891.26 25492.64 31696.10 26974.67 32899.55 16093.72 19496.97 30398.30 239
TESTMET0.1,187.20 32186.57 32389.07 32993.62 34372.84 35489.89 33787.01 35085.46 31089.12 34190.20 34756.00 36097.72 34190.91 24396.92 30496.64 314
EMVS89.06 31189.22 30788.61 33193.00 34977.34 34582.91 35190.92 33594.64 17392.63 31791.81 33676.30 32297.02 34483.83 33096.90 30591.48 347
YYNet194.73 21694.84 20494.41 27697.47 25385.09 31290.29 33395.85 29192.52 23597.53 14497.76 15591.97 21599.18 25193.31 20196.86 30698.95 167
WTY-MVS93.55 25893.00 25795.19 24497.81 21487.86 27093.89 26596.00 28689.02 27494.07 27695.44 29086.27 27699.33 22687.69 30096.82 30798.39 228
E-PMN89.52 30989.78 30488.73 33093.14 34777.61 34383.26 35092.02 32694.82 16793.71 28793.11 31875.31 32696.81 34685.81 31596.81 30891.77 346
MDA-MVSNet_test_wron94.73 21694.83 20694.42 27597.48 24985.15 31090.28 33495.87 29092.52 23597.48 15197.76 15591.92 21999.17 25593.32 20096.80 30998.94 169
BH-untuned94.69 22194.75 20894.52 27397.95 20187.53 27894.07 25797.01 26793.99 19697.10 16995.65 28392.65 19798.95 28387.60 30296.74 31097.09 296
PLCcopyleft91.02 1694.05 24692.90 25897.51 12298.00 19695.12 11494.25 24598.25 19086.17 30091.48 32695.25 29191.01 22899.19 25085.02 32396.69 31198.22 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMMVS92.39 27691.08 28896.30 20293.12 34892.81 18790.58 33195.96 28879.17 34191.85 32592.27 33190.29 24098.66 30989.85 27296.68 31297.43 289
ET-MVSNet_ETH3D91.12 29389.67 30595.47 23596.41 29289.15 24891.54 31590.23 34289.07 27386.78 35092.84 32469.39 34799.44 19194.16 17596.61 31397.82 275
MVS-HIRNet88.40 31490.20 30282.99 33697.01 27760.04 35893.11 28985.61 35284.45 32288.72 34299.09 3484.72 28798.23 33382.52 33496.59 31490.69 349
MDTV_nov1_ep1391.28 28594.31 33373.51 35394.80 22793.16 31686.75 29893.45 30097.40 18676.37 32198.55 31688.85 28596.43 315
XVG-OURS-SEG-HR97.38 9897.07 11198.30 6899.01 9197.41 3494.66 23299.02 5095.20 15198.15 10097.52 17798.83 598.43 32294.87 14496.41 31699.07 152
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22398.48 14588.76 25692.84 29197.25 25796.00 11597.59 14297.95 13691.38 22599.46 18493.16 20796.35 31798.99 164
PAPM_NR94.61 22794.17 23495.96 21498.36 15591.23 21695.93 16097.95 22192.98 22793.42 30294.43 30990.53 23398.38 32687.60 30296.29 31898.27 243
UnsupCasMVSNet_bld94.72 22094.26 22996.08 21098.62 12790.54 23293.38 28298.05 21990.30 26397.02 17796.80 23289.54 24799.16 25688.44 29196.18 31998.56 218
FPMVS89.92 30688.63 31393.82 28498.37 15496.94 4591.58 31493.34 31588.00 28790.32 33397.10 21170.87 34491.13 35371.91 35096.16 32093.39 342
CR-MVSNet93.29 26492.79 26294.78 26295.44 32088.15 26496.18 14297.20 25984.94 31894.10 27498.57 6577.67 31299.39 21095.17 12795.81 32196.81 309
PatchT93.75 25193.57 24794.29 28095.05 32687.32 28396.05 14892.98 31897.54 6394.25 27098.72 5575.79 32599.24 24595.92 8895.81 32196.32 320
RPMNet94.68 22394.60 21694.90 25595.44 32088.15 26496.18 14298.86 8497.43 6694.10 27498.49 7279.40 30499.76 5395.69 9395.81 32196.81 309
HY-MVS91.43 1592.58 27391.81 27994.90 25596.49 29088.87 25197.31 8694.62 30385.92 30390.50 33296.84 22785.05 28399.40 20583.77 33195.78 32496.43 319
PAPR92.22 28091.27 28695.07 24895.73 31588.81 25391.97 31097.87 22685.80 30590.91 32892.73 32791.16 22698.33 33079.48 33995.76 32598.08 254
gg-mvs-nofinetune88.28 31586.96 32092.23 31592.84 35184.44 31998.19 3974.60 35699.08 1187.01 34999.47 956.93 35898.23 33378.91 34195.61 32694.01 339
MVS90.02 30289.20 30992.47 31094.71 32986.90 28995.86 16296.74 27764.72 35390.62 32992.77 32592.54 20298.39 32579.30 34095.56 32792.12 344
131492.38 27792.30 27392.64 30995.42 32285.15 31095.86 16296.97 26985.40 31290.62 32993.06 32191.12 22797.80 34086.74 31095.49 32894.97 335
TR-MVS92.54 27492.20 27493.57 28996.49 29086.66 29193.51 27794.73 30289.96 26794.95 25493.87 31490.24 24198.61 31081.18 33794.88 32995.45 332
MVEpermissive73.61 2286.48 32285.92 32488.18 33396.23 29885.28 30881.78 35275.79 35586.01 30182.53 35391.88 33592.74 19387.47 35471.42 35194.86 33091.78 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-w/o92.14 28291.94 27692.73 30897.13 27485.30 30692.46 30195.64 29389.33 27294.21 27192.74 32689.60 24698.24 33281.68 33594.66 33194.66 336
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19398.48 14591.52 21495.31 19598.45 16495.76 13097.48 15197.54 17489.53 24998.69 30494.43 16294.61 33299.13 137
baseline289.65 30888.44 31593.25 29595.62 31682.71 32693.82 26785.94 35188.89 27787.35 34892.54 32971.23 34299.33 22686.01 31394.60 33397.72 279
PatchmatchNetpermissive91.98 28591.87 27792.30 31394.60 33179.71 33795.12 20693.59 31389.52 27093.61 29297.02 21777.94 31099.18 25190.84 24594.57 33498.01 267
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm91.08 29590.85 29391.75 31695.33 32378.09 34095.03 21791.27 33388.75 27893.53 29697.40 18671.24 34199.30 23391.25 23693.87 33597.87 272
IB-MVS85.98 2088.63 31286.95 32193.68 28795.12 32584.82 31690.85 32890.17 34387.55 29088.48 34391.34 34058.01 35699.59 14787.24 30893.80 33696.63 316
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 190.11 30189.21 30892.83 30693.89 34086.87 29091.74 31388.74 34692.02 24294.71 25991.14 34273.92 33194.48 35183.75 33292.94 33797.16 295
PAPM87.64 32085.84 32593.04 30096.54 28884.99 31388.42 34495.57 29579.52 33983.82 35193.05 32280.57 30198.41 32362.29 35392.79 33895.71 327
CostFormer89.75 30789.25 30691.26 32094.69 33078.00 34295.32 19491.98 32781.50 33190.55 33196.96 22171.06 34398.89 28688.59 29092.63 33996.87 305
tpm288.47 31387.69 31790.79 32294.98 32777.34 34595.09 20991.83 32877.51 34789.40 33896.41 25367.83 34998.73 30083.58 33392.60 34096.29 321
GG-mvs-BLEND90.60 32391.00 35584.21 32298.23 3372.63 35982.76 35284.11 35256.14 35996.79 34772.20 34992.09 34190.78 348
ADS-MVSNet291.47 29190.51 29994.36 27795.51 31885.63 30195.05 21595.70 29283.46 32492.69 31396.84 22779.15 30699.41 20385.66 31890.52 34298.04 264
ADS-MVSNet90.95 29790.26 30193.04 30095.51 31882.37 32995.05 21593.41 31483.46 32492.69 31396.84 22779.15 30698.70 30385.66 31890.52 34298.04 264
JIA-IIPM91.79 28790.69 29695.11 24693.80 34190.98 22094.16 25191.78 32996.38 9690.30 33499.30 1972.02 34098.90 28488.28 29490.17 34495.45 332
tpmvs90.79 29890.87 29290.57 32492.75 35276.30 34795.79 16693.64 31291.04 25791.91 32496.26 25977.19 31898.86 29089.38 27989.85 34596.56 317
EPMVS89.26 31088.55 31491.39 31892.36 35379.11 33895.65 17579.86 35488.60 28093.12 30696.53 24770.73 34598.10 33790.75 24989.32 34696.98 300
baseline193.14 26792.64 26894.62 26797.34 26387.20 28596.67 12093.02 31794.71 17196.51 20495.83 27981.64 29598.60 31290.00 27088.06 34798.07 256
DWT-MVSNet_test87.92 31886.77 32291.39 31893.18 34578.62 33995.10 20791.42 33185.58 30788.00 34488.73 34960.60 35598.90 28490.60 25687.70 34896.65 313
tpmrst90.31 30090.61 29889.41 32894.06 33972.37 35595.06 21493.69 30988.01 28692.32 32196.86 22577.45 31498.82 29191.04 23987.01 34997.04 299
tpm cat188.01 31787.33 31890.05 32794.48 33276.28 34894.47 23994.35 30773.84 35289.26 33995.61 28673.64 33398.30 33184.13 32786.20 35095.57 331
DeepMVS_CXcopyleft77.17 33790.94 35685.28 30874.08 35852.51 35480.87 35588.03 35075.25 32770.63 35559.23 35484.94 35175.62 350
dp88.08 31688.05 31688.16 33492.85 35068.81 35794.17 25092.88 31985.47 30991.38 32796.14 26668.87 34898.81 29386.88 30983.80 35296.87 305
tmp_tt57.23 32462.50 32741.44 33834.77 35949.21 36083.93 34860.22 36015.31 35571.11 35679.37 35370.09 34644.86 35664.76 35282.93 35330.25 352
PVSNet_081.89 2184.49 32383.21 32688.34 33295.76 31474.97 35283.49 34992.70 32378.47 34387.94 34586.90 35183.38 29296.63 34973.44 34866.86 35493.40 341
test12312.59 32615.49 3293.87 3396.07 3602.55 36190.75 3292.59 3622.52 3565.20 35813.02 3564.96 3621.85 3585.20 3559.09 3557.23 353
testmvs12.33 32715.23 3303.64 3405.77 3612.23 36288.99 3423.62 3612.30 3575.29 35713.09 3554.52 3631.95 3575.16 3568.32 3566.75 354
uanet_test0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
cdsmvs_eth3d_5k24.22 32532.30 3280.00 3410.00 3620.00 3630.00 35398.10 2100.00 3580.00 35995.06 29597.54 290.00 3590.00 3570.00 3570.00 355
pcd_1.5k_mvsjas7.98 32810.65 3310.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 35995.82 1060.00 3590.00 3570.00 3570.00 355
sosnet-low-res0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
sosnet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
uncertanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
Regformer0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
ab-mvs-re7.91 32910.55 3320.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 35994.94 2970.00 3640.00 3590.00 3570.00 3570.00 355
uanet0.00 3300.00 3330.00 3410.00 3620.00 3630.00 3530.00 3630.00 3580.00 3590.00 3590.00 3640.00 3590.00 3570.00 3570.00 355
test_241102_ONE99.22 5795.35 10298.83 9996.04 11299.08 3198.13 10997.87 2199.33 226
save fliter98.48 14594.71 12594.53 23798.41 17295.02 161
test072699.24 5295.51 9496.89 10698.89 7595.92 12098.64 5098.31 8597.06 50
GSMVS98.06 260
test_part299.03 9096.07 7298.08 110
sam_mvs177.80 31198.06 260
sam_mvs77.38 315
MTGPAbinary98.73 122
test_post194.98 21910.37 35876.21 32399.04 27089.47 277
test_post10.87 35776.83 31999.07 267
patchmatchnet-post96.84 22777.36 31699.42 194
MTMP96.55 12174.60 356
gm-plane-assit91.79 35471.40 35681.67 32990.11 34898.99 27684.86 324
TEST997.84 21195.23 10793.62 27398.39 17486.81 29693.78 28395.99 27194.68 14699.52 169
test_897.81 21495.07 11593.54 27698.38 17687.04 29493.71 28795.96 27594.58 15199.52 169
agg_prior97.80 21894.96 11798.36 17893.49 29799.53 165
test_prior495.38 9993.61 275
test_prior97.46 13297.79 22494.26 14498.42 17099.34 22398.79 194
旧先验293.35 28377.95 34695.77 23998.67 30890.74 252
新几何293.43 278
无先验93.20 28797.91 22380.78 33499.40 20587.71 29897.94 269
原ACMM292.82 292
testdata299.46 18487.84 297
segment_acmp95.34 127
testdata192.77 29393.78 201
plane_prior798.70 11894.67 129
plane_prior698.38 15394.37 13891.91 220
plane_prior496.77 233
plane_prior394.51 13295.29 14996.16 222
plane_prior296.50 12396.36 97
plane_prior198.49 143
n20.00 363
nn0.00 363
door-mid98.17 202
test1198.08 213
door97.81 232
HQP5-MVS92.47 191
HQP-NCC97.85 20694.26 24293.18 21992.86 310
ACMP_Plane97.85 20694.26 24293.18 21992.86 310
BP-MVS90.51 261
HQP4-MVS92.87 30999.23 24799.06 154
HQP2-MVS90.33 236
NP-MVS98.14 18293.72 16495.08 293
MDTV_nov1_ep13_2view57.28 35994.89 22280.59 33594.02 27878.66 30885.50 32097.82 275
Test By Simon94.51 154