This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 299.64 1998.51 299.77 999.19 3295.12 699.97 2099.90 199.92 399.99 1
SED-MVS98.18 298.10 498.41 1499.63 2095.24 2199.77 997.72 7394.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_TWO97.72 7394.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
IU-MVS99.63 2095.38 1997.73 7195.54 1599.54 199.69 499.81 1999.99 1
MSP-MVS98.07 698.00 598.29 1599.66 1495.20 2699.72 1497.47 12593.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 59
test_0728_SECOND98.77 599.66 1496.37 1199.72 1497.68 8199.98 1099.64 599.82 1599.96 8
DPE-MVS98.11 598.00 598.44 1399.50 4295.39 1899.29 6697.72 7394.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2597.73 7191.05 9098.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DeepPCF-MVS93.56 196.55 4197.84 892.68 20398.71 8878.11 31099.70 1797.71 7798.18 197.36 5199.76 190.37 4599.94 3399.27 999.54 5699.99 1
APDe-MVS97.53 1197.47 1097.70 3699.58 2893.63 6299.56 3297.52 11493.59 4198.01 3999.12 4590.80 3599.55 9399.26 1099.79 2599.93 17
test_0728_THIRD93.01 4799.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8291.62 9899.58 2996.54 19195.09 1896.84 6498.63 9491.16 2699.77 6799.04 1296.42 12799.81 31
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1797.98 4397.18 295.96 7899.33 2192.62 22100.00 198.99 1399.93 199.98 6
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4297.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6594.97 3099.47 4097.52 11489.85 11998.79 1699.46 1190.41 4499.69 7598.78 1599.67 3799.70 56
CANet97.00 2796.49 3798.55 998.86 8496.10 1399.83 597.52 11495.90 997.21 5298.90 7282.66 16099.93 3598.71 1698.80 9099.63 68
9.1496.87 2699.34 5199.50 3897.49 12289.41 13298.59 2299.43 1689.78 5099.69 7598.69 1799.62 46
SD-MVS97.51 1297.40 1497.81 3299.01 7593.79 6199.33 6497.38 13893.73 3898.83 1599.02 5590.87 3399.88 4498.69 1799.74 2899.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test9_res98.60 1999.87 799.90 20
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12397.29 399.03 9697.11 15995.83 1098.97 1199.14 4282.48 16399.60 9198.60 1999.08 7698.00 172
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13296.96 499.01 9997.04 16695.51 1698.86 1399.11 4882.19 16999.36 11998.59 2198.14 10398.00 172
train_agg97.20 2297.08 1997.57 4299.57 3293.17 7199.38 5697.66 8390.18 11098.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
agg_prior197.12 2497.03 2197.38 5099.54 3592.66 8399.35 6197.64 8990.38 10597.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 6893.49 6798.52 15397.50 12094.46 2198.99 1098.64 9291.58 2599.08 13498.49 2499.83 1399.60 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5193.85 5999.65 2395.45 26295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
SF-MVS97.22 2196.92 2498.12 2299.11 6994.88 3299.44 4897.45 12789.60 12598.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9194.73 4199.13 8797.38 13888.44 16298.53 2499.39 1989.66 5499.69 7598.43 2799.61 5099.61 71
PHI-MVS96.65 3896.46 3897.21 5699.34 5191.77 9399.70 1798.05 3886.48 20998.05 3699.20 3189.33 5699.96 2798.38 2899.62 4699.90 20
test_prior397.07 2697.09 1897.01 6299.58 2891.77 9399.57 3097.57 10691.43 8398.12 3498.97 6190.43 4099.49 10398.33 2999.81 1999.79 34
test_prior299.57 3091.43 8398.12 3498.97 6190.43 4098.33 2999.81 19
SMA-MVS97.24 1896.99 2398.00 2799.30 5894.20 5399.16 7597.65 8889.55 12999.22 799.52 990.34 4699.99 598.32 3199.83 1399.82 30
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 10994.42 4994.76 28998.36 2392.50 5995.62 8997.52 13697.92 197.38 20798.31 3298.80 9098.20 168
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4896.54 598.84 1499.46 1192.55 2399.98 1098.25 3399.93 199.94 14
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7597.74 6791.28 8798.40 2699.29 2289.95 4899.98 1098.20 3499.70 3599.94 14
DVP-MVS97.77 898.18 296.53 9799.54 3590.14 13599.41 5497.70 7895.46 1798.60 2199.19 3295.71 499.49 10398.15 3599.85 1199.95 11
ETV-MVS96.00 5796.00 5296.00 11696.56 14991.05 11699.63 2596.61 18293.26 4697.39 5098.30 11086.62 10598.13 16198.07 3697.57 11198.82 133
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1893.21 7099.70 1798.13 3694.61 1997.78 4599.46 1189.85 4999.81 6297.97 3799.91 499.88 24
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6399.16 7597.44 13190.08 11598.59 2299.07 4989.06 5899.42 11397.92 3899.66 3899.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12291.46 10299.75 1397.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 3999.64 4299.90 20
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS95.85 6395.86 5795.82 12296.80 14289.78 14999.84 396.60 18392.60 5596.81 6898.70 8885.04 13098.25 15797.90 4098.43 10099.42 86
agg_prior297.84 4199.87 799.91 18
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4094.76 3999.19 7097.75 6595.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 60
SR-MVS96.13 5496.16 4996.07 11499.42 4889.04 16198.59 14897.33 14390.44 10396.84 6499.12 4586.75 10299.41 11597.47 4399.44 6299.76 46
PVSNet_BlendedMVS93.36 12493.20 11293.84 18198.77 8691.61 9999.47 4098.04 3991.44 8294.21 11092.63 23983.50 14699.87 4797.41 4483.37 23790.05 300
PVSNet_Blended95.94 6195.66 6396.75 8398.77 8691.61 9999.88 198.04 3993.64 4094.21 11097.76 12483.50 14699.87 4797.41 4497.75 11098.79 136
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9391.00 11899.14 8499.45 193.86 3595.15 9698.73 8388.48 6799.76 6897.23 4699.56 5499.40 87
Regformer-196.97 2896.80 3097.47 4499.46 4693.11 7398.89 11197.94 4492.89 5296.90 5799.02 5589.78 5099.53 9697.06 4799.26 7299.75 47
xiu_mvs_v1_base_debu94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base_debi94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
Regformer-296.94 3196.78 3197.42 4699.46 4692.97 8098.89 11197.93 4592.86 5496.88 5899.02 5589.74 5299.53 9697.03 4899.26 7299.75 47
lupinMVS96.32 4995.94 5497.44 4595.05 20394.87 3399.86 296.50 19393.82 3698.04 3798.77 7985.52 12298.09 16496.98 5298.97 8199.37 88
MVS_111021_LR95.78 6795.94 5495.28 13898.19 10287.69 18598.80 11999.26 793.39 4395.04 9898.69 9084.09 14199.76 6896.96 5399.06 7798.38 157
VNet95.08 8094.26 8597.55 4398.07 10593.88 5898.68 13398.73 1590.33 10797.16 5497.43 14079.19 19299.53 9696.91 5491.85 18199.24 100
APD-MVS_3200maxsize95.64 7095.65 6595.62 12899.24 6387.80 18498.42 16597.22 14988.93 14696.64 7298.98 6085.49 12599.36 11996.68 5599.27 7199.70 56
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2694.45 4798.85 11497.64 8996.51 795.88 8199.39 1987.35 9299.99 596.61 5699.69 3699.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 16390.18 16894.45 16197.08 13385.84 23398.40 17096.10 21986.99 19593.36 12298.16 11654.27 31899.20 12596.59 5790.63 19798.31 163
MP-MVS-pluss95.80 6695.30 6897.29 5298.95 7992.66 8398.59 14897.14 15588.95 14493.12 12599.25 2585.62 12199.94 3396.56 5899.48 5899.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvs94.59 9594.19 8795.81 12395.54 18190.69 12598.70 13095.68 25091.61 7895.96 7897.81 12180.11 18498.06 16896.52 5995.76 14198.67 144
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8593.55 6498.88 11397.59 10190.66 9697.98 4099.14 4286.59 106100.00 196.47 6099.46 5999.89 23
Regformer-396.50 4296.36 4196.91 7399.34 5191.72 9698.71 12697.90 4792.48 6096.00 7598.95 6688.60 6499.52 9996.44 6198.83 8799.49 80
Regformer-496.45 4596.33 4396.81 8099.34 5191.44 10398.71 12697.88 4892.43 6195.97 7798.95 6688.42 6899.51 10096.40 6298.83 8799.49 80
PAPM96.35 4795.94 5497.58 4094.10 22395.25 2098.93 10698.17 3194.26 2393.94 11598.72 8589.68 5397.88 17796.36 6399.29 7099.62 70
zzz-MVS96.21 5395.96 5396.96 7099.29 5991.19 10798.69 13197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
MTAPA96.09 5595.80 6196.96 7099.29 5991.19 10797.23 23197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
alignmvs95.77 6895.00 7598.06 2597.35 12395.68 1699.71 1697.50 12091.50 8196.16 7498.61 9586.28 11599.00 13696.19 6691.74 18399.51 78
canonicalmvs95.02 8193.96 9798.20 1797.53 12095.92 1498.71 12696.19 21591.78 7695.86 8398.49 10379.53 18999.03 13596.12 6791.42 18999.66 64
DELS-MVS97.12 2496.60 3598.68 898.03 10696.57 899.84 397.84 5296.36 895.20 9598.24 11288.17 7299.83 5796.11 6899.60 5199.64 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 7494.86 7697.03 6192.91 25494.23 5299.70 1796.30 20493.56 4296.73 7098.52 9981.46 17897.91 17496.08 6998.47 9998.96 118
jason: jason.
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15499.70 1797.61 9690.07 11696.00 7599.16 3987.43 8699.92 3696.03 7099.72 3099.70 56
MP-MVScopyleft96.00 5795.82 5896.54 9699.47 4590.13 13799.36 6097.41 13590.64 9995.49 9098.95 6685.51 12499.98 1096.00 7199.59 5399.52 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#96.48 4396.34 4296.90 7499.69 990.96 11999.53 3697.81 5790.94 9496.88 5899.05 5287.57 8299.96 2795.87 7299.72 3099.78 38
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 11999.47 4097.81 5790.54 10196.88 5899.05 5287.57 8299.96 2795.65 7399.72 3099.78 38
XVS96.47 4496.37 4096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6198.96 6487.37 8899.87 4795.65 7399.43 6399.78 38
X-MVStestdata90.69 17388.66 19096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6129.59 35187.37 8899.87 4795.65 7399.43 6399.78 38
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 12999.47 4097.80 5990.54 10196.83 6699.03 5486.51 11099.95 3095.65 7399.72 3099.75 47
HPM-MVScopyleft95.41 7395.22 7195.99 11799.29 5989.14 15999.17 7497.09 16387.28 19395.40 9198.48 10484.93 13299.38 11795.64 7799.65 3999.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
DCV-MVSNet95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
region2R96.30 5096.17 4796.70 8899.70 890.31 13199.46 4597.66 8390.55 10097.07 5599.07 4986.85 10099.97 2095.43 8099.74 2899.81 31
EI-MVSNet-Vis-set95.76 6995.63 6796.17 11199.14 6790.33 13098.49 15997.82 5491.92 7394.75 10198.88 7487.06 9699.48 10895.40 8197.17 12098.70 143
EPNet96.82 3496.68 3497.25 5598.65 8993.10 7499.48 3998.76 1296.54 597.84 4498.22 11387.49 8599.66 8095.35 8297.78 10999.00 114
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9199.06 994.45 2296.42 7398.70 8888.81 6299.74 7095.35 8299.86 1099.97 7
HY-MVS88.56 795.29 7594.23 8698.48 1197.72 11196.41 1094.03 29698.74 1392.42 6495.65 8894.76 19986.52 10999.49 10395.29 8492.97 16299.53 75
mPP-MVS95.90 6295.75 6296.38 10499.58 2889.41 15899.26 6797.41 13590.66 9694.82 10098.95 6686.15 11799.98 1095.24 8599.64 4299.74 50
ZNCC-MVS96.09 5595.81 6096.95 7299.42 4891.19 10799.55 3397.53 11389.72 12295.86 8398.94 7186.59 10699.97 2095.13 8699.56 5499.68 60
GG-mvs-BLEND96.98 6896.53 15094.81 3887.20 32497.74 6793.91 11696.40 17596.56 296.94 22095.08 8798.95 8499.20 104
EIA-MVS95.11 7995.27 7094.64 15696.34 15686.51 20999.59 2896.62 18192.51 5894.08 11398.64 9286.05 11898.24 15895.07 8898.50 9899.18 105
DeepC-MVS91.02 494.56 9693.92 10096.46 9997.16 12990.76 12398.39 17197.11 15993.92 3188.66 17898.33 10878.14 20099.85 5495.02 8998.57 9698.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS95.97 5995.11 7398.54 1097.62 11596.65 699.44 4898.74 1392.25 6895.21 9498.46 10786.56 10899.46 11095.00 9092.69 16699.50 79
CSCG94.87 8394.71 7795.36 13599.54 3586.49 21099.34 6398.15 3482.71 26790.15 16599.25 2589.48 5599.86 5294.97 9198.82 8999.72 53
EI-MVSNet-UG-set95.43 7195.29 6995.86 12199.07 7389.87 14698.43 16497.80 5991.78 7694.11 11298.77 7986.25 11699.48 10894.95 9296.45 12698.22 166
CPTT-MVS94.60 9494.43 8395.09 14199.66 1486.85 20599.44 4897.47 12583.22 25794.34 10998.96 6482.50 16199.55 9394.81 9399.50 5798.88 126
PVSNet_083.28 1687.31 22685.16 23993.74 18494.78 21384.59 25198.91 10998.69 1889.81 12178.59 28493.23 22961.95 29499.34 12294.75 9455.72 33797.30 186
CLD-MVS91.06 16490.71 16192.10 21194.05 22686.10 22499.55 3396.29 20794.16 2684.70 20897.17 15169.62 25597.82 18194.74 9586.08 21792.39 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvs93.98 10593.43 10795.61 13095.07 20289.86 14798.80 11995.84 24190.98 9292.74 13097.66 13179.71 18698.10 16394.72 9695.37 14598.87 128
VDDNet90.08 18388.54 19594.69 15494.41 22087.68 18698.21 18496.40 19876.21 30993.33 12397.75 12554.93 31698.77 14194.71 9790.96 19297.61 181
CDPH-MVS96.56 4096.18 4597.70 3699.59 2793.92 5799.13 8797.44 13189.02 14197.90 4399.22 2988.90 6199.49 10394.63 9899.79 2599.68 60
GST-MVS95.97 5995.66 6396.90 7499.49 4491.22 10599.45 4797.48 12389.69 12395.89 8098.72 8586.37 11499.95 3094.62 9999.22 7599.52 76
Effi-MVS+93.87 10993.15 11396.02 11595.79 17290.76 12396.70 25295.78 24286.98 19795.71 8697.17 15179.58 18798.01 17294.57 10096.09 13599.31 93
abl_694.63 9394.48 8195.09 14198.61 9286.96 20398.06 19796.97 17289.31 13395.86 8398.56 9779.82 18599.64 8694.53 10198.65 9598.66 146
LFMVS92.23 14790.84 15796.42 10298.24 9991.08 11598.24 18196.22 21283.39 25594.74 10298.31 10961.12 29898.85 13894.45 10292.82 16399.32 92
ET-MVSNet_ETH3D92.56 14291.45 14795.88 12096.39 15494.13 5599.46 4596.97 17292.18 7066.94 32798.29 11194.65 1194.28 31294.34 10383.82 23399.24 100
baseline93.91 10793.30 10995.72 12695.10 20190.07 13997.48 22195.91 23591.03 9193.54 12197.68 12979.58 18798.02 17194.27 10495.14 14699.08 111
PAPR96.35 4795.82 5897.94 2999.63 2094.19 5499.42 5397.55 10992.43 6193.82 11999.12 4587.30 9399.91 3894.02 10599.06 7799.74 50
PGM-MVS95.85 6395.65 6596.45 10099.50 4289.77 15098.22 18298.90 1189.19 13596.74 6998.95 6685.91 12099.92 3693.94 10699.46 5999.66 64
gg-mvs-nofinetune90.00 18487.71 20396.89 7996.15 16494.69 4385.15 33097.74 6768.32 33192.97 12960.16 34096.10 396.84 22293.89 10798.87 8599.14 107
MVS93.92 10692.28 12998.83 495.69 17696.82 596.22 26798.17 3184.89 23384.34 21298.61 9579.32 19199.83 5793.88 10899.43 6399.86 28
旧先验298.67 13585.75 21798.96 1298.97 13793.84 109
ACMMPcopyleft94.67 9194.30 8495.79 12499.25 6288.13 17898.41 16798.67 1990.38 10591.43 14498.72 8582.22 16899.95 3093.83 11095.76 14199.29 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 111
HQP-MVS91.50 15691.23 14992.29 20793.95 22786.39 21499.16 7596.37 20093.92 3187.57 18596.67 16973.34 22797.77 18593.82 11186.29 21292.72 220
DP-MVS Recon95.85 6395.15 7297.95 2899.87 294.38 5099.60 2797.48 12386.58 20694.42 10699.13 4487.36 9199.98 1093.64 11398.33 10299.48 82
CHOSEN 1792x268894.35 9993.82 10295.95 11997.40 12188.74 16998.41 16798.27 2592.18 7091.43 14496.40 17578.88 19399.81 6293.59 11497.81 10699.30 94
cascas90.93 16889.33 17795.76 12595.69 17693.03 7798.99 10196.59 18580.49 29186.79 19794.45 20265.23 28398.60 15093.52 11592.18 17695.66 210
HQP_MVS91.26 16090.95 15492.16 21093.84 23486.07 22699.02 9796.30 20493.38 4486.99 19196.52 17172.92 23197.75 19093.46 11686.17 21592.67 222
plane_prior596.30 20497.75 19093.46 11686.17 21592.67 222
PVSNet_Blended_VisFu94.67 9194.11 9096.34 10697.14 13091.10 11399.32 6597.43 13392.10 7291.53 14396.38 17883.29 15299.68 7893.42 11896.37 12898.25 164
AdaColmapbinary93.82 11093.06 11496.10 11399.88 189.07 16098.33 17497.55 10986.81 20290.39 16298.65 9175.09 21299.98 1093.32 11997.53 11499.26 99
HyFIR lowres test93.68 11593.29 11094.87 14797.57 11988.04 18098.18 18698.47 2187.57 18891.24 14895.05 19585.49 12597.46 20493.22 12092.82 16399.10 109
HPM-MVS_fast94.89 8294.62 7895.70 12799.11 6988.44 17599.14 8497.11 15985.82 21695.69 8798.47 10583.46 14899.32 12393.16 12199.63 4599.35 89
PMMVS93.62 11893.90 10192.79 19996.79 14381.40 28498.85 11496.81 17691.25 8896.82 6798.15 11777.02 20698.13 16193.15 12296.30 13198.83 132
LCM-MVSNet-Re88.59 20888.61 19188.51 28595.53 18272.68 32696.85 24488.43 34188.45 15973.14 30990.63 27675.82 20894.38 31192.95 12395.71 14398.48 152
EPP-MVSNet93.75 11293.67 10494.01 17695.86 17185.70 23598.67 13597.66 8384.46 23891.36 14697.18 15091.16 2697.79 18392.93 12493.75 15698.53 149
CostFormer92.89 13492.48 12794.12 17294.99 20585.89 23092.89 30697.00 17186.98 19795.00 9990.78 26890.05 4797.51 20392.92 12591.73 18498.96 118
XVG-OURS-SEG-HR90.95 16790.66 16391.83 21695.18 19481.14 29195.92 27495.92 23188.40 16490.33 16397.85 11970.66 25199.38 11792.83 12688.83 20394.98 211
sss94.85 8493.94 9997.58 4096.43 15394.09 5698.93 10699.16 889.50 13095.27 9397.85 11981.50 17699.65 8492.79 12794.02 15598.99 115
MAR-MVS94.43 9794.09 9195.45 13399.10 7187.47 19298.39 17197.79 6188.37 16594.02 11499.17 3778.64 19899.91 3892.48 12898.85 8698.96 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 8594.18 8996.59 9399.21 6490.06 14298.80 11997.78 6283.59 25293.85 11799.21 3083.79 14399.97 2092.37 12999.00 8099.74 50
nrg03090.23 17888.87 18494.32 16591.53 27293.54 6598.79 12395.89 23888.12 17384.55 21094.61 20178.80 19696.88 22192.35 13075.21 27892.53 224
OMC-MVS93.90 10893.62 10594.73 15398.63 9087.00 20298.04 19896.56 18992.19 6992.46 13298.73 8379.49 19099.14 13192.16 13194.34 15398.03 171
131493.44 12091.98 13897.84 3095.24 18894.38 5096.22 26797.92 4690.18 11082.28 23697.71 12877.63 20399.80 6491.94 13298.67 9499.34 91
DPM-MVS97.86 797.25 1799.68 198.25 9899.10 199.76 1297.78 6296.61 498.15 3199.53 793.62 14100.00 191.79 13399.80 2399.94 14
mvs_anonymous92.50 14391.65 14495.06 14396.60 14889.64 15397.06 23796.44 19786.64 20584.14 21393.93 21182.49 16296.17 26391.47 13496.08 13699.35 89
baseline294.04 10393.80 10394.74 15293.07 25290.25 13298.12 19198.16 3389.86 11886.53 19896.95 16095.56 598.05 16991.44 13594.53 15095.93 208
IB-MVS89.43 692.12 14890.83 15995.98 11895.40 18690.78 12299.81 698.06 3791.23 8985.63 20293.66 21990.63 3798.78 14091.22 13671.85 31198.36 160
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 16589.17 17996.69 8995.96 16991.72 9692.62 30797.23 14885.61 21889.74 17093.89 21368.55 26099.42 11391.09 13787.84 20698.92 124
XVG-OURS90.83 16990.49 16591.86 21595.23 18981.25 28895.79 28295.92 23188.96 14390.02 16798.03 11871.60 24599.35 12191.06 13887.78 20794.98 211
3Dnovator87.35 1193.17 13191.77 14297.37 5195.41 18593.07 7598.82 11797.85 5191.53 8082.56 23097.58 13571.97 24099.82 6091.01 13999.23 7499.22 103
VPA-MVSNet89.10 19487.66 20493.45 18692.56 25691.02 11797.97 20198.32 2486.92 19986.03 20092.01 24568.84 25997.10 21590.92 14075.34 27792.23 232
PAPM_NR95.43 7195.05 7496.57 9599.42 4890.14 13598.58 15097.51 11790.65 9892.44 13398.90 7287.77 8099.90 4090.88 14199.32 6999.68 60
3Dnovator+87.72 893.43 12191.84 14098.17 1895.73 17595.08 2998.92 10897.04 16691.42 8581.48 25497.60 13374.60 21599.79 6590.84 14298.97 8199.64 66
gm-plane-assit94.69 21588.14 17788.22 17097.20 14898.29 15590.79 143
MVSTER92.71 13692.32 12893.86 18097.29 12592.95 8199.01 9996.59 18590.09 11485.51 20394.00 20994.61 1296.56 23390.77 14483.03 23992.08 238
ACMP87.39 1088.71 20788.24 19890.12 25293.91 23281.06 29298.50 15795.67 25189.43 13180.37 26295.55 18765.67 28097.83 18090.55 14584.51 22591.47 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_test8_iter0591.04 16690.40 16792.95 19696.20 16289.75 15198.97 10396.38 19988.52 15582.00 24493.51 22490.69 3696.73 22890.43 14676.91 27292.38 226
testdata95.26 13998.20 10087.28 19897.60 9785.21 22498.48 2599.15 4088.15 7398.72 14690.29 14799.45 6199.78 38
LPG-MVS_test88.86 19988.47 19690.06 25393.35 24780.95 29398.22 18295.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
LGP-MVS_train90.06 25393.35 24780.95 29395.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
MVSFormer94.71 9094.08 9296.61 9295.05 20394.87 3397.77 21196.17 21686.84 20098.04 3798.52 9985.52 12295.99 26989.83 15098.97 8198.96 118
test_djsdf88.26 21387.73 20289.84 25988.05 31382.21 27897.77 21196.17 21686.84 20082.41 23491.95 24872.07 23995.99 26989.83 15084.50 22691.32 265
tpmrst92.78 13592.16 13394.65 15596.27 15887.45 19391.83 31197.10 16289.10 13994.68 10390.69 27288.22 7197.73 19289.78 15291.80 18298.77 139
PLCcopyleft91.07 394.23 10194.01 9394.87 14799.17 6687.49 19199.25 6896.55 19088.43 16391.26 14798.21 11585.92 11999.86 5289.77 15397.57 11197.24 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CDS-MVSNet93.47 11993.04 11694.76 15094.75 21489.45 15798.82 11797.03 16887.91 17890.97 15196.48 17389.06 5896.36 24889.50 15492.81 16598.49 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 18590.68 16287.81 29095.15 19571.98 32897.87 20695.40 26691.92 7387.57 18591.44 25674.27 22096.84 22289.45 15593.10 16194.60 213
mvs-test191.57 15592.20 13289.70 26395.15 19574.34 31999.51 3795.40 26691.92 7391.02 15097.25 14474.27 22098.08 16789.45 15595.83 14096.67 198
jajsoiax87.35 22586.51 22189.87 25787.75 31881.74 28197.03 23895.98 22288.47 15680.15 26593.80 21561.47 29596.36 24889.44 15784.47 22791.50 256
mvs_tets87.09 22886.22 22489.71 26287.87 31481.39 28596.73 25195.90 23688.19 17179.99 26793.61 22059.96 30196.31 25689.40 15884.34 22891.43 260
PS-MVSNAJss89.54 19189.05 18191.00 23288.77 30484.36 25497.39 22295.97 22388.47 15681.88 24793.80 21582.48 16396.50 23789.34 15983.34 23892.15 235
VPNet88.30 21186.57 21993.49 18591.95 26591.35 10498.18 18697.20 15188.61 15284.52 21194.89 19662.21 29396.76 22789.34 15972.26 30892.36 227
114514_t94.06 10293.05 11597.06 6099.08 7292.26 9198.97 10397.01 17082.58 26992.57 13198.22 11380.68 18299.30 12489.34 15999.02 7999.63 68
OPM-MVS89.76 18789.15 18091.57 22390.53 28385.58 23798.11 19295.93 23092.88 5386.05 19996.47 17467.06 27397.87 17889.29 16286.08 21791.26 268
MVS_Test93.67 11692.67 12396.69 8996.72 14592.66 8397.22 23296.03 22187.69 18695.12 9794.03 20781.55 17598.28 15689.17 16396.46 12599.14 107
BH-w/o92.32 14491.79 14193.91 17996.85 13986.18 22199.11 8995.74 24588.13 17284.81 20797.00 15877.26 20597.91 17489.16 16498.03 10497.64 177
RRT_MVS91.95 15191.09 15094.53 15896.71 14795.12 2898.64 13996.23 21189.04 14085.24 20595.06 19487.71 8196.43 24389.10 16582.06 24692.05 240
TAMVS92.62 13992.09 13694.20 16994.10 22387.68 18698.41 16796.97 17287.53 19089.74 17096.04 18284.77 13696.49 23988.97 16692.31 17398.42 153
CNLPA93.64 11792.74 12196.36 10598.96 7890.01 14599.19 7095.89 23886.22 21289.40 17398.85 7580.66 18399.84 5588.57 16796.92 12199.24 100
baseline192.61 14091.28 14896.58 9497.05 13594.63 4497.72 21396.20 21389.82 12088.56 17996.85 16586.85 10097.82 18188.42 16880.10 25497.30 186
CANet_DTU94.31 10093.35 10897.20 5797.03 13694.71 4298.62 14295.54 25795.61 1497.21 5298.47 10571.88 24199.84 5588.38 16997.46 11697.04 195
thisisatest051594.75 8694.19 8796.43 10196.13 16892.64 8799.47 4097.60 9787.55 18993.17 12497.59 13494.71 998.42 15188.28 17093.20 15998.24 165
原ACMM196.18 10999.03 7490.08 13897.63 9388.98 14297.00 5698.97 6188.14 7499.71 7388.23 17199.62 4698.76 140
UGNet91.91 15290.85 15695.10 14097.06 13488.69 17098.01 19998.24 2792.41 6592.39 13493.61 22060.52 29999.68 7888.14 17297.25 11896.92 197
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNet (Re-imp)93.26 12993.00 11894.06 17496.14 16586.71 20898.68 13396.70 17988.30 16789.71 17297.64 13285.43 12896.39 24688.06 17396.32 12999.08 111
PVSNet87.13 1293.69 11392.83 12096.28 10797.99 10790.22 13499.38 5698.93 1091.42 8593.66 12097.68 12971.29 24899.64 8687.94 17497.20 11998.98 116
FIs90.70 17289.87 17093.18 19092.29 25991.12 11198.17 18898.25 2689.11 13883.44 21894.82 19882.26 16796.17 26387.76 17582.76 24192.25 230
tpm291.77 15391.09 15093.82 18294.83 21285.56 23892.51 30897.16 15484.00 24593.83 11890.66 27487.54 8497.17 21187.73 17691.55 18798.72 141
无先验98.52 15397.82 5487.20 19499.90 4087.64 17799.85 29
112195.19 7894.45 8297.42 4698.88 8292.58 8896.22 26797.75 6585.50 22196.86 6199.01 5988.59 6699.90 4087.64 17799.60 5199.79 34
Anonymous20240521188.84 20087.03 21494.27 16698.14 10484.18 25698.44 16395.58 25576.79 30889.34 17496.88 16453.42 32199.54 9587.53 17987.12 21099.09 110
testing_280.92 28777.24 29591.98 21378.88 33987.83 18393.96 29795.72 24684.27 24156.20 33680.42 33038.64 34296.40 24587.20 18079.85 25691.72 245
IS-MVSNet93.00 13392.51 12694.49 15996.14 16587.36 19698.31 17795.70 24888.58 15490.17 16497.50 13783.02 15597.22 21087.06 18196.07 13798.90 125
MDTV_nov1_ep13_2view91.17 11091.38 31487.45 19193.08 12686.67 10487.02 18298.95 122
Anonymous2024052987.66 22285.58 23493.92 17897.59 11885.01 24798.13 18997.13 15766.69 33588.47 18096.01 18355.09 31599.51 10087.00 18384.12 22997.23 189
UniMVSNet_NR-MVSNet89.60 18988.55 19492.75 20192.17 26290.07 13998.74 12598.15 3488.37 16583.21 22093.98 21082.86 15795.93 27386.95 18472.47 30592.25 230
DU-MVS88.83 20287.51 20592.79 19991.46 27390.07 13998.71 12697.62 9588.87 14883.21 22093.68 21774.63 21395.93 27386.95 18472.47 30592.36 227
ACMM86.95 1388.77 20588.22 19990.43 24693.61 23981.34 28698.50 15795.92 23187.88 17983.85 21695.20 19367.20 27197.89 17686.90 18684.90 22392.06 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 19288.32 19793.03 19392.21 26190.96 11998.90 11098.39 2289.13 13783.22 21992.03 24381.69 17496.34 25486.79 18772.53 30491.81 244
BH-untuned91.46 15890.84 15793.33 18896.51 15284.83 24998.84 11695.50 25986.44 21183.50 21796.70 16875.49 21197.77 18586.78 18897.81 10697.40 183
miper_enhance_ethall90.33 17689.70 17192.22 20897.12 13188.93 16398.35 17395.96 22588.60 15383.14 22492.33 24187.38 8796.18 26286.49 18977.89 26491.55 255
thisisatest053094.00 10493.52 10695.43 13495.76 17490.02 14498.99 10197.60 9786.58 20691.74 13897.36 14294.78 898.34 15286.37 19092.48 17097.94 174
TESTMET0.1,193.82 11093.26 11195.49 13295.21 19090.25 13299.15 8197.54 11289.18 13691.79 13794.87 19789.13 5797.63 19686.21 19196.29 13298.60 147
anonymousdsp86.69 23485.75 23289.53 26886.46 32482.94 26996.39 25895.71 24783.97 24679.63 27290.70 27168.85 25895.94 27286.01 19284.02 23089.72 305
F-COLMAP92.07 14991.75 14393.02 19498.16 10382.89 27298.79 12395.97 22386.54 20887.92 18397.80 12278.69 19799.65 8485.97 19395.93 13996.53 204
cl-mvsnet289.57 19088.79 18791.91 21497.94 10887.62 18897.98 20096.51 19285.03 22982.37 23591.79 24983.65 14496.50 23785.96 19477.89 26491.61 252
test-LLR93.11 13292.68 12294.40 16294.94 20887.27 19999.15 8197.25 14590.21 10891.57 14094.04 20584.89 13397.58 19985.94 19596.13 13398.36 160
test-mter93.27 12892.89 11994.40 16294.94 20887.27 19999.15 8197.25 14588.95 14491.57 14094.04 20588.03 7697.58 19985.94 19596.13 13398.36 160
FC-MVSNet-test90.22 17989.40 17592.67 20491.78 26989.86 14797.89 20398.22 2888.81 14982.96 22594.66 20081.90 17395.96 27185.89 19782.52 24492.20 234
DWT-MVSNet_test94.36 9893.95 9895.62 12896.99 13789.47 15696.62 25497.38 13890.96 9393.07 12797.27 14393.73 1398.09 16485.86 19893.65 15799.29 95
Vis-MVSNetpermissive92.64 13891.85 13995.03 14595.12 19788.23 17698.48 16096.81 17691.61 7892.16 13697.22 14771.58 24698.00 17385.85 19997.81 10698.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.54 20987.22 21292.52 20591.93 26789.50 15598.56 15197.84 5286.99 19581.87 24893.81 21474.25 22295.92 27585.29 20074.43 28692.12 236
XXY-MVS87.75 21986.02 22792.95 19690.46 28489.70 15297.71 21595.90 23684.02 24480.95 25694.05 20467.51 26997.10 21585.16 20178.41 26192.04 241
thres20093.69 11392.59 12596.97 6997.76 11094.74 4099.35 6199.36 289.23 13491.21 14996.97 15983.42 14998.77 14185.08 20290.96 19297.39 184
tttt051793.30 12693.01 11794.17 17095.57 17986.47 21198.51 15697.60 9785.99 21490.55 15797.19 14994.80 798.31 15385.06 20391.86 18097.74 176
XVG-ACMP-BASELINE85.86 24884.95 24388.57 28389.90 28977.12 31394.30 29295.60 25487.40 19282.12 23992.99 23553.42 32197.66 19485.02 20483.83 23190.92 276
新几何197.40 4898.92 8092.51 9097.77 6485.52 21996.69 7199.06 5188.08 7599.89 4384.88 20599.62 4699.79 34
1112_ss92.71 13691.55 14696.20 10895.56 18091.12 11198.48 16094.69 28888.29 16886.89 19498.50 10187.02 9798.66 14884.75 20689.77 20198.81 134
miper_ehance_all_eth88.94 19788.12 20091.40 22495.32 18786.93 20497.85 20795.55 25684.19 24281.97 24591.50 25584.16 14095.91 27684.69 20777.89 26491.36 263
Test_1112_low_res92.27 14690.97 15396.18 10995.53 18291.10 11398.47 16294.66 28988.28 16986.83 19693.50 22587.00 9898.65 14984.69 20789.74 20298.80 135
TR-MVS90.77 17089.44 17494.76 15096.31 15788.02 18197.92 20295.96 22585.52 21988.22 18297.23 14666.80 27498.09 16484.58 20992.38 17198.17 169
OpenMVScopyleft85.28 1490.75 17188.84 18596.48 9893.58 24093.51 6698.80 11997.41 13582.59 26878.62 28297.49 13868.00 26599.82 6084.52 21098.55 9796.11 207
UniMVSNet_ETH3D85.65 25583.79 26091.21 22790.41 28580.75 29595.36 28495.78 24278.76 29981.83 25194.33 20349.86 32996.66 22984.30 21183.52 23696.22 206
NR-MVSNet87.74 22186.00 22892.96 19591.46 27390.68 12696.65 25397.42 13488.02 17573.42 30793.68 21777.31 20495.83 27984.26 21271.82 31292.36 227
D2MVS87.96 21587.39 20789.70 26391.84 26883.40 26498.31 17798.49 2088.04 17478.23 28890.26 28773.57 22596.79 22684.21 21383.53 23588.90 314
testdata299.88 4484.16 214
Baseline_NR-MVSNet85.83 24984.82 24688.87 28288.73 30583.34 26598.63 14191.66 32880.41 29282.44 23291.35 25874.63 21395.42 29084.13 21571.39 31487.84 317
thres100view90093.34 12592.15 13496.90 7497.62 11594.84 3599.06 9399.36 287.96 17690.47 16096.78 16683.29 15298.75 14384.11 21690.69 19497.12 190
tfpn200view993.43 12192.27 13096.90 7497.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19497.12 190
thres40093.39 12392.27 13096.73 8597.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19496.61 199
cl_fuxian88.19 21487.23 21191.06 23094.97 20686.17 22297.72 21395.38 26883.43 25481.68 25291.37 25782.81 15895.72 28284.04 21973.70 29491.29 267
UA-Net93.30 12692.62 12495.34 13696.27 15888.53 17495.88 27796.97 17290.90 9595.37 9297.07 15582.38 16699.10 13383.91 22094.86 14998.38 157
IterMVS-LS88.34 21087.44 20691.04 23194.10 22385.85 23298.10 19395.48 26085.12 22582.03 24391.21 26181.35 17995.63 28583.86 22175.73 27691.63 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 18689.38 17691.36 22694.32 22185.87 23197.61 21896.59 18585.10 22685.51 20397.10 15381.30 18096.56 23383.85 22283.03 23991.64 247
tpm89.67 18888.95 18391.82 21792.54 25781.43 28392.95 30595.92 23187.81 18090.50 15989.44 30084.99 13195.65 28483.67 22382.71 24298.38 157
eth_miper_zixun_eth87.76 21887.00 21590.06 25394.67 21682.65 27697.02 24095.37 26984.19 24281.86 25091.58 25481.47 17795.90 27783.24 22473.61 29591.61 252
Fast-Effi-MVS+91.72 15490.79 16094.49 15995.89 17087.40 19599.54 3595.70 24885.01 23189.28 17595.68 18677.75 20297.57 20283.22 22595.06 14798.51 150
test_post190.74 32141.37 35085.38 12996.36 24883.16 226
SCA90.64 17489.25 17894.83 14994.95 20788.83 16596.26 26497.21 15090.06 11790.03 16690.62 27766.61 27596.81 22483.16 22694.36 15298.84 129
TranMVSNet+NR-MVSNet87.75 21986.31 22392.07 21290.81 28088.56 17198.33 17497.18 15287.76 18181.87 24893.90 21272.45 23595.43 28983.13 22871.30 31592.23 232
CMPMVSbinary58.40 2180.48 28980.11 28781.59 31985.10 32659.56 34094.14 29595.95 22768.54 33060.71 33493.31 22655.35 31497.87 17883.06 22984.85 22487.33 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 13092.00 13796.75 8397.62 11594.92 3199.07 9199.36 287.96 17690.47 16096.78 16683.29 15298.71 14782.93 23090.47 19896.61 199
pmmvs487.58 22486.17 22691.80 21889.58 29488.92 16497.25 22995.28 27282.54 27080.49 26193.17 23175.62 21096.05 26882.75 23178.90 25990.42 291
CVMVSNet90.30 17790.91 15588.46 28694.32 22173.58 32397.61 21897.59 10190.16 11388.43 18197.10 15376.83 20792.86 31982.64 23293.54 15898.93 123
Anonymous2023121184.72 26182.65 27290.91 23497.71 11284.55 25297.28 22796.67 18066.88 33479.18 27890.87 26758.47 30396.60 23182.61 23374.20 29091.59 254
GA-MVS90.10 18288.69 18994.33 16492.44 25887.97 18299.08 9096.26 20989.65 12486.92 19393.11 23268.09 26396.96 21882.54 23490.15 19998.05 170
QAPM91.41 15989.49 17397.17 5895.66 17893.42 6898.60 14697.51 11780.92 28981.39 25597.41 14172.89 23399.87 4782.33 23598.68 9398.21 167
Patchmatch-RL test81.90 28480.13 28687.23 29580.71 33570.12 33384.07 33688.19 34283.16 25970.57 31582.18 32687.18 9492.59 32482.28 23662.78 32898.98 116
v2v48287.27 22785.76 23191.78 22289.59 29387.58 18998.56 15195.54 25784.53 23782.51 23191.78 25073.11 23096.47 24082.07 23774.14 29291.30 266
Fast-Effi-MVS+-dtu88.84 20088.59 19389.58 26793.44 24578.18 30898.65 13794.62 29088.46 15884.12 21495.37 19268.91 25796.52 23682.06 23891.70 18594.06 214
pmmvs585.87 24784.40 25590.30 24988.53 30884.23 25598.60 14693.71 30681.53 28280.29 26392.02 24464.51 28595.52 28782.04 23978.34 26291.15 270
V4287.00 22985.68 23390.98 23389.91 28886.08 22598.32 17695.61 25383.67 25182.72 22790.67 27374.00 22496.53 23581.94 24074.28 28990.32 293
EPMVS92.59 14191.59 14595.59 13197.22 12790.03 14391.78 31298.04 3990.42 10491.66 13990.65 27586.49 11197.46 20481.78 24196.31 13099.28 97
cl-mvsnet187.82 21686.81 21790.87 23794.87 21185.39 24097.81 20895.22 28082.92 26580.76 25891.31 25981.99 17095.81 28081.36 24275.04 28091.42 261
cl-mvsnet_87.82 21686.79 21890.89 23694.88 21085.43 23997.81 20895.24 27682.91 26680.71 25991.22 26081.97 17295.84 27881.34 24375.06 27991.40 262
RPSCF85.33 25785.55 23584.67 31094.63 21762.28 33893.73 29993.76 30474.38 31685.23 20697.06 15664.09 28698.31 15380.98 24486.08 21793.41 219
OurMVSNet-221017-084.13 27383.59 26185.77 30487.81 31570.24 33194.89 28893.65 30886.08 21376.53 29293.28 22861.41 29696.14 26580.95 24577.69 26990.93 275
v14886.38 24185.06 24090.37 24889.47 29884.10 25798.52 15395.48 26083.80 24780.93 25790.22 29174.60 21596.31 25680.92 24671.55 31390.69 286
PatchMatch-RL91.47 15790.54 16494.26 16798.20 10086.36 21696.94 24197.14 15587.75 18288.98 17695.75 18571.80 24399.40 11680.92 24697.39 11797.02 196
miper_lstm_enhance86.90 23086.20 22589.00 27994.53 21881.19 28996.74 25095.24 27682.33 27480.15 26590.51 28481.99 17094.68 30880.71 24873.58 29691.12 271
PCF-MVS89.78 591.26 16089.63 17296.16 11295.44 18491.58 10195.29 28596.10 21985.07 22882.75 22697.45 13978.28 19999.78 6680.60 24995.65 14497.12 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 16289.99 16995.03 14596.75 14488.55 17298.65 13794.95 28287.74 18387.74 18497.80 12268.27 26298.14 16080.53 25097.49 11598.41 154
CP-MVSNet86.54 23885.45 23789.79 26191.02 27982.78 27597.38 22497.56 10885.37 22279.53 27493.03 23371.86 24295.25 29479.92 25173.43 29991.34 264
PatchmatchNetpermissive92.05 15091.04 15295.06 14396.17 16389.04 16191.26 31697.26 14489.56 12890.64 15690.56 28188.35 7097.11 21379.53 25296.07 13799.03 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 23285.31 23891.40 22489.75 29187.21 20198.31 17795.45 26283.22 25782.70 22890.78 26873.36 22696.36 24879.49 25374.69 28490.63 288
IterMVS85.81 25084.67 24989.22 27493.51 24183.67 26296.32 26194.80 28485.09 22778.69 28090.17 29466.57 27793.17 31879.48 25477.42 27090.81 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 25384.64 25089.00 27993.46 24482.90 27196.27 26294.70 28785.02 23078.62 28290.35 28666.61 27593.33 31779.38 25577.36 27190.76 282
GBi-Net86.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
test186.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
FMVSNet388.81 20487.08 21393.99 17796.52 15194.59 4598.08 19596.20 21385.85 21582.12 23991.60 25374.05 22395.40 29179.04 25680.24 25191.99 242
LF4IMVS81.94 28381.17 28384.25 31187.23 32168.87 33593.35 30391.93 32683.35 25675.40 30093.00 23449.25 33196.65 23078.88 25978.11 26387.22 323
v886.11 24484.45 25291.10 22989.99 28786.85 20597.24 23095.36 27081.99 27779.89 26989.86 29674.53 21796.39 24678.83 26072.32 30790.05 300
pm-mvs184.68 26282.78 26890.40 24789.58 29485.18 24397.31 22594.73 28681.93 27976.05 29592.01 24565.48 28296.11 26678.75 26169.14 31889.91 303
v14419286.40 24084.89 24490.91 23489.48 29785.59 23698.21 18495.43 26582.45 27282.62 22990.58 28072.79 23496.36 24878.45 26274.04 29390.79 280
PS-CasMVS85.81 25084.58 25189.49 27190.77 28182.11 27997.20 23397.36 14184.83 23479.12 27992.84 23667.42 27095.16 29678.39 26373.25 30091.21 269
tmp_tt53.66 31452.86 31556.05 32932.75 35341.97 34973.42 34376.12 35021.91 34839.68 34496.39 17742.59 33665.10 34778.00 26414.92 34761.08 341
JIA-IIPM85.97 24684.85 24589.33 27393.23 24973.68 32285.05 33197.13 15769.62 32791.56 14268.03 33888.03 7696.96 21877.89 26593.12 16097.34 185
MDTV_nov1_ep1390.47 16696.14 16588.55 17291.34 31597.51 11789.58 12692.24 13590.50 28586.99 9997.61 19877.64 26692.34 172
v119286.32 24284.71 24891.17 22889.53 29686.40 21398.13 18995.44 26482.52 27182.42 23390.62 27771.58 24696.33 25577.23 26774.88 28190.79 280
FMVSNet286.90 23084.79 24793.24 18995.11 19892.54 8997.67 21695.86 24082.94 26280.55 26091.17 26262.89 29095.29 29377.23 26779.71 25891.90 243
MVP-Stereo86.61 23785.83 23088.93 28188.70 30683.85 26196.07 27294.41 29682.15 27675.64 29991.96 24767.65 26896.45 24277.20 26998.72 9286.51 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 19887.27 21093.76 18395.79 17285.32 24190.76 32097.09 16376.14 31085.72 20188.59 30682.92 15698.04 17076.96 27091.43 18897.90 175
v1085.73 25384.01 25890.87 23790.03 28686.73 20797.20 23395.22 28081.25 28579.85 27089.75 29773.30 22996.28 26076.87 27172.64 30389.61 307
v192192086.02 24584.44 25390.77 23989.32 29985.20 24298.10 19395.35 27182.19 27582.25 23790.71 27070.73 24996.30 25976.85 27274.49 28590.80 279
MS-PatchMatch86.75 23385.92 22989.22 27491.97 26482.47 27796.91 24296.14 21883.74 24877.73 28993.53 22358.19 30497.37 20976.75 27398.35 10187.84 317
K. test v381.04 28679.77 28884.83 30887.41 31970.23 33295.60 28393.93 30383.70 25067.51 32589.35 30255.76 31093.58 31676.67 27468.03 32190.67 287
PM-MVS74.88 30572.85 30780.98 32078.98 33864.75 33790.81 31985.77 34480.95 28868.23 32282.81 32429.08 34492.84 32076.54 27562.46 33085.36 331
MVS_030484.13 27382.66 27188.52 28493.07 25280.15 29695.81 28198.21 2979.27 29486.85 19586.40 32041.33 33994.69 30776.36 27686.69 21190.73 284
WR-MVS_H86.53 23985.49 23689.66 26691.04 27883.31 26697.53 22098.20 3084.95 23279.64 27190.90 26678.01 20195.33 29276.29 27772.81 30190.35 292
ACMH+83.78 1584.21 27082.56 27489.15 27693.73 23879.16 30096.43 25794.28 29881.09 28674.00 30694.03 20754.58 31797.67 19376.10 27878.81 26090.63 288
PEN-MVS85.21 25883.93 25989.07 27889.89 29081.31 28797.09 23697.24 14784.45 23978.66 28192.68 23868.44 26194.87 30175.98 27970.92 31691.04 273
USDC84.74 26082.93 26490.16 25191.73 27083.54 26395.00 28793.30 31188.77 15073.19 30893.30 22753.62 32097.65 19575.88 28081.54 24989.30 309
EU-MVSNet84.19 27184.42 25483.52 31388.64 30767.37 33696.04 27395.76 24485.29 22378.44 28593.18 23070.67 25091.48 33475.79 28175.98 27491.70 246
v124085.77 25284.11 25690.73 24089.26 30085.15 24597.88 20595.23 27981.89 28082.16 23890.55 28269.60 25696.31 25675.59 28274.87 28290.72 285
ITE_SJBPF87.93 28892.26 26076.44 31493.47 31087.67 18779.95 26895.49 19056.50 30997.38 20775.24 28382.33 24589.98 302
dp90.16 18188.83 18694.14 17196.38 15586.42 21291.57 31397.06 16584.76 23588.81 17790.19 29384.29 13997.43 20675.05 28491.35 19198.56 148
LS3D90.19 18088.72 18894.59 15798.97 7686.33 21796.90 24396.60 18374.96 31384.06 21598.74 8275.78 20999.83 5774.93 28597.57 11197.62 180
TDRefinement78.01 30075.31 30186.10 30270.06 34373.84 32193.59 30291.58 33074.51 31573.08 31091.04 26349.63 33097.12 21274.88 28659.47 33387.33 321
tpmvs89.16 19387.76 20193.35 18797.19 12884.75 25090.58 32297.36 14181.99 27784.56 20989.31 30383.98 14298.17 15974.85 28790.00 20097.12 190
pmmvs679.90 29277.31 29487.67 29184.17 32978.13 30995.86 27993.68 30767.94 33272.67 31389.62 29950.98 32795.75 28174.80 28866.04 32489.14 312
SixPastTwentyTwo82.63 27981.58 27885.79 30388.12 31271.01 33095.17 28692.54 31784.33 24072.93 31292.08 24260.41 30095.61 28674.47 28974.15 29190.75 283
ACMH83.09 1784.60 26482.61 27390.57 24293.18 25082.94 26996.27 26294.92 28381.01 28772.61 31493.61 22056.54 30897.79 18374.31 29081.07 25090.99 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet287.62 22386.88 21689.86 25896.21 16079.14 30187.15 32592.99 31283.01 26089.91 16887.27 31378.87 19492.80 32274.20 29192.27 17497.64 177
ADS-MVSNet88.99 19587.30 20994.07 17396.21 16087.56 19087.15 32596.78 17883.01 26089.91 16887.27 31378.87 19497.01 21774.20 29192.27 17497.64 177
lessismore_v085.08 30685.59 32569.28 33490.56 33567.68 32490.21 29254.21 31995.46 28873.88 29362.64 32990.50 290
MIMVSNet84.48 26781.83 27592.42 20691.73 27087.36 19685.52 32894.42 29581.40 28381.91 24687.58 31051.92 32492.81 32173.84 29488.15 20597.08 194
v7n84.42 26982.75 26989.43 27288.15 31181.86 28096.75 24995.67 25180.53 29078.38 28689.43 30169.89 25296.35 25373.83 29572.13 30990.07 298
ambc79.60 32172.76 34256.61 34276.20 34192.01 32568.25 32180.23 33123.34 34594.73 30673.78 29660.81 33287.48 319
pmmvs-eth3d78.71 29876.16 30086.38 29980.25 33681.19 28994.17 29492.13 32377.97 30266.90 32882.31 32555.76 31092.56 32573.63 29762.31 33185.38 330
FMVSNet183.94 27581.32 28291.80 21891.94 26688.81 16696.77 24695.25 27377.98 30178.25 28790.25 28850.37 32894.97 29873.27 29877.81 26891.62 249
MSDG88.29 21286.37 22294.04 17596.90 13886.15 22396.52 25694.36 29777.89 30579.22 27796.95 16069.72 25499.59 9273.20 29992.58 16996.37 205
test0.0.03 188.96 19688.61 19190.03 25691.09 27784.43 25398.97 10397.02 16990.21 10880.29 26396.31 17984.89 13391.93 33272.98 30085.70 22093.73 215
UnsupCasMVSNet_eth78.90 29676.67 29885.58 30582.81 33374.94 31791.98 31096.31 20384.64 23665.84 33087.71 30951.33 32592.23 32872.89 30156.50 33689.56 308
DTE-MVSNet84.14 27282.80 26688.14 28788.95 30379.87 29996.81 24596.24 21083.50 25377.60 29092.52 24067.89 26794.24 31372.64 30269.05 31990.32 293
EPNet_dtu92.28 14592.15 13492.70 20297.29 12584.84 24898.64 13997.82 5492.91 5193.02 12897.02 15785.48 12795.70 28372.25 30394.89 14897.55 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 25983.12 26390.52 24496.82 14078.84 30395.89 27592.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
TestCases90.52 24496.82 14078.84 30392.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
DP-MVS88.75 20686.56 22095.34 13698.92 8087.45 19397.64 21793.52 30970.55 32381.49 25397.25 14474.43 21899.88 4471.14 30694.09 15498.67 144
CR-MVSNet88.83 20287.38 20893.16 19193.47 24286.24 21884.97 33294.20 30088.92 14790.76 15486.88 31784.43 13794.82 30370.64 30792.17 17798.41 154
LTVRE_ROB81.71 1984.59 26582.72 27090.18 25092.89 25583.18 26793.15 30494.74 28578.99 29675.14 30292.69 23765.64 28197.63 19669.46 30881.82 24889.74 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet582.29 28080.54 28587.52 29293.79 23784.01 25893.73 29992.47 31876.92 30774.27 30486.15 32263.69 28989.24 33669.07 30974.79 28389.29 310
our_test_384.47 26882.80 26689.50 26989.01 30183.90 26097.03 23894.56 29181.33 28475.36 30190.52 28371.69 24494.54 31068.81 31076.84 27390.07 298
UnsupCasMVSNet_bld73.85 30770.14 30984.99 30779.44 33775.73 31588.53 32395.24 27670.12 32661.94 33374.81 33541.41 33893.62 31568.65 31151.13 34185.62 329
Patchmtry83.61 27881.64 27789.50 26993.36 24682.84 27484.10 33594.20 30069.47 32879.57 27386.88 31784.43 13794.78 30568.48 31274.30 28890.88 277
TransMVSNet (Re)81.97 28279.61 28989.08 27789.70 29284.01 25897.26 22891.85 32778.84 29773.07 31191.62 25267.17 27295.21 29567.50 31359.46 33488.02 316
COLMAP_ROBcopyleft82.69 1884.54 26682.82 26589.70 26396.72 14578.85 30295.89 27592.83 31571.55 32177.54 29195.89 18459.40 30299.14 13167.26 31488.26 20491.11 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 29177.59 29286.90 29787.06 32277.90 31296.20 27094.06 30274.61 31466.53 32988.76 30540.40 34196.20 26167.02 31583.66 23486.61 325
DSMNet-mixed81.60 28581.43 28082.10 31684.36 32860.79 33993.63 30186.74 34379.00 29579.32 27687.15 31563.87 28889.78 33566.89 31691.92 17995.73 209
testgi82.29 28081.00 28486.17 30187.24 32074.84 31897.39 22291.62 32988.63 15175.85 29895.42 19146.07 33491.55 33366.87 31779.94 25592.12 236
MDA-MVSNet_test_wron79.65 29377.05 29687.45 29387.79 31780.13 29796.25 26594.44 29373.87 31751.80 33887.47 31268.04 26492.12 33066.02 31867.79 32290.09 296
YYNet179.64 29477.04 29787.43 29487.80 31679.98 29896.23 26694.44 29373.83 31851.83 33787.53 31167.96 26692.07 33166.00 31967.75 32390.23 295
DeepMVS_CXcopyleft76.08 32290.74 28251.65 34590.84 33486.47 21057.89 33587.98 30735.88 34392.60 32365.77 32065.06 32683.97 334
TinyColmap80.42 29077.94 29187.85 28992.09 26378.58 30593.74 29889.94 33774.99 31269.77 31791.78 25046.09 33397.58 19965.17 32177.89 26487.38 320
MVS-HIRNet79.01 29575.13 30290.66 24193.82 23681.69 28285.16 32993.75 30554.54 33974.17 30559.15 34257.46 30696.58 23263.74 32294.38 15193.72 216
ppachtmachnet_test83.63 27781.57 27989.80 26089.01 30185.09 24697.13 23594.50 29278.84 29776.14 29491.00 26469.78 25394.61 30963.40 32374.36 28789.71 306
Patchmatch-test86.25 24384.06 25792.82 19894.42 21982.88 27382.88 33994.23 29971.58 32079.39 27590.62 27789.00 6096.42 24463.03 32491.37 19099.16 106
pmmvs372.86 30869.76 31182.17 31573.86 34174.19 32094.20 29389.01 34064.23 33867.72 32380.91 32941.48 33788.65 33862.40 32554.02 33983.68 335
new_pmnet76.02 30373.71 30582.95 31483.88 33072.85 32591.26 31692.26 32070.44 32462.60 33281.37 32747.64 33292.32 32761.85 32672.10 31083.68 335
tfpnnormal83.65 27681.35 28190.56 24391.37 27588.06 17997.29 22697.87 5078.51 30076.20 29390.91 26564.78 28496.47 24061.71 32773.50 29787.13 324
MDA-MVSNet-bldmvs77.82 30274.75 30487.03 29688.33 30978.52 30696.34 26092.85 31475.57 31148.87 34087.89 30857.32 30792.49 32660.79 32864.80 32790.08 297
Anonymous2023120680.76 28879.42 29084.79 30984.78 32772.98 32496.53 25592.97 31379.56 29374.33 30388.83 30461.27 29792.15 32960.59 32975.92 27589.24 311
new-patchmatchnet74.80 30672.40 30881.99 31778.36 34072.20 32794.44 29092.36 31977.06 30663.47 33179.98 33251.04 32688.85 33760.53 33054.35 33884.92 333
LCM-MVSNet60.07 31156.37 31371.18 32354.81 34948.67 34682.17 34089.48 33937.95 34249.13 33969.12 33613.75 35281.76 34159.28 33151.63 34083.10 337
TAPA-MVS87.50 990.35 17589.05 18194.25 16898.48 9685.17 24498.42 16596.58 18882.44 27387.24 19098.53 9882.77 15998.84 13959.09 33297.88 10598.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 29977.48 29381.62 31883.07 33271.03 32996.11 27192.83 31581.66 28169.31 31889.68 29857.53 30587.29 34058.65 33368.47 32086.53 326
PatchT85.44 25683.19 26292.22 20893.13 25183.00 26883.80 33896.37 20070.62 32290.55 15779.63 33384.81 13594.87 30158.18 33491.59 18698.79 136
MIMVSNet175.92 30473.30 30683.81 31281.29 33475.57 31692.26 30992.05 32473.09 31967.48 32686.18 32140.87 34087.64 33955.78 33570.68 31788.21 315
OpenMVS_ROBcopyleft73.86 2077.99 30175.06 30386.77 29883.81 33177.94 31196.38 25991.53 33167.54 33368.38 32087.13 31643.94 33596.08 26755.03 33681.83 24786.29 328
RPMNet84.62 26381.78 27693.16 19193.47 24286.24 21884.97 33296.28 20864.85 33790.76 15478.80 33480.95 18194.82 30353.76 33792.17 17798.41 154
N_pmnet70.19 30969.87 31071.12 32488.24 31030.63 35395.85 28028.70 35470.18 32568.73 31986.55 31964.04 28793.81 31453.12 33873.46 29888.94 313
PMMVS258.97 31255.07 31470.69 32562.72 34455.37 34385.97 32780.52 34749.48 34045.94 34168.31 33715.73 35080.78 34349.79 33937.12 34275.91 338
test_040278.81 29776.33 29986.26 30091.18 27678.44 30795.88 27791.34 33268.55 32970.51 31689.91 29552.65 32394.99 29747.14 34079.78 25785.34 332
FPMVS61.57 31060.32 31265.34 32660.14 34742.44 34891.02 31889.72 33844.15 34142.63 34280.93 32819.02 34680.59 34442.50 34172.76 30273.00 339
ANet_high50.71 31546.17 31764.33 32744.27 35152.30 34476.13 34278.73 34864.95 33627.37 34655.23 34314.61 35167.74 34636.01 34218.23 34572.95 340
Gipumacopyleft54.77 31352.22 31662.40 32886.50 32359.37 34150.20 34690.35 33636.52 34341.20 34349.49 34418.33 34881.29 34232.10 34365.34 32546.54 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 31642.50 31855.17 33034.28 35232.37 35166.24 34478.71 34930.72 34422.04 34959.59 3414.59 35377.85 34527.49 34458.84 33555.29 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 31737.64 32153.90 33149.46 35043.37 34765.09 34566.66 35126.19 34725.77 34848.53 3453.58 35563.35 34826.15 34527.28 34354.97 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 31840.93 31941.29 33261.97 34533.83 35084.00 33765.17 35227.17 34527.56 34546.72 34617.63 34960.41 34919.32 34618.82 34429.61 345
EMVS39.96 31939.88 32040.18 33359.57 34832.12 35284.79 33464.57 35326.27 34626.14 34744.18 34918.73 34759.29 35017.03 34717.67 34629.12 346
wuyk23d16.71 32216.73 32516.65 33460.15 34625.22 35441.24 3475.17 3556.56 3495.48 3523.61 3523.64 35422.72 35115.20 3489.52 3481.99 349
testmvs18.81 32123.05 3236.10 3364.48 3542.29 35697.78 2103.00 3563.27 35018.60 35062.71 3391.53 3572.49 35314.26 3491.80 34913.50 348
test12316.58 32319.47 3247.91 3353.59 3555.37 35594.32 2911.39 3572.49 35113.98 35144.60 3482.91 3562.65 35211.35 3500.57 35015.70 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_part10.00 3370.00 3570.00 34897.69 800.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k22.52 32030.03 3220.00 3370.00 3560.00 3570.00 34897.17 1530.00 3520.00 35398.77 7974.35 2190.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.87 3259.16 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35382.48 1630.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.21 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.50 1010.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
test_241102_ONE99.63 2095.24 2197.72 7394.16 2699.30 499.49 1093.32 1599.98 10
save fliter99.34 5193.85 5999.65 2397.63 9395.69 11
test072699.66 1495.20 2699.77 997.70 7893.95 2999.35 399.54 393.18 18
GSMVS98.84 129
test_part299.54 3595.42 1798.13 32
sam_mvs188.39 6998.84 129
sam_mvs87.08 95
MTGPAbinary97.45 127
test_post46.00 34787.37 8897.11 213
patchmatchnet-post84.86 32388.73 6396.81 224
MTMP99.21 6991.09 333
TEST999.57 3293.17 7199.38 5697.66 8389.57 12798.39 2799.18 3590.88 3299.66 80
test_899.55 3493.07 7599.37 5997.64 8990.18 11098.36 2999.19 3290.94 3099.64 86
agg_prior99.54 3592.66 8397.64 8997.98 4099.61 89
test_prior492.00 9299.41 54
test_prior97.01 6299.58 2891.77 9397.57 10699.49 10399.79 34
新几何298.26 180
旧先验198.97 7692.90 8297.74 6799.15 4091.05 2999.33 6899.60 72
原ACMM298.69 131
test22298.32 9791.21 10698.08 19597.58 10383.74 24895.87 8299.02 5586.74 10399.64 4299.81 31
segment_acmp90.56 39
testdata197.89 20392.43 61
test1297.83 3199.33 5794.45 4797.55 10997.56 4688.60 6499.50 10299.71 3499.55 74
plane_prior793.84 23485.73 234
plane_prior693.92 23186.02 22872.92 231
plane_prior496.52 171
plane_prior385.91 22993.65 3986.99 191
plane_prior299.02 9793.38 44
plane_prior193.90 233
plane_prior86.07 22699.14 8493.81 3786.26 214
n20.00 358
nn0.00 358
door-mid84.90 346
test1197.68 81
door85.30 345
HQP5-MVS86.39 214
HQP-NCC93.95 22799.16 7593.92 3187.57 185
ACMP_Plane93.95 22799.16 7593.92 3187.57 185
HQP4-MVS87.57 18597.77 18592.72 220
HQP3-MVS96.37 20086.29 212
HQP2-MVS73.34 227
NP-MVS93.94 23086.22 22096.67 169
ACMMP++_ref82.64 243
ACMMP++83.83 231
Test By Simon83.62 145