This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LCM-MVSNet-Re97.33 10197.33 9297.32 14498.13 18493.79 16096.99 10599.65 296.74 8699.47 1398.93 4396.91 5899.84 2590.11 26999.06 20498.32 238
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17098.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high98.31 2898.94 696.41 19799.33 4289.64 24097.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3599.98 299.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8299.33 4295.21 11198.04 4599.46 597.32 7397.82 13999.11 3196.75 6799.86 2097.84 2499.36 14999.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 698.85 1999.00 3699.20 2397.42 3199.59 14997.21 4699.76 3899.40 81
UA-Net98.88 798.76 1399.22 299.11 8197.89 1399.47 399.32 799.08 1097.87 13499.67 296.47 8399.92 497.88 2299.98 299.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 899.01 1699.63 999.66 399.27 299.68 11697.75 2999.89 2199.62 25
CS-MVS95.86 17395.59 18096.69 17997.85 20693.14 17996.42 12799.25 994.17 19293.56 29990.76 35096.05 9699.72 7893.28 20398.91 21897.21 296
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10499.71 499.48 798.77 699.93 298.89 399.95 599.84 5
FC-MVSNet-test98.16 3398.37 2797.56 11699.49 2693.10 18198.35 2699.21 1198.43 2898.89 3998.83 4994.30 15899.81 3197.87 2399.91 1699.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7499.68 994.82 12098.10 4299.21 1196.91 8199.75 299.45 995.82 10499.92 498.80 499.96 499.89 1
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4499.92 1399.77 8
ACMH+93.58 1098.23 3298.31 2997.98 9099.39 3795.22 10997.55 7399.20 1398.21 3699.25 2598.51 7198.21 1199.40 20694.79 14999.72 4799.32 95
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 13699.35 1999.37 1297.38 3299.90 1398.59 1199.91 1699.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5095.47 12199.89 1697.95 2099.91 1699.75 13
EIA-MVS96.04 16595.77 17496.85 16997.80 21892.98 18396.12 14699.16 1794.65 17393.77 28991.69 34295.68 11399.67 12194.18 17598.85 22797.91 273
AllTest97.20 10996.92 11998.06 8499.08 8396.16 6897.14 9799.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
TestCases98.06 8499.08 8396.16 6899.16 1794.35 18497.78 14098.07 11795.84 10199.12 26191.41 23399.42 13598.91 179
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6397.35 3597.96 4899.16 1798.34 3198.78 4498.52 7097.32 3499.45 18994.08 17999.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2023121198.55 1798.76 1397.94 9298.79 10494.37 13798.84 899.15 2199.37 399.67 699.43 1195.61 11699.72 7898.12 1699.86 2499.73 15
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8698.45 2399.15 2199.33 599.30 2199.00 3797.27 3799.92 497.64 3299.92 1399.75 13
v7n98.73 1198.99 597.95 9199.64 1194.20 14598.67 1199.14 2399.08 1099.42 1599.23 2196.53 7899.91 1299.27 299.93 1099.73 15
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9698.49 2099.13 2499.22 899.22 2798.96 4197.35 3399.92 497.79 2799.93 1099.79 7
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 12999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
FIs97.93 5498.07 3697.48 12899.38 3892.95 18498.03 4799.11 2698.04 4198.62 5198.66 6093.75 17299.78 4197.23 4399.84 2799.73 15
abl_698.42 2398.19 3299.09 399.16 6898.10 597.73 6499.11 2697.76 4998.62 5198.27 9697.88 1999.80 3795.67 9599.50 10799.38 85
SF-MVS97.60 8197.39 8898.22 7398.93 9595.69 8397.05 10199.10 2895.32 14897.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
Effi-MVS+96.19 15996.01 16396.71 17797.43 25792.19 20196.12 14699.10 2895.45 14393.33 30894.71 30497.23 4299.56 15893.21 20797.54 29398.37 231
APDe-MVS98.14 3498.03 4098.47 5498.72 11296.04 7298.07 4499.10 2895.96 11898.59 5598.69 5896.94 5499.81 3196.64 6099.58 7799.57 32
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3799.93 297.71 3199.91 1699.70 18
Gipumacopyleft98.07 4098.31 2997.36 14299.76 596.28 6698.51 1999.10 2898.76 2296.79 19099.34 1796.61 7398.82 29396.38 7099.50 10796.98 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
casdiffmvs97.50 8897.81 5296.56 18898.51 13991.04 22095.83 16599.09 3397.23 7698.33 8198.30 8997.03 5199.37 21796.58 6399.38 14599.28 108
nrg03098.54 1898.62 2198.32 6499.22 5695.66 8797.90 5399.08 3498.31 3299.02 3498.74 5497.68 2499.61 14797.77 2899.85 2699.70 18
diffmvs96.04 16596.23 15395.46 23897.35 26188.03 27093.42 27999.08 3494.09 19596.66 19896.93 22293.85 16999.29 23896.01 8598.67 24299.06 155
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19599.28 4690.62 22895.31 19599.08 3488.40 28696.97 18398.17 10792.11 21099.78 4193.64 19799.21 17998.86 189
xxxxxxxxxxxxxcwj97.24 10797.03 11397.89 9598.48 14494.71 12494.53 23799.07 3795.02 16297.83 13797.88 14496.44 8599.72 7894.59 15999.39 14399.25 117
PGM-MVS97.88 6097.52 8198.96 1699.20 6497.62 2197.09 9999.06 3895.45 14397.55 14397.94 13797.11 4399.78 4194.77 15299.46 12099.48 56
RPSCF97.87 6197.51 8298.95 1799.15 7198.43 397.56 7299.06 3896.19 10598.48 6398.70 5794.72 14299.24 24694.37 16799.33 16499.17 127
canonicalmvs97.23 10897.21 10297.30 14597.65 24094.39 13597.84 5699.05 4097.42 6796.68 19793.85 31797.63 2699.33 22796.29 7298.47 25698.18 253
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8595.87 7796.73 11899.05 4098.67 2398.84 4198.45 7597.58 2799.88 1896.45 6999.86 2499.54 36
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17399.88 1898.72 999.88 2299.65 23
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 14597.41 15897.50 17997.98 1599.79 3895.58 10499.57 8099.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 11096.74 12898.26 6998.99 9297.45 3293.82 26799.05 4095.19 15398.32 8297.70 16495.22 13098.41 32794.27 17298.13 26798.93 174
ACMH93.61 998.44 2298.76 1397.51 12199.43 3293.54 17098.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18297.74 3099.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)97.83 6597.65 6698.35 6398.80 10395.86 7895.92 16199.04 4697.51 6498.22 9297.81 15394.68 14599.78 4197.14 5199.75 4299.41 80
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12497.88 13198.22 10398.15 1299.74 6896.50 6799.62 6499.42 78
baseline97.44 9397.78 5696.43 19498.52 13890.75 22796.84 10899.03 4796.51 9297.86 13598.02 12696.67 6999.36 21997.09 5299.47 11799.19 124
v1097.55 8497.97 4196.31 20198.60 12989.64 24097.44 8199.02 4996.60 8998.72 4999.16 2993.48 17799.72 7898.76 699.92 1399.58 28
UniMVSNet_NR-MVSNet97.83 6597.65 6698.37 6098.72 11295.78 7995.66 17399.02 4998.11 3998.31 8497.69 16694.65 14799.85 2297.02 5599.71 5099.48 56
XVG-OURS-SEG-HR97.38 9797.07 11098.30 6799.01 9197.41 3494.66 23299.02 4995.20 15298.15 10097.52 17798.83 498.43 32694.87 14596.41 31899.07 153
MVSFormer96.14 16196.36 14995.49 23697.68 23687.81 27598.67 1199.02 4996.50 9394.48 27196.15 26686.90 27399.92 498.73 799.13 19198.74 202
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9399.32 2099.44 1097.43 3099.92 498.73 799.95 599.86 2
LPG-MVS_test97.94 5197.67 6398.74 3599.15 7197.02 4297.09 9999.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
LGP-MVS_train98.74 3599.15 7197.02 4299.02 4995.15 15598.34 7898.23 10097.91 1799.70 10294.41 16499.73 4499.50 43
DeepC-MVS95.41 497.82 6797.70 6098.16 7598.78 10695.72 8196.23 14199.02 4993.92 20098.62 5198.99 3897.69 2399.62 14196.18 7599.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pm-mvs198.47 2198.67 1797.86 9799.52 2194.58 13098.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17597.09 5299.75 4299.50 43
VPA-MVSNet98.27 2998.46 2497.70 10799.06 8693.80 15997.76 6099.00 5798.40 2999.07 3398.98 3996.89 5999.75 6197.19 4999.79 3499.55 35
XXY-MVS97.54 8597.70 6097.07 15799.46 2892.21 19897.22 9399.00 5794.93 16698.58 5698.92 4497.31 3599.41 20494.44 16299.43 13299.59 27
DPE-MVS97.64 7797.35 9198.50 5198.85 9996.18 6795.21 20498.99 6095.84 12898.78 4498.08 11596.84 6499.81 3193.98 18699.57 8099.52 40
MP-MVS-pluss97.69 7597.36 9098.70 3999.50 2596.84 4795.38 18998.99 6092.45 24098.11 10498.31 8597.25 4099.77 5096.60 6199.62 6499.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CSCG97.40 9697.30 9397.69 10998.95 9494.83 11997.28 8998.99 6096.35 10098.13 10395.95 27895.99 9799.66 12794.36 17099.73 4498.59 217
9.1496.69 13098.53 13796.02 15298.98 6393.23 21797.18 16497.46 18296.47 8399.62 14192.99 21099.32 166
ETH3D-3000-0.196.89 12396.46 14698.16 7598.62 12695.69 8395.96 15798.98 6393.36 21297.04 17697.31 19994.93 13999.63 13392.60 21399.34 15799.17 127
XVG-ACMP-BASELINE97.58 8397.28 9698.49 5299.16 6896.90 4696.39 12998.98 6395.05 16098.06 11298.02 12695.86 10099.56 15894.37 16799.64 6299.00 162
EG-PatchMatch MVS97.69 7597.79 5397.40 13999.06 8693.52 17195.96 15798.97 6694.55 17998.82 4298.76 5397.31 3599.29 23897.20 4899.44 12599.38 85
CP-MVS97.92 5597.56 7998.99 1398.99 9297.82 1597.93 5098.96 6796.11 10896.89 18897.45 18396.85 6399.78 4195.19 12699.63 6399.38 85
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5397.60 2298.09 4398.96 6795.75 13397.91 12798.06 12296.89 5999.76 5495.32 11999.57 8099.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ETV-MVS96.13 16295.90 17096.82 17197.76 23093.89 15495.40 18798.95 6995.87 12595.58 24691.00 34796.36 9099.72 7893.36 20098.83 22996.85 309
DIV-MVS_2432*160097.86 6398.07 3697.25 14999.22 5692.81 18797.55 7398.94 7097.10 7798.85 4098.88 4695.03 13599.67 12197.39 4199.65 6099.26 113
114514_t93.96 24993.22 25696.19 20799.06 8690.97 22295.99 15498.94 7073.88 35593.43 30596.93 22292.38 20699.37 21789.09 28499.28 17398.25 247
SD-MVS97.37 9897.70 6096.35 19898.14 18195.13 11296.54 12398.92 7295.94 12099.19 2898.08 11597.74 2295.06 35495.24 12499.54 9298.87 188
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10497.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4499.75 6195.44 11299.24 17899.32 95
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9598.90 7496.58 9198.08 11097.87 14697.02 5299.76 5495.25 12399.59 7599.40 81
Skip Steuart: Steuart Systems R&D Blog.
test_0728_SECOND98.25 7199.23 5395.49 9596.74 11498.89 7599.75 6195.48 10899.52 10099.53 39
test072699.24 5195.51 9396.89 10798.89 7595.92 12198.64 5098.31 8597.06 49
MSP-MVS97.45 9296.92 11999.03 899.26 4797.70 1897.66 6598.89 7595.65 13498.51 6096.46 25192.15 20899.81 3195.14 13398.58 25299.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7598.49 2799.38 1799.14 3095.44 12399.84 2596.47 6899.80 3299.47 59
ACMP92.54 1397.47 9197.10 10798.55 5099.04 8996.70 5196.24 14098.89 7593.71 20497.97 12297.75 15897.44 2999.63 13393.22 20699.70 5399.32 95
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124096.74 13397.02 11495.91 22098.18 17488.52 25995.39 18898.88 8093.15 22498.46 6698.40 7992.80 19199.71 9398.45 1399.49 11199.49 51
3Dnovator96.53 297.61 8097.64 6997.50 12497.74 23293.65 16898.49 2098.88 8096.86 8397.11 16998.55 6895.82 10499.73 7495.94 8899.42 13599.13 137
TransMVSNet (Re)98.38 2598.67 1797.51 12199.51 2293.39 17498.20 3798.87 8298.23 3599.48 1299.27 1998.47 899.55 16296.52 6599.53 9599.60 26
DU-MVS97.79 6997.60 7598.36 6198.73 11095.78 7995.65 17598.87 8297.57 6098.31 8497.83 14994.69 14399.85 2297.02 5599.71 5099.46 61
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7599.76 5495.49 10599.20 18099.26 113
RE-MVS-def97.88 4798.81 10198.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5495.49 10599.20 18099.26 113
Baseline_NR-MVSNet97.72 7397.79 5397.50 12499.56 1593.29 17595.44 18298.86 8498.20 3798.37 7399.24 2094.69 14399.55 16295.98 8799.79 3499.65 23
RPMNet94.68 22494.60 21794.90 25795.44 32288.15 26696.18 14398.86 8497.43 6694.10 27898.49 7279.40 30599.76 5495.69 9495.81 32396.81 313
test117298.08 3997.76 5799.05 698.78 10698.07 697.41 8598.85 8897.57 6098.15 10097.96 13296.60 7599.76 5495.30 12099.18 18499.33 94
test_part196.77 13296.53 14197.47 12998.04 18892.92 18597.93 5098.85 8898.83 2099.30 2199.07 3579.25 30699.79 3897.59 3399.93 1099.69 20
1112_ss94.12 24493.42 25196.23 20498.59 13190.85 22394.24 24698.85 8885.49 31292.97 31294.94 29986.01 27899.64 13191.78 22797.92 27498.20 251
PHI-MVS96.96 11796.53 14198.25 7197.48 25196.50 5896.76 11398.85 8893.52 20796.19 22396.85 22695.94 9899.42 19593.79 19299.43 13298.83 191
LS3D97.77 7197.50 8398.57 4896.24 29897.58 2498.45 2398.85 8898.58 2697.51 14697.94 13795.74 11299.63 13395.19 12698.97 20998.51 222
ZNCC-MVS97.92 5597.62 7398.83 2699.32 4497.24 3997.45 8098.84 9395.76 13196.93 18597.43 18497.26 3999.79 3896.06 7899.53 9599.45 66
HFP-MVS97.94 5197.64 6998.83 2699.15 7197.50 2897.59 7098.84 9396.05 11197.49 14997.54 17497.07 4799.70 10295.61 10199.46 12099.30 101
region2R97.92 5597.59 7698.92 2299.22 5697.55 2697.60 6998.84 9396.00 11697.22 16297.62 17096.87 6299.76 5495.48 10899.43 13299.46 61
#test#97.62 7997.22 10198.83 2699.15 7197.50 2896.81 11098.84 9394.25 18897.49 14997.54 17497.07 4799.70 10294.37 16799.46 12099.30 101
MSLP-MVS++96.42 15396.71 12995.57 23197.82 21390.56 23195.71 16898.84 9394.72 17196.71 19697.39 19094.91 14098.10 34195.28 12199.02 20698.05 265
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 10998.27 3198.84 9399.05 1399.01 3598.65 6295.37 12499.90 1397.57 3499.91 1699.77 8
OpenMVScopyleft94.22 895.48 18695.20 18796.32 20097.16 27591.96 20797.74 6298.84 9387.26 29594.36 27398.01 12893.95 16799.67 12190.70 25698.75 23697.35 295
SED-MVS97.94 5197.90 4498.07 8299.22 5695.35 10196.79 11198.83 10096.11 10899.08 3198.24 9897.87 2099.72 7895.44 11299.51 10599.14 134
test_241102_TWO98.83 10096.11 10898.62 5198.24 9896.92 5799.72 7895.44 11299.49 11199.49 51
test_241102_ONE99.22 5695.35 10198.83 10096.04 11399.08 3198.13 10997.87 2099.33 227
SR-MVS98.00 4597.66 6499.01 1198.77 10897.93 1097.38 8698.83 10097.32 7398.06 11297.85 14796.65 7099.77 5095.00 14299.11 19599.32 95
XVS97.96 4697.63 7198.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21497.64 16896.49 8199.72 7895.66 9799.37 14699.45 66
X-MVStestdata92.86 27190.83 29698.94 1899.15 7197.66 1997.77 5898.83 10097.42 6796.32 21436.50 35896.49 8199.72 7895.66 9799.37 14699.45 66
ACMMPR97.95 4997.62 7398.94 1899.20 6497.56 2597.59 7098.83 10096.05 11197.46 15597.63 16996.77 6699.76 5495.61 10199.46 12099.49 51
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7197.55 2696.68 12098.83 10095.21 15198.36 7598.13 10998.13 1499.62 14196.04 8199.54 9299.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v897.60 8198.06 3896.23 20498.71 11589.44 24497.43 8398.82 10897.29 7598.74 4799.10 3293.86 16899.68 11698.61 1099.94 899.56 33
LF4IMVS96.07 16395.63 17897.36 14298.19 17195.55 9095.44 18298.82 10892.29 24295.70 24396.55 24592.63 19798.69 30691.75 22999.33 16497.85 275
GST-MVS97.82 6797.49 8498.81 2999.23 5397.25 3897.16 9498.79 11095.96 11897.53 14497.40 18696.93 5699.77 5095.04 13999.35 15499.42 78
ACMMP_NAP97.89 5997.63 7198.67 4199.35 4196.84 4796.36 13298.79 11095.07 15997.88 13198.35 8197.24 4199.72 7896.05 8099.58 7799.45 66
v192192096.72 13696.96 11795.99 21398.21 16988.79 25695.42 18498.79 11093.22 21898.19 9698.26 9792.68 19499.70 10298.34 1599.55 8999.49 51
DP-MVS97.87 6197.89 4697.81 10098.62 12694.82 12097.13 9898.79 11098.98 1798.74 4798.49 7295.80 11099.49 17695.04 13999.44 12599.11 146
mPP-MVS97.91 5897.53 8099.04 799.22 5697.87 1497.74 6298.78 11496.04 11397.10 17097.73 16196.53 7899.78 4195.16 13099.50 10799.46 61
v14419296.69 13996.90 12196.03 21298.25 16588.92 25195.49 18098.77 11593.05 22698.09 10898.29 9192.51 20399.70 10298.11 1799.56 8399.47 59
v119296.83 12797.06 11196.15 20998.28 16089.29 24695.36 19098.77 11593.73 20398.11 10498.34 8293.02 18899.67 12198.35 1499.58 7799.50 43
APD-MVScopyleft97.00 11296.53 14198.41 5798.55 13596.31 6496.32 13598.77 11592.96 23397.44 15797.58 17395.84 10199.74 6891.96 22099.35 15499.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS96.69 13996.08 16198.49 5298.89 9896.64 5497.25 9098.77 11592.89 23496.01 23097.13 20792.23 20799.67 12192.24 21899.34 15799.17 127
HQP_MVS96.66 14296.33 15197.68 11098.70 11794.29 13996.50 12498.75 11996.36 9896.16 22496.77 23391.91 21999.46 18592.59 21599.20 18099.28 108
plane_prior598.75 11999.46 18592.59 21599.20 18099.28 108
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8197.91 20295.65 8894.94 22098.74 12191.31 25796.02 22997.08 21294.05 16599.69 11091.51 23298.94 21498.93 174
Patchmatch-RL test94.66 22594.49 22395.19 24698.54 13688.91 25292.57 29898.74 12191.46 25498.32 8297.75 15877.31 31998.81 29596.06 7899.61 7097.85 275
SMA-MVScopyleft97.48 9097.11 10698.60 4698.83 10096.67 5296.74 11498.73 12391.61 25198.48 6398.36 8096.53 7899.68 11695.17 12899.54 9299.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 14097.18 27494.39 13595.46 18198.73 12396.03 11594.72 26294.92 30196.28 9399.69 11093.81 19197.98 27298.09 255
zzz-MVS98.01 4497.66 6499.06 499.44 3097.90 1195.66 17398.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
MTGPAbinary98.73 123
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9098.73 12397.69 5697.90 12897.96 13295.81 10899.82 2996.13 7699.61 7099.45 66
MP-MVScopyleft97.64 7797.18 10399.00 1299.32 4497.77 1797.49 7998.73 12396.27 10195.59 24597.75 15896.30 9199.78 4193.70 19699.48 11599.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
NR-MVSNet97.96 4697.86 4898.26 6998.73 11095.54 9198.14 4098.73 12397.79 4599.42 1597.83 14994.40 15699.78 4195.91 9099.76 3899.46 61
QAPM95.88 17295.57 18196.80 17297.90 20491.84 21098.18 3998.73 12388.41 28596.42 20998.13 10994.73 14199.75 6188.72 28998.94 21498.81 193
test_040297.84 6497.97 4197.47 12999.19 6694.07 14896.71 11998.73 12398.66 2498.56 5798.41 7796.84 6499.69 11094.82 14799.81 2998.64 211
TAPA-MVS93.32 1294.93 20994.23 23197.04 15998.18 17494.51 13195.22 20398.73 12381.22 33796.25 22095.95 27893.80 17198.98 28089.89 27398.87 22397.62 285
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 21693.87 24597.47 12998.12 18593.73 16294.56 23698.70 13385.45 31594.70 26495.93 28091.77 22199.63 13386.45 31499.14 18799.05 157
testtj96.69 13996.13 15798.36 6198.46 14896.02 7496.44 12698.70 13394.26 18796.79 19097.13 20794.07 16499.75 6190.53 26198.80 23199.31 100
3Dnovator+96.13 397.73 7297.59 7698.15 7898.11 18695.60 8998.04 4598.70 13398.13 3896.93 18598.45 7595.30 12899.62 14195.64 9998.96 21099.24 119
Test_1112_low_res93.53 26192.86 26195.54 23498.60 12988.86 25492.75 29498.69 13682.66 33192.65 31996.92 22484.75 28699.56 15890.94 24497.76 28098.19 252
DP-MVS Recon95.55 18295.13 19096.80 17298.51 13993.99 15294.60 23498.69 13690.20 26895.78 23996.21 26592.73 19398.98 28090.58 26098.86 22597.42 292
CHOSEN 1792x268894.10 24593.41 25296.18 20899.16 6890.04 23492.15 30698.68 13879.90 34296.22 22197.83 14987.92 26799.42 19589.18 28399.65 6099.08 151
PVSNet_BlendedMVS95.02 20894.93 19995.27 24397.79 22487.40 28394.14 25498.68 13888.94 28094.51 26998.01 12893.04 18599.30 23489.77 27599.49 11199.11 146
PVSNet_Blended93.96 24993.65 24894.91 25597.79 22487.40 28391.43 31698.68 13884.50 32594.51 26994.48 31093.04 18599.30 23489.77 27598.61 24998.02 268
v114496.84 12497.08 10996.13 21098.42 15089.28 24795.41 18698.67 14194.21 18997.97 12298.31 8593.06 18499.65 12898.06 1899.62 6499.45 66
CLD-MVS95.47 18795.07 19296.69 17998.27 16292.53 19191.36 31798.67 14191.22 25995.78 23994.12 31595.65 11598.98 28090.81 24899.72 4798.57 218
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GBi-Net96.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
test196.99 11396.80 12597.56 11697.96 19893.67 16498.23 3298.66 14395.59 13897.99 11899.19 2489.51 25099.73 7494.60 15699.44 12599.30 101
FMVSNet197.95 4998.08 3597.56 11699.14 7993.67 16498.23 3298.66 14397.41 7099.00 3699.19 2495.47 12199.73 7495.83 9199.76 3899.30 101
IterMVS-LS96.92 11997.29 9495.79 22498.51 13988.13 26895.10 20798.66 14396.99 7898.46 6698.68 5992.55 19999.74 6896.91 5899.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP95.30 19594.38 22898.05 8798.64 12196.04 7295.61 17898.66 14389.00 27993.22 30996.40 25592.90 18999.35 22287.45 30897.53 29498.77 200
USDC94.56 23094.57 22294.55 27497.78 22886.43 29792.75 29498.65 14885.96 30696.91 18797.93 13990.82 23098.74 30190.71 25599.59 7598.47 225
PM-MVS97.36 10097.10 10798.14 7998.91 9796.77 4996.20 14298.63 14993.82 20198.54 5898.33 8393.98 16699.05 27195.99 8699.45 12498.61 216
cascas91.89 28891.35 28693.51 29294.27 33785.60 30488.86 34698.61 15079.32 34492.16 32691.44 34389.22 25498.12 34090.80 24997.47 29896.82 312
Fast-Effi-MVS+95.49 18495.07 19296.75 17597.67 23992.82 18694.22 24898.60 15191.61 25193.42 30692.90 32796.73 6899.70 10292.60 21397.89 27797.74 280
DeepPCF-MVS94.58 596.90 12196.43 14798.31 6697.48 25197.23 4092.56 29998.60 15192.84 23598.54 5897.40 18696.64 7298.78 29794.40 16699.41 14198.93 174
OMC-MVS96.48 14996.00 16497.91 9498.30 15796.01 7594.86 22498.60 15191.88 24897.18 16497.21 20596.11 9499.04 27290.49 26599.34 15798.69 208
testgi96.07 16396.50 14594.80 26399.26 4787.69 27895.96 15798.58 15495.08 15898.02 11796.25 26297.92 1697.60 34688.68 29198.74 23799.11 146
ZD-MVS98.43 14995.94 7698.56 15590.72 26396.66 19897.07 21395.02 13699.74 6891.08 24098.93 216
RRT_test8_iter0592.46 27792.52 27392.29 31895.33 32577.43 34895.73 16798.55 15694.41 18197.46 15597.72 16357.44 35999.74 6896.92 5799.14 18799.69 20
VPNet97.26 10597.49 8496.59 18499.47 2790.58 22996.27 13698.53 15797.77 4698.46 6698.41 7794.59 14999.68 11694.61 15599.29 17299.52 40
DELS-MVS96.17 16096.23 15395.99 21397.55 24890.04 23492.38 30498.52 15894.13 19396.55 20597.06 21494.99 13799.58 15195.62 10099.28 17398.37 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HyFIR lowres test93.72 25492.65 26996.91 16698.93 9591.81 21191.23 32398.52 15882.69 33096.46 20896.52 24980.38 30399.90 1390.36 26798.79 23299.03 159
ITE_SJBPF97.85 9898.64 12196.66 5398.51 16095.63 13597.22 16297.30 20095.52 11898.55 32090.97 24398.90 21998.34 237
eth_miper_zixun_eth94.89 21194.93 19994.75 26595.99 30986.12 30091.35 31898.49 16193.40 21097.12 16897.25 20386.87 27599.35 22295.08 13898.82 23098.78 197
TinyColmap96.00 16896.34 15094.96 25497.90 20487.91 27194.13 25598.49 16194.41 18198.16 9897.76 15596.29 9298.68 30990.52 26299.42 13598.30 241
OPM-MVS97.54 8597.25 9798.41 5799.11 8196.61 5595.24 20298.46 16394.58 17898.10 10798.07 11797.09 4699.39 21195.16 13099.44 12599.21 122
tfpnnormal97.72 7397.97 4196.94 16399.26 4792.23 19797.83 5798.45 16498.25 3499.13 3098.66 6096.65 7099.69 11093.92 18899.62 6498.91 179
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19398.48 14491.52 21595.31 19598.45 16495.76 13197.48 15297.54 17489.53 24998.69 30694.43 16394.61 33699.13 137
PCF-MVS89.43 1892.12 28590.64 29996.57 18797.80 21893.48 17289.88 34198.45 16474.46 35496.04 22895.68 28490.71 23299.31 23173.73 35199.01 20896.91 306
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS98.43 16798.74 237
HQP-MVS95.17 20194.58 22096.92 16497.85 20692.47 19294.26 24298.43 16793.18 22092.86 31495.08 29590.33 23699.23 24890.51 26398.74 23799.05 157
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13597.69 23594.15 14696.02 15298.43 16793.17 22397.30 16097.38 19295.48 12099.28 24093.74 19399.34 15798.88 186
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_prior395.91 17095.39 18497.46 13297.79 22494.26 14393.33 28498.42 17094.21 18994.02 28296.25 26293.64 17499.34 22491.90 22298.96 21098.79 195
test_prior97.46 13297.79 22494.26 14398.42 17099.34 22498.79 195
save fliter98.48 14494.71 12494.53 23798.41 17295.02 162
CANet95.86 17395.65 17796.49 19196.41 29490.82 22494.36 24098.41 17294.94 16492.62 32296.73 23692.68 19499.71 9395.12 13699.60 7398.94 170
TEST997.84 21195.23 10693.62 27398.39 17486.81 30093.78 28795.99 27394.68 14599.52 170
train_agg95.46 18894.66 21197.88 9697.84 21195.23 10693.62 27398.39 17487.04 29893.78 28795.99 27394.58 15099.52 17091.76 22898.90 21998.89 183
test_897.81 21495.07 11493.54 27698.38 17687.04 29893.71 29195.96 27794.58 15099.52 170
MSDG95.33 19395.13 19095.94 21997.40 25991.85 20991.02 32898.37 17795.30 14996.31 21695.99 27394.51 15398.38 33089.59 27797.65 29097.60 287
agg_prior195.39 19194.60 21797.75 10297.80 21894.96 11693.39 28198.36 17887.20 29693.49 30195.97 27694.65 14799.53 16691.69 23098.86 22598.77 200
agg_prior97.80 21894.96 11698.36 17893.49 30199.53 166
V4297.04 11197.16 10496.68 18198.59 13191.05 21996.33 13498.36 17894.60 17597.99 11898.30 8993.32 17999.62 14197.40 4099.53 9599.38 85
MVS_111021_HR96.73 13596.54 14097.27 14698.35 15593.66 16793.42 27998.36 17894.74 17096.58 20196.76 23596.54 7798.99 27894.87 14599.27 17599.15 131
cl_fuxian95.20 19895.32 18594.83 26296.19 30286.43 29791.83 31298.35 18293.47 20997.36 15997.26 20288.69 25699.28 24095.41 11899.36 14998.78 197
MVS_Test96.27 15596.79 12794.73 26696.94 28386.63 29496.18 14398.33 18394.94 16496.07 22798.28 9295.25 12999.26 24397.21 4697.90 27698.30 241
CDPH-MVS95.45 18994.65 21297.84 9998.28 16094.96 11693.73 27198.33 18385.03 32095.44 24796.60 24395.31 12799.44 19290.01 27199.13 19199.11 146
MVS_111021_LR96.82 12896.55 13897.62 11398.27 16295.34 10393.81 26998.33 18394.59 17796.56 20396.63 24296.61 7398.73 30294.80 14899.34 15798.78 197
Anonymous2024052997.96 4698.04 3997.71 10598.69 11994.28 14297.86 5598.31 18698.79 2199.23 2698.86 4895.76 11199.61 14795.49 10599.36 14999.23 120
Regformer-297.41 9597.24 9997.93 9397.21 27294.72 12394.85 22598.27 18797.74 5098.11 10497.50 17995.58 11799.69 11096.57 6499.31 16899.37 90
FMVSNet593.39 26392.35 27496.50 19095.83 31390.81 22697.31 8798.27 18792.74 23696.27 21898.28 9262.23 35699.67 12190.86 24699.36 14999.03 159
v2v48296.78 13197.06 11195.95 21798.57 13388.77 25795.36 19098.26 18995.18 15497.85 13698.23 10092.58 19899.63 13397.80 2699.69 5499.45 66
PLCcopyleft91.02 1694.05 24892.90 26097.51 12198.00 19695.12 11394.25 24598.25 19086.17 30491.48 33095.25 29391.01 22799.19 25185.02 32796.69 31398.22 249
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
miper_ehance_all_eth94.69 22294.70 21094.64 26795.77 31586.22 29991.32 32198.24 19191.67 25097.05 17596.65 24188.39 26099.22 25094.88 14498.34 25998.49 224
DVP-MVS97.78 7097.65 6698.16 7599.24 5195.51 9396.74 11498.23 19295.92 12198.40 7098.28 9297.06 4999.71 9395.48 10899.52 10099.26 113
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 27098.01 19288.42 26093.99 26098.21 19392.98 22995.91 23294.53 30796.39 8799.72 7895.43 11598.19 26495.64 332
miper_lstm_enhance94.81 21594.80 20794.85 26096.16 30486.45 29691.14 32598.20 19693.49 20897.03 17797.37 19484.97 28599.26 24395.28 12199.56 8398.83 191
TSAR-MVS + MP.97.42 9497.23 10098.00 8999.38 3895.00 11597.63 6898.20 19693.00 22898.16 9898.06 12295.89 9999.72 7895.67 9599.10 19799.28 108
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVP-Stereo95.69 17695.28 18696.92 16498.15 18093.03 18295.64 17798.20 19690.39 26696.63 20097.73 16191.63 22299.10 26691.84 22697.31 30298.63 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HPM-MVS++copyleft96.99 11396.38 14898.81 2998.64 12197.59 2395.97 15698.20 19695.51 14195.06 25496.53 24794.10 16399.70 10294.29 17199.15 18699.13 137
NCCC96.52 14795.99 16598.10 8097.81 21495.68 8595.00 21898.20 19695.39 14695.40 24996.36 25893.81 17099.45 18993.55 19998.42 25799.17 127
new-patchmatchnet95.67 17896.58 13592.94 30797.48 25180.21 34092.96 29098.19 20194.83 16898.82 4298.79 5093.31 18099.51 17495.83 9199.04 20599.12 142
MCST-MVS96.24 15695.80 17297.56 11698.75 10994.13 14794.66 23298.17 20290.17 26996.21 22296.10 27195.14 13199.43 19494.13 17898.85 22799.13 137
door-mid98.17 202
CNVR-MVS96.92 11996.55 13898.03 8898.00 19695.54 9194.87 22398.17 20294.60 17596.38 21197.05 21595.67 11499.36 21995.12 13699.08 19999.19 124
原ACMM196.58 18598.16 17892.12 20298.15 20585.90 30893.49 30196.43 25292.47 20499.38 21487.66 30398.62 24898.23 248
IU-MVS99.22 5695.40 9798.14 20685.77 31098.36 7595.23 12599.51 10599.49 51
Regformer-497.53 8797.47 8697.71 10597.35 26193.91 15395.26 19998.14 20697.97 4298.34 7897.89 14295.49 11999.71 9397.41 3999.42 13599.51 42
ambc96.56 18898.23 16891.68 21397.88 5498.13 20898.42 6998.56 6794.22 16199.04 27294.05 18399.35 15498.95 168
WR-MVS96.90 12196.81 12497.16 15198.56 13492.20 20094.33 24198.12 20997.34 7298.20 9397.33 19792.81 19099.75 6194.79 14999.81 2999.54 36
cdsmvs_eth3d_5k24.22 32932.30 3320.00 3450.00 3660.00 3670.00 35798.10 2100.00 3620.00 36395.06 29797.54 280.00 3630.00 3610.00 3610.00 359
Effi-MVS+-dtu96.81 12996.09 16098.99 1396.90 28598.69 296.42 12798.09 21195.86 12695.15 25395.54 28994.26 15999.81 3194.06 18098.51 25598.47 225
mvs-test196.20 15895.50 18398.32 6496.90 28598.16 495.07 21298.09 21195.86 12693.63 29494.32 31394.26 15999.71 9394.06 18097.27 30497.07 299
cl-mvsnet_94.73 21794.64 21395.01 25295.85 31287.00 28991.33 31998.08 21393.34 21397.10 17097.33 19784.01 29099.30 23495.14 13399.56 8398.71 207
cl-mvsnet194.73 21794.64 21395.01 25295.86 31187.00 28991.33 31998.08 21393.34 21397.10 17097.34 19684.02 28999.31 23195.15 13299.55 8998.72 205
test1198.08 213
AdaColmapbinary95.11 20294.62 21696.58 18597.33 26794.45 13494.92 22198.08 21393.15 22493.98 28595.53 29094.34 15799.10 26685.69 31998.61 24996.20 326
pmmvs-eth3d96.49 14896.18 15697.42 13798.25 16594.29 13994.77 22998.07 21789.81 27297.97 12298.33 8393.11 18399.08 26895.46 11199.84 2798.89 183
FMVSNet296.72 13696.67 13296.87 16897.96 19891.88 20897.15 9598.06 21895.59 13898.50 6298.62 6389.51 25099.65 12894.99 14399.60 7399.07 153
UnsupCasMVSNet_bld94.72 22194.26 23096.08 21198.62 12690.54 23293.38 28298.05 21990.30 26797.02 17896.80 23289.54 24799.16 25788.44 29396.18 32198.56 219
Regformer-197.27 10497.16 10497.61 11497.21 27293.86 15694.85 22598.04 22097.62 5998.03 11697.50 17995.34 12599.63 13396.52 6599.31 16899.35 92
PAPM_NR94.61 22894.17 23595.96 21598.36 15491.23 21795.93 16097.95 22192.98 22993.42 30694.43 31190.53 23398.38 33087.60 30496.29 32098.27 245
D2MVS95.18 19995.17 18995.21 24597.76 23087.76 27794.15 25297.94 22289.77 27396.99 18097.68 16787.45 27099.14 25995.03 14199.81 2998.74 202
无先验93.20 28797.91 22380.78 33899.40 20687.71 30097.94 271
v14896.58 14596.97 11595.42 23998.63 12587.57 27995.09 20997.90 22495.91 12398.24 9197.96 13293.42 17899.39 21196.04 8199.52 10099.29 107
CNLPA95.04 20594.47 22496.75 17597.81 21495.25 10594.12 25697.89 22594.41 18194.57 26695.69 28390.30 23998.35 33386.72 31398.76 23596.64 318
PAPR92.22 28291.27 28895.07 25095.73 31788.81 25591.97 31097.87 22685.80 30990.91 33292.73 33191.16 22598.33 33479.48 34395.76 32798.08 256
miper_enhance_ethall93.14 26992.78 26694.20 28393.65 34485.29 30989.97 33797.85 22785.05 31996.15 22694.56 30685.74 27999.14 25993.74 19398.34 25998.17 254
Anonymous2023120695.27 19695.06 19495.88 22198.72 11289.37 24595.70 16997.85 22788.00 29196.98 18297.62 17091.95 21599.34 22489.21 28299.53 9598.94 170
xiu_mvs_v2_base94.22 23994.63 21592.99 30597.32 26884.84 31792.12 30797.84 22991.96 24694.17 27693.43 31896.07 9599.71 9391.27 23697.48 29694.42 341
PS-MVSNAJ94.10 24594.47 22493.00 30497.35 26184.88 31691.86 31197.84 22991.96 24694.17 27692.50 33495.82 10499.71 9391.27 23697.48 29694.40 342
CANet_DTU94.65 22694.21 23395.96 21595.90 31089.68 23993.92 26497.83 23193.19 21990.12 33995.64 28688.52 25799.57 15793.27 20599.47 11798.62 214
door97.81 232
test1297.46 13297.61 24394.07 14897.78 23393.57 29893.31 18099.42 19598.78 23398.89 183
旧先验197.80 21893.87 15597.75 23497.04 21693.57 17698.68 24198.72 205
新几何197.25 14998.29 15894.70 12797.73 23577.98 34894.83 26196.67 24092.08 21299.45 18988.17 29898.65 24697.61 286
testdata95.70 22898.16 17890.58 22997.72 23680.38 34095.62 24497.02 21792.06 21398.98 28089.06 28698.52 25397.54 288
112194.26 23793.26 25497.27 14698.26 16494.73 12295.86 16297.71 23777.96 34994.53 26896.71 23791.93 21799.40 20687.71 30098.64 24797.69 283
test20.0396.58 14596.61 13396.48 19298.49 14291.72 21295.68 17297.69 23896.81 8498.27 8897.92 14094.18 16298.71 30490.78 25099.66 5999.00 162
ab-mvs96.59 14496.59 13496.60 18398.64 12192.21 19898.35 2697.67 23994.45 18096.99 18098.79 5094.96 13899.49 17690.39 26699.07 20198.08 256
CMPMVSbinary73.10 2392.74 27391.39 28596.77 17493.57 34694.67 12894.21 24997.67 23980.36 34193.61 29696.60 24382.85 29397.35 34784.86 32898.78 23398.29 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvs_anonymous95.36 19296.07 16293.21 29996.29 29681.56 33594.60 23497.66 24193.30 21596.95 18498.91 4593.03 18799.38 21496.60 6197.30 30398.69 208
FMVSNet395.26 19794.94 19796.22 20696.53 29190.06 23395.99 15497.66 24194.11 19497.99 11897.91 14180.22 30499.63 13394.60 15699.44 12598.96 167
EI-MVSNet-UG-set97.32 10297.40 8797.09 15697.34 26592.01 20695.33 19397.65 24397.74 5098.30 8698.14 10895.04 13499.69 11097.55 3599.52 10099.58 28
EI-MVSNet-Vis-set97.32 10297.39 8897.11 15497.36 26092.08 20495.34 19297.65 24397.74 5098.29 8798.11 11395.05 13299.68 11697.50 3799.50 10799.56 33
EI-MVSNet96.63 14396.93 11895.74 22597.26 27088.13 26895.29 19797.65 24396.99 7897.94 12598.19 10592.55 19999.58 15196.91 5899.56 8399.50 43
MVSTER94.21 24193.93 24495.05 25195.83 31386.46 29595.18 20597.65 24392.41 24197.94 12598.00 13072.39 34199.58 15196.36 7199.56 8399.12 142
IterMVS-SCA-FT95.86 17396.19 15594.85 26097.68 23685.53 30592.42 30297.63 24796.99 7898.36 7598.54 6987.94 26399.75 6197.07 5499.08 19999.27 112
Regformer-397.25 10697.29 9497.11 15497.35 26192.32 19595.26 19997.62 24897.67 5898.17 9797.89 14295.05 13299.56 15897.16 5099.42 13599.46 61
test22298.17 17693.24 17792.74 29697.61 24975.17 35394.65 26596.69 23990.96 22998.66 24497.66 284
VNet96.84 12496.83 12396.88 16798.06 18792.02 20596.35 13397.57 25097.70 5597.88 13197.80 15492.40 20599.54 16594.73 15498.96 21099.08 151
RRT_MVS94.90 21094.07 23797.39 14093.18 34793.21 17895.26 19997.49 25193.94 19998.25 8997.85 14772.96 34099.84 2597.90 2199.78 3799.14 134
PMVScopyleft89.60 1796.71 13896.97 11595.95 21799.51 2297.81 1697.42 8497.49 25197.93 4395.95 23198.58 6496.88 6196.91 34989.59 27799.36 14993.12 347
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ppachtmachnet_test94.49 23394.84 20493.46 29396.16 30482.10 33290.59 33197.48 25390.53 26597.01 17997.59 17291.01 22799.36 21993.97 18799.18 18498.94 170
DPM-MVS93.68 25692.77 26796.42 19597.91 20292.54 19091.17 32497.47 25484.99 32193.08 31194.74 30389.90 24499.00 27687.54 30698.09 26997.72 281
IterMVS95.42 19095.83 17194.20 28397.52 24983.78 32692.41 30397.47 25495.49 14298.06 11298.49 7287.94 26399.58 15196.02 8399.02 20699.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch94.83 21394.91 20194.57 27396.81 28787.10 28894.23 24797.34 25688.74 28397.14 16697.11 21091.94 21698.23 33792.99 21097.92 27498.37 231
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22598.48 14488.76 25892.84 29197.25 25796.00 11697.59 14297.95 13691.38 22499.46 18593.16 20896.35 31998.99 165
PatchMatch-RL94.61 22893.81 24697.02 16198.19 17195.72 8193.66 27297.23 25888.17 28994.94 25995.62 28791.43 22398.57 31787.36 30997.68 28796.76 315
CR-MVSNet93.29 26692.79 26494.78 26495.44 32288.15 26696.18 14397.20 25984.94 32294.10 27898.57 6577.67 31499.39 21195.17 12895.81 32396.81 313
Patchmtry95.03 20794.59 21996.33 19994.83 33090.82 22496.38 13197.20 25996.59 9097.49 14998.57 6577.67 31499.38 21492.95 21299.62 6498.80 194
API-MVS95.09 20495.01 19695.31 24296.61 28994.02 15096.83 10997.18 26195.60 13795.79 23794.33 31294.54 15298.37 33285.70 31898.52 25393.52 344
MAR-MVS94.21 24193.03 25897.76 10196.94 28397.44 3396.97 10697.15 26287.89 29392.00 32792.73 33192.14 20999.12 26183.92 33297.51 29596.73 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
pmmvs594.63 22794.34 22995.50 23597.63 24288.34 26394.02 25897.13 26387.15 29795.22 25297.15 20687.50 26999.27 24293.99 18599.26 17698.88 186
UGNet96.81 12996.56 13797.58 11596.64 28893.84 15897.75 6197.12 26496.47 9693.62 29598.88 4693.22 18299.53 16695.61 10199.69 5499.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 280x42089.98 30689.19 31292.37 31695.60 31981.13 33886.22 35197.09 26581.44 33687.44 35193.15 31973.99 33199.47 18288.69 29099.07 20196.52 322
CDS-MVSNet94.88 21294.12 23697.14 15397.64 24193.57 16993.96 26397.06 26690.05 27096.30 21796.55 24586.10 27799.47 18290.10 27099.31 16898.40 228
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
BH-untuned94.69 22294.75 20994.52 27597.95 20187.53 28094.07 25797.01 26793.99 19797.10 17095.65 28592.65 19698.95 28587.60 30496.74 31297.09 298
sss94.22 23993.72 24795.74 22597.71 23489.95 23693.84 26696.98 26888.38 28793.75 29095.74 28287.94 26398.89 28891.02 24298.10 26898.37 231
131492.38 27992.30 27592.64 31195.42 32485.15 31295.86 16296.97 26985.40 31690.62 33393.06 32591.12 22697.80 34486.74 31295.49 33094.97 339
SixPastTwentyTwo97.49 8997.57 7897.26 14899.56 1592.33 19498.28 2996.97 26998.30 3399.45 1499.35 1688.43 25999.89 1698.01 1999.76 3899.54 36
TSAR-MVS + GP.96.47 15096.12 15897.49 12797.74 23295.23 10694.15 25296.90 27193.26 21698.04 11596.70 23894.41 15598.89 28894.77 15299.14 18798.37 231
our_test_394.20 24394.58 22093.07 30196.16 30481.20 33790.42 33396.84 27290.72 26397.14 16697.13 20790.47 23499.11 26494.04 18498.25 26398.91 179
alignmvs96.01 16795.52 18297.50 12497.77 22994.71 12496.07 14896.84 27297.48 6596.78 19494.28 31485.50 28199.40 20696.22 7398.73 24098.40 228
CL-MVSNet_2432*160095.04 20594.79 20895.82 22397.51 25089.79 23891.14 32596.82 27493.05 22696.72 19596.40 25590.82 23099.16 25791.95 22198.66 24498.50 223
TAMVS95.49 18494.94 19797.16 15198.31 15693.41 17395.07 21296.82 27491.09 26097.51 14697.82 15289.96 24399.42 19588.42 29499.44 12598.64 211
pmmvs494.82 21494.19 23496.70 17897.42 25892.75 18992.09 30996.76 27686.80 30195.73 24297.22 20489.28 25398.89 28893.28 20399.14 18798.46 227
jason94.39 23694.04 23995.41 24198.29 15887.85 27492.74 29696.75 27785.38 31795.29 25096.15 26688.21 26299.65 12894.24 17399.34 15798.74 202
jason: jason.
MVS90.02 30489.20 31192.47 31494.71 33186.90 29195.86 16296.74 27864.72 35790.62 33392.77 32992.54 20198.39 32979.30 34495.56 32992.12 348
IS-MVSNet96.93 11896.68 13197.70 10799.25 5094.00 15198.57 1596.74 27898.36 3098.14 10297.98 13188.23 26199.71 9393.10 20999.72 4799.38 85
OpenMVS_ROBcopyleft91.80 1493.64 25893.05 25795.42 23997.31 26991.21 21895.08 21196.68 28081.56 33496.88 18996.41 25390.44 23599.25 24585.39 32397.67 28895.80 330
cl-mvsnet293.25 26792.84 26394.46 27694.30 33686.00 30191.09 32796.64 28190.74 26295.79 23796.31 26078.24 31198.77 29894.15 17798.34 25998.62 214
EPP-MVSNet96.84 12496.58 13597.65 11199.18 6793.78 16198.68 1096.34 28297.91 4497.30 16098.06 12288.46 25899.85 2293.85 19099.40 14299.32 95
BH-RMVSNet94.56 23094.44 22794.91 25597.57 24487.44 28293.78 27096.26 28393.69 20596.41 21096.50 25092.10 21199.00 27685.96 31697.71 28498.31 239
MVS_030495.50 18395.05 19596.84 17096.28 29793.12 18097.00 10496.16 28495.03 16189.22 34497.70 16490.16 24299.48 17994.51 16199.34 15797.93 272
GA-MVS92.83 27292.15 27794.87 25996.97 28087.27 28690.03 33696.12 28591.83 24994.05 28194.57 30576.01 32698.97 28492.46 21797.34 30198.36 236
lupinMVS93.77 25293.28 25395.24 24497.68 23687.81 27592.12 30796.05 28684.52 32494.48 27195.06 29786.90 27399.63 13393.62 19899.13 19198.27 245
PMMVS293.66 25794.07 23792.45 31597.57 24480.67 33986.46 35096.00 28793.99 19797.10 17097.38 19289.90 24497.82 34388.76 28899.47 11798.86 189
WTY-MVS93.55 26093.00 25995.19 24697.81 21487.86 27293.89 26596.00 28789.02 27894.07 28095.44 29286.27 27699.33 22787.69 30296.82 30998.39 230
PMMVS92.39 27891.08 29096.30 20293.12 35092.81 18790.58 33295.96 28979.17 34591.85 32992.27 33590.29 24098.66 31189.85 27496.68 31497.43 291
MG-MVS94.08 24794.00 24094.32 28097.09 27785.89 30293.19 28895.96 28992.52 23794.93 26097.51 17889.54 24798.77 29887.52 30797.71 28498.31 239
MDA-MVSNet_test_wron94.73 21794.83 20694.42 27797.48 25185.15 31290.28 33595.87 29192.52 23797.48 15297.76 15591.92 21899.17 25693.32 20196.80 31198.94 170
YYNet194.73 21794.84 20494.41 27897.47 25585.09 31490.29 33495.85 29292.52 23797.53 14497.76 15591.97 21499.18 25293.31 20296.86 30898.95 168
ADS-MVSNet291.47 29390.51 30194.36 27995.51 32085.63 30395.05 21595.70 29383.46 32892.69 31796.84 22779.15 30899.41 20485.66 32090.52 34698.04 266
BH-w/o92.14 28491.94 27892.73 31097.13 27685.30 30892.46 30195.64 29489.33 27694.21 27592.74 33089.60 24698.24 33681.68 33994.66 33594.66 340
KD-MVS_2432*160088.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
miper_refine_blended88.93 31487.74 31992.49 31288.04 36081.99 33389.63 34395.62 29591.35 25595.06 25493.11 32056.58 36198.63 31285.19 32495.07 33196.85 309
VDD-MVS97.37 9897.25 9797.74 10398.69 11994.50 13397.04 10295.61 29798.59 2598.51 6098.72 5592.54 20199.58 15196.02 8399.49 11199.12 142
PAPM87.64 32485.84 32993.04 30296.54 29084.99 31588.42 34895.57 29879.52 34383.82 35593.05 32680.57 30298.41 32762.29 35792.79 34295.71 331
test_yl94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
DCV-MVSNet94.40 23494.00 24095.59 22996.95 28189.52 24294.75 23095.55 29996.18 10696.79 19096.14 26881.09 29999.18 25290.75 25197.77 27898.07 258
AUN-MVS93.95 25192.69 26897.74 10397.80 21895.38 9895.57 17995.46 30191.26 25892.64 32096.10 27174.67 33099.55 16293.72 19596.97 30598.30 241
VDDNet96.98 11696.84 12297.41 13899.40 3693.26 17697.94 4995.31 30299.26 798.39 7299.18 2787.85 26899.62 14195.13 13599.09 19899.35 92
wuyk23d93.25 26795.20 18787.40 33996.07 30895.38 9897.04 10294.97 30395.33 14799.70 598.11 11398.14 1391.94 35677.76 34999.68 5674.89 355
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22299.12 8089.17 24897.54 7894.92 30496.50 9396.58 20197.27 20183.64 29199.48 17988.42 29499.67 5798.97 166
TR-MVS92.54 27692.20 27693.57 29196.49 29286.66 29393.51 27794.73 30589.96 27194.95 25893.87 31690.24 24198.61 31481.18 34194.88 33395.45 336
HY-MVS91.43 1592.58 27591.81 28194.90 25796.49 29288.87 25397.31 8794.62 30685.92 30790.50 33696.84 22785.05 28399.40 20683.77 33595.78 32696.43 323
PVSNet86.72 1991.10 29690.97 29391.49 32197.56 24678.04 34587.17 34994.60 30784.65 32392.34 32492.20 33687.37 27198.47 32485.17 32697.69 28697.96 270
Patchmatch-test93.60 25993.25 25594.63 26896.14 30787.47 28196.04 15094.50 30893.57 20696.47 20796.97 21976.50 32298.61 31490.67 25798.41 25897.81 279
Anonymous20240521196.34 15495.98 16697.43 13698.25 16593.85 15796.74 11494.41 30997.72 5398.37 7398.03 12587.15 27299.53 16694.06 18099.07 20198.92 178
tpm cat188.01 32187.33 32290.05 33194.48 33476.28 35294.47 23994.35 31073.84 35689.26 34395.61 28873.64 33598.30 33584.13 33186.20 35495.57 335
SCA93.38 26493.52 25092.96 30696.24 29881.40 33693.24 28694.00 31191.58 25394.57 26696.97 21987.94 26399.42 19589.47 27997.66 28998.06 262
tpmrst90.31 30290.61 30089.41 33294.06 34172.37 35995.06 21493.69 31288.01 29092.32 32596.86 22577.45 31698.82 29391.04 24187.01 35397.04 301
MIMVSNet93.42 26292.86 26195.10 24998.17 17688.19 26598.13 4193.69 31292.07 24395.04 25798.21 10480.95 30199.03 27581.42 34098.06 27098.07 258
DSMNet-mixed92.19 28391.83 28093.25 29796.18 30383.68 32796.27 13693.68 31476.97 35292.54 32399.18 2789.20 25598.55 32083.88 33398.60 25197.51 289
tpmvs90.79 30090.87 29490.57 32892.75 35476.30 35195.79 16693.64 31591.04 26191.91 32896.26 26177.19 32098.86 29289.38 28189.85 34996.56 321
PatchmatchNetpermissive91.98 28791.87 27992.30 31794.60 33379.71 34195.12 20693.59 31689.52 27493.61 29697.02 21777.94 31299.18 25290.84 24794.57 33898.01 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ADS-MVSNet90.95 29990.26 30393.04 30295.51 32082.37 33195.05 21593.41 31783.46 32892.69 31796.84 22779.15 30898.70 30585.66 32090.52 34698.04 266
FPMVS89.92 30888.63 31593.82 28698.37 15396.94 4591.58 31493.34 31888.00 29190.32 33797.10 21170.87 34691.13 35771.91 35496.16 32293.39 346
MDTV_nov1_ep1391.28 28794.31 33573.51 35794.80 22793.16 31986.75 30293.45 30497.40 18676.37 32398.55 32088.85 28796.43 317
baseline193.14 26992.64 27094.62 26997.34 26587.20 28796.67 12193.02 32094.71 17296.51 20695.83 28181.64 29698.60 31690.00 27288.06 35198.07 258
PatchT93.75 25393.57 24994.29 28295.05 32887.32 28596.05 14992.98 32197.54 6394.25 27498.72 5575.79 32799.24 24695.92 8995.81 32396.32 324
EPNet_dtu91.39 29490.75 29793.31 29590.48 35982.61 32994.80 22792.88 32293.39 21181.74 35894.90 30281.36 29899.11 26488.28 29698.87 22398.21 250
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
new_pmnet92.34 28091.69 28394.32 28096.23 30089.16 24992.27 30592.88 32284.39 32795.29 25096.35 25985.66 28096.74 35284.53 33097.56 29297.05 300
dp88.08 32088.05 31888.16 33892.85 35268.81 36194.17 25092.88 32285.47 31391.38 33196.14 26868.87 35098.81 29586.88 31183.80 35696.87 307
EU-MVSNet94.25 23894.47 22493.60 29098.14 18182.60 33097.24 9292.72 32585.08 31898.48 6398.94 4282.59 29498.76 30097.47 3899.53 9599.44 76
PVSNet_081.89 2184.49 32783.21 33088.34 33695.76 31674.97 35683.49 35392.70 32678.47 34787.94 34986.90 35583.38 29296.63 35373.44 35266.86 35893.40 345
pmmvs390.00 30588.90 31493.32 29494.20 34085.34 30791.25 32292.56 32778.59 34693.82 28695.17 29467.36 35298.69 30689.08 28598.03 27195.92 327
CVMVSNet92.33 28192.79 26490.95 32597.26 27075.84 35395.29 19792.33 32881.86 33296.27 21898.19 10581.44 29798.46 32594.23 17498.29 26298.55 221
E-PMN89.52 31189.78 30688.73 33493.14 34977.61 34783.26 35492.02 32994.82 16993.71 29193.11 32075.31 32896.81 35085.81 31796.81 31091.77 350
CostFormer89.75 30989.25 30891.26 32494.69 33278.00 34695.32 19491.98 33081.50 33590.55 33596.96 22171.06 34598.89 28888.59 29292.63 34396.87 307
tpm288.47 31787.69 32190.79 32694.98 32977.34 34995.09 20991.83 33177.51 35189.40 34296.41 25367.83 35198.73 30283.58 33792.60 34496.29 325
JIA-IIPM91.79 28990.69 29895.11 24893.80 34390.98 22194.16 25191.78 33296.38 9790.30 33899.30 1872.02 34298.90 28688.28 29690.17 34895.45 336
N_pmnet95.18 19994.23 23198.06 8497.85 20696.55 5792.49 30091.63 33389.34 27598.09 10897.41 18590.33 23699.06 27091.58 23199.31 16898.56 219
DWT-MVSNet_test87.92 32286.77 32691.39 32293.18 34778.62 34395.10 20791.42 33485.58 31188.00 34888.73 35360.60 35798.90 28690.60 25887.70 35296.65 317
bset_n11_16_dypcd94.53 23293.95 24396.25 20397.56 24689.85 23788.52 34791.32 33594.90 16797.51 14696.38 25782.34 29599.78 4197.22 4499.80 3299.12 142
EPNet93.72 25492.62 27197.03 16087.61 36292.25 19696.27 13691.28 33696.74 8687.65 35097.39 19085.00 28499.64 13192.14 21999.48 11599.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm91.08 29790.85 29591.75 32095.33 32578.09 34495.03 21791.27 33788.75 28293.53 30097.40 18671.24 34399.30 23491.25 23893.87 33997.87 274
thres20091.00 29890.42 30292.77 30997.47 25583.98 32594.01 25991.18 33895.12 15795.44 24791.21 34573.93 33299.31 23177.76 34997.63 29195.01 338
EMVS89.06 31389.22 30988.61 33593.00 35177.34 34982.91 35590.92 33994.64 17492.63 32191.81 34076.30 32497.02 34883.83 33496.90 30791.48 351
tfpn200view991.55 29291.00 29193.21 29998.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28195.85 328
thres40091.68 29191.00 29193.71 28898.02 19084.35 32295.70 16990.79 34096.26 10295.90 23592.13 33773.62 33699.42 19578.85 34697.74 28197.36 293
LFMVS95.32 19494.88 20296.62 18298.03 18991.47 21697.65 6690.72 34299.11 997.89 13098.31 8579.20 30799.48 17993.91 18999.12 19498.93 174
thres100view90091.76 29091.26 28993.26 29698.21 16984.50 32096.39 12990.39 34396.87 8296.33 21393.08 32473.44 33899.42 19578.85 34697.74 28195.85 328
thres600view792.03 28691.43 28493.82 28698.19 17184.61 31996.27 13690.39 34396.81 8496.37 21293.11 32073.44 33899.49 17680.32 34297.95 27397.36 293
K. test v396.44 15196.28 15296.95 16299.41 3591.53 21497.65 6690.31 34598.89 1898.93 3899.36 1484.57 28899.92 497.81 2599.56 8399.39 83
ET-MVSNet_ETH3D91.12 29589.67 30795.47 23796.41 29489.15 25091.54 31590.23 34689.07 27786.78 35492.84 32869.39 34999.44 19294.16 17696.61 31597.82 277
IB-MVS85.98 2088.63 31686.95 32593.68 28995.12 32784.82 31890.85 32990.17 34787.55 29488.48 34791.34 34458.01 35899.59 14987.24 31093.80 34096.63 320
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-LLR89.97 30789.90 30590.16 32994.24 33874.98 35489.89 33889.06 34892.02 24489.97 34090.77 34873.92 33398.57 31791.88 22497.36 29996.92 304
test-mter87.92 32287.17 32390.16 32994.24 33874.98 35489.89 33889.06 34886.44 30389.97 34090.77 34854.96 36598.57 31791.88 22497.36 29996.92 304
test0.0.03 190.11 30389.21 31092.83 30893.89 34286.87 29291.74 31388.74 35092.02 24494.71 26391.14 34673.92 33394.48 35583.75 33692.94 34197.16 297
thisisatest051590.43 30189.18 31394.17 28597.07 27885.44 30689.75 34287.58 35188.28 28893.69 29391.72 34165.27 35399.58 15190.59 25998.67 24297.50 290
thisisatest053092.71 27491.76 28295.56 23398.42 15088.23 26496.03 15187.35 35294.04 19696.56 20395.47 29164.03 35599.77 5094.78 15199.11 19598.68 210
tttt051793.31 26592.56 27295.57 23198.71 11587.86 27297.44 8187.17 35395.79 13097.47 15496.84 22764.12 35499.81 3196.20 7499.32 16699.02 161
TESTMET0.1,187.20 32586.57 32789.07 33393.62 34572.84 35889.89 33887.01 35485.46 31489.12 34590.20 35156.00 36497.72 34590.91 24596.92 30696.64 318
baseline289.65 31088.44 31793.25 29795.62 31882.71 32893.82 26785.94 35588.89 28187.35 35292.54 33371.23 34499.33 22786.01 31594.60 33797.72 281
MVS-HIRNet88.40 31890.20 30482.99 34097.01 27960.04 36293.11 28985.61 35684.45 32688.72 34699.09 3384.72 28798.23 33782.52 33896.59 31690.69 353
lessismore_v097.05 15899.36 4092.12 20284.07 35798.77 4698.98 3985.36 28299.74 6897.34 4299.37 14699.30 101
EPMVS89.26 31288.55 31691.39 32292.36 35579.11 34295.65 17579.86 35888.60 28493.12 31096.53 24770.73 34798.10 34190.75 25189.32 35096.98 302
MVEpermissive73.61 2286.48 32685.92 32888.18 33796.23 30085.28 31081.78 35675.79 35986.01 30582.53 35791.88 33992.74 19287.47 35871.42 35594.86 33491.78 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP96.55 12274.60 360
gg-mvs-nofinetune88.28 31986.96 32492.23 31992.84 35384.44 32198.19 3874.60 36099.08 1087.01 35399.47 856.93 36098.23 33778.91 34595.61 32894.01 343
DeepMVS_CXcopyleft77.17 34190.94 35885.28 31074.08 36252.51 35880.87 35988.03 35475.25 32970.63 35959.23 35884.94 35575.62 354
GG-mvs-BLEND90.60 32791.00 35784.21 32498.23 3272.63 36382.76 35684.11 35656.14 36396.79 35172.20 35392.09 34590.78 352
tmp_tt57.23 32862.50 33141.44 34234.77 36349.21 36483.93 35260.22 36415.31 35971.11 36079.37 35770.09 34844.86 36064.76 35682.93 35730.25 356
testmvs12.33 33115.23 3343.64 3445.77 3652.23 36688.99 3453.62 3652.30 3615.29 36113.09 3594.52 3671.95 3615.16 3608.32 3606.75 358
test12312.59 33015.49 3333.87 3436.07 3642.55 36590.75 3302.59 3662.52 3605.20 36213.02 3604.96 3661.85 3625.20 3599.09 3597.23 357
uanet_test0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
pcd_1.5k_mvsjas7.98 33210.65 3350.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 36395.82 1040.00 3630.00 3610.00 3610.00 359
sosnet-low-res0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
sosnet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
uncertanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
Regformer0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
n20.00 367
nn0.00 367
ab-mvs-re7.91 33310.55 3360.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 36394.94 2990.00 3680.00 3630.00 3610.00 3610.00 359
uanet0.00 3340.00 3370.00 3450.00 3660.00 3670.00 3570.00 3670.00 3620.00 3630.00 3630.00 3680.00 3630.00 3610.00 3610.00 359
OPU-MVS97.64 11298.01 19295.27 10496.79 11197.35 19596.97 5398.51 32391.21 23999.25 17799.14 134
test_0728_THIRD96.62 8898.40 7098.28 9297.10 4499.71 9395.70 9399.62 6499.58 28
GSMVS98.06 262
test_part299.03 9096.07 7198.08 110
sam_mvs177.80 31398.06 262
sam_mvs77.38 317
test_post194.98 21910.37 36276.21 32599.04 27289.47 279
test_post10.87 36176.83 32199.07 269
patchmatchnet-post96.84 22777.36 31899.42 195
gm-plane-assit91.79 35671.40 36081.67 33390.11 35298.99 27884.86 328
test9_res91.29 23598.89 22299.00 162
agg_prior290.34 26898.90 21999.10 150
test_prior495.38 9893.61 275
test_prior293.33 28494.21 18994.02 28296.25 26293.64 17491.90 22298.96 210
旧先验293.35 28377.95 35095.77 24198.67 31090.74 254
新几何293.43 278
原ACMM292.82 292
testdata299.46 18587.84 299
segment_acmp95.34 125
testdata192.77 29393.78 202
plane_prior798.70 11794.67 128
plane_prior698.38 15294.37 13791.91 219
plane_prior496.77 233
plane_prior394.51 13195.29 15096.16 224
plane_prior296.50 12496.36 98
plane_prior198.49 142
plane_prior94.29 13995.42 18494.31 18698.93 216
HQP5-MVS92.47 192
HQP-NCC97.85 20694.26 24293.18 22092.86 314
ACMP_Plane97.85 20694.26 24293.18 22092.86 314
BP-MVS90.51 263
HQP4-MVS92.87 31399.23 24899.06 155
HQP2-MVS90.33 236
NP-MVS98.14 18193.72 16395.08 295
MDTV_nov1_ep13_2view57.28 36394.89 22280.59 33994.02 28278.66 31085.50 32297.82 277
ACMMP++_ref99.52 100
ACMMP++99.55 89
Test By Simon94.51 153