This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 499.64 2098.51 499.77 999.19 3495.12 799.97 2399.90 199.92 399.99 1
PC_three_145294.60 2099.41 299.12 4895.50 699.96 3099.84 299.92 399.97 7
SED-MVS98.18 298.10 498.41 1799.63 2195.24 2499.77 997.72 7594.17 2599.30 599.54 393.32 1899.98 1099.70 399.81 2399.99 1
test_241102_TWO97.72 7594.17 2599.23 799.54 393.14 2399.98 1099.70 399.82 1999.99 1
IU-MVS99.63 2195.38 2197.73 7395.54 1599.54 199.69 599.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1899.66 1595.20 2999.72 1497.47 13393.95 3099.07 1099.46 1193.18 2199.97 2399.64 699.82 1999.69 64
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 799.66 1596.37 1399.72 1497.68 8499.98 1099.64 699.82 1999.96 10
DPE-MVScopyleft98.11 698.00 698.44 1599.50 4795.39 2099.29 7197.72 7594.50 2198.64 2399.54 393.32 1899.97 2399.58 899.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
No_MVS99.51 299.61 2798.60 297.69 8299.98 1099.55 999.83 1599.96 10
ETH3 D test640097.67 1197.33 1798.69 999.69 996.43 1199.63 2597.73 7391.05 9898.66 2299.53 790.59 4199.71 7799.32 1199.80 2799.91 22
DeepPCF-MVS93.56 196.55 4297.84 992.68 21798.71 9778.11 33199.70 1797.71 7998.18 197.36 5899.76 190.37 4899.94 3799.27 1299.54 6199.99 1
APDe-MVS97.53 1297.47 1197.70 3999.58 3393.63 6699.56 3397.52 12293.59 4498.01 4399.12 4890.80 3899.55 9899.26 1399.79 2999.93 21
DVP-MVS++98.18 298.09 598.44 1599.61 2795.38 2199.55 3497.68 8493.01 5199.23 799.45 1695.12 799.98 1099.25 1499.92 399.97 7
test_0728_THIRD93.01 5199.07 1099.46 1194.66 1299.97 2399.25 1499.82 1999.95 15
TSAR-MVS + GP.96.95 3096.91 2697.07 6298.88 9191.62 10599.58 3096.54 20495.09 1896.84 7298.63 10091.16 2999.77 7199.04 1696.42 14099.81 35
MCST-MVS98.18 297.95 898.86 599.85 396.60 999.70 1797.98 4597.18 295.96 9099.33 2392.62 25100.00 198.99 1799.93 199.98 6
CNVR-MVS98.46 198.38 198.72 899.80 496.19 1499.80 797.99 4497.05 399.41 299.59 292.89 24100.00 198.99 1799.90 799.96 10
ETH3D-3000-0.197.29 1797.01 2398.12 2599.18 7494.97 3399.47 4497.52 12289.85 13198.79 1999.46 1190.41 4799.69 7998.78 1999.67 4299.70 61
CANet97.00 2896.49 3898.55 1198.86 9396.10 1599.83 497.52 12295.90 997.21 6098.90 7982.66 17599.93 3998.71 2098.80 9899.63 73
9.1496.87 2799.34 5899.50 4197.49 13089.41 14798.59 2599.43 1889.78 5499.69 7998.69 2199.62 51
SD-MVS97.51 1397.40 1597.81 3599.01 8493.79 6599.33 6997.38 14793.73 4198.83 1899.02 6090.87 3699.88 4898.69 2199.74 3299.77 48
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test9_res98.60 2399.87 999.90 24
PS-MVSNAJ96.87 3496.40 4098.29 1897.35 13397.29 599.03 10197.11 17295.83 1098.97 1399.14 4582.48 17899.60 9598.60 2399.08 8498.00 185
xiu_mvs_v2_base96.66 3896.17 4898.11 2797.11 14396.96 699.01 10497.04 17995.51 1698.86 1699.11 5382.19 18499.36 12598.59 2598.14 11398.00 185
train_agg97.20 2397.08 2097.57 4599.57 3793.17 7699.38 6197.66 8790.18 12298.39 3099.18 3790.94 3399.66 8498.58 2699.85 1399.88 28
agg_prior197.12 2597.03 2297.38 5399.54 4092.66 8899.35 6697.64 9390.38 11697.98 4499.17 3990.84 3799.61 9398.57 2799.78 3199.87 31
TSAR-MVS + MP.97.44 1697.46 1297.39 5299.12 7793.49 7198.52 15897.50 12894.46 2298.99 1298.64 9891.58 2899.08 14398.49 2899.83 1599.60 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xxxxxxxxxxxxxcwj97.51 1397.42 1497.78 3799.34 5893.85 6399.65 2395.45 28095.69 1198.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
SF-MVS97.22 2296.92 2598.12 2599.11 7894.88 3699.44 5297.45 13689.60 14098.70 2099.42 1990.42 4599.72 7598.47 2999.65 4499.77 48
ETH3D cwj APD-0.1696.94 3296.58 3798.01 2998.62 10094.73 4599.13 9297.38 14788.44 17798.53 2799.39 2189.66 5899.69 7998.43 3199.61 5599.61 76
PHI-MVS96.65 3996.46 3997.21 5999.34 5891.77 10099.70 1798.05 4086.48 22698.05 4099.20 3389.33 6099.96 3098.38 3299.62 5199.90 24
ZD-MVS99.67 1393.28 7497.61 10187.78 19797.41 5699.16 4190.15 5099.56 9798.35 3399.70 39
test_prior397.07 2797.09 1997.01 6599.58 3391.77 10099.57 3197.57 11291.43 9098.12 3798.97 6690.43 4399.49 10898.33 3499.81 2399.79 38
test_prior299.57 3191.43 9098.12 3798.97 6690.43 4398.33 3499.81 23
SMA-MVScopyleft97.24 1996.99 2498.00 3099.30 6594.20 5799.16 8097.65 9289.55 14499.22 999.52 990.34 4999.99 598.32 3699.83 1599.82 34
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42096.80 3696.85 2896.66 9497.85 11894.42 5394.76 30798.36 2492.50 6395.62 10197.52 14597.92 197.38 22398.31 3798.80 9898.20 181
NCCC98.12 598.11 398.13 2399.76 694.46 5099.81 597.88 5096.54 598.84 1799.46 1192.55 2699.98 1098.25 3899.93 199.94 18
testtj97.23 2197.05 2197.75 3899.75 793.34 7399.16 8097.74 6991.28 9598.40 2999.29 2489.95 5299.98 1098.20 3999.70 3999.94 18
MSP-MVS97.77 998.18 296.53 10199.54 4090.14 14499.41 5897.70 8095.46 1798.60 2499.19 3495.71 499.49 10898.15 4099.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETV-MVS96.00 5896.00 5496.00 12096.56 15991.05 12499.63 2596.61 19593.26 4997.39 5798.30 11886.62 11198.13 17298.07 4197.57 12198.82 145
MSLP-MVS++97.50 1597.45 1397.63 4199.65 1993.21 7599.70 1798.13 3794.61 1997.78 5099.46 1189.85 5399.81 6697.97 4299.91 699.88 28
APD-MVScopyleft96.95 3096.72 3397.63 4199.51 4693.58 6799.16 8097.44 14090.08 12798.59 2599.07 5489.06 6299.42 11997.92 4399.66 4399.88 28
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1897.34 1697.01 6597.38 13291.46 10999.75 1397.66 8794.14 2998.13 3599.26 2692.16 2799.66 8497.91 4499.64 4799.90 24
Skip Steuart: Steuart Systems R&D Blog.
agg_prior297.84 4599.87 999.91 22
HPM-MVS++copyleft97.72 1097.59 1098.14 2299.53 4594.76 4399.19 7597.75 6795.66 1398.21 3399.29 2491.10 3199.99 597.68 4699.87 999.68 65
CS-MVS95.86 6595.81 6295.98 12295.62 19591.26 11299.80 796.12 23192.15 7697.93 4798.45 11485.88 12897.55 21497.56 4798.80 9899.14 114
SR-MVS96.13 5596.16 5096.07 11899.42 5489.04 16998.59 15397.33 15290.44 11496.84 7299.12 4886.75 10699.41 12197.47 4899.44 6799.76 51
PVSNet_BlendedMVS93.36 13093.20 11993.84 19398.77 9591.61 10699.47 4498.04 4191.44 8994.21 12292.63 25783.50 15599.87 5197.41 4983.37 25190.05 317
PVSNet_Blended95.94 6295.66 6796.75 8698.77 9591.61 10699.88 198.04 4193.64 4394.21 12297.76 13383.50 15599.87 5197.41 4997.75 12098.79 148
test117295.92 6396.07 5395.46 13799.42 5487.24 21798.51 16197.24 15690.29 11996.56 8299.12 4886.73 10899.36 12597.33 5199.42 7199.78 42
DROMVSNet95.09 8495.17 7794.84 15895.42 20288.17 18899.48 4295.92 24491.47 8897.34 5998.36 11582.77 17197.41 22297.24 5298.58 10598.94 134
MVS_111021_HR96.69 3796.69 3496.72 9098.58 10291.00 12699.14 8999.45 193.86 3695.15 10898.73 9088.48 7199.76 7297.23 5399.56 5999.40 93
Regformer-196.97 2996.80 3197.47 4799.46 5293.11 7898.89 11697.94 4692.89 5796.90 6599.02 6089.78 5499.53 10197.06 5499.26 8099.75 52
xiu_mvs_v1_base_debu94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
xiu_mvs_v1_base_debi94.73 9393.98 10196.99 6895.19 20995.24 2498.62 14796.50 20692.99 5397.52 5298.83 8372.37 25499.15 13797.03 5596.74 13596.58 215
Regformer-296.94 3296.78 3297.42 4999.46 5292.97 8598.89 11697.93 4792.86 5996.88 6699.02 6089.74 5699.53 10197.03 5599.26 8099.75 52
lupinMVS96.32 5095.94 5697.44 4895.05 22294.87 3799.86 296.50 20693.82 3998.04 4198.77 8685.52 13098.09 17596.98 5998.97 8999.37 94
MVS_111021_LR95.78 6995.94 5695.28 14498.19 11187.69 19898.80 12499.26 793.39 4695.04 11098.69 9684.09 15099.76 7296.96 6099.06 8598.38 170
VNet95.08 8594.26 9197.55 4698.07 11493.88 6298.68 13898.73 1690.33 11897.16 6297.43 14979.19 20799.53 10196.91 6191.85 19599.24 107
APD-MVS_3200maxsize95.64 7395.65 6995.62 13299.24 7087.80 19798.42 17197.22 15988.93 16196.64 8198.98 6585.49 13399.36 12596.68 6299.27 7999.70 61
SR-MVS-dyc-post95.75 7295.86 5995.41 14099.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6686.73 10899.36 12596.62 6399.31 7699.60 77
RE-MVS-def95.70 6699.22 7187.26 21598.40 17697.21 16089.63 13896.67 7998.97 6685.24 13896.62 6399.31 7699.60 77
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2399.61 2794.45 5198.85 11997.64 9396.51 795.88 9399.39 2187.35 9699.99 596.61 6599.69 4199.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 17390.18 17994.45 17297.08 14485.84 25098.40 17696.10 23286.99 21293.36 13598.16 12554.27 34099.20 13496.59 6690.63 21198.31 176
MP-MVS-pluss95.80 6895.30 7297.29 5598.95 8892.66 8898.59 15397.14 16888.95 15993.12 13899.25 2785.62 12999.94 3796.56 6799.48 6399.28 103
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvs94.59 10194.19 9495.81 12795.54 19890.69 13398.70 13595.68 26691.61 8395.96 9097.81 13080.11 19998.06 17996.52 6895.76 15498.67 156
ACMMP_NAP96.59 4096.18 4697.81 3598.82 9493.55 6898.88 11897.59 10790.66 10797.98 4499.14 4586.59 112100.00 196.47 6999.46 6499.89 27
Regformer-396.50 4396.36 4296.91 7699.34 5891.72 10398.71 13197.90 4992.48 6496.00 8798.95 7388.60 6899.52 10496.44 7098.83 9599.49 87
Regformer-496.45 4696.33 4496.81 8399.34 5891.44 11098.71 13197.88 5092.43 6595.97 8998.95 7388.42 7299.51 10596.40 7198.83 9599.49 87
PAPM96.35 4895.94 5697.58 4394.10 24495.25 2398.93 11198.17 3294.26 2493.94 12798.72 9289.68 5797.88 18896.36 7299.29 7899.62 75
zzz-MVS96.21 5495.96 5596.96 7399.29 6691.19 11598.69 13697.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
MTAPA96.09 5695.80 6496.96 7399.29 6691.19 11597.23 24797.45 13692.58 6094.39 11999.24 2986.43 11899.99 596.22 7399.40 7299.71 59
alignmvs95.77 7095.00 8198.06 2897.35 13395.68 1899.71 1697.50 12891.50 8796.16 8698.61 10186.28 12199.00 14596.19 7591.74 19799.51 85
canonicalmvs95.02 8693.96 10498.20 2097.53 13095.92 1698.71 13196.19 22791.78 8195.86 9598.49 10979.53 20499.03 14496.12 7691.42 20399.66 69
DELS-MVS97.12 2596.60 3698.68 1098.03 11596.57 1099.84 397.84 5496.36 895.20 10798.24 12188.17 7699.83 6196.11 7799.60 5699.64 71
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 7794.86 8297.03 6492.91 27594.23 5699.70 1796.30 21793.56 4596.73 7798.52 10581.46 19397.91 18596.08 7898.47 10998.96 129
jason: jason.
CP-MVS96.22 5396.15 5196.42 10699.67 1389.62 16299.70 1797.61 10190.07 12896.00 8799.16 4187.43 9099.92 4096.03 7999.72 3499.70 61
MP-MVScopyleft96.00 5895.82 6096.54 10099.47 5190.13 14699.36 6597.41 14490.64 11095.49 10298.95 7385.51 13299.98 1096.00 8099.59 5899.52 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
#test#96.48 4496.34 4396.90 7799.69 990.96 12799.53 3997.81 5990.94 10296.88 6699.05 5787.57 8699.96 3095.87 8199.72 3499.78 42
h-mvs3392.47 15091.95 14694.05 18697.13 14185.01 26598.36 18198.08 3893.85 3796.27 8496.73 18183.19 16499.43 11895.81 8268.09 33897.70 190
hse-mvs291.67 16491.51 15592.15 22696.22 17282.61 29797.74 22797.53 11993.85 3796.27 8496.15 19483.19 16497.44 22095.81 8266.86 34396.40 220
CS-MVS-test95.20 8195.27 7494.98 15495.67 19388.17 18899.62 2795.84 25791.52 8697.42 5598.30 11885.07 13997.51 21595.81 8298.20 11299.26 105
HFP-MVS96.42 4796.26 4596.90 7799.69 990.96 12799.47 4497.81 5990.54 11296.88 6699.05 5787.57 8699.96 3095.65 8599.72 3499.78 42
XVS96.47 4596.37 4196.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6998.96 7187.37 9299.87 5195.65 8599.43 6899.78 42
X-MVStestdata90.69 18388.66 20396.77 8499.62 2590.66 13599.43 5597.58 10992.41 6996.86 6929.59 37587.37 9299.87 5195.65 8599.43 6899.78 42
ACMMPR96.28 5296.14 5296.73 8899.68 1290.47 13899.47 4497.80 6190.54 11296.83 7499.03 5986.51 11699.95 3495.65 8599.72 3499.75 52
HPM-MVScopyleft95.41 7695.22 7695.99 12199.29 6689.14 16799.17 7997.09 17687.28 21095.40 10398.48 11084.93 14199.38 12395.64 8999.65 4499.47 90
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
DCV-MVSNet95.27 7994.60 8597.28 5698.53 10392.98 8399.05 9998.70 1786.76 22094.65 11697.74 13587.78 8299.44 11695.57 9092.61 18199.44 91
region2R96.30 5196.17 4896.70 9199.70 890.31 14099.46 4997.66 8790.55 11197.07 6399.07 5486.85 10499.97 2395.43 9299.74 3299.81 35
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11599.14 7690.33 13998.49 16597.82 5691.92 7894.75 11398.88 8187.06 10099.48 11395.40 9397.17 13298.70 155
EPNet96.82 3596.68 3597.25 5898.65 9893.10 7999.48 4298.76 1396.54 597.84 4998.22 12287.49 8999.66 8495.35 9497.78 11999.00 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 1996.83 3098.47 1499.79 595.71 1799.07 9699.06 994.45 2396.42 8398.70 9588.81 6699.74 7495.35 9499.86 1299.97 7
HY-MVS88.56 795.29 7894.23 9298.48 1397.72 12096.41 1294.03 31598.74 1492.42 6895.65 10094.76 21586.52 11599.49 10895.29 9692.97 17699.53 82
mPP-MVS95.90 6495.75 6596.38 10899.58 3389.41 16699.26 7297.41 14490.66 10794.82 11298.95 7386.15 12399.98 1095.24 9799.64 4799.74 55
ZNCC-MVS96.09 5695.81 6296.95 7599.42 5491.19 11599.55 3497.53 11989.72 13595.86 9598.94 7886.59 11299.97 2395.13 9899.56 5999.68 65
GG-mvs-BLEND96.98 7196.53 16094.81 4287.20 34697.74 6993.91 12896.40 18996.56 296.94 23795.08 9998.95 9299.20 111
EIA-MVS95.11 8395.27 7494.64 16696.34 16886.51 22699.59 2996.62 19492.51 6294.08 12598.64 9886.05 12498.24 16995.07 10098.50 10899.18 112
DeepC-MVS91.02 494.56 10293.92 10796.46 10397.16 13990.76 13198.39 17997.11 17293.92 3288.66 19498.33 11678.14 21599.85 5895.02 10198.57 10698.78 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS95.97 6095.11 7998.54 1297.62 12496.65 899.44 5298.74 1492.25 7295.21 10698.46 11386.56 11499.46 11595.00 10292.69 18099.50 86
CSCG94.87 8894.71 8395.36 14199.54 4086.49 22799.34 6898.15 3582.71 28490.15 18199.25 2789.48 5999.86 5694.97 10398.82 9799.72 58
EI-MVSNet-UG-set95.43 7495.29 7395.86 12699.07 8289.87 15598.43 17097.80 6191.78 8194.11 12498.77 8686.25 12299.48 11394.95 10496.45 13998.22 179
CPTT-MVS94.60 10094.43 8995.09 14899.66 1586.85 22299.44 5297.47 13383.22 27494.34 12198.96 7182.50 17699.55 9894.81 10599.50 6298.88 138
PVSNet_083.28 1687.31 24085.16 25493.74 19694.78 23284.59 27098.91 11498.69 1989.81 13378.59 30393.23 24561.95 31599.34 13094.75 10655.72 36097.30 200
CLD-MVS91.06 17490.71 17292.10 22794.05 24786.10 24199.55 3496.29 22094.16 2784.70 22597.17 16369.62 27397.82 19294.74 10786.08 23192.39 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvs93.98 11193.43 11495.61 13495.07 22189.86 15698.80 12495.84 25790.98 10092.74 14397.66 14079.71 20198.10 17494.72 10895.37 15898.87 140
VDDNet90.08 19588.54 20894.69 16494.41 23987.68 19998.21 19396.40 21176.21 33193.33 13697.75 13454.93 33898.77 15094.71 10990.96 20697.61 195
CDPH-MVS96.56 4196.18 4697.70 3999.59 3193.92 6199.13 9297.44 14089.02 15697.90 4899.22 3188.90 6599.49 10894.63 11099.79 2999.68 65
GST-MVS95.97 6095.66 6796.90 7799.49 5091.22 11399.45 5197.48 13189.69 13695.89 9298.72 9286.37 12099.95 3494.62 11199.22 8399.52 83
Effi-MVS+93.87 11593.15 12096.02 11995.79 18790.76 13196.70 26995.78 25986.98 21495.71 9897.17 16379.58 20298.01 18394.57 11296.09 14899.31 99
abl_694.63 9994.48 8795.09 14898.61 10186.96 22098.06 20996.97 18589.31 14895.86 9598.56 10379.82 20099.64 9094.53 11398.65 10498.66 159
LFMVS92.23 15590.84 16896.42 10698.24 10891.08 12398.24 19096.22 22483.39 27294.74 11498.31 11761.12 31998.85 14794.45 11492.82 17799.32 98
ET-MVSNet_ETH3D92.56 14891.45 15695.88 12596.39 16694.13 5999.46 4996.97 18592.18 7466.94 35198.29 12094.65 1394.28 32994.34 11583.82 24799.24 107
baseline93.91 11393.30 11695.72 13095.10 21990.07 14897.48 23695.91 24991.03 9993.54 13397.68 13879.58 20298.02 18294.27 11695.14 15999.08 121
PAPR96.35 4895.82 6097.94 3299.63 2194.19 5899.42 5797.55 11592.43 6593.82 13199.12 4887.30 9799.91 4294.02 11799.06 8599.74 55
PGM-MVS95.85 6695.65 6996.45 10499.50 4789.77 15898.22 19198.90 1289.19 15096.74 7698.95 7385.91 12799.92 4093.94 11899.46 6499.66 69
gg-mvs-nofinetune90.00 19687.71 21796.89 8296.15 17894.69 4785.15 35297.74 6968.32 35492.97 14260.16 36496.10 396.84 23993.89 11998.87 9399.14 114
MVS93.92 11292.28 13698.83 695.69 19196.82 796.22 28498.17 3284.89 25084.34 22998.61 10179.32 20699.83 6193.88 12099.43 6899.86 32
旧先验298.67 14085.75 23498.96 1498.97 14693.84 121
ACMMPcopyleft94.67 9794.30 9095.79 12899.25 6988.13 19198.41 17398.67 2090.38 11691.43 15898.72 9282.22 18399.95 3493.83 12295.76 15499.29 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 123
HQP-MVS91.50 16691.23 15992.29 22193.95 24886.39 23199.16 8096.37 21393.92 3287.57 20196.67 18373.34 24597.77 19693.82 12386.29 22692.72 236
DP-MVS Recon95.85 6695.15 7897.95 3199.87 294.38 5499.60 2897.48 13186.58 22394.42 11899.13 4787.36 9599.98 1093.64 12598.33 11199.48 89
CHOSEN 1792x268894.35 10593.82 10995.95 12497.40 13188.74 18098.41 17398.27 2692.18 7491.43 15896.40 18978.88 20899.81 6693.59 12697.81 11699.30 100
cascas90.93 17889.33 19095.76 12995.69 19193.03 8298.99 10696.59 19780.49 31086.79 21494.45 21865.23 30498.60 15993.52 12792.18 19095.66 226
HQP_MVS91.26 17090.95 16592.16 22593.84 25586.07 24399.02 10296.30 21793.38 4786.99 20896.52 18572.92 24997.75 20193.46 12886.17 22992.67 238
plane_prior596.30 21797.75 20193.46 12886.17 22992.67 238
PVSNet_Blended_VisFu94.67 9794.11 9796.34 11097.14 14091.10 12199.32 7097.43 14292.10 7791.53 15796.38 19283.29 16199.68 8293.42 13096.37 14198.25 177
AdaColmapbinary93.82 11693.06 12196.10 11799.88 189.07 16898.33 18397.55 11586.81 21990.39 17898.65 9775.09 22799.98 1093.32 13197.53 12499.26 105
HyFIR lowres test93.68 12193.29 11794.87 15697.57 12888.04 19398.18 19598.47 2287.57 20591.24 16395.05 21185.49 13397.46 21893.22 13292.82 17799.10 119
HPM-MVS_fast94.89 8794.62 8495.70 13199.11 7888.44 18699.14 8997.11 17285.82 23395.69 9998.47 11183.46 15799.32 13193.16 13399.63 5099.35 95
PMMVS93.62 12493.90 10892.79 21296.79 15381.40 30598.85 11996.81 18991.25 9696.82 7598.15 12677.02 22198.13 17293.15 13496.30 14498.83 144
LCM-MVSNet-Re88.59 22188.61 20488.51 30295.53 19972.68 34996.85 26188.43 36588.45 17473.14 33190.63 29475.82 22394.38 32892.95 13595.71 15698.48 165
EPP-MVSNet93.75 11893.67 11194.01 18895.86 18685.70 25298.67 14097.66 8784.46 25591.36 16197.18 16291.16 2997.79 19492.93 13693.75 16998.53 162
CostFormer92.89 14092.48 13494.12 18394.99 22485.89 24792.89 32497.00 18486.98 21495.00 11190.78 28690.05 5197.51 21592.92 13791.73 19898.96 129
XVG-OURS-SEG-HR90.95 17790.66 17491.83 23195.18 21281.14 31295.92 29195.92 24488.40 17990.33 17997.85 12870.66 26999.38 12392.83 13888.83 21794.98 227
sss94.85 8993.94 10697.58 4396.43 16394.09 6098.93 11199.16 889.50 14595.27 10597.85 12881.50 19199.65 8892.79 13994.02 16898.99 126
MAR-MVS94.43 10394.09 9895.45 13899.10 8087.47 20598.39 17997.79 6388.37 18094.02 12699.17 3978.64 21399.91 4292.48 14098.85 9498.96 129
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 9194.18 9696.59 9699.21 7390.06 15198.80 12497.78 6483.59 26993.85 12999.21 3283.79 15299.97 2392.37 14199.00 8899.74 55
nrg03090.23 18988.87 19794.32 17691.53 29393.54 6998.79 12895.89 25288.12 18884.55 22794.61 21778.80 21196.88 23892.35 14275.21 29292.53 240
OMC-MVS93.90 11493.62 11294.73 16398.63 9987.00 21998.04 21096.56 20192.19 7392.46 14598.73 9079.49 20599.14 14092.16 14394.34 16698.03 184
131493.44 12691.98 14597.84 3395.24 20694.38 5496.22 28497.92 4890.18 12282.28 25497.71 13777.63 21899.80 6891.94 14498.67 10399.34 97
DPM-MVS97.86 897.25 1899.68 198.25 10799.10 199.76 1297.78 6496.61 498.15 3499.53 793.62 16100.00 191.79 14599.80 2799.94 18
mvs_anonymous92.50 14991.65 15295.06 15096.60 15889.64 16197.06 25396.44 21086.64 22284.14 23093.93 22782.49 17796.17 28091.47 14696.08 14999.35 95
baseline294.04 10993.80 11094.74 16293.07 27390.25 14198.12 20098.16 3489.86 13086.53 21596.95 17295.56 598.05 18091.44 14794.53 16395.93 224
bset_n11_16_dypcd89.07 20787.85 21492.76 21486.16 34890.66 13597.30 24195.62 26989.78 13483.94 23393.15 24974.85 22895.89 29591.34 14878.48 27491.74 262
IB-MVS89.43 692.12 15690.83 17095.98 12295.40 20490.78 13099.81 598.06 3991.23 9785.63 21993.66 23590.63 4098.78 14991.22 14971.85 32898.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 17589.17 19296.69 9295.96 18491.72 10392.62 32897.23 15885.61 23589.74 18693.89 22968.55 27899.42 11991.09 15087.84 22098.92 136
XVG-OURS90.83 17990.49 17691.86 23095.23 20781.25 30995.79 29995.92 24488.96 15890.02 18398.03 12771.60 26399.35 12991.06 15187.78 22194.98 227
3Dnovator87.35 1193.17 13791.77 15097.37 5495.41 20393.07 8098.82 12297.85 5391.53 8582.56 24897.58 14471.97 25899.82 6491.01 15299.23 8299.22 110
VPA-MVSNet89.10 20687.66 21893.45 20092.56 27791.02 12597.97 21498.32 2586.92 21686.03 21792.01 26368.84 27797.10 23190.92 15375.34 29192.23 248
PAPM_NR95.43 7495.05 8096.57 9999.42 5490.14 14498.58 15597.51 12590.65 10992.44 14698.90 7987.77 8499.90 4490.88 15499.32 7599.68 65
3Dnovator+87.72 893.43 12791.84 14898.17 2195.73 19095.08 3298.92 11397.04 17991.42 9281.48 27297.60 14274.60 23199.79 6990.84 15598.97 8999.64 71
gm-plane-assit94.69 23488.14 19088.22 18597.20 16098.29 16790.79 156
MVSTER92.71 14292.32 13593.86 19297.29 13592.95 8699.01 10496.59 19790.09 12685.51 22094.00 22594.61 1496.56 25190.77 15783.03 25392.08 254
ACMP87.39 1088.71 22088.24 21190.12 26993.91 25381.06 31398.50 16395.67 26789.43 14680.37 28095.55 20365.67 29997.83 19190.55 15884.51 23991.47 274
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_test8_iter0591.04 17690.40 17892.95 20996.20 17689.75 15998.97 10896.38 21288.52 17082.00 26293.51 24090.69 3996.73 24590.43 15976.91 28692.38 242
ECVR-MVScopyleft92.29 15291.33 15795.15 14696.41 16487.84 19698.10 20494.84 30390.82 10591.42 16097.28 15265.61 30198.49 16090.33 16097.19 13099.12 117
testdata95.26 14598.20 10987.28 21297.60 10385.21 24198.48 2899.15 4388.15 7798.72 15590.29 16199.45 6699.78 42
LPG-MVS_test88.86 21288.47 20990.06 27093.35 26880.95 31498.22 19195.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
LGP-MVS_train90.06 27093.35 26880.95 31495.94 24187.73 20183.17 24096.11 19666.28 29797.77 19690.19 16285.19 23591.46 275
MVSFormer94.71 9694.08 9996.61 9595.05 22294.87 3797.77 22496.17 22886.84 21798.04 4198.52 10585.52 13095.99 28689.83 16498.97 8998.96 129
test_djsdf88.26 22787.73 21689.84 27688.05 33482.21 29997.77 22496.17 22886.84 21782.41 25291.95 26672.07 25795.99 28689.83 16484.50 24091.32 282
test250694.80 9094.21 9396.58 9796.41 16492.18 9898.01 21198.96 1090.82 10593.46 13497.28 15285.92 12598.45 16189.82 16697.19 13099.12 117
tpmrst92.78 14192.16 14094.65 16596.27 17087.45 20691.83 33297.10 17589.10 15494.68 11590.69 29088.22 7597.73 20389.78 16791.80 19698.77 151
PLCcopyleft91.07 394.23 10794.01 10094.87 15699.17 7587.49 20499.25 7396.55 20288.43 17891.26 16298.21 12485.92 12599.86 5689.77 16897.57 12197.24 202
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111192.12 15691.19 16094.94 15596.15 17887.36 20998.12 20094.84 30390.85 10490.97 16697.26 15565.60 30298.37 16389.74 16997.14 13399.07 123
CDS-MVSNet93.47 12593.04 12394.76 16094.75 23389.45 16598.82 12297.03 18187.91 19490.97 16696.48 18789.06 6296.36 26589.50 17092.81 17998.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 19790.68 17387.81 30795.15 21371.98 35197.87 21995.40 28491.92 7887.57 20191.44 27474.27 23896.84 23989.45 17193.10 17594.60 229
mvs-test191.57 16592.20 13989.70 28095.15 21374.34 34199.51 4095.40 28491.92 7891.02 16597.25 15674.27 23898.08 17889.45 17195.83 15396.67 212
jajsoiax87.35 23986.51 23689.87 27487.75 33981.74 30297.03 25495.98 23588.47 17180.15 28493.80 23161.47 31696.36 26589.44 17384.47 24191.50 273
mvs_tets87.09 24286.22 23989.71 27987.87 33581.39 30696.73 26895.90 25088.19 18679.99 28693.61 23659.96 32296.31 27389.40 17484.34 24291.43 277
PS-MVSNAJss89.54 20389.05 19491.00 24788.77 32584.36 27397.39 23795.97 23688.47 17181.88 26593.80 23182.48 17896.50 25589.34 17583.34 25292.15 251
VPNet88.30 22586.57 23493.49 19991.95 28691.35 11198.18 19597.20 16488.61 16784.52 22894.89 21262.21 31496.76 24489.34 17572.26 32592.36 243
114514_t94.06 10893.05 12297.06 6399.08 8192.26 9798.97 10897.01 18382.58 28692.57 14498.22 12280.68 19799.30 13289.34 17599.02 8799.63 73
OPM-MVS89.76 19989.15 19391.57 23890.53 30485.58 25498.11 20395.93 24392.88 5886.05 21696.47 18867.06 29297.87 18989.29 17886.08 23191.26 285
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_Test93.67 12292.67 13096.69 9296.72 15592.66 8897.22 24896.03 23487.69 20395.12 10994.03 22381.55 19098.28 16889.17 17996.46 13899.14 114
BH-w/o92.32 15191.79 14993.91 19196.85 15086.18 23899.11 9495.74 26288.13 18784.81 22497.00 17077.26 22097.91 18589.16 18098.03 11497.64 191
RRT_MVS91.95 16091.09 16194.53 16996.71 15795.12 3198.64 14496.23 22389.04 15585.24 22295.06 21087.71 8596.43 26189.10 18182.06 26092.05 256
TAMVS92.62 14592.09 14394.20 18094.10 24487.68 19998.41 17396.97 18587.53 20789.74 18696.04 19884.77 14596.49 25788.97 18292.31 18798.42 166
CNLPA93.64 12392.74 12896.36 10998.96 8790.01 15499.19 7595.89 25286.22 22989.40 18998.85 8280.66 19899.84 5988.57 18396.92 13499.24 107
baseline192.61 14691.28 15896.58 9797.05 14694.63 4897.72 22896.20 22589.82 13288.56 19596.85 17786.85 10497.82 19288.42 18480.10 26897.30 200
CANet_DTU94.31 10693.35 11597.20 6097.03 14794.71 4698.62 14795.54 27595.61 1497.21 6098.47 11171.88 25999.84 5988.38 18597.46 12697.04 209
thisisatest051594.75 9294.19 9496.43 10596.13 18392.64 9299.47 4497.60 10387.55 20693.17 13797.59 14394.71 1198.42 16288.28 18693.20 17398.24 178
原ACMM196.18 11399.03 8390.08 14797.63 9888.98 15797.00 6498.97 6688.14 7899.71 7788.23 18799.62 5198.76 152
UGNet91.91 16190.85 16795.10 14797.06 14588.69 18198.01 21198.24 2892.41 6992.39 14793.61 23660.52 32099.68 8288.14 18897.25 12896.92 211
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS90.17 19289.50 18592.19 22496.21 17382.67 29597.76 22697.53 11988.05 18991.67 15296.15 19483.10 16697.47 21788.11 18966.91 34296.43 219
Vis-MVSNet (Re-imp)93.26 13593.00 12594.06 18596.14 18086.71 22598.68 13896.70 19288.30 18289.71 18897.64 14185.43 13696.39 26388.06 19096.32 14299.08 121
PVSNet87.13 1293.69 11992.83 12796.28 11197.99 11690.22 14399.38 6198.93 1191.42 9293.66 13297.68 13871.29 26699.64 9087.94 19197.20 12998.98 127
FIs90.70 18289.87 18193.18 20492.29 28091.12 11998.17 19798.25 2789.11 15383.44 23694.82 21482.26 18296.17 28087.76 19282.76 25592.25 246
tpm291.77 16291.09 16193.82 19494.83 23185.56 25592.51 32997.16 16784.00 26193.83 13090.66 29287.54 8897.17 22787.73 19391.55 20198.72 153
无先验98.52 15897.82 5687.20 21199.90 4487.64 19499.85 33
112195.19 8294.45 8897.42 4998.88 9192.58 9396.22 28497.75 6785.50 23896.86 6999.01 6488.59 7099.90 4487.64 19499.60 5699.79 38
Anonymous20240521188.84 21387.03 22894.27 17798.14 11384.18 27598.44 16995.58 27376.79 33089.34 19096.88 17653.42 34399.54 10087.53 19687.12 22499.09 120
IS-MVSNet93.00 13992.51 13394.49 17096.14 18087.36 20998.31 18695.70 26488.58 16990.17 18097.50 14683.02 16797.22 22687.06 19796.07 15098.90 137
MDTV_nov1_ep13_2view91.17 11891.38 33587.45 20893.08 13986.67 11087.02 19898.95 133
Anonymous2024052987.66 23685.58 24993.92 19097.59 12785.01 26598.13 19897.13 17066.69 35888.47 19696.01 19955.09 33799.51 10587.00 19984.12 24397.23 203
UniMVSNet_NR-MVSNet89.60 20188.55 20792.75 21592.17 28390.07 14898.74 13098.15 3588.37 18083.21 23893.98 22682.86 16995.93 29086.95 20072.47 32292.25 246
DU-MVS88.83 21587.51 21992.79 21291.46 29490.07 14898.71 13197.62 10088.87 16383.21 23893.68 23374.63 22995.93 29086.95 20072.47 32292.36 243
ACMM86.95 1388.77 21888.22 21290.43 26193.61 26081.34 30798.50 16395.92 24487.88 19583.85 23495.20 20967.20 29097.89 18786.90 20284.90 23792.06 255
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 20488.32 21093.03 20692.21 28290.96 12798.90 11598.39 2389.13 15283.22 23792.03 26181.69 18996.34 27186.79 20372.53 32191.81 261
BH-untuned91.46 16890.84 16893.33 20296.51 16284.83 26898.84 12195.50 27786.44 22883.50 23596.70 18275.49 22697.77 19686.78 20497.81 11697.40 197
miper_enhance_ethall90.33 18789.70 18292.22 22297.12 14288.93 17498.35 18295.96 23888.60 16883.14 24292.33 25987.38 9196.18 27986.49 20577.89 27891.55 272
thisisatest053094.00 11093.52 11395.43 13995.76 18990.02 15398.99 10697.60 10386.58 22391.74 15197.36 15194.78 1098.34 16486.37 20692.48 18497.94 187
TESTMET0.1,193.82 11693.26 11895.49 13695.21 20890.25 14199.15 8697.54 11889.18 15191.79 15094.87 21389.13 6197.63 20786.21 20796.29 14598.60 160
anonymousdsp86.69 24885.75 24789.53 28586.46 34582.94 28896.39 27595.71 26383.97 26279.63 29190.70 28968.85 27695.94 28986.01 20884.02 24489.72 322
F-COLMAP92.07 15891.75 15193.02 20798.16 11282.89 29198.79 12895.97 23686.54 22587.92 19997.80 13178.69 21299.65 8885.97 20995.93 15296.53 218
cl2289.57 20288.79 20091.91 22997.94 11787.62 20197.98 21396.51 20585.03 24682.37 25391.79 26783.65 15396.50 25585.96 21077.89 27891.61 269
test-LLR93.11 13892.68 12994.40 17394.94 22787.27 21399.15 8697.25 15490.21 12091.57 15494.04 22184.89 14297.58 21085.94 21196.13 14698.36 173
test-mter93.27 13492.89 12694.40 17394.94 22787.27 21399.15 8697.25 15488.95 15991.57 15494.04 22188.03 8097.58 21085.94 21196.13 14698.36 173
FC-MVSNet-test90.22 19089.40 18892.67 21891.78 29089.86 15697.89 21698.22 2988.81 16482.96 24394.66 21681.90 18895.96 28885.89 21382.52 25892.20 250
DWT-MVSNet_test94.36 10493.95 10595.62 13296.99 14889.47 16496.62 27197.38 14790.96 10193.07 14097.27 15493.73 1598.09 17585.86 21493.65 17199.29 101
Vis-MVSNetpermissive92.64 14491.85 14795.03 15295.12 21588.23 18798.48 16696.81 18991.61 8392.16 14997.22 15971.58 26498.00 18485.85 21597.81 11698.88 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
WR-MVS88.54 22287.22 22692.52 21991.93 28889.50 16398.56 15697.84 5486.99 21281.87 26693.81 23074.25 24095.92 29285.29 21674.43 30192.12 252
XXY-MVS87.75 23386.02 24292.95 20990.46 30589.70 16097.71 23095.90 25084.02 26080.95 27494.05 22067.51 28897.10 23185.16 21778.41 27592.04 257
thres20093.69 11992.59 13296.97 7297.76 11994.74 4499.35 6699.36 289.23 14991.21 16496.97 17183.42 15898.77 15085.08 21890.96 20697.39 198
tttt051793.30 13293.01 12494.17 18195.57 19686.47 22898.51 16197.60 10385.99 23190.55 17397.19 16194.80 998.31 16585.06 21991.86 19497.74 189
XVG-ACMP-BASELINE85.86 26284.95 25888.57 30089.90 31077.12 33494.30 31195.60 27287.40 20982.12 25792.99 25353.42 34397.66 20585.02 22083.83 24590.92 293
test_part188.43 22386.68 23393.67 19897.56 12992.40 9698.12 20096.55 20282.26 29280.31 28193.16 24874.59 23396.62 24885.00 22172.61 32091.99 258
新几何197.40 5198.92 8992.51 9597.77 6685.52 23696.69 7899.06 5688.08 7999.89 4784.88 22299.62 5199.79 38
1112_ss92.71 14291.55 15496.20 11295.56 19791.12 11998.48 16694.69 30988.29 18386.89 21198.50 10787.02 10198.66 15784.75 22389.77 21598.81 146
miper_ehance_all_eth88.94 21088.12 21391.40 23995.32 20586.93 22197.85 22095.55 27484.19 25881.97 26391.50 27384.16 14995.91 29384.69 22477.89 27891.36 280
Test_1112_low_res92.27 15490.97 16496.18 11395.53 19991.10 12198.47 16894.66 31088.28 18486.83 21393.50 24187.00 10298.65 15884.69 22489.74 21698.80 147
TR-MVS90.77 18089.44 18794.76 16096.31 16988.02 19497.92 21595.96 23885.52 23688.22 19897.23 15866.80 29398.09 17584.58 22692.38 18598.17 182
OpenMVScopyleft85.28 1490.75 18188.84 19896.48 10293.58 26193.51 7098.80 12497.41 14482.59 28578.62 30197.49 14768.00 28499.82 6484.52 22798.55 10796.11 223
UniMVSNet_ETH3D85.65 26983.79 27591.21 24290.41 30680.75 31695.36 30295.78 25978.76 32081.83 26994.33 21949.86 35196.66 24684.30 22883.52 25096.22 222
NR-MVSNet87.74 23586.00 24392.96 20891.46 29490.68 13496.65 27097.42 14388.02 19173.42 32993.68 23377.31 21995.83 29784.26 22971.82 32992.36 243
D2MVS87.96 22987.39 22189.70 28091.84 28983.40 28398.31 18698.49 2188.04 19078.23 30790.26 30573.57 24396.79 24384.21 23083.53 24988.90 332
testdata299.88 4884.16 231
Baseline_NR-MVSNet85.83 26384.82 26188.87 29988.73 32683.34 28498.63 14691.66 35180.41 31382.44 25091.35 27674.63 22995.42 30884.13 23271.39 33187.84 338
thres100view90093.34 13192.15 14196.90 7797.62 12494.84 3999.06 9899.36 287.96 19290.47 17696.78 17983.29 16198.75 15284.11 23390.69 20897.12 204
tfpn200view993.43 12792.27 13796.90 7797.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20897.12 204
thres40093.39 12992.27 13796.73 8897.68 12294.84 3999.18 7799.36 288.45 17490.79 16896.90 17483.31 15998.75 15284.11 23390.69 20896.61 213
c3_l88.19 22887.23 22591.06 24594.97 22586.17 23997.72 22895.38 28683.43 27181.68 27091.37 27582.81 17095.72 30084.04 23673.70 30991.29 284
UA-Net93.30 13292.62 13195.34 14296.27 17088.53 18595.88 29496.97 18590.90 10395.37 10497.07 16782.38 18199.10 14283.91 23794.86 16298.38 170
IterMVS-LS88.34 22487.44 22091.04 24694.10 24485.85 24998.10 20495.48 27885.12 24282.03 26191.21 27981.35 19495.63 30383.86 23875.73 29091.63 265
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 19889.38 18991.36 24194.32 24085.87 24897.61 23396.59 19785.10 24385.51 22097.10 16581.30 19596.56 25183.85 23983.03 25391.64 264
tpm89.67 20088.95 19691.82 23292.54 27881.43 30492.95 32395.92 24487.81 19690.50 17589.44 31884.99 14095.65 30283.67 24082.71 25698.38 170
eth_miper_zixun_eth87.76 23287.00 22990.06 27094.67 23582.65 29697.02 25695.37 28784.19 25881.86 26891.58 27281.47 19295.90 29483.24 24173.61 31091.61 269
Fast-Effi-MVS+91.72 16390.79 17194.49 17095.89 18587.40 20899.54 3895.70 26485.01 24889.28 19195.68 20277.75 21797.57 21383.22 24295.06 16098.51 163
test_post190.74 34241.37 37485.38 13796.36 26583.16 243
SCA90.64 18489.25 19194.83 15994.95 22688.83 17696.26 28197.21 16090.06 12990.03 18290.62 29566.61 29496.81 24183.16 24394.36 16598.84 141
TranMVSNet+NR-MVSNet87.75 23386.31 23892.07 22890.81 30188.56 18298.33 18397.18 16587.76 19881.87 26693.90 22872.45 25395.43 30783.13 24571.30 33292.23 248
CMPMVSbinary58.40 2180.48 30480.11 30481.59 33985.10 35059.56 36594.14 31495.95 24068.54 35360.71 35993.31 24255.35 33697.87 18983.06 24684.85 23887.33 343
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 13692.00 14496.75 8697.62 12494.92 3499.07 9699.36 287.96 19290.47 17696.78 17983.29 16198.71 15682.93 24790.47 21296.61 213
pmmvs487.58 23886.17 24191.80 23389.58 31588.92 17597.25 24595.28 29082.54 28780.49 27993.17 24775.62 22596.05 28582.75 24878.90 27290.42 308
CVMVSNet90.30 18890.91 16688.46 30394.32 24073.58 34597.61 23397.59 10790.16 12588.43 19797.10 16576.83 22292.86 33882.64 24993.54 17298.93 135
Anonymous2023121184.72 27682.65 28790.91 24997.71 12184.55 27197.28 24396.67 19366.88 35779.18 29790.87 28558.47 32496.60 24982.61 25074.20 30591.59 271
GA-MVS90.10 19488.69 20294.33 17592.44 27987.97 19599.08 9596.26 22189.65 13786.92 21093.11 25068.09 28296.96 23582.54 25190.15 21398.05 183
QAPM91.41 16989.49 18697.17 6195.66 19493.42 7298.60 15197.51 12580.92 30881.39 27397.41 15072.89 25199.87 5182.33 25298.68 10298.21 180
Patchmatch-RL test81.90 30080.13 30387.23 31280.71 36270.12 35784.07 35888.19 36683.16 27670.57 33982.18 35187.18 9892.59 34382.28 25362.78 34898.98 127
v2v48287.27 24185.76 24691.78 23789.59 31487.58 20298.56 15695.54 27584.53 25482.51 24991.78 26873.11 24896.47 25882.07 25474.14 30791.30 283
Fast-Effi-MVS+-dtu88.84 21388.59 20689.58 28493.44 26678.18 32998.65 14294.62 31188.46 17384.12 23195.37 20868.91 27596.52 25482.06 25591.70 19994.06 230
pmmvs585.87 26184.40 27090.30 26688.53 32984.23 27498.60 15193.71 32881.53 30080.29 28292.02 26264.51 30695.52 30582.04 25678.34 27691.15 287
V4287.00 24385.68 24890.98 24889.91 30986.08 24298.32 18595.61 27183.67 26882.72 24590.67 29174.00 24296.53 25381.94 25774.28 30490.32 310
EPMVS92.59 14791.59 15395.59 13597.22 13790.03 15291.78 33398.04 4190.42 11591.66 15390.65 29386.49 11797.46 21881.78 25896.31 14399.28 103
DIV-MVS_self_test87.82 23086.81 23190.87 25294.87 23085.39 25897.81 22195.22 29882.92 28280.76 27691.31 27781.99 18595.81 29881.36 25975.04 29491.42 278
cl____87.82 23086.79 23290.89 25194.88 22985.43 25697.81 22195.24 29482.91 28380.71 27791.22 27881.97 18795.84 29681.34 26075.06 29391.40 279
RPSCF85.33 27185.55 25084.67 32794.63 23662.28 36393.73 31793.76 32674.38 33885.23 22397.06 16864.09 30798.31 16580.98 26186.08 23193.41 235
OurMVSNet-221017-084.13 28783.59 27685.77 32187.81 33670.24 35594.89 30693.65 33086.08 23076.53 31193.28 24461.41 31796.14 28280.95 26277.69 28390.93 292
v14886.38 25585.06 25590.37 26589.47 31984.10 27698.52 15895.48 27883.80 26480.93 27590.22 30974.60 23196.31 27380.92 26371.55 33090.69 303
PatchMatch-RL91.47 16790.54 17594.26 17898.20 10986.36 23396.94 25797.14 16887.75 19988.98 19295.75 20171.80 26199.40 12280.92 26397.39 12797.02 210
miper_lstm_enhance86.90 24486.20 24089.00 29694.53 23781.19 31096.74 26795.24 29482.33 29180.15 28490.51 30281.99 18594.68 32580.71 26573.58 31191.12 288
PCF-MVS89.78 591.26 17089.63 18396.16 11695.44 20191.58 10895.29 30396.10 23285.07 24582.75 24497.45 14878.28 21499.78 7080.60 26695.65 15797.12 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 17289.99 18095.03 15296.75 15488.55 18398.65 14294.95 30087.74 20087.74 20097.80 13168.27 28198.14 17180.53 26797.49 12598.41 167
GeoE90.60 18589.56 18493.72 19795.10 21985.43 25699.41 5894.94 30183.96 26387.21 20796.83 17874.37 23697.05 23380.50 26893.73 17098.67 156
CP-MVSNet86.54 25285.45 25289.79 27891.02 30082.78 29497.38 23997.56 11485.37 23979.53 29393.03 25171.86 26095.25 31279.92 26973.43 31591.34 281
PatchmatchNetpermissive92.05 15991.04 16395.06 15096.17 17789.04 16991.26 33797.26 15389.56 14390.64 17290.56 29988.35 7497.11 22979.53 27096.07 15099.03 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 24685.31 25391.40 23989.75 31287.21 21898.31 18695.45 28083.22 27482.70 24690.78 28673.36 24496.36 26579.49 27174.69 29890.63 305
IterMVS85.81 26484.67 26489.22 29193.51 26283.67 28196.32 27894.80 30585.09 24478.69 29990.17 31266.57 29693.17 33779.48 27277.42 28490.81 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 26784.64 26589.00 29693.46 26582.90 29096.27 27994.70 30885.02 24778.62 30190.35 30466.61 29493.33 33479.38 27377.36 28590.76 299
GBi-Net86.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
test186.67 24984.96 25691.80 23395.11 21688.81 17796.77 26395.25 29182.94 27982.12 25790.25 30662.89 31194.97 31679.04 27480.24 26591.62 266
FMVSNet388.81 21787.08 22793.99 18996.52 16194.59 4998.08 20796.20 22585.85 23282.12 25791.60 27174.05 24195.40 30979.04 27480.24 26591.99 258
LF4IMVS81.94 29981.17 29884.25 32987.23 34268.87 36093.35 32191.93 34983.35 27375.40 32093.00 25249.25 35496.65 24778.88 27778.11 27787.22 345
v886.11 25884.45 26791.10 24489.99 30886.85 22297.24 24695.36 28881.99 29579.89 28889.86 31474.53 23496.39 26378.83 27872.32 32490.05 317
pm-mvs184.68 27782.78 28390.40 26289.58 31585.18 26197.31 24094.73 30781.93 29776.05 31492.01 26365.48 30396.11 28378.75 27969.14 33589.91 320
v14419286.40 25484.89 25990.91 24989.48 31885.59 25398.21 19395.43 28382.45 28982.62 24790.58 29872.79 25296.36 26578.45 28074.04 30890.79 297
PS-CasMVS85.81 26484.58 26689.49 28890.77 30282.11 30097.20 24997.36 15084.83 25179.12 29892.84 25467.42 28995.16 31478.39 28173.25 31691.21 286
tmp_tt53.66 33452.86 33656.05 35132.75 37941.97 37573.42 36576.12 37521.91 37239.68 36896.39 19142.59 35965.10 37178.00 28214.92 37261.08 365
JIA-IIPM85.97 26084.85 26089.33 29093.23 27073.68 34485.05 35397.13 17069.62 35091.56 15668.03 36288.03 8096.96 23577.89 28393.12 17497.34 199
MDTV_nov1_ep1390.47 17796.14 18088.55 18391.34 33697.51 12589.58 14192.24 14890.50 30386.99 10397.61 20977.64 28492.34 186
v119286.32 25684.71 26391.17 24389.53 31786.40 23098.13 19895.44 28282.52 28882.42 25190.62 29571.58 26496.33 27277.23 28574.88 29590.79 297
FMVSNet286.90 24484.79 26293.24 20395.11 21692.54 9497.67 23195.86 25682.94 27980.55 27891.17 28062.89 31195.29 31177.23 28579.71 27191.90 260
MVP-Stereo86.61 25185.83 24588.93 29888.70 32783.85 28096.07 28994.41 31782.15 29475.64 31991.96 26567.65 28796.45 26077.20 28798.72 10186.51 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 21187.27 22493.76 19595.79 18785.32 25990.76 34197.09 17676.14 33285.72 21888.59 32482.92 16898.04 18176.96 28891.43 20297.90 188
v1085.73 26784.01 27390.87 25290.03 30786.73 22497.20 24995.22 29881.25 30379.85 28989.75 31573.30 24796.28 27776.87 28972.64 31989.61 324
v192192086.02 25984.44 26890.77 25489.32 32085.20 26098.10 20495.35 28982.19 29382.25 25590.71 28870.73 26796.30 27676.85 29074.49 30090.80 296
MS-PatchMatch86.75 24785.92 24489.22 29191.97 28582.47 29896.91 25896.14 23083.74 26577.73 30893.53 23958.19 32597.37 22576.75 29198.35 11087.84 338
K. test v381.04 30279.77 30584.83 32587.41 34070.23 35695.60 30193.93 32583.70 26767.51 34989.35 32055.76 33193.58 33376.67 29268.03 33990.67 304
PM-MVS74.88 32372.85 32680.98 34078.98 36564.75 36290.81 34085.77 36880.95 30768.23 34682.81 34929.08 36892.84 33976.54 29362.46 35085.36 354
MVS_030484.13 28782.66 28688.52 30193.07 27380.15 31795.81 29898.21 3079.27 31586.85 21286.40 34041.33 36294.69 32476.36 29486.69 22590.73 301
WR-MVS_H86.53 25385.49 25189.66 28391.04 29983.31 28597.53 23598.20 3184.95 24979.64 29090.90 28478.01 21695.33 31076.29 29572.81 31790.35 309
ACMH+83.78 1584.21 28482.56 28989.15 29393.73 25979.16 32196.43 27494.28 31981.09 30574.00 32694.03 22354.58 33997.67 20476.10 29678.81 27390.63 305
PEN-MVS85.21 27283.93 27489.07 29589.89 31181.31 30897.09 25297.24 15684.45 25678.66 30092.68 25668.44 28094.87 31975.98 29770.92 33391.04 290
USDC84.74 27582.93 27990.16 26891.73 29183.54 28295.00 30593.30 33488.77 16573.19 33093.30 24353.62 34297.65 20675.88 29881.54 26389.30 327
EU-MVSNet84.19 28584.42 26983.52 33288.64 32867.37 36196.04 29095.76 26185.29 24078.44 30493.18 24670.67 26891.48 35475.79 29975.98 28891.70 263
v124085.77 26684.11 27190.73 25589.26 32185.15 26397.88 21895.23 29781.89 29882.16 25690.55 30069.60 27496.31 27375.59 30074.87 29690.72 302
ITE_SJBPF87.93 30592.26 28176.44 33593.47 33387.67 20479.95 28795.49 20656.50 33097.38 22375.24 30182.33 25989.98 319
dp90.16 19388.83 19994.14 18296.38 16786.42 22991.57 33497.06 17884.76 25288.81 19390.19 31184.29 14897.43 22175.05 30291.35 20598.56 161
LS3D90.19 19188.72 20194.59 16898.97 8586.33 23496.90 25996.60 19674.96 33584.06 23298.74 8975.78 22499.83 6174.93 30397.57 12197.62 194
TDRefinement78.01 31775.31 32086.10 31970.06 36973.84 34393.59 32091.58 35374.51 33773.08 33391.04 28149.63 35397.12 22874.88 30459.47 35487.33 343
tpmvs89.16 20587.76 21593.35 20197.19 13884.75 26990.58 34397.36 15081.99 29584.56 22689.31 32183.98 15198.17 17074.85 30590.00 21497.12 204
pmmvs679.90 30777.31 31287.67 30884.17 35378.13 33095.86 29693.68 32967.94 35572.67 33689.62 31750.98 34995.75 29974.80 30666.04 34489.14 330
SixPastTwentyTwo82.63 29581.58 29385.79 32088.12 33371.01 35495.17 30492.54 34084.33 25772.93 33592.08 26060.41 32195.61 30474.47 30774.15 30690.75 300
ACMH83.09 1784.60 27882.61 28890.57 25793.18 27182.94 28896.27 27994.92 30281.01 30672.61 33793.61 23656.54 32997.79 19474.31 30881.07 26490.99 291
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ADS-MVSNet287.62 23786.88 23089.86 27596.21 17379.14 32287.15 34792.99 33583.01 27789.91 18487.27 33378.87 20992.80 34174.20 30992.27 18897.64 191
ADS-MVSNet88.99 20887.30 22394.07 18496.21 17387.56 20387.15 34796.78 19183.01 27789.91 18487.27 33378.87 20997.01 23474.20 30992.27 18897.64 191
lessismore_v085.08 32385.59 34969.28 35890.56 35867.68 34890.21 31054.21 34195.46 30673.88 31162.64 34990.50 307
MIMVSNet84.48 28181.83 29192.42 22091.73 29187.36 20985.52 35094.42 31681.40 30181.91 26487.58 32851.92 34692.81 34073.84 31288.15 21997.08 208
v7n84.42 28382.75 28489.43 28988.15 33281.86 30196.75 26695.67 26780.53 30978.38 30589.43 31969.89 27096.35 27073.83 31372.13 32690.07 315
ambc79.60 34172.76 36856.61 36776.20 36392.01 34868.25 34580.23 35523.34 36994.73 32373.78 31460.81 35287.48 340
pmmvs-eth3d78.71 31476.16 31886.38 31680.25 36381.19 31094.17 31392.13 34677.97 32366.90 35282.31 35055.76 33192.56 34473.63 31562.31 35185.38 353
FMVSNet183.94 28981.32 29791.80 23391.94 28788.81 17796.77 26395.25 29177.98 32278.25 30690.25 30650.37 35094.97 31673.27 31677.81 28291.62 266
MSDG88.29 22686.37 23794.04 18796.90 14986.15 24096.52 27394.36 31877.89 32679.22 29696.95 17269.72 27299.59 9673.20 31792.58 18396.37 221
test0.0.03 188.96 20988.61 20490.03 27391.09 29884.43 27298.97 10897.02 18290.21 12080.29 28296.31 19384.89 14291.93 35272.98 31885.70 23493.73 231
UnsupCasMVSNet_eth78.90 31276.67 31685.58 32282.81 35874.94 33991.98 33196.31 21684.64 25365.84 35587.71 32751.33 34792.23 34872.89 31956.50 35989.56 325
DTE-MVSNet84.14 28682.80 28188.14 30488.95 32479.87 32096.81 26296.24 22283.50 27077.60 30992.52 25867.89 28694.24 33072.64 32069.05 33690.32 310
EPNet_dtu92.28 15392.15 14192.70 21697.29 13584.84 26798.64 14497.82 5692.91 5693.02 14197.02 16985.48 13595.70 30172.25 32194.89 16197.55 196
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 27483.12 27890.52 25996.82 15178.84 32495.89 29292.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
TestCases90.52 25996.82 15178.84 32492.17 34477.96 32475.94 31595.50 20455.48 33399.18 13571.15 32287.14 22293.55 233
DP-MVS88.75 21986.56 23595.34 14298.92 8987.45 20697.64 23293.52 33270.55 34681.49 27197.25 15674.43 23599.88 4871.14 32494.09 16798.67 156
CR-MVSNet88.83 21587.38 22293.16 20593.47 26386.24 23584.97 35494.20 32188.92 16290.76 17086.88 33784.43 14694.82 32170.64 32592.17 19198.41 167
KD-MVS_2432*160082.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
miper_refine_blended82.98 29380.52 30190.38 26394.32 24088.98 17192.87 32595.87 25480.46 31173.79 32787.49 33082.76 17393.29 33570.56 32646.53 36588.87 333
test_method70.10 32868.66 33174.41 34486.30 34755.84 36894.47 30889.82 36135.18 36766.15 35484.75 34630.54 36777.96 36870.40 32860.33 35389.44 326
LTVRE_ROB81.71 1984.59 27982.72 28590.18 26792.89 27683.18 28693.15 32294.74 30678.99 31775.14 32292.69 25565.64 30097.63 20769.46 32981.82 26289.74 321
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FMVSNet582.29 29680.54 30087.52 30993.79 25884.01 27793.73 31792.47 34176.92 32974.27 32486.15 34263.69 31089.24 35869.07 33074.79 29789.29 328
our_test_384.47 28282.80 28189.50 28689.01 32283.90 27997.03 25494.56 31281.33 30275.36 32190.52 30171.69 26294.54 32768.81 33176.84 28790.07 315
UnsupCasMVSNet_bld73.85 32570.14 32884.99 32479.44 36475.73 33688.53 34595.24 29470.12 34961.94 35874.81 35941.41 36193.62 33268.65 33251.13 36485.62 352
Patchmtry83.61 29281.64 29289.50 28693.36 26782.84 29384.10 35794.20 32169.47 35179.57 29286.88 33784.43 14694.78 32268.48 33374.30 30390.88 294
KD-MVS_self_test77.47 32075.88 31982.24 33481.59 35968.93 35992.83 32794.02 32477.03 32873.14 33183.39 34855.44 33590.42 35567.95 33457.53 35787.38 341
TransMVSNet (Re)81.97 29879.61 30689.08 29489.70 31384.01 27797.26 24491.85 35078.84 31873.07 33491.62 27067.17 29195.21 31367.50 33559.46 35588.02 337
COLMAP_ROBcopyleft82.69 1884.54 28082.82 28089.70 28096.72 15578.85 32395.89 29292.83 33871.55 34477.54 31095.89 20059.40 32399.14 14067.26 33688.26 21891.11 289
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 30677.59 31086.90 31487.06 34377.90 33396.20 28794.06 32374.61 33666.53 35388.76 32340.40 36496.20 27867.02 33783.66 24886.61 347
DSMNet-mixed81.60 30181.43 29582.10 33684.36 35260.79 36493.63 31986.74 36779.00 31679.32 29587.15 33563.87 30989.78 35766.89 33891.92 19395.73 225
testgi82.29 29681.00 29986.17 31887.24 34174.84 34097.39 23791.62 35288.63 16675.85 31895.42 20746.07 35791.55 35366.87 33979.94 26992.12 252
MDA-MVSNet_test_wron79.65 30977.05 31387.45 31087.79 33880.13 31896.25 28294.44 31473.87 33951.80 36287.47 33268.04 28392.12 35066.02 34067.79 34090.09 313
YYNet179.64 31077.04 31487.43 31187.80 33779.98 31996.23 28394.44 31473.83 34051.83 36187.53 32967.96 28592.07 35166.00 34167.75 34190.23 312
DeepMVS_CXcopyleft76.08 34390.74 30351.65 37190.84 35786.47 22757.89 36087.98 32535.88 36692.60 34265.77 34265.06 34683.97 357
Anonymous2024052178.63 31576.90 31583.82 33082.82 35772.86 34795.72 30093.57 33173.55 34172.17 33884.79 34549.69 35292.51 34565.29 34374.50 29986.09 351
TinyColmap80.42 30577.94 30987.85 30692.09 28478.58 32693.74 31689.94 36074.99 33469.77 34191.78 26846.09 35697.58 21065.17 34477.89 27887.38 341
MVS-HIRNet79.01 31175.13 32190.66 25693.82 25781.69 30385.16 35193.75 32754.54 36274.17 32559.15 36657.46 32796.58 25063.74 34594.38 16493.72 232
ppachtmachnet_test83.63 29181.57 29489.80 27789.01 32285.09 26497.13 25194.50 31378.84 31876.14 31391.00 28269.78 27194.61 32663.40 34674.36 30289.71 323
CL-MVSNet_self_test79.89 30878.34 30884.54 32881.56 36075.01 33896.88 26095.62 26981.10 30475.86 31785.81 34368.49 27990.26 35663.21 34756.51 35888.35 335
Patchmatch-test86.25 25784.06 27292.82 21194.42 23882.88 29282.88 36194.23 32071.58 34379.39 29490.62 29589.00 6496.42 26263.03 34891.37 20499.16 113
pmmvs372.86 32669.76 33082.17 33573.86 36774.19 34294.20 31289.01 36464.23 36167.72 34780.91 35441.48 36088.65 36062.40 34954.02 36283.68 358
new_pmnet76.02 32173.71 32482.95 33383.88 35472.85 34891.26 33792.26 34370.44 34762.60 35781.37 35247.64 35592.32 34761.85 35072.10 32783.68 358
tfpnnormal83.65 29081.35 29690.56 25891.37 29688.06 19297.29 24297.87 5278.51 32176.20 31290.91 28364.78 30596.47 25861.71 35173.50 31287.13 346
MDA-MVSNet-bldmvs77.82 31974.75 32387.03 31388.33 33078.52 32796.34 27792.85 33775.57 33348.87 36487.89 32657.32 32892.49 34660.79 35264.80 34790.08 314
Anonymous2023120680.76 30379.42 30784.79 32684.78 35172.98 34696.53 27292.97 33679.56 31474.33 32388.83 32261.27 31892.15 34960.59 35375.92 28989.24 329
new-patchmatchnet74.80 32472.40 32781.99 33778.36 36672.20 35094.44 30992.36 34277.06 32763.47 35679.98 35651.04 34888.85 35960.53 35454.35 36184.92 356
LCM-MVSNet60.07 33156.37 33371.18 34554.81 37548.67 37282.17 36289.48 36337.95 36549.13 36369.12 36013.75 37681.76 36459.28 35551.63 36383.10 360
TAPA-MVS87.50 990.35 18689.05 19494.25 17998.48 10585.17 26298.42 17196.58 20082.44 29087.24 20698.53 10482.77 17198.84 14859.09 35697.88 11598.72 153
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 31677.48 31181.62 33883.07 35671.03 35396.11 28892.83 33881.66 29969.31 34289.68 31657.53 32687.29 36358.65 35768.47 33786.53 348
PatchT85.44 27083.19 27792.22 22293.13 27283.00 28783.80 36096.37 21370.62 34590.55 17379.63 35784.81 14494.87 31958.18 35891.59 20098.79 148
MIMVSNet175.92 32273.30 32583.81 33181.29 36175.57 33792.26 33092.05 34773.09 34267.48 35086.18 34140.87 36387.64 36255.78 35970.68 33488.21 336
OpenMVS_ROBcopyleft73.86 2077.99 31875.06 32286.77 31583.81 35577.94 33296.38 27691.53 35467.54 35668.38 34487.13 33643.94 35896.08 28455.03 36081.83 26186.29 350
RPMNet85.07 27381.88 29094.64 16693.47 26386.24 23584.97 35497.21 16064.85 36090.76 17078.80 35880.95 19699.27 13353.76 36192.17 19198.41 167
N_pmnet70.19 32769.87 32971.12 34688.24 33130.63 37995.85 29728.70 37970.18 34868.73 34386.55 33964.04 30893.81 33153.12 36273.46 31388.94 331
PMMVS258.97 33255.07 33570.69 34762.72 37055.37 36985.97 34980.52 37249.48 36345.94 36568.31 36115.73 37480.78 36649.79 36337.12 36775.91 361
test_040278.81 31376.33 31786.26 31791.18 29778.44 32895.88 29491.34 35568.55 35270.51 34089.91 31352.65 34594.99 31547.14 36479.78 27085.34 355
FPMVS61.57 32960.32 33265.34 34860.14 37342.44 37491.02 33989.72 36244.15 36442.63 36680.93 35319.02 37080.59 36742.50 36572.76 31873.00 362
EGC-MVSNET60.70 33055.37 33476.72 34286.35 34671.08 35289.96 34484.44 3710.38 3761.50 37784.09 34737.30 36588.10 36140.85 36673.44 31470.97 364
ANet_high50.71 33546.17 33864.33 34944.27 37752.30 37076.13 36478.73 37364.95 35927.37 37055.23 36714.61 37567.74 37036.01 36718.23 37072.95 363
Gipumacopyleft54.77 33352.22 33762.40 35086.50 34459.37 36650.20 36890.35 35936.52 36641.20 36749.49 36818.33 37281.29 36532.10 36865.34 34546.54 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 33642.50 33955.17 35234.28 37832.37 37766.24 36678.71 37430.72 36822.04 37359.59 3654.59 37777.85 36927.49 36958.84 35655.29 366
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 33737.64 34253.90 35349.46 37643.37 37365.09 36766.66 37626.19 37125.77 37248.53 3693.58 37963.35 37226.15 37027.28 36854.97 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33840.93 34041.29 35461.97 37133.83 37684.00 35965.17 37727.17 36927.56 36946.72 37017.63 37360.41 37319.32 37118.82 36929.61 369
EMVS39.96 33939.88 34140.18 35559.57 37432.12 37884.79 35664.57 37826.27 37026.14 37144.18 37318.73 37159.29 37417.03 37217.67 37129.12 370
wuyk23d16.71 34216.73 34616.65 35660.15 37225.22 38041.24 3695.17 3806.56 3735.48 3763.61 3763.64 37822.72 37515.20 3739.52 3731.99 373
testmvs18.81 34123.05 3446.10 3584.48 3802.29 38297.78 2233.00 3813.27 37418.60 37462.71 3631.53 3812.49 37714.26 3741.80 37413.50 372
test12316.58 34319.47 3457.91 3573.59 3815.37 38194.32 3101.39 3822.49 37513.98 37544.60 3722.91 3802.65 37611.35 3750.57 37515.70 371
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k22.52 34030.03 3430.00 3590.00 3820.00 3830.00 37097.17 1660.00 3770.00 37898.77 8674.35 2370.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas6.87 3459.16 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37782.48 1780.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.21 34410.94 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37898.50 1070.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.50 4788.94 17399.55 3497.47 13391.32 9498.12 37
test_one_060199.59 3194.89 3597.64 9393.14 5098.93 1599.45 1693.45 17
eth-test20.00 382
eth-test0.00 382
test_241102_ONE99.63 2195.24 2497.72 7594.16 2799.30 599.49 1093.32 1899.98 10
save fliter99.34 5893.85 6399.65 2397.63 9895.69 11
test072699.66 1595.20 2999.77 997.70 8093.95 3099.35 499.54 393.18 21
GSMVS98.84 141
test_part299.54 4095.42 1998.13 35
sam_mvs188.39 7398.84 141
sam_mvs87.08 99
MTGPAbinary97.45 136
test_post46.00 37187.37 9297.11 229
patchmatchnet-post84.86 34488.73 6796.81 241
MTMP99.21 7491.09 356
TEST999.57 3793.17 7699.38 6197.66 8789.57 14298.39 3099.18 3790.88 3599.66 84
test_899.55 3993.07 8099.37 6497.64 9390.18 12298.36 3299.19 3490.94 3399.64 90
agg_prior99.54 4092.66 8897.64 9397.98 4499.61 93
test_prior492.00 9999.41 58
test_prior97.01 6599.58 3391.77 10097.57 11299.49 10899.79 38
新几何298.26 189
旧先验198.97 8592.90 8797.74 6999.15 4391.05 3299.33 7499.60 77
原ACMM298.69 136
test22298.32 10691.21 11498.08 20797.58 10983.74 26595.87 9499.02 6086.74 10799.64 4799.81 35
segment_acmp90.56 42
testdata197.89 21692.43 65
test1297.83 3499.33 6494.45 5197.55 11597.56 5188.60 6899.50 10799.71 3899.55 81
plane_prior793.84 25585.73 251
plane_prior693.92 25286.02 24572.92 249
plane_prior496.52 185
plane_prior385.91 24693.65 4286.99 208
plane_prior299.02 10293.38 47
plane_prior193.90 254
plane_prior86.07 24399.14 8993.81 4086.26 228
n20.00 383
nn0.00 383
door-mid84.90 370
test1197.68 84
door85.30 369
HQP5-MVS86.39 231
HQP-NCC93.95 24899.16 8093.92 3287.57 201
ACMP_Plane93.95 24899.16 8093.92 3287.57 201
HQP4-MVS87.57 20197.77 19692.72 236
HQP3-MVS96.37 21386.29 226
HQP2-MVS73.34 245
NP-MVS93.94 25186.22 23796.67 183
ACMMP++_ref82.64 257
ACMMP++83.83 245
Test By Simon83.62 154