This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 4
test_part199.41 299.62 298.80 3199.76 596.58 5799.49 399.65 299.89 299.94 299.77 299.03 499.92 499.05 399.99 299.90 1
UA-Net98.88 898.76 1499.22 299.11 8197.89 1399.47 499.32 899.08 1197.87 13499.67 396.47 8499.92 497.88 2399.98 399.85 4
pmmvs699.07 599.24 598.56 5099.81 296.38 6298.87 899.30 999.01 1799.63 1099.66 499.27 299.68 11597.75 3099.89 2199.62 25
UniMVSNet_ETH3D99.12 499.28 498.65 4499.77 396.34 6499.18 699.20 1499.67 399.73 499.65 599.15 399.86 2197.22 4499.92 1399.77 9
OurMVSNet-221017-098.61 1798.61 2498.63 4699.77 396.35 6399.17 799.05 4198.05 4099.61 1299.52 693.72 17499.88 1998.72 1099.88 2299.65 23
ANet_high98.31 2998.94 796.41 19699.33 4389.64 23797.92 5299.56 599.27 799.66 999.50 797.67 2699.83 2997.55 3599.98 399.77 9
mvs_tets98.90 698.94 798.75 3499.69 996.48 6098.54 1999.22 1196.23 10399.71 599.48 898.77 799.93 298.89 499.95 699.84 6
gg-mvs-nofinetune88.28 31486.96 31992.23 31492.84 35084.44 31898.19 3974.60 35599.08 1187.01 34899.47 956.93 35798.23 33278.91 34095.61 32594.01 338
PS-MVSNAJss98.53 2098.63 2098.21 7599.68 1094.82 12098.10 4399.21 1296.91 8099.75 399.45 1095.82 10699.92 498.80 599.96 599.89 2
test_djsdf98.73 1298.74 1798.69 4199.63 1396.30 6698.67 1299.02 5096.50 9299.32 2199.44 1197.43 3199.92 498.73 899.95 699.86 3
Anonymous2023121198.55 1898.76 1497.94 9398.79 10594.37 13798.84 999.15 2299.37 499.67 799.43 1295.61 11899.72 7798.12 1799.86 2499.73 16
anonymousdsp98.72 1598.63 2098.99 1399.62 1497.29 3798.65 1599.19 1695.62 13599.35 2099.37 1397.38 3399.90 1498.59 1299.91 1699.77 9
jajsoiax98.77 1098.79 1398.74 3699.66 1196.48 6098.45 2499.12 2695.83 12899.67 799.37 1398.25 1199.92 498.77 699.94 999.82 7
K. test v396.44 15196.28 15296.95 16099.41 3691.53 21297.65 6690.31 34098.89 1998.93 3899.36 1584.57 28899.92 497.81 2699.56 8299.39 84
LTVRE_ROB96.88 199.18 399.34 398.72 3999.71 896.99 4499.69 299.57 499.02 1699.62 1199.36 1598.53 899.52 16898.58 1399.95 699.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo97.49 8997.57 7997.26 14799.56 1692.33 19298.28 3096.97 26998.30 3399.45 1599.35 1788.43 25999.89 1798.01 2099.76 3899.54 36
Gipumacopyleft98.07 4198.31 3097.36 14199.76 596.28 6798.51 2099.10 2998.76 2296.79 18999.34 1896.61 7498.82 29096.38 6999.50 10696.98 299
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM91.79 28690.69 29595.11 24593.80 34090.98 21994.16 25091.78 32896.38 9690.30 33399.30 1972.02 33998.90 28388.28 29390.17 34395.45 331
TransMVSNet (Re)98.38 2698.67 1897.51 12199.51 2393.39 17498.20 3898.87 8298.23 3599.48 1399.27 2098.47 999.55 16096.52 6499.53 9499.60 26
Baseline_NR-MVSNet97.72 7397.79 5397.50 12499.56 1693.29 17595.44 18198.86 8498.20 3798.37 7399.24 2194.69 14499.55 16095.98 8699.79 3499.65 23
v7n98.73 1298.99 697.95 9299.64 1294.20 14598.67 1299.14 2499.08 1199.42 1699.23 2296.53 7999.91 1399.27 299.93 1199.73 16
pm-mvs198.47 2298.67 1897.86 9899.52 2294.58 13098.28 3099.00 5897.57 6099.27 2499.22 2398.32 1099.50 17397.09 5199.75 4299.50 43
TDRefinement98.90 698.86 999.02 999.54 2098.06 799.34 599.44 798.85 2099.00 3699.20 2497.42 3299.59 14797.21 4599.76 3899.40 81
GBi-Net96.99 11496.80 12697.56 11697.96 19893.67 16498.23 3398.66 14295.59 13797.99 11899.19 2589.51 25099.73 7394.60 15599.44 12499.30 102
test196.99 11496.80 12697.56 11697.96 19893.67 16498.23 3398.66 14295.59 13797.99 11899.19 2589.51 25099.73 7394.60 15599.44 12499.30 102
FMVSNet197.95 5098.08 3697.56 11699.14 7993.67 16498.23 3398.66 14297.41 7099.00 3699.19 2595.47 12399.73 7395.83 9099.76 3899.30 102
VDDNet96.98 11796.84 12397.41 13799.40 3793.26 17697.94 5095.31 29899.26 898.39 7299.18 2887.85 26899.62 13995.13 13499.09 19799.35 93
DSMNet-mixed92.19 28091.83 27793.25 29496.18 30083.68 32496.27 13593.68 31076.97 34792.54 31899.18 2889.20 25598.55 31583.88 32898.60 24997.51 286
v1097.55 8497.97 4196.31 20098.60 13089.64 23797.44 8099.02 5096.60 8898.72 4999.16 3093.48 17899.72 7798.76 799.92 1399.58 28
MIMVSNet198.51 2198.45 2798.67 4299.72 796.71 5098.76 1098.89 7598.49 2799.38 1899.14 3195.44 12599.84 2696.47 6799.80 3399.47 59
Vis-MVSNetpermissive98.27 3098.34 2998.07 8399.33 4395.21 11198.04 4699.46 697.32 7397.82 13999.11 3296.75 6899.86 2197.84 2599.36 14899.15 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8198.06 3896.23 20298.71 11689.44 24197.43 8298.82 10797.29 7598.74 4799.10 3393.86 16999.68 11598.61 1199.94 999.56 33
MVS-HIRNet88.40 31390.20 30182.99 33597.01 27660.04 35793.11 28885.61 35184.45 32188.72 34199.09 3484.72 28798.23 33282.52 33396.59 31390.69 348
ACMH93.61 998.44 2398.76 1497.51 12199.43 3393.54 17098.23 3399.05 4197.40 7199.37 1999.08 3598.79 699.47 18097.74 3199.71 5099.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 998.86 998.59 4899.55 1896.12 7198.48 2399.10 2999.36 599.29 2399.06 3697.27 3899.93 297.71 3299.91 1699.70 19
PEN-MVS98.75 1198.85 1198.44 5699.58 1595.67 8798.45 2499.15 2299.33 699.30 2299.00 3797.27 3899.92 497.64 3399.92 1399.75 14
DeepC-MVS95.41 497.82 6797.70 6198.16 7698.78 10795.72 8296.23 14099.02 5093.92 19998.62 5198.99 3897.69 2499.62 13996.18 7499.87 2399.15 131
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VPA-MVSNet98.27 3098.46 2597.70 10799.06 8693.80 15997.76 6099.00 5898.40 2999.07 3398.98 3996.89 6099.75 6097.19 4899.79 3499.55 35
lessismore_v097.05 15699.36 4192.12 20084.07 35298.77 4698.98 3985.36 28299.74 6797.34 4199.37 14599.30 102
testing_297.43 9497.71 6096.60 18198.91 9790.85 22196.01 15398.54 15694.78 16898.78 4398.96 4196.35 9299.54 16297.25 4299.82 2999.40 81
PS-CasMVS98.73 1298.85 1198.39 6099.55 1895.47 9798.49 2199.13 2599.22 999.22 2798.96 4197.35 3499.92 497.79 2899.93 1199.79 8
EU-MVSNet94.25 23694.47 22393.60 28798.14 18282.60 32797.24 9192.72 32185.08 31398.48 6398.94 4382.59 29498.76 29797.47 3899.53 9499.44 76
LCM-MVSNet-Re97.33 10297.33 9397.32 14398.13 18593.79 16096.99 10499.65 296.74 8599.47 1498.93 4496.91 5999.84 2690.11 26699.06 20398.32 236
XXY-MVS97.54 8597.70 6197.07 15599.46 2992.21 19697.22 9299.00 5894.93 16598.58 5698.92 4597.31 3699.41 20294.44 16199.43 13199.59 27
mvs_anonymous95.36 19296.07 16293.21 29696.29 29381.56 33094.60 23397.66 24193.30 21496.95 18398.91 4693.03 18899.38 21296.60 6097.30 30198.69 207
UGNet96.81 13096.56 13897.58 11596.64 28593.84 15897.75 6197.12 26496.47 9593.62 29198.88 4793.22 18399.53 16495.61 10099.69 5499.36 92
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 4798.04 3997.71 10598.69 12094.28 14297.86 5598.31 18698.79 2199.23 2698.86 4895.76 11399.61 14595.49 10499.36 14899.23 120
FC-MVSNet-test98.16 3498.37 2897.56 11699.49 2793.10 18198.35 2799.21 1298.43 2898.89 3998.83 4994.30 15999.81 3297.87 2499.91 1699.77 9
new-patchmatchnet95.67 17896.58 13692.94 30497.48 24880.21 33592.96 28998.19 20194.83 16698.82 4198.79 5093.31 18199.51 17295.83 9099.04 20499.12 142
WR-MVS_H98.65 1698.62 2298.75 3499.51 2396.61 5598.55 1899.17 1799.05 1499.17 2998.79 5095.47 12399.89 1797.95 2199.91 1699.75 14
ab-mvs96.59 14496.59 13596.60 18198.64 12292.21 19698.35 2797.67 23994.45 17996.99 17998.79 5094.96 13999.49 17490.39 26399.07 20098.08 253
EG-PatchMatch MVS97.69 7597.79 5397.40 13899.06 8693.52 17195.96 15798.97 6794.55 17898.82 4198.76 5397.31 3699.29 23697.20 4799.44 12499.38 86
nrg03098.54 1998.62 2298.32 6599.22 5795.66 8897.90 5399.08 3598.31 3299.02 3498.74 5497.68 2599.61 14597.77 2999.85 2699.70 19
VDD-MVS97.37 9997.25 9897.74 10498.69 12094.50 13397.04 10195.61 29498.59 2598.51 6098.72 5592.54 20299.58 14996.02 8299.49 11099.12 142
PatchT93.75 25093.57 24794.29 27995.05 32587.32 28296.05 14892.98 31797.54 6394.25 27098.72 5575.79 32599.24 24495.92 8895.81 32096.32 319
RPSCF97.87 6297.51 8398.95 1799.15 7198.43 397.56 7299.06 3996.19 10498.48 6398.70 5794.72 14399.24 24494.37 16699.33 16399.17 127
APDe-MVS98.14 3598.03 4098.47 5598.72 11396.04 7398.07 4599.10 2995.96 11798.59 5598.69 5896.94 5599.81 3296.64 5999.58 7699.57 32
IterMVS-LS96.92 12097.29 9595.79 22198.51 14088.13 26595.10 20698.66 14296.99 7798.46 6698.68 5992.55 20099.74 6796.91 5799.79 3499.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal97.72 7397.97 4196.94 16199.26 4892.23 19597.83 5798.45 16498.25 3499.13 3098.66 6096.65 7199.69 10993.92 18799.62 6398.91 178
FIs97.93 5598.07 3797.48 12899.38 3992.95 18498.03 4899.11 2798.04 4198.62 5198.66 6093.75 17399.78 4197.23 4399.84 2799.73 16
CP-MVSNet98.42 2498.46 2598.30 6899.46 2995.22 10998.27 3298.84 9299.05 1499.01 3598.65 6295.37 12699.90 1497.57 3499.91 1699.77 9
FMVSNet296.72 13696.67 13396.87 16697.96 19891.88 20697.15 9498.06 21895.59 13798.50 6298.62 6389.51 25099.65 12694.99 14299.60 7299.07 152
PMVScopyleft89.60 1796.71 13896.97 11695.95 21599.51 2397.81 1697.42 8397.49 25197.93 4395.95 22998.58 6496.88 6296.91 34489.59 27499.36 14893.12 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 26392.79 26294.78 26195.44 31988.15 26396.18 14297.20 25984.94 31794.10 27498.57 6577.67 31299.39 20995.17 12795.81 32096.81 308
Patchmtry95.03 20694.59 21896.33 19894.83 32790.82 22396.38 13097.20 25996.59 8997.49 14898.57 6577.67 31299.38 21292.95 21099.62 6398.80 193
ambc96.56 18798.23 16991.68 21197.88 5498.13 20898.42 6998.56 6794.22 16299.04 26994.05 18299.35 15398.95 167
3Dnovator96.53 297.61 8097.64 7097.50 12497.74 23193.65 16898.49 2198.88 8096.86 8297.11 16898.55 6895.82 10699.73 7395.94 8799.42 13499.13 137
IterMVS-SCA-FT95.86 17396.19 15594.85 25797.68 23585.53 30292.42 30197.63 24796.99 7798.36 7598.54 6987.94 26399.75 6097.07 5399.08 19899.27 113
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4599.21 6397.35 3597.96 4999.16 1898.34 3198.78 4398.52 7097.32 3599.45 18794.08 17899.67 5799.13 137
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3398.31 3097.98 9199.39 3895.22 10997.55 7399.20 1498.21 3699.25 2598.51 7198.21 1299.40 20494.79 14899.72 4799.32 96
RPMNet94.68 22394.60 21694.90 25495.44 31988.15 26396.18 14298.86 8497.43 6694.10 27498.49 7279.40 30499.76 5395.69 9395.81 32096.81 308
IterMVS95.42 19095.83 17194.20 28097.52 24783.78 32392.41 30297.47 25495.49 14198.06 11298.49 7287.94 26399.58 14996.02 8299.02 20599.23 120
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 6297.89 4697.81 10198.62 12794.82 12097.13 9798.79 10998.98 1898.74 4798.49 7295.80 11299.49 17495.04 13899.44 12499.11 145
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 5799.07 8595.87 7896.73 11799.05 4198.67 2398.84 4098.45 7597.58 2899.88 1996.45 6899.86 2499.54 36
3Dnovator+96.13 397.73 7297.59 7798.15 7998.11 18795.60 9098.04 4698.70 13298.13 3896.93 18498.45 7595.30 13099.62 13995.64 9898.96 20999.24 119
VPNet97.26 10697.49 8596.59 18399.47 2890.58 22896.27 13598.53 15797.77 4698.46 6698.41 7794.59 15099.68 11594.61 15499.29 17199.52 40
test_040297.84 6497.97 4197.47 12999.19 6694.07 14896.71 11898.73 12298.66 2498.56 5798.41 7796.84 6599.69 10994.82 14699.81 3098.64 210
v124096.74 13397.02 11595.91 21898.18 17588.52 25695.39 18798.88 8093.15 22398.46 6698.40 7992.80 19299.71 9298.45 1499.49 11099.49 51
SMA-MVScopyleft97.48 9097.11 10798.60 4798.83 10196.67 5296.74 11398.73 12291.61 24998.48 6398.36 8096.53 7999.68 11595.17 12799.54 9199.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6097.63 7298.67 4299.35 4296.84 4796.36 13198.79 10995.07 15897.88 13198.35 8197.24 4299.72 7796.05 7999.58 7699.45 66
v119296.83 12897.06 11296.15 20798.28 16189.29 24395.36 18998.77 11493.73 20298.11 10498.34 8293.02 18999.67 12098.35 1599.58 7699.50 43
pmmvs-eth3d96.49 14896.18 15697.42 13698.25 16694.29 13994.77 22898.07 21789.81 26797.97 12298.33 8393.11 18499.08 26595.46 11099.84 2798.89 182
PM-MVS97.36 10197.10 10898.14 8098.91 9796.77 4996.20 14198.63 14893.82 20098.54 5898.33 8393.98 16799.05 26895.99 8599.45 12398.61 215
test072699.24 5295.51 9496.89 10698.89 7595.92 12098.64 5098.31 8597.06 50
MP-MVS-pluss97.69 7597.36 9198.70 4099.50 2696.84 4795.38 18898.99 6192.45 23898.11 10498.31 8597.25 4199.77 4996.60 6099.62 6399.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 12597.08 11096.13 20898.42 15189.28 24495.41 18598.67 14094.21 18897.97 12298.31 8593.06 18599.65 12698.06 1999.62 6399.45 66
LFMVS95.32 19494.88 20296.62 18098.03 18991.47 21497.65 6690.72 33799.11 1097.89 13098.31 8579.20 30599.48 17793.91 18899.12 19398.93 173
V4297.04 11297.16 10596.68 17998.59 13291.05 21796.33 13398.36 17894.60 17497.99 11898.30 8993.32 18099.62 13997.40 4099.53 9499.38 86
casdiffmvs97.50 8897.81 5296.56 18798.51 14091.04 21895.83 16599.09 3497.23 7698.33 8198.30 8997.03 5299.37 21596.58 6299.38 14499.28 109
v14419296.69 13996.90 12296.03 21098.25 16688.92 24895.49 17998.77 11493.05 22598.09 10898.29 9192.51 20499.70 10198.11 1899.56 8299.47 59
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11398.23 19295.92 12098.40 7098.28 9297.06 5099.71 9295.48 10799.52 9999.26 114
test_0728_THIRD96.62 8798.40 7098.28 9297.10 4599.71 9295.70 9299.62 6399.58 28
MVS_Test96.27 15596.79 12894.73 26396.94 28086.63 29196.18 14298.33 18394.94 16396.07 22598.28 9295.25 13199.26 24197.21 4597.90 27498.30 239
FMVSNet593.39 26092.35 27196.50 18995.83 31090.81 22597.31 8698.27 18792.74 23496.27 21698.28 9262.23 35399.67 12090.86 24399.36 14899.03 158
abl_698.42 2498.19 3399.09 399.16 6898.10 597.73 6499.11 2797.76 4998.62 5198.27 9697.88 2099.80 3895.67 9499.50 10699.38 86
v192192096.72 13696.96 11895.99 21198.21 17088.79 25395.42 18398.79 10993.22 21798.19 9698.26 9792.68 19599.70 10198.34 1699.55 8899.49 51
SED-MVS97.94 5297.90 4498.07 8399.22 5795.35 10196.79 11098.83 9996.11 10799.08 3198.24 9897.87 2199.72 7795.44 11199.51 10499.14 134
test_241102_TWO98.83 9996.11 10798.62 5198.24 9896.92 5899.72 7795.44 11199.49 11099.49 51
v2v48296.78 13297.06 11295.95 21598.57 13488.77 25495.36 18998.26 18995.18 15397.85 13698.23 10092.58 19999.63 13197.80 2799.69 5499.45 66
LPG-MVS_test97.94 5297.67 6498.74 3699.15 7197.02 4297.09 9899.02 5095.15 15498.34 7898.23 10097.91 1899.70 10194.41 16399.73 4499.50 43
LGP-MVS_train98.74 3699.15 7197.02 4299.02 5095.15 15498.34 7898.23 10097.91 1899.70 10194.41 16399.73 4499.50 43
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2097.48 3098.35 2799.03 4895.88 12397.88 13198.22 10398.15 1399.74 6796.50 6699.62 6399.42 78
MIMVSNet93.42 25992.86 25995.10 24698.17 17788.19 26298.13 4293.69 30892.07 24195.04 25398.21 10480.95 30099.03 27281.42 33598.06 26898.07 255
EI-MVSNet96.63 14396.93 11995.74 22297.26 26788.13 26595.29 19697.65 24396.99 7797.94 12598.19 10592.55 20099.58 14996.91 5799.56 8299.50 43
CVMVSNet92.33 27892.79 26290.95 32097.26 26775.84 34895.29 19692.33 32481.86 32796.27 21698.19 10581.44 29698.46 32094.23 17398.29 26098.55 220
PVSNet_Blended_VisFu95.95 16995.80 17296.42 19499.28 4790.62 22795.31 19499.08 3588.40 28196.97 18298.17 10792.11 21199.78 4193.64 19599.21 17898.86 188
EI-MVSNet-UG-set97.32 10397.40 8897.09 15497.34 26292.01 20495.33 19297.65 24397.74 5098.30 8698.14 10895.04 13699.69 10997.55 3599.52 9999.58 28
test_241102_ONE99.22 5795.35 10198.83 9996.04 11299.08 3198.13 10997.87 2199.33 225
APD-MVS_3200maxsize98.13 3897.90 4498.79 3298.79 10597.31 3697.55 7398.92 7297.72 5398.25 8998.13 10997.10 4599.75 6095.44 11199.24 17799.32 96
QAPM95.88 17295.57 18196.80 17097.90 20491.84 20898.18 4098.73 12288.41 28096.42 20798.13 10994.73 14299.75 6088.72 28698.94 21398.81 192
ACMM93.33 1198.05 4297.79 5398.85 2599.15 7197.55 2696.68 11998.83 9995.21 15098.36 7598.13 10998.13 1599.62 13996.04 8099.54 9199.39 84
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 10397.39 8997.11 15297.36 25792.08 20295.34 19197.65 24397.74 5098.29 8798.11 11395.05 13499.68 11597.50 3799.50 10699.56 33
wuyk23d93.25 26495.20 18787.40 33496.07 30595.38 9997.04 10194.97 29995.33 14699.70 698.11 11398.14 1491.94 35177.76 34499.68 5674.89 350
DPE-MVS97.64 7797.35 9298.50 5298.85 10096.18 6895.21 20398.99 6195.84 12798.78 4398.08 11596.84 6599.81 3293.98 18599.57 7999.52 40
SD-MVS97.37 9997.70 6196.35 19798.14 18295.13 11296.54 12298.92 7295.94 11999.19 2898.08 11597.74 2395.06 34995.24 12399.54 9198.87 187
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3597.84 4999.02 998.81 10298.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.60 7699.76 5395.49 10499.20 17999.26 114
RE-MVS-def97.88 4798.81 10298.05 897.55 7398.86 8497.77 4698.20 9398.07 11796.94 5595.49 10499.20 17999.26 114
OPM-MVS97.54 8597.25 9898.41 5899.11 8196.61 5595.24 20198.46 16394.58 17798.10 10798.07 11797.09 4799.39 20995.16 12999.44 12499.21 122
AllTest97.20 11096.92 12098.06 8599.08 8396.16 6997.14 9699.16 1894.35 18397.78 14098.07 11795.84 10399.12 25891.41 23099.42 13498.91 178
TestCases98.06 8599.08 8396.16 6999.16 1894.35 18397.78 14098.07 11795.84 10399.12 25891.41 23099.42 13498.91 178
TSAR-MVS + MP.97.42 9597.23 10198.00 9099.38 3995.00 11597.63 6898.20 19693.00 22698.16 9898.06 12295.89 10199.72 7795.67 9499.10 19699.28 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 12596.58 13697.65 11199.18 6793.78 16198.68 1196.34 28197.91 4497.30 15998.06 12288.46 25899.85 2393.85 18999.40 14199.32 96
ACMMPcopyleft98.05 4297.75 5998.93 2199.23 5497.60 2298.09 4498.96 6895.75 13297.91 12798.06 12296.89 6099.76 5395.32 11899.57 7999.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 15495.98 16697.43 13598.25 16693.85 15796.74 11394.41 30597.72 5398.37 7398.03 12587.15 27299.53 16494.06 17999.07 20098.92 177
XVG-ACMP-BASELINE97.58 8397.28 9798.49 5399.16 6896.90 4696.39 12898.98 6495.05 15998.06 11298.02 12695.86 10299.56 15694.37 16699.64 6199.00 161
baseline97.44 9397.78 5696.43 19398.52 13990.75 22696.84 10799.03 4896.51 9197.86 13598.02 12696.67 7099.36 21797.09 5199.47 11699.19 124
PVSNet_BlendedMVS95.02 20794.93 19995.27 24097.79 22387.40 28094.14 25398.68 13788.94 27594.51 26598.01 12893.04 18699.30 23289.77 27299.49 11099.11 145
OpenMVScopyleft94.22 895.48 18695.20 18796.32 19997.16 27291.96 20597.74 6298.84 9287.26 29094.36 26998.01 12893.95 16899.67 12090.70 25398.75 23597.35 292
MVSTER94.21 23993.93 24295.05 24895.83 31086.46 29295.18 20497.65 24392.41 23997.94 12598.00 13072.39 33899.58 14996.36 7099.56 8299.12 142
IS-MVSNet96.93 11996.68 13297.70 10799.25 5194.00 15198.57 1696.74 27798.36 3098.14 10297.98 13188.23 26199.71 9293.10 20799.72 4799.38 86
test117298.08 4097.76 5799.05 698.78 10798.07 697.41 8498.85 8897.57 6098.15 10097.96 13296.60 7699.76 5395.30 11999.18 18399.33 95
zzz-MVS98.01 4597.66 6599.06 499.44 3197.90 1195.66 17398.73 12297.69 5697.90 12897.96 13295.81 11099.82 3096.13 7599.61 6999.45 66
MTAPA98.14 3597.84 4999.06 499.44 3197.90 1197.25 8998.73 12297.69 5697.90 12897.96 13295.81 11099.82 3096.13 7599.61 6999.45 66
v14896.58 14596.97 11695.42 23698.63 12687.57 27695.09 20897.90 22495.91 12298.24 9197.96 13293.42 17999.39 20996.04 8099.52 9999.29 108
MDA-MVSNet-bldmvs95.69 17695.67 17695.74 22298.48 14588.76 25592.84 29097.25 25796.00 11597.59 14297.95 13691.38 22599.46 18393.16 20696.35 31698.99 164
PGM-MVS97.88 6197.52 8298.96 1699.20 6497.62 2197.09 9899.06 3995.45 14297.55 14397.94 13797.11 4499.78 4194.77 15199.46 11999.48 56
LS3D97.77 7197.50 8498.57 4996.24 29597.58 2498.45 2498.85 8898.58 2697.51 14697.94 13795.74 11499.63 13195.19 12598.97 20898.51 221
USDC94.56 22994.57 22194.55 27197.78 22786.43 29492.75 29398.65 14785.96 30196.91 18697.93 13990.82 23198.74 29890.71 25299.59 7498.47 223
test20.0396.58 14596.61 13496.48 19198.49 14391.72 21095.68 17297.69 23896.81 8398.27 8897.92 14094.18 16398.71 30190.78 24799.66 5999.00 161
FMVSNet395.26 19794.94 19796.22 20496.53 28890.06 23295.99 15497.66 24194.11 19397.99 11897.91 14180.22 30399.63 13194.60 15599.44 12498.96 166
Regformer-397.25 10797.29 9597.11 15297.35 25892.32 19395.26 19897.62 24897.67 5898.17 9797.89 14295.05 13499.56 15697.16 4999.42 13499.46 61
Regformer-497.53 8797.47 8797.71 10597.35 25893.91 15395.26 19898.14 20697.97 4298.34 7897.89 14295.49 12199.71 9297.41 3999.42 13499.51 42
xxxxxxxxxxxxxcwj97.24 10897.03 11497.89 9698.48 14594.71 12494.53 23699.07 3895.02 16197.83 13797.88 14496.44 8699.72 7794.59 15899.39 14299.25 117
SF-MVS97.60 8197.39 8998.22 7498.93 9595.69 8497.05 10099.10 2995.32 14797.83 13797.88 14496.44 8699.72 7794.59 15899.39 14299.25 117
SteuartSystems-ACMMP98.02 4497.76 5798.79 3299.43 3397.21 4197.15 9498.90 7496.58 9098.08 11097.87 14697.02 5399.76 5395.25 12299.59 7499.40 81
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4697.66 6599.01 1198.77 10997.93 1097.38 8598.83 9997.32 7398.06 11297.85 14796.65 7199.77 4995.00 14199.11 19499.32 96
RRT_MVS94.90 20994.07 23697.39 13993.18 34493.21 17895.26 19897.49 25193.94 19898.25 8997.85 14772.96 33799.84 2697.90 2299.78 3799.14 134
DU-MVS97.79 6997.60 7698.36 6298.73 11195.78 8095.65 17598.87 8297.57 6098.31 8497.83 14994.69 14499.85 2397.02 5499.71 5099.46 61
NR-MVSNet97.96 4797.86 4898.26 7098.73 11195.54 9298.14 4198.73 12297.79 4599.42 1697.83 14994.40 15799.78 4195.91 8999.76 3899.46 61
CHOSEN 1792x268894.10 24393.41 25096.18 20699.16 6890.04 23392.15 30598.68 13779.90 33796.22 21997.83 14987.92 26799.42 19389.18 28099.65 6099.08 150
TAMVS95.49 18494.94 19797.16 14998.31 15793.41 17395.07 21196.82 27491.09 25597.51 14697.82 15289.96 24399.42 19388.42 29199.44 12498.64 210
UniMVSNet (Re)97.83 6597.65 6798.35 6498.80 10495.86 7995.92 16199.04 4797.51 6498.22 9297.81 15394.68 14699.78 4197.14 5099.75 4299.41 80
VNet96.84 12596.83 12496.88 16598.06 18892.02 20396.35 13297.57 25097.70 5597.88 13197.80 15492.40 20699.54 16294.73 15398.96 20999.08 150
YYNet194.73 21694.84 20494.41 27597.47 25285.09 31190.29 33295.85 29192.52 23597.53 14497.76 15591.97 21599.18 25093.31 20096.86 30598.95 167
MDA-MVSNet_test_wron94.73 21694.83 20694.42 27497.48 24885.15 30990.28 33395.87 29092.52 23597.48 15197.76 15591.92 21999.17 25493.32 19996.80 30898.94 169
TinyColmap96.00 16896.34 15094.96 25197.90 20487.91 26894.13 25498.49 16194.41 18098.16 9897.76 15596.29 9498.68 30690.52 25999.42 13498.30 239
Patchmatch-RL test94.66 22494.49 22295.19 24398.54 13788.91 24992.57 29798.74 12091.46 25298.32 8297.75 15877.31 31798.81 29296.06 7799.61 6997.85 272
MP-MVScopyleft97.64 7797.18 10499.00 1299.32 4597.77 1797.49 7898.73 12296.27 10095.59 24397.75 15896.30 9399.78 4193.70 19499.48 11499.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 9197.10 10898.55 5199.04 8996.70 5196.24 13998.89 7593.71 20397.97 12297.75 15897.44 3099.63 13193.22 20499.70 5399.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 17695.28 18696.92 16298.15 18193.03 18295.64 17798.20 19690.39 26196.63 19897.73 16191.63 22399.10 26391.84 22397.31 30098.63 212
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 5997.53 8199.04 799.22 5797.87 1497.74 6298.78 11396.04 11297.10 16997.73 16196.53 7999.78 4195.16 12999.50 10699.46 61
RRT_test8_iter0592.46 27492.52 27092.29 31395.33 32277.43 34395.73 16798.55 15594.41 18097.46 15497.72 16357.44 35699.74 6796.92 5699.14 18699.69 21
MVS_030495.50 18395.05 19596.84 16896.28 29493.12 18097.00 10396.16 28395.03 16089.22 33997.70 16490.16 24299.48 17794.51 16099.34 15697.93 269
XVG-OURS97.12 11196.74 12998.26 7098.99 9297.45 3293.82 26699.05 4195.19 15298.32 8297.70 16495.22 13298.41 32294.27 17198.13 26598.93 173
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6198.72 11395.78 8095.66 17399.02 5098.11 3998.31 8497.69 16694.65 14899.85 2397.02 5499.71 5099.48 56
D2MVS95.18 19995.17 18995.21 24297.76 22987.76 27494.15 25197.94 22289.77 26896.99 17997.68 16787.45 27099.14 25695.03 14099.81 3098.74 201
XVS97.96 4797.63 7298.94 1899.15 7197.66 1997.77 5898.83 9997.42 6796.32 21297.64 16896.49 8299.72 7795.66 9699.37 14599.45 66
ACMMPR97.95 5097.62 7498.94 1899.20 6497.56 2597.59 7098.83 9996.05 11097.46 15497.63 16996.77 6799.76 5395.61 10099.46 11999.49 51
Anonymous2023120695.27 19695.06 19495.88 21998.72 11389.37 24295.70 16997.85 22788.00 28696.98 18197.62 17091.95 21699.34 22289.21 27999.53 9498.94 169
region2R97.92 5697.59 7798.92 2299.22 5797.55 2697.60 6998.84 9296.00 11597.22 16197.62 17096.87 6399.76 5395.48 10799.43 13199.46 61
ppachtmachnet_test94.49 23194.84 20493.46 29096.16 30182.10 32990.59 32997.48 25390.53 26097.01 17897.59 17291.01 22899.36 21793.97 18699.18 18398.94 169
APD-MVScopyleft97.00 11396.53 14298.41 5898.55 13696.31 6596.32 13498.77 11492.96 23197.44 15697.58 17395.84 10399.74 6791.96 21899.35 15399.19 124
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 5297.64 7098.83 2699.15 7197.50 2897.59 7098.84 9296.05 11097.49 14897.54 17497.07 4899.70 10195.61 10099.46 11999.30 102
#test#97.62 7997.22 10298.83 2699.15 7197.50 2896.81 10998.84 9294.25 18797.49 14897.54 17497.07 4899.70 10194.37 16699.46 11999.30 102
UnsupCasMVSNet_eth95.91 17095.73 17596.44 19298.48 14591.52 21395.31 19498.45 16495.76 13097.48 15197.54 17489.53 24998.69 30394.43 16294.61 33199.13 137
XVG-OURS-SEG-HR97.38 9897.07 11198.30 6899.01 9197.41 3494.66 23199.02 5095.20 15198.15 10097.52 17798.83 598.43 32194.87 14496.41 31599.07 152
MG-MVS94.08 24594.00 23994.32 27797.09 27485.89 29993.19 28795.96 28892.52 23594.93 25697.51 17889.54 24798.77 29587.52 30497.71 28298.31 237
Regformer-197.27 10597.16 10597.61 11497.21 26993.86 15694.85 22498.04 22097.62 5998.03 11697.50 17995.34 12799.63 13196.52 6499.31 16799.35 93
Regformer-297.41 9697.24 10097.93 9497.21 26994.72 12394.85 22498.27 18797.74 5098.11 10497.50 17995.58 11999.69 10996.57 6399.31 16799.37 91
HPM-MVScopyleft98.11 3997.83 5198.92 2299.42 3597.46 3198.57 1699.05 4195.43 14497.41 15797.50 17997.98 1699.79 3995.58 10399.57 7999.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 13198.53 13896.02 15198.98 6493.23 21697.18 16397.46 18296.47 8499.62 13992.99 20899.32 165
CP-MVS97.92 5697.56 8098.99 1398.99 9297.82 1597.93 5198.96 6896.11 10796.89 18797.45 18396.85 6499.78 4195.19 12599.63 6299.38 86
ZNCC-MVS97.92 5697.62 7498.83 2699.32 4597.24 3997.45 7998.84 9295.76 13096.93 18497.43 18497.26 4099.79 3996.06 7799.53 9499.45 66
N_pmnet95.18 19994.23 23098.06 8597.85 20696.55 5892.49 29991.63 32989.34 27098.09 10897.41 18590.33 23699.06 26791.58 22899.31 16798.56 218
GST-MVS97.82 6797.49 8598.81 2999.23 5497.25 3897.16 9398.79 10995.96 11797.53 14497.40 18696.93 5799.77 4995.04 13899.35 15399.42 78
tpm91.08 29490.85 29291.75 31595.33 32278.09 33995.03 21691.27 33288.75 27793.53 29697.40 18671.24 34099.30 23291.25 23593.87 33497.87 271
MDTV_nov1_ep1391.28 28494.31 33273.51 35294.80 22693.16 31586.75 29793.45 30097.40 18676.37 32198.55 31588.85 28496.43 314
DeepPCF-MVS94.58 596.90 12296.43 14798.31 6797.48 24897.23 4092.56 29898.60 15092.84 23398.54 5897.40 18696.64 7398.78 29494.40 16599.41 14098.93 173
MSLP-MVS++96.42 15396.71 13095.57 22897.82 21390.56 23095.71 16898.84 9294.72 17096.71 19497.39 19094.91 14198.10 33695.28 12099.02 20598.05 262
EPNet93.72 25192.62 26897.03 15887.61 35792.25 19496.27 13591.28 33196.74 8587.65 34597.39 19085.00 28499.64 12992.14 21799.48 11499.20 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 25494.07 23692.45 31097.57 24380.67 33486.46 34596.00 28693.99 19697.10 16997.38 19289.90 24497.82 33888.76 28599.47 11698.86 188
DeepC-MVS_fast94.34 796.74 13396.51 14497.44 13497.69 23494.15 14696.02 15198.43 16793.17 22297.30 15997.38 19295.48 12299.28 23893.74 19299.34 15698.88 185
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 21494.80 20794.85 25796.16 30186.45 29391.14 32498.20 19693.49 20797.03 17697.37 19484.97 28599.26 24195.28 12099.56 8298.83 190
OPU-MVS97.64 11298.01 19295.27 10496.79 11097.35 19596.97 5498.51 31891.21 23699.25 17699.14 134
cl-mvsnet194.73 21694.64 21295.01 24995.86 30887.00 28691.33 31898.08 21393.34 21297.10 16997.34 19684.02 28999.31 22995.15 13199.55 8898.72 204
cl-mvsnet_94.73 21694.64 21295.01 24995.85 30987.00 28691.33 31898.08 21393.34 21297.10 16997.33 19784.01 29099.30 23295.14 13299.56 8298.71 206
WR-MVS96.90 12296.81 12597.16 14998.56 13592.20 19894.33 24098.12 20997.34 7298.20 9397.33 19792.81 19199.75 6094.79 14899.81 3099.54 36
ETH3D-3000-0.196.89 12496.46 14698.16 7698.62 12795.69 8495.96 15798.98 6493.36 21197.04 17597.31 19994.93 14099.63 13192.60 21199.34 15699.17 127
ITE_SJBPF97.85 9998.64 12296.66 5398.51 16095.63 13497.22 16197.30 20095.52 12098.55 31590.97 24098.90 21898.34 235
Vis-MVSNet (Re-imp)95.11 20294.85 20395.87 22099.12 8089.17 24597.54 7794.92 30096.50 9296.58 19997.27 20183.64 29199.48 17788.42 29199.67 5798.97 165
cl_fuxian95.20 19895.32 18594.83 25996.19 29986.43 29491.83 31198.35 18293.47 20897.36 15897.26 20288.69 25699.28 23895.41 11799.36 14898.78 196
eth_miper_zixun_eth94.89 21094.93 19994.75 26295.99 30686.12 29791.35 31798.49 16193.40 20997.12 16797.25 20386.87 27599.35 22095.08 13798.82 22998.78 196
pmmvs494.82 21394.19 23396.70 17697.42 25592.75 18792.09 30896.76 27586.80 29695.73 24097.22 20489.28 25398.89 28593.28 20199.14 18698.46 225
OMC-MVS96.48 14996.00 16497.91 9598.30 15896.01 7694.86 22398.60 15091.88 24697.18 16397.21 20596.11 9699.04 26990.49 26299.34 15698.69 207
pmmvs594.63 22694.34 22895.50 23297.63 24188.34 26094.02 25797.13 26387.15 29295.22 25097.15 20687.50 26999.27 24093.99 18499.26 17598.88 185
testtj96.69 13996.13 15798.36 6298.46 14996.02 7596.44 12598.70 13294.26 18696.79 18997.13 20794.07 16599.75 6090.53 25898.80 23099.31 101
our_test_394.20 24194.58 21993.07 29896.16 30181.20 33290.42 33196.84 27290.72 25897.14 16597.13 20790.47 23499.11 26194.04 18398.25 26198.91 178
CPTT-MVS96.69 13996.08 16198.49 5398.89 9996.64 5497.25 8998.77 11492.89 23296.01 22897.13 20792.23 20899.67 12092.24 21699.34 15699.17 127
MS-PatchMatch94.83 21294.91 20194.57 27096.81 28487.10 28594.23 24697.34 25688.74 27897.14 16597.11 21091.94 21798.23 33292.99 20897.92 27298.37 229
FPMVS89.92 30588.63 31293.82 28398.37 15496.94 4591.58 31393.34 31488.00 28690.32 33297.10 21170.87 34391.13 35271.91 34996.16 31993.39 341
ETH3D cwj APD-0.1696.23 15795.61 17998.09 8297.91 20295.65 8994.94 21998.74 12091.31 25396.02 22797.08 21294.05 16699.69 10991.51 22998.94 21398.93 173
ZD-MVS98.43 15095.94 7798.56 15490.72 25896.66 19697.07 21395.02 13799.74 6791.08 23798.93 215
DELS-MVS96.17 16096.23 15395.99 21197.55 24690.04 23392.38 30398.52 15894.13 19296.55 20397.06 21494.99 13899.58 14995.62 9999.28 17298.37 229
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 12096.55 13998.03 8998.00 19695.54 9294.87 22298.17 20294.60 17496.38 20997.05 21595.67 11699.36 21795.12 13599.08 19899.19 124
旧先验197.80 21893.87 15597.75 23497.04 21693.57 17798.68 24098.72 204
testdata95.70 22598.16 17990.58 22897.72 23680.38 33595.62 24297.02 21792.06 21498.98 27789.06 28398.52 25197.54 285
PatchmatchNetpermissive91.98 28491.87 27692.30 31294.60 33079.71 33695.12 20593.59 31289.52 26993.61 29297.02 21777.94 31099.18 25090.84 24494.57 33398.01 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA93.38 26193.52 24892.96 30396.24 29581.40 33193.24 28594.00 30791.58 25194.57 26296.97 21987.94 26399.42 19389.47 27697.66 28798.06 259
Patchmatch-test93.60 25693.25 25394.63 26596.14 30487.47 27896.04 14994.50 30493.57 20596.47 20596.97 21976.50 32098.61 30990.67 25498.41 25697.81 276
CostFormer89.75 30689.25 30591.26 31994.69 32978.00 34195.32 19391.98 32681.50 33090.55 33096.96 22171.06 34298.89 28588.59 28992.63 33896.87 304
diffmvs96.04 16596.23 15395.46 23597.35 25888.03 26793.42 27899.08 3594.09 19496.66 19696.93 22293.85 17099.29 23696.01 8498.67 24199.06 154
114514_t93.96 24793.22 25496.19 20599.06 8690.97 22095.99 15498.94 7173.88 35093.43 30196.93 22292.38 20799.37 21589.09 28199.28 17298.25 244
Test_1112_low_res93.53 25892.86 25995.54 23198.60 13088.86 25192.75 29398.69 13582.66 32692.65 31596.92 22484.75 28699.56 15690.94 24197.76 27898.19 249
tpmrst90.31 29990.61 29789.41 32794.06 33872.37 35495.06 21393.69 30888.01 28592.32 32096.86 22577.45 31498.82 29091.04 23887.01 34897.04 298
PHI-MVS96.96 11896.53 14298.25 7297.48 24896.50 5996.76 11298.85 8893.52 20696.19 22196.85 22695.94 10099.42 19393.79 19199.43 13198.83 190
tttt051793.31 26292.56 26995.57 22898.71 11687.86 26997.44 8087.17 34895.79 12997.47 15396.84 22764.12 35199.81 3296.20 7399.32 16599.02 160
patchmatchnet-post96.84 22777.36 31699.42 193
ADS-MVSNet291.47 29090.51 29894.36 27695.51 31785.63 30095.05 21495.70 29283.46 32392.69 31396.84 22779.15 30699.41 20285.66 31790.52 34198.04 263
ADS-MVSNet90.95 29690.26 30093.04 29995.51 31782.37 32895.05 21493.41 31383.46 32392.69 31396.84 22779.15 30698.70 30285.66 31790.52 34198.04 263
HY-MVS91.43 1592.58 27291.81 27894.90 25496.49 28988.87 25097.31 8694.62 30285.92 30290.50 33196.84 22785.05 28399.40 20483.77 33095.78 32396.43 318
UnsupCasMVSNet_bld94.72 22094.26 22996.08 20998.62 12790.54 23193.38 28198.05 21990.30 26297.02 17796.80 23289.54 24799.16 25588.44 29096.18 31898.56 218
HQP_MVS96.66 14296.33 15197.68 11098.70 11894.29 13996.50 12398.75 11896.36 9796.16 22296.77 23391.91 22099.46 18392.59 21399.20 17999.28 109
plane_prior496.77 233
MVS_111021_HR96.73 13596.54 14197.27 14598.35 15693.66 16793.42 27898.36 17894.74 16996.58 19996.76 23596.54 7898.99 27594.87 14499.27 17499.15 131
CANet95.86 17395.65 17796.49 19096.41 29190.82 22394.36 23998.41 17294.94 16392.62 31796.73 23692.68 19599.71 9295.12 13599.60 7298.94 169
112194.26 23593.26 25297.27 14598.26 16594.73 12295.86 16297.71 23777.96 34494.53 26496.71 23791.93 21899.40 20487.71 29798.64 24597.69 280
TSAR-MVS + GP.96.47 15096.12 15897.49 12797.74 23195.23 10694.15 25196.90 27193.26 21598.04 11596.70 23894.41 15698.89 28594.77 15199.14 18698.37 229
test22298.17 17793.24 17792.74 29597.61 24975.17 34894.65 26196.69 23990.96 23098.66 24397.66 281
新几何197.25 14898.29 15994.70 12797.73 23577.98 34394.83 25796.67 24092.08 21399.45 18788.17 29598.65 24497.61 283
miper_ehance_all_eth94.69 22194.70 20994.64 26495.77 31286.22 29691.32 32098.24 19191.67 24897.05 17496.65 24188.39 26099.22 24894.88 14398.34 25798.49 222
MVS_111021_LR96.82 12996.55 13997.62 11398.27 16395.34 10393.81 26898.33 18394.59 17696.56 20196.63 24296.61 7498.73 29994.80 14799.34 15698.78 196
CDPH-MVS95.45 18994.65 21197.84 10098.28 16194.96 11693.73 27098.33 18385.03 31595.44 24596.60 24395.31 12999.44 19090.01 26899.13 19099.11 145
CMPMVSbinary73.10 2392.74 27091.39 28296.77 17293.57 34394.67 12894.21 24897.67 23980.36 33693.61 29296.60 24382.85 29397.35 34284.86 32398.78 23298.29 241
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 21194.12 23597.14 15197.64 24093.57 16993.96 26297.06 26690.05 26596.30 21596.55 24586.10 27799.47 18090.10 26799.31 16798.40 226
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 16395.63 17897.36 14198.19 17295.55 9195.44 18198.82 10792.29 24095.70 24196.55 24592.63 19898.69 30391.75 22699.33 16397.85 272
HPM-MVS++copyleft96.99 11496.38 14898.81 2998.64 12297.59 2395.97 15698.20 19695.51 14095.06 25296.53 24794.10 16499.70 10194.29 17099.15 18599.13 137
EPMVS89.26 30988.55 31391.39 31792.36 35279.11 33795.65 17579.86 35388.60 27993.12 30696.53 24770.73 34498.10 33690.75 24889.32 34596.98 299
HyFIR lowres test93.72 25192.65 26696.91 16498.93 9591.81 20991.23 32298.52 15882.69 32596.46 20696.52 24980.38 30299.90 1490.36 26498.79 23199.03 158
BH-RMVSNet94.56 22994.44 22694.91 25297.57 24387.44 27993.78 26996.26 28293.69 20496.41 20896.50 25092.10 21299.00 27385.96 31397.71 28298.31 237
MSP-MVS97.45 9296.92 12099.03 899.26 4897.70 1897.66 6598.89 7595.65 13398.51 6096.46 25192.15 20999.81 3295.14 13298.58 25099.58 28
原ACMM196.58 18498.16 17992.12 20098.15 20585.90 30393.49 29796.43 25292.47 20599.38 21287.66 30098.62 24698.23 245
tpm288.47 31287.69 31690.79 32194.98 32677.34 34495.09 20891.83 32777.51 34689.40 33796.41 25367.83 34898.73 29983.58 33292.60 33996.29 320
OpenMVS_ROBcopyleft91.80 1493.64 25593.05 25595.42 23697.31 26691.21 21695.08 21096.68 27981.56 32996.88 18896.41 25390.44 23599.25 24385.39 32097.67 28695.80 325
F-COLMAP95.30 19594.38 22798.05 8898.64 12296.04 7395.61 17898.66 14289.00 27493.22 30596.40 25592.90 19099.35 22087.45 30597.53 29298.77 199
NCCC96.52 14795.99 16598.10 8197.81 21495.68 8695.00 21798.20 19695.39 14595.40 24796.36 25693.81 17199.45 18793.55 19798.42 25599.17 127
new_pmnet92.34 27791.69 28094.32 27796.23 29789.16 24692.27 30492.88 31884.39 32295.29 24896.35 25785.66 28096.74 34784.53 32597.56 29097.05 297
cl-mvsnet293.25 26492.84 26194.46 27394.30 33386.00 29891.09 32596.64 28090.74 25795.79 23596.31 25878.24 30998.77 29594.15 17698.34 25798.62 213
tpmvs90.79 29790.87 29190.57 32392.75 35176.30 34695.79 16693.64 31191.04 25691.91 32396.26 25977.19 31898.86 28989.38 27889.85 34496.56 316
test_prior395.91 17095.39 18497.46 13197.79 22394.26 14393.33 28398.42 17094.21 18894.02 27896.25 26093.64 17599.34 22291.90 21998.96 20998.79 194
test_prior293.33 28394.21 18894.02 27896.25 26093.64 17591.90 21998.96 209
testgi96.07 16396.50 14594.80 26099.26 4887.69 27595.96 15798.58 15395.08 15798.02 11796.25 26097.92 1797.60 34188.68 28898.74 23699.11 145
DP-MVS Recon95.55 18295.13 19096.80 17098.51 14093.99 15294.60 23398.69 13590.20 26395.78 23796.21 26392.73 19498.98 27790.58 25798.86 22497.42 289
MVSFormer96.14 16196.36 14995.49 23397.68 23587.81 27298.67 1299.02 5096.50 9294.48 26796.15 26486.90 27399.92 498.73 899.13 19098.74 201
jason94.39 23494.04 23895.41 23898.29 15987.85 27192.74 29596.75 27685.38 31295.29 24896.15 26488.21 26299.65 12694.24 17299.34 15698.74 201
jason: jason.
test_yl94.40 23294.00 23995.59 22696.95 27889.52 23994.75 22995.55 29696.18 10596.79 18996.14 26681.09 29899.18 25090.75 24897.77 27698.07 255
DCV-MVSNet94.40 23294.00 23995.59 22696.95 27889.52 23994.75 22995.55 29696.18 10596.79 18996.14 26681.09 29899.18 25090.75 24897.77 27698.07 255
dp88.08 31588.05 31588.16 33392.85 34968.81 35694.17 24992.88 31885.47 30891.38 32696.14 26668.87 34798.81 29286.88 30883.80 35196.87 304
MCST-MVS96.24 15695.80 17297.56 11698.75 11094.13 14794.66 23198.17 20290.17 26496.21 22096.10 26995.14 13399.43 19294.13 17798.85 22699.13 137
TEST997.84 21195.23 10693.62 27298.39 17486.81 29593.78 28395.99 27094.68 14699.52 168
train_agg95.46 18894.66 21097.88 9797.84 21195.23 10693.62 27298.39 17487.04 29393.78 28395.99 27094.58 15199.52 16891.76 22598.90 21898.89 182
MSDG95.33 19395.13 19095.94 21797.40 25691.85 20791.02 32698.37 17795.30 14896.31 21495.99 27094.51 15498.38 32589.59 27497.65 28897.60 284
agg_prior195.39 19194.60 21697.75 10397.80 21894.96 11693.39 28098.36 17887.20 29193.49 29795.97 27394.65 14899.53 16491.69 22798.86 22498.77 199
test_897.81 21495.07 11493.54 27598.38 17687.04 29393.71 28795.96 27494.58 15199.52 168
CSCG97.40 9797.30 9497.69 10998.95 9494.83 11997.28 8898.99 6196.35 9998.13 10395.95 27595.99 9999.66 12594.36 16999.73 4498.59 216
TAPA-MVS93.32 1294.93 20894.23 23097.04 15798.18 17594.51 13195.22 20298.73 12281.22 33296.25 21895.95 27593.80 17298.98 27789.89 27098.87 22297.62 282
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 21593.87 24397.47 12998.12 18693.73 16294.56 23598.70 13285.45 31094.70 26095.93 27791.77 22299.63 13186.45 31199.14 18699.05 156
baseline193.14 26692.64 26794.62 26697.34 26287.20 28496.67 12093.02 31694.71 17196.51 20495.83 27881.64 29598.60 31190.00 26988.06 34698.07 255
sss94.22 23793.72 24595.74 22297.71 23389.95 23593.84 26596.98 26888.38 28293.75 28695.74 27987.94 26398.89 28591.02 23998.10 26698.37 229
CNLPA95.04 20594.47 22396.75 17397.81 21495.25 10594.12 25597.89 22594.41 18094.57 26295.69 28090.30 23998.35 32886.72 31098.76 23496.64 313
PCF-MVS89.43 1892.12 28290.64 29696.57 18697.80 21893.48 17289.88 33998.45 16474.46 34996.04 22695.68 28190.71 23299.31 22973.73 34699.01 20796.91 303
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 22194.75 20894.52 27297.95 20187.53 27794.07 25697.01 26793.99 19697.10 16995.65 28292.65 19798.95 28287.60 30196.74 30997.09 295
CANet_DTU94.65 22594.21 23295.96 21395.90 30789.68 23693.92 26397.83 23193.19 21890.12 33495.64 28388.52 25799.57 15593.27 20399.47 11698.62 213
PatchMatch-RL94.61 22793.81 24497.02 15998.19 17295.72 8293.66 27197.23 25888.17 28494.94 25595.62 28491.43 22498.57 31287.36 30697.68 28596.76 310
tpm cat188.01 31687.33 31790.05 32694.48 33176.28 34794.47 23894.35 30673.84 35189.26 33895.61 28573.64 33298.30 33084.13 32686.20 34995.57 330
Effi-MVS+-dtu96.81 13096.09 16098.99 1396.90 28298.69 296.42 12698.09 21195.86 12595.15 25195.54 28694.26 16099.81 3294.06 17998.51 25398.47 223
AdaColmapbinary95.11 20294.62 21596.58 18497.33 26494.45 13494.92 22098.08 21393.15 22393.98 28195.53 28794.34 15899.10 26385.69 31698.61 24796.20 321
thisisatest053092.71 27191.76 27995.56 23098.42 15188.23 26196.03 15087.35 34794.04 19596.56 20195.47 28864.03 35299.77 4994.78 15099.11 19498.68 209
WTY-MVS93.55 25793.00 25795.19 24397.81 21487.86 26993.89 26496.00 28689.02 27394.07 27695.44 28986.27 27699.33 22587.69 29996.82 30698.39 228
PLCcopyleft91.02 1694.05 24692.90 25897.51 12198.00 19695.12 11394.25 24498.25 19086.17 29991.48 32595.25 29091.01 22899.19 24985.02 32296.69 31098.22 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 30288.90 31193.32 29194.20 33785.34 30491.25 32192.56 32378.59 34193.82 28295.17 29167.36 34998.69 30389.08 28298.03 26995.92 322
NP-MVS98.14 18293.72 16395.08 292
HQP-MVS95.17 20194.58 21996.92 16297.85 20692.47 19094.26 24198.43 16793.18 21992.86 31095.08 29290.33 23699.23 24690.51 26098.74 23699.05 156
cdsmvs_eth3d_5k24.22 32432.30 3270.00 3400.00 3610.00 3620.00 35298.10 2100.00 3570.00 35895.06 29497.54 290.00 3580.00 3560.00 3560.00 354
lupinMVS93.77 24993.28 25195.24 24197.68 23587.81 27292.12 30696.05 28584.52 31994.48 26795.06 29486.90 27399.63 13193.62 19699.13 19098.27 242
1112_ss94.12 24293.42 24996.23 20298.59 13290.85 22194.24 24598.85 8885.49 30792.97 30894.94 29686.01 27899.64 12991.78 22497.92 27298.20 248
ab-mvs-re7.91 32810.55 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35894.94 2960.00 3630.00 3580.00 3560.00 3560.00 354
Fast-Effi-MVS+-dtu96.44 15196.12 15897.39 13997.18 27194.39 13595.46 18098.73 12296.03 11494.72 25894.92 29896.28 9599.69 10993.81 19097.98 27098.09 252
EPNet_dtu91.39 29190.75 29493.31 29290.48 35682.61 32694.80 22692.88 31893.39 21081.74 35394.90 29981.36 29799.11 26188.28 29398.87 22298.21 247
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 25392.77 26596.42 19497.91 20292.54 18891.17 32397.47 25484.99 31693.08 30794.74 30089.90 24499.00 27387.54 30398.09 26797.72 278
Effi-MVS+96.19 15996.01 16396.71 17597.43 25492.19 19996.12 14599.10 2995.45 14293.33 30494.71 30197.23 4399.56 15693.21 20597.54 29198.37 229
GA-MVS92.83 26992.15 27494.87 25696.97 27787.27 28390.03 33496.12 28491.83 24794.05 27794.57 30276.01 32498.97 28192.46 21597.34 29998.36 234
miper_enhance_ethall93.14 26692.78 26494.20 28093.65 34185.29 30689.97 33597.85 22785.05 31496.15 22494.56 30385.74 27999.14 25693.74 19298.34 25798.17 251
xiu_mvs_v1_base_debu95.62 17995.96 16794.60 26798.01 19288.42 25793.99 25998.21 19392.98 22795.91 23094.53 30496.39 8899.72 7795.43 11498.19 26295.64 327
xiu_mvs_v1_base95.62 17995.96 16794.60 26798.01 19288.42 25793.99 25998.21 19392.98 22795.91 23094.53 30496.39 8899.72 7795.43 11498.19 26295.64 327
xiu_mvs_v1_base_debi95.62 17995.96 16794.60 26798.01 19288.42 25793.99 25998.21 19392.98 22795.91 23094.53 30496.39 8899.72 7795.43 11498.19 26295.64 327
PVSNet_Blended93.96 24793.65 24694.91 25297.79 22387.40 28091.43 31598.68 13784.50 32094.51 26594.48 30793.04 18699.30 23289.77 27298.61 24798.02 265
PAPM_NR94.61 22794.17 23495.96 21398.36 15591.23 21595.93 16097.95 22192.98 22793.42 30294.43 30890.53 23398.38 32587.60 30196.29 31798.27 242
API-MVS95.09 20495.01 19695.31 23996.61 28694.02 15096.83 10897.18 26195.60 13695.79 23594.33 30994.54 15398.37 32785.70 31598.52 25193.52 339
mvs-test196.20 15895.50 18398.32 6596.90 28298.16 495.07 21198.09 21195.86 12593.63 29094.32 31094.26 16099.71 9294.06 17997.27 30297.07 296
alignmvs96.01 16795.52 18297.50 12497.77 22894.71 12496.07 14796.84 27297.48 6596.78 19394.28 31185.50 28199.40 20496.22 7298.73 23998.40 226
CLD-MVS95.47 18795.07 19296.69 17798.27 16392.53 18991.36 31698.67 14091.22 25495.78 23794.12 31295.65 11798.98 27790.81 24599.72 4798.57 217
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 27392.20 27393.57 28896.49 28986.66 29093.51 27694.73 30189.96 26694.95 25493.87 31390.24 24198.61 30981.18 33694.88 32895.45 331
canonicalmvs97.23 10997.21 10397.30 14497.65 23994.39 13597.84 5699.05 4197.42 6796.68 19593.85 31497.63 2799.33 22596.29 7198.47 25498.18 250
xiu_mvs_v2_base94.22 23794.63 21492.99 30297.32 26584.84 31492.12 30697.84 22991.96 24494.17 27293.43 31596.07 9799.71 9291.27 23397.48 29494.42 336
CHOSEN 280x42089.98 30389.19 30992.37 31195.60 31681.13 33386.22 34697.09 26581.44 33187.44 34693.15 31673.99 32899.47 18088.69 28799.07 20096.52 317
thres600view792.03 28391.43 28193.82 28398.19 17284.61 31696.27 13590.39 33896.81 8396.37 21093.11 31773.44 33599.49 17480.32 33797.95 27197.36 290
E-PMN89.52 30889.78 30388.73 32993.14 34677.61 34283.26 34992.02 32594.82 16793.71 28793.11 31775.31 32696.81 34585.81 31496.81 30791.77 345
thres100view90091.76 28791.26 28693.26 29398.21 17084.50 31796.39 12890.39 33896.87 8196.33 21193.08 31973.44 33599.42 19378.85 34197.74 27995.85 323
131492.38 27692.30 27292.64 30895.42 32185.15 30995.86 16296.97 26985.40 31190.62 32893.06 32091.12 22797.80 33986.74 30995.49 32794.97 334
PAPM87.64 31985.84 32493.04 29996.54 28784.99 31288.42 34395.57 29579.52 33883.82 35093.05 32180.57 30198.41 32262.29 35292.79 33795.71 326
Fast-Effi-MVS+95.49 18495.07 19296.75 17397.67 23892.82 18594.22 24798.60 15091.61 24993.42 30292.90 32296.73 6999.70 10192.60 21197.89 27597.74 277
ET-MVSNet_ETH3D91.12 29289.67 30495.47 23496.41 29189.15 24791.54 31490.23 34189.07 27286.78 34992.84 32369.39 34699.44 19094.16 17596.61 31297.82 274
MVS90.02 30189.20 30892.47 30994.71 32886.90 28895.86 16296.74 27764.72 35290.62 32892.77 32492.54 20298.39 32479.30 33995.56 32692.12 343
BH-w/o92.14 28191.94 27592.73 30797.13 27385.30 30592.46 30095.64 29389.33 27194.21 27192.74 32589.60 24698.24 33181.68 33494.66 33094.66 335
PAPR92.22 27991.27 28595.07 24795.73 31488.81 25291.97 30997.87 22685.80 30490.91 32792.73 32691.16 22698.33 32979.48 33895.76 32498.08 253
MAR-MVS94.21 23993.03 25697.76 10296.94 28097.44 3396.97 10597.15 26287.89 28892.00 32292.73 32692.14 21099.12 25883.92 32797.51 29396.73 311
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 30788.44 31493.25 29495.62 31582.71 32593.82 26685.94 35088.89 27687.35 34792.54 32871.23 34199.33 22586.01 31294.60 33297.72 278
PS-MVSNAJ94.10 24394.47 22393.00 30197.35 25884.88 31391.86 31097.84 22991.96 24494.17 27292.50 32995.82 10699.71 9291.27 23397.48 29494.40 337
PMMVS92.39 27591.08 28796.30 20193.12 34792.81 18690.58 33095.96 28879.17 34091.85 32492.27 33090.29 24098.66 30889.85 27196.68 31197.43 288
PVSNet86.72 1991.10 29390.97 29091.49 31697.56 24578.04 34087.17 34494.60 30384.65 31892.34 31992.20 33187.37 27198.47 31985.17 32197.69 28497.96 267
tfpn200view991.55 28991.00 28893.21 29698.02 19084.35 31995.70 16990.79 33596.26 10195.90 23392.13 33273.62 33399.42 19378.85 34197.74 27995.85 323
thres40091.68 28891.00 28893.71 28598.02 19084.35 31995.70 16990.79 33596.26 10195.90 23392.13 33273.62 33399.42 19378.85 34197.74 27997.36 290
MVEpermissive73.61 2286.48 32185.92 32388.18 33296.23 29785.28 30781.78 35175.79 35486.01 30082.53 35291.88 33492.74 19387.47 35371.42 35094.86 32991.78 344
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 31089.22 30688.61 33093.00 34877.34 34482.91 35090.92 33494.64 17392.63 31691.81 33576.30 32297.02 34383.83 32996.90 30491.48 346
thisisatest051590.43 29889.18 31094.17 28297.07 27585.44 30389.75 34087.58 34688.28 28393.69 28991.72 33665.27 35099.58 14990.59 25698.67 24197.50 287
EIA-MVS96.04 16595.77 17496.85 16797.80 21892.98 18396.12 14599.16 1894.65 17293.77 28591.69 33795.68 11599.67 12094.18 17498.85 22697.91 270
cascas91.89 28591.35 28393.51 28994.27 33485.60 30188.86 34298.61 14979.32 33992.16 32191.44 33889.22 25498.12 33590.80 24697.47 29696.82 307
IB-MVS85.98 2088.63 31186.95 32093.68 28695.12 32484.82 31590.85 32790.17 34287.55 28988.48 34291.34 33958.01 35599.59 14787.24 30793.80 33596.63 315
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 29590.42 29992.77 30697.47 25283.98 32294.01 25891.18 33395.12 15695.44 24591.21 34073.93 32999.31 22977.76 34497.63 28995.01 333
test0.0.03 190.11 30089.21 30792.83 30593.89 33986.87 28991.74 31288.74 34592.02 24294.71 25991.14 34173.92 33094.48 35083.75 33192.94 33697.16 294
ETV-MVS96.13 16295.90 17096.82 16997.76 22993.89 15495.40 18698.95 7095.87 12495.58 24491.00 34296.36 9199.72 7793.36 19898.83 22896.85 306
test-LLR89.97 30489.90 30290.16 32494.24 33574.98 34989.89 33689.06 34392.02 24289.97 33590.77 34373.92 33098.57 31291.88 22197.36 29796.92 301
test-mter87.92 31787.17 31890.16 32494.24 33574.98 34989.89 33689.06 34386.44 29889.97 33590.77 34354.96 36098.57 31291.88 22197.36 29796.92 301
CS-MVS95.86 17395.59 18096.69 17797.85 20693.14 17996.42 12699.25 1094.17 19193.56 29590.76 34596.05 9899.72 7793.28 20198.91 21797.21 293
TESTMET0.1,187.20 32086.57 32289.07 32893.62 34272.84 35389.89 33687.01 34985.46 30989.12 34090.20 34656.00 35997.72 34090.91 24296.92 30396.64 313
gm-plane-assit91.79 35371.40 35581.67 32890.11 34798.99 27584.86 323
DWT-MVSNet_test87.92 31786.77 32191.39 31793.18 34478.62 33895.10 20691.42 33085.58 30688.00 34388.73 34860.60 35498.90 28390.60 25587.70 34796.65 312
DeepMVS_CXcopyleft77.17 33690.94 35585.28 30774.08 35752.51 35380.87 35488.03 34975.25 32770.63 35459.23 35384.94 35075.62 349
PVSNet_081.89 2184.49 32283.21 32588.34 33195.76 31374.97 35183.49 34892.70 32278.47 34287.94 34486.90 35083.38 29296.63 34873.44 34766.86 35393.40 340
GG-mvs-BLEND90.60 32291.00 35484.21 32198.23 3372.63 35882.76 35184.11 35156.14 35896.79 34672.20 34892.09 34090.78 347
tmp_tt57.23 32362.50 32641.44 33734.77 35849.21 35983.93 34760.22 35915.31 35471.11 35579.37 35270.09 34544.86 35564.76 35182.93 35230.25 351
X-MVStestdata92.86 26890.83 29398.94 1899.15 7197.66 1997.77 5898.83 9997.42 6796.32 21236.50 35396.49 8299.72 7795.66 9699.37 14599.45 66
testmvs12.33 32615.23 3293.64 3395.77 3602.23 36188.99 3413.62 3602.30 3565.29 35613.09 3544.52 3621.95 3565.16 3558.32 3556.75 353
test12312.59 32515.49 3283.87 3386.07 3592.55 36090.75 3282.59 3612.52 3555.20 35713.02 3554.96 3611.85 3575.20 3549.09 3547.23 352
test_post10.87 35676.83 31999.07 266
test_post194.98 21810.37 35776.21 32399.04 26989.47 276
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
pcd_1.5k_mvsjas7.98 32710.65 3300.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35895.82 1060.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
IU-MVS99.22 5795.40 9898.14 20685.77 30598.36 7595.23 12499.51 10499.49 51
save fliter98.48 14594.71 12494.53 23698.41 17295.02 161
test_0728_SECOND98.25 7299.23 5495.49 9696.74 11398.89 7599.75 6095.48 10799.52 9999.53 39
GSMVS98.06 259
test_part299.03 9096.07 7298.08 110
sam_mvs177.80 31198.06 259
sam_mvs77.38 315
MTGPAbinary98.73 122
MTMP96.55 12174.60 355
test9_res91.29 23298.89 22199.00 161
agg_prior290.34 26598.90 21899.10 149
agg_prior97.80 21894.96 11698.36 17893.49 29799.53 164
test_prior495.38 9993.61 274
test_prior97.46 13197.79 22394.26 14398.42 17099.34 22298.79 194
旧先验293.35 28277.95 34595.77 23998.67 30790.74 251
新几何293.43 277
无先验93.20 28697.91 22380.78 33399.40 20487.71 29797.94 268
原ACMM292.82 291
testdata299.46 18387.84 296
segment_acmp95.34 127
testdata192.77 29293.78 201
test1297.46 13197.61 24294.07 14897.78 23393.57 29493.31 18199.42 19398.78 23298.89 182
plane_prior798.70 11894.67 128
plane_prior698.38 15394.37 13791.91 220
plane_prior598.75 11899.46 18392.59 21399.20 17999.28 109
plane_prior394.51 13195.29 14996.16 222
plane_prior296.50 12396.36 97
plane_prior198.49 143
plane_prior94.29 13995.42 18394.31 18598.93 215
n20.00 362
nn0.00 362
door-mid98.17 202
test1198.08 213
door97.81 232
HQP5-MVS92.47 190
HQP-NCC97.85 20694.26 24193.18 21992.86 310
ACMP_Plane97.85 20694.26 24193.18 21992.86 310
BP-MVS90.51 260
HQP4-MVS92.87 30999.23 24699.06 154
HQP3-MVS98.43 16798.74 236
HQP2-MVS90.33 236
MDTV_nov1_ep13_2view57.28 35894.89 22180.59 33494.02 27878.66 30885.50 31997.82 274
ACMMP++_ref99.52 99
ACMMP++99.55 88
Test By Simon94.51 154