LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 4 |
|
test_part1 | | | 99.41 2 | 99.62 2 | 98.80 31 | 99.76 5 | 96.58 57 | 99.49 3 | 99.65 2 | 99.89 2 | 99.94 2 | 99.77 2 | 99.03 4 | 99.92 4 | 99.05 3 | 99.99 2 | 99.90 1 |
|
UA-Net | | | 98.88 8 | 98.76 14 | 99.22 2 | 99.11 81 | 97.89 13 | 99.47 4 | 99.32 8 | 99.08 11 | 97.87 134 | 99.67 3 | 96.47 84 | 99.92 4 | 97.88 23 | 99.98 3 | 99.85 4 |
|
pmmvs6 | | | 99.07 5 | 99.24 5 | 98.56 50 | 99.81 2 | 96.38 62 | 98.87 8 | 99.30 9 | 99.01 17 | 99.63 10 | 99.66 4 | 99.27 2 | 99.68 115 | 97.75 30 | 99.89 21 | 99.62 25 |
|
UniMVSNet_ETH3D | | | 99.12 4 | 99.28 4 | 98.65 44 | 99.77 3 | 96.34 64 | 99.18 6 | 99.20 14 | 99.67 3 | 99.73 4 | 99.65 5 | 99.15 3 | 99.86 21 | 97.22 44 | 99.92 13 | 99.77 9 |
|
OurMVSNet-221017-0 | | | 98.61 17 | 98.61 24 | 98.63 46 | 99.77 3 | 96.35 63 | 99.17 7 | 99.05 41 | 98.05 40 | 99.61 12 | 99.52 6 | 93.72 174 | 99.88 19 | 98.72 10 | 99.88 22 | 99.65 23 |
|
ANet_high | | | 98.31 29 | 98.94 7 | 96.41 196 | 99.33 43 | 89.64 237 | 97.92 52 | 99.56 5 | 99.27 7 | 99.66 9 | 99.50 7 | 97.67 26 | 99.83 29 | 97.55 35 | 99.98 3 | 99.77 9 |
|
mvs_tets | | | 98.90 6 | 98.94 7 | 98.75 34 | 99.69 9 | 96.48 60 | 98.54 19 | 99.22 11 | 96.23 103 | 99.71 5 | 99.48 8 | 98.77 7 | 99.93 2 | 98.89 4 | 99.95 6 | 99.84 6 |
|
gg-mvs-nofinetune | | | 88.28 314 | 86.96 319 | 92.23 314 | 92.84 350 | 84.44 318 | 98.19 39 | 74.60 355 | 99.08 11 | 87.01 348 | 99.47 9 | 56.93 357 | 98.23 332 | 78.91 340 | 95.61 325 | 94.01 338 |
|
PS-MVSNAJss | | | 98.53 20 | 98.63 20 | 98.21 75 | 99.68 10 | 94.82 120 | 98.10 43 | 99.21 12 | 96.91 80 | 99.75 3 | 99.45 10 | 95.82 106 | 99.92 4 | 98.80 5 | 99.96 5 | 99.89 2 |
|
test_djsdf | | | 98.73 12 | 98.74 17 | 98.69 41 | 99.63 13 | 96.30 66 | 98.67 12 | 99.02 50 | 96.50 92 | 99.32 21 | 99.44 11 | 97.43 31 | 99.92 4 | 98.73 8 | 99.95 6 | 99.86 3 |
|
Anonymous20231211 | | | 98.55 18 | 98.76 14 | 97.94 93 | 98.79 105 | 94.37 137 | 98.84 9 | 99.15 22 | 99.37 4 | 99.67 7 | 99.43 12 | 95.61 118 | 99.72 77 | 98.12 17 | 99.86 24 | 99.73 16 |
|
anonymousdsp | | | 98.72 15 | 98.63 20 | 98.99 13 | 99.62 14 | 97.29 37 | 98.65 15 | 99.19 16 | 95.62 135 | 99.35 20 | 99.37 13 | 97.38 33 | 99.90 14 | 98.59 12 | 99.91 16 | 99.77 9 |
|
jajsoiax | | | 98.77 10 | 98.79 13 | 98.74 36 | 99.66 11 | 96.48 60 | 98.45 24 | 99.12 26 | 95.83 128 | 99.67 7 | 99.37 13 | 98.25 11 | 99.92 4 | 98.77 6 | 99.94 9 | 99.82 7 |
|
K. test v3 | | | 96.44 151 | 96.28 152 | 96.95 160 | 99.41 36 | 91.53 212 | 97.65 66 | 90.31 340 | 98.89 19 | 98.93 38 | 99.36 15 | 84.57 288 | 99.92 4 | 97.81 26 | 99.56 82 | 99.39 84 |
|
LTVRE_ROB | | 96.88 1 | 99.18 3 | 99.34 3 | 98.72 39 | 99.71 8 | 96.99 44 | 99.69 2 | 99.57 4 | 99.02 16 | 99.62 11 | 99.36 15 | 98.53 8 | 99.52 168 | 98.58 13 | 99.95 6 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 97.49 89 | 97.57 79 | 97.26 147 | 99.56 16 | 92.33 192 | 98.28 30 | 96.97 269 | 98.30 33 | 99.45 15 | 99.35 17 | 88.43 259 | 99.89 17 | 98.01 20 | 99.76 38 | 99.54 36 |
|
Gipuma | | | 98.07 41 | 98.31 30 | 97.36 141 | 99.76 5 | 96.28 67 | 98.51 20 | 99.10 29 | 98.76 22 | 96.79 189 | 99.34 18 | 96.61 74 | 98.82 290 | 96.38 69 | 99.50 106 | 96.98 299 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
JIA-IIPM | | | 91.79 286 | 90.69 295 | 95.11 245 | 93.80 340 | 90.98 219 | 94.16 250 | 91.78 328 | 96.38 96 | 90.30 333 | 99.30 19 | 72.02 339 | 98.90 283 | 88.28 293 | 90.17 343 | 95.45 331 |
|
TransMVSNet (Re) | | | 98.38 26 | 98.67 18 | 97.51 121 | 99.51 23 | 93.39 174 | 98.20 38 | 98.87 82 | 98.23 35 | 99.48 13 | 99.27 20 | 98.47 9 | 99.55 160 | 96.52 64 | 99.53 94 | 99.60 26 |
|
Baseline_NR-MVSNet | | | 97.72 73 | 97.79 53 | 97.50 124 | 99.56 16 | 93.29 175 | 95.44 181 | 98.86 84 | 98.20 37 | 98.37 73 | 99.24 21 | 94.69 144 | 99.55 160 | 95.98 86 | 99.79 34 | 99.65 23 |
|
v7n | | | 98.73 12 | 98.99 6 | 97.95 92 | 99.64 12 | 94.20 145 | 98.67 12 | 99.14 24 | 99.08 11 | 99.42 16 | 99.23 22 | 96.53 79 | 99.91 13 | 99.27 2 | 99.93 11 | 99.73 16 |
|
pm-mvs1 | | | 98.47 22 | 98.67 18 | 97.86 98 | 99.52 22 | 94.58 130 | 98.28 30 | 99.00 58 | 97.57 60 | 99.27 24 | 99.22 23 | 98.32 10 | 99.50 173 | 97.09 51 | 99.75 42 | 99.50 43 |
|
TDRefinement | | | 98.90 6 | 98.86 9 | 99.02 9 | 99.54 20 | 98.06 7 | 99.34 5 | 99.44 7 | 98.85 20 | 99.00 36 | 99.20 24 | 97.42 32 | 99.59 147 | 97.21 45 | 99.76 38 | 99.40 81 |
|
GBi-Net | | | 96.99 114 | 96.80 126 | 97.56 116 | 97.96 198 | 93.67 164 | 98.23 33 | 98.66 142 | 95.59 137 | 97.99 118 | 99.19 25 | 89.51 250 | 99.73 73 | 94.60 155 | 99.44 124 | 99.30 102 |
|
test1 | | | 96.99 114 | 96.80 126 | 97.56 116 | 97.96 198 | 93.67 164 | 98.23 33 | 98.66 142 | 95.59 137 | 97.99 118 | 99.19 25 | 89.51 250 | 99.73 73 | 94.60 155 | 99.44 124 | 99.30 102 |
|
FMVSNet1 | | | 97.95 50 | 98.08 36 | 97.56 116 | 99.14 79 | 93.67 164 | 98.23 33 | 98.66 142 | 97.41 70 | 99.00 36 | 99.19 25 | 95.47 123 | 99.73 73 | 95.83 90 | 99.76 38 | 99.30 102 |
|
VDDNet | | | 96.98 117 | 96.84 123 | 97.41 137 | 99.40 37 | 93.26 176 | 97.94 50 | 95.31 298 | 99.26 8 | 98.39 72 | 99.18 28 | 87.85 268 | 99.62 139 | 95.13 134 | 99.09 197 | 99.35 93 |
|
DSMNet-mixed | | | 92.19 280 | 91.83 277 | 93.25 294 | 96.18 300 | 83.68 324 | 96.27 135 | 93.68 310 | 76.97 347 | 92.54 318 | 99.18 28 | 89.20 255 | 98.55 315 | 83.88 328 | 98.60 249 | 97.51 286 |
|
v10 | | | 97.55 84 | 97.97 41 | 96.31 200 | 98.60 130 | 89.64 237 | 97.44 80 | 99.02 50 | 96.60 88 | 98.72 49 | 99.16 30 | 93.48 178 | 99.72 77 | 98.76 7 | 99.92 13 | 99.58 28 |
|
MIMVSNet1 | | | 98.51 21 | 98.45 27 | 98.67 42 | 99.72 7 | 96.71 50 | 98.76 10 | 98.89 75 | 98.49 27 | 99.38 18 | 99.14 31 | 95.44 125 | 99.84 26 | 96.47 67 | 99.80 33 | 99.47 59 |
|
Vis-MVSNet | | | 98.27 30 | 98.34 29 | 98.07 83 | 99.33 43 | 95.21 111 | 98.04 46 | 99.46 6 | 97.32 73 | 97.82 139 | 99.11 32 | 96.75 68 | 99.86 21 | 97.84 25 | 99.36 148 | 99.15 131 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
v8 | | | 97.60 81 | 98.06 38 | 96.23 202 | 98.71 116 | 89.44 241 | 97.43 82 | 98.82 107 | 97.29 75 | 98.74 47 | 99.10 33 | 93.86 169 | 99.68 115 | 98.61 11 | 99.94 9 | 99.56 33 |
|
MVS-HIRNet | | | 88.40 313 | 90.20 301 | 82.99 335 | 97.01 276 | 60.04 357 | 93.11 288 | 85.61 351 | 84.45 321 | 88.72 341 | 99.09 34 | 84.72 287 | 98.23 332 | 82.52 333 | 96.59 313 | 90.69 348 |
|
ACMH | | 93.61 9 | 98.44 23 | 98.76 14 | 97.51 121 | 99.43 33 | 93.54 170 | 98.23 33 | 99.05 41 | 97.40 71 | 99.37 19 | 99.08 35 | 98.79 6 | 99.47 180 | 97.74 31 | 99.71 50 | 99.50 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DTE-MVSNet | | | 98.79 9 | 98.86 9 | 98.59 48 | 99.55 18 | 96.12 71 | 98.48 23 | 99.10 29 | 99.36 5 | 99.29 23 | 99.06 36 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 16 | 99.70 19 |
|
PEN-MVS | | | 98.75 11 | 98.85 11 | 98.44 56 | 99.58 15 | 95.67 87 | 98.45 24 | 99.15 22 | 99.33 6 | 99.30 22 | 99.00 37 | 97.27 38 | 99.92 4 | 97.64 33 | 99.92 13 | 99.75 14 |
|
DeepC-MVS | | 95.41 4 | 97.82 67 | 97.70 61 | 98.16 76 | 98.78 107 | 95.72 82 | 96.23 140 | 99.02 50 | 93.92 199 | 98.62 51 | 98.99 38 | 97.69 24 | 99.62 139 | 96.18 74 | 99.87 23 | 99.15 131 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VPA-MVSNet | | | 98.27 30 | 98.46 25 | 97.70 107 | 99.06 86 | 93.80 159 | 97.76 60 | 99.00 58 | 98.40 29 | 99.07 33 | 98.98 39 | 96.89 60 | 99.75 60 | 97.19 48 | 99.79 34 | 99.55 35 |
|
lessismore_v0 | | | | | 97.05 156 | 99.36 41 | 92.12 200 | | 84.07 352 | | 98.77 46 | 98.98 39 | 85.36 282 | 99.74 67 | 97.34 41 | 99.37 145 | 99.30 102 |
|
testing_2 | | | 97.43 94 | 97.71 60 | 96.60 181 | 98.91 97 | 90.85 221 | 96.01 153 | 98.54 156 | 94.78 168 | 98.78 43 | 98.96 41 | 96.35 92 | 99.54 162 | 97.25 42 | 99.82 29 | 99.40 81 |
|
PS-CasMVS | | | 98.73 12 | 98.85 11 | 98.39 60 | 99.55 18 | 95.47 97 | 98.49 21 | 99.13 25 | 99.22 9 | 99.22 27 | 98.96 41 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 11 | 99.79 8 |
|
EU-MVSNet | | | 94.25 236 | 94.47 223 | 93.60 287 | 98.14 182 | 82.60 327 | 97.24 91 | 92.72 321 | 85.08 313 | 98.48 63 | 98.94 43 | 82.59 294 | 98.76 297 | 97.47 38 | 99.53 94 | 99.44 76 |
|
LCM-MVSNet-Re | | | 97.33 102 | 97.33 93 | 97.32 143 | 98.13 185 | 93.79 160 | 96.99 104 | 99.65 2 | 96.74 85 | 99.47 14 | 98.93 44 | 96.91 59 | 99.84 26 | 90.11 266 | 99.06 203 | 98.32 236 |
|
XXY-MVS | | | 97.54 85 | 97.70 61 | 97.07 155 | 99.46 29 | 92.21 196 | 97.22 92 | 99.00 58 | 94.93 165 | 98.58 56 | 98.92 45 | 97.31 36 | 99.41 202 | 94.44 161 | 99.43 131 | 99.59 27 |
|
mvs_anonymous | | | 95.36 192 | 96.07 162 | 93.21 296 | 96.29 293 | 81.56 330 | 94.60 233 | 97.66 241 | 93.30 214 | 96.95 183 | 98.91 46 | 93.03 188 | 99.38 212 | 96.60 60 | 97.30 301 | 98.69 207 |
|
UGNet | | | 96.81 130 | 96.56 138 | 97.58 115 | 96.64 285 | 93.84 158 | 97.75 61 | 97.12 264 | 96.47 95 | 93.62 291 | 98.88 47 | 93.22 183 | 99.53 164 | 95.61 100 | 99.69 54 | 99.36 92 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Anonymous20240529 | | | 97.96 47 | 98.04 39 | 97.71 105 | 98.69 120 | 94.28 142 | 97.86 55 | 98.31 186 | 98.79 21 | 99.23 26 | 98.86 48 | 95.76 113 | 99.61 145 | 95.49 104 | 99.36 148 | 99.23 120 |
|
FC-MVSNet-test | | | 98.16 34 | 98.37 28 | 97.56 116 | 99.49 27 | 93.10 181 | 98.35 27 | 99.21 12 | 98.43 28 | 98.89 39 | 98.83 49 | 94.30 159 | 99.81 32 | 97.87 24 | 99.91 16 | 99.77 9 |
|
new-patchmatchnet | | | 95.67 178 | 96.58 136 | 92.94 304 | 97.48 248 | 80.21 335 | 92.96 289 | 98.19 201 | 94.83 166 | 98.82 41 | 98.79 50 | 93.31 181 | 99.51 172 | 95.83 90 | 99.04 204 | 99.12 142 |
|
WR-MVS_H | | | 98.65 16 | 98.62 22 | 98.75 34 | 99.51 23 | 96.61 55 | 98.55 18 | 99.17 17 | 99.05 14 | 99.17 29 | 98.79 50 | 95.47 123 | 99.89 17 | 97.95 21 | 99.91 16 | 99.75 14 |
|
ab-mvs | | | 96.59 144 | 96.59 135 | 96.60 181 | 98.64 122 | 92.21 196 | 98.35 27 | 97.67 239 | 94.45 179 | 96.99 179 | 98.79 50 | 94.96 139 | 99.49 174 | 90.39 263 | 99.07 200 | 98.08 253 |
|
EG-PatchMatch MVS | | | 97.69 75 | 97.79 53 | 97.40 138 | 99.06 86 | 93.52 171 | 95.96 157 | 98.97 67 | 94.55 178 | 98.82 41 | 98.76 53 | 97.31 36 | 99.29 236 | 97.20 47 | 99.44 124 | 99.38 86 |
|
nrg030 | | | 98.54 19 | 98.62 22 | 98.32 65 | 99.22 57 | 95.66 88 | 97.90 53 | 99.08 35 | 98.31 32 | 99.02 34 | 98.74 54 | 97.68 25 | 99.61 145 | 97.77 29 | 99.85 26 | 99.70 19 |
|
VDD-MVS | | | 97.37 99 | 97.25 98 | 97.74 104 | 98.69 120 | 94.50 133 | 97.04 101 | 95.61 294 | 98.59 25 | 98.51 60 | 98.72 55 | 92.54 202 | 99.58 149 | 96.02 82 | 99.49 110 | 99.12 142 |
|
PatchT | | | 93.75 250 | 93.57 247 | 94.29 279 | 95.05 325 | 87.32 282 | 96.05 148 | 92.98 317 | 97.54 63 | 94.25 270 | 98.72 55 | 75.79 325 | 99.24 244 | 95.92 88 | 95.81 320 | 96.32 319 |
|
RPSCF | | | 97.87 62 | 97.51 83 | 98.95 17 | 99.15 71 | 98.43 3 | 97.56 72 | 99.06 39 | 96.19 104 | 98.48 63 | 98.70 57 | 94.72 143 | 99.24 244 | 94.37 166 | 99.33 163 | 99.17 127 |
|
APDe-MVS | | | 98.14 35 | 98.03 40 | 98.47 55 | 98.72 113 | 96.04 73 | 98.07 45 | 99.10 29 | 95.96 117 | 98.59 55 | 98.69 58 | 96.94 55 | 99.81 32 | 96.64 59 | 99.58 76 | 99.57 32 |
|
IterMVS-LS | | | 96.92 120 | 97.29 95 | 95.79 221 | 98.51 140 | 88.13 265 | 95.10 206 | 98.66 142 | 96.99 77 | 98.46 66 | 98.68 59 | 92.55 200 | 99.74 67 | 96.91 57 | 99.79 34 | 99.50 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tfpnnormal | | | 97.72 73 | 97.97 41 | 96.94 161 | 99.26 48 | 92.23 195 | 97.83 57 | 98.45 164 | 98.25 34 | 99.13 30 | 98.66 60 | 96.65 71 | 99.69 109 | 93.92 187 | 99.62 63 | 98.91 178 |
|
FIs | | | 97.93 55 | 98.07 37 | 97.48 128 | 99.38 39 | 92.95 184 | 98.03 48 | 99.11 27 | 98.04 41 | 98.62 51 | 98.66 60 | 93.75 173 | 99.78 41 | 97.23 43 | 99.84 27 | 99.73 16 |
|
CP-MVSNet | | | 98.42 24 | 98.46 25 | 98.30 68 | 99.46 29 | 95.22 109 | 98.27 32 | 98.84 92 | 99.05 14 | 99.01 35 | 98.65 62 | 95.37 126 | 99.90 14 | 97.57 34 | 99.91 16 | 99.77 9 |
|
FMVSNet2 | | | 96.72 136 | 96.67 133 | 96.87 166 | 97.96 198 | 91.88 206 | 97.15 94 | 98.06 218 | 95.59 137 | 98.50 62 | 98.62 63 | 89.51 250 | 99.65 126 | 94.99 142 | 99.60 72 | 99.07 152 |
|
PMVS | | 89.60 17 | 96.71 138 | 96.97 116 | 95.95 215 | 99.51 23 | 97.81 16 | 97.42 83 | 97.49 251 | 97.93 43 | 95.95 229 | 98.58 64 | 96.88 62 | 96.91 344 | 89.59 274 | 99.36 148 | 93.12 342 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
CR-MVSNet | | | 93.29 263 | 92.79 262 | 94.78 261 | 95.44 319 | 88.15 263 | 96.18 142 | 97.20 259 | 84.94 317 | 94.10 274 | 98.57 65 | 77.67 312 | 99.39 209 | 95.17 127 | 95.81 320 | 96.81 308 |
|
Patchmtry | | | 95.03 206 | 94.59 218 | 96.33 198 | 94.83 327 | 90.82 223 | 96.38 130 | 97.20 259 | 96.59 89 | 97.49 148 | 98.57 65 | 77.67 312 | 99.38 212 | 92.95 210 | 99.62 63 | 98.80 193 |
|
ambc | | | | | 96.56 187 | 98.23 169 | 91.68 211 | 97.88 54 | 98.13 208 | | 98.42 69 | 98.56 67 | 94.22 162 | 99.04 269 | 94.05 182 | 99.35 153 | 98.95 167 |
|
3Dnovator | | 96.53 2 | 97.61 80 | 97.64 70 | 97.50 124 | 97.74 231 | 93.65 168 | 98.49 21 | 98.88 80 | 96.86 82 | 97.11 168 | 98.55 68 | 95.82 106 | 99.73 73 | 95.94 87 | 99.42 134 | 99.13 137 |
|
IterMVS-SCA-FT | | | 95.86 173 | 96.19 155 | 94.85 257 | 97.68 235 | 85.53 302 | 92.42 301 | 97.63 247 | 96.99 77 | 98.36 75 | 98.54 69 | 87.94 263 | 99.75 60 | 97.07 53 | 99.08 198 | 99.27 113 |
|
COLMAP_ROB | | 94.48 6 | 98.25 32 | 98.11 35 | 98.64 45 | 99.21 63 | 97.35 35 | 97.96 49 | 99.16 18 | 98.34 31 | 98.78 43 | 98.52 70 | 97.32 35 | 99.45 187 | 94.08 178 | 99.67 57 | 99.13 137 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ACMH+ | | 93.58 10 | 98.23 33 | 98.31 30 | 97.98 91 | 99.39 38 | 95.22 109 | 97.55 73 | 99.20 14 | 98.21 36 | 99.25 25 | 98.51 71 | 98.21 12 | 99.40 204 | 94.79 148 | 99.72 47 | 99.32 96 |
|
RPMNet | | | 94.68 223 | 94.60 216 | 94.90 254 | 95.44 319 | 88.15 263 | 96.18 142 | 98.86 84 | 97.43 66 | 94.10 274 | 98.49 72 | 79.40 304 | 99.76 53 | 95.69 93 | 95.81 320 | 96.81 308 |
|
IterMVS | | | 95.42 190 | 95.83 171 | 94.20 280 | 97.52 247 | 83.78 323 | 92.41 302 | 97.47 254 | 95.49 141 | 98.06 112 | 98.49 72 | 87.94 263 | 99.58 149 | 96.02 82 | 99.02 205 | 99.23 120 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
DP-MVS | | | 97.87 62 | 97.89 46 | 97.81 101 | 98.62 127 | 94.82 120 | 97.13 97 | 98.79 109 | 98.98 18 | 98.74 47 | 98.49 72 | 95.80 112 | 99.49 174 | 95.04 138 | 99.44 124 | 99.11 145 |
|
TranMVSNet+NR-MVSNet | | | 98.33 27 | 98.30 32 | 98.43 57 | 99.07 85 | 95.87 78 | 96.73 117 | 99.05 41 | 98.67 23 | 98.84 40 | 98.45 75 | 97.58 28 | 99.88 19 | 96.45 68 | 99.86 24 | 99.54 36 |
|
3Dnovator+ | | 96.13 3 | 97.73 72 | 97.59 77 | 98.15 79 | 98.11 187 | 95.60 90 | 98.04 46 | 98.70 132 | 98.13 38 | 96.93 184 | 98.45 75 | 95.30 130 | 99.62 139 | 95.64 98 | 98.96 209 | 99.24 119 |
|
VPNet | | | 97.26 106 | 97.49 85 | 96.59 183 | 99.47 28 | 90.58 228 | 96.27 135 | 98.53 157 | 97.77 46 | 98.46 66 | 98.41 77 | 94.59 150 | 99.68 115 | 94.61 154 | 99.29 171 | 99.52 40 |
|
test_0402 | | | 97.84 64 | 97.97 41 | 97.47 129 | 99.19 66 | 94.07 148 | 96.71 118 | 98.73 122 | 98.66 24 | 98.56 57 | 98.41 77 | 96.84 65 | 99.69 109 | 94.82 146 | 99.81 30 | 98.64 210 |
|
v1240 | | | 96.74 133 | 97.02 115 | 95.91 218 | 98.18 175 | 88.52 256 | 95.39 187 | 98.88 80 | 93.15 223 | 98.46 66 | 98.40 79 | 92.80 192 | 99.71 92 | 98.45 14 | 99.49 110 | 99.49 51 |
|
SMA-MVS | | | 97.48 90 | 97.11 107 | 98.60 47 | 98.83 101 | 96.67 52 | 96.74 113 | 98.73 122 | 91.61 249 | 98.48 63 | 98.36 80 | 96.53 79 | 99.68 115 | 95.17 127 | 99.54 91 | 99.45 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
ACMMP_NAP | | | 97.89 60 | 97.63 72 | 98.67 42 | 99.35 42 | 96.84 47 | 96.36 131 | 98.79 109 | 95.07 158 | 97.88 131 | 98.35 81 | 97.24 42 | 99.72 77 | 96.05 79 | 99.58 76 | 99.45 66 |
|
v1192 | | | 96.83 128 | 97.06 112 | 96.15 207 | 98.28 161 | 89.29 243 | 95.36 189 | 98.77 114 | 93.73 202 | 98.11 104 | 98.34 82 | 93.02 189 | 99.67 120 | 98.35 15 | 99.58 76 | 99.50 43 |
|
pmmvs-eth3d | | | 96.49 148 | 96.18 156 | 97.42 136 | 98.25 166 | 94.29 139 | 94.77 228 | 98.07 217 | 89.81 267 | 97.97 122 | 98.33 83 | 93.11 184 | 99.08 265 | 95.46 110 | 99.84 27 | 98.89 182 |
|
PM-MVS | | | 97.36 101 | 97.10 108 | 98.14 80 | 98.91 97 | 96.77 49 | 96.20 141 | 98.63 148 | 93.82 200 | 98.54 58 | 98.33 83 | 93.98 167 | 99.05 268 | 95.99 85 | 99.45 123 | 98.61 215 |
|
test0726 | | | | | | 99.24 52 | 95.51 94 | 96.89 106 | 98.89 75 | 95.92 120 | 98.64 50 | 98.31 85 | 97.06 50 | | | | |
|
MP-MVS-pluss | | | 97.69 75 | 97.36 91 | 98.70 40 | 99.50 26 | 96.84 47 | 95.38 188 | 98.99 61 | 92.45 238 | 98.11 104 | 98.31 85 | 97.25 41 | 99.77 49 | 96.60 60 | 99.62 63 | 99.48 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
v1144 | | | 96.84 125 | 97.08 110 | 96.13 208 | 98.42 151 | 89.28 244 | 95.41 185 | 98.67 140 | 94.21 188 | 97.97 122 | 98.31 85 | 93.06 185 | 99.65 126 | 98.06 19 | 99.62 63 | 99.45 66 |
|
LFMVS | | | 95.32 194 | 94.88 202 | 96.62 180 | 98.03 189 | 91.47 214 | 97.65 66 | 90.72 337 | 99.11 10 | 97.89 130 | 98.31 85 | 79.20 305 | 99.48 177 | 93.91 188 | 99.12 193 | 98.93 173 |
|
V42 | | | 97.04 112 | 97.16 105 | 96.68 179 | 98.59 132 | 91.05 217 | 96.33 133 | 98.36 178 | 94.60 174 | 97.99 118 | 98.30 89 | 93.32 180 | 99.62 139 | 97.40 40 | 99.53 94 | 99.38 86 |
|
casdiffmvs | | | 97.50 88 | 97.81 52 | 96.56 187 | 98.51 140 | 91.04 218 | 95.83 165 | 99.09 34 | 97.23 76 | 98.33 81 | 98.30 89 | 97.03 52 | 99.37 215 | 96.58 62 | 99.38 144 | 99.28 109 |
|
v144192 | | | 96.69 139 | 96.90 122 | 96.03 210 | 98.25 166 | 88.92 248 | 95.49 179 | 98.77 114 | 93.05 225 | 98.09 108 | 98.29 91 | 92.51 204 | 99.70 101 | 98.11 18 | 99.56 82 | 99.47 59 |
|
DVP-MVS | | | 97.78 70 | 97.65 67 | 98.16 76 | 99.24 52 | 95.51 94 | 96.74 113 | 98.23 192 | 95.92 120 | 98.40 70 | 98.28 92 | 97.06 50 | 99.71 92 | 95.48 107 | 99.52 99 | 99.26 114 |
|
test_0728_THIRD | | | | | | | | | | 96.62 87 | 98.40 70 | 98.28 92 | 97.10 45 | 99.71 92 | 95.70 92 | 99.62 63 | 99.58 28 |
|
MVS_Test | | | 96.27 155 | 96.79 128 | 94.73 263 | 96.94 280 | 86.63 291 | 96.18 142 | 98.33 183 | 94.94 163 | 96.07 225 | 98.28 92 | 95.25 131 | 99.26 241 | 97.21 45 | 97.90 274 | 98.30 239 |
|
FMVSNet5 | | | 93.39 260 | 92.35 271 | 96.50 189 | 95.83 310 | 90.81 225 | 97.31 86 | 98.27 187 | 92.74 234 | 96.27 216 | 98.28 92 | 62.23 353 | 99.67 120 | 90.86 243 | 99.36 148 | 99.03 158 |
|
abl_6 | | | 98.42 24 | 98.19 33 | 99.09 3 | 99.16 68 | 98.10 5 | 97.73 64 | 99.11 27 | 97.76 49 | 98.62 51 | 98.27 96 | 97.88 20 | 99.80 38 | 95.67 94 | 99.50 106 | 99.38 86 |
|
v1921920 | | | 96.72 136 | 96.96 118 | 95.99 211 | 98.21 170 | 88.79 253 | 95.42 183 | 98.79 109 | 93.22 217 | 98.19 96 | 98.26 97 | 92.68 195 | 99.70 101 | 98.34 16 | 99.55 88 | 99.49 51 |
|
SED-MVS | | | 97.94 52 | 97.90 44 | 98.07 83 | 99.22 57 | 95.35 101 | 96.79 110 | 98.83 99 | 96.11 107 | 99.08 31 | 98.24 98 | 97.87 21 | 99.72 77 | 95.44 111 | 99.51 104 | 99.14 134 |
|
test_241102_TWO | | | | | | | | | 98.83 99 | 96.11 107 | 98.62 51 | 98.24 98 | 96.92 58 | 99.72 77 | 95.44 111 | 99.49 110 | 99.49 51 |
|
v2v482 | | | 96.78 132 | 97.06 112 | 95.95 215 | 98.57 134 | 88.77 254 | 95.36 189 | 98.26 189 | 95.18 153 | 97.85 136 | 98.23 100 | 92.58 199 | 99.63 131 | 97.80 27 | 99.69 54 | 99.45 66 |
|
LPG-MVS_test | | | 97.94 52 | 97.67 64 | 98.74 36 | 99.15 71 | 97.02 42 | 97.09 98 | 99.02 50 | 95.15 154 | 98.34 78 | 98.23 100 | 97.91 18 | 99.70 101 | 94.41 163 | 99.73 44 | 99.50 43 |
|
LGP-MVS_train | | | | | 98.74 36 | 99.15 71 | 97.02 42 | | 99.02 50 | 95.15 154 | 98.34 78 | 98.23 100 | 97.91 18 | 99.70 101 | 94.41 163 | 99.73 44 | 99.50 43 |
|
HPM-MVS_fast | | | 98.32 28 | 98.13 34 | 98.88 24 | 99.54 20 | 97.48 30 | 98.35 27 | 99.03 48 | 95.88 123 | 97.88 131 | 98.22 103 | 98.15 13 | 99.74 67 | 96.50 66 | 99.62 63 | 99.42 78 |
|
MIMVSNet | | | 93.42 259 | 92.86 259 | 95.10 246 | 98.17 177 | 88.19 262 | 98.13 42 | 93.69 308 | 92.07 241 | 95.04 253 | 98.21 104 | 80.95 300 | 99.03 272 | 81.42 335 | 98.06 268 | 98.07 255 |
|
EI-MVSNet | | | 96.63 143 | 96.93 119 | 95.74 222 | 97.26 267 | 88.13 265 | 95.29 196 | 97.65 243 | 96.99 77 | 97.94 125 | 98.19 105 | 92.55 200 | 99.58 149 | 96.91 57 | 99.56 82 | 99.50 43 |
|
CVMVSNet | | | 92.33 278 | 92.79 262 | 90.95 320 | 97.26 267 | 75.84 348 | 95.29 196 | 92.33 324 | 81.86 327 | 96.27 216 | 98.19 105 | 81.44 296 | 98.46 320 | 94.23 173 | 98.29 260 | 98.55 220 |
|
PVSNet_Blended_VisFu | | | 95.95 169 | 95.80 172 | 96.42 194 | 99.28 47 | 90.62 227 | 95.31 194 | 99.08 35 | 88.40 281 | 96.97 182 | 98.17 107 | 92.11 211 | 99.78 41 | 93.64 195 | 99.21 178 | 98.86 188 |
|
EI-MVSNet-UG-set | | | 97.32 103 | 97.40 88 | 97.09 154 | 97.34 262 | 92.01 204 | 95.33 192 | 97.65 243 | 97.74 50 | 98.30 86 | 98.14 108 | 95.04 136 | 99.69 109 | 97.55 35 | 99.52 99 | 99.58 28 |
|
test_241102_ONE | | | | | | 99.22 57 | 95.35 101 | | 98.83 99 | 96.04 112 | 99.08 31 | 98.13 109 | 97.87 21 | 99.33 225 | | | |
|
APD-MVS_3200maxsize | | | 98.13 38 | 97.90 44 | 98.79 32 | 98.79 105 | 97.31 36 | 97.55 73 | 98.92 72 | 97.72 53 | 98.25 89 | 98.13 109 | 97.10 45 | 99.75 60 | 95.44 111 | 99.24 177 | 99.32 96 |
|
QAPM | | | 95.88 172 | 95.57 181 | 96.80 170 | 97.90 204 | 91.84 208 | 98.18 40 | 98.73 122 | 88.41 280 | 96.42 207 | 98.13 109 | 94.73 142 | 99.75 60 | 88.72 286 | 98.94 213 | 98.81 192 |
|
ACMM | | 93.33 11 | 98.05 42 | 97.79 53 | 98.85 25 | 99.15 71 | 97.55 26 | 96.68 119 | 98.83 99 | 95.21 150 | 98.36 75 | 98.13 109 | 98.13 15 | 99.62 139 | 96.04 80 | 99.54 91 | 99.39 84 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
EI-MVSNet-Vis-set | | | 97.32 103 | 97.39 89 | 97.11 152 | 97.36 257 | 92.08 202 | 95.34 191 | 97.65 243 | 97.74 50 | 98.29 87 | 98.11 113 | 95.05 134 | 99.68 115 | 97.50 37 | 99.50 106 | 99.56 33 |
|
wuyk23d | | | 93.25 264 | 95.20 187 | 87.40 334 | 96.07 305 | 95.38 99 | 97.04 101 | 94.97 299 | 95.33 146 | 99.70 6 | 98.11 113 | 98.14 14 | 91.94 351 | 77.76 344 | 99.68 56 | 74.89 350 |
|
DPE-MVS | | | 97.64 77 | 97.35 92 | 98.50 52 | 98.85 100 | 96.18 68 | 95.21 203 | 98.99 61 | 95.84 127 | 98.78 43 | 98.08 115 | 96.84 65 | 99.81 32 | 93.98 185 | 99.57 79 | 99.52 40 |
|
SD-MVS | | | 97.37 99 | 97.70 61 | 96.35 197 | 98.14 182 | 95.13 112 | 96.54 122 | 98.92 72 | 95.94 119 | 99.19 28 | 98.08 115 | 97.74 23 | 95.06 349 | 95.24 123 | 99.54 91 | 98.87 187 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
SR-MVS-dyc-post | | | 98.14 35 | 97.84 49 | 99.02 9 | 98.81 102 | 98.05 8 | 97.55 73 | 98.86 84 | 97.77 46 | 98.20 93 | 98.07 117 | 96.60 76 | 99.76 53 | 95.49 104 | 99.20 179 | 99.26 114 |
|
RE-MVS-def | | | | 97.88 47 | | 98.81 102 | 98.05 8 | 97.55 73 | 98.86 84 | 97.77 46 | 98.20 93 | 98.07 117 | 96.94 55 | | 95.49 104 | 99.20 179 | 99.26 114 |
|
OPM-MVS | | | 97.54 85 | 97.25 98 | 98.41 58 | 99.11 81 | 96.61 55 | 95.24 201 | 98.46 163 | 94.58 177 | 98.10 107 | 98.07 117 | 97.09 47 | 99.39 209 | 95.16 129 | 99.44 124 | 99.21 122 |
|
AllTest | | | 97.20 110 | 96.92 120 | 98.06 85 | 99.08 83 | 96.16 69 | 97.14 96 | 99.16 18 | 94.35 183 | 97.78 140 | 98.07 117 | 95.84 103 | 99.12 258 | 91.41 230 | 99.42 134 | 98.91 178 |
|
TestCases | | | | | 98.06 85 | 99.08 83 | 96.16 69 | | 99.16 18 | 94.35 183 | 97.78 140 | 98.07 117 | 95.84 103 | 99.12 258 | 91.41 230 | 99.42 134 | 98.91 178 |
|
TSAR-MVS + MP. | | | 97.42 95 | 97.23 101 | 98.00 90 | 99.38 39 | 95.00 115 | 97.63 68 | 98.20 196 | 93.00 226 | 98.16 98 | 98.06 122 | 95.89 101 | 99.72 77 | 95.67 94 | 99.10 196 | 99.28 109 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPP-MVSNet | | | 96.84 125 | 96.58 136 | 97.65 111 | 99.18 67 | 93.78 161 | 98.68 11 | 96.34 281 | 97.91 44 | 97.30 159 | 98.06 122 | 88.46 258 | 99.85 23 | 93.85 189 | 99.40 141 | 99.32 96 |
|
ACMMP | | | 98.05 42 | 97.75 59 | 98.93 21 | 99.23 54 | 97.60 22 | 98.09 44 | 98.96 68 | 95.75 132 | 97.91 127 | 98.06 122 | 96.89 60 | 99.76 53 | 95.32 118 | 99.57 79 | 99.43 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
Anonymous202405211 | | | 96.34 154 | 95.98 166 | 97.43 135 | 98.25 166 | 93.85 157 | 96.74 113 | 94.41 305 | 97.72 53 | 98.37 73 | 98.03 125 | 87.15 272 | 99.53 164 | 94.06 179 | 99.07 200 | 98.92 177 |
|
XVG-ACMP-BASELINE | | | 97.58 83 | 97.28 97 | 98.49 53 | 99.16 68 | 96.90 46 | 96.39 128 | 98.98 64 | 95.05 159 | 98.06 112 | 98.02 126 | 95.86 102 | 99.56 156 | 94.37 166 | 99.64 61 | 99.00 161 |
|
baseline | | | 97.44 93 | 97.78 56 | 96.43 193 | 98.52 139 | 90.75 226 | 96.84 107 | 99.03 48 | 96.51 91 | 97.86 135 | 98.02 126 | 96.67 70 | 99.36 217 | 97.09 51 | 99.47 116 | 99.19 124 |
|
PVSNet_BlendedMVS | | | 95.02 207 | 94.93 199 | 95.27 240 | 97.79 223 | 87.40 280 | 94.14 253 | 98.68 137 | 88.94 275 | 94.51 265 | 98.01 128 | 93.04 186 | 99.30 232 | 89.77 272 | 99.49 110 | 99.11 145 |
|
OpenMVS | | 94.22 8 | 95.48 186 | 95.20 187 | 96.32 199 | 97.16 272 | 91.96 205 | 97.74 62 | 98.84 92 | 87.26 290 | 94.36 269 | 98.01 128 | 93.95 168 | 99.67 120 | 90.70 253 | 98.75 235 | 97.35 292 |
|
MVSTER | | | 94.21 239 | 93.93 242 | 95.05 248 | 95.83 310 | 86.46 292 | 95.18 204 | 97.65 243 | 92.41 239 | 97.94 125 | 98.00 130 | 72.39 338 | 99.58 149 | 96.36 70 | 99.56 82 | 99.12 142 |
|
IS-MVSNet | | | 96.93 119 | 96.68 132 | 97.70 107 | 99.25 51 | 94.00 151 | 98.57 16 | 96.74 277 | 98.36 30 | 98.14 102 | 97.98 131 | 88.23 261 | 99.71 92 | 93.10 207 | 99.72 47 | 99.38 86 |
|
test1172 | | | 98.08 40 | 97.76 57 | 99.05 6 | 98.78 107 | 98.07 6 | 97.41 84 | 98.85 88 | 97.57 60 | 98.15 100 | 97.96 132 | 96.60 76 | 99.76 53 | 95.30 119 | 99.18 183 | 99.33 95 |
|
zzz-MVS | | | 98.01 45 | 97.66 65 | 99.06 4 | 99.44 31 | 97.90 11 | 95.66 173 | 98.73 122 | 97.69 56 | 97.90 128 | 97.96 132 | 95.81 110 | 99.82 30 | 96.13 75 | 99.61 69 | 99.45 66 |
|
MTAPA | | | 98.14 35 | 97.84 49 | 99.06 4 | 99.44 31 | 97.90 11 | 97.25 89 | 98.73 122 | 97.69 56 | 97.90 128 | 97.96 132 | 95.81 110 | 99.82 30 | 96.13 75 | 99.61 69 | 99.45 66 |
|
v148 | | | 96.58 145 | 96.97 116 | 95.42 236 | 98.63 126 | 87.57 276 | 95.09 208 | 97.90 224 | 95.91 122 | 98.24 91 | 97.96 132 | 93.42 179 | 99.39 209 | 96.04 80 | 99.52 99 | 99.29 108 |
|
MDA-MVSNet-bldmvs | | | 95.69 176 | 95.67 176 | 95.74 222 | 98.48 145 | 88.76 255 | 92.84 290 | 97.25 257 | 96.00 115 | 97.59 142 | 97.95 136 | 91.38 225 | 99.46 183 | 93.16 206 | 96.35 316 | 98.99 164 |
|
PGM-MVS | | | 97.88 61 | 97.52 82 | 98.96 16 | 99.20 64 | 97.62 21 | 97.09 98 | 99.06 39 | 95.45 142 | 97.55 143 | 97.94 137 | 97.11 44 | 99.78 41 | 94.77 151 | 99.46 119 | 99.48 56 |
|
LS3D | | | 97.77 71 | 97.50 84 | 98.57 49 | 96.24 295 | 97.58 24 | 98.45 24 | 98.85 88 | 98.58 26 | 97.51 146 | 97.94 137 | 95.74 114 | 99.63 131 | 95.19 125 | 98.97 208 | 98.51 221 |
|
USDC | | | 94.56 229 | 94.57 221 | 94.55 271 | 97.78 227 | 86.43 294 | 92.75 293 | 98.65 147 | 85.96 301 | 96.91 186 | 97.93 139 | 90.82 231 | 98.74 298 | 90.71 252 | 99.59 74 | 98.47 223 |
|
test20.03 | | | 96.58 145 | 96.61 134 | 96.48 191 | 98.49 143 | 91.72 210 | 95.68 172 | 97.69 238 | 96.81 83 | 98.27 88 | 97.92 140 | 94.18 163 | 98.71 301 | 90.78 247 | 99.66 59 | 99.00 161 |
|
FMVSNet3 | | | 95.26 197 | 94.94 197 | 96.22 204 | 96.53 288 | 90.06 232 | 95.99 154 | 97.66 241 | 94.11 193 | 97.99 118 | 97.91 141 | 80.22 303 | 99.63 131 | 94.60 155 | 99.44 124 | 98.96 166 |
|
Regformer-3 | | | 97.25 107 | 97.29 95 | 97.11 152 | 97.35 258 | 92.32 193 | 95.26 198 | 97.62 248 | 97.67 58 | 98.17 97 | 97.89 142 | 95.05 134 | 99.56 156 | 97.16 49 | 99.42 134 | 99.46 61 |
|
Regformer-4 | | | 97.53 87 | 97.47 87 | 97.71 105 | 97.35 258 | 93.91 153 | 95.26 198 | 98.14 206 | 97.97 42 | 98.34 78 | 97.89 142 | 95.49 121 | 99.71 92 | 97.41 39 | 99.42 134 | 99.51 42 |
|
xxxxxxxxxxxxxcwj | | | 97.24 108 | 97.03 114 | 97.89 96 | 98.48 145 | 94.71 124 | 94.53 236 | 99.07 38 | 95.02 161 | 97.83 137 | 97.88 144 | 96.44 86 | 99.72 77 | 94.59 158 | 99.39 142 | 99.25 117 |
|
SF-MVS | | | 97.60 81 | 97.39 89 | 98.22 74 | 98.93 95 | 95.69 84 | 97.05 100 | 99.10 29 | 95.32 147 | 97.83 137 | 97.88 144 | 96.44 86 | 99.72 77 | 94.59 158 | 99.39 142 | 99.25 117 |
|
SteuartSystems-ACMMP | | | 98.02 44 | 97.76 57 | 98.79 32 | 99.43 33 | 97.21 41 | 97.15 94 | 98.90 74 | 96.58 90 | 98.08 110 | 97.87 146 | 97.02 53 | 99.76 53 | 95.25 122 | 99.59 74 | 99.40 81 |
Skip Steuart: Steuart Systems R&D Blog. |
SR-MVS | | | 98.00 46 | 97.66 65 | 99.01 11 | 98.77 109 | 97.93 10 | 97.38 85 | 98.83 99 | 97.32 73 | 98.06 112 | 97.85 147 | 96.65 71 | 99.77 49 | 95.00 141 | 99.11 194 | 99.32 96 |
|
RRT_MVS | | | 94.90 209 | 94.07 236 | 97.39 139 | 93.18 344 | 93.21 178 | 95.26 198 | 97.49 251 | 93.94 198 | 98.25 89 | 97.85 147 | 72.96 337 | 99.84 26 | 97.90 22 | 99.78 37 | 99.14 134 |
|
DU-MVS | | | 97.79 69 | 97.60 76 | 98.36 62 | 98.73 111 | 95.78 80 | 95.65 175 | 98.87 82 | 97.57 60 | 98.31 84 | 97.83 149 | 94.69 144 | 99.85 23 | 97.02 54 | 99.71 50 | 99.46 61 |
|
NR-MVSNet | | | 97.96 47 | 97.86 48 | 98.26 70 | 98.73 111 | 95.54 92 | 98.14 41 | 98.73 122 | 97.79 45 | 99.42 16 | 97.83 149 | 94.40 157 | 99.78 41 | 95.91 89 | 99.76 38 | 99.46 61 |
|
CHOSEN 1792x2688 | | | 94.10 243 | 93.41 250 | 96.18 206 | 99.16 68 | 90.04 233 | 92.15 305 | 98.68 137 | 79.90 337 | 96.22 219 | 97.83 149 | 87.92 267 | 99.42 193 | 89.18 280 | 99.65 60 | 99.08 150 |
|
TAMVS | | | 95.49 184 | 94.94 197 | 97.16 149 | 98.31 157 | 93.41 173 | 95.07 211 | 96.82 274 | 91.09 255 | 97.51 146 | 97.82 152 | 89.96 243 | 99.42 193 | 88.42 291 | 99.44 124 | 98.64 210 |
|
UniMVSNet (Re) | | | 97.83 65 | 97.65 67 | 98.35 64 | 98.80 104 | 95.86 79 | 95.92 161 | 99.04 47 | 97.51 64 | 98.22 92 | 97.81 153 | 94.68 146 | 99.78 41 | 97.14 50 | 99.75 42 | 99.41 80 |
|
VNet | | | 96.84 125 | 96.83 124 | 96.88 165 | 98.06 188 | 92.02 203 | 96.35 132 | 97.57 250 | 97.70 55 | 97.88 131 | 97.80 154 | 92.40 206 | 99.54 162 | 94.73 153 | 98.96 209 | 99.08 150 |
|
YYNet1 | | | 94.73 216 | 94.84 204 | 94.41 275 | 97.47 252 | 85.09 311 | 90.29 332 | 95.85 291 | 92.52 235 | 97.53 144 | 97.76 155 | 91.97 215 | 99.18 250 | 93.31 200 | 96.86 305 | 98.95 167 |
|
MDA-MVSNet_test_wron | | | 94.73 216 | 94.83 206 | 94.42 274 | 97.48 248 | 85.15 309 | 90.28 333 | 95.87 290 | 92.52 235 | 97.48 151 | 97.76 155 | 91.92 219 | 99.17 254 | 93.32 199 | 96.80 308 | 98.94 169 |
|
TinyColmap | | | 96.00 168 | 96.34 150 | 94.96 251 | 97.90 204 | 87.91 268 | 94.13 254 | 98.49 161 | 94.41 180 | 98.16 98 | 97.76 155 | 96.29 94 | 98.68 306 | 90.52 259 | 99.42 134 | 98.30 239 |
|
Patchmatch-RL test | | | 94.66 224 | 94.49 222 | 95.19 243 | 98.54 137 | 88.91 249 | 92.57 297 | 98.74 120 | 91.46 252 | 98.32 82 | 97.75 158 | 77.31 317 | 98.81 292 | 96.06 77 | 99.61 69 | 97.85 272 |
|
MP-MVS | | | 97.64 77 | 97.18 104 | 99.00 12 | 99.32 45 | 97.77 17 | 97.49 78 | 98.73 122 | 96.27 100 | 95.59 243 | 97.75 158 | 96.30 93 | 99.78 41 | 93.70 194 | 99.48 114 | 99.45 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMP | | 92.54 13 | 97.47 91 | 97.10 108 | 98.55 51 | 99.04 89 | 96.70 51 | 96.24 139 | 98.89 75 | 93.71 203 | 97.97 122 | 97.75 158 | 97.44 30 | 99.63 131 | 93.22 204 | 99.70 53 | 99.32 96 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
MVP-Stereo | | | 95.69 176 | 95.28 186 | 96.92 162 | 98.15 181 | 93.03 182 | 95.64 177 | 98.20 196 | 90.39 261 | 96.63 198 | 97.73 161 | 91.63 223 | 99.10 263 | 91.84 223 | 97.31 300 | 98.63 212 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
mPP-MVS | | | 97.91 59 | 97.53 81 | 99.04 7 | 99.22 57 | 97.87 14 | 97.74 62 | 98.78 113 | 96.04 112 | 97.10 169 | 97.73 161 | 96.53 79 | 99.78 41 | 95.16 129 | 99.50 106 | 99.46 61 |
|
RRT_test8_iter05 | | | 92.46 274 | 92.52 270 | 92.29 313 | 95.33 322 | 77.43 343 | 95.73 167 | 98.55 155 | 94.41 180 | 97.46 154 | 97.72 163 | 57.44 356 | 99.74 67 | 96.92 56 | 99.14 186 | 99.69 21 |
|
MVS_0304 | | | 95.50 183 | 95.05 195 | 96.84 168 | 96.28 294 | 93.12 180 | 97.00 103 | 96.16 283 | 95.03 160 | 89.22 339 | 97.70 164 | 90.16 242 | 99.48 177 | 94.51 160 | 99.34 156 | 97.93 269 |
|
XVG-OURS | | | 97.12 111 | 96.74 129 | 98.26 70 | 98.99 92 | 97.45 32 | 93.82 266 | 99.05 41 | 95.19 152 | 98.32 82 | 97.70 164 | 95.22 132 | 98.41 322 | 94.27 171 | 98.13 265 | 98.93 173 |
|
UniMVSNet_NR-MVSNet | | | 97.83 65 | 97.65 67 | 98.37 61 | 98.72 113 | 95.78 80 | 95.66 173 | 99.02 50 | 98.11 39 | 98.31 84 | 97.69 166 | 94.65 148 | 99.85 23 | 97.02 54 | 99.71 50 | 99.48 56 |
|
D2MVS | | | 95.18 199 | 95.17 189 | 95.21 242 | 97.76 229 | 87.76 274 | 94.15 251 | 97.94 222 | 89.77 268 | 96.99 179 | 97.68 167 | 87.45 270 | 99.14 256 | 95.03 140 | 99.81 30 | 98.74 201 |
|
XVS | | | 97.96 47 | 97.63 72 | 98.94 18 | 99.15 71 | 97.66 19 | 97.77 58 | 98.83 99 | 97.42 67 | 96.32 212 | 97.64 168 | 96.49 82 | 99.72 77 | 95.66 96 | 99.37 145 | 99.45 66 |
|
ACMMPR | | | 97.95 50 | 97.62 74 | 98.94 18 | 99.20 64 | 97.56 25 | 97.59 70 | 98.83 99 | 96.05 110 | 97.46 154 | 97.63 169 | 96.77 67 | 99.76 53 | 95.61 100 | 99.46 119 | 99.49 51 |
|
Anonymous20231206 | | | 95.27 196 | 95.06 194 | 95.88 219 | 98.72 113 | 89.37 242 | 95.70 169 | 97.85 227 | 88.00 286 | 96.98 181 | 97.62 170 | 91.95 216 | 99.34 222 | 89.21 279 | 99.53 94 | 98.94 169 |
|
region2R | | | 97.92 56 | 97.59 77 | 98.92 22 | 99.22 57 | 97.55 26 | 97.60 69 | 98.84 92 | 96.00 115 | 97.22 161 | 97.62 170 | 96.87 63 | 99.76 53 | 95.48 107 | 99.43 131 | 99.46 61 |
|
ppachtmachnet_test | | | 94.49 231 | 94.84 204 | 93.46 290 | 96.16 301 | 82.10 329 | 90.59 329 | 97.48 253 | 90.53 260 | 97.01 178 | 97.59 172 | 91.01 228 | 99.36 217 | 93.97 186 | 99.18 183 | 98.94 169 |
|
APD-MVS | | | 97.00 113 | 96.53 142 | 98.41 58 | 98.55 136 | 96.31 65 | 96.32 134 | 98.77 114 | 92.96 231 | 97.44 156 | 97.58 173 | 95.84 103 | 99.74 67 | 91.96 218 | 99.35 153 | 99.19 124 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
HFP-MVS | | | 97.94 52 | 97.64 70 | 98.83 26 | 99.15 71 | 97.50 28 | 97.59 70 | 98.84 92 | 96.05 110 | 97.49 148 | 97.54 174 | 97.07 48 | 99.70 101 | 95.61 100 | 99.46 119 | 99.30 102 |
|
#test# | | | 97.62 79 | 97.22 102 | 98.83 26 | 99.15 71 | 97.50 28 | 96.81 109 | 98.84 92 | 94.25 187 | 97.49 148 | 97.54 174 | 97.07 48 | 99.70 101 | 94.37 166 | 99.46 119 | 99.30 102 |
|
UnsupCasMVSNet_eth | | | 95.91 170 | 95.73 175 | 96.44 192 | 98.48 145 | 91.52 213 | 95.31 194 | 98.45 164 | 95.76 130 | 97.48 151 | 97.54 174 | 89.53 249 | 98.69 303 | 94.43 162 | 94.61 331 | 99.13 137 |
|
XVG-OURS-SEG-HR | | | 97.38 98 | 97.07 111 | 98.30 68 | 99.01 91 | 97.41 34 | 94.66 231 | 99.02 50 | 95.20 151 | 98.15 100 | 97.52 177 | 98.83 5 | 98.43 321 | 94.87 144 | 96.41 315 | 99.07 152 |
|
MG-MVS | | | 94.08 245 | 94.00 239 | 94.32 277 | 97.09 274 | 85.89 299 | 93.19 287 | 95.96 288 | 92.52 235 | 94.93 256 | 97.51 178 | 89.54 247 | 98.77 295 | 87.52 304 | 97.71 282 | 98.31 237 |
|
Regformer-1 | | | 97.27 105 | 97.16 105 | 97.61 114 | 97.21 269 | 93.86 156 | 94.85 224 | 98.04 220 | 97.62 59 | 98.03 116 | 97.50 179 | 95.34 127 | 99.63 131 | 96.52 64 | 99.31 167 | 99.35 93 |
|
Regformer-2 | | | 97.41 96 | 97.24 100 | 97.93 94 | 97.21 269 | 94.72 123 | 94.85 224 | 98.27 187 | 97.74 50 | 98.11 104 | 97.50 179 | 95.58 119 | 99.69 109 | 96.57 63 | 99.31 167 | 99.37 91 |
|
HPM-MVS | | | 98.11 39 | 97.83 51 | 98.92 22 | 99.42 35 | 97.46 31 | 98.57 16 | 99.05 41 | 95.43 144 | 97.41 157 | 97.50 179 | 97.98 16 | 99.79 39 | 95.58 103 | 99.57 79 | 99.50 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
9.14 | | | | 96.69 131 | | 98.53 138 | | 96.02 151 | 98.98 64 | 93.23 216 | 97.18 163 | 97.46 182 | 96.47 84 | 99.62 139 | 92.99 208 | 99.32 165 | |
|
CP-MVS | | | 97.92 56 | 97.56 80 | 98.99 13 | 98.99 92 | 97.82 15 | 97.93 51 | 98.96 68 | 96.11 107 | 96.89 187 | 97.45 183 | 96.85 64 | 99.78 41 | 95.19 125 | 99.63 62 | 99.38 86 |
|
ZNCC-MVS | | | 97.92 56 | 97.62 74 | 98.83 26 | 99.32 45 | 97.24 39 | 97.45 79 | 98.84 92 | 95.76 130 | 96.93 184 | 97.43 184 | 97.26 40 | 99.79 39 | 96.06 77 | 99.53 94 | 99.45 66 |
|
N_pmnet | | | 95.18 199 | 94.23 230 | 98.06 85 | 97.85 206 | 96.55 58 | 92.49 299 | 91.63 329 | 89.34 270 | 98.09 108 | 97.41 185 | 90.33 236 | 99.06 267 | 91.58 228 | 99.31 167 | 98.56 218 |
|
GST-MVS | | | 97.82 67 | 97.49 85 | 98.81 29 | 99.23 54 | 97.25 38 | 97.16 93 | 98.79 109 | 95.96 117 | 97.53 144 | 97.40 186 | 96.93 57 | 99.77 49 | 95.04 138 | 99.35 153 | 99.42 78 |
|
tpm | | | 91.08 294 | 90.85 292 | 91.75 315 | 95.33 322 | 78.09 339 | 95.03 216 | 91.27 332 | 88.75 277 | 93.53 296 | 97.40 186 | 71.24 340 | 99.30 232 | 91.25 235 | 93.87 334 | 97.87 271 |
|
MDTV_nov1_ep13 | | | | 91.28 284 | | 94.31 332 | 73.51 352 | 94.80 226 | 93.16 315 | 86.75 297 | 93.45 300 | 97.40 186 | 76.37 321 | 98.55 315 | 88.85 284 | 96.43 314 | |
|
DeepPCF-MVS | | 94.58 5 | 96.90 122 | 96.43 147 | 98.31 67 | 97.48 248 | 97.23 40 | 92.56 298 | 98.60 150 | 92.84 233 | 98.54 58 | 97.40 186 | 96.64 73 | 98.78 294 | 94.40 165 | 99.41 140 | 98.93 173 |
|
MSLP-MVS++ | | | 96.42 153 | 96.71 130 | 95.57 228 | 97.82 213 | 90.56 230 | 95.71 168 | 98.84 92 | 94.72 170 | 96.71 194 | 97.39 190 | 94.91 141 | 98.10 336 | 95.28 120 | 99.02 205 | 98.05 262 |
|
EPNet | | | 93.72 251 | 92.62 268 | 97.03 158 | 87.61 357 | 92.25 194 | 96.27 135 | 91.28 331 | 96.74 85 | 87.65 345 | 97.39 190 | 85.00 284 | 99.64 129 | 92.14 217 | 99.48 114 | 99.20 123 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PMMVS2 | | | 93.66 254 | 94.07 236 | 92.45 310 | 97.57 243 | 80.67 334 | 86.46 345 | 96.00 286 | 93.99 196 | 97.10 169 | 97.38 192 | 89.90 244 | 97.82 338 | 88.76 285 | 99.47 116 | 98.86 188 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 133 | 96.51 144 | 97.44 134 | 97.69 234 | 94.15 146 | 96.02 151 | 98.43 167 | 93.17 222 | 97.30 159 | 97.38 192 | 95.48 122 | 99.28 238 | 93.74 192 | 99.34 156 | 98.88 185 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
miper_lstm_enhance | | | 94.81 214 | 94.80 207 | 94.85 257 | 96.16 301 | 86.45 293 | 91.14 324 | 98.20 196 | 93.49 207 | 97.03 176 | 97.37 194 | 84.97 285 | 99.26 241 | 95.28 120 | 99.56 82 | 98.83 190 |
|
OPU-MVS | | | | | 97.64 112 | 98.01 192 | 95.27 104 | 96.79 110 | | | | 97.35 195 | 96.97 54 | 98.51 318 | 91.21 236 | 99.25 176 | 99.14 134 |
|
cl-mvsnet1 | | | 94.73 216 | 94.64 212 | 95.01 249 | 95.86 308 | 87.00 286 | 91.33 318 | 98.08 213 | 93.34 212 | 97.10 169 | 97.34 196 | 84.02 289 | 99.31 229 | 95.15 131 | 99.55 88 | 98.72 204 |
|
cl-mvsnet_ | | | 94.73 216 | 94.64 212 | 95.01 249 | 95.85 309 | 87.00 286 | 91.33 318 | 98.08 213 | 93.34 212 | 97.10 169 | 97.33 197 | 84.01 290 | 99.30 232 | 95.14 132 | 99.56 82 | 98.71 206 |
|
WR-MVS | | | 96.90 122 | 96.81 125 | 97.16 149 | 98.56 135 | 92.20 198 | 94.33 240 | 98.12 209 | 97.34 72 | 98.20 93 | 97.33 197 | 92.81 191 | 99.75 60 | 94.79 148 | 99.81 30 | 99.54 36 |
|
ETH3D-3000-0.1 | | | 96.89 124 | 96.46 146 | 98.16 76 | 98.62 127 | 95.69 84 | 95.96 157 | 98.98 64 | 93.36 211 | 97.04 175 | 97.31 199 | 94.93 140 | 99.63 131 | 92.60 211 | 99.34 156 | 99.17 127 |
|
ITE_SJBPF | | | | | 97.85 99 | 98.64 122 | 96.66 53 | | 98.51 160 | 95.63 134 | 97.22 161 | 97.30 200 | 95.52 120 | 98.55 315 | 90.97 240 | 98.90 218 | 98.34 235 |
|
Vis-MVSNet (Re-imp) | | | 95.11 202 | 94.85 203 | 95.87 220 | 99.12 80 | 89.17 245 | 97.54 77 | 94.92 300 | 96.50 92 | 96.58 199 | 97.27 201 | 83.64 291 | 99.48 177 | 88.42 291 | 99.67 57 | 98.97 165 |
|
cl_fuxian | | | 95.20 198 | 95.32 185 | 94.83 259 | 96.19 299 | 86.43 294 | 91.83 311 | 98.35 182 | 93.47 208 | 97.36 158 | 97.26 202 | 88.69 256 | 99.28 238 | 95.41 117 | 99.36 148 | 98.78 196 |
|
eth_miper_zixun_eth | | | 94.89 210 | 94.93 199 | 94.75 262 | 95.99 306 | 86.12 297 | 91.35 317 | 98.49 161 | 93.40 209 | 97.12 167 | 97.25 203 | 86.87 275 | 99.35 220 | 95.08 137 | 98.82 229 | 98.78 196 |
|
pmmvs4 | | | 94.82 213 | 94.19 233 | 96.70 176 | 97.42 255 | 92.75 187 | 92.09 308 | 96.76 275 | 86.80 296 | 95.73 240 | 97.22 204 | 89.28 253 | 98.89 285 | 93.28 201 | 99.14 186 | 98.46 225 |
|
OMC-MVS | | | 96.48 149 | 96.00 164 | 97.91 95 | 98.30 158 | 96.01 76 | 94.86 223 | 98.60 150 | 91.88 246 | 97.18 163 | 97.21 205 | 96.11 96 | 99.04 269 | 90.49 262 | 99.34 156 | 98.69 207 |
|
pmmvs5 | | | 94.63 226 | 94.34 228 | 95.50 232 | 97.63 241 | 88.34 260 | 94.02 257 | 97.13 263 | 87.15 292 | 95.22 250 | 97.15 206 | 87.50 269 | 99.27 240 | 93.99 184 | 99.26 175 | 98.88 185 |
|
testtj | | | 96.69 139 | 96.13 157 | 98.36 62 | 98.46 149 | 96.02 75 | 96.44 125 | 98.70 132 | 94.26 186 | 96.79 189 | 97.13 207 | 94.07 165 | 99.75 60 | 90.53 258 | 98.80 230 | 99.31 101 |
|
our_test_3 | | | 94.20 241 | 94.58 219 | 93.07 298 | 96.16 301 | 81.20 332 | 90.42 331 | 96.84 272 | 90.72 258 | 97.14 165 | 97.13 207 | 90.47 234 | 99.11 261 | 94.04 183 | 98.25 261 | 98.91 178 |
|
CPTT-MVS | | | 96.69 139 | 96.08 161 | 98.49 53 | 98.89 99 | 96.64 54 | 97.25 89 | 98.77 114 | 92.89 232 | 96.01 228 | 97.13 207 | 92.23 208 | 99.67 120 | 92.24 216 | 99.34 156 | 99.17 127 |
|
MS-PatchMatch | | | 94.83 212 | 94.91 201 | 94.57 270 | 96.81 284 | 87.10 285 | 94.23 246 | 97.34 256 | 88.74 278 | 97.14 165 | 97.11 210 | 91.94 217 | 98.23 332 | 92.99 208 | 97.92 272 | 98.37 229 |
|
FPMVS | | | 89.92 305 | 88.63 312 | 93.82 283 | 98.37 154 | 96.94 45 | 91.58 313 | 93.34 314 | 88.00 286 | 90.32 332 | 97.10 211 | 70.87 343 | 91.13 352 | 71.91 349 | 96.16 319 | 93.39 341 |
|
ETH3D cwj APD-0.16 | | | 96.23 157 | 95.61 179 | 98.09 82 | 97.91 202 | 95.65 89 | 94.94 219 | 98.74 120 | 91.31 253 | 96.02 227 | 97.08 212 | 94.05 166 | 99.69 109 | 91.51 229 | 98.94 213 | 98.93 173 |
|
ZD-MVS | | | | | | 98.43 150 | 95.94 77 | | 98.56 154 | 90.72 258 | 96.66 196 | 97.07 213 | 95.02 137 | 99.74 67 | 91.08 237 | 98.93 215 | |
|
DELS-MVS | | | 96.17 160 | 96.23 153 | 95.99 211 | 97.55 246 | 90.04 233 | 92.38 303 | 98.52 158 | 94.13 192 | 96.55 203 | 97.06 214 | 94.99 138 | 99.58 149 | 95.62 99 | 99.28 172 | 98.37 229 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CNVR-MVS | | | 96.92 120 | 96.55 139 | 98.03 89 | 98.00 196 | 95.54 92 | 94.87 222 | 98.17 202 | 94.60 174 | 96.38 209 | 97.05 215 | 95.67 116 | 99.36 217 | 95.12 135 | 99.08 198 | 99.19 124 |
|
旧先验1 | | | | | | 97.80 218 | 93.87 155 | | 97.75 234 | | | 97.04 216 | 93.57 177 | | | 98.68 240 | 98.72 204 |
|
testdata | | | | | 95.70 225 | 98.16 179 | 90.58 228 | | 97.72 236 | 80.38 335 | 95.62 242 | 97.02 217 | 92.06 214 | 98.98 277 | 89.06 283 | 98.52 251 | 97.54 285 |
|
PatchmatchNet | | | 91.98 284 | 91.87 276 | 92.30 312 | 94.60 330 | 79.71 336 | 95.12 205 | 93.59 312 | 89.52 269 | 93.61 292 | 97.02 217 | 77.94 310 | 99.18 250 | 90.84 244 | 94.57 333 | 98.01 266 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
SCA | | | 93.38 261 | 93.52 248 | 92.96 303 | 96.24 295 | 81.40 331 | 93.24 285 | 94.00 307 | 91.58 251 | 94.57 262 | 96.97 219 | 87.94 263 | 99.42 193 | 89.47 276 | 97.66 287 | 98.06 259 |
|
Patchmatch-test | | | 93.60 256 | 93.25 253 | 94.63 265 | 96.14 304 | 87.47 278 | 96.04 149 | 94.50 304 | 93.57 205 | 96.47 205 | 96.97 219 | 76.50 320 | 98.61 309 | 90.67 254 | 98.41 256 | 97.81 276 |
|
CostFormer | | | 89.75 306 | 89.25 305 | 91.26 319 | 94.69 329 | 78.00 341 | 95.32 193 | 91.98 326 | 81.50 330 | 90.55 330 | 96.96 221 | 71.06 342 | 98.89 285 | 88.59 289 | 92.63 338 | 96.87 304 |
|
diffmvs | | | 96.04 165 | 96.23 153 | 95.46 235 | 97.35 258 | 88.03 267 | 93.42 278 | 99.08 35 | 94.09 194 | 96.66 196 | 96.93 222 | 93.85 170 | 99.29 236 | 96.01 84 | 98.67 241 | 99.06 154 |
|
114514_t | | | 93.96 247 | 93.22 254 | 96.19 205 | 99.06 86 | 90.97 220 | 95.99 154 | 98.94 71 | 73.88 350 | 93.43 301 | 96.93 222 | 92.38 207 | 99.37 215 | 89.09 281 | 99.28 172 | 98.25 244 |
|
Test_1112_low_res | | | 93.53 258 | 92.86 259 | 95.54 231 | 98.60 130 | 88.86 251 | 92.75 293 | 98.69 135 | 82.66 326 | 92.65 315 | 96.92 224 | 84.75 286 | 99.56 156 | 90.94 241 | 97.76 278 | 98.19 249 |
|
tpmrst | | | 90.31 299 | 90.61 297 | 89.41 327 | 94.06 338 | 72.37 354 | 95.06 213 | 93.69 308 | 88.01 285 | 92.32 320 | 96.86 225 | 77.45 314 | 98.82 290 | 91.04 238 | 87.01 348 | 97.04 298 |
|
PHI-MVS | | | 96.96 118 | 96.53 142 | 98.25 72 | 97.48 248 | 96.50 59 | 96.76 112 | 98.85 88 | 93.52 206 | 96.19 221 | 96.85 226 | 95.94 100 | 99.42 193 | 93.79 191 | 99.43 131 | 98.83 190 |
|
tttt0517 | | | 93.31 262 | 92.56 269 | 95.57 228 | 98.71 116 | 87.86 269 | 97.44 80 | 87.17 348 | 95.79 129 | 97.47 153 | 96.84 227 | 64.12 351 | 99.81 32 | 96.20 73 | 99.32 165 | 99.02 160 |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 227 | 77.36 316 | 99.42 193 | | | |
|
ADS-MVSNet2 | | | 91.47 290 | 90.51 298 | 94.36 276 | 95.51 317 | 85.63 300 | 95.05 214 | 95.70 292 | 83.46 323 | 92.69 313 | 96.84 227 | 79.15 306 | 99.41 202 | 85.66 317 | 90.52 341 | 98.04 263 |
|
ADS-MVSNet | | | 90.95 296 | 90.26 300 | 93.04 299 | 95.51 317 | 82.37 328 | 95.05 214 | 93.41 313 | 83.46 323 | 92.69 313 | 96.84 227 | 79.15 306 | 98.70 302 | 85.66 317 | 90.52 341 | 98.04 263 |
|
HY-MVS | | 91.43 15 | 92.58 272 | 91.81 278 | 94.90 254 | 96.49 289 | 88.87 250 | 97.31 86 | 94.62 302 | 85.92 302 | 90.50 331 | 96.84 227 | 85.05 283 | 99.40 204 | 83.77 330 | 95.78 323 | 96.43 318 |
|
UnsupCasMVSNet_bld | | | 94.72 220 | 94.26 229 | 96.08 209 | 98.62 127 | 90.54 231 | 93.38 281 | 98.05 219 | 90.30 262 | 97.02 177 | 96.80 232 | 89.54 247 | 99.16 255 | 88.44 290 | 96.18 318 | 98.56 218 |
|
HQP_MVS | | | 96.66 142 | 96.33 151 | 97.68 110 | 98.70 118 | 94.29 139 | 96.50 123 | 98.75 118 | 96.36 97 | 96.16 222 | 96.77 233 | 91.91 220 | 99.46 183 | 92.59 213 | 99.20 179 | 99.28 109 |
|
plane_prior4 | | | | | | | | | | | | 96.77 233 | | | | | |
|
MVS_111021_HR | | | 96.73 135 | 96.54 141 | 97.27 145 | 98.35 156 | 93.66 167 | 93.42 278 | 98.36 178 | 94.74 169 | 96.58 199 | 96.76 235 | 96.54 78 | 98.99 275 | 94.87 144 | 99.27 174 | 99.15 131 |
|
CANet | | | 95.86 173 | 95.65 177 | 96.49 190 | 96.41 291 | 90.82 223 | 94.36 239 | 98.41 172 | 94.94 163 | 92.62 317 | 96.73 236 | 92.68 195 | 99.71 92 | 95.12 135 | 99.60 72 | 98.94 169 |
|
1121 | | | 94.26 235 | 93.26 252 | 97.27 145 | 98.26 165 | 94.73 122 | 95.86 162 | 97.71 237 | 77.96 344 | 94.53 264 | 96.71 237 | 91.93 218 | 99.40 204 | 87.71 297 | 98.64 245 | 97.69 280 |
|
TSAR-MVS + GP. | | | 96.47 150 | 96.12 158 | 97.49 127 | 97.74 231 | 95.23 106 | 94.15 251 | 96.90 271 | 93.26 215 | 98.04 115 | 96.70 238 | 94.41 156 | 98.89 285 | 94.77 151 | 99.14 186 | 98.37 229 |
|
test222 | | | | | | 98.17 177 | 93.24 177 | 92.74 295 | 97.61 249 | 75.17 348 | 94.65 261 | 96.69 239 | 90.96 230 | | | 98.66 243 | 97.66 281 |
|
新几何1 | | | | | 97.25 148 | 98.29 159 | 94.70 127 | | 97.73 235 | 77.98 343 | 94.83 257 | 96.67 240 | 92.08 213 | 99.45 187 | 88.17 295 | 98.65 244 | 97.61 283 |
|
miper_ehance_all_eth | | | 94.69 221 | 94.70 209 | 94.64 264 | 95.77 312 | 86.22 296 | 91.32 320 | 98.24 191 | 91.67 248 | 97.05 174 | 96.65 241 | 88.39 260 | 99.22 248 | 94.88 143 | 98.34 257 | 98.49 222 |
|
MVS_111021_LR | | | 96.82 129 | 96.55 139 | 97.62 113 | 98.27 163 | 95.34 103 | 93.81 268 | 98.33 183 | 94.59 176 | 96.56 201 | 96.63 242 | 96.61 74 | 98.73 299 | 94.80 147 | 99.34 156 | 98.78 196 |
|
CDPH-MVS | | | 95.45 189 | 94.65 211 | 97.84 100 | 98.28 161 | 94.96 116 | 93.73 270 | 98.33 183 | 85.03 315 | 95.44 245 | 96.60 243 | 95.31 129 | 99.44 190 | 90.01 268 | 99.13 190 | 99.11 145 |
|
CMPMVS | | 73.10 23 | 92.74 270 | 91.39 282 | 96.77 172 | 93.57 343 | 94.67 128 | 94.21 248 | 97.67 239 | 80.36 336 | 93.61 292 | 96.60 243 | 82.85 293 | 97.35 342 | 84.86 323 | 98.78 232 | 98.29 241 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
CDS-MVSNet | | | 94.88 211 | 94.12 235 | 97.14 151 | 97.64 240 | 93.57 169 | 93.96 262 | 97.06 266 | 90.05 265 | 96.30 215 | 96.55 245 | 86.10 277 | 99.47 180 | 90.10 267 | 99.31 167 | 98.40 226 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
LF4IMVS | | | 96.07 163 | 95.63 178 | 97.36 141 | 98.19 172 | 95.55 91 | 95.44 181 | 98.82 107 | 92.29 240 | 95.70 241 | 96.55 245 | 92.63 198 | 98.69 303 | 91.75 226 | 99.33 163 | 97.85 272 |
|
HPM-MVS++ | | | 96.99 114 | 96.38 148 | 98.81 29 | 98.64 122 | 97.59 23 | 95.97 156 | 98.20 196 | 95.51 140 | 95.06 252 | 96.53 247 | 94.10 164 | 99.70 101 | 94.29 170 | 99.15 185 | 99.13 137 |
|
EPMVS | | | 89.26 309 | 88.55 313 | 91.39 317 | 92.36 352 | 79.11 337 | 95.65 175 | 79.86 353 | 88.60 279 | 93.12 306 | 96.53 247 | 70.73 344 | 98.10 336 | 90.75 248 | 89.32 345 | 96.98 299 |
|
HyFIR lowres test | | | 93.72 251 | 92.65 266 | 96.91 164 | 98.93 95 | 91.81 209 | 91.23 322 | 98.52 158 | 82.69 325 | 96.46 206 | 96.52 249 | 80.38 302 | 99.90 14 | 90.36 264 | 98.79 231 | 99.03 158 |
|
BH-RMVSNet | | | 94.56 229 | 94.44 226 | 94.91 252 | 97.57 243 | 87.44 279 | 93.78 269 | 96.26 282 | 93.69 204 | 96.41 208 | 96.50 250 | 92.10 212 | 99.00 273 | 85.96 313 | 97.71 282 | 98.31 237 |
|
MSP-MVS | | | 97.45 92 | 96.92 120 | 99.03 8 | 99.26 48 | 97.70 18 | 97.66 65 | 98.89 75 | 95.65 133 | 98.51 60 | 96.46 251 | 92.15 209 | 99.81 32 | 95.14 132 | 98.58 250 | 99.58 28 |
|
原ACMM1 | | | | | 96.58 184 | 98.16 179 | 92.12 200 | | 98.15 205 | 85.90 303 | 93.49 297 | 96.43 252 | 92.47 205 | 99.38 212 | 87.66 300 | 98.62 246 | 98.23 245 |
|
tpm2 | | | 88.47 312 | 87.69 316 | 90.79 321 | 94.98 326 | 77.34 344 | 95.09 208 | 91.83 327 | 77.51 346 | 89.40 337 | 96.41 253 | 67.83 348 | 98.73 299 | 83.58 332 | 92.60 339 | 96.29 320 |
|
OpenMVS_ROB | | 91.80 14 | 93.64 255 | 93.05 255 | 95.42 236 | 97.31 266 | 91.21 216 | 95.08 210 | 96.68 279 | 81.56 329 | 96.88 188 | 96.41 253 | 90.44 235 | 99.25 243 | 85.39 320 | 97.67 286 | 95.80 325 |
|
F-COLMAP | | | 95.30 195 | 94.38 227 | 98.05 88 | 98.64 122 | 96.04 73 | 95.61 178 | 98.66 142 | 89.00 274 | 93.22 305 | 96.40 255 | 92.90 190 | 99.35 220 | 87.45 305 | 97.53 292 | 98.77 199 |
|
NCCC | | | 96.52 147 | 95.99 165 | 98.10 81 | 97.81 214 | 95.68 86 | 95.00 217 | 98.20 196 | 95.39 145 | 95.40 247 | 96.36 256 | 93.81 171 | 99.45 187 | 93.55 197 | 98.42 255 | 99.17 127 |
|
new_pmnet | | | 92.34 277 | 91.69 280 | 94.32 277 | 96.23 297 | 89.16 246 | 92.27 304 | 92.88 318 | 84.39 322 | 95.29 248 | 96.35 257 | 85.66 280 | 96.74 347 | 84.53 325 | 97.56 290 | 97.05 297 |
|
cl-mvsnet2 | | | 93.25 264 | 92.84 261 | 94.46 273 | 94.30 333 | 86.00 298 | 91.09 325 | 96.64 280 | 90.74 257 | 95.79 235 | 96.31 258 | 78.24 309 | 98.77 295 | 94.15 176 | 98.34 257 | 98.62 213 |
|
tpmvs | | | 90.79 297 | 90.87 291 | 90.57 323 | 92.75 351 | 76.30 346 | 95.79 166 | 93.64 311 | 91.04 256 | 91.91 323 | 96.26 259 | 77.19 318 | 98.86 289 | 89.38 278 | 89.85 344 | 96.56 316 |
|
test_prior3 | | | 95.91 170 | 95.39 184 | 97.46 131 | 97.79 223 | 94.26 143 | 93.33 283 | 98.42 170 | 94.21 188 | 94.02 278 | 96.25 260 | 93.64 175 | 99.34 222 | 91.90 219 | 98.96 209 | 98.79 194 |
|
test_prior2 | | | | | | | | 93.33 283 | | 94.21 188 | 94.02 278 | 96.25 260 | 93.64 175 | | 91.90 219 | 98.96 209 | |
|
testgi | | | 96.07 163 | 96.50 145 | 94.80 260 | 99.26 48 | 87.69 275 | 95.96 157 | 98.58 153 | 95.08 157 | 98.02 117 | 96.25 260 | 97.92 17 | 97.60 341 | 88.68 288 | 98.74 236 | 99.11 145 |
|
DP-MVS Recon | | | 95.55 182 | 95.13 190 | 96.80 170 | 98.51 140 | 93.99 152 | 94.60 233 | 98.69 135 | 90.20 263 | 95.78 237 | 96.21 263 | 92.73 194 | 98.98 277 | 90.58 257 | 98.86 224 | 97.42 289 |
|
MVSFormer | | | 96.14 161 | 96.36 149 | 95.49 233 | 97.68 235 | 87.81 272 | 98.67 12 | 99.02 50 | 96.50 92 | 94.48 267 | 96.15 264 | 86.90 273 | 99.92 4 | 98.73 8 | 99.13 190 | 98.74 201 |
|
jason | | | 94.39 234 | 94.04 238 | 95.41 238 | 98.29 159 | 87.85 271 | 92.74 295 | 96.75 276 | 85.38 312 | 95.29 248 | 96.15 264 | 88.21 262 | 99.65 126 | 94.24 172 | 99.34 156 | 98.74 201 |
jason: jason. |
test_yl | | | 94.40 232 | 94.00 239 | 95.59 226 | 96.95 278 | 89.52 239 | 94.75 229 | 95.55 296 | 96.18 105 | 96.79 189 | 96.14 266 | 81.09 298 | 99.18 250 | 90.75 248 | 97.77 276 | 98.07 255 |
|
DCV-MVSNet | | | 94.40 232 | 94.00 239 | 95.59 226 | 96.95 278 | 89.52 239 | 94.75 229 | 95.55 296 | 96.18 105 | 96.79 189 | 96.14 266 | 81.09 298 | 99.18 250 | 90.75 248 | 97.77 276 | 98.07 255 |
|
dp | | | 88.08 315 | 88.05 315 | 88.16 333 | 92.85 349 | 68.81 356 | 94.17 249 | 92.88 318 | 85.47 308 | 91.38 326 | 96.14 266 | 68.87 347 | 98.81 292 | 86.88 308 | 83.80 351 | 96.87 304 |
|
MCST-MVS | | | 96.24 156 | 95.80 172 | 97.56 116 | 98.75 110 | 94.13 147 | 94.66 231 | 98.17 202 | 90.17 264 | 96.21 220 | 96.10 269 | 95.14 133 | 99.43 192 | 94.13 177 | 98.85 226 | 99.13 137 |
|
TEST9 | | | | | | 97.84 211 | 95.23 106 | 93.62 272 | 98.39 174 | 86.81 295 | 93.78 283 | 95.99 270 | 94.68 146 | 99.52 168 | | | |
|
train_agg | | | 95.46 188 | 94.66 210 | 97.88 97 | 97.84 211 | 95.23 106 | 93.62 272 | 98.39 174 | 87.04 293 | 93.78 283 | 95.99 270 | 94.58 151 | 99.52 168 | 91.76 225 | 98.90 218 | 98.89 182 |
|
MSDG | | | 95.33 193 | 95.13 190 | 95.94 217 | 97.40 256 | 91.85 207 | 91.02 326 | 98.37 177 | 95.30 148 | 96.31 214 | 95.99 270 | 94.51 154 | 98.38 325 | 89.59 274 | 97.65 288 | 97.60 284 |
|
agg_prior1 | | | 95.39 191 | 94.60 216 | 97.75 103 | 97.80 218 | 94.96 116 | 93.39 280 | 98.36 178 | 87.20 291 | 93.49 297 | 95.97 273 | 94.65 148 | 99.53 164 | 91.69 227 | 98.86 224 | 98.77 199 |
|
test_8 | | | | | | 97.81 214 | 95.07 114 | 93.54 275 | 98.38 176 | 87.04 293 | 93.71 287 | 95.96 274 | 94.58 151 | 99.52 168 | | | |
|
CSCG | | | 97.40 97 | 97.30 94 | 97.69 109 | 98.95 94 | 94.83 119 | 97.28 88 | 98.99 61 | 96.35 99 | 98.13 103 | 95.95 275 | 95.99 99 | 99.66 125 | 94.36 169 | 99.73 44 | 98.59 216 |
|
TAPA-MVS | | 93.32 12 | 94.93 208 | 94.23 230 | 97.04 157 | 98.18 175 | 94.51 131 | 95.22 202 | 98.73 122 | 81.22 332 | 96.25 218 | 95.95 275 | 93.80 172 | 98.98 277 | 89.89 270 | 98.87 222 | 97.62 282 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ETH3 D test6400 | | | 94.77 215 | 93.87 243 | 97.47 129 | 98.12 186 | 93.73 162 | 94.56 235 | 98.70 132 | 85.45 310 | 94.70 260 | 95.93 277 | 91.77 222 | 99.63 131 | 86.45 311 | 99.14 186 | 99.05 156 |
|
baseline1 | | | 93.14 266 | 92.64 267 | 94.62 266 | 97.34 262 | 87.20 284 | 96.67 120 | 93.02 316 | 94.71 171 | 96.51 204 | 95.83 278 | 81.64 295 | 98.60 311 | 90.00 269 | 88.06 346 | 98.07 255 |
|
sss | | | 94.22 237 | 93.72 245 | 95.74 222 | 97.71 233 | 89.95 235 | 93.84 265 | 96.98 268 | 88.38 282 | 93.75 286 | 95.74 279 | 87.94 263 | 98.89 285 | 91.02 239 | 98.10 266 | 98.37 229 |
|
CNLPA | | | 95.04 205 | 94.47 223 | 96.75 173 | 97.81 214 | 95.25 105 | 94.12 255 | 97.89 225 | 94.41 180 | 94.57 262 | 95.69 280 | 90.30 239 | 98.35 328 | 86.72 310 | 98.76 234 | 96.64 313 |
|
PCF-MVS | | 89.43 18 | 92.12 282 | 90.64 296 | 96.57 186 | 97.80 218 | 93.48 172 | 89.88 339 | 98.45 164 | 74.46 349 | 96.04 226 | 95.68 281 | 90.71 232 | 99.31 229 | 73.73 346 | 99.01 207 | 96.91 303 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-untuned | | | 94.69 221 | 94.75 208 | 94.52 272 | 97.95 201 | 87.53 277 | 94.07 256 | 97.01 267 | 93.99 196 | 97.10 169 | 95.65 282 | 92.65 197 | 98.95 282 | 87.60 301 | 96.74 309 | 97.09 295 |
|
CANet_DTU | | | 94.65 225 | 94.21 232 | 95.96 213 | 95.90 307 | 89.68 236 | 93.92 263 | 97.83 231 | 93.19 218 | 90.12 334 | 95.64 283 | 88.52 257 | 99.57 155 | 93.27 203 | 99.47 116 | 98.62 213 |
|
PatchMatch-RL | | | 94.61 227 | 93.81 244 | 97.02 159 | 98.19 172 | 95.72 82 | 93.66 271 | 97.23 258 | 88.17 284 | 94.94 255 | 95.62 284 | 91.43 224 | 98.57 312 | 87.36 306 | 97.68 285 | 96.76 310 |
|
tpm cat1 | | | 88.01 316 | 87.33 317 | 90.05 326 | 94.48 331 | 76.28 347 | 94.47 238 | 94.35 306 | 73.84 351 | 89.26 338 | 95.61 285 | 73.64 332 | 98.30 330 | 84.13 326 | 86.20 349 | 95.57 330 |
|
Effi-MVS+-dtu | | | 96.81 130 | 96.09 160 | 98.99 13 | 96.90 282 | 98.69 2 | 96.42 126 | 98.09 211 | 95.86 125 | 95.15 251 | 95.54 286 | 94.26 160 | 99.81 32 | 94.06 179 | 98.51 253 | 98.47 223 |
|
AdaColmap | | | 95.11 202 | 94.62 215 | 96.58 184 | 97.33 264 | 94.45 134 | 94.92 220 | 98.08 213 | 93.15 223 | 93.98 281 | 95.53 287 | 94.34 158 | 99.10 263 | 85.69 316 | 98.61 247 | 96.20 321 |
|
thisisatest0530 | | | 92.71 271 | 91.76 279 | 95.56 230 | 98.42 151 | 88.23 261 | 96.03 150 | 87.35 347 | 94.04 195 | 96.56 201 | 95.47 288 | 64.03 352 | 99.77 49 | 94.78 150 | 99.11 194 | 98.68 209 |
|
WTY-MVS | | | 93.55 257 | 93.00 257 | 95.19 243 | 97.81 214 | 87.86 269 | 93.89 264 | 96.00 286 | 89.02 273 | 94.07 276 | 95.44 289 | 86.27 276 | 99.33 225 | 87.69 299 | 96.82 306 | 98.39 228 |
|
PLC | | 91.02 16 | 94.05 246 | 92.90 258 | 97.51 121 | 98.00 196 | 95.12 113 | 94.25 244 | 98.25 190 | 86.17 299 | 91.48 325 | 95.25 290 | 91.01 228 | 99.19 249 | 85.02 322 | 96.69 310 | 98.22 246 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
pmmvs3 | | | 90.00 302 | 88.90 311 | 93.32 291 | 94.20 337 | 85.34 304 | 91.25 321 | 92.56 323 | 78.59 341 | 93.82 282 | 95.17 291 | 67.36 349 | 98.69 303 | 89.08 282 | 98.03 269 | 95.92 322 |
|
NP-MVS | | | | | | 98.14 182 | 93.72 163 | | | | | 95.08 292 | | | | | |
|
HQP-MVS | | | 95.17 201 | 94.58 219 | 96.92 162 | 97.85 206 | 92.47 190 | 94.26 241 | 98.43 167 | 93.18 219 | 92.86 310 | 95.08 292 | 90.33 236 | 99.23 246 | 90.51 260 | 98.74 236 | 99.05 156 |
|
cdsmvs_eth3d_5k | | | 24.22 324 | 32.30 327 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 98.10 210 | 0.00 357 | 0.00 358 | 95.06 294 | 97.54 29 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
lupinMVS | | | 93.77 249 | 93.28 251 | 95.24 241 | 97.68 235 | 87.81 272 | 92.12 306 | 96.05 285 | 84.52 319 | 94.48 267 | 95.06 294 | 86.90 273 | 99.63 131 | 93.62 196 | 99.13 190 | 98.27 242 |
|
1112_ss | | | 94.12 242 | 93.42 249 | 96.23 202 | 98.59 132 | 90.85 221 | 94.24 245 | 98.85 88 | 85.49 307 | 92.97 308 | 94.94 296 | 86.01 278 | 99.64 129 | 91.78 224 | 97.92 272 | 98.20 248 |
|
ab-mvs-re | | | 7.91 328 | 10.55 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 94.94 296 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Fast-Effi-MVS+-dtu | | | 96.44 151 | 96.12 158 | 97.39 139 | 97.18 271 | 94.39 135 | 95.46 180 | 98.73 122 | 96.03 114 | 94.72 258 | 94.92 298 | 96.28 95 | 99.69 109 | 93.81 190 | 97.98 270 | 98.09 252 |
|
EPNet_dtu | | | 91.39 291 | 90.75 294 | 93.31 292 | 90.48 356 | 82.61 326 | 94.80 226 | 92.88 318 | 93.39 210 | 81.74 353 | 94.90 299 | 81.36 297 | 99.11 261 | 88.28 293 | 98.87 222 | 98.21 247 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
DPM-MVS | | | 93.68 253 | 92.77 265 | 96.42 194 | 97.91 202 | 92.54 188 | 91.17 323 | 97.47 254 | 84.99 316 | 93.08 307 | 94.74 300 | 89.90 244 | 99.00 273 | 87.54 303 | 98.09 267 | 97.72 278 |
|
Effi-MVS+ | | | 96.19 159 | 96.01 163 | 96.71 175 | 97.43 254 | 92.19 199 | 96.12 145 | 99.10 29 | 95.45 142 | 93.33 304 | 94.71 301 | 97.23 43 | 99.56 156 | 93.21 205 | 97.54 291 | 98.37 229 |
|
GA-MVS | | | 92.83 269 | 92.15 274 | 94.87 256 | 96.97 277 | 87.27 283 | 90.03 334 | 96.12 284 | 91.83 247 | 94.05 277 | 94.57 302 | 76.01 324 | 98.97 281 | 92.46 215 | 97.34 299 | 98.36 234 |
|
miper_enhance_ethall | | | 93.14 266 | 92.78 264 | 94.20 280 | 93.65 341 | 85.29 306 | 89.97 335 | 97.85 227 | 85.05 314 | 96.15 224 | 94.56 303 | 85.74 279 | 99.14 256 | 93.74 192 | 98.34 257 | 98.17 251 |
|
xiu_mvs_v1_base_debu | | | 95.62 179 | 95.96 167 | 94.60 267 | 98.01 192 | 88.42 257 | 93.99 259 | 98.21 193 | 92.98 227 | 95.91 230 | 94.53 304 | 96.39 88 | 99.72 77 | 95.43 114 | 98.19 262 | 95.64 327 |
|
xiu_mvs_v1_base | | | 95.62 179 | 95.96 167 | 94.60 267 | 98.01 192 | 88.42 257 | 93.99 259 | 98.21 193 | 92.98 227 | 95.91 230 | 94.53 304 | 96.39 88 | 99.72 77 | 95.43 114 | 98.19 262 | 95.64 327 |
|
xiu_mvs_v1_base_debi | | | 95.62 179 | 95.96 167 | 94.60 267 | 98.01 192 | 88.42 257 | 93.99 259 | 98.21 193 | 92.98 227 | 95.91 230 | 94.53 304 | 96.39 88 | 99.72 77 | 95.43 114 | 98.19 262 | 95.64 327 |
|
PVSNet_Blended | | | 93.96 247 | 93.65 246 | 94.91 252 | 97.79 223 | 87.40 280 | 91.43 315 | 98.68 137 | 84.50 320 | 94.51 265 | 94.48 307 | 93.04 186 | 99.30 232 | 89.77 272 | 98.61 247 | 98.02 265 |
|
PAPM_NR | | | 94.61 227 | 94.17 234 | 95.96 213 | 98.36 155 | 91.23 215 | 95.93 160 | 97.95 221 | 92.98 227 | 93.42 302 | 94.43 308 | 90.53 233 | 98.38 325 | 87.60 301 | 96.29 317 | 98.27 242 |
|
API-MVS | | | 95.09 204 | 95.01 196 | 95.31 239 | 96.61 286 | 94.02 150 | 96.83 108 | 97.18 261 | 95.60 136 | 95.79 235 | 94.33 309 | 94.54 153 | 98.37 327 | 85.70 315 | 98.52 251 | 93.52 339 |
|
mvs-test1 | | | 96.20 158 | 95.50 183 | 98.32 65 | 96.90 282 | 98.16 4 | 95.07 211 | 98.09 211 | 95.86 125 | 93.63 290 | 94.32 310 | 94.26 160 | 99.71 92 | 94.06 179 | 97.27 302 | 97.07 296 |
|
alignmvs | | | 96.01 167 | 95.52 182 | 97.50 124 | 97.77 228 | 94.71 124 | 96.07 147 | 96.84 272 | 97.48 65 | 96.78 193 | 94.28 311 | 85.50 281 | 99.40 204 | 96.22 72 | 98.73 239 | 98.40 226 |
|
CLD-MVS | | | 95.47 187 | 95.07 192 | 96.69 177 | 98.27 163 | 92.53 189 | 91.36 316 | 98.67 140 | 91.22 254 | 95.78 237 | 94.12 312 | 95.65 117 | 98.98 277 | 90.81 245 | 99.72 47 | 98.57 217 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
TR-MVS | | | 92.54 273 | 92.20 273 | 93.57 288 | 96.49 289 | 86.66 290 | 93.51 276 | 94.73 301 | 89.96 266 | 94.95 254 | 93.87 313 | 90.24 241 | 98.61 309 | 81.18 336 | 94.88 328 | 95.45 331 |
|
canonicalmvs | | | 97.23 109 | 97.21 103 | 97.30 144 | 97.65 239 | 94.39 135 | 97.84 56 | 99.05 41 | 97.42 67 | 96.68 195 | 93.85 314 | 97.63 27 | 99.33 225 | 96.29 71 | 98.47 254 | 98.18 250 |
|
xiu_mvs_v2_base | | | 94.22 237 | 94.63 214 | 92.99 302 | 97.32 265 | 84.84 314 | 92.12 306 | 97.84 229 | 91.96 244 | 94.17 272 | 93.43 315 | 96.07 97 | 99.71 92 | 91.27 233 | 97.48 294 | 94.42 336 |
|
CHOSEN 280x420 | | | 89.98 303 | 89.19 309 | 92.37 311 | 95.60 316 | 81.13 333 | 86.22 346 | 97.09 265 | 81.44 331 | 87.44 346 | 93.15 316 | 73.99 328 | 99.47 180 | 88.69 287 | 99.07 200 | 96.52 317 |
|
thres600view7 | | | 92.03 283 | 91.43 281 | 93.82 283 | 98.19 172 | 84.61 316 | 96.27 135 | 90.39 338 | 96.81 83 | 96.37 210 | 93.11 317 | 73.44 335 | 99.49 174 | 80.32 337 | 97.95 271 | 97.36 290 |
|
E-PMN | | | 89.52 308 | 89.78 303 | 88.73 329 | 93.14 346 | 77.61 342 | 83.26 349 | 92.02 325 | 94.82 167 | 93.71 287 | 93.11 317 | 75.31 326 | 96.81 345 | 85.81 314 | 96.81 307 | 91.77 345 |
|
thres100view900 | | | 91.76 287 | 91.26 286 | 93.26 293 | 98.21 170 | 84.50 317 | 96.39 128 | 90.39 338 | 96.87 81 | 96.33 211 | 93.08 319 | 73.44 335 | 99.42 193 | 78.85 341 | 97.74 279 | 95.85 323 |
|
1314 | | | 92.38 276 | 92.30 272 | 92.64 308 | 95.42 321 | 85.15 309 | 95.86 162 | 96.97 269 | 85.40 311 | 90.62 328 | 93.06 320 | 91.12 227 | 97.80 339 | 86.74 309 | 95.49 327 | 94.97 334 |
|
PAPM | | | 87.64 319 | 85.84 324 | 93.04 299 | 96.54 287 | 84.99 312 | 88.42 343 | 95.57 295 | 79.52 338 | 83.82 350 | 93.05 321 | 80.57 301 | 98.41 322 | 62.29 352 | 92.79 337 | 95.71 326 |
|
Fast-Effi-MVS+ | | | 95.49 184 | 95.07 192 | 96.75 173 | 97.67 238 | 92.82 185 | 94.22 247 | 98.60 150 | 91.61 249 | 93.42 302 | 92.90 322 | 96.73 69 | 99.70 101 | 92.60 211 | 97.89 275 | 97.74 277 |
|
ET-MVSNet_ETH3D | | | 91.12 292 | 89.67 304 | 95.47 234 | 96.41 291 | 89.15 247 | 91.54 314 | 90.23 341 | 89.07 272 | 86.78 349 | 92.84 323 | 69.39 346 | 99.44 190 | 94.16 175 | 96.61 312 | 97.82 274 |
|
MVS | | | 90.02 301 | 89.20 308 | 92.47 309 | 94.71 328 | 86.90 288 | 95.86 162 | 96.74 277 | 64.72 352 | 90.62 328 | 92.77 324 | 92.54 202 | 98.39 324 | 79.30 339 | 95.56 326 | 92.12 343 |
|
BH-w/o | | | 92.14 281 | 91.94 275 | 92.73 307 | 97.13 273 | 85.30 305 | 92.46 300 | 95.64 293 | 89.33 271 | 94.21 271 | 92.74 325 | 89.60 246 | 98.24 331 | 81.68 334 | 94.66 330 | 94.66 335 |
|
PAPR | | | 92.22 279 | 91.27 285 | 95.07 247 | 95.73 314 | 88.81 252 | 91.97 309 | 97.87 226 | 85.80 304 | 90.91 327 | 92.73 326 | 91.16 226 | 98.33 329 | 79.48 338 | 95.76 324 | 98.08 253 |
|
MAR-MVS | | | 94.21 239 | 93.03 256 | 97.76 102 | 96.94 280 | 97.44 33 | 96.97 105 | 97.15 262 | 87.89 288 | 92.00 322 | 92.73 326 | 92.14 210 | 99.12 258 | 83.92 327 | 97.51 293 | 96.73 311 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
baseline2 | | | 89.65 307 | 88.44 314 | 93.25 294 | 95.62 315 | 82.71 325 | 93.82 266 | 85.94 350 | 88.89 276 | 87.35 347 | 92.54 328 | 71.23 341 | 99.33 225 | 86.01 312 | 94.60 332 | 97.72 278 |
|
PS-MVSNAJ | | | 94.10 243 | 94.47 223 | 93.00 301 | 97.35 258 | 84.88 313 | 91.86 310 | 97.84 229 | 91.96 244 | 94.17 272 | 92.50 329 | 95.82 106 | 99.71 92 | 91.27 233 | 97.48 294 | 94.40 337 |
|
PMMVS | | | 92.39 275 | 91.08 287 | 96.30 201 | 93.12 347 | 92.81 186 | 90.58 330 | 95.96 288 | 79.17 340 | 91.85 324 | 92.27 330 | 90.29 240 | 98.66 308 | 89.85 271 | 96.68 311 | 97.43 288 |
|
PVSNet | | 86.72 19 | 91.10 293 | 90.97 290 | 91.49 316 | 97.56 245 | 78.04 340 | 87.17 344 | 94.60 303 | 84.65 318 | 92.34 319 | 92.20 331 | 87.37 271 | 98.47 319 | 85.17 321 | 97.69 284 | 97.96 267 |
|
tfpn200view9 | | | 91.55 289 | 91.00 288 | 93.21 296 | 98.02 190 | 84.35 319 | 95.70 169 | 90.79 335 | 96.26 101 | 95.90 233 | 92.13 332 | 73.62 333 | 99.42 193 | 78.85 341 | 97.74 279 | 95.85 323 |
|
thres400 | | | 91.68 288 | 91.00 288 | 93.71 285 | 98.02 190 | 84.35 319 | 95.70 169 | 90.79 335 | 96.26 101 | 95.90 233 | 92.13 332 | 73.62 333 | 99.42 193 | 78.85 341 | 97.74 279 | 97.36 290 |
|
MVE | | 73.61 22 | 86.48 321 | 85.92 323 | 88.18 332 | 96.23 297 | 85.28 307 | 81.78 351 | 75.79 354 | 86.01 300 | 82.53 352 | 91.88 334 | 92.74 193 | 87.47 353 | 71.42 350 | 94.86 329 | 91.78 344 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
EMVS | | | 89.06 310 | 89.22 306 | 88.61 330 | 93.00 348 | 77.34 344 | 82.91 350 | 90.92 334 | 94.64 173 | 92.63 316 | 91.81 335 | 76.30 322 | 97.02 343 | 83.83 329 | 96.90 304 | 91.48 346 |
|
thisisatest0515 | | | 90.43 298 | 89.18 310 | 94.17 282 | 97.07 275 | 85.44 303 | 89.75 340 | 87.58 346 | 88.28 283 | 93.69 289 | 91.72 336 | 65.27 350 | 99.58 149 | 90.59 256 | 98.67 241 | 97.50 287 |
|
EIA-MVS | | | 96.04 165 | 95.77 174 | 96.85 167 | 97.80 218 | 92.98 183 | 96.12 145 | 99.16 18 | 94.65 172 | 93.77 285 | 91.69 337 | 95.68 115 | 99.67 120 | 94.18 174 | 98.85 226 | 97.91 270 |
|
cascas | | | 91.89 285 | 91.35 283 | 93.51 289 | 94.27 334 | 85.60 301 | 88.86 342 | 98.61 149 | 79.32 339 | 92.16 321 | 91.44 338 | 89.22 254 | 98.12 335 | 90.80 246 | 97.47 296 | 96.82 307 |
|
IB-MVS | | 85.98 20 | 88.63 311 | 86.95 320 | 93.68 286 | 95.12 324 | 84.82 315 | 90.85 327 | 90.17 342 | 87.55 289 | 88.48 342 | 91.34 339 | 58.01 355 | 99.59 147 | 87.24 307 | 93.80 335 | 96.63 315 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
thres200 | | | 91.00 295 | 90.42 299 | 92.77 306 | 97.47 252 | 83.98 322 | 94.01 258 | 91.18 333 | 95.12 156 | 95.44 245 | 91.21 340 | 73.93 329 | 99.31 229 | 77.76 344 | 97.63 289 | 95.01 333 |
|
test0.0.03 1 | | | 90.11 300 | 89.21 307 | 92.83 305 | 93.89 339 | 86.87 289 | 91.74 312 | 88.74 345 | 92.02 242 | 94.71 259 | 91.14 341 | 73.92 330 | 94.48 350 | 83.75 331 | 92.94 336 | 97.16 294 |
|
ETV-MVS | | | 96.13 162 | 95.90 170 | 96.82 169 | 97.76 229 | 93.89 154 | 95.40 186 | 98.95 70 | 95.87 124 | 95.58 244 | 91.00 342 | 96.36 91 | 99.72 77 | 93.36 198 | 98.83 228 | 96.85 306 |
|
test-LLR | | | 89.97 304 | 89.90 302 | 90.16 324 | 94.24 335 | 74.98 349 | 89.89 336 | 89.06 343 | 92.02 242 | 89.97 335 | 90.77 343 | 73.92 330 | 98.57 312 | 91.88 221 | 97.36 297 | 96.92 301 |
|
test-mter | | | 87.92 317 | 87.17 318 | 90.16 324 | 94.24 335 | 74.98 349 | 89.89 336 | 89.06 343 | 86.44 298 | 89.97 335 | 90.77 343 | 54.96 360 | 98.57 312 | 91.88 221 | 97.36 297 | 96.92 301 |
|
CS-MVS | | | 95.86 173 | 95.59 180 | 96.69 177 | 97.85 206 | 93.14 179 | 96.42 126 | 99.25 10 | 94.17 191 | 93.56 295 | 90.76 345 | 96.05 98 | 99.72 77 | 93.28 201 | 98.91 217 | 97.21 293 |
|
TESTMET0.1,1 | | | 87.20 320 | 86.57 322 | 89.07 328 | 93.62 342 | 72.84 353 | 89.89 336 | 87.01 349 | 85.46 309 | 89.12 340 | 90.20 346 | 56.00 359 | 97.72 340 | 90.91 242 | 96.92 303 | 96.64 313 |
|
gm-plane-assit | | | | | | 91.79 353 | 71.40 355 | | | 81.67 328 | | 90.11 347 | | 98.99 275 | 84.86 323 | | |
|
DWT-MVSNet_test | | | 87.92 317 | 86.77 321 | 91.39 317 | 93.18 344 | 78.62 338 | 95.10 206 | 91.42 330 | 85.58 306 | 88.00 343 | 88.73 348 | 60.60 354 | 98.90 283 | 90.60 255 | 87.70 347 | 96.65 312 |
|
DeepMVS_CX | | | | | 77.17 336 | 90.94 355 | 85.28 307 | | 74.08 357 | 52.51 353 | 80.87 354 | 88.03 349 | 75.25 327 | 70.63 354 | 59.23 353 | 84.94 350 | 75.62 349 |
|
PVSNet_0 | | 81.89 21 | 84.49 322 | 83.21 325 | 88.34 331 | 95.76 313 | 74.97 351 | 83.49 348 | 92.70 322 | 78.47 342 | 87.94 344 | 86.90 350 | 83.38 292 | 96.63 348 | 73.44 347 | 66.86 353 | 93.40 340 |
|
GG-mvs-BLEND | | | | | 90.60 322 | 91.00 354 | 84.21 321 | 98.23 33 | 72.63 358 | | 82.76 351 | 84.11 351 | 56.14 358 | 96.79 346 | 72.20 348 | 92.09 340 | 90.78 347 |
|
tmp_tt | | | 57.23 323 | 62.50 326 | 41.44 337 | 34.77 358 | 49.21 359 | 83.93 347 | 60.22 359 | 15.31 354 | 71.11 355 | 79.37 352 | 70.09 345 | 44.86 355 | 64.76 351 | 82.93 352 | 30.25 351 |
|
X-MVStestdata | | | 92.86 268 | 90.83 293 | 98.94 18 | 99.15 71 | 97.66 19 | 97.77 58 | 98.83 99 | 97.42 67 | 96.32 212 | 36.50 353 | 96.49 82 | 99.72 77 | 95.66 96 | 99.37 145 | 99.45 66 |
|
testmvs | | | 12.33 326 | 15.23 329 | 3.64 339 | 5.77 360 | 2.23 361 | 88.99 341 | 3.62 360 | 2.30 356 | 5.29 356 | 13.09 354 | 4.52 362 | 1.95 356 | 5.16 355 | 8.32 355 | 6.75 353 |
|
test123 | | | 12.59 325 | 15.49 328 | 3.87 338 | 6.07 359 | 2.55 360 | 90.75 328 | 2.59 361 | 2.52 355 | 5.20 357 | 13.02 355 | 4.96 361 | 1.85 357 | 5.20 354 | 9.09 354 | 7.23 352 |
|
test_post | | | | | | | | | | | | 10.87 356 | 76.83 319 | 99.07 266 | | | |
|
test_post1 | | | | | | | | 94.98 218 | | | | 10.37 357 | 76.21 323 | 99.04 269 | 89.47 276 | | |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 7.98 327 | 10.65 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 95.82 106 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
IU-MVS | | | | | | 99.22 57 | 95.40 98 | | 98.14 206 | 85.77 305 | 98.36 75 | | | | 95.23 124 | 99.51 104 | 99.49 51 |
|
save fliter | | | | | | 98.48 145 | 94.71 124 | 94.53 236 | 98.41 172 | 95.02 161 | | | | | | | |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 54 | 95.49 96 | 96.74 113 | 98.89 75 | | | | | 99.75 60 | 95.48 107 | 99.52 99 | 99.53 39 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 259 |
|
test_part2 | | | | | | 99.03 90 | 96.07 72 | | | | 98.08 110 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 311 | | | | 98.06 259 |
|
sam_mvs | | | | | | | | | | | | | 77.38 315 | | | | |
|
MTGPA | | | | | | | | | 98.73 122 | | | | | | | | |
|
MTMP | | | | | | | | 96.55 121 | 74.60 355 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 232 | 98.89 221 | 99.00 161 |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 265 | 98.90 218 | 99.10 149 |
|
agg_prior | | | | | | 97.80 218 | 94.96 116 | | 98.36 178 | | 93.49 297 | | | 99.53 164 | | | |
|
test_prior4 | | | | | | | 95.38 99 | 93.61 274 | | | | | | | | | |
|
test_prior | | | | | 97.46 131 | 97.79 223 | 94.26 143 | | 98.42 170 | | | | | 99.34 222 | | | 98.79 194 |
|
旧先验2 | | | | | | | | 93.35 282 | | 77.95 345 | 95.77 239 | | | 98.67 307 | 90.74 251 | | |
|
新几何2 | | | | | | | | 93.43 277 | | | | | | | | | |
|
无先验 | | | | | | | | 93.20 286 | 97.91 223 | 80.78 333 | | | | 99.40 204 | 87.71 297 | | 97.94 268 |
|
原ACMM2 | | | | | | | | 92.82 291 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.46 183 | 87.84 296 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 127 | | | | |
|
testdata1 | | | | | | | | 92.77 292 | | 93.78 201 | | | | | | | |
|
test12 | | | | | 97.46 131 | 97.61 242 | 94.07 148 | | 97.78 233 | | 93.57 294 | | 93.31 181 | 99.42 193 | | 98.78 232 | 98.89 182 |
|
plane_prior7 | | | | | | 98.70 118 | 94.67 128 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 153 | 94.37 137 | | | | | | 91.91 220 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 118 | | | | | 99.46 183 | 92.59 213 | 99.20 179 | 99.28 109 |
|
plane_prior3 | | | | | | | 94.51 131 | | | 95.29 149 | 96.16 222 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 123 | | 96.36 97 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 143 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 139 | 95.42 183 | | 94.31 185 | | | | | | 98.93 215 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 202 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 213 | | | | | | | | |
|
door | | | | | | | | | 97.81 232 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 190 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 206 | | 94.26 241 | | 93.18 219 | 92.86 310 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 206 | | 94.26 241 | | 93.18 219 | 92.86 310 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 260 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 309 | | | 99.23 246 | | | 99.06 154 |
|
HQP3-MVS | | | | | | | | | 98.43 167 | | | | | | | 98.74 236 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 236 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 358 | 94.89 221 | | 80.59 334 | 94.02 278 | | 78.66 308 | | 85.50 319 | | 97.82 274 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 99 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 88 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 154 | | | | |
|