This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 14199.67 296.47 8899.92 497.88 2399.98 299.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12597.75 3099.89 2299.62 25
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5899.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11299.71 499.48 798.77 699.93 298.89 399.95 599.84 5
gg-mvs-nofinetune88.28 32986.96 33492.23 33092.84 36784.44 33298.19 4474.60 37499.08 1087.01 36699.47 856.93 37298.23 34978.91 35895.61 34194.01 356
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4899.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
Anonymous2023121198.55 1798.76 1397.94 9698.79 11194.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8698.12 1699.86 2599.73 15
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14799.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2699.12 2895.83 13999.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7390.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8899.39 86
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 18298.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3596.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 4299.54 38
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2299.10 3198.76 2396.79 20199.34 1796.61 7898.82 30596.38 7499.50 11496.98 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM91.79 29890.69 30795.11 25793.80 35790.98 23094.16 26291.78 34496.38 10490.30 35199.30 1872.02 35498.90 29888.28 30990.17 36195.45 349
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4398.87 8798.23 3699.48 1299.27 1998.47 899.55 17396.52 6899.53 10099.60 26
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19398.86 9098.20 3898.37 7699.24 2094.69 14999.55 17395.98 9399.79 3899.65 23
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3599.00 6097.57 6199.27 2499.22 2298.32 999.50 18797.09 5499.75 4699.50 45
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 16097.21 4899.76 4299.40 84
GBi-Net96.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
test196.99 11796.80 12997.56 12397.96 20793.67 17398.23 3898.66 14995.59 15097.99 12599.19 2489.51 25799.73 8194.60 16999.44 13299.30 107
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3898.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 10299.76 4299.30 107
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5595.31 31499.26 798.39 7599.18 2787.85 27599.62 15195.13 14899.09 21099.35 98
DSMNet-mixed92.19 29291.83 28993.25 30896.18 31783.68 33896.27 14593.68 32676.97 36592.54 33699.18 2789.20 26298.55 33283.88 34698.60 26297.51 301
test111194.53 23994.81 21493.72 29899.06 8881.94 34798.31 3283.87 37096.37 10598.49 6599.17 2981.49 30699.73 8196.64 6299.86 2599.49 53
test250689.86 31889.16 32391.97 33198.95 9876.83 36498.54 2061.07 37896.20 11397.07 18599.16 3055.19 37799.69 11796.43 7399.83 3199.38 88
ECVR-MVScopyleft94.37 24594.48 23294.05 29598.95 9883.10 33998.31 3282.48 37196.20 11398.23 9799.16 3081.18 30999.66 13695.95 9499.83 3199.38 88
v1097.55 8797.97 4196.31 20898.60 13789.64 25097.44 8899.02 5296.60 9498.72 5099.16 3093.48 18399.72 8698.76 699.92 1499.58 28
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3395.44 12899.84 2596.47 7199.80 3699.47 62
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 5199.46 797.32 7597.82 14699.11 3496.75 7299.86 2097.84 2599.36 15899.15 140
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8498.06 3896.23 21198.71 12289.44 25497.43 9098.82 11497.29 7798.74 4899.10 3593.86 17499.68 12598.61 1099.94 899.56 35
MVS-HIRNet88.40 32890.20 31382.99 35297.01 29360.04 37693.11 30085.61 36884.45 33988.72 35999.09 3684.72 29498.23 34982.52 35196.59 32890.69 367
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3899.05 4397.40 7399.37 1899.08 3798.79 599.47 19497.74 3199.71 5499.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part196.77 13696.53 14697.47 13698.04 19792.92 19497.93 5698.85 9498.83 2199.30 2199.07 3879.25 31799.79 3997.59 3599.93 1099.69 20
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2599.10 3199.36 499.29 2399.06 3997.27 3899.93 297.71 3299.91 1799.70 18
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6498.40 18097.11 8098.34 8299.04 4089.58 25399.79 3998.09 1899.93 1099.30 107
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2699.15 2499.33 599.30 2199.00 4197.27 3899.92 497.64 3499.92 1499.75 13
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11395.72 8396.23 15099.02 5293.92 21198.62 5298.99 4297.69 2399.62 15196.18 8099.87 2499.15 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6799.00 6098.40 3099.07 3398.98 4396.89 6499.75 6597.19 5199.79 3899.55 37
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4385.36 28999.74 7597.34 4499.37 15599.30 107
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2399.13 2799.22 899.22 2798.96 4597.35 3499.92 497.79 2899.93 1099.79 7
EU-MVSNet94.25 24794.47 23393.60 30198.14 19082.60 34297.24 9992.72 33785.08 33198.48 6698.94 4682.59 30398.76 31297.47 4099.53 10099.44 79
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19393.79 16996.99 11499.65 396.74 9099.47 1398.93 4796.91 6399.84 2590.11 28299.06 21698.32 249
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 10099.00 6094.93 17898.58 5898.92 4897.31 3699.41 21694.44 17599.43 14099.59 27
mvs_anonymous95.36 19996.07 16893.21 31096.29 31081.56 34894.60 24597.66 25093.30 22796.95 19598.91 4993.03 19399.38 22696.60 6497.30 31498.69 218
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 8098.94 7497.10 8198.85 4198.88 5095.03 14099.67 13097.39 4399.65 6499.26 120
UGNet96.81 13396.56 14297.58 12296.64 30293.84 16797.75 6897.12 27396.47 10393.62 30998.88 5093.22 18899.53 17895.61 11399.69 5899.36 96
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 4698.04 3997.71 11298.69 12694.28 15197.86 6198.31 19398.79 2299.23 2698.86 5295.76 11599.61 15895.49 11799.36 15899.23 127
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2999.21 1498.43 2998.89 3998.83 5394.30 16499.81 3297.87 2499.91 1799.77 8
new-patchmatchnet95.67 18596.58 14092.94 31897.48 26480.21 35392.96 30198.19 20894.83 18098.82 4398.79 5493.31 18699.51 18695.83 10299.04 21799.12 151
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5495.47 12699.89 1697.95 2199.91 1799.75 13
ab-mvs96.59 14996.59 13896.60 19098.64 12992.21 20798.35 2997.67 24894.45 19296.99 19198.79 5494.96 14399.49 18890.39 27999.07 21398.08 268
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16698.97 7094.55 19198.82 4398.76 5797.31 3699.29 25097.20 5099.44 13299.38 88
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5999.08 3798.31 3399.02 3498.74 5897.68 2499.61 15897.77 2999.85 2899.70 18
VDD-MVS97.37 10197.25 10197.74 11098.69 12694.50 14297.04 11195.61 30898.59 2698.51 6298.72 5992.54 20799.58 16296.02 8999.49 11899.12 151
PatchT93.75 26293.57 25894.29 29195.05 34287.32 29696.05 15892.98 33397.54 6594.25 28798.72 5975.79 33899.24 25895.92 9695.81 33696.32 336
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7999.06 4196.19 11598.48 6698.70 6194.72 14899.24 25894.37 18099.33 17399.17 136
APDe-MVS98.14 3498.03 4098.47 5498.72 11996.04 7498.07 5099.10 3195.96 12898.59 5798.69 6296.94 5899.81 3296.64 6299.58 8299.57 32
IterMVS-LS96.92 12397.29 9895.79 23198.51 14788.13 27995.10 21898.66 14996.99 8298.46 6998.68 6392.55 20599.74 7596.91 6099.79 3899.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6398.45 17098.25 3599.13 3098.66 6496.65 7599.69 11793.92 20199.62 6998.91 188
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5399.11 2998.04 4298.62 5298.66 6493.75 17899.78 4397.23 4599.84 2999.73 15
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3798.84 9999.05 1399.01 3598.65 6695.37 12999.90 1397.57 3699.91 1799.77 8
FMVSNet296.72 14096.67 13696.87 17597.96 20791.88 21797.15 10398.06 22795.59 15098.50 6498.62 6789.51 25799.65 13894.99 15699.60 7899.07 162
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 9197.49 26097.93 4495.95 24298.58 6896.88 6696.91 36189.59 29099.36 15893.12 361
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 27592.79 27394.78 27395.44 33688.15 27796.18 15297.20 26884.94 33594.10 29198.57 6977.67 32599.39 22395.17 14195.81 33696.81 325
Patchmtry95.03 21494.59 22796.33 20694.83 34490.82 23396.38 14097.20 26896.59 9597.49 15798.57 6977.67 32599.38 22692.95 22499.62 6998.80 204
ambc96.56 19598.23 17791.68 22297.88 6098.13 21798.42 7298.56 7194.22 16799.04 28494.05 19699.35 16398.95 177
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24593.65 17798.49 2398.88 8596.86 8797.11 17998.55 7295.82 10899.73 8195.94 9599.42 14399.13 146
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24985.53 31692.42 31397.63 25696.99 8298.36 7998.54 7387.94 27099.75 6597.07 5699.08 21199.27 119
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5499.16 2098.34 3298.78 4598.52 7497.32 3599.45 20194.08 19299.67 6199.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 8099.20 1698.21 3799.25 2598.51 7598.21 1199.40 21894.79 16299.72 5199.32 101
RPMNet94.68 23194.60 22594.90 26695.44 33688.15 27796.18 15298.86 9097.43 6894.10 29198.49 7679.40 31699.76 5895.69 10695.81 33696.81 325
IterMVS95.42 19795.83 17794.20 29297.52 26283.78 33792.41 31497.47 26395.49 15498.06 11898.49 7687.94 27099.58 16296.02 8999.02 21899.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 6397.89 4897.81 10598.62 13494.82 12897.13 10698.79 11698.98 1798.74 4898.49 7695.80 11499.49 18895.04 15299.44 13299.11 155
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12899.05 4398.67 2498.84 4298.45 7997.58 2899.88 1896.45 7299.86 2599.54 38
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19595.60 9198.04 5198.70 13998.13 3996.93 19698.45 7995.30 13399.62 15195.64 11198.96 22299.24 126
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14598.53 16397.77 4798.46 6998.41 8194.59 15599.68 12594.61 16899.29 18199.52 42
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12998.73 12998.66 2598.56 5998.41 8196.84 6999.69 11794.82 16099.81 3398.64 221
v124096.74 13797.02 11895.91 22798.18 18388.52 26995.39 19998.88 8593.15 23698.46 6998.40 8392.80 19799.71 10098.45 1399.49 11899.49 53
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10796.67 5396.74 12498.73 12991.61 26398.48 6698.36 8496.53 8399.68 12595.17 14199.54 9799.45 69
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 14198.79 11695.07 17197.88 13898.35 8597.24 4299.72 8696.05 8699.58 8299.45 69
v119296.83 13197.06 11596.15 21698.28 16989.29 25695.36 20198.77 12193.73 21598.11 11098.34 8693.02 19499.67 13098.35 1499.58 8299.50 45
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17494.29 14894.77 24098.07 22689.81 28497.97 12998.33 8793.11 18999.08 28095.46 12399.84 2998.89 192
PM-MVS97.36 10397.10 11198.14 8298.91 10396.77 5096.20 15198.63 15593.82 21398.54 6098.33 8793.98 17299.05 28395.99 9299.45 13198.61 226
test072699.24 5395.51 9596.89 11798.89 7995.92 13198.64 5198.31 8997.06 50
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 20098.99 6392.45 25298.11 11098.31 8997.25 4199.77 5396.60 6499.62 6999.48 59
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 12897.08 11396.13 21798.42 15989.28 25795.41 19798.67 14794.21 20197.97 12998.31 8993.06 19099.65 13898.06 1999.62 6999.45 69
LFMVS95.32 20194.88 20996.62 18998.03 19891.47 22597.65 7390.72 35499.11 997.89 13798.31 8979.20 31899.48 19193.91 20299.12 20698.93 183
DVP-MVS++97.96 4697.90 4598.12 8397.75 24295.40 10199.03 798.89 7996.62 9298.62 5298.30 9396.97 5699.75 6595.70 10499.25 18699.21 129
test_one_060199.05 9295.50 9898.87 8797.21 7998.03 12298.30 9396.93 60
V4297.04 11597.16 10896.68 18898.59 13991.05 22896.33 14398.36 18594.60 18797.99 12598.30 9393.32 18599.62 15197.40 4299.53 10099.38 88
casdiffmvs97.50 9197.81 5496.56 19598.51 14791.04 22995.83 17599.09 3697.23 7898.33 8698.30 9397.03 5299.37 22996.58 6699.38 15499.28 115
v14419296.69 14396.90 12596.03 21998.25 17488.92 26195.49 19198.77 12193.05 23898.09 11498.29 9792.51 20999.70 10998.11 1799.56 8899.47 62
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12498.23 19995.92 13198.40 7398.28 9897.06 5099.71 10095.48 12099.52 10599.26 120
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9298.40 7398.28 9897.10 4599.71 10095.70 10499.62 6999.58 28
MVS_Test96.27 16196.79 13194.73 27596.94 29786.63 30596.18 15298.33 19094.94 17696.07 23898.28 9895.25 13499.26 25597.21 4897.90 28798.30 253
FMVSNet593.39 27292.35 28396.50 19795.83 32790.81 23597.31 9498.27 19492.74 24896.27 22998.28 9862.23 36899.67 13090.86 25999.36 15899.03 168
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 7199.11 2997.76 5098.62 5298.27 10297.88 1999.80 3895.67 10799.50 11499.38 88
v192192096.72 14096.96 12195.99 22098.21 17888.79 26695.42 19598.79 11693.22 23098.19 10298.26 10392.68 20099.70 10998.34 1599.55 9499.49 53
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 12198.83 10696.11 11899.08 3198.24 10497.87 2099.72 8695.44 12499.51 11099.14 143
test_241102_TWO98.83 10696.11 11898.62 5298.24 10496.92 6299.72 8695.44 12499.49 11899.49 53
v2v48296.78 13597.06 11595.95 22498.57 14188.77 26795.36 20198.26 19695.18 16697.85 14398.23 10692.58 20499.63 14397.80 2799.69 5899.45 69
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10899.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16798.34 8298.23 10697.91 1799.70 10994.41 17799.73 4899.50 45
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2999.03 5095.88 13497.88 13898.22 10998.15 1299.74 7596.50 7099.62 6999.42 81
MIMVSNet93.42 27192.86 27095.10 25898.17 18588.19 27598.13 4793.69 32492.07 25595.04 26998.21 11080.95 31299.03 28781.42 35398.06 28198.07 270
h-mvs3396.29 16095.63 18498.26 6998.50 15096.11 7296.90 11697.09 27496.58 9697.21 17298.19 11184.14 29699.78 4395.89 9896.17 33498.89 192
EI-MVSNet96.63 14796.93 12295.74 23397.26 28388.13 27995.29 20897.65 25296.99 8297.94 13298.19 11192.55 20599.58 16296.91 6099.56 8899.50 45
CVMVSNet92.33 29092.79 27390.95 33797.26 28375.84 36795.29 20892.33 34081.86 34596.27 22998.19 11181.44 30798.46 33794.23 18798.29 27398.55 231
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20699.08 3788.40 29896.97 19498.17 11492.11 21699.78 4393.64 21099.21 19098.86 199
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27892.01 21595.33 20497.65 25297.74 5198.30 9198.14 11595.04 13999.69 11797.55 3799.52 10599.58 28
test_241102_ONE99.22 5895.35 10698.83 10696.04 12399.08 3198.13 11697.87 2099.33 239
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 11197.31 3797.55 8098.92 7697.72 5498.25 9498.13 11697.10 4599.75 6595.44 12499.24 18999.32 101
QAPM95.88 17995.57 18796.80 17997.90 21391.84 21998.18 4598.73 12988.41 29796.42 22098.13 11694.73 14799.75 6588.72 30298.94 22698.81 203
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 13098.83 10695.21 16398.36 7998.13 11698.13 1499.62 15196.04 8799.54 9799.39 86
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27392.08 21395.34 20397.65 25297.74 5198.29 9298.11 12095.05 13799.68 12597.50 3999.50 11499.56 35
wuyk23d93.25 27695.20 19387.40 35196.07 32295.38 10397.04 11194.97 31595.33 15999.70 598.11 12098.14 1391.94 36977.76 36299.68 6074.89 369
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10696.18 6895.21 21598.99 6395.84 13898.78 4598.08 12296.84 6999.81 3293.98 19999.57 8599.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 10197.70 6296.35 20598.14 19095.13 12096.54 13398.92 7695.94 13099.19 2898.08 12297.74 2295.06 36795.24 13799.54 9798.87 198
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.60 8099.76 5895.49 11799.20 19199.26 120
RE-MVS-def97.88 4998.81 10898.05 997.55 8098.86 9097.77 4798.20 9998.07 12496.94 5895.49 11799.20 19199.26 120
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21398.46 16994.58 19098.10 11398.07 12497.09 4799.39 22395.16 14399.44 13299.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10599.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19697.78 14798.07 12495.84 10599.12 27391.41 24699.42 14398.91 188
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7598.20 20393.00 24098.16 10498.06 12995.89 10399.72 8695.67 10799.10 20999.28 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16898.06 12988.46 26599.85 2293.85 20399.40 15099.32 101
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4998.96 7195.75 14397.91 13498.06 12996.89 6499.76 5895.32 13299.57 8599.43 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 15995.98 17297.43 14398.25 17493.85 16696.74 12494.41 32197.72 5498.37 7698.03 13287.15 27999.53 17894.06 19399.07 21398.92 187
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13898.98 6695.05 17298.06 11898.02 13395.86 10499.56 16994.37 18099.64 6699.00 171
baseline97.44 9697.78 5896.43 20198.52 14690.75 23696.84 11899.03 5096.51 9997.86 14298.02 13396.67 7499.36 23197.09 5499.47 12499.19 133
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23487.40 29494.14 26598.68 14488.94 29294.51 28198.01 13593.04 19199.30 24689.77 28899.49 11899.11 155
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28991.96 21697.74 6998.84 9987.26 30794.36 28598.01 13593.95 17399.67 13090.70 26998.75 24797.35 307
MVSTER94.21 25093.93 25395.05 26095.83 32786.46 30695.18 21697.65 25292.41 25397.94 13298.00 13772.39 35399.58 16296.36 7599.56 8899.12 151
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10897.98 13888.23 26899.71 10093.10 22199.72 5199.38 88
test117298.08 3997.76 5999.05 698.78 11398.07 797.41 9298.85 9497.57 6198.15 10697.96 13996.60 8099.76 5895.30 13399.18 19699.33 100
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18398.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9798.73 12997.69 5797.90 13597.96 13995.81 11299.82 2996.13 8199.61 7599.45 69
v14896.58 15096.97 11995.42 24798.63 13387.57 29095.09 22097.90 23395.91 13398.24 9697.96 13993.42 18499.39 22396.04 8799.52 10599.29 114
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15388.76 26892.84 30297.25 26696.00 12697.59 15097.95 14391.38 23099.46 19793.16 22096.35 33198.99 174
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10899.06 4195.45 15597.55 15197.94 14497.11 4499.78 4394.77 16599.46 12799.48 59
LS3D97.77 7397.50 8798.57 4896.24 31297.58 2598.45 2698.85 9498.58 2797.51 15497.94 14495.74 11699.63 14395.19 13998.97 22198.51 232
USDC94.56 23794.57 23094.55 28397.78 23886.43 30892.75 30598.65 15485.96 31996.91 19897.93 14690.82 23698.74 31390.71 26899.59 8098.47 235
test20.0396.58 15096.61 13796.48 19998.49 15191.72 22195.68 18297.69 24796.81 8898.27 9397.92 14794.18 16898.71 31690.78 26399.66 6399.00 171
FMVSNet395.26 20494.94 20496.22 21396.53 30590.06 24295.99 16397.66 25094.11 20597.99 12597.91 14880.22 31599.63 14394.60 16999.44 13298.96 176
Regformer-397.25 10997.29 9897.11 16197.35 27492.32 20495.26 21097.62 25797.67 5998.17 10397.89 14995.05 13799.56 16997.16 5299.42 14399.46 64
Regformer-497.53 9097.47 9097.71 11297.35 27493.91 16295.26 21098.14 21597.97 4398.34 8297.89 14995.49 12399.71 10097.41 4199.42 14399.51 44
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15394.71 13294.53 24899.07 4095.02 17497.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
SF-MVS97.60 8497.39 9298.22 7498.93 10195.69 8597.05 11099.10 3195.32 16097.83 14497.88 15196.44 9099.72 8694.59 17299.39 15299.25 124
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10398.90 7896.58 9698.08 11697.87 15397.02 5399.76 5895.25 13699.59 8099.40 84
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4597.66 6799.01 1198.77 11597.93 1197.38 9398.83 10697.32 7598.06 11897.85 15496.65 7599.77 5395.00 15599.11 20799.32 101
RRT_MVS94.90 21794.07 24697.39 14793.18 36193.21 18795.26 21097.49 26093.94 21098.25 9497.85 15472.96 35299.84 2597.90 2299.78 4199.14 143
DU-MVS97.79 7197.60 7898.36 6198.73 11795.78 8195.65 18698.87 8797.57 6198.31 8997.83 15694.69 14999.85 2297.02 5799.71 5499.46 64
NR-MVSNet97.96 4697.86 5098.26 6998.73 11795.54 9398.14 4698.73 12997.79 4699.42 1597.83 15694.40 16299.78 4395.91 9799.76 4299.46 64
CHOSEN 1792x268894.10 25493.41 26196.18 21599.16 7090.04 24392.15 31798.68 14479.90 35596.22 23297.83 15687.92 27499.42 20789.18 29699.65 6499.08 160
TAMVS95.49 19194.94 20497.16 15898.31 16593.41 18295.07 22396.82 28491.09 27297.51 15497.82 15989.96 24999.42 20788.42 30799.44 13298.64 221
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 11095.86 8095.92 17099.04 4997.51 6698.22 9897.81 16094.68 15199.78 4397.14 5399.75 4699.41 83
VNet96.84 12896.83 12796.88 17498.06 19692.02 21496.35 14297.57 25997.70 5697.88 13897.80 16192.40 21199.54 17694.73 16798.96 22299.08 160
YYNet194.73 22494.84 21194.41 28797.47 26885.09 32590.29 34595.85 30392.52 24997.53 15297.76 16291.97 22099.18 26493.31 21596.86 32098.95 177
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26485.15 32390.28 34695.87 30292.52 24997.48 16097.76 16291.92 22499.17 26893.32 21496.80 32398.94 179
TinyColmap96.00 17496.34 15594.96 26397.90 21387.91 28294.13 26698.49 16794.41 19398.16 10497.76 16296.29 9798.68 32190.52 27599.42 14398.30 253
Patchmatch-RL test94.66 23294.49 23195.19 25598.54 14488.91 26292.57 30998.74 12791.46 26698.32 8797.75 16577.31 33098.81 30796.06 8499.61 7597.85 287
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8698.73 12996.27 10995.59 25797.75 16596.30 9699.78 4393.70 20999.48 12299.45 69
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9396.70 5296.24 14998.89 7993.71 21697.97 12997.75 16597.44 3099.63 14393.22 21899.70 5799.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 18395.28 19296.92 17198.15 18993.03 19195.64 18898.20 20390.39 27896.63 21197.73 16891.63 22899.10 27891.84 23997.31 31398.63 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6998.78 12096.04 12397.10 18097.73 16896.53 8399.78 4395.16 14399.50 11499.46 64
RRT_test8_iter0592.46 28692.52 28292.29 32995.33 33977.43 36195.73 17798.55 16294.41 19397.46 16397.72 17057.44 37199.74 7596.92 5999.14 19999.69 20
MVS_030495.50 19095.05 20296.84 17796.28 31193.12 18997.00 11396.16 29495.03 17389.22 35797.70 17190.16 24899.48 19194.51 17499.34 16697.93 284
XVG-OURS97.12 11396.74 13298.26 6998.99 9697.45 3393.82 27899.05 4395.19 16598.32 8797.70 17195.22 13598.41 33994.27 18598.13 27898.93 183
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11995.78 8195.66 18399.02 5298.11 4098.31 8997.69 17394.65 15399.85 2297.02 5799.71 5499.48 59
D2MVS95.18 20695.17 19595.21 25397.76 24087.76 28894.15 26397.94 23189.77 28596.99 19197.68 17487.45 27799.14 27195.03 15499.81 3398.74 212
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22597.64 17596.49 8699.72 8695.66 10999.37 15599.45 69
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7798.83 10696.05 12197.46 16397.63 17696.77 7199.76 5895.61 11399.46 12799.49 53
Anonymous2023120695.27 20395.06 20195.88 22898.72 11989.37 25595.70 17997.85 23688.00 30396.98 19397.62 17791.95 22199.34 23689.21 29599.53 10098.94 179
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7698.84 9996.00 12697.22 17097.62 17796.87 6799.76 5895.48 12099.43 14099.46 64
GeoE97.75 7497.70 6297.89 9998.88 10594.53 13997.10 10798.98 6695.75 14397.62 14997.59 17997.61 2799.77 5396.34 7699.44 13299.36 96
ppachtmachnet_test94.49 24194.84 21193.46 30496.16 31882.10 34490.59 34297.48 26290.53 27797.01 19097.59 17991.01 23399.36 23193.97 20099.18 19698.94 179
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14396.31 6596.32 14498.77 12192.96 24597.44 16597.58 18195.84 10599.74 7591.96 23399.35 16399.19 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7798.84 9996.05 12197.49 15797.54 18297.07 4899.70 10995.61 11399.46 12799.30 107
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 12098.84 9994.25 20097.49 15797.54 18297.07 4899.70 10994.37 18099.46 12799.30 107
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15391.52 22495.31 20698.45 17095.76 14197.48 16097.54 18289.53 25698.69 31894.43 17694.61 34999.13 146
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9597.41 3594.66 24399.02 5295.20 16498.15 10697.52 18598.83 498.43 33894.87 15896.41 33099.07 162
MG-MVS94.08 25694.00 24994.32 28997.09 29185.89 31393.19 29995.96 30092.52 24994.93 27297.51 18689.54 25498.77 31087.52 32097.71 29598.31 251
Regformer-197.27 10797.16 10897.61 12197.21 28693.86 16594.85 23698.04 22997.62 6098.03 12297.50 18795.34 13099.63 14396.52 6899.31 17799.35 98
Regformer-297.41 9897.24 10397.93 9797.21 28694.72 13194.85 23698.27 19497.74 5198.11 11097.50 18795.58 12199.69 11796.57 6799.31 17799.37 95
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15797.41 16697.50 18797.98 1599.79 3995.58 11699.57 8599.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 13498.53 14596.02 16198.98 6693.23 22997.18 17497.46 19096.47 8899.62 15192.99 22299.32 175
CP-MVS97.92 5697.56 8298.99 1398.99 9697.82 1697.93 5698.96 7196.11 11896.89 19997.45 19196.85 6899.78 4395.19 13999.63 6899.38 88
PC_three_145287.24 30898.37 7697.44 19297.00 5496.78 36492.01 23299.25 18699.21 129
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8798.84 9995.76 14196.93 19697.43 19397.26 4099.79 3996.06 8499.53 10099.45 69
N_pmnet95.18 20694.23 24098.06 8897.85 21696.55 5892.49 31191.63 34589.34 28798.09 11497.41 19490.33 24299.06 28291.58 24499.31 17798.56 229
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 10298.79 11695.96 12897.53 15297.40 19596.93 6099.77 5395.04 15299.35 16399.42 81
tpm91.08 30690.85 30491.75 33295.33 33978.09 35795.03 22891.27 34988.75 29493.53 31397.40 19571.24 35599.30 24691.25 25193.87 35297.87 286
MDTV_nov1_ep1391.28 29694.31 34973.51 37194.80 23893.16 33186.75 31593.45 31797.40 19576.37 33498.55 33288.85 30096.43 329
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26497.23 4192.56 31098.60 15792.84 24798.54 6097.40 19596.64 7798.78 30994.40 17999.41 14998.93 183
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22390.56 24095.71 17898.84 9994.72 18396.71 20797.39 19994.91 14598.10 35395.28 13499.02 21898.05 277
EPNet93.72 26392.62 28097.03 16787.61 37692.25 20596.27 14591.28 34896.74 9087.65 36397.39 19985.00 29199.64 14192.14 23199.48 12299.20 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 26694.07 24692.45 32697.57 25780.67 35286.46 36196.00 29893.99 20897.10 18097.38 20189.90 25097.82 35588.76 30199.47 12498.86 199
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24894.15 15596.02 16198.43 17393.17 23597.30 16897.38 20195.48 12599.28 25293.74 20699.34 16698.88 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 22294.80 21594.85 26996.16 31886.45 30791.14 33698.20 20393.49 22097.03 18897.37 20384.97 29299.26 25595.28 13499.56 8898.83 201
OPU-MVS97.64 11998.01 20195.27 11196.79 12197.35 20496.97 5698.51 33591.21 25299.25 18699.14 143
DIV-MVS_self_test94.73 22494.64 22195.01 26195.86 32587.00 30091.33 33098.08 22293.34 22597.10 18097.34 20584.02 29899.31 24395.15 14599.55 9498.72 215
cl____94.73 22494.64 22195.01 26195.85 32687.00 30091.33 33098.08 22293.34 22597.10 18097.33 20684.01 29999.30 24695.14 14699.56 8898.71 217
WR-MVS96.90 12596.81 12897.16 15898.56 14292.20 20994.33 25298.12 21897.34 7498.20 9997.33 20692.81 19699.75 6594.79 16299.81 3399.54 38
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13495.69 8595.96 16698.98 6693.36 22497.04 18797.31 20894.93 14499.63 14392.60 22599.34 16699.17 136
ITE_SJBPF97.85 10398.64 12996.66 5498.51 16695.63 14697.22 17097.30 20995.52 12298.55 33290.97 25698.90 23098.34 248
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8594.92 31696.50 10096.58 21297.27 21083.64 30099.48 19188.42 30799.67 6198.97 175
c3_l95.20 20595.32 19194.83 27196.19 31686.43 30891.83 32398.35 18993.47 22197.36 16797.26 21188.69 26399.28 25295.41 13099.36 15898.78 207
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32386.12 31191.35 32998.49 16793.40 22297.12 17897.25 21286.87 28299.35 23495.08 15198.82 24198.78 207
pmmvs494.82 22194.19 24396.70 18597.42 27192.75 19892.09 32096.76 28686.80 31495.73 25497.22 21389.28 26098.89 30093.28 21699.14 19998.46 237
OMC-MVS96.48 15496.00 17097.91 9898.30 16696.01 7794.86 23598.60 15791.88 26097.18 17497.21 21496.11 9999.04 28490.49 27899.34 16698.69 218
pmmvs594.63 23494.34 23895.50 24397.63 25588.34 27394.02 26997.13 27287.15 31095.22 26497.15 21587.50 27699.27 25493.99 19899.26 18598.88 196
testtj96.69 14396.13 16398.36 6198.46 15796.02 7696.44 13698.70 13994.26 19996.79 20197.13 21694.07 17099.75 6590.53 27498.80 24299.31 106
our_test_394.20 25294.58 22893.07 31296.16 31881.20 35090.42 34496.84 28290.72 27597.14 17697.13 21690.47 24099.11 27694.04 19798.25 27498.91 188
CPTT-MVS96.69 14396.08 16798.49 5298.89 10496.64 5597.25 9798.77 12192.89 24696.01 24197.13 21692.23 21399.67 13092.24 23099.34 16699.17 136
MS-PatchMatch94.83 22094.91 20894.57 28296.81 30187.10 29994.23 25897.34 26588.74 29597.14 17697.11 21991.94 22298.23 34992.99 22297.92 28598.37 242
FPMVS89.92 31788.63 32593.82 29698.37 16296.94 4691.58 32593.34 33088.00 30390.32 35097.10 22070.87 35891.13 37071.91 36896.16 33593.39 360
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 21195.65 9094.94 23198.74 12791.31 26996.02 24097.08 22194.05 17199.69 11791.51 24598.94 22698.93 183
ZD-MVS98.43 15895.94 7898.56 16190.72 27596.66 20997.07 22295.02 14199.74 7591.08 25398.93 228
DELS-MVS96.17 16696.23 15995.99 22097.55 26190.04 24392.38 31598.52 16494.13 20496.55 21697.06 22394.99 14299.58 16295.62 11299.28 18298.37 242
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 12396.55 14398.03 9298.00 20595.54 9394.87 23498.17 20994.60 18796.38 22297.05 22495.67 11899.36 23195.12 14999.08 21199.19 133
旧先验197.80 22893.87 16497.75 24397.04 22593.57 18298.68 25298.72 215
testdata95.70 23698.16 18790.58 23897.72 24580.38 35395.62 25697.02 22692.06 21998.98 29289.06 29998.52 26497.54 300
PatchmatchNetpermissive91.98 29691.87 28892.30 32894.60 34779.71 35495.12 21793.59 32889.52 28693.61 31097.02 22677.94 32399.18 26490.84 26094.57 35198.01 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DROMVSNet97.90 6097.94 4497.79 10698.66 12895.14 11998.31 3299.66 297.57 6195.95 24297.01 22896.99 5599.82 2997.66 3399.64 6698.39 240
SCA93.38 27393.52 25992.96 31796.24 31281.40 34993.24 29794.00 32391.58 26594.57 27896.97 22987.94 27099.42 20789.47 29297.66 30098.06 274
Patchmatch-test93.60 26893.25 26494.63 27796.14 32187.47 29296.04 15994.50 32093.57 21896.47 21896.97 22976.50 33398.61 32690.67 27098.41 26997.81 291
CostFormer89.75 31989.25 31791.26 33694.69 34678.00 35995.32 20591.98 34281.50 34890.55 34896.96 23171.06 35798.89 30088.59 30592.63 35696.87 319
diffmvs96.04 17196.23 15995.46 24697.35 27488.03 28193.42 29099.08 3794.09 20696.66 20996.93 23293.85 17599.29 25096.01 9198.67 25399.06 164
114514_t93.96 25893.22 26596.19 21499.06 8890.97 23195.99 16398.94 7473.88 36893.43 31896.93 23292.38 21299.37 22989.09 29799.28 18298.25 259
Test_1112_low_res93.53 27092.86 27095.54 24298.60 13788.86 26492.75 30598.69 14282.66 34492.65 33296.92 23484.75 29399.56 16990.94 25797.76 29198.19 264
tpmrst90.31 31190.61 30989.41 34494.06 35572.37 37395.06 22593.69 32488.01 30292.32 33896.86 23577.45 32798.82 30591.04 25487.01 36697.04 313
PHI-MVS96.96 12196.53 14698.25 7297.48 26496.50 5996.76 12398.85 9493.52 21996.19 23496.85 23695.94 10299.42 20793.79 20599.43 14098.83 201
tttt051793.31 27492.56 28195.57 23998.71 12287.86 28397.44 8887.17 36595.79 14097.47 16296.84 23764.12 36699.81 3296.20 7999.32 17599.02 170
patchmatchnet-post96.84 23777.36 32999.42 207
ADS-MVSNet291.47 30290.51 31094.36 28895.51 33485.63 31495.05 22695.70 30483.46 34192.69 33096.84 23779.15 31999.41 21685.66 33390.52 35998.04 278
ADS-MVSNet90.95 30890.26 31293.04 31395.51 33482.37 34395.05 22693.41 32983.46 34192.69 33096.84 23779.15 31998.70 31785.66 33390.52 35998.04 278
HY-MVS91.43 1592.58 28491.81 29094.90 26696.49 30688.87 26397.31 9494.62 31885.92 32090.50 34996.84 23785.05 29099.40 21883.77 34895.78 33996.43 335
UnsupCasMVSNet_bld94.72 22894.26 23996.08 21898.62 13490.54 24193.38 29398.05 22890.30 27997.02 18996.80 24289.54 25499.16 26988.44 30696.18 33398.56 229
HQP_MVS96.66 14696.33 15697.68 11798.70 12494.29 14896.50 13498.75 12596.36 10696.16 23596.77 24391.91 22599.46 19792.59 22799.20 19199.28 115
plane_prior496.77 243
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16493.66 17693.42 29098.36 18594.74 18296.58 21296.76 24596.54 8298.99 29094.87 15899.27 18499.15 140
CANet95.86 18095.65 18396.49 19896.41 30890.82 23394.36 25198.41 17894.94 17692.62 33596.73 24692.68 20099.71 10095.12 14999.60 7898.94 179
112194.26 24693.26 26397.27 15398.26 17394.73 13095.86 17197.71 24677.96 36294.53 28096.71 24791.93 22399.40 21887.71 31398.64 25897.69 295
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24595.23 11394.15 26396.90 28193.26 22898.04 12196.70 24894.41 16198.89 30094.77 16599.14 19998.37 242
test22298.17 18593.24 18692.74 30797.61 25875.17 36694.65 27796.69 24990.96 23598.66 25597.66 296
新几何197.25 15698.29 16794.70 13597.73 24477.98 36194.83 27396.67 25092.08 21899.45 20188.17 31198.65 25797.61 298
miper_ehance_all_eth94.69 22994.70 21894.64 27695.77 32986.22 31091.32 33298.24 19891.67 26297.05 18696.65 25188.39 26799.22 26294.88 15798.34 27098.49 234
MVS_111021_LR96.82 13296.55 14397.62 12098.27 17195.34 10893.81 28098.33 19094.59 18996.56 21496.63 25296.61 7898.73 31494.80 16199.34 16698.78 207
CDPH-MVS95.45 19694.65 22097.84 10498.28 16994.96 12493.73 28298.33 19085.03 33395.44 25996.60 25395.31 13299.44 20490.01 28499.13 20399.11 155
CMPMVSbinary73.10 2392.74 28291.39 29496.77 18193.57 36094.67 13694.21 26097.67 24880.36 35493.61 31096.60 25382.85 30297.35 35984.86 34198.78 24498.29 256
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 21994.12 24597.14 16097.64 25493.57 17893.96 27497.06 27690.05 28296.30 22896.55 25586.10 28499.47 19490.10 28399.31 17798.40 238
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 16995.63 18497.36 14998.19 18095.55 9295.44 19398.82 11492.29 25495.70 25596.55 25592.63 20398.69 31891.75 24299.33 17397.85 287
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12997.59 2495.97 16598.20 20395.51 15395.06 26696.53 25794.10 16999.70 10994.29 18499.15 19899.13 146
EPMVS89.26 32288.55 32691.39 33492.36 36979.11 35595.65 18679.86 37288.60 29693.12 32396.53 25770.73 35998.10 35390.75 26489.32 36396.98 314
HyFIR lowres test93.72 26392.65 27896.91 17398.93 10191.81 22091.23 33498.52 16482.69 34396.46 21996.52 25980.38 31499.90 1390.36 28098.79 24399.03 168
BH-RMVSNet94.56 23794.44 23694.91 26497.57 25787.44 29393.78 28196.26 29393.69 21796.41 22196.50 26092.10 21799.00 28885.96 32997.71 29598.31 251
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 7298.89 7995.65 14598.51 6296.46 26192.15 21499.81 3295.14 14698.58 26399.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 19298.16 18792.12 21198.15 21485.90 32193.49 31496.43 26292.47 21099.38 22687.66 31698.62 25998.23 260
tpm288.47 32787.69 33190.79 33894.98 34377.34 36295.09 22091.83 34377.51 36489.40 35596.41 26367.83 36398.73 31483.58 35092.60 35796.29 337
OpenMVS_ROBcopyleft91.80 1493.64 26793.05 26695.42 24797.31 28291.21 22795.08 22296.68 29081.56 34796.88 20096.41 26390.44 24199.25 25785.39 33697.67 29995.80 343
CL-MVSNet_self_test95.04 21294.79 21695.82 23097.51 26389.79 24891.14 33696.82 28493.05 23896.72 20696.40 26590.82 23699.16 26991.95 23498.66 25598.50 233
F-COLMAP95.30 20294.38 23798.05 9198.64 12996.04 7495.61 18998.66 14989.00 29193.22 32296.40 26592.90 19599.35 23487.45 32197.53 30598.77 210
bset_n11_16_dypcd94.53 23993.95 25296.25 21097.56 25989.85 24788.52 35891.32 34794.90 17997.51 15496.38 26782.34 30499.78 4397.22 4699.80 3699.12 151
NCCC96.52 15295.99 17198.10 8497.81 22495.68 8795.00 22998.20 20395.39 15895.40 26196.36 26893.81 17699.45 20193.55 21298.42 26899.17 136
new_pmnet92.34 28991.69 29294.32 28996.23 31489.16 25992.27 31692.88 33484.39 34095.29 26296.35 26985.66 28796.74 36584.53 34397.56 30397.05 312
cl2293.25 27692.84 27294.46 28594.30 35086.00 31291.09 33896.64 29190.74 27495.79 24996.31 27078.24 32298.77 31094.15 19098.34 27098.62 224
tpmvs90.79 30990.87 30390.57 34092.75 36876.30 36595.79 17693.64 32791.04 27391.91 34196.26 27177.19 33198.86 30489.38 29489.85 36296.56 333
test_prior395.91 17795.39 19097.46 13997.79 23494.26 15293.33 29598.42 17694.21 20194.02 29596.25 27293.64 18099.34 23691.90 23598.96 22298.79 205
test_prior293.33 29594.21 20194.02 29596.25 27293.64 18091.90 23598.96 222
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16698.58 16095.08 17098.02 12496.25 27297.92 1697.60 35888.68 30498.74 24899.11 155
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14793.99 16194.60 24598.69 14290.20 28095.78 25196.21 27592.73 19998.98 29290.58 27398.86 23697.42 304
hse-mvs295.77 18295.09 19897.79 10697.84 22095.51 9595.66 18395.43 31396.58 9697.21 17296.16 27684.14 29699.54 17695.89 9896.92 31798.32 249
MVSFormer96.14 16796.36 15495.49 24497.68 24987.81 28698.67 1399.02 5296.50 10094.48 28396.15 27786.90 28099.92 498.73 799.13 20398.74 212
jason94.39 24494.04 24895.41 24998.29 16787.85 28592.74 30796.75 28785.38 33095.29 26296.15 27788.21 26999.65 13894.24 18699.34 16698.74 212
jason: jason.
test_yl94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
DCV-MVSNet94.40 24294.00 24995.59 23796.95 29589.52 25294.75 24195.55 31096.18 11696.79 20196.14 27981.09 31099.18 26490.75 26497.77 28998.07 270
dp88.08 33088.05 32888.16 35092.85 36668.81 37594.17 26192.88 33485.47 32691.38 34496.14 27968.87 36298.81 30786.88 32483.80 36996.87 319
AUN-MVS93.95 26092.69 27797.74 11097.80 22895.38 10395.57 19095.46 31291.26 27092.64 33396.10 28274.67 34199.55 17393.72 20896.97 31698.30 253
MCST-MVS96.24 16295.80 17897.56 12398.75 11694.13 15694.66 24398.17 20990.17 28196.21 23396.10 28295.14 13699.43 20694.13 19198.85 23899.13 146
TEST997.84 22095.23 11393.62 28498.39 18186.81 31393.78 30095.99 28494.68 15199.52 182
train_agg95.46 19594.66 21997.88 10197.84 22095.23 11393.62 28498.39 18187.04 31193.78 30095.99 28494.58 15699.52 18291.76 24198.90 23098.89 192
MSDG95.33 20095.13 19695.94 22697.40 27291.85 21891.02 33998.37 18495.30 16196.31 22795.99 28494.51 15998.38 34289.59 29097.65 30197.60 299
agg_prior195.39 19894.60 22597.75 10997.80 22894.96 12493.39 29298.36 18587.20 30993.49 31495.97 28794.65 15399.53 17891.69 24398.86 23698.77 210
test_897.81 22495.07 12293.54 28798.38 18387.04 31193.71 30595.96 28894.58 15699.52 182
CSCG97.40 9997.30 9797.69 11698.95 9894.83 12797.28 9698.99 6396.35 10898.13 10995.95 28995.99 10199.66 13694.36 18399.73 4898.59 227
TAPA-MVS93.32 1294.93 21694.23 24097.04 16698.18 18394.51 14095.22 21498.73 12981.22 35096.25 23195.95 28993.80 17798.98 29289.89 28698.87 23497.62 297
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 22393.87 25497.47 13698.12 19493.73 17194.56 24798.70 13985.45 32894.70 27695.93 29191.77 22799.63 14386.45 32799.14 19999.05 166
baseline193.14 27892.64 27994.62 27897.34 27887.20 29896.67 13193.02 33294.71 18496.51 21795.83 29281.64 30598.60 32890.00 28588.06 36498.07 270
sss94.22 24893.72 25695.74 23397.71 24789.95 24593.84 27796.98 27888.38 29993.75 30395.74 29387.94 27098.89 30091.02 25598.10 27998.37 242
CNLPA95.04 21294.47 23396.75 18297.81 22495.25 11294.12 26797.89 23494.41 19394.57 27895.69 29490.30 24598.35 34586.72 32698.76 24696.64 330
PCF-MVS89.43 1892.12 29490.64 30896.57 19497.80 22893.48 18189.88 35298.45 17074.46 36796.04 23995.68 29590.71 23899.31 24373.73 36599.01 22096.91 318
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 22994.75 21794.52 28497.95 21087.53 29194.07 26897.01 27793.99 20897.10 18095.65 29692.65 20298.95 29787.60 31796.74 32497.09 310
CANet_DTU94.65 23394.21 24295.96 22295.90 32489.68 24993.92 27597.83 24093.19 23190.12 35295.64 29788.52 26499.57 16893.27 21799.47 12498.62 224
PatchMatch-RL94.61 23593.81 25597.02 16898.19 18095.72 8393.66 28397.23 26788.17 30194.94 27195.62 29891.43 22998.57 32987.36 32297.68 29896.76 327
tpm cat188.01 33187.33 33290.05 34394.48 34876.28 36694.47 25094.35 32273.84 36989.26 35695.61 29973.64 34698.30 34784.13 34486.20 36795.57 348
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29998.69 296.42 13798.09 22095.86 13695.15 26595.54 30094.26 16599.81 3294.06 19398.51 26698.47 235
AdaColmapbinary95.11 20994.62 22496.58 19297.33 28094.45 14394.92 23298.08 22293.15 23693.98 29895.53 30194.34 16399.10 27885.69 33298.61 26096.20 338
thisisatest053092.71 28391.76 29195.56 24198.42 15988.23 27496.03 16087.35 36494.04 20796.56 21495.47 30264.03 36799.77 5394.78 16499.11 20798.68 220
WTY-MVS93.55 26993.00 26895.19 25597.81 22487.86 28393.89 27696.00 29889.02 29094.07 29395.44 30386.27 28399.33 23987.69 31596.82 32198.39 240
CS-MVS-test96.62 14896.59 13896.69 18697.88 21593.16 18897.21 10199.53 695.61 14893.72 30495.33 30495.49 12399.69 11795.37 13199.19 19597.22 308
PLCcopyleft91.02 1694.05 25792.90 26997.51 12898.00 20595.12 12194.25 25698.25 19786.17 31791.48 34395.25 30591.01 23399.19 26385.02 34096.69 32598.22 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 31488.90 32493.32 30594.20 35485.34 31891.25 33392.56 33978.59 35993.82 29995.17 30667.36 36498.69 31889.08 29898.03 28295.92 340
CS-MVS95.98 17596.24 15895.20 25497.26 28389.88 24695.84 17499.39 993.89 21294.28 28695.15 30794.81 14699.62 15196.11 8399.40 15096.10 339
NP-MVS98.14 19093.72 17295.08 308
HQP-MVS95.17 20894.58 22896.92 17197.85 21692.47 20194.26 25398.43 17393.18 23292.86 32795.08 30890.33 24299.23 26090.51 27698.74 24899.05 166
cdsmvs_eth3d_5k24.22 34032.30 3430.00 3580.00 3810.00 3820.00 36998.10 2190.00 3760.00 37795.06 31097.54 290.00 3770.00 3750.00 3750.00 373
lupinMVS93.77 26193.28 26295.24 25297.68 24987.81 28692.12 31896.05 29684.52 33794.48 28395.06 31086.90 28099.63 14393.62 21199.13 20398.27 257
1112_ss94.12 25393.42 26096.23 21198.59 13990.85 23294.24 25798.85 9485.49 32592.97 32594.94 31286.01 28599.64 14191.78 24097.92 28598.20 263
ab-mvs-re7.91 34410.55 3470.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 37794.94 3120.00 3810.00 3770.00 3750.00 3750.00 373
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28894.39 14495.46 19298.73 12996.03 12594.72 27494.92 31496.28 9899.69 11793.81 20497.98 28398.09 267
EPNet_dtu91.39 30390.75 30693.31 30690.48 37382.61 34194.80 23892.88 33493.39 22381.74 37194.90 31581.36 30899.11 27688.28 30998.87 23498.21 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 26592.77 27696.42 20297.91 21192.54 19991.17 33597.47 26384.99 33493.08 32494.74 31689.90 25099.00 28887.54 31998.09 28097.72 293
Effi-MVS+96.19 16596.01 16996.71 18497.43 27092.19 21096.12 15599.10 3195.45 15593.33 32194.71 31797.23 4399.56 16993.21 21997.54 30498.37 242
GA-MVS92.83 28192.15 28694.87 26896.97 29487.27 29790.03 34796.12 29591.83 26194.05 29494.57 31876.01 33798.97 29692.46 22997.34 31298.36 247
miper_enhance_ethall93.14 27892.78 27594.20 29293.65 35885.29 32089.97 34897.85 23685.05 33296.15 23794.56 31985.74 28699.14 27193.74 20698.34 27098.17 266
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 20188.42 27093.99 27198.21 20092.98 24195.91 24494.53 32096.39 9299.72 8695.43 12798.19 27595.64 345
PVSNet_Blended93.96 25893.65 25794.91 26497.79 23487.40 29491.43 32798.68 14484.50 33894.51 28194.48 32393.04 19199.30 24689.77 28898.61 26098.02 280
PAPM_NR94.61 23594.17 24495.96 22298.36 16391.23 22695.93 16997.95 23092.98 24193.42 31994.43 32490.53 23998.38 34287.60 31796.29 33298.27 257
API-MVS95.09 21195.01 20395.31 25096.61 30394.02 15996.83 11997.18 27095.60 14995.79 24994.33 32594.54 15898.37 34485.70 33198.52 26493.52 358
mvs-test196.20 16495.50 18998.32 6496.90 29998.16 595.07 22398.09 22095.86 13693.63 30894.32 32694.26 16599.71 10094.06 19397.27 31597.07 311
alignmvs96.01 17395.52 18897.50 13197.77 23994.71 13296.07 15796.84 28297.48 6796.78 20594.28 32785.50 28899.40 21896.22 7898.73 25198.40 238
CLD-MVS95.47 19495.07 19996.69 18698.27 17192.53 20091.36 32898.67 14791.22 27195.78 25194.12 32895.65 11998.98 29290.81 26199.72 5198.57 228
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 28592.20 28593.57 30296.49 30686.66 30493.51 28894.73 31789.96 28394.95 27093.87 32990.24 24798.61 32681.18 35494.88 34695.45 349
canonicalmvs97.23 11197.21 10697.30 15297.65 25394.39 14497.84 6299.05 4397.42 6996.68 20893.85 33097.63 2699.33 23996.29 7798.47 26798.18 265
xiu_mvs_v2_base94.22 24894.63 22392.99 31697.32 28184.84 32892.12 31897.84 23891.96 25894.17 28993.43 33196.07 10099.71 10091.27 24997.48 30794.42 354
CHOSEN 280x42089.98 31589.19 32192.37 32795.60 33381.13 35186.22 36297.09 27481.44 34987.44 36493.15 33273.99 34299.47 19488.69 30399.07 21396.52 334
KD-MVS_2432*160088.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
miper_refine_blended88.93 32487.74 32992.49 32388.04 37481.99 34589.63 35495.62 30691.35 26795.06 26693.11 33356.58 37398.63 32485.19 33795.07 34496.85 321
thres600view792.03 29591.43 29393.82 29698.19 18084.61 33096.27 14590.39 35596.81 8896.37 22393.11 33373.44 35099.49 18880.32 35597.95 28497.36 305
E-PMN89.52 32189.78 31588.73 34693.14 36377.61 36083.26 36592.02 34194.82 18193.71 30593.11 33375.31 33996.81 36285.81 33096.81 32291.77 364
thres100view90091.76 29991.26 29893.26 30798.21 17884.50 33196.39 13890.39 35596.87 8696.33 22493.08 33773.44 35099.42 20778.85 35997.74 29295.85 341
131492.38 28892.30 28492.64 32295.42 33885.15 32395.86 17196.97 27985.40 32990.62 34693.06 33891.12 23297.80 35686.74 32595.49 34394.97 352
PAPM87.64 33485.84 33993.04 31396.54 30484.99 32688.42 35995.57 30979.52 35683.82 36893.05 33980.57 31398.41 33962.29 37192.79 35595.71 344
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 25292.82 19594.22 25998.60 15791.61 26393.42 31992.90 34096.73 7399.70 10992.60 22597.89 28897.74 292
ET-MVSNet_ETH3D91.12 30489.67 31695.47 24596.41 30889.15 26091.54 32690.23 35889.07 28986.78 36792.84 34169.39 36199.44 20494.16 18996.61 32797.82 289
MVS90.02 31389.20 32092.47 32594.71 34586.90 30295.86 17196.74 28864.72 37090.62 34692.77 34292.54 20798.39 34179.30 35795.56 34292.12 362
BH-w/o92.14 29391.94 28792.73 32197.13 29085.30 31992.46 31295.64 30589.33 28894.21 28892.74 34389.60 25298.24 34881.68 35294.66 34894.66 353
PAPR92.22 29191.27 29795.07 25995.73 33188.81 26591.97 32197.87 23585.80 32290.91 34592.73 34491.16 23198.33 34679.48 35695.76 34098.08 268
MAR-MVS94.21 25093.03 26797.76 10896.94 29797.44 3496.97 11597.15 27187.89 30592.00 34092.73 34492.14 21599.12 27383.92 34597.51 30696.73 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 32088.44 32793.25 30895.62 33282.71 34093.82 27885.94 36788.89 29387.35 36592.54 34671.23 35699.33 23986.01 32894.60 35097.72 293
PS-MVSNAJ94.10 25494.47 23393.00 31597.35 27484.88 32791.86 32297.84 23891.96 25894.17 28992.50 34795.82 10899.71 10091.27 24997.48 30794.40 355
PMMVS92.39 28791.08 29996.30 20993.12 36492.81 19690.58 34395.96 30079.17 35891.85 34292.27 34890.29 24698.66 32389.85 28796.68 32697.43 303
PVSNet86.72 1991.10 30590.97 30291.49 33397.56 25978.04 35887.17 36094.60 31984.65 33692.34 33792.20 34987.37 27898.47 33685.17 33997.69 29797.96 282
tfpn200view991.55 30191.00 30093.21 31098.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29295.85 341
thres40091.68 30091.00 30093.71 29998.02 19984.35 33395.70 17990.79 35296.26 11095.90 24792.13 35073.62 34799.42 20778.85 35997.74 29297.36 305
MVEpermissive73.61 2286.48 33685.92 33888.18 34996.23 31485.28 32181.78 36775.79 37386.01 31882.53 37091.88 35292.74 19887.47 37271.42 36994.86 34791.78 363
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 32389.22 31888.61 34793.00 36577.34 36282.91 36690.92 35194.64 18692.63 33491.81 35376.30 33597.02 36083.83 34796.90 31991.48 365
thisisatest051590.43 31089.18 32294.17 29497.07 29285.44 31789.75 35387.58 36388.28 30093.69 30791.72 35465.27 36599.58 16290.59 27298.67 25397.50 302
test_method66.88 33866.13 34169.11 35462.68 37725.73 37949.76 36896.04 29714.32 37364.27 37491.69 35573.45 34988.05 37176.06 36466.94 37193.54 357
EIA-MVS96.04 17195.77 18096.85 17697.80 22892.98 19296.12 15599.16 2094.65 18593.77 30291.69 35595.68 11799.67 13094.18 18898.85 23897.91 285
cascas91.89 29791.35 29593.51 30394.27 35185.60 31588.86 35798.61 15679.32 35792.16 33991.44 35789.22 26198.12 35290.80 26297.47 30996.82 324
IB-MVS85.98 2088.63 32686.95 33593.68 30095.12 34184.82 32990.85 34090.17 35987.55 30688.48 36091.34 35858.01 37099.59 16087.24 32393.80 35396.63 332
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 30790.42 31192.77 32097.47 26883.98 33694.01 27091.18 35095.12 16995.44 25991.21 35973.93 34399.31 24377.76 36297.63 30295.01 351
test0.0.03 190.11 31289.21 31992.83 31993.89 35686.87 30391.74 32488.74 36292.02 25694.71 27591.14 36073.92 34494.48 36883.75 34992.94 35497.16 309
ETV-MVS96.13 16895.90 17696.82 17897.76 24093.89 16395.40 19898.95 7395.87 13595.58 25891.00 36196.36 9599.72 8693.36 21398.83 24096.85 321
test-LLR89.97 31689.90 31490.16 34194.24 35274.98 36889.89 34989.06 36092.02 25689.97 35390.77 36273.92 34498.57 32991.88 23797.36 31096.92 316
test-mter87.92 33287.17 33390.16 34194.24 35274.98 36889.89 34989.06 36086.44 31689.97 35390.77 36254.96 37898.57 32991.88 23797.36 31096.92 316
TESTMET0.1,187.20 33586.57 33789.07 34593.62 35972.84 37289.89 34987.01 36685.46 32789.12 35890.20 36456.00 37697.72 35790.91 25896.92 31796.64 330
gm-plane-assit91.79 37071.40 37481.67 34690.11 36598.99 29084.86 341
DWT-MVSNet_test87.92 33286.77 33691.39 33493.18 36178.62 35695.10 21891.42 34685.58 32488.00 36188.73 36660.60 36998.90 29890.60 27187.70 36596.65 329
DeepMVS_CXcopyleft77.17 35390.94 37285.28 32174.08 37652.51 37180.87 37288.03 36775.25 34070.63 37359.23 37284.94 36875.62 368
PVSNet_081.89 2184.49 33783.21 34088.34 34895.76 33074.97 37083.49 36492.70 33878.47 36087.94 36286.90 36883.38 30196.63 36673.44 36666.86 37293.40 359
GG-mvs-BLEND90.60 33991.00 37184.21 33598.23 3872.63 37782.76 36984.11 36956.14 37596.79 36372.20 36792.09 35890.78 366
tmp_tt57.23 33962.50 34241.44 35534.77 37849.21 37883.93 36360.22 37915.31 37271.11 37379.37 37070.09 36044.86 37464.76 37082.93 37030.25 370
X-MVStestdata92.86 28090.83 30598.94 1899.15 7397.66 2097.77 6598.83 10697.42 6996.32 22536.50 37196.49 8699.72 8695.66 10999.37 15599.45 69
testmvs12.33 34215.23 3453.64 3575.77 3802.23 38188.99 3563.62 3802.30 3755.29 37513.09 3724.52 3801.95 3755.16 3748.32 3746.75 372
test12312.59 34115.49 3443.87 3566.07 3792.55 38090.75 3412.59 3812.52 3745.20 37613.02 3734.96 3791.85 3765.20 3739.09 3737.23 371
test_post10.87 37476.83 33299.07 281
test_post194.98 23010.37 37576.21 33699.04 28489.47 292
test_blank0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet_test0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
pcd_1.5k_mvsjas7.98 34310.65 3460.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 37695.82 1080.00 3770.00 3750.00 3750.00 373
sosnet-low-res0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
sosnet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uncertanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
Regformer0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
uanet0.00 3450.00 3480.00 3580.00 3810.00 3820.00 3690.00 3820.00 3760.00 3770.00 3760.00 3810.00 3770.00 3750.00 3750.00 373
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
MSC_two_6792asdad98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
No_MVS98.22 7497.75 24295.34 10898.16 21299.75 6595.87 10099.51 11099.57 32
eth-test20.00 381
eth-test0.00 381
IU-MVS99.22 5895.40 10198.14 21585.77 32398.36 7995.23 13899.51 11099.49 53
save fliter98.48 15394.71 13294.53 24898.41 17895.02 174
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12498.89 7999.75 6595.48 12099.52 10599.53 41
GSMVS98.06 274
test_part299.03 9496.07 7398.08 116
sam_mvs177.80 32498.06 274
sam_mvs77.38 328
MTGPAbinary98.73 129
MTMP96.55 13274.60 374
test9_res91.29 24898.89 23399.00 171
agg_prior290.34 28198.90 23099.10 159
agg_prior97.80 22894.96 12498.36 18593.49 31499.53 178
test_prior495.38 10393.61 286
test_prior97.46 13997.79 23494.26 15298.42 17699.34 23698.79 205
旧先验293.35 29477.95 36395.77 25398.67 32290.74 267
新几何293.43 289
无先验93.20 29897.91 23280.78 35199.40 21887.71 31397.94 283
原ACMM292.82 303
testdata299.46 19787.84 312
segment_acmp95.34 130
testdata192.77 30493.78 214
test1297.46 13997.61 25694.07 15797.78 24293.57 31293.31 18699.42 20798.78 24498.89 192
plane_prior798.70 12494.67 136
plane_prior698.38 16194.37 14691.91 225
plane_prior598.75 12599.46 19792.59 22799.20 19199.28 115
plane_prior394.51 14095.29 16296.16 235
plane_prior296.50 13496.36 106
plane_prior198.49 151
plane_prior94.29 14895.42 19594.31 19898.93 228
n20.00 382
nn0.00 382
door-mid98.17 209
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
HQP-NCC97.85 21694.26 25393.18 23292.86 327
ACMP_Plane97.85 21694.26 25393.18 23292.86 327
BP-MVS90.51 276
HQP4-MVS92.87 32699.23 26099.06 164
HQP3-MVS98.43 17398.74 248
HQP2-MVS90.33 242
MDTV_nov1_ep13_2view57.28 37794.89 23380.59 35294.02 29578.66 32185.50 33597.82 289
ACMMP++_ref99.52 105
ACMMP++99.55 94
Test By Simon94.51 159