OPU-MVS | | | | | 99.49 2 | 99.64 20 | 98.51 2 | 99.77 9 | | | | 99.19 32 | 95.12 6 | 99.97 20 | 99.90 1 | 99.92 3 | 99.99 1 |
|
SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 14 | 99.63 21 | 95.24 21 | 99.77 9 | 97.72 73 | 94.17 24 | 99.30 4 | 99.54 3 | 93.32 15 | 99.98 10 | 99.70 2 | 99.81 19 | 99.99 1 |
|
test_241102_TWO | | | | | | | | | 97.72 73 | 94.17 24 | 99.23 6 | 99.54 3 | 93.14 20 | 99.98 10 | 99.70 2 | 99.82 15 | 99.99 1 |
|
IU-MVS | | | | | | 99.63 21 | 95.38 19 | | 97.73 71 | 95.54 15 | 99.54 1 | | | | 99.69 4 | 99.81 19 | 99.99 1 |
|
DVP-MVS | | | 98.07 6 | 98.00 5 | 98.29 15 | 99.66 15 | 95.20 26 | 99.72 14 | 97.47 126 | 93.95 29 | 99.07 8 | 99.46 11 | 93.18 18 | 99.97 20 | 99.64 5 | 99.82 15 | 99.69 60 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test_0728_SECOND | | | | | 98.77 5 | 99.66 15 | 96.37 11 | 99.72 14 | 97.68 80 | | | | | 99.98 10 | 99.64 5 | 99.82 15 | 99.96 8 |
|
DPE-MVS | | | 98.11 5 | 98.00 5 | 98.44 13 | 99.50 43 | 95.39 18 | 99.29 66 | 97.72 73 | 94.50 20 | 98.64 20 | 99.54 3 | 93.32 15 | 99.97 20 | 99.58 7 | 99.90 5 | 99.95 11 |
|
ETH3 D test6400 | | | 97.67 10 | 97.33 16 | 98.69 7 | 99.69 9 | 96.43 9 | 99.63 25 | 97.73 71 | 91.05 90 | 98.66 19 | 99.53 7 | 90.59 38 | 99.71 73 | 99.32 8 | 99.80 23 | 99.91 18 |
|
DeepPCF-MVS | | 93.56 1 | 96.55 41 | 97.84 8 | 92.68 207 | 98.71 92 | 78.11 318 | 99.70 17 | 97.71 77 | 98.18 1 | 97.36 52 | 99.76 1 | 90.37 45 | 99.94 33 | 99.27 9 | 99.54 57 | 99.99 1 |
|
APDe-MVS | | | 97.53 11 | 97.47 10 | 97.70 36 | 99.58 29 | 93.63 62 | 99.56 32 | 97.52 115 | 93.59 41 | 98.01 39 | 99.12 46 | 90.80 35 | 99.55 94 | 99.26 10 | 99.79 25 | 99.93 17 |
|
test_0728_THIRD | | | | | | | | | | 93.01 47 | 99.07 8 | 99.46 11 | 94.66 10 | 99.97 20 | 99.25 11 | 99.82 15 | 99.95 11 |
|
TSAR-MVS + GP. | | | 96.95 29 | 96.91 25 | 97.07 59 | 98.88 86 | 91.62 100 | 99.58 29 | 96.54 197 | 95.09 18 | 96.84 65 | 98.63 98 | 91.16 26 | 99.77 67 | 99.04 12 | 96.42 131 | 99.81 31 |
|
MCST-MVS | | | 98.18 2 | 97.95 7 | 98.86 3 | 99.85 3 | 96.60 7 | 99.70 17 | 97.98 43 | 97.18 2 | 95.96 82 | 99.33 21 | 92.62 22 | 100.00 1 | 98.99 13 | 99.93 1 | 99.98 6 |
|
CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 6 | 99.80 4 | 96.19 12 | 99.80 8 | 97.99 42 | 97.05 3 | 99.41 2 | 99.59 2 | 92.89 21 | 100.00 1 | 98.99 13 | 99.90 5 | 99.96 8 |
|
ETH3D-3000-0.1 | | | 97.29 16 | 97.01 22 | 98.12 22 | 99.18 69 | 94.97 30 | 99.47 40 | 97.52 115 | 89.85 120 | 98.79 16 | 99.46 11 | 90.41 44 | 99.69 75 | 98.78 15 | 99.67 38 | 99.70 57 |
|
CANet | | | 97.00 27 | 96.49 37 | 98.55 9 | 98.86 88 | 96.10 13 | 99.83 5 | 97.52 115 | 95.90 9 | 97.21 53 | 98.90 76 | 82.66 167 | 99.93 35 | 98.71 16 | 98.80 94 | 99.63 69 |
|
9.14 | | | | 96.87 26 | | 99.34 53 | | 99.50 38 | 97.49 123 | 89.41 136 | 98.59 22 | 99.43 16 | 89.78 51 | 99.69 75 | 98.69 17 | 99.62 47 | |
|
SD-MVS | | | 97.51 12 | 97.40 14 | 97.81 32 | 99.01 79 | 93.79 61 | 99.33 64 | 97.38 139 | 93.73 38 | 98.83 15 | 99.02 57 | 90.87 33 | 99.88 44 | 98.69 17 | 99.74 28 | 99.77 44 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test9_res | | | | | | | | | | | | | | | 98.60 19 | 99.87 7 | 99.90 20 |
|
PS-MVSNAJ | | | 96.87 33 | 96.40 39 | 98.29 15 | 97.35 128 | 97.29 3 | 99.03 96 | 97.11 164 | 95.83 10 | 98.97 11 | 99.14 43 | 82.48 170 | 99.60 91 | 98.60 19 | 99.08 80 | 98.00 175 |
|
xiu_mvs_v2_base | | | 96.66 37 | 96.17 47 | 98.11 24 | 97.11 137 | 96.96 4 | 99.01 99 | 97.04 171 | 95.51 16 | 98.86 13 | 99.11 50 | 82.19 176 | 99.36 120 | 98.59 21 | 98.14 107 | 98.00 175 |
|
train_agg | | | 97.20 22 | 97.08 19 | 97.57 42 | 99.57 33 | 93.17 72 | 99.38 56 | 97.66 82 | 90.18 111 | 98.39 27 | 99.18 35 | 90.94 30 | 99.66 80 | 98.58 22 | 99.85 11 | 99.88 24 |
|
agg_prior1 | | | 97.12 24 | 97.03 21 | 97.38 50 | 99.54 36 | 92.66 84 | 99.35 61 | 97.64 88 | 90.38 105 | 97.98 40 | 99.17 37 | 90.84 34 | 99.61 89 | 98.57 23 | 99.78 27 | 99.87 27 |
|
TSAR-MVS + MP. | | | 97.44 15 | 97.46 11 | 97.39 49 | 99.12 72 | 93.49 67 | 98.52 153 | 97.50 121 | 94.46 21 | 98.99 10 | 98.64 96 | 91.58 25 | 99.08 138 | 98.49 24 | 99.83 13 | 99.60 73 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
xxxxxxxxxxxxxcwj | | | 97.51 12 | 97.42 13 | 97.78 34 | 99.34 53 | 93.85 59 | 99.65 23 | 95.45 270 | 95.69 11 | 98.70 17 | 99.42 17 | 90.42 42 | 99.72 71 | 98.47 25 | 99.65 40 | 99.77 44 |
|
SF-MVS | | | 97.22 21 | 96.92 24 | 98.12 22 | 99.11 73 | 94.88 32 | 99.44 48 | 97.45 128 | 89.60 129 | 98.70 17 | 99.42 17 | 90.42 42 | 99.72 71 | 98.47 25 | 99.65 40 | 99.77 44 |
|
ETH3D cwj APD-0.16 | | | 96.94 31 | 96.58 36 | 98.01 26 | 98.62 95 | 94.73 41 | 99.13 87 | 97.38 139 | 88.44 166 | 98.53 24 | 99.39 19 | 89.66 55 | 99.69 75 | 98.43 27 | 99.61 51 | 99.61 72 |
|
PHI-MVS | | | 96.65 38 | 96.46 38 | 97.21 56 | 99.34 53 | 91.77 95 | 99.70 17 | 98.05 38 | 86.48 215 | 98.05 36 | 99.20 31 | 89.33 57 | 99.96 27 | 98.38 28 | 99.62 47 | 99.90 20 |
|
ZD-MVS | | | | | | 99.67 13 | 93.28 70 | | 97.61 95 | 87.78 186 | 97.41 50 | 99.16 39 | 90.15 47 | 99.56 93 | 98.35 29 | 99.70 35 | |
|
test_prior3 | | | 97.07 26 | 97.09 18 | 97.01 62 | 99.58 29 | 91.77 95 | 99.57 30 | 97.57 106 | 91.43 83 | 98.12 34 | 98.97 63 | 90.43 40 | 99.49 104 | 98.33 30 | 99.81 19 | 99.79 34 |
|
test_prior2 | | | | | | | | 99.57 30 | | 91.43 83 | 98.12 34 | 98.97 63 | 90.43 40 | | 98.33 30 | 99.81 19 | |
|
SMA-MVS |  | | 97.24 18 | 96.99 23 | 98.00 27 | 99.30 60 | 94.20 53 | 99.16 75 | 97.65 87 | 89.55 133 | 99.22 7 | 99.52 9 | 90.34 46 | 99.99 5 | 98.32 32 | 99.83 13 | 99.82 30 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
CHOSEN 280x420 | | | 96.80 35 | 96.85 27 | 96.66 91 | 97.85 113 | 94.42 49 | 94.76 296 | 98.36 23 | 92.50 59 | 95.62 93 | 97.52 140 | 97.92 1 | 97.38 212 | 98.31 33 | 98.80 94 | 98.20 171 |
|
NCCC | | | 98.12 4 | 98.11 3 | 98.13 20 | 99.76 6 | 94.46 46 | 99.81 6 | 97.88 48 | 96.54 5 | 98.84 14 | 99.46 11 | 92.55 23 | 99.98 10 | 98.25 34 | 99.93 1 | 99.94 14 |
|
testtj | | | 97.23 20 | 97.05 20 | 97.75 35 | 99.75 7 | 93.34 69 | 99.16 75 | 97.74 67 | 91.28 87 | 98.40 26 | 99.29 22 | 89.95 49 | 99.98 10 | 98.20 35 | 99.70 35 | 99.94 14 |
|
MSP-MVS | | | 97.77 8 | 98.18 2 | 96.53 97 | 99.54 36 | 90.14 138 | 99.41 54 | 97.70 78 | 95.46 17 | 98.60 21 | 99.19 32 | 95.71 4 | 99.49 104 | 98.15 36 | 99.85 11 | 99.95 11 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
ETV-MVS | | | 96.00 57 | 96.00 53 | 96.00 116 | 96.56 154 | 91.05 118 | 99.63 25 | 96.61 187 | 93.26 46 | 97.39 51 | 98.30 114 | 86.62 108 | 98.13 165 | 98.07 37 | 97.57 115 | 98.82 136 |
|
MSLP-MVS++ | | | 97.50 14 | 97.45 12 | 97.63 38 | 99.65 19 | 93.21 71 | 99.70 17 | 98.13 36 | 94.61 19 | 97.78 45 | 99.46 11 | 89.85 50 | 99.81 62 | 97.97 38 | 99.91 4 | 99.88 24 |
|
APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 38 | 99.51 42 | 93.58 63 | 99.16 75 | 97.44 132 | 90.08 116 | 98.59 22 | 99.07 51 | 89.06 59 | 99.42 114 | 97.92 39 | 99.66 39 | 99.88 24 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SteuartSystems-ACMMP | | | 97.25 17 | 97.34 15 | 97.01 62 | 97.38 127 | 91.46 104 | 99.75 13 | 97.66 82 | 94.14 28 | 98.13 32 | 99.26 24 | 92.16 24 | 99.66 80 | 97.91 40 | 99.64 43 | 99.90 20 |
Skip Steuart: Steuart Systems R&D Blog. |
CS-MVS | | | 95.85 64 | 95.86 58 | 95.82 122 | 96.80 147 | 89.78 152 | 99.84 3 | 96.60 188 | 92.60 55 | 96.81 69 | 98.70 92 | 85.04 134 | 98.25 161 | 97.90 41 | 98.43 104 | 99.42 89 |
|
agg_prior2 | | | | | | | | | | | | | | | 97.84 42 | 99.87 7 | 99.91 18 |
|
HPM-MVS++ |  | | 97.72 9 | 97.59 9 | 98.14 19 | 99.53 41 | 94.76 39 | 99.19 70 | 97.75 65 | 95.66 13 | 98.21 30 | 99.29 22 | 91.10 28 | 99.99 5 | 97.68 43 | 99.87 7 | 99.68 61 |
|
SR-MVS | | | 96.13 54 | 96.16 49 | 96.07 114 | 99.42 49 | 89.04 164 | 98.59 148 | 97.33 144 | 90.44 103 | 96.84 65 | 99.12 46 | 86.75 103 | 99.41 116 | 97.47 44 | 99.44 63 | 99.76 47 |
|
PVSNet_BlendedMVS | | | 93.36 126 | 93.20 115 | 93.84 184 | 98.77 90 | 91.61 101 | 99.47 40 | 98.04 39 | 91.44 82 | 94.21 114 | 92.63 246 | 83.50 150 | 99.87 47 | 97.41 45 | 83.37 241 | 90.05 305 |
|
PVSNet_Blended | | | 95.94 61 | 95.66 66 | 96.75 83 | 98.77 90 | 91.61 101 | 99.88 1 | 98.04 39 | 93.64 40 | 94.21 114 | 97.76 128 | 83.50 150 | 99.87 47 | 97.41 45 | 97.75 114 | 98.79 139 |
|
test1172 | | | 95.92 62 | 96.07 52 | 95.46 133 | 99.42 49 | 87.24 207 | 98.51 156 | 97.24 148 | 90.29 108 | 96.56 76 | 99.12 46 | 86.73 105 | 99.36 120 | 97.33 47 | 99.42 67 | 99.78 38 |
|
MVS_111021_HR | | | 96.69 36 | 96.69 33 | 96.72 87 | 98.58 97 | 91.00 120 | 99.14 84 | 99.45 1 | 93.86 35 | 95.15 100 | 98.73 87 | 88.48 68 | 99.76 68 | 97.23 48 | 99.56 55 | 99.40 90 |
|
Regformer-1 | | | 96.97 28 | 96.80 30 | 97.47 44 | 99.46 47 | 93.11 74 | 98.89 111 | 97.94 44 | 92.89 52 | 96.90 58 | 99.02 57 | 89.78 51 | 99.53 97 | 97.06 49 | 99.26 76 | 99.75 48 |
|
xiu_mvs_v1_base_debu | | | 94.73 89 | 93.98 97 | 96.99 65 | 95.19 197 | 95.24 21 | 98.62 142 | 96.50 199 | 92.99 48 | 97.52 47 | 98.83 80 | 72.37 245 | 99.15 132 | 97.03 50 | 96.74 126 | 96.58 204 |
|
xiu_mvs_v1_base | | | 94.73 89 | 93.98 97 | 96.99 65 | 95.19 197 | 95.24 21 | 98.62 142 | 96.50 199 | 92.99 48 | 97.52 47 | 98.83 80 | 72.37 245 | 99.15 132 | 97.03 50 | 96.74 126 | 96.58 204 |
|
xiu_mvs_v1_base_debi | | | 94.73 89 | 93.98 97 | 96.99 65 | 95.19 197 | 95.24 21 | 98.62 142 | 96.50 199 | 92.99 48 | 97.52 47 | 98.83 80 | 72.37 245 | 99.15 132 | 97.03 50 | 96.74 126 | 96.58 204 |
|
Regformer-2 | | | 96.94 31 | 96.78 31 | 97.42 46 | 99.46 47 | 92.97 81 | 98.89 111 | 97.93 45 | 92.86 54 | 96.88 59 | 99.02 57 | 89.74 53 | 99.53 97 | 97.03 50 | 99.26 76 | 99.75 48 |
|
lupinMVS | | | 96.32 49 | 95.94 55 | 97.44 45 | 95.05 209 | 94.87 33 | 99.86 2 | 96.50 199 | 93.82 36 | 98.04 37 | 98.77 83 | 85.52 125 | 98.09 168 | 96.98 54 | 98.97 85 | 99.37 91 |
|
MVS_111021_LR | | | 95.78 68 | 95.94 55 | 95.28 140 | 98.19 106 | 87.69 189 | 98.80 119 | 99.26 7 | 93.39 43 | 95.04 102 | 98.69 94 | 84.09 145 | 99.76 68 | 96.96 55 | 99.06 81 | 98.38 160 |
|
VNet | | | 95.08 82 | 94.26 88 | 97.55 43 | 98.07 109 | 93.88 58 | 98.68 133 | 98.73 15 | 90.33 107 | 97.16 55 | 97.43 144 | 79.19 199 | 99.53 97 | 96.91 56 | 91.85 185 | 99.24 103 |
|
APD-MVS_3200maxsize | | | 95.64 72 | 95.65 68 | 95.62 128 | 99.24 65 | 87.80 188 | 98.42 166 | 97.22 151 | 88.93 150 | 96.64 75 | 98.98 62 | 85.49 128 | 99.36 120 | 96.68 57 | 99.27 75 | 99.70 57 |
|
SR-MVS-dyc-post | | | 95.75 71 | 95.86 58 | 95.41 136 | 99.22 66 | 87.26 205 | 98.40 171 | 97.21 152 | 89.63 127 | 96.67 73 | 98.97 63 | 86.73 105 | 99.36 120 | 96.62 58 | 99.31 72 | 99.60 73 |
|
RE-MVS-def | | | | 95.70 65 | | 99.22 66 | 87.26 205 | 98.40 171 | 97.21 152 | 89.63 127 | 96.67 73 | 98.97 63 | 85.24 133 | | 96.62 58 | 99.31 72 | 99.60 73 |
|
DeepC-MVS_fast | | 93.52 2 | 97.16 23 | 96.84 28 | 98.13 20 | 99.61 27 | 94.45 47 | 98.85 114 | 97.64 88 | 96.51 7 | 95.88 85 | 99.39 19 | 87.35 93 | 99.99 5 | 96.61 60 | 99.69 37 | 99.96 8 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
VDD-MVS | | | 91.24 165 | 90.18 171 | 94.45 164 | 97.08 138 | 85.84 240 | 98.40 171 | 96.10 224 | 86.99 201 | 93.36 126 | 98.16 120 | 54.27 329 | 99.20 129 | 96.59 61 | 90.63 201 | 98.31 166 |
|
MP-MVS-pluss | | | 95.80 67 | 95.30 71 | 97.29 52 | 98.95 83 | 92.66 84 | 98.59 148 | 97.14 160 | 88.95 148 | 93.12 129 | 99.25 25 | 85.62 124 | 99.94 33 | 96.56 62 | 99.48 59 | 99.28 100 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
diffmvs | | | 94.59 97 | 94.19 90 | 95.81 123 | 95.54 187 | 90.69 127 | 98.70 130 | 95.68 256 | 91.61 78 | 95.96 82 | 97.81 125 | 80.11 191 | 98.06 172 | 96.52 63 | 95.76 145 | 98.67 147 |
|
ACMMP_NAP | | | 96.59 39 | 96.18 45 | 97.81 32 | 98.82 89 | 93.55 64 | 98.88 113 | 97.59 101 | 90.66 96 | 97.98 40 | 99.14 43 | 86.59 109 | 100.00 1 | 96.47 64 | 99.46 60 | 99.89 23 |
|
Regformer-3 | | | 96.50 42 | 96.36 41 | 96.91 73 | 99.34 53 | 91.72 98 | 98.71 126 | 97.90 47 | 92.48 60 | 96.00 79 | 98.95 70 | 88.60 65 | 99.52 100 | 96.44 65 | 98.83 91 | 99.49 83 |
|
Regformer-4 | | | 96.45 45 | 96.33 43 | 96.81 80 | 99.34 53 | 91.44 105 | 98.71 126 | 97.88 48 | 92.43 61 | 95.97 81 | 98.95 70 | 88.42 69 | 99.51 101 | 96.40 66 | 98.83 91 | 99.49 83 |
|
PAPM | | | 96.35 47 | 95.94 55 | 97.58 40 | 94.10 231 | 95.25 20 | 98.93 106 | 98.17 31 | 94.26 23 | 93.94 119 | 98.72 89 | 89.68 54 | 97.88 181 | 96.36 67 | 99.29 74 | 99.62 71 |
|
zzz-MVS | | | 96.21 53 | 95.96 54 | 96.96 70 | 99.29 61 | 91.19 109 | 98.69 131 | 97.45 128 | 92.58 56 | 94.39 111 | 99.24 27 | 86.43 115 | 99.99 5 | 96.22 68 | 99.40 68 | 99.71 55 |
|
MTAPA | | | 96.09 55 | 95.80 63 | 96.96 70 | 99.29 61 | 91.19 109 | 97.23 237 | 97.45 128 | 92.58 56 | 94.39 111 | 99.24 27 | 86.43 115 | 99.99 5 | 96.22 68 | 99.40 68 | 99.71 55 |
|
alignmvs | | | 95.77 69 | 95.00 78 | 98.06 25 | 97.35 128 | 95.68 16 | 99.71 16 | 97.50 121 | 91.50 81 | 96.16 78 | 98.61 99 | 86.28 118 | 99.00 140 | 96.19 70 | 91.74 187 | 99.51 81 |
|
canonicalmvs | | | 95.02 83 | 93.96 100 | 98.20 17 | 97.53 125 | 95.92 14 | 98.71 126 | 96.19 220 | 91.78 76 | 95.86 87 | 98.49 107 | 79.53 196 | 99.03 139 | 96.12 71 | 91.42 193 | 99.66 65 |
|
DELS-MVS | | | 97.12 24 | 96.60 35 | 98.68 8 | 98.03 110 | 96.57 8 | 99.84 3 | 97.84 52 | 96.36 8 | 95.20 99 | 98.24 116 | 88.17 73 | 99.83 57 | 96.11 72 | 99.60 52 | 99.64 67 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
jason | | | 95.40 76 | 94.86 79 | 97.03 61 | 92.91 262 | 94.23 52 | 99.70 17 | 96.30 210 | 93.56 42 | 96.73 71 | 98.52 103 | 81.46 185 | 97.91 178 | 96.08 73 | 98.47 103 | 98.96 121 |
jason: jason. |
CP-MVS | | | 96.22 52 | 96.15 50 | 96.42 102 | 99.67 13 | 89.62 157 | 99.70 17 | 97.61 95 | 90.07 117 | 96.00 79 | 99.16 39 | 87.43 87 | 99.92 36 | 96.03 74 | 99.72 30 | 99.70 57 |
|
MP-MVS |  | | 96.00 57 | 95.82 60 | 96.54 96 | 99.47 46 | 90.13 140 | 99.36 60 | 97.41 136 | 90.64 99 | 95.49 94 | 98.95 70 | 85.51 127 | 99.98 10 | 96.00 75 | 99.59 54 | 99.52 79 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
#test# | | | 96.48 43 | 96.34 42 | 96.90 74 | 99.69 9 | 90.96 121 | 99.53 36 | 97.81 57 | 90.94 94 | 96.88 59 | 99.05 54 | 87.57 83 | 99.96 27 | 95.87 76 | 99.72 30 | 99.78 38 |
|
HFP-MVS | | | 96.42 46 | 96.26 44 | 96.90 74 | 99.69 9 | 90.96 121 | 99.47 40 | 97.81 57 | 90.54 101 | 96.88 59 | 99.05 54 | 87.57 83 | 99.96 27 | 95.65 77 | 99.72 30 | 99.78 38 |
|
XVS | | | 96.47 44 | 96.37 40 | 96.77 81 | 99.62 25 | 90.66 129 | 99.43 51 | 97.58 103 | 92.41 65 | 96.86 62 | 98.96 68 | 87.37 89 | 99.87 47 | 95.65 77 | 99.43 64 | 99.78 38 |
|
X-MVStestdata | | | 90.69 175 | 88.66 194 | 96.77 81 | 99.62 25 | 90.66 129 | 99.43 51 | 97.58 103 | 92.41 65 | 96.86 62 | 29.59 361 | 87.37 89 | 99.87 47 | 95.65 77 | 99.43 64 | 99.78 38 |
|
ACMMPR | | | 96.28 51 | 96.14 51 | 96.73 85 | 99.68 12 | 90.47 132 | 99.47 40 | 97.80 59 | 90.54 101 | 96.83 67 | 99.03 56 | 86.51 113 | 99.95 30 | 95.65 77 | 99.72 30 | 99.75 48 |
|
HPM-MVS |  | | 95.41 75 | 95.22 74 | 95.99 117 | 99.29 61 | 89.14 162 | 99.17 74 | 97.09 168 | 87.28 199 | 95.40 95 | 98.48 108 | 84.93 136 | 99.38 118 | 95.64 81 | 99.65 40 | 99.47 86 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test_yl | | | 95.27 78 | 94.60 82 | 97.28 53 | 98.53 98 | 92.98 79 | 99.05 94 | 98.70 16 | 86.76 209 | 94.65 108 | 97.74 130 | 87.78 79 | 99.44 112 | 95.57 82 | 92.61 171 | 99.44 87 |
|
DCV-MVSNet | | | 95.27 78 | 94.60 82 | 97.28 53 | 98.53 98 | 92.98 79 | 99.05 94 | 98.70 16 | 86.76 209 | 94.65 108 | 97.74 130 | 87.78 79 | 99.44 112 | 95.57 82 | 92.61 171 | 99.44 87 |
|
region2R | | | 96.30 50 | 96.17 47 | 96.70 88 | 99.70 8 | 90.31 134 | 99.46 45 | 97.66 82 | 90.55 100 | 97.07 56 | 99.07 51 | 86.85 101 | 99.97 20 | 95.43 84 | 99.74 28 | 99.81 31 |
|
EI-MVSNet-Vis-set | | | 95.76 70 | 95.63 70 | 96.17 111 | 99.14 71 | 90.33 133 | 98.49 160 | 97.82 54 | 91.92 73 | 94.75 105 | 98.88 78 | 87.06 97 | 99.48 109 | 95.40 85 | 97.17 124 | 98.70 146 |
|
EPNet | | | 96.82 34 | 96.68 34 | 97.25 55 | 98.65 93 | 93.10 75 | 99.48 39 | 98.76 12 | 96.54 5 | 97.84 44 | 98.22 117 | 87.49 86 | 99.66 80 | 95.35 86 | 97.78 113 | 99.00 117 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MG-MVS | | | 97.24 18 | 96.83 29 | 98.47 12 | 99.79 5 | 95.71 15 | 99.07 91 | 99.06 9 | 94.45 22 | 96.42 77 | 98.70 92 | 88.81 63 | 99.74 70 | 95.35 86 | 99.86 10 | 99.97 7 |
|
HY-MVS | | 88.56 7 | 95.29 77 | 94.23 89 | 98.48 11 | 97.72 115 | 96.41 10 | 94.03 303 | 98.74 13 | 92.42 64 | 95.65 92 | 94.76 204 | 86.52 112 | 99.49 104 | 95.29 88 | 92.97 166 | 99.53 78 |
|
mPP-MVS | | | 95.90 63 | 95.75 64 | 96.38 104 | 99.58 29 | 89.41 161 | 99.26 67 | 97.41 136 | 90.66 96 | 94.82 104 | 98.95 70 | 86.15 120 | 99.98 10 | 95.24 89 | 99.64 43 | 99.74 51 |
|
ZNCC-MVS | | | 96.09 55 | 95.81 62 | 96.95 72 | 99.42 49 | 91.19 109 | 99.55 33 | 97.53 113 | 89.72 124 | 95.86 87 | 98.94 75 | 86.59 109 | 99.97 20 | 95.13 90 | 99.56 55 | 99.68 61 |
|
GG-mvs-BLEND | | | | | 96.98 68 | 96.53 155 | 94.81 38 | 87.20 333 | 97.74 67 | | 93.91 120 | 96.40 179 | 96.56 2 | 96.94 225 | 95.08 91 | 98.95 88 | 99.20 107 |
|
EIA-MVS | | | 95.11 81 | 95.27 73 | 94.64 158 | 96.34 161 | 86.51 216 | 99.59 28 | 96.62 186 | 92.51 58 | 94.08 117 | 98.64 96 | 86.05 121 | 98.24 162 | 95.07 92 | 98.50 102 | 99.18 108 |
|
DeepC-MVS | | 91.02 4 | 94.56 98 | 93.92 103 | 96.46 99 | 97.16 134 | 90.76 125 | 98.39 174 | 97.11 164 | 93.92 31 | 88.66 183 | 98.33 112 | 78.14 207 | 99.85 54 | 95.02 93 | 98.57 100 | 98.78 141 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
WTY-MVS | | | 95.97 59 | 95.11 76 | 98.54 10 | 97.62 119 | 96.65 6 | 99.44 48 | 98.74 13 | 92.25 68 | 95.21 98 | 98.46 111 | 86.56 111 | 99.46 111 | 95.00 94 | 92.69 170 | 99.50 82 |
|
CSCG | | | 94.87 85 | 94.71 80 | 95.36 137 | 99.54 36 | 86.49 217 | 99.34 63 | 98.15 34 | 82.71 272 | 90.15 170 | 99.25 25 | 89.48 56 | 99.86 52 | 94.97 95 | 98.82 93 | 99.72 54 |
|
EI-MVSNet-UG-set | | | 95.43 73 | 95.29 72 | 95.86 121 | 99.07 77 | 89.87 149 | 98.43 165 | 97.80 59 | 91.78 76 | 94.11 116 | 98.77 83 | 86.25 119 | 99.48 109 | 94.95 96 | 96.45 130 | 98.22 169 |
|
CPTT-MVS | | | 94.60 96 | 94.43 86 | 95.09 143 | 99.66 15 | 86.85 212 | 99.44 48 | 97.47 126 | 83.22 262 | 94.34 113 | 98.96 68 | 82.50 168 | 99.55 94 | 94.81 97 | 99.50 58 | 98.88 129 |
|
PVSNet_0 | | 83.28 16 | 87.31 231 | 85.16 245 | 93.74 187 | 94.78 219 | 84.59 258 | 98.91 109 | 98.69 18 | 89.81 122 | 78.59 291 | 93.23 234 | 61.95 304 | 99.34 125 | 94.75 98 | 55.72 345 | 97.30 189 |
|
CLD-MVS | | | 91.06 166 | 90.71 164 | 92.10 216 | 94.05 234 | 86.10 231 | 99.55 33 | 96.29 213 | 94.16 26 | 84.70 213 | 97.17 155 | 69.62 264 | 97.82 185 | 94.74 99 | 86.08 221 | 92.39 229 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
casdiffmvs | | | 93.98 107 | 93.43 110 | 95.61 130 | 95.07 208 | 89.86 150 | 98.80 119 | 95.84 248 | 90.98 92 | 92.74 134 | 97.66 135 | 79.71 193 | 98.10 167 | 94.72 100 | 95.37 149 | 98.87 131 |
|
VDDNet | | | 90.08 186 | 88.54 199 | 94.69 156 | 94.41 226 | 87.68 190 | 98.21 187 | 96.40 204 | 76.21 319 | 93.33 127 | 97.75 129 | 54.93 327 | 98.77 145 | 94.71 101 | 90.96 196 | 97.61 184 |
|
CDPH-MVS | | | 96.56 40 | 96.18 45 | 97.70 36 | 99.59 28 | 93.92 57 | 99.13 87 | 97.44 132 | 89.02 145 | 97.90 43 | 99.22 29 | 88.90 62 | 99.49 104 | 94.63 102 | 99.79 25 | 99.68 61 |
|
GST-MVS | | | 95.97 59 | 95.66 66 | 96.90 74 | 99.49 45 | 91.22 107 | 99.45 47 | 97.48 124 | 89.69 125 | 95.89 84 | 98.72 89 | 86.37 117 | 99.95 30 | 94.62 103 | 99.22 79 | 99.52 79 |
|
Effi-MVS+ | | | 93.87 111 | 93.15 116 | 96.02 115 | 95.79 178 | 90.76 125 | 96.70 259 | 95.78 249 | 86.98 203 | 95.71 90 | 97.17 155 | 79.58 194 | 98.01 176 | 94.57 104 | 96.09 139 | 99.31 96 |
|
abl_6 | | | 94.63 95 | 94.48 84 | 95.09 143 | 98.61 96 | 86.96 210 | 98.06 201 | 96.97 177 | 89.31 137 | 95.86 87 | 98.56 101 | 79.82 192 | 99.64 86 | 94.53 105 | 98.65 99 | 98.66 149 |
|
LFMVS | | | 92.23 149 | 90.84 160 | 96.42 102 | 98.24 103 | 91.08 117 | 98.24 184 | 96.22 217 | 83.39 260 | 94.74 106 | 98.31 113 | 61.12 308 | 98.85 142 | 94.45 106 | 92.82 167 | 99.32 95 |
|
ET-MVSNet_ETH3D | | | 92.56 144 | 91.45 150 | 95.88 120 | 96.39 159 | 94.13 55 | 99.46 45 | 96.97 177 | 92.18 70 | 66.94 338 | 98.29 115 | 94.65 11 | 94.28 317 | 94.34 107 | 83.82 237 | 99.24 103 |
|
baseline | | | 93.91 109 | 93.30 112 | 95.72 126 | 95.10 207 | 90.07 142 | 97.48 226 | 95.91 240 | 91.03 91 | 93.54 125 | 97.68 133 | 79.58 194 | 98.02 175 | 94.27 108 | 95.14 150 | 99.08 114 |
|
PAPR | | | 96.35 47 | 95.82 60 | 97.94 29 | 99.63 21 | 94.19 54 | 99.42 53 | 97.55 109 | 92.43 61 | 93.82 123 | 99.12 46 | 87.30 94 | 99.91 38 | 94.02 109 | 99.06 81 | 99.74 51 |
|
PGM-MVS | | | 95.85 64 | 95.65 68 | 96.45 100 | 99.50 43 | 89.77 153 | 98.22 185 | 98.90 11 | 89.19 139 | 96.74 70 | 98.95 70 | 85.91 123 | 99.92 36 | 93.94 110 | 99.46 60 | 99.66 65 |
|
gg-mvs-nofinetune | | | 90.00 187 | 87.71 208 | 96.89 79 | 96.15 170 | 94.69 43 | 85.15 339 | 97.74 67 | 68.32 341 | 92.97 133 | 60.16 350 | 96.10 3 | 96.84 227 | 93.89 111 | 98.87 89 | 99.14 110 |
|
MVS | | | 93.92 108 | 92.28 132 | 98.83 4 | 95.69 182 | 96.82 5 | 96.22 274 | 98.17 31 | 84.89 239 | 84.34 217 | 98.61 99 | 79.32 198 | 99.83 57 | 93.88 112 | 99.43 64 | 99.86 28 |
|
旧先验2 | | | | | | | | 98.67 135 | | 85.75 223 | 98.96 12 | | | 98.97 141 | 93.84 113 | | |
|
ACMMP |  | | 94.67 93 | 94.30 87 | 95.79 124 | 99.25 64 | 88.13 183 | 98.41 168 | 98.67 19 | 90.38 105 | 91.43 149 | 98.72 89 | 82.22 175 | 99.95 30 | 93.83 114 | 95.76 145 | 99.29 98 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
BP-MVS | | | | | | | | | | | | | | | 93.82 115 | | |
|
HQP-MVS | | | 91.50 158 | 91.23 152 | 92.29 211 | 93.95 235 | 86.39 221 | 99.16 75 | 96.37 206 | 93.92 31 | 87.57 190 | 96.67 173 | 73.34 236 | 97.77 189 | 93.82 115 | 86.29 216 | 92.72 224 |
|
DP-MVS Recon | | | 95.85 64 | 95.15 75 | 97.95 28 | 99.87 2 | 94.38 50 | 99.60 27 | 97.48 124 | 86.58 212 | 94.42 110 | 99.13 45 | 87.36 92 | 99.98 10 | 93.64 117 | 98.33 106 | 99.48 85 |
|
CHOSEN 1792x2688 | | | 94.35 101 | 93.82 105 | 95.95 119 | 97.40 126 | 88.74 174 | 98.41 168 | 98.27 25 | 92.18 70 | 91.43 149 | 96.40 179 | 78.88 200 | 99.81 62 | 93.59 118 | 97.81 110 | 99.30 97 |
|
cascas | | | 90.93 170 | 89.33 181 | 95.76 125 | 95.69 182 | 93.03 78 | 98.99 101 | 96.59 190 | 80.49 298 | 86.79 202 | 94.45 207 | 65.23 293 | 98.60 154 | 93.52 119 | 92.18 180 | 95.66 214 |
|
HQP_MVS | | | 91.26 162 | 90.95 157 | 92.16 215 | 93.84 242 | 86.07 233 | 99.02 97 | 96.30 210 | 93.38 44 | 86.99 196 | 96.52 175 | 72.92 240 | 97.75 194 | 93.46 120 | 86.17 219 | 92.67 226 |
|
plane_prior5 | | | | | | | | | 96.30 210 | | | | | 97.75 194 | 93.46 120 | 86.17 219 | 92.67 226 |
|
PVSNet_Blended_VisFu | | | 94.67 93 | 94.11 93 | 96.34 106 | 97.14 135 | 91.10 115 | 99.32 65 | 97.43 134 | 92.10 72 | 91.53 148 | 96.38 182 | 83.29 156 | 99.68 78 | 93.42 122 | 96.37 132 | 98.25 167 |
|
AdaColmap |  | | 93.82 112 | 93.06 117 | 96.10 113 | 99.88 1 | 89.07 163 | 98.33 177 | 97.55 109 | 86.81 208 | 90.39 167 | 98.65 95 | 75.09 219 | 99.98 10 | 93.32 123 | 97.53 118 | 99.26 102 |
|
HyFIR lowres test | | | 93.68 117 | 93.29 113 | 94.87 149 | 97.57 123 | 88.04 185 | 98.18 189 | 98.47 21 | 87.57 194 | 91.24 153 | 95.05 200 | 85.49 128 | 97.46 209 | 93.22 124 | 92.82 167 | 99.10 112 |
|
HPM-MVS_fast | | | 94.89 84 | 94.62 81 | 95.70 127 | 99.11 73 | 88.44 180 | 99.14 84 | 97.11 164 | 85.82 222 | 95.69 91 | 98.47 109 | 83.46 152 | 99.32 126 | 93.16 125 | 99.63 46 | 99.35 92 |
|
PMMVS | | | 93.62 120 | 93.90 104 | 92.79 202 | 96.79 148 | 81.40 292 | 98.85 114 | 96.81 181 | 91.25 88 | 96.82 68 | 98.15 121 | 77.02 213 | 98.13 165 | 93.15 126 | 96.30 135 | 98.83 135 |
|
LCM-MVSNet-Re | | | 88.59 212 | 88.61 195 | 88.51 291 | 95.53 188 | 72.68 335 | 96.85 251 | 88.43 350 | 88.45 163 | 73.14 319 | 90.63 283 | 75.82 215 | 94.38 316 | 92.95 127 | 95.71 147 | 98.48 155 |
|
EPP-MVSNet | | | 93.75 114 | 93.67 107 | 94.01 179 | 95.86 177 | 85.70 242 | 98.67 135 | 97.66 82 | 84.46 244 | 91.36 151 | 97.18 154 | 91.16 26 | 97.79 187 | 92.93 128 | 93.75 160 | 98.53 152 |
|
CostFormer | | | 92.89 136 | 92.48 130 | 94.12 175 | 94.99 211 | 85.89 237 | 92.89 312 | 97.00 176 | 86.98 203 | 95.00 103 | 90.78 275 | 90.05 48 | 97.51 207 | 92.92 129 | 91.73 188 | 98.96 121 |
|
XVG-OURS-SEG-HR | | | 90.95 169 | 90.66 166 | 91.83 220 | 95.18 200 | 81.14 299 | 95.92 281 | 95.92 236 | 88.40 168 | 90.33 168 | 97.85 123 | 70.66 260 | 99.38 118 | 92.83 130 | 88.83 207 | 94.98 215 |
|
sss | | | 94.85 86 | 93.94 102 | 97.58 40 | 96.43 158 | 94.09 56 | 98.93 106 | 99.16 8 | 89.50 134 | 95.27 97 | 97.85 123 | 81.50 183 | 99.65 84 | 92.79 131 | 94.02 159 | 98.99 118 |
|
MAR-MVS | | | 94.43 99 | 94.09 94 | 95.45 134 | 99.10 75 | 87.47 196 | 98.39 174 | 97.79 61 | 88.37 169 | 94.02 118 | 99.17 37 | 78.64 205 | 99.91 38 | 92.48 132 | 98.85 90 | 98.96 121 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
API-MVS | | | 94.78 87 | 94.18 92 | 96.59 93 | 99.21 68 | 90.06 145 | 98.80 119 | 97.78 62 | 83.59 257 | 93.85 121 | 99.21 30 | 83.79 147 | 99.97 20 | 92.37 133 | 99.00 84 | 99.74 51 |
|
nrg030 | | | 90.23 180 | 88.87 188 | 94.32 168 | 91.53 280 | 93.54 65 | 98.79 123 | 95.89 243 | 88.12 177 | 84.55 215 | 94.61 206 | 78.80 203 | 96.88 226 | 92.35 134 | 75.21 282 | 92.53 228 |
|
OMC-MVS | | | 93.90 110 | 93.62 108 | 94.73 155 | 98.63 94 | 87.00 209 | 98.04 202 | 96.56 194 | 92.19 69 | 92.46 136 | 98.73 87 | 79.49 197 | 99.14 135 | 92.16 135 | 94.34 157 | 98.03 174 |
|
1314 | | | 93.44 122 | 91.98 141 | 97.84 30 | 95.24 194 | 94.38 50 | 96.22 274 | 97.92 46 | 90.18 111 | 82.28 242 | 97.71 132 | 77.63 210 | 99.80 64 | 91.94 136 | 98.67 98 | 99.34 94 |
|
DPM-MVS | | | 97.86 7 | 97.25 17 | 99.68 1 | 98.25 102 | 99.10 1 | 99.76 12 | 97.78 62 | 96.61 4 | 98.15 31 | 99.53 7 | 93.62 14 | 100.00 1 | 91.79 137 | 99.80 23 | 99.94 14 |
|
mvs_anonymous | | | 92.50 145 | 91.65 147 | 95.06 145 | 96.60 153 | 89.64 156 | 97.06 243 | 96.44 203 | 86.64 211 | 84.14 218 | 93.93 216 | 82.49 169 | 96.17 268 | 91.47 138 | 96.08 140 | 99.35 92 |
|
baseline2 | | | 94.04 105 | 93.80 106 | 94.74 154 | 93.07 260 | 90.25 135 | 98.12 194 | 98.16 33 | 89.86 119 | 86.53 203 | 96.95 164 | 95.56 5 | 98.05 173 | 91.44 139 | 94.53 154 | 95.93 212 |
|
bset_n11_16_dypcd | | | 89.07 198 | 87.85 205 | 92.76 204 | 86.16 333 | 90.66 129 | 97.30 231 | 95.62 259 | 89.78 123 | 83.94 221 | 93.15 238 | 74.85 220 | 95.89 283 | 91.34 140 | 78.48 264 | 91.74 250 |
|
IB-MVS | | 89.43 6 | 92.12 150 | 90.83 162 | 95.98 118 | 95.40 192 | 90.78 124 | 99.81 6 | 98.06 37 | 91.23 89 | 85.63 207 | 93.66 224 | 90.63 37 | 98.78 144 | 91.22 141 | 71.85 316 | 98.36 163 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ab-mvs | | | 91.05 167 | 89.17 183 | 96.69 89 | 95.96 175 | 91.72 98 | 92.62 316 | 97.23 150 | 85.61 224 | 89.74 175 | 93.89 218 | 68.55 269 | 99.42 114 | 91.09 142 | 87.84 210 | 98.92 127 |
|
XVG-OURS | | | 90.83 171 | 90.49 168 | 91.86 219 | 95.23 195 | 81.25 296 | 95.79 289 | 95.92 236 | 88.96 147 | 90.02 172 | 98.03 122 | 71.60 254 | 99.35 124 | 91.06 143 | 87.78 211 | 94.98 215 |
|
3Dnovator | | 87.35 11 | 93.17 133 | 91.77 145 | 97.37 51 | 95.41 191 | 93.07 76 | 98.82 117 | 97.85 51 | 91.53 80 | 82.56 236 | 97.58 139 | 71.97 249 | 99.82 60 | 91.01 144 | 99.23 78 | 99.22 106 |
|
VPA-MVSNet | | | 89.10 197 | 87.66 209 | 93.45 190 | 92.56 264 | 91.02 119 | 97.97 205 | 98.32 24 | 86.92 205 | 86.03 205 | 92.01 252 | 68.84 268 | 97.10 220 | 90.92 145 | 75.34 281 | 92.23 236 |
|
PAPM_NR | | | 95.43 73 | 95.05 77 | 96.57 95 | 99.42 49 | 90.14 138 | 98.58 150 | 97.51 118 | 90.65 98 | 92.44 137 | 98.90 76 | 87.77 81 | 99.90 40 | 90.88 146 | 99.32 71 | 99.68 61 |
|
3Dnovator+ | | 87.72 8 | 93.43 123 | 91.84 143 | 98.17 18 | 95.73 181 | 95.08 29 | 98.92 108 | 97.04 171 | 91.42 85 | 81.48 260 | 97.60 137 | 74.60 223 | 99.79 65 | 90.84 147 | 98.97 85 | 99.64 67 |
|
gm-plane-assit | | | | | | 94.69 221 | 88.14 182 | | | 88.22 174 | | 97.20 152 | | 98.29 159 | 90.79 148 | | |
|
MVSTER | | | 92.71 138 | 92.32 131 | 93.86 183 | 97.29 130 | 92.95 82 | 99.01 99 | 96.59 190 | 90.09 115 | 85.51 208 | 94.00 214 | 94.61 12 | 96.56 239 | 90.77 149 | 83.03 243 | 92.08 242 |
|
ACMP | | 87.39 10 | 88.71 211 | 88.24 202 | 90.12 258 | 93.91 240 | 81.06 300 | 98.50 158 | 95.67 257 | 89.43 135 | 80.37 268 | 95.55 192 | 65.67 290 | 97.83 184 | 90.55 150 | 84.51 229 | 91.47 262 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
RRT_test8_iter05 | | | 91.04 168 | 90.40 170 | 92.95 199 | 96.20 168 | 89.75 154 | 98.97 103 | 96.38 205 | 88.52 159 | 82.00 250 | 93.51 229 | 90.69 36 | 96.73 233 | 90.43 151 | 76.91 276 | 92.38 230 |
|
testdata | | | | | 95.26 141 | 98.20 104 | 87.28 202 | | 97.60 97 | 85.21 230 | 98.48 25 | 99.15 41 | 88.15 74 | 98.72 150 | 90.29 152 | 99.45 62 | 99.78 38 |
|
LPG-MVS_test | | | 88.86 203 | 88.47 200 | 90.06 259 | 93.35 255 | 80.95 301 | 98.22 185 | 95.94 233 | 87.73 190 | 83.17 228 | 96.11 185 | 66.28 288 | 97.77 189 | 90.19 153 | 85.19 225 | 91.46 263 |
|
LGP-MVS_train | | | | | 90.06 259 | 93.35 255 | 80.95 301 | | 95.94 233 | 87.73 190 | 83.17 228 | 96.11 185 | 66.28 288 | 97.77 189 | 90.19 153 | 85.19 225 | 91.46 263 |
|
MVSFormer | | | 94.71 92 | 94.08 95 | 96.61 92 | 95.05 209 | 94.87 33 | 97.77 215 | 96.17 221 | 86.84 206 | 98.04 37 | 98.52 103 | 85.52 125 | 95.99 274 | 89.83 155 | 98.97 85 | 98.96 121 |
|
test_djsdf | | | 88.26 218 | 87.73 207 | 89.84 265 | 88.05 321 | 82.21 286 | 97.77 215 | 96.17 221 | 86.84 206 | 82.41 240 | 91.95 255 | 72.07 248 | 95.99 274 | 89.83 155 | 84.50 230 | 91.32 270 |
|
tpmrst | | | 92.78 137 | 92.16 136 | 94.65 157 | 96.27 163 | 87.45 197 | 91.83 320 | 97.10 167 | 89.10 143 | 94.68 107 | 90.69 279 | 88.22 72 | 97.73 196 | 89.78 157 | 91.80 186 | 98.77 142 |
|
PLC |  | 91.07 3 | 94.23 103 | 94.01 96 | 94.87 149 | 99.17 70 | 87.49 195 | 99.25 68 | 96.55 195 | 88.43 167 | 91.26 152 | 98.21 119 | 85.92 122 | 99.86 52 | 89.77 158 | 97.57 115 | 97.24 191 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
CDS-MVSNet | | | 93.47 121 | 93.04 119 | 94.76 152 | 94.75 220 | 89.45 160 | 98.82 117 | 97.03 173 | 87.91 183 | 90.97 156 | 96.48 177 | 89.06 59 | 96.36 253 | 89.50 159 | 92.81 169 | 98.49 154 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
Effi-MVS+-dtu | | | 89.97 188 | 90.68 165 | 87.81 296 | 95.15 201 | 71.98 337 | 97.87 210 | 95.40 274 | 91.92 73 | 87.57 190 | 91.44 263 | 74.27 229 | 96.84 227 | 89.45 160 | 93.10 165 | 94.60 217 |
|
mvs-test1 | | | 91.57 157 | 92.20 135 | 89.70 269 | 95.15 201 | 74.34 328 | 99.51 37 | 95.40 274 | 91.92 73 | 91.02 155 | 97.25 148 | 74.27 229 | 98.08 171 | 89.45 160 | 95.83 144 | 96.67 201 |
|
jajsoiax | | | 87.35 230 | 86.51 227 | 89.87 263 | 87.75 326 | 81.74 289 | 97.03 244 | 95.98 227 | 88.47 160 | 80.15 272 | 93.80 220 | 61.47 305 | 96.36 253 | 89.44 162 | 84.47 231 | 91.50 261 |
|
mvs_tets | | | 87.09 233 | 86.22 230 | 89.71 268 | 87.87 322 | 81.39 293 | 96.73 258 | 95.90 241 | 88.19 175 | 79.99 274 | 93.61 225 | 59.96 311 | 96.31 261 | 89.40 163 | 84.34 232 | 91.43 265 |
|
PS-MVSNAJss | | | 89.54 194 | 89.05 185 | 91.00 236 | 88.77 312 | 84.36 261 | 97.39 227 | 95.97 228 | 88.47 160 | 81.88 253 | 93.80 220 | 82.48 170 | 96.50 243 | 89.34 164 | 83.34 242 | 92.15 239 |
|
VPNet | | | 88.30 216 | 86.57 225 | 93.49 189 | 91.95 273 | 91.35 106 | 98.18 189 | 97.20 156 | 88.61 156 | 84.52 216 | 94.89 201 | 62.21 303 | 96.76 232 | 89.34 164 | 72.26 313 | 92.36 231 |
|
114514_t | | | 94.06 104 | 93.05 118 | 97.06 60 | 99.08 76 | 92.26 93 | 98.97 103 | 97.01 175 | 82.58 274 | 92.57 135 | 98.22 117 | 80.68 189 | 99.30 127 | 89.34 164 | 99.02 83 | 99.63 69 |
|
OPM-MVS | | | 89.76 190 | 89.15 184 | 91.57 227 | 90.53 291 | 85.58 244 | 98.11 196 | 95.93 235 | 92.88 53 | 86.05 204 | 96.47 178 | 67.06 283 | 97.87 182 | 89.29 167 | 86.08 221 | 91.26 273 |
|
MVS_Test | | | 93.67 118 | 92.67 126 | 96.69 89 | 96.72 150 | 92.66 84 | 97.22 238 | 96.03 226 | 87.69 192 | 95.12 101 | 94.03 212 | 81.55 182 | 98.28 160 | 89.17 168 | 96.46 129 | 99.14 110 |
|
BH-w/o | | | 92.32 146 | 91.79 144 | 93.91 182 | 96.85 144 | 86.18 228 | 99.11 89 | 95.74 252 | 88.13 176 | 84.81 212 | 97.00 162 | 77.26 212 | 97.91 178 | 89.16 169 | 98.03 108 | 97.64 180 |
|
RRT_MVS | | | 91.95 153 | 91.09 153 | 94.53 161 | 96.71 152 | 95.12 28 | 98.64 139 | 96.23 216 | 89.04 144 | 85.24 210 | 95.06 199 | 87.71 82 | 96.43 249 | 89.10 170 | 82.06 250 | 92.05 244 |
|
TAMVS | | | 92.62 141 | 92.09 139 | 94.20 172 | 94.10 231 | 87.68 190 | 98.41 168 | 96.97 177 | 87.53 196 | 89.74 175 | 96.04 187 | 84.77 140 | 96.49 245 | 88.97 171 | 92.31 177 | 98.42 156 |
|
CNLPA | | | 93.64 119 | 92.74 124 | 96.36 105 | 98.96 82 | 90.01 148 | 99.19 70 | 95.89 243 | 86.22 218 | 89.40 178 | 98.85 79 | 80.66 190 | 99.84 55 | 88.57 172 | 96.92 125 | 99.24 103 |
|
baseline1 | | | 92.61 142 | 91.28 151 | 96.58 94 | 97.05 140 | 94.63 44 | 97.72 218 | 96.20 218 | 89.82 121 | 88.56 184 | 96.85 169 | 86.85 101 | 97.82 185 | 88.42 173 | 80.10 258 | 97.30 189 |
|
CANet_DTU | | | 94.31 102 | 93.35 111 | 97.20 57 | 97.03 141 | 94.71 42 | 98.62 142 | 95.54 265 | 95.61 14 | 97.21 53 | 98.47 109 | 71.88 250 | 99.84 55 | 88.38 174 | 97.46 120 | 97.04 198 |
|
thisisatest0515 | | | 94.75 88 | 94.19 90 | 96.43 101 | 96.13 174 | 92.64 88 | 99.47 40 | 97.60 97 | 87.55 195 | 93.17 128 | 97.59 138 | 94.71 9 | 98.42 155 | 88.28 175 | 93.20 163 | 98.24 168 |
|
原ACMM1 | | | | | 96.18 109 | 99.03 78 | 90.08 141 | | 97.63 92 | 88.98 146 | 97.00 57 | 98.97 63 | 88.14 75 | 99.71 73 | 88.23 176 | 99.62 47 | 98.76 143 |
|
UGNet | | | 91.91 154 | 90.85 159 | 95.10 142 | 97.06 139 | 88.69 175 | 98.01 203 | 98.24 27 | 92.41 65 | 92.39 138 | 93.61 225 | 60.52 309 | 99.68 78 | 88.14 177 | 97.25 122 | 96.92 200 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
AUN-MVS | | | 90.17 183 | 89.50 176 | 92.19 214 | 96.21 165 | 82.67 283 | 97.76 217 | 97.53 113 | 88.05 178 | 91.67 143 | 96.15 184 | 83.10 159 | 97.47 208 | 88.11 178 | 66.91 329 | 96.43 208 |
|
Vis-MVSNet (Re-imp) | | | 93.26 131 | 93.00 121 | 94.06 177 | 96.14 171 | 86.71 215 | 98.68 133 | 96.70 184 | 88.30 171 | 89.71 177 | 97.64 136 | 85.43 131 | 96.39 251 | 88.06 179 | 96.32 133 | 99.08 114 |
|
PVSNet | | 87.13 12 | 93.69 115 | 92.83 123 | 96.28 107 | 97.99 111 | 90.22 137 | 99.38 56 | 98.93 10 | 91.42 85 | 93.66 124 | 97.68 133 | 71.29 257 | 99.64 86 | 87.94 180 | 97.20 123 | 98.98 119 |
|
FIs | | | 90.70 174 | 89.87 173 | 93.18 194 | 92.29 267 | 91.12 113 | 98.17 191 | 98.25 26 | 89.11 142 | 83.44 224 | 94.82 203 | 82.26 174 | 96.17 268 | 87.76 181 | 82.76 245 | 92.25 234 |
|
tpm2 | | | 91.77 155 | 91.09 153 | 93.82 185 | 94.83 218 | 85.56 245 | 92.51 317 | 97.16 159 | 84.00 250 | 93.83 122 | 90.66 281 | 87.54 85 | 97.17 216 | 87.73 182 | 91.55 191 | 98.72 144 |
|
æ— å…ˆéªŒ | | | | | | | | 98.52 153 | 97.82 54 | 87.20 200 | | | | 99.90 40 | 87.64 183 | | 99.85 29 |
|
1121 | | | 95.19 80 | 94.45 85 | 97.42 46 | 98.88 86 | 92.58 89 | 96.22 274 | 97.75 65 | 85.50 227 | 96.86 62 | 99.01 61 | 88.59 67 | 99.90 40 | 87.64 183 | 99.60 52 | 99.79 34 |
|
Anonymous202405211 | | | 88.84 204 | 87.03 219 | 94.27 169 | 98.14 108 | 84.18 263 | 98.44 164 | 95.58 263 | 76.79 318 | 89.34 179 | 96.88 168 | 53.42 332 | 99.54 96 | 87.53 185 | 87.12 214 | 99.09 113 |
|
IS-MVSNet | | | 93.00 135 | 92.51 129 | 94.49 162 | 96.14 171 | 87.36 200 | 98.31 180 | 95.70 254 | 88.58 158 | 90.17 169 | 97.50 141 | 83.02 160 | 97.22 215 | 87.06 186 | 96.07 141 | 98.90 128 |
|
MDTV_nov1_ep13_2view | | | | | | | 91.17 112 | 91.38 323 | | 87.45 197 | 93.08 130 | | 86.67 107 | | 87.02 187 | | 98.95 125 |
|
Anonymous20240529 | | | 87.66 227 | 85.58 240 | 93.92 181 | 97.59 122 | 85.01 254 | 98.13 192 | 97.13 162 | 66.69 345 | 88.47 185 | 96.01 188 | 55.09 326 | 99.51 101 | 87.00 188 | 84.12 233 | 97.23 192 |
|
UniMVSNet_NR-MVSNet | | | 89.60 192 | 88.55 198 | 92.75 205 | 92.17 270 | 90.07 142 | 98.74 125 | 98.15 34 | 88.37 169 | 83.21 226 | 93.98 215 | 82.86 162 | 95.93 278 | 86.95 189 | 72.47 310 | 92.25 234 |
|
DU-MVS | | | 88.83 206 | 87.51 210 | 92.79 202 | 91.46 281 | 90.07 142 | 98.71 126 | 97.62 94 | 88.87 152 | 83.21 226 | 93.68 222 | 74.63 221 | 95.93 278 | 86.95 189 | 72.47 310 | 92.36 231 |
|
ACMM | | 86.95 13 | 88.77 209 | 88.22 203 | 90.43 250 | 93.61 247 | 81.34 294 | 98.50 158 | 95.92 236 | 87.88 184 | 83.85 222 | 95.20 198 | 67.20 281 | 97.89 180 | 86.90 191 | 84.90 227 | 92.06 243 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
UniMVSNet (Re) | | | 89.50 195 | 88.32 201 | 93.03 196 | 92.21 269 | 90.96 121 | 98.90 110 | 98.39 22 | 89.13 141 | 83.22 225 | 92.03 250 | 81.69 181 | 96.34 259 | 86.79 192 | 72.53 309 | 91.81 249 |
|
BH-untuned | | | 91.46 160 | 90.84 160 | 93.33 192 | 96.51 157 | 84.83 256 | 98.84 116 | 95.50 267 | 86.44 217 | 83.50 223 | 96.70 172 | 75.49 218 | 97.77 189 | 86.78 193 | 97.81 110 | 97.40 186 |
|
miper_enhance_ethall | | | 90.33 178 | 89.70 174 | 92.22 212 | 97.12 136 | 88.93 168 | 98.35 176 | 95.96 230 | 88.60 157 | 83.14 230 | 92.33 248 | 87.38 88 | 96.18 267 | 86.49 194 | 77.89 268 | 91.55 260 |
|
thisisatest0530 | | | 94.00 106 | 93.52 109 | 95.43 135 | 95.76 180 | 90.02 147 | 98.99 101 | 97.60 97 | 86.58 212 | 91.74 142 | 97.36 146 | 94.78 8 | 98.34 156 | 86.37 195 | 92.48 174 | 97.94 177 |
|
TESTMET0.1,1 | | | 93.82 112 | 93.26 114 | 95.49 132 | 95.21 196 | 90.25 135 | 99.15 81 | 97.54 112 | 89.18 140 | 91.79 141 | 94.87 202 | 89.13 58 | 97.63 200 | 86.21 196 | 96.29 136 | 98.60 150 |
|
anonymousdsp | | | 86.69 239 | 85.75 238 | 89.53 274 | 86.46 332 | 82.94 276 | 96.39 265 | 95.71 253 | 83.97 251 | 79.63 279 | 90.70 278 | 68.85 267 | 95.94 277 | 86.01 197 | 84.02 234 | 89.72 310 |
|
F-COLMAP | | | 92.07 151 | 91.75 146 | 93.02 197 | 98.16 107 | 82.89 279 | 98.79 123 | 95.97 228 | 86.54 214 | 87.92 188 | 97.80 126 | 78.69 204 | 99.65 84 | 85.97 198 | 95.93 143 | 96.53 207 |
|
cl-mvsnet2 | | | 89.57 193 | 88.79 191 | 91.91 218 | 97.94 112 | 87.62 192 | 97.98 204 | 96.51 198 | 85.03 235 | 82.37 241 | 91.79 256 | 83.65 148 | 96.50 243 | 85.96 199 | 77.89 268 | 91.61 257 |
|
test-LLR | | | 93.11 134 | 92.68 125 | 94.40 165 | 94.94 214 | 87.27 203 | 99.15 81 | 97.25 146 | 90.21 109 | 91.57 145 | 94.04 210 | 84.89 137 | 97.58 203 | 85.94 200 | 96.13 137 | 98.36 163 |
|
test-mter | | | 93.27 130 | 92.89 122 | 94.40 165 | 94.94 214 | 87.27 203 | 99.15 81 | 97.25 146 | 88.95 148 | 91.57 145 | 94.04 210 | 88.03 77 | 97.58 203 | 85.94 200 | 96.13 137 | 98.36 163 |
|
FC-MVSNet-test | | | 90.22 181 | 89.40 179 | 92.67 208 | 91.78 277 | 89.86 150 | 97.89 207 | 98.22 28 | 88.81 153 | 82.96 231 | 94.66 205 | 81.90 180 | 95.96 276 | 85.89 202 | 82.52 248 | 92.20 238 |
|
DWT-MVSNet_test | | | 94.36 100 | 93.95 101 | 95.62 128 | 96.99 142 | 89.47 159 | 96.62 261 | 97.38 139 | 90.96 93 | 93.07 131 | 97.27 147 | 93.73 13 | 98.09 168 | 85.86 203 | 93.65 161 | 99.29 98 |
|
Vis-MVSNet |  | | 92.64 140 | 91.85 142 | 95.03 147 | 95.12 203 | 88.23 181 | 98.48 161 | 96.81 181 | 91.61 78 | 92.16 140 | 97.22 151 | 71.58 255 | 98.00 177 | 85.85 204 | 97.81 110 | 98.88 129 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
WR-MVS | | | 88.54 213 | 87.22 217 | 92.52 209 | 91.93 275 | 89.50 158 | 98.56 151 | 97.84 52 | 86.99 201 | 81.87 254 | 93.81 219 | 74.25 231 | 95.92 280 | 85.29 205 | 74.43 290 | 92.12 240 |
|
XXY-MVS | | | 87.75 224 | 86.02 233 | 92.95 199 | 90.46 292 | 89.70 155 | 97.71 220 | 95.90 241 | 84.02 249 | 80.95 262 | 94.05 209 | 67.51 279 | 97.10 220 | 85.16 206 | 78.41 265 | 92.04 245 |
|
thres200 | | | 93.69 115 | 92.59 128 | 96.97 69 | 97.76 114 | 94.74 40 | 99.35 61 | 99.36 2 | 89.23 138 | 91.21 154 | 96.97 163 | 83.42 153 | 98.77 145 | 85.08 207 | 90.96 196 | 97.39 187 |
|
tttt0517 | | | 93.30 128 | 93.01 120 | 94.17 173 | 95.57 185 | 86.47 218 | 98.51 156 | 97.60 97 | 85.99 220 | 90.55 162 | 97.19 153 | 94.80 7 | 98.31 157 | 85.06 208 | 91.86 184 | 97.74 179 |
|
XVG-ACMP-BASELINE | | | 85.86 253 | 84.95 249 | 88.57 289 | 89.90 297 | 77.12 321 | 94.30 299 | 95.60 262 | 87.40 198 | 82.12 245 | 92.99 242 | 53.42 332 | 97.66 198 | 85.02 209 | 83.83 235 | 90.92 281 |
|
test_part1 | | | 88.43 214 | 86.68 224 | 93.67 188 | 97.56 124 | 92.40 92 | 98.12 194 | 96.55 195 | 82.26 280 | 80.31 269 | 93.16 237 | 74.59 225 | 96.62 236 | 85.00 210 | 72.61 308 | 91.99 246 |
|
æ–°å‡ ä½•1 | | | | | 97.40 48 | 98.92 84 | 92.51 91 | | 97.77 64 | 85.52 225 | 96.69 72 | 99.06 53 | 88.08 76 | 99.89 43 | 84.88 211 | 99.62 47 | 99.79 34 |
|
1112_ss | | | 92.71 138 | 91.55 149 | 96.20 108 | 95.56 186 | 91.12 113 | 98.48 161 | 94.69 296 | 88.29 172 | 86.89 199 | 98.50 105 | 87.02 98 | 98.66 152 | 84.75 212 | 89.77 205 | 98.81 137 |
|
miper_ehance_all_eth | | | 88.94 201 | 88.12 204 | 91.40 228 | 95.32 193 | 86.93 211 | 97.85 211 | 95.55 264 | 84.19 247 | 81.97 251 | 91.50 262 | 84.16 144 | 95.91 281 | 84.69 213 | 77.89 268 | 91.36 268 |
|
Test_1112_low_res | | | 92.27 148 | 90.97 156 | 96.18 109 | 95.53 188 | 91.10 115 | 98.47 163 | 94.66 297 | 88.28 173 | 86.83 201 | 93.50 230 | 87.00 99 | 98.65 153 | 84.69 213 | 89.74 206 | 98.80 138 |
|
TR-MVS | | | 90.77 172 | 89.44 178 | 94.76 152 | 96.31 162 | 88.02 186 | 97.92 206 | 95.96 230 | 85.52 225 | 88.22 187 | 97.23 150 | 66.80 284 | 98.09 168 | 84.58 215 | 92.38 175 | 98.17 172 |
|
OpenMVS |  | 85.28 14 | 90.75 173 | 88.84 189 | 96.48 98 | 93.58 248 | 93.51 66 | 98.80 119 | 97.41 136 | 82.59 273 | 78.62 289 | 97.49 142 | 68.00 275 | 99.82 60 | 84.52 216 | 98.55 101 | 96.11 211 |
|
UniMVSNet_ETH3D | | | 85.65 260 | 83.79 266 | 91.21 231 | 90.41 293 | 80.75 303 | 95.36 291 | 95.78 249 | 78.76 308 | 81.83 257 | 94.33 208 | 49.86 340 | 96.66 234 | 84.30 217 | 83.52 240 | 96.22 210 |
|
NR-MVSNet | | | 87.74 226 | 86.00 234 | 92.96 198 | 91.46 281 | 90.68 128 | 96.65 260 | 97.42 135 | 88.02 180 | 73.42 317 | 93.68 222 | 77.31 211 | 95.83 285 | 84.26 218 | 71.82 317 | 92.36 231 |
|
D2MVS | | | 87.96 220 | 87.39 212 | 89.70 269 | 91.84 276 | 83.40 271 | 98.31 180 | 98.49 20 | 88.04 179 | 78.23 295 | 90.26 294 | 73.57 234 | 96.79 231 | 84.21 219 | 83.53 239 | 88.90 319 |
|
testdata2 | | | | | | | | | | | | | | 99.88 44 | 84.16 220 | | |
|
Baseline_NR-MVSNet | | | 85.83 254 | 84.82 252 | 88.87 288 | 88.73 313 | 83.34 272 | 98.63 141 | 91.66 337 | 80.41 301 | 82.44 238 | 91.35 265 | 74.63 221 | 95.42 296 | 84.13 221 | 71.39 319 | 87.84 325 |
|
thres100view900 | | | 93.34 127 | 92.15 137 | 96.90 74 | 97.62 119 | 94.84 35 | 99.06 93 | 99.36 2 | 87.96 181 | 90.47 165 | 96.78 170 | 83.29 156 | 98.75 147 | 84.11 222 | 90.69 198 | 97.12 193 |
|
tfpn200view9 | | | 93.43 123 | 92.27 133 | 96.90 74 | 97.68 117 | 94.84 35 | 99.18 72 | 99.36 2 | 88.45 163 | 90.79 157 | 96.90 166 | 83.31 154 | 98.75 147 | 84.11 222 | 90.69 198 | 97.12 193 |
|
thres400 | | | 93.39 125 | 92.27 133 | 96.73 85 | 97.68 117 | 94.84 35 | 99.18 72 | 99.36 2 | 88.45 163 | 90.79 157 | 96.90 166 | 83.31 154 | 98.75 147 | 84.11 222 | 90.69 198 | 96.61 202 |
|
cl_fuxian | | | 88.19 219 | 87.23 216 | 91.06 234 | 94.97 212 | 86.17 229 | 97.72 218 | 95.38 276 | 83.43 259 | 81.68 258 | 91.37 264 | 82.81 163 | 95.72 288 | 84.04 225 | 73.70 298 | 91.29 272 |
|
UA-Net | | | 93.30 128 | 92.62 127 | 95.34 138 | 96.27 163 | 88.53 179 | 95.88 284 | 96.97 177 | 90.90 95 | 95.37 96 | 97.07 159 | 82.38 173 | 99.10 137 | 83.91 226 | 94.86 153 | 98.38 160 |
|
IterMVS-LS | | | 88.34 215 | 87.44 211 | 91.04 235 | 94.10 231 | 85.85 239 | 98.10 197 | 95.48 268 | 85.12 231 | 82.03 249 | 91.21 268 | 81.35 186 | 95.63 291 | 83.86 227 | 75.73 280 | 91.63 253 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 89.87 189 | 89.38 180 | 91.36 230 | 94.32 227 | 85.87 238 | 97.61 223 | 96.59 190 | 85.10 232 | 85.51 208 | 97.10 157 | 81.30 187 | 96.56 239 | 83.85 228 | 83.03 243 | 91.64 252 |
|
tpm | | | 89.67 191 | 88.95 187 | 91.82 221 | 92.54 265 | 81.43 291 | 92.95 311 | 95.92 236 | 87.81 185 | 90.50 164 | 89.44 307 | 84.99 135 | 95.65 290 | 83.67 229 | 82.71 246 | 98.38 160 |
|
eth_miper_zixun_eth | | | 87.76 223 | 87.00 220 | 90.06 259 | 94.67 222 | 82.65 284 | 97.02 246 | 95.37 277 | 84.19 247 | 81.86 256 | 91.58 261 | 81.47 184 | 95.90 282 | 83.24 230 | 73.61 299 | 91.61 257 |
|
Fast-Effi-MVS+ | | | 91.72 156 | 90.79 163 | 94.49 162 | 95.89 176 | 87.40 199 | 99.54 35 | 95.70 254 | 85.01 237 | 89.28 180 | 95.68 191 | 77.75 209 | 97.57 206 | 83.22 231 | 95.06 151 | 98.51 153 |
|
test_post1 | | | | | | | | 90.74 330 | | | | 41.37 360 | 85.38 132 | 96.36 253 | 83.16 232 | | |
|
SCA | | | 90.64 176 | 89.25 182 | 94.83 151 | 94.95 213 | 88.83 170 | 96.26 271 | 97.21 152 | 90.06 118 | 90.03 171 | 90.62 284 | 66.61 285 | 96.81 229 | 83.16 232 | 94.36 156 | 98.84 132 |
|
TranMVSNet+NR-MVSNet | | | 87.75 224 | 86.31 229 | 92.07 217 | 90.81 288 | 88.56 176 | 98.33 177 | 97.18 157 | 87.76 187 | 81.87 254 | 93.90 217 | 72.45 244 | 95.43 295 | 83.13 234 | 71.30 320 | 92.23 236 |
|
CMPMVS |  | 58.40 21 | 80.48 295 | 80.11 295 | 81.59 327 | 85.10 335 | 59.56 350 | 94.14 302 | 95.95 232 | 68.54 340 | 60.71 345 | 93.31 231 | 55.35 325 | 97.87 182 | 83.06 235 | 84.85 228 | 87.33 330 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
thres600view7 | | | 93.18 132 | 92.00 140 | 96.75 83 | 97.62 119 | 94.92 31 | 99.07 91 | 99.36 2 | 87.96 181 | 90.47 165 | 96.78 170 | 83.29 156 | 98.71 151 | 82.93 236 | 90.47 202 | 96.61 202 |
|
pmmvs4 | | | 87.58 229 | 86.17 232 | 91.80 222 | 89.58 302 | 88.92 169 | 97.25 235 | 95.28 280 | 82.54 275 | 80.49 267 | 93.17 236 | 75.62 217 | 96.05 273 | 82.75 237 | 78.90 262 | 90.42 296 |
|
CVMVSNet | | | 90.30 179 | 90.91 158 | 88.46 292 | 94.32 227 | 73.58 332 | 97.61 223 | 97.59 101 | 90.16 114 | 88.43 186 | 97.10 157 | 76.83 214 | 92.86 326 | 82.64 238 | 93.54 162 | 98.93 126 |
|
Anonymous20231211 | | | 84.72 267 | 82.65 278 | 90.91 238 | 97.71 116 | 84.55 259 | 97.28 233 | 96.67 185 | 66.88 344 | 79.18 285 | 90.87 274 | 58.47 313 | 96.60 237 | 82.61 239 | 74.20 294 | 91.59 259 |
|
GA-MVS | | | 90.10 185 | 88.69 193 | 94.33 167 | 92.44 266 | 87.97 187 | 99.08 90 | 96.26 214 | 89.65 126 | 86.92 198 | 93.11 239 | 68.09 273 | 96.96 223 | 82.54 240 | 90.15 203 | 98.05 173 |
|
QAPM | | | 91.41 161 | 89.49 177 | 97.17 58 | 95.66 184 | 93.42 68 | 98.60 146 | 97.51 118 | 80.92 296 | 81.39 261 | 97.41 145 | 72.89 242 | 99.87 47 | 82.33 241 | 98.68 97 | 98.21 170 |
|
Patchmatch-RL test | | | 81.90 291 | 80.13 294 | 87.23 301 | 80.71 346 | 70.12 342 | 84.07 345 | 88.19 351 | 83.16 264 | 70.57 326 | 82.18 337 | 87.18 95 | 92.59 331 | 82.28 242 | 62.78 334 | 98.98 119 |
|
v2v482 | | | 87.27 232 | 85.76 237 | 91.78 226 | 89.59 301 | 87.58 193 | 98.56 151 | 95.54 265 | 84.53 243 | 82.51 237 | 91.78 257 | 73.11 239 | 96.47 246 | 82.07 243 | 74.14 296 | 91.30 271 |
|
Fast-Effi-MVS+-dtu | | | 88.84 204 | 88.59 197 | 89.58 273 | 93.44 253 | 78.18 316 | 98.65 137 | 94.62 298 | 88.46 162 | 84.12 219 | 95.37 197 | 68.91 266 | 96.52 242 | 82.06 244 | 91.70 189 | 94.06 218 |
|
pmmvs5 | | | 85.87 252 | 84.40 261 | 90.30 255 | 88.53 316 | 84.23 262 | 98.60 146 | 93.71 315 | 81.53 288 | 80.29 270 | 92.02 251 | 64.51 295 | 95.52 293 | 82.04 245 | 78.34 266 | 91.15 275 |
|
V42 | | | 87.00 234 | 85.68 239 | 90.98 237 | 89.91 296 | 86.08 232 | 98.32 179 | 95.61 261 | 83.67 256 | 82.72 233 | 90.67 280 | 74.00 233 | 96.53 241 | 81.94 246 | 74.28 293 | 90.32 298 |
|
EPMVS | | | 92.59 143 | 91.59 148 | 95.59 131 | 97.22 132 | 90.03 146 | 91.78 321 | 98.04 39 | 90.42 104 | 91.66 144 | 90.65 282 | 86.49 114 | 97.46 209 | 81.78 247 | 96.31 134 | 99.28 100 |
|
cl-mvsnet1 | | | 87.82 221 | 86.81 222 | 90.87 241 | 94.87 217 | 85.39 247 | 97.81 212 | 95.22 288 | 82.92 270 | 80.76 264 | 91.31 266 | 81.99 177 | 95.81 286 | 81.36 248 | 75.04 284 | 91.42 266 |
|
cl-mvsnet_ | | | 87.82 221 | 86.79 223 | 90.89 240 | 94.88 216 | 85.43 246 | 97.81 212 | 95.24 284 | 82.91 271 | 80.71 265 | 91.22 267 | 81.97 179 | 95.84 284 | 81.34 249 | 75.06 283 | 91.40 267 |
|
RPSCF | | | 85.33 262 | 85.55 241 | 84.67 316 | 94.63 223 | 62.28 348 | 93.73 305 | 93.76 313 | 74.38 326 | 85.23 211 | 97.06 160 | 64.09 296 | 98.31 157 | 80.98 250 | 86.08 221 | 93.41 223 |
|
OurMVSNet-221017-0 | | | 84.13 278 | 83.59 267 | 85.77 310 | 87.81 323 | 70.24 340 | 94.89 295 | 93.65 317 | 86.08 219 | 76.53 299 | 93.28 233 | 61.41 306 | 96.14 270 | 80.95 251 | 77.69 273 | 90.93 280 |
|
v148 | | | 86.38 246 | 85.06 246 | 90.37 254 | 89.47 306 | 84.10 264 | 98.52 153 | 95.48 268 | 83.80 252 | 80.93 263 | 90.22 298 | 74.60 223 | 96.31 261 | 80.92 252 | 71.55 318 | 90.69 291 |
|
PatchMatch-RL | | | 91.47 159 | 90.54 167 | 94.26 170 | 98.20 104 | 86.36 223 | 96.94 247 | 97.14 160 | 87.75 188 | 88.98 181 | 95.75 190 | 71.80 252 | 99.40 117 | 80.92 252 | 97.39 121 | 97.02 199 |
|
miper_lstm_enhance | | | 86.90 235 | 86.20 231 | 89.00 285 | 94.53 224 | 81.19 297 | 96.74 257 | 95.24 284 | 82.33 279 | 80.15 272 | 90.51 291 | 81.99 177 | 94.68 313 | 80.71 254 | 73.58 300 | 91.12 276 |
|
PCF-MVS | | 89.78 5 | 91.26 162 | 89.63 175 | 96.16 112 | 95.44 190 | 91.58 103 | 95.29 292 | 96.10 224 | 85.07 234 | 82.75 232 | 97.45 143 | 78.28 206 | 99.78 66 | 80.60 255 | 95.65 148 | 97.12 193 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
BH-RMVSNet | | | 91.25 164 | 89.99 172 | 95.03 147 | 96.75 149 | 88.55 177 | 98.65 137 | 94.95 290 | 87.74 189 | 87.74 189 | 97.80 126 | 68.27 272 | 98.14 164 | 80.53 256 | 97.49 119 | 98.41 157 |
|
CP-MVSNet | | | 86.54 243 | 85.45 243 | 89.79 267 | 91.02 287 | 82.78 282 | 97.38 229 | 97.56 108 | 85.37 228 | 79.53 281 | 93.03 240 | 71.86 251 | 95.25 300 | 79.92 257 | 73.43 303 | 91.34 269 |
|
PatchmatchNet |  | | 92.05 152 | 91.04 155 | 95.06 145 | 96.17 169 | 89.04 164 | 91.26 325 | 97.26 145 | 89.56 132 | 90.64 161 | 90.56 288 | 88.35 71 | 97.11 218 | 79.53 258 | 96.07 141 | 99.03 116 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
v1144 | | | 86.83 237 | 85.31 244 | 91.40 228 | 89.75 299 | 87.21 208 | 98.31 180 | 95.45 270 | 83.22 262 | 82.70 234 | 90.78 275 | 73.36 235 | 96.36 253 | 79.49 259 | 74.69 288 | 90.63 293 |
|
IterMVS | | | 85.81 255 | 84.67 255 | 89.22 280 | 93.51 249 | 83.67 269 | 96.32 268 | 94.80 292 | 85.09 233 | 78.69 287 | 90.17 301 | 66.57 287 | 93.17 325 | 79.48 260 | 77.42 274 | 90.81 283 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 85.73 258 | 84.64 256 | 89.00 285 | 93.46 252 | 82.90 278 | 96.27 269 | 94.70 295 | 85.02 236 | 78.62 289 | 90.35 293 | 66.61 285 | 93.33 322 | 79.38 261 | 77.36 275 | 90.76 287 |
|
GBi-Net | | | 86.67 240 | 84.96 247 | 91.80 222 | 95.11 204 | 88.81 171 | 96.77 253 | 95.25 281 | 82.94 267 | 82.12 245 | 90.25 295 | 62.89 300 | 94.97 304 | 79.04 262 | 80.24 255 | 91.62 254 |
|
test1 | | | 86.67 240 | 84.96 247 | 91.80 222 | 95.11 204 | 88.81 171 | 96.77 253 | 95.25 281 | 82.94 267 | 82.12 245 | 90.25 295 | 62.89 300 | 94.97 304 | 79.04 262 | 80.24 255 | 91.62 254 |
|
FMVSNet3 | | | 88.81 208 | 87.08 218 | 93.99 180 | 96.52 156 | 94.59 45 | 98.08 199 | 96.20 218 | 85.85 221 | 82.12 245 | 91.60 260 | 74.05 232 | 95.40 297 | 79.04 262 | 80.24 255 | 91.99 246 |
|
LF4IMVS | | | 81.94 290 | 81.17 289 | 84.25 318 | 87.23 329 | 68.87 345 | 93.35 309 | 91.93 335 | 83.35 261 | 75.40 308 | 93.00 241 | 49.25 342 | 96.65 235 | 78.88 265 | 78.11 267 | 87.22 332 |
|
v8 | | | 86.11 249 | 84.45 258 | 91.10 233 | 89.99 295 | 86.85 212 | 97.24 236 | 95.36 278 | 81.99 283 | 79.89 276 | 89.86 303 | 74.53 226 | 96.39 251 | 78.83 266 | 72.32 312 | 90.05 305 |
|
pm-mvs1 | | | 84.68 268 | 82.78 274 | 90.40 251 | 89.58 302 | 85.18 250 | 97.31 230 | 94.73 294 | 81.93 285 | 76.05 302 | 92.01 252 | 65.48 292 | 96.11 271 | 78.75 267 | 69.14 323 | 89.91 308 |
|
v144192 | | | 86.40 245 | 84.89 250 | 90.91 238 | 89.48 305 | 85.59 243 | 98.21 187 | 95.43 273 | 82.45 277 | 82.62 235 | 90.58 287 | 72.79 243 | 96.36 253 | 78.45 268 | 74.04 297 | 90.79 285 |
|
PS-CasMVS | | | 85.81 255 | 84.58 257 | 89.49 277 | 90.77 289 | 82.11 287 | 97.20 239 | 97.36 142 | 84.83 240 | 79.12 286 | 92.84 243 | 67.42 280 | 95.16 302 | 78.39 269 | 73.25 304 | 91.21 274 |
|
tmp_tt | | | 53.66 322 | 52.86 324 | 56.05 337 | 32.75 363 | 41.97 359 | 73.42 352 | 76.12 359 | 21.91 358 | 39.68 354 | 96.39 181 | 42.59 347 | 65.10 356 | 78.00 270 | 14.92 357 | 61.08 350 |
|
JIA-IIPM | | | 85.97 251 | 84.85 251 | 89.33 279 | 93.23 257 | 73.68 331 | 85.05 340 | 97.13 162 | 69.62 337 | 91.56 147 | 68.03 348 | 88.03 77 | 96.96 223 | 77.89 271 | 93.12 164 | 97.34 188 |
|
MDTV_nov1_ep13 | | | | 90.47 169 | | 96.14 171 | 88.55 177 | 91.34 324 | 97.51 118 | 89.58 130 | 92.24 139 | 90.50 292 | 86.99 100 | 97.61 202 | 77.64 272 | 92.34 176 | |
|
v1192 | | | 86.32 247 | 84.71 254 | 91.17 232 | 89.53 304 | 86.40 220 | 98.13 192 | 95.44 272 | 82.52 276 | 82.42 239 | 90.62 284 | 71.58 255 | 96.33 260 | 77.23 273 | 74.88 285 | 90.79 285 |
|
FMVSNet2 | | | 86.90 235 | 84.79 253 | 93.24 193 | 95.11 204 | 92.54 90 | 97.67 221 | 95.86 247 | 82.94 267 | 80.55 266 | 91.17 269 | 62.89 300 | 95.29 299 | 77.23 273 | 79.71 261 | 91.90 248 |
|
MVP-Stereo | | | 86.61 242 | 85.83 236 | 88.93 287 | 88.70 314 | 83.85 268 | 96.07 279 | 94.41 304 | 82.15 282 | 75.64 307 | 91.96 254 | 67.65 278 | 96.45 248 | 77.20 275 | 98.72 96 | 86.51 336 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
tpm cat1 | | | 88.89 202 | 87.27 215 | 93.76 186 | 95.79 178 | 85.32 248 | 90.76 329 | 97.09 168 | 76.14 320 | 85.72 206 | 88.59 313 | 82.92 161 | 98.04 174 | 76.96 276 | 91.43 192 | 97.90 178 |
|
v10 | | | 85.73 258 | 84.01 264 | 90.87 241 | 90.03 294 | 86.73 214 | 97.20 239 | 95.22 288 | 81.25 291 | 79.85 277 | 89.75 304 | 73.30 238 | 96.28 265 | 76.87 277 | 72.64 307 | 89.61 312 |
|
v1921920 | | | 86.02 250 | 84.44 259 | 90.77 243 | 89.32 307 | 85.20 249 | 98.10 197 | 95.35 279 | 82.19 281 | 82.25 243 | 90.71 277 | 70.73 258 | 96.30 264 | 76.85 278 | 74.49 289 | 90.80 284 |
|
MS-PatchMatch | | | 86.75 238 | 85.92 235 | 89.22 280 | 91.97 272 | 82.47 285 | 96.91 248 | 96.14 223 | 83.74 253 | 77.73 296 | 93.53 228 | 58.19 314 | 97.37 214 | 76.75 279 | 98.35 105 | 87.84 325 |
|
K. test v3 | | | 81.04 293 | 79.77 296 | 84.83 314 | 87.41 327 | 70.23 341 | 95.60 290 | 93.93 312 | 83.70 255 | 67.51 336 | 89.35 309 | 55.76 320 | 93.58 321 | 76.67 280 | 68.03 326 | 90.67 292 |
|
PM-MVS | | | 74.88 313 | 72.85 316 | 80.98 328 | 78.98 349 | 64.75 347 | 90.81 328 | 85.77 353 | 80.95 295 | 68.23 333 | 82.81 335 | 29.08 354 | 92.84 327 | 76.54 281 | 62.46 336 | 85.36 340 |
|
MVS_0304 | | | 84.13 278 | 82.66 277 | 88.52 290 | 93.07 260 | 80.15 304 | 95.81 288 | 98.21 29 | 79.27 303 | 86.85 200 | 86.40 329 | 41.33 350 | 94.69 312 | 76.36 282 | 86.69 215 | 90.73 289 |
|
WR-MVS_H | | | 86.53 244 | 85.49 242 | 89.66 272 | 91.04 286 | 83.31 273 | 97.53 225 | 98.20 30 | 84.95 238 | 79.64 278 | 90.90 273 | 78.01 208 | 95.33 298 | 76.29 283 | 72.81 305 | 90.35 297 |
|
ACMH+ | | 83.78 15 | 84.21 275 | 82.56 280 | 89.15 282 | 93.73 246 | 79.16 308 | 96.43 264 | 94.28 306 | 81.09 293 | 74.00 314 | 94.03 212 | 54.58 328 | 97.67 197 | 76.10 284 | 78.81 263 | 90.63 293 |
|
PEN-MVS | | | 85.21 263 | 83.93 265 | 89.07 284 | 89.89 298 | 81.31 295 | 97.09 242 | 97.24 148 | 84.45 245 | 78.66 288 | 92.68 245 | 68.44 271 | 94.87 307 | 75.98 285 | 70.92 321 | 91.04 278 |
|
USDC | | | 84.74 266 | 82.93 270 | 90.16 257 | 91.73 278 | 83.54 270 | 95.00 294 | 93.30 320 | 88.77 154 | 73.19 318 | 93.30 232 | 53.62 331 | 97.65 199 | 75.88 286 | 81.54 253 | 89.30 314 |
|
EU-MVSNet | | | 84.19 276 | 84.42 260 | 83.52 320 | 88.64 315 | 67.37 346 | 96.04 280 | 95.76 251 | 85.29 229 | 78.44 292 | 93.18 235 | 70.67 259 | 91.48 341 | 75.79 287 | 75.98 278 | 91.70 251 |
|
v1240 | | | 85.77 257 | 84.11 262 | 90.73 244 | 89.26 308 | 85.15 252 | 97.88 209 | 95.23 287 | 81.89 286 | 82.16 244 | 90.55 289 | 69.60 265 | 96.31 261 | 75.59 288 | 74.87 286 | 90.72 290 |
|
ITE_SJBPF | | | | | 87.93 294 | 92.26 268 | 76.44 322 | | 93.47 319 | 87.67 193 | 79.95 275 | 95.49 195 | 56.50 319 | 97.38 212 | 75.24 289 | 82.33 249 | 89.98 307 |
|
dp | | | 90.16 184 | 88.83 190 | 94.14 174 | 96.38 160 | 86.42 219 | 91.57 322 | 97.06 170 | 84.76 241 | 88.81 182 | 90.19 300 | 84.29 143 | 97.43 211 | 75.05 290 | 91.35 195 | 98.56 151 |
|
LS3D | | | 90.19 182 | 88.72 192 | 94.59 160 | 98.97 80 | 86.33 224 | 96.90 249 | 96.60 188 | 74.96 323 | 84.06 220 | 98.74 86 | 75.78 216 | 99.83 57 | 74.93 291 | 97.57 115 | 97.62 183 |
|
TDRefinement | | | 78.01 307 | 75.31 310 | 86.10 308 | 70.06 353 | 73.84 330 | 93.59 308 | 91.58 339 | 74.51 325 | 73.08 321 | 91.04 270 | 49.63 341 | 97.12 217 | 74.88 292 | 59.47 339 | 87.33 330 |
|
tpmvs | | | 89.16 196 | 87.76 206 | 93.35 191 | 97.19 133 | 84.75 257 | 90.58 331 | 97.36 142 | 81.99 283 | 84.56 214 | 89.31 310 | 83.98 146 | 98.17 163 | 74.85 293 | 90.00 204 | 97.12 193 |
|
pmmvs6 | | | 79.90 298 | 77.31 303 | 87.67 297 | 84.17 338 | 78.13 317 | 95.86 286 | 93.68 316 | 67.94 342 | 72.67 324 | 89.62 306 | 50.98 338 | 95.75 287 | 74.80 294 | 66.04 330 | 89.14 317 |
|
SixPastTwentyTwo | | | 82.63 286 | 81.58 284 | 85.79 309 | 88.12 320 | 71.01 339 | 95.17 293 | 92.54 326 | 84.33 246 | 72.93 323 | 92.08 249 | 60.41 310 | 95.61 292 | 74.47 295 | 74.15 295 | 90.75 288 |
|
ACMH | | 83.09 17 | 84.60 269 | 82.61 279 | 90.57 246 | 93.18 258 | 82.94 276 | 96.27 269 | 94.92 291 | 81.01 294 | 72.61 325 | 93.61 225 | 56.54 318 | 97.79 187 | 74.31 296 | 81.07 254 | 90.99 279 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ADS-MVSNet2 | | | 87.62 228 | 86.88 221 | 89.86 264 | 96.21 165 | 79.14 309 | 87.15 334 | 92.99 321 | 83.01 265 | 89.91 173 | 87.27 322 | 78.87 201 | 92.80 329 | 74.20 297 | 92.27 178 | 97.64 180 |
|
ADS-MVSNet | | | 88.99 199 | 87.30 214 | 94.07 176 | 96.21 165 | 87.56 194 | 87.15 334 | 96.78 183 | 83.01 265 | 89.91 173 | 87.27 322 | 78.87 201 | 97.01 222 | 74.20 297 | 92.27 178 | 97.64 180 |
|
lessismore_v0 | | | | | 85.08 312 | 85.59 334 | 69.28 343 | | 90.56 344 | | 67.68 335 | 90.21 299 | 54.21 330 | 95.46 294 | 73.88 299 | 62.64 335 | 90.50 295 |
|
MIMVSNet | | | 84.48 272 | 81.83 282 | 92.42 210 | 91.73 278 | 87.36 200 | 85.52 337 | 94.42 303 | 81.40 289 | 81.91 252 | 87.58 317 | 51.92 335 | 92.81 328 | 73.84 300 | 88.15 209 | 97.08 197 |
|
v7n | | | 84.42 274 | 82.75 275 | 89.43 278 | 88.15 319 | 81.86 288 | 96.75 256 | 95.67 257 | 80.53 297 | 78.38 293 | 89.43 308 | 69.89 261 | 96.35 258 | 73.83 301 | 72.13 314 | 90.07 303 |
|
ambc | | | | | 79.60 329 | 72.76 352 | 56.61 352 | 76.20 350 | 92.01 334 | | 68.25 332 | 80.23 341 | 23.34 355 | 94.73 311 | 73.78 302 | 60.81 338 | 87.48 327 |
|
pmmvs-eth3d | | | 78.71 305 | 76.16 308 | 86.38 305 | 80.25 347 | 81.19 297 | 94.17 301 | 92.13 332 | 77.97 311 | 66.90 339 | 82.31 336 | 55.76 320 | 92.56 332 | 73.63 303 | 62.31 337 | 85.38 339 |
|
FMVSNet1 | | | 83.94 280 | 81.32 288 | 91.80 222 | 91.94 274 | 88.81 171 | 96.77 253 | 95.25 281 | 77.98 310 | 78.25 294 | 90.25 295 | 50.37 339 | 94.97 304 | 73.27 304 | 77.81 272 | 91.62 254 |
|
MSDG | | | 88.29 217 | 86.37 228 | 94.04 178 | 96.90 143 | 86.15 230 | 96.52 263 | 94.36 305 | 77.89 314 | 79.22 284 | 96.95 164 | 69.72 263 | 99.59 92 | 73.20 305 | 92.58 173 | 96.37 209 |
|
test0.0.03 1 | | | 88.96 200 | 88.61 195 | 90.03 262 | 91.09 285 | 84.43 260 | 98.97 103 | 97.02 174 | 90.21 109 | 80.29 270 | 96.31 183 | 84.89 137 | 91.93 339 | 72.98 306 | 85.70 224 | 93.73 219 |
|
UnsupCasMVSNet_eth | | | 78.90 303 | 76.67 306 | 85.58 311 | 82.81 342 | 74.94 326 | 91.98 319 | 96.31 209 | 84.64 242 | 65.84 341 | 87.71 316 | 51.33 336 | 92.23 335 | 72.89 307 | 56.50 344 | 89.56 313 |
|
DTE-MVSNet | | | 84.14 277 | 82.80 272 | 88.14 293 | 88.95 311 | 79.87 307 | 96.81 252 | 96.24 215 | 83.50 258 | 77.60 297 | 92.52 247 | 67.89 277 | 94.24 318 | 72.64 308 | 69.05 324 | 90.32 298 |
|
EPNet_dtu | | | 92.28 147 | 92.15 137 | 92.70 206 | 97.29 130 | 84.84 255 | 98.64 139 | 97.82 54 | 92.91 51 | 93.02 132 | 97.02 161 | 85.48 130 | 95.70 289 | 72.25 309 | 94.89 152 | 97.55 185 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
AllTest | | | 84.97 265 | 83.12 269 | 90.52 248 | 96.82 145 | 78.84 311 | 95.89 282 | 92.17 330 | 77.96 312 | 75.94 303 | 95.50 193 | 55.48 322 | 99.18 130 | 71.15 310 | 87.14 212 | 93.55 221 |
|
TestCases | | | | | 90.52 248 | 96.82 145 | 78.84 311 | | 92.17 330 | 77.96 312 | 75.94 303 | 95.50 193 | 55.48 322 | 99.18 130 | 71.15 310 | 87.14 212 | 93.55 221 |
|
DP-MVS | | | 88.75 210 | 86.56 226 | 95.34 138 | 98.92 84 | 87.45 197 | 97.64 222 | 93.52 318 | 70.55 333 | 81.49 259 | 97.25 148 | 74.43 227 | 99.88 44 | 71.14 312 | 94.09 158 | 98.67 147 |
|
CR-MVSNet | | | 88.83 206 | 87.38 213 | 93.16 195 | 93.47 250 | 86.24 225 | 84.97 341 | 94.20 308 | 88.92 151 | 90.76 159 | 86.88 326 | 84.43 141 | 94.82 309 | 70.64 313 | 92.17 181 | 98.41 157 |
|
KD-MVS_2432*1600 | | | 82.98 284 | 80.52 292 | 90.38 252 | 94.32 227 | 88.98 166 | 92.87 313 | 95.87 245 | 80.46 299 | 73.79 315 | 87.49 319 | 82.76 165 | 93.29 323 | 70.56 314 | 46.53 350 | 88.87 320 |
|
miper_refine_blended | | | 82.98 284 | 80.52 292 | 90.38 252 | 94.32 227 | 88.98 166 | 92.87 313 | 95.87 245 | 80.46 299 | 73.79 315 | 87.49 319 | 82.76 165 | 93.29 323 | 70.56 314 | 46.53 350 | 88.87 320 |
|
LTVRE_ROB | | 81.71 19 | 84.59 270 | 82.72 276 | 90.18 256 | 92.89 263 | 83.18 274 | 93.15 310 | 94.74 293 | 78.99 305 | 75.14 310 | 92.69 244 | 65.64 291 | 97.63 200 | 69.46 316 | 81.82 252 | 89.74 309 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
FMVSNet5 | | | 82.29 287 | 80.54 291 | 87.52 298 | 93.79 245 | 84.01 265 | 93.73 305 | 92.47 327 | 76.92 317 | 74.27 312 | 86.15 331 | 63.69 299 | 89.24 345 | 69.07 317 | 74.79 287 | 89.29 315 |
|
our_test_3 | | | 84.47 273 | 82.80 272 | 89.50 275 | 89.01 309 | 83.90 267 | 97.03 244 | 94.56 299 | 81.33 290 | 75.36 309 | 90.52 290 | 71.69 253 | 94.54 315 | 68.81 318 | 76.84 277 | 90.07 303 |
|
UnsupCasMVSNet_bld | | | 73.85 315 | 70.14 318 | 84.99 313 | 79.44 348 | 75.73 323 | 88.53 332 | 95.24 284 | 70.12 336 | 61.94 344 | 74.81 345 | 41.41 349 | 93.62 320 | 68.65 319 | 51.13 349 | 85.62 338 |
|
Patchmtry | | | 83.61 283 | 81.64 283 | 89.50 275 | 93.36 254 | 82.84 281 | 84.10 344 | 94.20 308 | 69.47 338 | 79.57 280 | 86.88 326 | 84.43 141 | 94.78 310 | 68.48 320 | 74.30 292 | 90.88 282 |
|
DIV-MVS_2432*1600 | | | 77.47 310 | 75.88 309 | 82.24 322 | 81.59 343 | 68.93 344 | 92.83 315 | 94.02 311 | 77.03 316 | 73.14 319 | 83.39 334 | 55.44 324 | 90.42 342 | 67.95 321 | 57.53 342 | 87.38 328 |
|
TransMVSNet (Re) | | | 81.97 289 | 79.61 297 | 89.08 283 | 89.70 300 | 84.01 265 | 97.26 234 | 91.85 336 | 78.84 306 | 73.07 322 | 91.62 259 | 67.17 282 | 95.21 301 | 67.50 322 | 59.46 340 | 88.02 324 |
|
COLMAP_ROB |  | 82.69 18 | 84.54 271 | 82.82 271 | 89.70 269 | 96.72 150 | 78.85 310 | 95.89 282 | 92.83 324 | 71.55 331 | 77.54 298 | 95.89 189 | 59.40 312 | 99.14 135 | 67.26 323 | 88.26 208 | 91.11 277 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
EG-PatchMatch MVS | | | 79.92 297 | 77.59 301 | 86.90 303 | 87.06 330 | 77.90 320 | 96.20 277 | 94.06 310 | 74.61 324 | 66.53 340 | 88.76 312 | 40.40 352 | 96.20 266 | 67.02 324 | 83.66 238 | 86.61 334 |
|
DSMNet-mixed | | | 81.60 292 | 81.43 286 | 82.10 324 | 84.36 337 | 60.79 349 | 93.63 307 | 86.74 352 | 79.00 304 | 79.32 283 | 87.15 324 | 63.87 298 | 89.78 344 | 66.89 325 | 91.92 183 | 95.73 213 |
|
testgi | | | 82.29 287 | 81.00 290 | 86.17 307 | 87.24 328 | 74.84 327 | 97.39 227 | 91.62 338 | 88.63 155 | 75.85 306 | 95.42 196 | 46.07 345 | 91.55 340 | 66.87 326 | 79.94 259 | 92.12 240 |
|
MDA-MVSNet_test_wron | | | 79.65 300 | 77.05 304 | 87.45 299 | 87.79 325 | 80.13 305 | 96.25 272 | 94.44 301 | 73.87 327 | 51.80 348 | 87.47 321 | 68.04 274 | 92.12 337 | 66.02 327 | 67.79 327 | 90.09 301 |
|
YYNet1 | | | 79.64 301 | 77.04 305 | 87.43 300 | 87.80 324 | 79.98 306 | 96.23 273 | 94.44 301 | 73.83 328 | 51.83 347 | 87.53 318 | 67.96 276 | 92.07 338 | 66.00 328 | 67.75 328 | 90.23 300 |
|
DeepMVS_CX |  | | | | 76.08 330 | 90.74 290 | 51.65 355 | | 90.84 343 | 86.47 216 | 57.89 346 | 87.98 314 | 35.88 353 | 92.60 330 | 65.77 329 | 65.06 332 | 83.97 343 |
|
TinyColmap | | | 80.42 296 | 77.94 300 | 87.85 295 | 92.09 271 | 78.58 313 | 93.74 304 | 89.94 346 | 74.99 322 | 69.77 328 | 91.78 257 | 46.09 344 | 97.58 203 | 65.17 330 | 77.89 268 | 87.38 328 |
|
MVS-HIRNet | | | 79.01 302 | 75.13 311 | 90.66 245 | 93.82 244 | 81.69 290 | 85.16 338 | 93.75 314 | 54.54 349 | 74.17 313 | 59.15 352 | 57.46 316 | 96.58 238 | 63.74 331 | 94.38 155 | 93.72 220 |
|
ppachtmachnet_test | | | 83.63 282 | 81.57 285 | 89.80 266 | 89.01 309 | 85.09 253 | 97.13 241 | 94.50 300 | 78.84 306 | 76.14 301 | 91.00 271 | 69.78 262 | 94.61 314 | 63.40 332 | 74.36 291 | 89.71 311 |
|
CL-MVSNet_2432*1600 | | | 79.89 299 | 78.34 299 | 84.54 317 | 81.56 344 | 75.01 325 | 96.88 250 | 95.62 259 | 81.10 292 | 75.86 305 | 85.81 332 | 68.49 270 | 90.26 343 | 63.21 333 | 56.51 343 | 88.35 322 |
|
Patchmatch-test | | | 86.25 248 | 84.06 263 | 92.82 201 | 94.42 225 | 82.88 280 | 82.88 348 | 94.23 307 | 71.58 330 | 79.39 282 | 90.62 284 | 89.00 61 | 96.42 250 | 63.03 334 | 91.37 194 | 99.16 109 |
|
pmmvs3 | | | 72.86 316 | 69.76 320 | 82.17 323 | 73.86 351 | 74.19 329 | 94.20 300 | 89.01 349 | 64.23 348 | 67.72 334 | 80.91 340 | 41.48 348 | 88.65 347 | 62.40 335 | 54.02 347 | 83.68 344 |
|
new_pmnet | | | 76.02 311 | 73.71 314 | 82.95 321 | 83.88 339 | 72.85 334 | 91.26 325 | 92.26 329 | 70.44 334 | 62.60 343 | 81.37 338 | 47.64 343 | 92.32 334 | 61.85 336 | 72.10 315 | 83.68 344 |
|
tfpnnormal | | | 83.65 281 | 81.35 287 | 90.56 247 | 91.37 283 | 88.06 184 | 97.29 232 | 97.87 50 | 78.51 309 | 76.20 300 | 90.91 272 | 64.78 294 | 96.47 246 | 61.71 337 | 73.50 301 | 87.13 333 |
|
MDA-MVSNet-bldmvs | | | 77.82 309 | 74.75 313 | 87.03 302 | 88.33 317 | 78.52 314 | 96.34 267 | 92.85 323 | 75.57 321 | 48.87 350 | 87.89 315 | 57.32 317 | 92.49 333 | 60.79 338 | 64.80 333 | 90.08 302 |
|
Anonymous20231206 | | | 80.76 294 | 79.42 298 | 84.79 315 | 84.78 336 | 72.98 333 | 96.53 262 | 92.97 322 | 79.56 302 | 74.33 311 | 88.83 311 | 61.27 307 | 92.15 336 | 60.59 339 | 75.92 279 | 89.24 316 |
|
new-patchmatchnet | | | 74.80 314 | 72.40 317 | 81.99 325 | 78.36 350 | 72.20 336 | 94.44 297 | 92.36 328 | 77.06 315 | 63.47 342 | 79.98 342 | 51.04 337 | 88.85 346 | 60.53 340 | 54.35 346 | 84.92 342 |
|
LCM-MVSNet | | | 60.07 319 | 56.37 322 | 71.18 331 | 54.81 359 | 48.67 356 | 82.17 349 | 89.48 348 | 37.95 352 | 49.13 349 | 69.12 346 | 13.75 362 | 81.76 350 | 59.28 341 | 51.63 348 | 83.10 346 |
|
TAPA-MVS | | 87.50 9 | 90.35 177 | 89.05 185 | 94.25 171 | 98.48 100 | 85.17 251 | 98.42 166 | 96.58 193 | 82.44 278 | 87.24 195 | 98.53 102 | 82.77 164 | 98.84 143 | 59.09 342 | 97.88 109 | 98.72 144 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
test20.03 | | | 78.51 306 | 77.48 302 | 81.62 326 | 83.07 341 | 71.03 338 | 96.11 278 | 92.83 324 | 81.66 287 | 69.31 329 | 89.68 305 | 57.53 315 | 87.29 349 | 58.65 343 | 68.47 325 | 86.53 335 |
|
PatchT | | | 85.44 261 | 83.19 268 | 92.22 212 | 93.13 259 | 83.00 275 | 83.80 347 | 96.37 206 | 70.62 332 | 90.55 162 | 79.63 343 | 84.81 139 | 94.87 307 | 58.18 344 | 91.59 190 | 98.79 139 |
|
MIMVSNet1 | | | 75.92 312 | 73.30 315 | 83.81 319 | 81.29 345 | 75.57 324 | 92.26 318 | 92.05 333 | 73.09 329 | 67.48 337 | 86.18 330 | 40.87 351 | 87.64 348 | 55.78 345 | 70.68 322 | 88.21 323 |
|
OpenMVS_ROB |  | 73.86 20 | 77.99 308 | 75.06 312 | 86.77 304 | 83.81 340 | 77.94 319 | 96.38 266 | 91.53 340 | 67.54 343 | 68.38 331 | 87.13 325 | 43.94 346 | 96.08 272 | 55.03 346 | 81.83 251 | 86.29 337 |
|
RPMNet | | | 85.07 264 | 81.88 281 | 94.64 158 | 93.47 250 | 86.24 225 | 84.97 341 | 97.21 152 | 64.85 347 | 90.76 159 | 78.80 344 | 80.95 188 | 99.27 128 | 53.76 347 | 92.17 181 | 98.41 157 |
|
N_pmnet | | | 70.19 317 | 69.87 319 | 71.12 332 | 88.24 318 | 30.63 363 | 95.85 287 | 28.70 363 | 70.18 335 | 68.73 330 | 86.55 328 | 64.04 297 | 93.81 319 | 53.12 348 | 73.46 302 | 88.94 318 |
|
PMMVS2 | | | 58.97 320 | 55.07 323 | 70.69 333 | 62.72 354 | 55.37 353 | 85.97 336 | 80.52 356 | 49.48 350 | 45.94 351 | 68.31 347 | 15.73 360 | 80.78 352 | 49.79 349 | 37.12 352 | 75.91 347 |
|
test_0402 | | | 78.81 304 | 76.33 307 | 86.26 306 | 91.18 284 | 78.44 315 | 95.88 284 | 91.34 341 | 68.55 339 | 70.51 327 | 89.91 302 | 52.65 334 | 94.99 303 | 47.14 350 | 79.78 260 | 85.34 341 |
|
FPMVS | | | 61.57 318 | 60.32 321 | 65.34 334 | 60.14 357 | 42.44 358 | 91.02 327 | 89.72 347 | 44.15 351 | 42.63 352 | 80.93 339 | 19.02 356 | 80.59 353 | 42.50 351 | 72.76 306 | 73.00 348 |
|
ANet_high | | | 50.71 323 | 46.17 326 | 64.33 335 | 44.27 361 | 52.30 354 | 76.13 351 | 78.73 357 | 64.95 346 | 27.37 356 | 55.23 353 | 14.61 361 | 67.74 355 | 36.01 352 | 18.23 355 | 72.95 349 |
|
Gipuma |  | | 54.77 321 | 52.22 325 | 62.40 336 | 86.50 331 | 59.37 351 | 50.20 355 | 90.35 345 | 36.52 353 | 41.20 353 | 49.49 354 | 18.33 358 | 81.29 351 | 32.10 353 | 65.34 331 | 46.54 353 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 41.42 23 | 45.67 324 | 42.50 327 | 55.17 338 | 34.28 362 | 32.37 361 | 66.24 353 | 78.71 358 | 30.72 354 | 22.04 359 | 59.59 351 | 4.59 363 | 77.85 354 | 27.49 354 | 58.84 341 | 55.29 351 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE |  | 44.00 22 | 41.70 325 | 37.64 330 | 53.90 339 | 49.46 360 | 43.37 357 | 65.09 354 | 66.66 360 | 26.19 357 | 25.77 358 | 48.53 355 | 3.58 365 | 63.35 357 | 26.15 355 | 27.28 353 | 54.97 352 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 41.02 326 | 40.93 328 | 41.29 340 | 61.97 355 | 33.83 360 | 84.00 346 | 65.17 361 | 27.17 355 | 27.56 355 | 46.72 356 | 17.63 359 | 60.41 358 | 19.32 356 | 18.82 354 | 29.61 354 |
|
EMVS | | | 39.96 327 | 39.88 329 | 40.18 341 | 59.57 358 | 32.12 362 | 84.79 343 | 64.57 362 | 26.27 356 | 26.14 357 | 44.18 359 | 18.73 357 | 59.29 359 | 17.03 357 | 17.67 356 | 29.12 355 |
|
wuyk23d | | | 16.71 330 | 16.73 334 | 16.65 342 | 60.15 356 | 25.22 364 | 41.24 356 | 5.17 364 | 6.56 359 | 5.48 362 | 3.61 362 | 3.64 364 | 22.72 360 | 15.20 358 | 9.52 358 | 1.99 358 |
|
testmvs | | | 18.81 329 | 23.05 332 | 6.10 344 | 4.48 364 | 2.29 366 | 97.78 214 | 3.00 365 | 3.27 360 | 18.60 360 | 62.71 349 | 1.53 367 | 2.49 362 | 14.26 359 | 1.80 359 | 13.50 357 |
|
test123 | | | 16.58 331 | 19.47 333 | 7.91 343 | 3.59 365 | 5.37 365 | 94.32 298 | 1.39 366 | 2.49 361 | 13.98 361 | 44.60 358 | 2.91 366 | 2.65 361 | 11.35 360 | 0.57 360 | 15.70 356 |
|
uanet_test | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
cdsmvs_eth3d_5k | | | 22.52 328 | 30.03 331 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 97.17 158 | 0.00 362 | 0.00 363 | 98.77 83 | 74.35 228 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
pcd_1.5k_mvsjas | | | 6.87 333 | 9.16 336 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 82.48 170 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet-low-res | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
sosnet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uncertanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
Regformer | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
ab-mvs-re | | | 8.21 332 | 10.94 335 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 98.50 105 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
uanet | | | 0.00 334 | 0.00 337 | 0.00 345 | 0.00 366 | 0.00 367 | 0.00 357 | 0.00 367 | 0.00 362 | 0.00 363 | 0.00 363 | 0.00 368 | 0.00 363 | 0.00 361 | 0.00 361 | 0.00 359 |
|
test_241102_ONE | | | | | | 99.63 21 | 95.24 21 | | 97.72 73 | 94.16 26 | 99.30 4 | 99.49 10 | 93.32 15 | 99.98 10 | | | |
|
save fliter | | | | | | 99.34 53 | 93.85 59 | 99.65 23 | 97.63 92 | 95.69 11 | | | | | | | |
|
test0726 | | | | | | 99.66 15 | 95.20 26 | 99.77 9 | 97.70 78 | 93.95 29 | 99.35 3 | 99.54 3 | 93.18 18 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.84 132 |
|
test_part2 | | | | | | 99.54 36 | 95.42 17 | | | | 98.13 32 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 88.39 70 | | | | 98.84 132 |
|
sam_mvs | | | | | | | | | | | | | 87.08 96 | | | | |
|
MTGPA |  | | | | | | | | 97.45 128 | | | | | | | | |
|
test_post | | | | | | | | | | | | 46.00 357 | 87.37 89 | 97.11 218 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 84.86 333 | 88.73 64 | 96.81 229 | | | |
|
MTMP | | | | | | | | 99.21 69 | 91.09 342 | | | | | | | | |
|
TEST9 | | | | | | 99.57 33 | 93.17 72 | 99.38 56 | 97.66 82 | 89.57 131 | 98.39 27 | 99.18 35 | 90.88 32 | 99.66 80 | | | |
|
test_8 | | | | | | 99.55 35 | 93.07 76 | 99.37 59 | 97.64 88 | 90.18 111 | 98.36 29 | 99.19 32 | 90.94 30 | 99.64 86 | | | |
|
agg_prior | | | | | | 99.54 36 | 92.66 84 | | 97.64 88 | | 97.98 40 | | | 99.61 89 | | | |
|
test_prior4 | | | | | | | 92.00 94 | 99.41 54 | | | | | | | | | |
|
test_prior | | | | | 97.01 62 | 99.58 29 | 91.77 95 | | 97.57 106 | | | | | 99.49 104 | | | 99.79 34 |
|
æ–°å‡ ä½•2 | | | | | | | | 98.26 183 | | | | | | | | | |
|
旧先验1 | | | | | | 98.97 80 | 92.90 83 | | 97.74 67 | | | 99.15 41 | 91.05 29 | | | 99.33 70 | 99.60 73 |
|
原ACMM2 | | | | | | | | 98.69 131 | | | | | | | | | |
|
test222 | | | | | | 98.32 101 | 91.21 108 | 98.08 199 | 97.58 103 | 83.74 253 | 95.87 86 | 99.02 57 | 86.74 104 | | | 99.64 43 | 99.81 31 |
|
segment_acmp | | | | | | | | | | | | | 90.56 39 | | | | |
|
testdata1 | | | | | | | | 97.89 207 | | 92.43 61 | | | | | | | |
|
test12 | | | | | 97.83 31 | 99.33 59 | 94.45 47 | | 97.55 109 | | 97.56 46 | | 88.60 65 | 99.50 103 | | 99.71 34 | 99.55 77 |
|
plane_prior7 | | | | | | 93.84 242 | 85.73 241 | | | | | | | | | | |
|
plane_prior6 | | | | | | 93.92 239 | 86.02 235 | | | | | | 72.92 240 | | | | |
|
plane_prior4 | | | | | | | | | | | | 96.52 175 | | | | | |
|
plane_prior3 | | | | | | | 85.91 236 | | | 93.65 39 | 86.99 196 | | | | | | |
|
plane_prior2 | | | | | | | | 99.02 97 | | 93.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 93.90 241 | | | | | | | | | | | |
|
plane_prior | | | | | | | 86.07 233 | 99.14 84 | | 93.81 37 | | | | | | 86.26 218 | |
|
n2 | | | | | | | | | 0.00 367 | | | | | | | | |
|
nn | | | | | | | | | 0.00 367 | | | | | | | | |
|
door-mid | | | | | | | | | 84.90 355 | | | | | | | | |
|
test11 | | | | | | | | | 97.68 80 | | | | | | | | |
|
door | | | | | | | | | 85.30 354 | | | | | | | | |
|
HQP5-MVS | | | | | | | 86.39 221 | | | | | | | | | | |
|
HQP-NCC | | | | | | 93.95 235 | | 99.16 75 | | 93.92 31 | 87.57 190 | | | | | | |
|
ACMP_Plane | | | | | | 93.95 235 | | 99.16 75 | | 93.92 31 | 87.57 190 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 87.57 190 | | | 97.77 189 | | | 92.72 224 |
|
HQP3-MVS | | | | | | | | | 96.37 206 | | | | | | | 86.29 216 | |
|
HQP2-MVS | | | | | | | | | | | | | 73.34 236 | | | | |
|
NP-MVS | | | | | | 93.94 238 | 86.22 227 | | | | | 96.67 173 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 247 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 83.83 235 | |
|
Test By Simon | | | | | | | | | | | | | 83.62 149 | | | | |
|