DeepPCF-MVS | | 93.56 1 | 96.55 41 | 97.84 8 | 92.68 203 | 98.71 88 | 78.11 310 | 99.70 17 | 97.71 77 | 98.18 1 | 97.36 51 | 99.76 1 | 90.37 45 | 99.94 33 | 99.27 9 | 99.54 56 | 99.99 1 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 6 | 99.80 4 | 96.19 12 | 99.80 8 | 97.99 42 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 21 | 100.00 1 | 98.99 13 | 99.90 5 | 99.96 8 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 14 | 99.63 20 | 95.24 21 | 99.77 9 | 97.72 73 | 94.17 24 | 99.30 4 | 99.54 3 | 93.32 15 | 99.98 10 | 99.70 2 | 99.81 19 | 99.99 1 |
|
test_241102_TWO | | | | | | | | | 97.72 73 | 94.17 24 | 99.23 6 | 99.54 3 | 93.14 20 | 99.98 10 | 99.70 2 | 99.82 15 | 99.99 1 |
|
test0726 | | | | | | 99.66 14 | 95.20 26 | 99.77 9 | 97.70 78 | 93.95 29 | 99.35 3 | 99.54 3 | 93.18 18 | | | | |
|
DPE-MVS | | | 98.11 5 | 98.00 5 | 98.44 13 | 99.50 42 | 95.39 18 | 99.29 66 | 97.72 73 | 94.50 20 | 98.64 20 | 99.54 3 | 93.32 15 | 99.97 20 | 99.58 7 | 99.90 5 | 99.95 11 |
|
ETH3 D test6400 | | | 97.67 10 | 97.33 16 | 98.69 7 | 99.69 9 | 96.43 9 | 99.63 25 | 97.73 71 | 91.05 90 | 98.66 19 | 99.53 7 | 90.59 38 | 99.71 73 | 99.32 8 | 99.80 23 | 99.91 18 |
|
DPM-MVS | | | 97.86 7 | 97.25 17 | 99.68 1 | 98.25 98 | 99.10 1 | 99.76 12 | 97.78 62 | 96.61 4 | 98.15 31 | 99.53 7 | 93.62 14 | 100.00 1 | 91.79 133 | 99.80 23 | 99.94 14 |
|
SMA-MVS | | | 97.24 18 | 96.99 23 | 98.00 27 | 99.30 58 | 94.20 53 | 99.16 75 | 97.65 88 | 89.55 129 | 99.22 7 | 99.52 9 | 90.34 46 | 99.99 5 | 98.32 31 | 99.83 13 | 99.82 30 |
|
test_241102_ONE | | | | | | 99.63 20 | 95.24 21 | | 97.72 73 | 94.16 26 | 99.30 4 | 99.49 10 | 93.32 15 | 99.98 10 | | | |
|
ETH3D-3000-0.1 | | | 97.29 16 | 97.01 22 | 98.12 22 | 99.18 65 | 94.97 30 | 99.47 40 | 97.52 114 | 89.85 119 | 98.79 16 | 99.46 11 | 90.41 44 | 99.69 75 | 98.78 15 | 99.67 37 | 99.70 56 |
|
MSP-MVS | | | 98.07 6 | 98.00 5 | 98.29 15 | 99.66 14 | 95.20 26 | 99.72 14 | 97.47 125 | 93.95 29 | 99.07 8 | 99.46 11 | 93.18 18 | 99.97 20 | 99.64 5 | 99.82 15 | 99.69 59 |
|
test_0728_THIRD | | | | | | | | | | 93.01 47 | 99.07 8 | 99.46 11 | 94.66 10 | 99.97 20 | 99.25 11 | 99.82 15 | 99.95 11 |
|
MSLP-MVS++ | | | 97.50 14 | 97.45 12 | 97.63 38 | 99.65 18 | 93.21 70 | 99.70 17 | 98.13 36 | 94.61 19 | 97.78 45 | 99.46 11 | 89.85 49 | 99.81 62 | 97.97 37 | 99.91 4 | 99.88 24 |
|
NCCC | | | 98.12 4 | 98.11 3 | 98.13 20 | 99.76 6 | 94.46 46 | 99.81 6 | 97.88 48 | 96.54 5 | 98.84 14 | 99.46 11 | 92.55 23 | 99.98 10 | 98.25 33 | 99.93 1 | 99.94 14 |
|
9.14 | | | | 96.87 26 | | 99.34 51 | | 99.50 38 | 97.49 122 | 89.41 132 | 98.59 22 | 99.43 16 | 89.78 50 | 99.69 75 | 98.69 17 | 99.62 46 | |
|
xxxxxxxxxxxxxcwj | | | 97.51 12 | 97.42 13 | 97.78 34 | 99.34 51 | 93.85 59 | 99.65 23 | 95.45 262 | 95.69 11 | 98.70 17 | 99.42 17 | 90.42 42 | 99.72 71 | 98.47 25 | 99.65 39 | 99.77 43 |
|
SF-MVS | | | 97.22 21 | 96.92 24 | 98.12 22 | 99.11 69 | 94.88 32 | 99.44 48 | 97.45 127 | 89.60 125 | 98.70 17 | 99.42 17 | 90.42 42 | 99.72 71 | 98.47 25 | 99.65 39 | 99.77 43 |
|
ETH3D cwj APD-0.16 | | | 96.94 31 | 96.58 36 | 98.01 26 | 98.62 91 | 94.73 41 | 99.13 87 | 97.38 138 | 88.44 162 | 98.53 24 | 99.39 19 | 89.66 54 | 99.69 75 | 98.43 27 | 99.61 50 | 99.61 71 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 23 | 96.84 28 | 98.13 20 | 99.61 26 | 94.45 47 | 98.85 114 | 97.64 89 | 96.51 7 | 95.88 81 | 99.39 19 | 87.35 92 | 99.99 5 | 96.61 56 | 99.69 36 | 99.96 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MCST-MVS | | | 98.18 2 | 97.95 7 | 98.86 3 | 99.85 3 | 96.60 7 | 99.70 17 | 97.98 43 | 97.18 2 | 95.96 78 | 99.33 21 | 92.62 22 | 100.00 1 | 98.99 13 | 99.93 1 | 99.98 6 |
|
testtj | | | 97.23 20 | 97.05 20 | 97.75 35 | 99.75 7 | 93.34 69 | 99.16 75 | 97.74 67 | 91.28 87 | 98.40 26 | 99.29 22 | 89.95 48 | 99.98 10 | 98.20 34 | 99.70 35 | 99.94 14 |
|
HPM-MVS++ | | | 97.72 9 | 97.59 9 | 98.14 19 | 99.53 40 | 94.76 39 | 99.19 70 | 97.75 65 | 95.66 13 | 98.21 30 | 99.29 22 | 91.10 28 | 99.99 5 | 97.68 42 | 99.87 7 | 99.68 60 |
|
SteuartSystems-ACMMP | | | 97.25 17 | 97.34 15 | 97.01 62 | 97.38 122 | 91.46 102 | 99.75 13 | 97.66 83 | 94.14 28 | 98.13 32 | 99.26 24 | 92.16 24 | 99.66 80 | 97.91 39 | 99.64 42 | 99.90 20 |
Skip Steuart: Steuart Systems R&D Blog. |
MP-MVS-pluss | | | 95.80 66 | 95.30 68 | 97.29 52 | 98.95 79 | 92.66 83 | 98.59 148 | 97.14 155 | 88.95 144 | 93.12 125 | 99.25 25 | 85.62 121 | 99.94 33 | 96.56 58 | 99.48 58 | 99.28 97 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
CSCG | | | 94.87 83 | 94.71 77 | 95.36 135 | 99.54 35 | 86.49 210 | 99.34 63 | 98.15 34 | 82.71 267 | 90.15 165 | 99.25 25 | 89.48 55 | 99.86 52 | 94.97 91 | 98.82 89 | 99.72 53 |
|
zzz-MVS | | | 96.21 53 | 95.96 53 | 96.96 70 | 99.29 59 | 91.19 107 | 98.69 131 | 97.45 127 | 92.58 56 | 94.39 107 | 99.24 27 | 86.43 112 | 99.99 5 | 96.22 64 | 99.40 66 | 99.71 54 |
|
MTAPA | | | 96.09 55 | 95.80 61 | 96.96 70 | 99.29 59 | 91.19 107 | 97.23 231 | 97.45 127 | 92.58 56 | 94.39 107 | 99.24 27 | 86.43 112 | 99.99 5 | 96.22 64 | 99.40 66 | 99.71 54 |
|
CDPH-MVS | | | 96.56 40 | 96.18 45 | 97.70 36 | 99.59 27 | 93.92 57 | 99.13 87 | 97.44 131 | 89.02 141 | 97.90 43 | 99.22 29 | 88.90 61 | 99.49 103 | 94.63 98 | 99.79 25 | 99.68 60 |
|
API-MVS | | | 94.78 85 | 94.18 89 | 96.59 93 | 99.21 64 | 90.06 142 | 98.80 119 | 97.78 62 | 83.59 252 | 93.85 117 | 99.21 30 | 83.79 143 | 99.97 20 | 92.37 129 | 99.00 80 | 99.74 50 |
|
PHI-MVS | | | 96.65 38 | 96.46 38 | 97.21 56 | 99.34 51 | 91.77 93 | 99.70 17 | 98.05 38 | 86.48 209 | 98.05 36 | 99.20 31 | 89.33 56 | 99.96 27 | 98.38 28 | 99.62 46 | 99.90 20 |
|
OPU-MVS | | | | | 99.49 2 | 99.64 19 | 98.51 2 | 99.77 9 | | | | 99.19 32 | 95.12 6 | 99.97 20 | 99.90 1 | 99.92 3 | 99.99 1 |
|
DVP-MVS | | | 97.77 8 | 98.18 2 | 96.53 97 | 99.54 35 | 90.14 135 | 99.41 54 | 97.70 78 | 95.46 17 | 98.60 21 | 99.19 32 | 95.71 4 | 99.49 103 | 98.15 35 | 99.85 11 | 99.95 11 |
|
test_8 | | | | | | 99.55 34 | 93.07 75 | 99.37 59 | 97.64 89 | 90.18 110 | 98.36 29 | 99.19 32 | 90.94 30 | 99.64 86 | | | |
|
TEST9 | | | | | | 99.57 32 | 93.17 71 | 99.38 56 | 97.66 83 | 89.57 127 | 98.39 27 | 99.18 35 | 90.88 32 | 99.66 80 | | | |
|
train_agg | | | 97.20 22 | 97.08 19 | 97.57 42 | 99.57 32 | 93.17 71 | 99.38 56 | 97.66 83 | 90.18 110 | 98.39 27 | 99.18 35 | 90.94 30 | 99.66 80 | 98.58 22 | 99.85 11 | 99.88 24 |
|
agg_prior1 | | | 97.12 24 | 97.03 21 | 97.38 50 | 99.54 35 | 92.66 83 | 99.35 61 | 97.64 89 | 90.38 105 | 97.98 40 | 99.17 37 | 90.84 34 | 99.61 89 | 98.57 23 | 99.78 27 | 99.87 27 |
|
MAR-MVS | | | 94.43 97 | 94.09 91 | 95.45 133 | 99.10 71 | 87.47 192 | 98.39 171 | 97.79 61 | 88.37 165 | 94.02 114 | 99.17 37 | 78.64 198 | 99.91 38 | 92.48 128 | 98.85 86 | 98.96 118 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
CP-MVS | | | 96.22 52 | 96.15 50 | 96.42 102 | 99.67 13 | 89.62 154 | 99.70 17 | 97.61 96 | 90.07 116 | 96.00 75 | 99.16 39 | 87.43 86 | 99.92 36 | 96.03 70 | 99.72 30 | 99.70 56 |
|
旧先验1 | | | | | | 98.97 76 | 92.90 82 | | 97.74 67 | | | 99.15 40 | 91.05 29 | | | 99.33 68 | 99.60 72 |
|
testdata | | | | | 95.26 139 | 98.20 100 | 87.28 198 | | 97.60 97 | 85.21 224 | 98.48 25 | 99.15 40 | 88.15 73 | 98.72 146 | 90.29 147 | 99.45 61 | 99.78 38 |
|
ACMMP_NAP | | | 96.59 39 | 96.18 45 | 97.81 32 | 98.82 85 | 93.55 64 | 98.88 113 | 97.59 101 | 90.66 96 | 97.98 40 | 99.14 42 | 86.59 106 | 100.00 1 | 96.47 60 | 99.46 59 | 99.89 23 |
|
PS-MVSNAJ | | | 96.87 33 | 96.40 39 | 98.29 15 | 97.35 123 | 97.29 3 | 99.03 96 | 97.11 159 | 95.83 10 | 98.97 11 | 99.14 42 | 82.48 163 | 99.60 91 | 98.60 19 | 99.08 76 | 98.00 172 |
|
DP-MVS Recon | | | 95.85 63 | 95.15 72 | 97.95 28 | 99.87 2 | 94.38 50 | 99.60 27 | 97.48 123 | 86.58 206 | 94.42 106 | 99.13 44 | 87.36 91 | 99.98 10 | 93.64 113 | 98.33 102 | 99.48 82 |
|
SR-MVS | | | 96.13 54 | 96.16 49 | 96.07 114 | 99.42 48 | 89.04 161 | 98.59 148 | 97.33 143 | 90.44 103 | 96.84 64 | 99.12 45 | 86.75 102 | 99.41 115 | 97.47 43 | 99.44 62 | 99.76 46 |
|
APDe-MVS | | | 97.53 11 | 97.47 10 | 97.70 36 | 99.58 28 | 93.63 62 | 99.56 32 | 97.52 114 | 93.59 41 | 98.01 39 | 99.12 45 | 90.80 35 | 99.55 93 | 99.26 10 | 99.79 25 | 99.93 17 |
|
PAPR | | | 96.35 47 | 95.82 58 | 97.94 29 | 99.63 20 | 94.19 54 | 99.42 53 | 97.55 109 | 92.43 61 | 93.82 119 | 99.12 45 | 87.30 93 | 99.91 38 | 94.02 105 | 99.06 77 | 99.74 50 |
|
xiu_mvs_v2_base | | | 96.66 37 | 96.17 47 | 98.11 24 | 97.11 132 | 96.96 4 | 99.01 99 | 97.04 166 | 95.51 16 | 98.86 13 | 99.11 48 | 82.19 169 | 99.36 119 | 98.59 21 | 98.14 103 | 98.00 172 |
|
region2R | | | 96.30 50 | 96.17 47 | 96.70 88 | 99.70 8 | 90.31 131 | 99.46 45 | 97.66 83 | 90.55 100 | 97.07 55 | 99.07 49 | 86.85 100 | 99.97 20 | 95.43 80 | 99.74 28 | 99.81 31 |
|
APD-MVS | | | 96.95 29 | 96.72 32 | 97.63 38 | 99.51 41 | 93.58 63 | 99.16 75 | 97.44 131 | 90.08 115 | 98.59 22 | 99.07 49 | 89.06 58 | 99.42 113 | 97.92 38 | 99.66 38 | 99.88 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
æ–°å‡ ä½•1 | | | | | 97.40 48 | 98.92 80 | 92.51 90 | | 97.77 64 | 85.52 219 | 96.69 71 | 99.06 51 | 88.08 75 | 99.89 43 | 84.88 205 | 99.62 46 | 99.79 34 |
|
HFP-MVS | | | 96.42 46 | 96.26 44 | 96.90 74 | 99.69 9 | 90.96 119 | 99.47 40 | 97.81 57 | 90.54 101 | 96.88 58 | 99.05 52 | 87.57 82 | 99.96 27 | 95.65 73 | 99.72 30 | 99.78 38 |
|
#test# | | | 96.48 43 | 96.34 42 | 96.90 74 | 99.69 9 | 90.96 119 | 99.53 36 | 97.81 57 | 90.94 94 | 96.88 58 | 99.05 52 | 87.57 82 | 99.96 27 | 95.87 72 | 99.72 30 | 99.78 38 |
|
ACMMPR | | | 96.28 51 | 96.14 51 | 96.73 85 | 99.68 12 | 90.47 129 | 99.47 40 | 97.80 59 | 90.54 101 | 96.83 66 | 99.03 54 | 86.51 110 | 99.95 30 | 95.65 73 | 99.72 30 | 99.75 47 |
|
Regformer-1 | | | 96.97 28 | 96.80 30 | 97.47 44 | 99.46 46 | 93.11 73 | 98.89 111 | 97.94 44 | 92.89 52 | 96.90 57 | 99.02 55 | 89.78 50 | 99.53 96 | 97.06 47 | 99.26 72 | 99.75 47 |
|
Regformer-2 | | | 96.94 31 | 96.78 31 | 97.42 46 | 99.46 46 | 92.97 80 | 98.89 111 | 97.93 45 | 92.86 54 | 96.88 58 | 99.02 55 | 89.74 52 | 99.53 96 | 97.03 48 | 99.26 72 | 99.75 47 |
|
test222 | | | | | | 98.32 97 | 91.21 106 | 98.08 195 | 97.58 103 | 83.74 248 | 95.87 82 | 99.02 55 | 86.74 103 | | | 99.64 42 | 99.81 31 |
|
SD-MVS | | | 97.51 12 | 97.40 14 | 97.81 32 | 99.01 75 | 93.79 61 | 99.33 64 | 97.38 138 | 93.73 38 | 98.83 15 | 99.02 55 | 90.87 33 | 99.88 44 | 98.69 17 | 99.74 28 | 99.77 43 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
1121 | | | 95.19 78 | 94.45 82 | 97.42 46 | 98.88 82 | 92.58 88 | 96.22 267 | 97.75 65 | 85.50 221 | 96.86 61 | 99.01 59 | 88.59 66 | 99.90 40 | 87.64 177 | 99.60 51 | 99.79 34 |
|
APD-MVS_3200maxsize | | | 95.64 70 | 95.65 65 | 95.62 128 | 99.24 63 | 87.80 184 | 98.42 165 | 97.22 149 | 88.93 146 | 96.64 72 | 98.98 60 | 85.49 125 | 99.36 119 | 96.68 55 | 99.27 71 | 99.70 56 |
|
test_prior3 | | | 97.07 26 | 97.09 18 | 97.01 62 | 99.58 28 | 91.77 93 | 99.57 30 | 97.57 106 | 91.43 83 | 98.12 34 | 98.97 61 | 90.43 40 | 99.49 103 | 98.33 29 | 99.81 19 | 99.79 34 |
|
test_prior2 | | | | | | | | 99.57 30 | | 91.43 83 | 98.12 34 | 98.97 61 | 90.43 40 | | 98.33 29 | 99.81 19 | |
|
原ACMM1 | | | | | 96.18 109 | 99.03 74 | 90.08 138 | | 97.63 93 | 88.98 142 | 97.00 56 | 98.97 61 | 88.14 74 | 99.71 73 | 88.23 171 | 99.62 46 | 98.76 140 |
|
XVS | | | 96.47 44 | 96.37 40 | 96.77 81 | 99.62 24 | 90.66 127 | 99.43 51 | 97.58 103 | 92.41 65 | 96.86 61 | 98.96 64 | 87.37 88 | 99.87 47 | 95.65 73 | 99.43 63 | 99.78 38 |
|
CPTT-MVS | | | 94.60 94 | 94.43 83 | 95.09 141 | 99.66 14 | 86.85 205 | 99.44 48 | 97.47 125 | 83.22 257 | 94.34 109 | 98.96 64 | 82.50 161 | 99.55 93 | 94.81 93 | 99.50 57 | 98.88 126 |
|
Regformer-3 | | | 96.50 42 | 96.36 41 | 96.91 73 | 99.34 51 | 91.72 96 | 98.71 126 | 97.90 47 | 92.48 60 | 96.00 75 | 98.95 66 | 88.60 64 | 99.52 99 | 96.44 61 | 98.83 87 | 99.49 80 |
|
Regformer-4 | | | 96.45 45 | 96.33 43 | 96.81 80 | 99.34 51 | 91.44 103 | 98.71 126 | 97.88 48 | 92.43 61 | 95.97 77 | 98.95 66 | 88.42 68 | 99.51 100 | 96.40 62 | 98.83 87 | 99.49 80 |
|
MP-MVS | | | 96.00 57 | 95.82 58 | 96.54 96 | 99.47 45 | 90.13 137 | 99.36 60 | 97.41 135 | 90.64 99 | 95.49 90 | 98.95 66 | 85.51 124 | 99.98 10 | 96.00 71 | 99.59 53 | 99.52 76 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PGM-MVS | | | 95.85 63 | 95.65 65 | 96.45 100 | 99.50 42 | 89.77 150 | 98.22 182 | 98.90 11 | 89.19 135 | 96.74 69 | 98.95 66 | 85.91 120 | 99.92 36 | 93.94 106 | 99.46 59 | 99.66 64 |
|
mPP-MVS | | | 95.90 62 | 95.75 62 | 96.38 104 | 99.58 28 | 89.41 158 | 99.26 67 | 97.41 135 | 90.66 96 | 94.82 100 | 98.95 66 | 86.15 117 | 99.98 10 | 95.24 85 | 99.64 42 | 99.74 50 |
|
ZNCC-MVS | | | 96.09 55 | 95.81 60 | 96.95 72 | 99.42 48 | 91.19 107 | 99.55 33 | 97.53 113 | 89.72 122 | 95.86 83 | 98.94 71 | 86.59 106 | 99.97 20 | 95.13 86 | 99.56 54 | 99.68 60 |
|
CANet | | | 97.00 27 | 96.49 37 | 98.55 9 | 98.86 84 | 96.10 13 | 99.83 5 | 97.52 114 | 95.90 9 | 97.21 52 | 98.90 72 | 82.66 160 | 99.93 35 | 98.71 16 | 98.80 90 | 99.63 68 |
|
PAPM_NR | | | 95.43 71 | 95.05 74 | 96.57 95 | 99.42 48 | 90.14 135 | 98.58 150 | 97.51 117 | 90.65 98 | 92.44 133 | 98.90 72 | 87.77 80 | 99.90 40 | 90.88 141 | 99.32 69 | 99.68 60 |
|
EI-MVSNet-Vis-set | | | 95.76 69 | 95.63 67 | 96.17 111 | 99.14 67 | 90.33 130 | 98.49 159 | 97.82 54 | 91.92 73 | 94.75 101 | 98.88 74 | 87.06 96 | 99.48 108 | 95.40 81 | 97.17 120 | 98.70 143 |
|
CNLPA | | | 93.64 117 | 92.74 121 | 96.36 105 | 98.96 78 | 90.01 145 | 99.19 70 | 95.89 238 | 86.22 212 | 89.40 173 | 98.85 75 | 80.66 183 | 99.84 55 | 88.57 167 | 96.92 121 | 99.24 100 |
|
xiu_mvs_v1_base_debu | | | 94.73 87 | 93.98 94 | 96.99 65 | 95.19 191 | 95.24 21 | 98.62 142 | 96.50 193 | 92.99 48 | 97.52 47 | 98.83 76 | 72.37 236 | 99.15 128 | 97.03 48 | 96.74 122 | 96.58 201 |
|
xiu_mvs_v1_base | | | 94.73 87 | 93.98 94 | 96.99 65 | 95.19 191 | 95.24 21 | 98.62 142 | 96.50 193 | 92.99 48 | 97.52 47 | 98.83 76 | 72.37 236 | 99.15 128 | 97.03 48 | 96.74 122 | 96.58 201 |
|
xiu_mvs_v1_base_debi | | | 94.73 87 | 93.98 94 | 96.99 65 | 95.19 191 | 95.24 21 | 98.62 142 | 96.50 193 | 92.99 48 | 97.52 47 | 98.83 76 | 72.37 236 | 99.15 128 | 97.03 48 | 96.74 122 | 96.58 201 |
|
cdsmvs_eth3d_5k | | | 22.52 320 | 30.03 322 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 97.17 153 | 0.00 352 | 0.00 353 | 98.77 79 | 74.35 219 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
EI-MVSNet-UG-set | | | 95.43 71 | 95.29 69 | 95.86 121 | 99.07 73 | 89.87 146 | 98.43 164 | 97.80 59 | 91.78 76 | 94.11 112 | 98.77 79 | 86.25 116 | 99.48 108 | 94.95 92 | 96.45 126 | 98.22 166 |
|
lupinMVS | | | 96.32 49 | 95.94 54 | 97.44 45 | 95.05 203 | 94.87 33 | 99.86 2 | 96.50 193 | 93.82 36 | 98.04 37 | 98.77 79 | 85.52 122 | 98.09 164 | 96.98 52 | 98.97 81 | 99.37 88 |
|
LS3D | | | 90.19 180 | 88.72 188 | 94.59 157 | 98.97 76 | 86.33 217 | 96.90 243 | 96.60 183 | 74.96 313 | 84.06 215 | 98.74 82 | 75.78 209 | 99.83 57 | 74.93 285 | 97.57 111 | 97.62 180 |
|
MVS_111021_HR | | | 96.69 36 | 96.69 33 | 96.72 87 | 98.58 93 | 91.00 118 | 99.14 84 | 99.45 1 | 93.86 35 | 95.15 96 | 98.73 83 | 88.48 67 | 99.76 68 | 97.23 46 | 99.56 54 | 99.40 87 |
|
OMC-MVS | | | 93.90 108 | 93.62 105 | 94.73 153 | 98.63 90 | 87.00 202 | 98.04 198 | 96.56 189 | 92.19 69 | 92.46 132 | 98.73 83 | 79.49 190 | 99.14 131 | 92.16 131 | 94.34 153 | 98.03 171 |
|
GST-MVS | | | 95.97 59 | 95.66 63 | 96.90 74 | 99.49 44 | 91.22 105 | 99.45 47 | 97.48 123 | 89.69 123 | 95.89 80 | 98.72 85 | 86.37 114 | 99.95 30 | 94.62 99 | 99.22 75 | 99.52 76 |
|
PAPM | | | 96.35 47 | 95.94 54 | 97.58 40 | 94.10 223 | 95.25 20 | 98.93 106 | 98.17 31 | 94.26 23 | 93.94 115 | 98.72 85 | 89.68 53 | 97.88 177 | 96.36 63 | 99.29 70 | 99.62 70 |
|
ACMMP | | | 94.67 91 | 94.30 84 | 95.79 124 | 99.25 62 | 88.13 178 | 98.41 167 | 98.67 19 | 90.38 105 | 91.43 144 | 98.72 85 | 82.22 168 | 99.95 30 | 93.83 110 | 95.76 141 | 99.29 95 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CS-MVS | | | 95.85 63 | 95.86 57 | 95.82 122 | 96.80 142 | 89.78 149 | 99.84 3 | 96.60 183 | 92.60 55 | 96.81 68 | 98.70 88 | 85.04 130 | 98.25 157 | 97.90 40 | 98.43 100 | 99.42 86 |
|
MG-MVS | | | 97.24 18 | 96.83 29 | 98.47 12 | 99.79 5 | 95.71 15 | 99.07 91 | 99.06 9 | 94.45 22 | 96.42 73 | 98.70 88 | 88.81 62 | 99.74 70 | 95.35 82 | 99.86 10 | 99.97 7 |
|
MVS_111021_LR | | | 95.78 67 | 95.94 54 | 95.28 138 | 98.19 102 | 87.69 185 | 98.80 119 | 99.26 7 | 93.39 43 | 95.04 98 | 98.69 90 | 84.09 141 | 99.76 68 | 96.96 53 | 99.06 77 | 98.38 157 |
|
AdaColmap | | | 93.82 110 | 93.06 114 | 96.10 113 | 99.88 1 | 89.07 160 | 98.33 174 | 97.55 109 | 86.81 202 | 90.39 162 | 98.65 91 | 75.09 212 | 99.98 10 | 93.32 119 | 97.53 114 | 99.26 99 |
|
EIA-MVS | | | 95.11 79 | 95.27 70 | 94.64 156 | 96.34 156 | 86.51 209 | 99.59 28 | 96.62 181 | 92.51 58 | 94.08 113 | 98.64 92 | 86.05 118 | 98.24 158 | 95.07 88 | 98.50 98 | 99.18 105 |
|
TSAR-MVS + MP. | | | 97.44 15 | 97.46 11 | 97.39 49 | 99.12 68 | 93.49 67 | 98.52 153 | 97.50 120 | 94.46 21 | 98.99 10 | 98.64 92 | 91.58 25 | 99.08 134 | 98.49 24 | 99.83 13 | 99.60 72 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
TSAR-MVS + GP. | | | 96.95 29 | 96.91 25 | 97.07 59 | 98.88 82 | 91.62 98 | 99.58 29 | 96.54 191 | 95.09 18 | 96.84 64 | 98.63 94 | 91.16 26 | 99.77 67 | 99.04 12 | 96.42 127 | 99.81 31 |
|
alignmvs | | | 95.77 68 | 95.00 75 | 98.06 25 | 97.35 123 | 95.68 16 | 99.71 16 | 97.50 120 | 91.50 81 | 96.16 74 | 98.61 95 | 86.28 115 | 99.00 136 | 96.19 66 | 91.74 183 | 99.51 78 |
|
MVS | | | 93.92 106 | 92.28 129 | 98.83 4 | 95.69 176 | 96.82 5 | 96.22 267 | 98.17 31 | 84.89 233 | 84.34 212 | 98.61 95 | 79.32 191 | 99.83 57 | 93.88 108 | 99.43 63 | 99.86 28 |
|
abl_6 | | | 94.63 93 | 94.48 81 | 95.09 141 | 98.61 92 | 86.96 203 | 98.06 197 | 96.97 172 | 89.31 133 | 95.86 83 | 98.56 97 | 79.82 185 | 99.64 86 | 94.53 101 | 98.65 95 | 98.66 146 |
|
TAPA-MVS | | 87.50 9 | 90.35 175 | 89.05 181 | 94.25 168 | 98.48 96 | 85.17 244 | 98.42 165 | 96.58 188 | 82.44 273 | 87.24 190 | 98.53 98 | 82.77 159 | 98.84 139 | 59.09 332 | 97.88 105 | 98.72 141 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
MVSFormer | | | 94.71 90 | 94.08 92 | 96.61 92 | 95.05 203 | 94.87 33 | 97.77 211 | 96.17 216 | 86.84 200 | 98.04 37 | 98.52 99 | 85.52 122 | 95.99 269 | 89.83 150 | 98.97 81 | 98.96 118 |
|
jason | | | 95.40 74 | 94.86 76 | 97.03 61 | 92.91 254 | 94.23 52 | 99.70 17 | 96.30 204 | 93.56 42 | 96.73 70 | 98.52 99 | 81.46 178 | 97.91 174 | 96.08 69 | 98.47 99 | 98.96 118 |
jason: jason. |
1112_ss | | | 92.71 136 | 91.55 146 | 96.20 108 | 95.56 180 | 91.12 111 | 98.48 160 | 94.69 288 | 88.29 168 | 86.89 194 | 98.50 101 | 87.02 97 | 98.66 148 | 84.75 206 | 89.77 201 | 98.81 134 |
|
ab-mvs-re | | | 8.21 324 | 10.94 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 98.50 101 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
canonicalmvs | | | 95.02 81 | 93.96 97 | 98.20 17 | 97.53 120 | 95.92 14 | 98.71 126 | 96.19 215 | 91.78 76 | 95.86 83 | 98.49 103 | 79.53 189 | 99.03 135 | 96.12 67 | 91.42 189 | 99.66 64 |
|
HPM-MVS | | | 95.41 73 | 95.22 71 | 95.99 117 | 99.29 59 | 89.14 159 | 99.17 74 | 97.09 163 | 87.28 193 | 95.40 91 | 98.48 104 | 84.93 132 | 99.38 117 | 95.64 77 | 99.65 39 | 99.47 83 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CANet_DTU | | | 94.31 100 | 93.35 108 | 97.20 57 | 97.03 136 | 94.71 42 | 98.62 142 | 95.54 257 | 95.61 14 | 97.21 52 | 98.47 105 | 71.88 241 | 99.84 55 | 88.38 169 | 97.46 116 | 97.04 195 |
|
HPM-MVS_fast | | | 94.89 82 | 94.62 78 | 95.70 127 | 99.11 69 | 88.44 175 | 99.14 84 | 97.11 159 | 85.82 216 | 95.69 87 | 98.47 105 | 83.46 148 | 99.32 123 | 93.16 121 | 99.63 45 | 99.35 89 |
|
WTY-MVS | | | 95.97 59 | 95.11 73 | 98.54 10 | 97.62 115 | 96.65 6 | 99.44 48 | 98.74 13 | 92.25 68 | 95.21 94 | 98.46 107 | 86.56 108 | 99.46 110 | 95.00 90 | 92.69 166 | 99.50 79 |
|
DeepC-MVS | | 91.02 4 | 94.56 96 | 93.92 100 | 96.46 99 | 97.16 129 | 90.76 123 | 98.39 171 | 97.11 159 | 93.92 31 | 88.66 178 | 98.33 108 | 78.14 200 | 99.85 54 | 95.02 89 | 98.57 96 | 98.78 138 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
LFMVS | | | 92.23 147 | 90.84 157 | 96.42 102 | 98.24 99 | 91.08 115 | 98.24 181 | 96.22 212 | 83.39 255 | 94.74 102 | 98.31 109 | 61.12 298 | 98.85 138 | 94.45 102 | 92.82 163 | 99.32 92 |
|
ETV-MVS | | | 96.00 57 | 96.00 52 | 96.00 116 | 96.56 149 | 91.05 116 | 99.63 25 | 96.61 182 | 93.26 46 | 97.39 50 | 98.30 110 | 86.62 105 | 98.13 161 | 98.07 36 | 97.57 111 | 98.82 133 |
|
ET-MVSNet_ETH3D | | | 92.56 142 | 91.45 147 | 95.88 120 | 96.39 154 | 94.13 55 | 99.46 45 | 96.97 172 | 92.18 70 | 66.94 327 | 98.29 111 | 94.65 11 | 94.28 312 | 94.34 103 | 83.82 233 | 99.24 100 |
|
DELS-MVS | | | 97.12 24 | 96.60 35 | 98.68 8 | 98.03 106 | 96.57 8 | 99.84 3 | 97.84 52 | 96.36 8 | 95.20 95 | 98.24 112 | 88.17 72 | 99.83 57 | 96.11 68 | 99.60 51 | 99.64 66 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
EPNet | | | 96.82 34 | 96.68 34 | 97.25 55 | 98.65 89 | 93.10 74 | 99.48 39 | 98.76 12 | 96.54 5 | 97.84 44 | 98.22 113 | 87.49 85 | 99.66 80 | 95.35 82 | 97.78 109 | 99.00 114 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
114514_t | | | 94.06 102 | 93.05 115 | 97.06 60 | 99.08 72 | 92.26 91 | 98.97 103 | 97.01 170 | 82.58 269 | 92.57 131 | 98.22 113 | 80.68 182 | 99.30 124 | 89.34 159 | 99.02 79 | 99.63 68 |
|
PLC | | 91.07 3 | 94.23 101 | 94.01 93 | 94.87 147 | 99.17 66 | 87.49 191 | 99.25 68 | 96.55 190 | 88.43 163 | 91.26 147 | 98.21 115 | 85.92 119 | 99.86 52 | 89.77 153 | 97.57 111 | 97.24 188 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
VDD-MVS | | | 91.24 163 | 90.18 168 | 94.45 161 | 97.08 133 | 85.84 233 | 98.40 170 | 96.10 219 | 86.99 195 | 93.36 122 | 98.16 116 | 54.27 318 | 99.20 125 | 96.59 57 | 90.63 197 | 98.31 163 |
|
PMMVS | | | 93.62 118 | 93.90 101 | 92.79 199 | 96.79 143 | 81.40 284 | 98.85 114 | 96.81 176 | 91.25 88 | 96.82 67 | 98.15 117 | 77.02 206 | 98.13 161 | 93.15 122 | 96.30 131 | 98.83 132 |
|
XVG-OURS | | | 90.83 169 | 90.49 165 | 91.86 215 | 95.23 189 | 81.25 288 | 95.79 282 | 95.92 231 | 88.96 143 | 90.02 167 | 98.03 118 | 71.60 245 | 99.35 121 | 91.06 138 | 87.78 207 | 94.98 211 |
|
XVG-OURS-SEG-HR | | | 90.95 167 | 90.66 163 | 91.83 216 | 95.18 194 | 81.14 291 | 95.92 274 | 95.92 231 | 88.40 164 | 90.33 163 | 97.85 119 | 70.66 251 | 99.38 117 | 92.83 126 | 88.83 203 | 94.98 211 |
|
sss | | | 94.85 84 | 93.94 99 | 97.58 40 | 96.43 153 | 94.09 56 | 98.93 106 | 99.16 8 | 89.50 130 | 95.27 93 | 97.85 119 | 81.50 176 | 99.65 84 | 92.79 127 | 94.02 155 | 98.99 115 |
|
diffmvs | | | 94.59 95 | 94.19 87 | 95.81 123 | 95.54 181 | 90.69 125 | 98.70 130 | 95.68 250 | 91.61 78 | 95.96 78 | 97.81 121 | 80.11 184 | 98.06 168 | 96.52 59 | 95.76 141 | 98.67 144 |
|
BH-RMVSNet | | | 91.25 162 | 89.99 169 | 95.03 145 | 96.75 144 | 88.55 172 | 98.65 137 | 94.95 282 | 87.74 183 | 87.74 184 | 97.80 122 | 68.27 262 | 98.14 160 | 80.53 250 | 97.49 115 | 98.41 154 |
|
F-COLMAP | | | 92.07 149 | 91.75 143 | 93.02 194 | 98.16 103 | 82.89 272 | 98.79 123 | 95.97 223 | 86.54 208 | 87.92 183 | 97.80 122 | 78.69 197 | 99.65 84 | 85.97 193 | 95.93 139 | 96.53 204 |
|
PVSNet_Blended | | | 95.94 61 | 95.66 63 | 96.75 83 | 98.77 86 | 91.61 99 | 99.88 1 | 98.04 39 | 93.64 40 | 94.21 110 | 97.76 124 | 83.50 146 | 99.87 47 | 97.41 44 | 97.75 110 | 98.79 136 |
|
VDDNet | | | 90.08 183 | 88.54 195 | 94.69 154 | 94.41 220 | 87.68 186 | 98.21 184 | 96.40 198 | 76.21 309 | 93.33 123 | 97.75 125 | 54.93 316 | 98.77 141 | 94.71 97 | 90.96 192 | 97.61 181 |
|
test_yl | | | 95.27 76 | 94.60 79 | 97.28 53 | 98.53 94 | 92.98 78 | 99.05 94 | 98.70 16 | 86.76 203 | 94.65 104 | 97.74 126 | 87.78 78 | 99.44 111 | 95.57 78 | 92.61 167 | 99.44 84 |
|
DCV-MVSNet | | | 95.27 76 | 94.60 79 | 97.28 53 | 98.53 94 | 92.98 78 | 99.05 94 | 98.70 16 | 86.76 203 | 94.65 104 | 97.74 126 | 87.78 78 | 99.44 111 | 95.57 78 | 92.61 167 | 99.44 84 |
|
1314 | | | 93.44 120 | 91.98 138 | 97.84 30 | 95.24 188 | 94.38 50 | 96.22 267 | 97.92 46 | 90.18 110 | 82.28 236 | 97.71 128 | 77.63 203 | 99.80 64 | 91.94 132 | 98.67 94 | 99.34 91 |
|
baseline | | | 93.91 107 | 93.30 109 | 95.72 126 | 95.10 201 | 90.07 139 | 97.48 221 | 95.91 235 | 91.03 91 | 93.54 121 | 97.68 129 | 79.58 187 | 98.02 171 | 94.27 104 | 95.14 146 | 99.08 111 |
|
PVSNet | | 87.13 12 | 93.69 113 | 92.83 120 | 96.28 107 | 97.99 107 | 90.22 134 | 99.38 56 | 98.93 10 | 91.42 85 | 93.66 120 | 97.68 129 | 71.29 248 | 99.64 86 | 87.94 174 | 97.20 119 | 98.98 116 |
|
casdiffmvs | | | 93.98 105 | 93.43 107 | 95.61 130 | 95.07 202 | 89.86 147 | 98.80 119 | 95.84 241 | 90.98 92 | 92.74 130 | 97.66 131 | 79.71 186 | 98.10 163 | 94.72 96 | 95.37 145 | 98.87 128 |
|
Vis-MVSNet (Re-imp) | | | 93.26 129 | 93.00 118 | 94.06 174 | 96.14 165 | 86.71 208 | 98.68 133 | 96.70 179 | 88.30 167 | 89.71 172 | 97.64 132 | 85.43 128 | 96.39 246 | 88.06 173 | 96.32 129 | 99.08 111 |
|
3Dnovator+ | | 87.72 8 | 93.43 121 | 91.84 140 | 98.17 18 | 95.73 175 | 95.08 29 | 98.92 108 | 97.04 166 | 91.42 85 | 81.48 254 | 97.60 133 | 74.60 215 | 99.79 65 | 90.84 142 | 98.97 81 | 99.64 66 |
|
thisisatest0515 | | | 94.75 86 | 94.19 87 | 96.43 101 | 96.13 168 | 92.64 87 | 99.47 40 | 97.60 97 | 87.55 189 | 93.17 124 | 97.59 134 | 94.71 9 | 98.42 151 | 88.28 170 | 93.20 159 | 98.24 165 |
|
3Dnovator | | 87.35 11 | 93.17 131 | 91.77 142 | 97.37 51 | 95.41 185 | 93.07 75 | 98.82 117 | 97.85 51 | 91.53 80 | 82.56 230 | 97.58 135 | 71.97 240 | 99.82 60 | 91.01 139 | 99.23 74 | 99.22 103 |
|
CHOSEN 280x420 | | | 96.80 35 | 96.85 27 | 96.66 91 | 97.85 109 | 94.42 49 | 94.76 289 | 98.36 23 | 92.50 59 | 95.62 89 | 97.52 136 | 97.92 1 | 97.38 207 | 98.31 32 | 98.80 90 | 98.20 168 |
|
IS-MVSNet | | | 93.00 133 | 92.51 126 | 94.49 159 | 96.14 165 | 87.36 196 | 98.31 177 | 95.70 248 | 88.58 154 | 90.17 164 | 97.50 137 | 83.02 155 | 97.22 210 | 87.06 181 | 96.07 137 | 98.90 125 |
|
OpenMVS | | 85.28 14 | 90.75 171 | 88.84 185 | 96.48 98 | 93.58 240 | 93.51 66 | 98.80 119 | 97.41 135 | 82.59 268 | 78.62 282 | 97.49 138 | 68.00 265 | 99.82 60 | 84.52 210 | 98.55 97 | 96.11 207 |
|
PCF-MVS | | 89.78 5 | 91.26 160 | 89.63 172 | 96.16 112 | 95.44 184 | 91.58 101 | 95.29 285 | 96.10 219 | 85.07 228 | 82.75 226 | 97.45 139 | 78.28 199 | 99.78 66 | 80.60 249 | 95.65 144 | 97.12 190 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
VNet | | | 95.08 80 | 94.26 85 | 97.55 43 | 98.07 105 | 93.88 58 | 98.68 133 | 98.73 15 | 90.33 107 | 97.16 54 | 97.43 140 | 79.19 192 | 99.53 96 | 96.91 54 | 91.85 181 | 99.24 100 |
|
QAPM | | | 91.41 159 | 89.49 173 | 97.17 58 | 95.66 178 | 93.42 68 | 98.60 146 | 97.51 117 | 80.92 289 | 81.39 255 | 97.41 141 | 72.89 233 | 99.87 47 | 82.33 235 | 98.68 93 | 98.21 167 |
|
thisisatest0530 | | | 94.00 104 | 93.52 106 | 95.43 134 | 95.76 174 | 90.02 144 | 98.99 101 | 97.60 97 | 86.58 206 | 91.74 138 | 97.36 142 | 94.78 8 | 98.34 152 | 86.37 190 | 92.48 170 | 97.94 174 |
|
DWT-MVSNet_test | | | 94.36 98 | 93.95 98 | 95.62 128 | 96.99 137 | 89.47 156 | 96.62 254 | 97.38 138 | 90.96 93 | 93.07 127 | 97.27 143 | 93.73 13 | 98.09 164 | 85.86 198 | 93.65 157 | 99.29 95 |
|
mvs-test1 | | | 91.57 155 | 92.20 132 | 89.70 263 | 95.15 195 | 74.34 319 | 99.51 37 | 95.40 266 | 91.92 73 | 91.02 150 | 97.25 144 | 74.27 220 | 98.08 167 | 89.45 155 | 95.83 140 | 96.67 198 |
|
DP-MVS | | | 88.75 206 | 86.56 220 | 95.34 136 | 98.92 80 | 87.45 193 | 97.64 217 | 93.52 309 | 70.55 323 | 81.49 253 | 97.25 144 | 74.43 218 | 99.88 44 | 71.14 306 | 94.09 154 | 98.67 144 |
|
TR-MVS | | | 90.77 170 | 89.44 174 | 94.76 150 | 96.31 157 | 88.02 181 | 97.92 202 | 95.96 225 | 85.52 219 | 88.22 182 | 97.23 146 | 66.80 274 | 98.09 164 | 84.58 209 | 92.38 171 | 98.17 169 |
|
Vis-MVSNet | | | 92.64 138 | 91.85 139 | 95.03 145 | 95.12 197 | 88.23 176 | 98.48 160 | 96.81 176 | 91.61 78 | 92.16 136 | 97.22 147 | 71.58 246 | 98.00 173 | 85.85 199 | 97.81 106 | 98.88 126 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
gm-plane-assit | | | | | | 94.69 215 | 88.14 177 | | | 88.22 170 | | 97.20 148 | | 98.29 155 | 90.79 143 | | |
|
tttt0517 | | | 93.30 126 | 93.01 117 | 94.17 170 | 95.57 179 | 86.47 211 | 98.51 156 | 97.60 97 | 85.99 214 | 90.55 157 | 97.19 149 | 94.80 7 | 98.31 153 | 85.06 203 | 91.86 180 | 97.74 176 |
|
EPP-MVSNet | | | 93.75 112 | 93.67 104 | 94.01 176 | 95.86 171 | 85.70 235 | 98.67 135 | 97.66 83 | 84.46 238 | 91.36 146 | 97.18 150 | 91.16 26 | 97.79 183 | 92.93 124 | 93.75 156 | 98.53 149 |
|
Effi-MVS+ | | | 93.87 109 | 93.15 113 | 96.02 115 | 95.79 172 | 90.76 123 | 96.70 252 | 95.78 242 | 86.98 197 | 95.71 86 | 97.17 151 | 79.58 187 | 98.01 172 | 94.57 100 | 96.09 135 | 99.31 93 |
|
CLD-MVS | | | 91.06 164 | 90.71 161 | 92.10 211 | 94.05 226 | 86.10 224 | 99.55 33 | 96.29 207 | 94.16 26 | 84.70 208 | 97.17 151 | 69.62 255 | 97.82 181 | 94.74 95 | 86.08 217 | 92.39 225 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
EI-MVSNet | | | 89.87 186 | 89.38 176 | 91.36 226 | 94.32 221 | 85.87 231 | 97.61 218 | 96.59 185 | 85.10 226 | 85.51 203 | 97.10 153 | 81.30 180 | 96.56 233 | 83.85 222 | 83.03 239 | 91.64 247 |
|
CVMVSNet | | | 90.30 177 | 90.91 155 | 88.46 286 | 94.32 221 | 73.58 323 | 97.61 218 | 97.59 101 | 90.16 113 | 88.43 181 | 97.10 153 | 76.83 207 | 92.86 319 | 82.64 232 | 93.54 158 | 98.93 123 |
|
UA-Net | | | 93.30 126 | 92.62 124 | 95.34 136 | 96.27 158 | 88.53 174 | 95.88 277 | 96.97 172 | 90.90 95 | 95.37 92 | 97.07 155 | 82.38 166 | 99.10 133 | 83.91 220 | 94.86 149 | 98.38 157 |
|
RPSCF | | | 85.33 257 | 85.55 235 | 84.67 310 | 94.63 217 | 62.28 338 | 93.73 299 | 93.76 304 | 74.38 316 | 85.23 206 | 97.06 156 | 64.09 286 | 98.31 153 | 80.98 244 | 86.08 217 | 93.41 219 |
|
EPNet_dtu | | | 92.28 145 | 92.15 134 | 92.70 202 | 97.29 125 | 84.84 248 | 98.64 139 | 97.82 54 | 92.91 51 | 93.02 128 | 97.02 157 | 85.48 127 | 95.70 283 | 72.25 303 | 94.89 148 | 97.55 182 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
BH-w/o | | | 92.32 144 | 91.79 141 | 93.91 179 | 96.85 139 | 86.18 221 | 99.11 89 | 95.74 245 | 88.13 172 | 84.81 207 | 97.00 158 | 77.26 205 | 97.91 174 | 89.16 164 | 98.03 104 | 97.64 177 |
|
thres200 | | | 93.69 113 | 92.59 125 | 96.97 69 | 97.76 110 | 94.74 40 | 99.35 61 | 99.36 2 | 89.23 134 | 91.21 149 | 96.97 159 | 83.42 149 | 98.77 141 | 85.08 202 | 90.96 192 | 97.39 184 |
|
baseline2 | | | 94.04 103 | 93.80 103 | 94.74 152 | 93.07 252 | 90.25 132 | 98.12 191 | 98.16 33 | 89.86 118 | 86.53 198 | 96.95 160 | 95.56 5 | 98.05 169 | 91.44 135 | 94.53 150 | 95.93 208 |
|
MSDG | | | 88.29 212 | 86.37 222 | 94.04 175 | 96.90 138 | 86.15 223 | 96.52 256 | 94.36 297 | 77.89 305 | 79.22 277 | 96.95 160 | 69.72 254 | 99.59 92 | 73.20 299 | 92.58 169 | 96.37 205 |
|
tfpn200view9 | | | 93.43 121 | 92.27 130 | 96.90 74 | 97.68 113 | 94.84 35 | 99.18 72 | 99.36 2 | 88.45 159 | 90.79 152 | 96.90 162 | 83.31 150 | 98.75 143 | 84.11 216 | 90.69 194 | 97.12 190 |
|
thres400 | | | 93.39 123 | 92.27 130 | 96.73 85 | 97.68 113 | 94.84 35 | 99.18 72 | 99.36 2 | 88.45 159 | 90.79 152 | 96.90 162 | 83.31 150 | 98.75 143 | 84.11 216 | 90.69 194 | 96.61 199 |
|
Anonymous202405211 | | | 88.84 200 | 87.03 214 | 94.27 166 | 98.14 104 | 84.18 256 | 98.44 163 | 95.58 255 | 76.79 308 | 89.34 174 | 96.88 164 | 53.42 321 | 99.54 95 | 87.53 179 | 87.12 210 | 99.09 110 |
|
baseline1 | | | 92.61 140 | 91.28 148 | 96.58 94 | 97.05 135 | 94.63 44 | 97.72 213 | 96.20 213 | 89.82 120 | 88.56 179 | 96.85 165 | 86.85 100 | 97.82 181 | 88.42 168 | 80.10 254 | 97.30 186 |
|
thres100view900 | | | 93.34 125 | 92.15 134 | 96.90 74 | 97.62 115 | 94.84 35 | 99.06 93 | 99.36 2 | 87.96 176 | 90.47 160 | 96.78 166 | 83.29 152 | 98.75 143 | 84.11 216 | 90.69 194 | 97.12 190 |
|
thres600view7 | | | 93.18 130 | 92.00 137 | 96.75 83 | 97.62 115 | 94.92 31 | 99.07 91 | 99.36 2 | 87.96 176 | 90.47 160 | 96.78 166 | 83.29 152 | 98.71 147 | 82.93 230 | 90.47 198 | 96.61 199 |
|
BH-untuned | | | 91.46 158 | 90.84 157 | 93.33 188 | 96.51 152 | 84.83 249 | 98.84 116 | 95.50 259 | 86.44 211 | 83.50 217 | 96.70 168 | 75.49 211 | 97.77 185 | 86.78 188 | 97.81 106 | 97.40 183 |
|
NP-MVS | | | | | | 93.94 230 | 86.22 220 | | | | | 96.67 169 | | | | | |
|
HQP-MVS | | | 91.50 156 | 91.23 149 | 92.29 207 | 93.95 227 | 86.39 214 | 99.16 75 | 96.37 200 | 93.92 31 | 87.57 185 | 96.67 169 | 73.34 227 | 97.77 185 | 93.82 111 | 86.29 212 | 92.72 220 |
|
HQP_MVS | | | 91.26 160 | 90.95 154 | 92.16 210 | 93.84 234 | 86.07 226 | 99.02 97 | 96.30 204 | 93.38 44 | 86.99 191 | 96.52 171 | 72.92 231 | 97.75 190 | 93.46 116 | 86.17 215 | 92.67 222 |
|
plane_prior4 | | | | | | | | | | | | 96.52 171 | | | | | |
|
CDS-MVSNet | | | 93.47 119 | 93.04 116 | 94.76 150 | 94.75 214 | 89.45 157 | 98.82 117 | 97.03 168 | 87.91 178 | 90.97 151 | 96.48 173 | 89.06 58 | 96.36 248 | 89.50 154 | 92.81 165 | 98.49 151 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
OPM-MVS | | | 89.76 187 | 89.15 180 | 91.57 223 | 90.53 283 | 85.58 237 | 98.11 192 | 95.93 230 | 92.88 53 | 86.05 199 | 96.47 174 | 67.06 273 | 97.87 178 | 89.29 162 | 86.08 217 | 91.26 268 |
|
GG-mvs-BLEND | | | | | 96.98 68 | 96.53 150 | 94.81 38 | 87.20 324 | 97.74 67 | | 93.91 116 | 96.40 175 | 96.56 2 | 96.94 220 | 95.08 87 | 98.95 84 | 99.20 104 |
|
CHOSEN 1792x2688 | | | 94.35 99 | 93.82 102 | 95.95 119 | 97.40 121 | 88.74 169 | 98.41 167 | 98.27 25 | 92.18 70 | 91.43 144 | 96.40 175 | 78.88 193 | 99.81 62 | 93.59 114 | 97.81 106 | 99.30 94 |
|
tmp_tt | | | 53.66 314 | 52.86 315 | 56.05 329 | 32.75 353 | 41.97 349 | 73.42 343 | 76.12 350 | 21.91 348 | 39.68 344 | 96.39 177 | 42.59 336 | 65.10 347 | 78.00 264 | 14.92 347 | 61.08 341 |
|
PVSNet_Blended_VisFu | | | 94.67 91 | 94.11 90 | 96.34 106 | 97.14 130 | 91.10 113 | 99.32 65 | 97.43 133 | 92.10 72 | 91.53 143 | 96.38 178 | 83.29 152 | 99.68 78 | 93.42 118 | 96.37 128 | 98.25 164 |
|
test0.0.03 1 | | | 88.96 196 | 88.61 191 | 90.03 256 | 91.09 277 | 84.43 253 | 98.97 103 | 97.02 169 | 90.21 108 | 80.29 263 | 96.31 179 | 84.89 133 | 91.93 332 | 72.98 300 | 85.70 220 | 93.73 215 |
|
LPG-MVS_test | | | 88.86 199 | 88.47 196 | 90.06 253 | 93.35 247 | 80.95 293 | 98.22 182 | 95.94 228 | 87.73 184 | 83.17 222 | 96.11 180 | 66.28 278 | 97.77 185 | 90.19 148 | 85.19 221 | 91.46 258 |
|
LGP-MVS_train | | | | | 90.06 253 | 93.35 247 | 80.95 293 | | 95.94 228 | 87.73 184 | 83.17 222 | 96.11 180 | 66.28 278 | 97.77 185 | 90.19 148 | 85.19 221 | 91.46 258 |
|
TAMVS | | | 92.62 139 | 92.09 136 | 94.20 169 | 94.10 223 | 87.68 186 | 98.41 167 | 96.97 172 | 87.53 190 | 89.74 170 | 96.04 182 | 84.77 136 | 96.49 239 | 88.97 166 | 92.31 173 | 98.42 153 |
|
Anonymous20240529 | | | 87.66 222 | 85.58 234 | 93.92 178 | 97.59 118 | 85.01 247 | 98.13 189 | 97.13 157 | 66.69 335 | 88.47 180 | 96.01 183 | 55.09 315 | 99.51 100 | 87.00 183 | 84.12 229 | 97.23 189 |
|
COLMAP_ROB | | 82.69 18 | 84.54 266 | 82.82 265 | 89.70 263 | 96.72 145 | 78.85 302 | 95.89 275 | 92.83 315 | 71.55 321 | 77.54 291 | 95.89 184 | 59.40 302 | 99.14 131 | 67.26 314 | 88.26 204 | 91.11 272 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
PatchMatch-RL | | | 91.47 157 | 90.54 164 | 94.26 167 | 98.20 100 | 86.36 216 | 96.94 241 | 97.14 155 | 87.75 182 | 88.98 176 | 95.75 185 | 71.80 243 | 99.40 116 | 80.92 246 | 97.39 117 | 97.02 196 |
|
Fast-Effi-MVS+ | | | 91.72 154 | 90.79 160 | 94.49 159 | 95.89 170 | 87.40 195 | 99.54 35 | 95.70 248 | 85.01 231 | 89.28 175 | 95.68 186 | 77.75 202 | 97.57 202 | 83.22 225 | 95.06 147 | 98.51 150 |
|
ACMP | | 87.39 10 | 88.71 207 | 88.24 198 | 90.12 252 | 93.91 232 | 81.06 292 | 98.50 157 | 95.67 251 | 89.43 131 | 80.37 262 | 95.55 187 | 65.67 280 | 97.83 180 | 90.55 145 | 84.51 225 | 91.47 257 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
AllTest | | | 84.97 259 | 83.12 263 | 90.52 244 | 96.82 140 | 78.84 303 | 95.89 275 | 92.17 321 | 77.96 303 | 75.94 296 | 95.50 188 | 55.48 312 | 99.18 126 | 71.15 304 | 87.14 208 | 93.55 217 |
|
TestCases | | | | | 90.52 244 | 96.82 140 | 78.84 303 | | 92.17 321 | 77.96 303 | 75.94 296 | 95.50 188 | 55.48 312 | 99.18 126 | 71.15 304 | 87.14 208 | 93.55 217 |
|
ITE_SJBPF | | | | | 87.93 288 | 92.26 260 | 76.44 314 | | 93.47 310 | 87.67 187 | 79.95 268 | 95.49 190 | 56.50 309 | 97.38 207 | 75.24 283 | 82.33 245 | 89.98 302 |
|
testgi | | | 82.29 280 | 81.00 284 | 86.17 301 | 87.24 320 | 74.84 318 | 97.39 222 | 91.62 329 | 88.63 151 | 75.85 298 | 95.42 191 | 46.07 334 | 91.55 333 | 66.87 317 | 79.94 255 | 92.12 236 |
|
Fast-Effi-MVS+-dtu | | | 88.84 200 | 88.59 193 | 89.58 267 | 93.44 245 | 78.18 308 | 98.65 137 | 94.62 290 | 88.46 158 | 84.12 214 | 95.37 192 | 68.91 257 | 96.52 236 | 82.06 238 | 91.70 185 | 94.06 214 |
|
ACMM | | 86.95 13 | 88.77 205 | 88.22 199 | 90.43 246 | 93.61 239 | 81.34 286 | 98.50 157 | 95.92 231 | 87.88 179 | 83.85 216 | 95.20 193 | 67.20 271 | 97.89 176 | 86.90 186 | 84.90 223 | 92.06 239 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
RRT_MVS | | | 91.95 151 | 91.09 150 | 94.53 158 | 96.71 147 | 95.12 28 | 98.64 139 | 96.23 211 | 89.04 140 | 85.24 205 | 95.06 194 | 87.71 81 | 96.43 243 | 89.10 165 | 82.06 246 | 92.05 240 |
|
HyFIR lowres test | | | 93.68 115 | 93.29 110 | 94.87 147 | 97.57 119 | 88.04 180 | 98.18 186 | 98.47 21 | 87.57 188 | 91.24 148 | 95.05 195 | 85.49 125 | 97.46 204 | 93.22 120 | 92.82 163 | 99.10 109 |
|
VPNet | | | 88.30 211 | 86.57 219 | 93.49 185 | 91.95 265 | 91.35 104 | 98.18 186 | 97.20 151 | 88.61 152 | 84.52 211 | 94.89 196 | 62.21 293 | 96.76 227 | 89.34 159 | 72.26 308 | 92.36 227 |
|
TESTMET0.1,1 | | | 93.82 110 | 93.26 111 | 95.49 132 | 95.21 190 | 90.25 132 | 99.15 81 | 97.54 112 | 89.18 136 | 91.79 137 | 94.87 197 | 89.13 57 | 97.63 196 | 86.21 191 | 96.29 132 | 98.60 147 |
|
FIs | | | 90.70 172 | 89.87 170 | 93.18 190 | 92.29 259 | 91.12 111 | 98.17 188 | 98.25 26 | 89.11 138 | 83.44 218 | 94.82 198 | 82.26 167 | 96.17 263 | 87.76 175 | 82.76 241 | 92.25 230 |
|
HY-MVS | | 88.56 7 | 95.29 75 | 94.23 86 | 98.48 11 | 97.72 111 | 96.41 10 | 94.03 296 | 98.74 13 | 92.42 64 | 95.65 88 | 94.76 199 | 86.52 109 | 99.49 103 | 95.29 84 | 92.97 162 | 99.53 75 |
|
FC-MVSNet-test | | | 90.22 179 | 89.40 175 | 92.67 204 | 91.78 269 | 89.86 147 | 97.89 203 | 98.22 28 | 88.81 149 | 82.96 225 | 94.66 200 | 81.90 173 | 95.96 271 | 85.89 197 | 82.52 244 | 92.20 234 |
|
nrg030 | | | 90.23 178 | 88.87 184 | 94.32 165 | 91.53 272 | 93.54 65 | 98.79 123 | 95.89 238 | 88.12 173 | 84.55 210 | 94.61 201 | 78.80 196 | 96.88 221 | 92.35 130 | 75.21 278 | 92.53 224 |
|
cascas | | | 90.93 168 | 89.33 177 | 95.76 125 | 95.69 176 | 93.03 77 | 98.99 101 | 96.59 185 | 80.49 291 | 86.79 197 | 94.45 202 | 65.23 283 | 98.60 150 | 93.52 115 | 92.18 176 | 95.66 210 |
|
UniMVSNet_ETH3D | | | 85.65 255 | 83.79 260 | 91.21 227 | 90.41 285 | 80.75 295 | 95.36 284 | 95.78 242 | 78.76 299 | 81.83 251 | 94.33 203 | 49.86 329 | 96.66 229 | 84.30 211 | 83.52 236 | 96.22 206 |
|
XXY-MVS | | | 87.75 219 | 86.02 227 | 92.95 196 | 90.46 284 | 89.70 152 | 97.71 215 | 95.90 236 | 84.02 244 | 80.95 256 | 94.05 204 | 67.51 269 | 97.10 215 | 85.16 201 | 78.41 261 | 92.04 241 |
|
test-LLR | | | 93.11 132 | 92.68 122 | 94.40 162 | 94.94 208 | 87.27 199 | 99.15 81 | 97.25 145 | 90.21 108 | 91.57 140 | 94.04 205 | 84.89 133 | 97.58 199 | 85.94 195 | 96.13 133 | 98.36 160 |
|
test-mter | | | 93.27 128 | 92.89 119 | 94.40 162 | 94.94 208 | 87.27 199 | 99.15 81 | 97.25 145 | 88.95 144 | 91.57 140 | 94.04 205 | 88.03 76 | 97.58 199 | 85.94 195 | 96.13 133 | 98.36 160 |
|
MVS_Test | | | 93.67 116 | 92.67 123 | 96.69 89 | 96.72 145 | 92.66 83 | 97.22 232 | 96.03 221 | 87.69 186 | 95.12 97 | 94.03 207 | 81.55 175 | 98.28 156 | 89.17 163 | 96.46 125 | 99.14 107 |
|
ACMH+ | | 83.78 15 | 84.21 270 | 82.56 274 | 89.15 276 | 93.73 238 | 79.16 300 | 96.43 257 | 94.28 298 | 81.09 286 | 74.00 306 | 94.03 207 | 54.58 317 | 97.67 193 | 76.10 278 | 78.81 260 | 90.63 288 |
|
MVSTER | | | 92.71 136 | 92.32 128 | 93.86 180 | 97.29 125 | 92.95 81 | 99.01 99 | 96.59 185 | 90.09 114 | 85.51 203 | 94.00 209 | 94.61 12 | 96.56 233 | 90.77 144 | 83.03 239 | 92.08 238 |
|
UniMVSNet_NR-MVSNet | | | 89.60 189 | 88.55 194 | 92.75 201 | 92.17 262 | 90.07 139 | 98.74 125 | 98.15 34 | 88.37 165 | 83.21 220 | 93.98 210 | 82.86 157 | 95.93 273 | 86.95 184 | 72.47 305 | 92.25 230 |
|
mvs_anonymous | | | 92.50 143 | 91.65 144 | 95.06 143 | 96.60 148 | 89.64 153 | 97.06 237 | 96.44 197 | 86.64 205 | 84.14 213 | 93.93 211 | 82.49 162 | 96.17 263 | 91.47 134 | 96.08 136 | 99.35 89 |
|
TranMVSNet+NR-MVSNet | | | 87.75 219 | 86.31 223 | 92.07 212 | 90.81 280 | 88.56 171 | 98.33 174 | 97.18 152 | 87.76 181 | 81.87 248 | 93.90 212 | 72.45 235 | 95.43 289 | 83.13 228 | 71.30 315 | 92.23 232 |
|
ab-mvs | | | 91.05 165 | 89.17 179 | 96.69 89 | 95.96 169 | 91.72 96 | 92.62 307 | 97.23 148 | 85.61 218 | 89.74 170 | 93.89 213 | 68.55 260 | 99.42 113 | 91.09 137 | 87.84 206 | 98.92 124 |
|
WR-MVS | | | 88.54 209 | 87.22 212 | 92.52 205 | 91.93 267 | 89.50 155 | 98.56 151 | 97.84 52 | 86.99 195 | 81.87 248 | 93.81 214 | 74.25 222 | 95.92 275 | 85.29 200 | 74.43 286 | 92.12 236 |
|
PS-MVSNAJss | | | 89.54 191 | 89.05 181 | 91.00 232 | 88.77 304 | 84.36 254 | 97.39 222 | 95.97 223 | 88.47 156 | 81.88 247 | 93.80 215 | 82.48 163 | 96.50 237 | 89.34 159 | 83.34 238 | 92.15 235 |
|
jajsoiax | | | 87.35 225 | 86.51 221 | 89.87 257 | 87.75 318 | 81.74 281 | 97.03 238 | 95.98 222 | 88.47 156 | 80.15 265 | 93.80 215 | 61.47 295 | 96.36 248 | 89.44 157 | 84.47 227 | 91.50 256 |
|
DU-MVS | | | 88.83 202 | 87.51 205 | 92.79 199 | 91.46 273 | 90.07 139 | 98.71 126 | 97.62 95 | 88.87 148 | 83.21 220 | 93.68 217 | 74.63 213 | 95.93 273 | 86.95 184 | 72.47 305 | 92.36 227 |
|
NR-MVSNet | | | 87.74 221 | 86.00 228 | 92.96 195 | 91.46 273 | 90.68 126 | 96.65 253 | 97.42 134 | 88.02 175 | 73.42 307 | 93.68 217 | 77.31 204 | 95.83 279 | 84.26 212 | 71.82 312 | 92.36 227 |
|
IB-MVS | | 89.43 6 | 92.12 148 | 90.83 159 | 95.98 118 | 95.40 186 | 90.78 122 | 99.81 6 | 98.06 37 | 91.23 89 | 85.63 202 | 93.66 219 | 90.63 37 | 98.78 140 | 91.22 136 | 71.85 311 | 98.36 160 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
mvs_tets | | | 87.09 228 | 86.22 224 | 89.71 262 | 87.87 314 | 81.39 285 | 96.73 251 | 95.90 236 | 88.19 171 | 79.99 267 | 93.61 220 | 59.96 301 | 96.31 256 | 89.40 158 | 84.34 228 | 91.43 260 |
|
UGNet | | | 91.91 152 | 90.85 156 | 95.10 140 | 97.06 134 | 88.69 170 | 98.01 199 | 98.24 27 | 92.41 65 | 92.39 134 | 93.61 220 | 60.52 299 | 99.68 78 | 88.14 172 | 97.25 118 | 96.92 197 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
ACMH | | 83.09 17 | 84.60 264 | 82.61 273 | 90.57 242 | 93.18 250 | 82.94 269 | 96.27 262 | 94.92 283 | 81.01 287 | 72.61 314 | 93.61 220 | 56.54 308 | 97.79 183 | 74.31 290 | 81.07 250 | 90.99 274 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MS-PatchMatch | | | 86.75 233 | 85.92 229 | 89.22 274 | 91.97 264 | 82.47 277 | 96.91 242 | 96.14 218 | 83.74 248 | 77.73 289 | 93.53 223 | 58.19 304 | 97.37 209 | 76.75 273 | 98.35 101 | 87.84 317 |
|
RRT_test8_iter05 | | | 91.04 166 | 90.40 167 | 92.95 196 | 96.20 162 | 89.75 151 | 98.97 103 | 96.38 199 | 88.52 155 | 82.00 244 | 93.51 224 | 90.69 36 | 96.73 228 | 90.43 146 | 76.91 272 | 92.38 226 |
|
Test_1112_low_res | | | 92.27 146 | 90.97 153 | 96.18 109 | 95.53 182 | 91.10 113 | 98.47 162 | 94.66 289 | 88.28 169 | 86.83 196 | 93.50 225 | 87.00 98 | 98.65 149 | 84.69 207 | 89.74 202 | 98.80 135 |
|
CMPMVS | | 58.40 21 | 80.48 289 | 80.11 287 | 81.59 319 | 85.10 326 | 59.56 340 | 94.14 295 | 95.95 227 | 68.54 330 | 60.71 334 | 93.31 226 | 55.35 314 | 97.87 178 | 83.06 229 | 84.85 224 | 87.33 321 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
USDC | | | 84.74 260 | 82.93 264 | 90.16 251 | 91.73 270 | 83.54 263 | 95.00 287 | 93.30 311 | 88.77 150 | 73.19 308 | 93.30 227 | 53.62 320 | 97.65 195 | 75.88 280 | 81.54 249 | 89.30 309 |
|
OurMVSNet-221017-0 | | | 84.13 273 | 83.59 261 | 85.77 304 | 87.81 315 | 70.24 331 | 94.89 288 | 93.65 308 | 86.08 213 | 76.53 292 | 93.28 228 | 61.41 296 | 96.14 265 | 80.95 245 | 77.69 269 | 90.93 275 |
|
PVSNet_0 | | 83.28 16 | 87.31 226 | 85.16 239 | 93.74 184 | 94.78 213 | 84.59 251 | 98.91 109 | 98.69 18 | 89.81 121 | 78.59 284 | 93.23 229 | 61.95 294 | 99.34 122 | 94.75 94 | 55.72 337 | 97.30 186 |
|
EU-MVSNet | | | 84.19 271 | 84.42 254 | 83.52 313 | 88.64 307 | 67.37 336 | 96.04 273 | 95.76 244 | 85.29 223 | 78.44 285 | 93.18 230 | 70.67 250 | 91.48 334 | 75.79 281 | 75.98 274 | 91.70 246 |
|
pmmvs4 | | | 87.58 224 | 86.17 226 | 91.80 218 | 89.58 294 | 88.92 164 | 97.25 229 | 95.28 272 | 82.54 270 | 80.49 261 | 93.17 231 | 75.62 210 | 96.05 268 | 82.75 231 | 78.90 259 | 90.42 291 |
|
GA-MVS | | | 90.10 182 | 88.69 189 | 94.33 164 | 92.44 258 | 87.97 182 | 99.08 90 | 96.26 209 | 89.65 124 | 86.92 193 | 93.11 232 | 68.09 263 | 96.96 218 | 82.54 234 | 90.15 199 | 98.05 170 |
|
CP-MVSNet | | | 86.54 238 | 85.45 237 | 89.79 261 | 91.02 279 | 82.78 275 | 97.38 224 | 97.56 108 | 85.37 222 | 79.53 274 | 93.03 233 | 71.86 242 | 95.25 294 | 79.92 251 | 73.43 299 | 91.34 264 |
|
LF4IMVS | | | 81.94 283 | 81.17 283 | 84.25 311 | 87.23 321 | 68.87 335 | 93.35 303 | 91.93 326 | 83.35 256 | 75.40 300 | 93.00 234 | 49.25 331 | 96.65 230 | 78.88 259 | 78.11 263 | 87.22 323 |
|
XVG-ACMP-BASELINE | | | 85.86 248 | 84.95 243 | 88.57 283 | 89.90 289 | 77.12 313 | 94.30 292 | 95.60 254 | 87.40 192 | 82.12 239 | 92.99 235 | 53.42 321 | 97.66 194 | 85.02 204 | 83.83 231 | 90.92 276 |
|
PS-CasMVS | | | 85.81 250 | 84.58 251 | 89.49 271 | 90.77 281 | 82.11 279 | 97.20 233 | 97.36 141 | 84.83 234 | 79.12 279 | 92.84 236 | 67.42 270 | 95.16 296 | 78.39 263 | 73.25 300 | 91.21 269 |
|
LTVRE_ROB | | 81.71 19 | 84.59 265 | 82.72 270 | 90.18 250 | 92.89 255 | 83.18 267 | 93.15 304 | 94.74 285 | 78.99 296 | 75.14 302 | 92.69 237 | 65.64 281 | 97.63 196 | 69.46 308 | 81.82 248 | 89.74 304 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
PEN-MVS | | | 85.21 258 | 83.93 259 | 89.07 278 | 89.89 290 | 81.31 287 | 97.09 236 | 97.24 147 | 84.45 239 | 78.66 281 | 92.68 238 | 68.44 261 | 94.87 301 | 75.98 279 | 70.92 316 | 91.04 273 |
|
PVSNet_BlendedMVS | | | 93.36 124 | 93.20 112 | 93.84 181 | 98.77 86 | 91.61 99 | 99.47 40 | 98.04 39 | 91.44 82 | 94.21 110 | 92.63 239 | 83.50 146 | 99.87 47 | 97.41 44 | 83.37 237 | 90.05 300 |
|
DTE-MVSNet | | | 84.14 272 | 82.80 266 | 88.14 287 | 88.95 303 | 79.87 299 | 96.81 245 | 96.24 210 | 83.50 253 | 77.60 290 | 92.52 240 | 67.89 267 | 94.24 313 | 72.64 302 | 69.05 319 | 90.32 293 |
|
miper_enhance_ethall | | | 90.33 176 | 89.70 171 | 92.22 208 | 97.12 131 | 88.93 163 | 98.35 173 | 95.96 225 | 88.60 153 | 83.14 224 | 92.33 241 | 87.38 87 | 96.18 262 | 86.49 189 | 77.89 264 | 91.55 255 |
|
SixPastTwentyTwo | | | 82.63 279 | 81.58 278 | 85.79 303 | 88.12 312 | 71.01 330 | 95.17 286 | 92.54 317 | 84.33 240 | 72.93 312 | 92.08 242 | 60.41 300 | 95.61 286 | 74.47 289 | 74.15 291 | 90.75 283 |
|
UniMVSNet (Re) | | | 89.50 192 | 88.32 197 | 93.03 193 | 92.21 261 | 90.96 119 | 98.90 110 | 98.39 22 | 89.13 137 | 83.22 219 | 92.03 243 | 81.69 174 | 96.34 254 | 86.79 187 | 72.53 304 | 91.81 244 |
|
pmmvs5 | | | 85.87 247 | 84.40 255 | 90.30 249 | 88.53 308 | 84.23 255 | 98.60 146 | 93.71 306 | 81.53 282 | 80.29 263 | 92.02 244 | 64.51 285 | 95.52 287 | 82.04 239 | 78.34 262 | 91.15 270 |
|
pm-mvs1 | | | 84.68 262 | 82.78 268 | 90.40 247 | 89.58 294 | 85.18 243 | 97.31 225 | 94.73 286 | 81.93 279 | 76.05 295 | 92.01 245 | 65.48 282 | 96.11 266 | 78.75 261 | 69.14 318 | 89.91 303 |
|
VPA-MVSNet | | | 89.10 194 | 87.66 204 | 93.45 186 | 92.56 256 | 91.02 117 | 97.97 201 | 98.32 24 | 86.92 199 | 86.03 200 | 92.01 245 | 68.84 259 | 97.10 215 | 90.92 140 | 75.34 277 | 92.23 232 |
|
MVP-Stereo | | | 86.61 237 | 85.83 230 | 88.93 281 | 88.70 306 | 83.85 261 | 96.07 272 | 94.41 296 | 82.15 276 | 75.64 299 | 91.96 247 | 67.65 268 | 96.45 242 | 77.20 269 | 98.72 92 | 86.51 327 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
test_djsdf | | | 88.26 213 | 87.73 202 | 89.84 259 | 88.05 313 | 82.21 278 | 97.77 211 | 96.17 216 | 86.84 200 | 82.41 234 | 91.95 248 | 72.07 239 | 95.99 269 | 89.83 150 | 84.50 226 | 91.32 265 |
|
cl-mvsnet2 | | | 89.57 190 | 88.79 187 | 91.91 214 | 97.94 108 | 87.62 188 | 97.98 200 | 96.51 192 | 85.03 229 | 82.37 235 | 91.79 249 | 83.65 144 | 96.50 237 | 85.96 194 | 77.89 264 | 91.61 252 |
|
v2v482 | | | 87.27 227 | 85.76 231 | 91.78 222 | 89.59 293 | 87.58 189 | 98.56 151 | 95.54 257 | 84.53 237 | 82.51 231 | 91.78 250 | 73.11 230 | 96.47 240 | 82.07 237 | 74.14 292 | 91.30 266 |
|
TinyColmap | | | 80.42 290 | 77.94 291 | 87.85 289 | 92.09 263 | 78.58 305 | 93.74 298 | 89.94 337 | 74.99 312 | 69.77 317 | 91.78 250 | 46.09 333 | 97.58 199 | 65.17 321 | 77.89 264 | 87.38 320 |
|
TransMVSNet (Re) | | | 81.97 282 | 79.61 289 | 89.08 277 | 89.70 292 | 84.01 258 | 97.26 228 | 91.85 327 | 78.84 297 | 73.07 311 | 91.62 252 | 67.17 272 | 95.21 295 | 67.50 313 | 59.46 334 | 88.02 316 |
|
FMVSNet3 | | | 88.81 204 | 87.08 213 | 93.99 177 | 96.52 151 | 94.59 45 | 98.08 195 | 96.20 213 | 85.85 215 | 82.12 239 | 91.60 253 | 74.05 223 | 95.40 291 | 79.04 256 | 80.24 251 | 91.99 242 |
|
eth_miper_zixun_eth | | | 87.76 218 | 87.00 215 | 90.06 253 | 94.67 216 | 82.65 276 | 97.02 240 | 95.37 269 | 84.19 242 | 81.86 250 | 91.58 254 | 81.47 177 | 95.90 277 | 83.24 224 | 73.61 295 | 91.61 252 |
|
miper_ehance_all_eth | | | 88.94 197 | 88.12 200 | 91.40 224 | 95.32 187 | 86.93 204 | 97.85 207 | 95.55 256 | 84.19 242 | 81.97 245 | 91.50 255 | 84.16 140 | 95.91 276 | 84.69 207 | 77.89 264 | 91.36 263 |
|
Effi-MVS+-dtu | | | 89.97 185 | 90.68 162 | 87.81 290 | 95.15 195 | 71.98 328 | 97.87 206 | 95.40 266 | 91.92 73 | 87.57 185 | 91.44 256 | 74.27 220 | 96.84 222 | 89.45 155 | 93.10 161 | 94.60 213 |
|
cl_fuxian | | | 88.19 214 | 87.23 211 | 91.06 230 | 94.97 206 | 86.17 222 | 97.72 213 | 95.38 268 | 83.43 254 | 81.68 252 | 91.37 257 | 82.81 158 | 95.72 282 | 84.04 219 | 73.70 294 | 91.29 267 |
|
Baseline_NR-MVSNet | | | 85.83 249 | 84.82 246 | 88.87 282 | 88.73 305 | 83.34 265 | 98.63 141 | 91.66 328 | 80.41 292 | 82.44 232 | 91.35 258 | 74.63 213 | 95.42 290 | 84.13 215 | 71.39 314 | 87.84 317 |
|
cl-mvsnet1 | | | 87.82 216 | 86.81 217 | 90.87 237 | 94.87 211 | 85.39 240 | 97.81 208 | 95.22 280 | 82.92 265 | 80.76 258 | 91.31 259 | 81.99 170 | 95.81 280 | 81.36 242 | 75.04 280 | 91.42 261 |
|
cl-mvsnet_ | | | 87.82 216 | 86.79 218 | 90.89 236 | 94.88 210 | 85.43 239 | 97.81 208 | 95.24 276 | 82.91 266 | 80.71 259 | 91.22 260 | 81.97 172 | 95.84 278 | 81.34 243 | 75.06 279 | 91.40 262 |
|
IterMVS-LS | | | 88.34 210 | 87.44 206 | 91.04 231 | 94.10 223 | 85.85 232 | 98.10 193 | 95.48 260 | 85.12 225 | 82.03 243 | 91.21 261 | 81.35 179 | 95.63 285 | 83.86 221 | 75.73 276 | 91.63 248 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
FMVSNet2 | | | 86.90 230 | 84.79 247 | 93.24 189 | 95.11 198 | 92.54 89 | 97.67 216 | 95.86 240 | 82.94 262 | 80.55 260 | 91.17 262 | 62.89 290 | 95.29 293 | 77.23 267 | 79.71 258 | 91.90 243 |
|
TDRefinement | | | 78.01 300 | 75.31 301 | 86.10 302 | 70.06 343 | 73.84 321 | 93.59 302 | 91.58 330 | 74.51 315 | 73.08 310 | 91.04 263 | 49.63 330 | 97.12 212 | 74.88 286 | 59.47 333 | 87.33 321 |
|
ppachtmachnet_test | | | 83.63 277 | 81.57 279 | 89.80 260 | 89.01 301 | 85.09 246 | 97.13 235 | 94.50 292 | 78.84 297 | 76.14 294 | 91.00 264 | 69.78 253 | 94.61 309 | 63.40 323 | 74.36 287 | 89.71 306 |
|
tfpnnormal | | | 83.65 276 | 81.35 281 | 90.56 243 | 91.37 275 | 88.06 179 | 97.29 226 | 97.87 50 | 78.51 300 | 76.20 293 | 90.91 265 | 64.78 284 | 96.47 240 | 61.71 327 | 73.50 297 | 87.13 324 |
|
WR-MVS_H | | | 86.53 239 | 85.49 236 | 89.66 266 | 91.04 278 | 83.31 266 | 97.53 220 | 98.20 30 | 84.95 232 | 79.64 271 | 90.90 266 | 78.01 201 | 95.33 292 | 76.29 277 | 72.81 301 | 90.35 292 |
|
Anonymous20231211 | | | 84.72 261 | 82.65 272 | 90.91 234 | 97.71 112 | 84.55 252 | 97.28 227 | 96.67 180 | 66.88 334 | 79.18 278 | 90.87 267 | 58.47 303 | 96.60 231 | 82.61 233 | 74.20 290 | 91.59 254 |
|
v1144 | | | 86.83 232 | 85.31 238 | 91.40 224 | 89.75 291 | 87.21 201 | 98.31 177 | 95.45 262 | 83.22 257 | 82.70 228 | 90.78 268 | 73.36 226 | 96.36 248 | 79.49 253 | 74.69 284 | 90.63 288 |
|
CostFormer | | | 92.89 134 | 92.48 127 | 94.12 172 | 94.99 205 | 85.89 230 | 92.89 306 | 97.00 171 | 86.98 197 | 95.00 99 | 90.78 268 | 90.05 47 | 97.51 203 | 92.92 125 | 91.73 184 | 98.96 118 |
|
v1921920 | | | 86.02 245 | 84.44 253 | 90.77 239 | 89.32 299 | 85.20 242 | 98.10 193 | 95.35 271 | 82.19 275 | 82.25 237 | 90.71 270 | 70.73 249 | 96.30 259 | 76.85 272 | 74.49 285 | 90.80 279 |
|
anonymousdsp | | | 86.69 234 | 85.75 232 | 89.53 268 | 86.46 324 | 82.94 269 | 96.39 258 | 95.71 247 | 83.97 246 | 79.63 272 | 90.70 271 | 68.85 258 | 95.94 272 | 86.01 192 | 84.02 230 | 89.72 305 |
|
tpmrst | | | 92.78 135 | 92.16 133 | 94.65 155 | 96.27 158 | 87.45 193 | 91.83 311 | 97.10 162 | 89.10 139 | 94.68 103 | 90.69 272 | 88.22 71 | 97.73 192 | 89.78 152 | 91.80 182 | 98.77 139 |
|
V42 | | | 87.00 229 | 85.68 233 | 90.98 233 | 89.91 288 | 86.08 225 | 98.32 176 | 95.61 253 | 83.67 251 | 82.72 227 | 90.67 273 | 74.00 224 | 96.53 235 | 81.94 240 | 74.28 289 | 90.32 293 |
|
tpm2 | | | 91.77 153 | 91.09 150 | 93.82 182 | 94.83 212 | 85.56 238 | 92.51 308 | 97.16 154 | 84.00 245 | 93.83 118 | 90.66 274 | 87.54 84 | 97.17 211 | 87.73 176 | 91.55 187 | 98.72 141 |
|
EPMVS | | | 92.59 141 | 91.59 145 | 95.59 131 | 97.22 127 | 90.03 143 | 91.78 312 | 98.04 39 | 90.42 104 | 91.66 139 | 90.65 275 | 86.49 111 | 97.46 204 | 81.78 241 | 96.31 130 | 99.28 97 |
|
LCM-MVSNet-Re | | | 88.59 208 | 88.61 191 | 88.51 285 | 95.53 182 | 72.68 326 | 96.85 244 | 88.43 341 | 88.45 159 | 73.14 309 | 90.63 276 | 75.82 208 | 94.38 311 | 92.95 123 | 95.71 143 | 98.48 152 |
|
SCA | | | 90.64 174 | 89.25 178 | 94.83 149 | 94.95 207 | 88.83 165 | 96.26 264 | 97.21 150 | 90.06 117 | 90.03 166 | 90.62 277 | 66.61 275 | 96.81 224 | 83.16 226 | 94.36 152 | 98.84 129 |
|
Patchmatch-test | | | 86.25 243 | 84.06 257 | 92.82 198 | 94.42 219 | 82.88 273 | 82.88 339 | 94.23 299 | 71.58 320 | 79.39 275 | 90.62 277 | 89.00 60 | 96.42 244 | 63.03 324 | 91.37 190 | 99.16 106 |
|
v1192 | | | 86.32 242 | 84.71 248 | 91.17 228 | 89.53 296 | 86.40 213 | 98.13 189 | 95.44 264 | 82.52 271 | 82.42 233 | 90.62 277 | 71.58 246 | 96.33 255 | 77.23 267 | 74.88 281 | 90.79 280 |
|
v144192 | | | 86.40 240 | 84.89 244 | 90.91 234 | 89.48 297 | 85.59 236 | 98.21 184 | 95.43 265 | 82.45 272 | 82.62 229 | 90.58 280 | 72.79 234 | 96.36 248 | 78.45 262 | 74.04 293 | 90.79 280 |
|
PatchmatchNet | | | 92.05 150 | 91.04 152 | 95.06 143 | 96.17 163 | 89.04 161 | 91.26 316 | 97.26 144 | 89.56 128 | 90.64 156 | 90.56 281 | 88.35 70 | 97.11 213 | 79.53 252 | 96.07 137 | 99.03 113 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1240 | | | 85.77 252 | 84.11 256 | 90.73 240 | 89.26 300 | 85.15 245 | 97.88 205 | 95.23 279 | 81.89 280 | 82.16 238 | 90.55 282 | 69.60 256 | 96.31 256 | 75.59 282 | 74.87 282 | 90.72 285 |
|
our_test_3 | | | 84.47 268 | 82.80 266 | 89.50 269 | 89.01 301 | 83.90 260 | 97.03 238 | 94.56 291 | 81.33 284 | 75.36 301 | 90.52 283 | 71.69 244 | 94.54 310 | 68.81 310 | 76.84 273 | 90.07 298 |
|
miper_lstm_enhance | | | 86.90 230 | 86.20 225 | 89.00 279 | 94.53 218 | 81.19 289 | 96.74 250 | 95.24 276 | 82.33 274 | 80.15 265 | 90.51 284 | 81.99 170 | 94.68 308 | 80.71 248 | 73.58 296 | 91.12 271 |
|
MDTV_nov1_ep13 | | | | 90.47 166 | | 96.14 165 | 88.55 172 | 91.34 315 | 97.51 117 | 89.58 126 | 92.24 135 | 90.50 285 | 86.99 99 | 97.61 198 | 77.64 266 | 92.34 172 | |
|
IterMVS-SCA-FT | | | 85.73 253 | 84.64 250 | 89.00 279 | 93.46 244 | 82.90 271 | 96.27 262 | 94.70 287 | 85.02 230 | 78.62 282 | 90.35 286 | 66.61 275 | 93.33 317 | 79.38 255 | 77.36 271 | 90.76 282 |
|
D2MVS | | | 87.96 215 | 87.39 207 | 89.70 263 | 91.84 268 | 83.40 264 | 98.31 177 | 98.49 20 | 88.04 174 | 78.23 288 | 90.26 287 | 73.57 225 | 96.79 226 | 84.21 213 | 83.53 235 | 88.90 314 |
|
GBi-Net | | | 86.67 235 | 84.96 241 | 91.80 218 | 95.11 198 | 88.81 166 | 96.77 246 | 95.25 273 | 82.94 262 | 82.12 239 | 90.25 288 | 62.89 290 | 94.97 298 | 79.04 256 | 80.24 251 | 91.62 249 |
|
test1 | | | 86.67 235 | 84.96 241 | 91.80 218 | 95.11 198 | 88.81 166 | 96.77 246 | 95.25 273 | 82.94 262 | 82.12 239 | 90.25 288 | 62.89 290 | 94.97 298 | 79.04 256 | 80.24 251 | 91.62 249 |
|
FMVSNet1 | | | 83.94 275 | 81.32 282 | 91.80 218 | 91.94 266 | 88.81 166 | 96.77 246 | 95.25 273 | 77.98 301 | 78.25 287 | 90.25 288 | 50.37 328 | 94.97 298 | 73.27 298 | 77.81 268 | 91.62 249 |
|
v148 | | | 86.38 241 | 85.06 240 | 90.37 248 | 89.47 298 | 84.10 257 | 98.52 153 | 95.48 260 | 83.80 247 | 80.93 257 | 90.22 291 | 74.60 215 | 96.31 256 | 80.92 246 | 71.55 313 | 90.69 286 |
|
lessismore_v0 | | | | | 85.08 306 | 85.59 325 | 69.28 334 | | 90.56 335 | | 67.68 324 | 90.21 292 | 54.21 319 | 95.46 288 | 73.88 293 | 62.64 329 | 90.50 290 |
|
dp | | | 90.16 181 | 88.83 186 | 94.14 171 | 96.38 155 | 86.42 212 | 91.57 313 | 97.06 165 | 84.76 235 | 88.81 177 | 90.19 293 | 84.29 139 | 97.43 206 | 75.05 284 | 91.35 191 | 98.56 148 |
|
IterMVS | | | 85.81 250 | 84.67 249 | 89.22 274 | 93.51 241 | 83.67 262 | 96.32 261 | 94.80 284 | 85.09 227 | 78.69 280 | 90.17 294 | 66.57 277 | 93.17 318 | 79.48 254 | 77.42 270 | 90.81 278 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
test_0402 | | | 78.81 297 | 76.33 299 | 86.26 300 | 91.18 276 | 78.44 307 | 95.88 277 | 91.34 332 | 68.55 329 | 70.51 316 | 89.91 295 | 52.65 323 | 94.99 297 | 47.14 340 | 79.78 257 | 85.34 332 |
|
v8 | | | 86.11 244 | 84.45 252 | 91.10 229 | 89.99 287 | 86.85 205 | 97.24 230 | 95.36 270 | 81.99 277 | 79.89 269 | 89.86 296 | 74.53 217 | 96.39 246 | 78.83 260 | 72.32 307 | 90.05 300 |
|
v10 | | | 85.73 253 | 84.01 258 | 90.87 237 | 90.03 286 | 86.73 207 | 97.20 233 | 95.22 280 | 81.25 285 | 79.85 270 | 89.75 297 | 73.30 229 | 96.28 260 | 76.87 271 | 72.64 303 | 89.61 307 |
|
test20.03 | | | 78.51 299 | 77.48 293 | 81.62 318 | 83.07 332 | 71.03 329 | 96.11 271 | 92.83 315 | 81.66 281 | 69.31 318 | 89.68 298 | 57.53 305 | 87.29 340 | 58.65 333 | 68.47 320 | 86.53 326 |
|
pmmvs6 | | | 79.90 292 | 77.31 294 | 87.67 291 | 84.17 329 | 78.13 309 | 95.86 279 | 93.68 307 | 67.94 332 | 72.67 313 | 89.62 299 | 50.98 327 | 95.75 281 | 74.80 288 | 66.04 324 | 89.14 312 |
|
tpm | | | 89.67 188 | 88.95 183 | 91.82 217 | 92.54 257 | 81.43 283 | 92.95 305 | 95.92 231 | 87.81 180 | 90.50 159 | 89.44 300 | 84.99 131 | 95.65 284 | 83.67 223 | 82.71 242 | 98.38 157 |
|
v7n | | | 84.42 269 | 82.75 269 | 89.43 272 | 88.15 311 | 81.86 280 | 96.75 249 | 95.67 251 | 80.53 290 | 78.38 286 | 89.43 301 | 69.89 252 | 96.35 253 | 73.83 295 | 72.13 309 | 90.07 298 |
|
K. test v3 | | | 81.04 286 | 79.77 288 | 84.83 308 | 87.41 319 | 70.23 332 | 95.60 283 | 93.93 303 | 83.70 250 | 67.51 325 | 89.35 302 | 55.76 310 | 93.58 316 | 76.67 274 | 68.03 321 | 90.67 287 |
|
tpmvs | | | 89.16 193 | 87.76 201 | 93.35 187 | 97.19 128 | 84.75 250 | 90.58 322 | 97.36 141 | 81.99 277 | 84.56 209 | 89.31 303 | 83.98 142 | 98.17 159 | 74.85 287 | 90.00 200 | 97.12 190 |
|
Anonymous20231206 | | | 80.76 288 | 79.42 290 | 84.79 309 | 84.78 327 | 72.98 324 | 96.53 255 | 92.97 313 | 79.56 293 | 74.33 303 | 88.83 304 | 61.27 297 | 92.15 329 | 60.59 329 | 75.92 275 | 89.24 311 |
|
EG-PatchMatch MVS | | | 79.92 291 | 77.59 292 | 86.90 297 | 87.06 322 | 77.90 312 | 96.20 270 | 94.06 302 | 74.61 314 | 66.53 329 | 88.76 305 | 40.40 341 | 96.20 261 | 67.02 315 | 83.66 234 | 86.61 325 |
|
tpm cat1 | | | 88.89 198 | 87.27 210 | 93.76 183 | 95.79 172 | 85.32 241 | 90.76 320 | 97.09 163 | 76.14 310 | 85.72 201 | 88.59 306 | 82.92 156 | 98.04 170 | 76.96 270 | 91.43 188 | 97.90 175 |
|
DeepMVS_CX | | | | | 76.08 322 | 90.74 282 | 51.65 345 | | 90.84 334 | 86.47 210 | 57.89 335 | 87.98 307 | 35.88 343 | 92.60 323 | 65.77 320 | 65.06 326 | 83.97 334 |
|
MDA-MVSNet-bldmvs | | | 77.82 302 | 74.75 304 | 87.03 296 | 88.33 309 | 78.52 306 | 96.34 260 | 92.85 314 | 75.57 311 | 48.87 340 | 87.89 308 | 57.32 307 | 92.49 326 | 60.79 328 | 64.80 327 | 90.08 297 |
|
UnsupCasMVSNet_eth | | | 78.90 296 | 76.67 298 | 85.58 305 | 82.81 333 | 74.94 317 | 91.98 310 | 96.31 203 | 84.64 236 | 65.84 330 | 87.71 309 | 51.33 325 | 92.23 328 | 72.89 301 | 56.50 336 | 89.56 308 |
|
MIMVSNet | | | 84.48 267 | 81.83 275 | 92.42 206 | 91.73 270 | 87.36 196 | 85.52 328 | 94.42 295 | 81.40 283 | 81.91 246 | 87.58 310 | 51.92 324 | 92.81 321 | 73.84 294 | 88.15 205 | 97.08 194 |
|
YYNet1 | | | 79.64 294 | 77.04 297 | 87.43 294 | 87.80 316 | 79.98 298 | 96.23 266 | 94.44 293 | 73.83 318 | 51.83 337 | 87.53 311 | 67.96 266 | 92.07 331 | 66.00 319 | 67.75 323 | 90.23 295 |
|
MDA-MVSNet_test_wron | | | 79.65 293 | 77.05 296 | 87.45 293 | 87.79 317 | 80.13 297 | 96.25 265 | 94.44 293 | 73.87 317 | 51.80 338 | 87.47 312 | 68.04 264 | 92.12 330 | 66.02 318 | 67.79 322 | 90.09 296 |
|
ADS-MVSNet2 | | | 87.62 223 | 86.88 216 | 89.86 258 | 96.21 160 | 79.14 301 | 87.15 325 | 92.99 312 | 83.01 260 | 89.91 168 | 87.27 313 | 78.87 194 | 92.80 322 | 74.20 291 | 92.27 174 | 97.64 177 |
|
ADS-MVSNet | | | 88.99 195 | 87.30 209 | 94.07 173 | 96.21 160 | 87.56 190 | 87.15 325 | 96.78 178 | 83.01 260 | 89.91 168 | 87.27 313 | 78.87 194 | 97.01 217 | 74.20 291 | 92.27 174 | 97.64 177 |
|
DSMNet-mixed | | | 81.60 285 | 81.43 280 | 82.10 316 | 84.36 328 | 60.79 339 | 93.63 301 | 86.74 343 | 79.00 295 | 79.32 276 | 87.15 315 | 63.87 288 | 89.78 335 | 66.89 316 | 91.92 179 | 95.73 209 |
|
OpenMVS_ROB | | 73.86 20 | 77.99 301 | 75.06 303 | 86.77 298 | 83.81 331 | 77.94 311 | 96.38 259 | 91.53 331 | 67.54 333 | 68.38 320 | 87.13 316 | 43.94 335 | 96.08 267 | 55.03 336 | 81.83 247 | 86.29 328 |
|
CR-MVSNet | | | 88.83 202 | 87.38 208 | 93.16 191 | 93.47 242 | 86.24 218 | 84.97 332 | 94.20 300 | 88.92 147 | 90.76 154 | 86.88 317 | 84.43 137 | 94.82 303 | 70.64 307 | 92.17 177 | 98.41 154 |
|
Patchmtry | | | 83.61 278 | 81.64 277 | 89.50 269 | 93.36 246 | 82.84 274 | 84.10 335 | 94.20 300 | 69.47 328 | 79.57 273 | 86.88 317 | 84.43 137 | 94.78 305 | 68.48 312 | 74.30 288 | 90.88 277 |
|
N_pmnet | | | 70.19 309 | 69.87 310 | 71.12 324 | 88.24 310 | 30.63 353 | 95.85 280 | 28.70 354 | 70.18 325 | 68.73 319 | 86.55 319 | 64.04 287 | 93.81 314 | 53.12 338 | 73.46 298 | 88.94 313 |
|
MVS_0304 | | | 84.13 273 | 82.66 271 | 88.52 284 | 93.07 252 | 80.15 296 | 95.81 281 | 98.21 29 | 79.27 294 | 86.85 195 | 86.40 320 | 41.33 339 | 94.69 307 | 76.36 276 | 86.69 211 | 90.73 284 |
|
MIMVSNet1 | | | 75.92 304 | 73.30 306 | 83.81 312 | 81.29 334 | 75.57 316 | 92.26 309 | 92.05 324 | 73.09 319 | 67.48 326 | 86.18 321 | 40.87 340 | 87.64 339 | 55.78 335 | 70.68 317 | 88.21 315 |
|
FMVSNet5 | | | 82.29 280 | 80.54 285 | 87.52 292 | 93.79 237 | 84.01 258 | 93.73 299 | 92.47 318 | 76.92 307 | 74.27 304 | 86.15 322 | 63.69 289 | 89.24 336 | 69.07 309 | 74.79 283 | 89.29 310 |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 323 | 88.73 63 | 96.81 224 | | | |
|
PM-MVS | | | 74.88 305 | 72.85 307 | 80.98 320 | 78.98 338 | 64.75 337 | 90.81 319 | 85.77 344 | 80.95 288 | 68.23 322 | 82.81 324 | 29.08 344 | 92.84 320 | 76.54 275 | 62.46 330 | 85.36 331 |
|
pmmvs-eth3d | | | 78.71 298 | 76.16 300 | 86.38 299 | 80.25 336 | 81.19 289 | 94.17 294 | 92.13 323 | 77.97 302 | 66.90 328 | 82.31 325 | 55.76 310 | 92.56 325 | 73.63 297 | 62.31 331 | 85.38 330 |
|
Patchmatch-RL test | | | 81.90 284 | 80.13 286 | 87.23 295 | 80.71 335 | 70.12 333 | 84.07 336 | 88.19 342 | 83.16 259 | 70.57 315 | 82.18 326 | 87.18 94 | 92.59 324 | 82.28 236 | 62.78 328 | 98.98 116 |
|
new_pmnet | | | 76.02 303 | 73.71 305 | 82.95 314 | 83.88 330 | 72.85 325 | 91.26 316 | 92.26 320 | 70.44 324 | 62.60 332 | 81.37 327 | 47.64 332 | 92.32 327 | 61.85 326 | 72.10 310 | 83.68 335 |
|
FPMVS | | | 61.57 310 | 60.32 312 | 65.34 326 | 60.14 347 | 42.44 348 | 91.02 318 | 89.72 338 | 44.15 341 | 42.63 342 | 80.93 328 | 19.02 346 | 80.59 344 | 42.50 341 | 72.76 302 | 73.00 339 |
|
pmmvs3 | | | 72.86 308 | 69.76 311 | 82.17 315 | 73.86 341 | 74.19 320 | 94.20 293 | 89.01 340 | 64.23 338 | 67.72 323 | 80.91 329 | 41.48 337 | 88.65 338 | 62.40 325 | 54.02 339 | 83.68 335 |
|
testing_2 | | | 80.92 287 | 77.24 295 | 91.98 213 | 78.88 339 | 87.83 183 | 93.96 297 | 95.72 246 | 84.27 241 | 56.20 336 | 80.42 330 | 38.64 342 | 96.40 245 | 87.20 180 | 79.85 256 | 91.72 245 |
|
ambc | | | | | 79.60 321 | 72.76 342 | 56.61 342 | 76.20 341 | 92.01 325 | | 68.25 321 | 80.23 331 | 23.34 345 | 94.73 306 | 73.78 296 | 60.81 332 | 87.48 319 |
|
new-patchmatchnet | | | 74.80 306 | 72.40 308 | 81.99 317 | 78.36 340 | 72.20 327 | 94.44 290 | 92.36 319 | 77.06 306 | 63.47 331 | 79.98 332 | 51.04 326 | 88.85 337 | 60.53 330 | 54.35 338 | 84.92 333 |
|
PatchT | | | 85.44 256 | 83.19 262 | 92.22 208 | 93.13 251 | 83.00 268 | 83.80 338 | 96.37 200 | 70.62 322 | 90.55 157 | 79.63 333 | 84.81 135 | 94.87 301 | 58.18 334 | 91.59 186 | 98.79 136 |
|
RPMNet | | | 84.62 263 | 81.78 276 | 93.16 191 | 93.47 242 | 86.24 218 | 84.97 332 | 96.28 208 | 64.85 337 | 90.76 154 | 78.80 334 | 80.95 181 | 94.82 303 | 53.76 337 | 92.17 177 | 98.41 154 |
|
UnsupCasMVSNet_bld | | | 73.85 307 | 70.14 309 | 84.99 307 | 79.44 337 | 75.73 315 | 88.53 323 | 95.24 276 | 70.12 326 | 61.94 333 | 74.81 335 | 41.41 338 | 93.62 315 | 68.65 311 | 51.13 341 | 85.62 329 |
|
LCM-MVSNet | | | 60.07 311 | 56.37 313 | 71.18 323 | 54.81 349 | 48.67 346 | 82.17 340 | 89.48 339 | 37.95 342 | 49.13 339 | 69.12 336 | 13.75 352 | 81.76 341 | 59.28 331 | 51.63 340 | 83.10 337 |
|
PMMVS2 | | | 58.97 312 | 55.07 314 | 70.69 325 | 62.72 344 | 55.37 343 | 85.97 327 | 80.52 347 | 49.48 340 | 45.94 341 | 68.31 337 | 15.73 350 | 80.78 343 | 49.79 339 | 37.12 342 | 75.91 338 |
|
JIA-IIPM | | | 85.97 246 | 84.85 245 | 89.33 273 | 93.23 249 | 73.68 322 | 85.05 331 | 97.13 157 | 69.62 327 | 91.56 142 | 68.03 338 | 88.03 76 | 96.96 218 | 77.89 265 | 93.12 160 | 97.34 185 |
|
testmvs | | | 18.81 321 | 23.05 323 | 6.10 336 | 4.48 354 | 2.29 356 | 97.78 210 | 3.00 356 | 3.27 350 | 18.60 350 | 62.71 339 | 1.53 357 | 2.49 353 | 14.26 349 | 1.80 349 | 13.50 348 |
|
gg-mvs-nofinetune | | | 90.00 184 | 87.71 203 | 96.89 79 | 96.15 164 | 94.69 43 | 85.15 330 | 97.74 67 | 68.32 331 | 92.97 129 | 60.16 340 | 96.10 3 | 96.84 222 | 93.89 107 | 98.87 85 | 99.14 107 |
|
PMVS | | 41.42 23 | 45.67 316 | 42.50 318 | 55.17 330 | 34.28 352 | 32.37 351 | 66.24 344 | 78.71 349 | 30.72 344 | 22.04 349 | 59.59 341 | 4.59 353 | 77.85 345 | 27.49 344 | 58.84 335 | 55.29 342 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVS-HIRNet | | | 79.01 295 | 75.13 302 | 90.66 241 | 93.82 236 | 81.69 282 | 85.16 329 | 93.75 305 | 54.54 339 | 74.17 305 | 59.15 342 | 57.46 306 | 96.58 232 | 63.74 322 | 94.38 151 | 93.72 216 |
|
ANet_high | | | 50.71 315 | 46.17 317 | 64.33 327 | 44.27 351 | 52.30 344 | 76.13 342 | 78.73 348 | 64.95 336 | 27.37 346 | 55.23 343 | 14.61 351 | 67.74 346 | 36.01 342 | 18.23 345 | 72.95 340 |
|
Gipuma | | | 54.77 313 | 52.22 316 | 62.40 328 | 86.50 323 | 59.37 341 | 50.20 346 | 90.35 336 | 36.52 343 | 41.20 343 | 49.49 344 | 18.33 348 | 81.29 342 | 32.10 343 | 65.34 325 | 46.54 344 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE | | 44.00 22 | 41.70 317 | 37.64 321 | 53.90 331 | 49.46 350 | 43.37 347 | 65.09 345 | 66.66 351 | 26.19 347 | 25.77 348 | 48.53 345 | 3.58 355 | 63.35 348 | 26.15 345 | 27.28 343 | 54.97 343 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 41.02 318 | 40.93 319 | 41.29 332 | 61.97 345 | 33.83 350 | 84.00 337 | 65.17 352 | 27.17 345 | 27.56 345 | 46.72 346 | 17.63 349 | 60.41 349 | 19.32 346 | 18.82 344 | 29.61 345 |
|
test_post | | | | | | | | | | | | 46.00 347 | 87.37 88 | 97.11 213 | | | |
|
test123 | | | 16.58 323 | 19.47 324 | 7.91 335 | 3.59 355 | 5.37 355 | 94.32 291 | 1.39 357 | 2.49 351 | 13.98 351 | 44.60 348 | 2.91 356 | 2.65 352 | 11.35 350 | 0.57 350 | 15.70 347 |
|
EMVS | | | 39.96 319 | 39.88 320 | 40.18 333 | 59.57 348 | 32.12 352 | 84.79 334 | 64.57 353 | 26.27 346 | 26.14 347 | 44.18 349 | 18.73 347 | 59.29 350 | 17.03 347 | 17.67 346 | 29.12 346 |
|
test_post1 | | | | | | | | 90.74 321 | | | | 41.37 350 | 85.38 129 | 96.36 248 | 83.16 226 | | |
|
X-MVStestdata | | | 90.69 173 | 88.66 190 | 96.77 81 | 99.62 24 | 90.66 127 | 99.43 51 | 97.58 103 | 92.41 65 | 96.86 61 | 29.59 351 | 87.37 88 | 99.87 47 | 95.65 73 | 99.43 63 | 99.78 38 |
|
wuyk23d | | | 16.71 322 | 16.73 325 | 16.65 334 | 60.15 346 | 25.22 354 | 41.24 347 | 5.17 355 | 6.56 349 | 5.48 352 | 3.61 352 | 3.64 354 | 22.72 351 | 15.20 348 | 9.52 348 | 1.99 349 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 6.87 325 | 9.16 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 82.48 163 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.00 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
IU-MVS | | | | | | 99.63 20 | 95.38 19 | | 97.73 71 | 95.54 15 | 99.54 1 | | | | 99.69 4 | 99.81 19 | 99.99 1 |
|
save fliter | | | | | | 99.34 51 | 93.85 59 | 99.65 23 | 97.63 93 | 95.69 11 | | | | | | | |
|
test_0728_SECOND | | | | | 98.77 5 | 99.66 14 | 96.37 11 | 99.72 14 | 97.68 81 | | | | | 99.98 10 | 99.64 5 | 99.82 15 | 99.96 8 |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 129 |
|
test_part2 | | | | | | 99.54 35 | 95.42 17 | | | | 98.13 32 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 97.69 80 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 69 | | | | 98.84 129 |
|
sam_mvs | | | | | | | | | | | | | 87.08 95 | | | | |
|
MTGPA | | | | | | | | | 97.45 127 | | | | | | | | |
|
MTMP | | | | | | | | 99.21 69 | 91.09 333 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 98.60 19 | 99.87 7 | 99.90 20 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 41 | 99.87 7 | 99.91 18 |
|
agg_prior | | | | | | 99.54 35 | 92.66 83 | | 97.64 89 | | 97.98 40 | | | 99.61 89 | | | |
|
test_prior4 | | | | | | | 92.00 92 | 99.41 54 | | | | | | | | | |
|
test_prior | | | | | 97.01 62 | 99.58 28 | 91.77 93 | | 97.57 106 | | | | | 99.49 103 | | | 99.79 34 |
|
旧先验2 | | | | | | | | 98.67 135 | | 85.75 217 | 98.96 12 | | | 98.97 137 | 93.84 109 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 98.26 180 | | | | | | | | | |
|
æ— å…ˆéªŒ | | | | | | | | 98.52 153 | 97.82 54 | 87.20 194 | | | | 99.90 40 | 87.64 177 | | 99.85 29 |
|
原ACMM2 | | | | | | | | 98.69 131 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 99.88 44 | 84.16 214 | | |
|
segment_acmp | | | | | | | | | | | | | 90.56 39 | | | | |
|
testdata1 | | | | | | | | 97.89 203 | | 92.43 61 | | | | | | | |
|
test12 | | | | | 97.83 31 | 99.33 57 | 94.45 47 | | 97.55 109 | | 97.56 46 | | 88.60 64 | 99.50 102 | | 99.71 34 | 99.55 74 |
|
plane_prior7 | | | | | | 93.84 234 | 85.73 234 | | | | | | | | | | |
|
plane_prior6 | | | | | | 93.92 231 | 86.02 228 | | | | | | 72.92 231 | | | | |
|
plane_prior5 | | | | | | | | | 96.30 204 | | | | | 97.75 190 | 93.46 116 | 86.17 215 | 92.67 222 |
|
plane_prior3 | | | | | | | 85.91 229 | | | 93.65 39 | 86.99 191 | | | | | | |
|
plane_prior2 | | | | | | | | 99.02 97 | | 93.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 233 | | | | | | | | | | | |
|
plane_prior | | | | | | | 86.07 226 | 99.14 84 | | 93.81 37 | | | | | | 86.26 214 | |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 346 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 81 | | | | | | | | |
|
door | | | | | | | | | 85.30 345 | | | | | | | | |
|
HQP5-MVS | | | | | | | 86.39 214 | | | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 227 | | 99.16 75 | | 93.92 31 | 87.57 185 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 227 | | 99.16 75 | | 93.92 31 | 87.57 185 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 93.82 111 | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 185 | | | 97.77 185 | | | 92.72 220 |
|
HQP3-MVS | | | | | | | | | 96.37 200 | | | | | | | 86.29 212 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 227 | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 110 | 91.38 314 | | 87.45 191 | 93.08 126 | | 86.67 104 | | 87.02 182 | | 98.95 122 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 243 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 231 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 145 | | | | |
|