This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2398.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2399.80 5897.44 11100.00 1100.00 199.98 33100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4098.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 599.94 1499.47 599.95 4098.43 116100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 8798.44 10897.48 1599.64 3499.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6198.46 10594.56 9599.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8498.98 1093.92 26499.63 8881.76 33999.96 2398.56 7799.47 199.19 7499.99 194.16 87100.00 199.92 999.93 63100.00 1
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12399.97 1697.92 19998.07 598.76 9399.55 10695.00 5799.94 6899.91 1197.68 14899.99 20
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 6998.39 13597.20 2499.46 4999.85 3395.53 4299.79 10999.86 12100.00 199.99 20
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2397.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7398.21 16893.53 14099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
9.1498.38 3899.87 5299.91 6998.33 14993.22 14899.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7398.37 14293.81 13199.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5598.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12698.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 898.80 5090.78 22799.62 3799.78 6695.30 46100.00 199.80 1899.93 6399.99 20
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4098.65 6095.78 6099.73 2699.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior299.95 4095.78 6099.73 2699.76 7296.00 2999.78 20100.00 1
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 898.51 9797.00 2898.52 10399.71 8687.80 19299.95 6099.75 2299.38 11399.83 96
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 898.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 9898.24 16492.18 18899.73 2699.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 9898.38 13993.19 14999.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1698.64 6398.47 299.13 7699.92 1196.38 26100.00 199.74 24100.00 1100.00 1
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28099.42 2097.03 2799.02 8099.09 13899.35 198.21 21699.73 2799.78 8899.77 104
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2398.43 11694.63 9499.63 3599.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
test9_res99.71 2999.99 20100.00 1
ZD-MVS99.92 3598.57 5198.52 9092.34 18499.31 6399.83 4995.06 5299.80 10699.70 3099.97 44
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2398.43 11694.35 10599.71 3099.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7398.55 8395.14 7999.72 2999.84 4695.46 43100.00 199.65 3299.99 2099.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1698.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 898.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4098.42 12797.50 1499.52 4799.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior299.48 36100.00 1100.00 1
PAPM98.60 3398.42 3199.14 6396.05 24798.96 2099.90 7399.35 2396.68 3798.35 11299.66 9796.45 2598.51 18699.45 3799.89 7499.96 70
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 898.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 8798.36 14494.08 11699.74 2599.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17598.17 17497.34 1699.85 699.85 3391.20 15099.89 7999.41 4099.67 9598.69 200
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 17798.08 18597.05 2699.86 499.86 2990.65 16299.71 12999.39 4198.63 12898.69 200
test117298.38 5398.25 4798.77 9099.88 4996.56 12799.80 11998.36 14494.68 9199.20 7199.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4098.56 7797.56 1399.44 5199.85 3395.38 45100.00 199.31 4399.99 2099.87 93
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10598.35 14694.92 8299.32 6299.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6199.90 196.81 3398.67 9799.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15699.87 8799.86 296.70 3698.78 9099.79 6292.03 14099.90 7599.17 4699.86 7999.88 92
PVSNet_BlendedMVS96.05 13995.82 13796.72 17799.59 9096.99 11499.95 4099.10 2894.06 11998.27 11595.80 25889.00 18399.95 6099.12 4787.53 24993.24 312
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11599.08 13989.00 18399.95 6099.12 4799.25 11699.57 137
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 8798.52 9096.05 5399.41 5499.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
xiu_mvs_v1_base_debu97.43 8997.06 9398.55 10697.74 18998.14 6799.31 20697.86 20596.43 4199.62 3799.69 9185.56 21399.68 13399.05 5098.31 13597.83 209
xiu_mvs_v1_base97.43 8997.06 9398.55 10697.74 18998.14 6799.31 20697.86 20596.43 4199.62 3799.69 9185.56 21399.68 13399.05 5098.31 13597.83 209
xiu_mvs_v1_base_debi97.43 8997.06 9398.55 10697.74 18998.14 6799.31 20697.86 20596.43 4199.62 3799.69 9185.56 21399.68 13399.05 5098.31 13597.83 209
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 8798.52 9096.04 5499.41 5499.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12499.97 1698.39 13594.43 10098.90 8699.87 2694.30 81100.00 199.04 5499.99 2099.99 20
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21598.47 10398.14 499.08 7799.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS97.92 7397.80 7198.25 12798.14 16696.48 12899.98 897.63 21795.61 6899.29 6799.46 11492.55 12998.82 16699.02 5698.54 12999.46 152
CS-MVS97.84 7697.69 7398.31 12498.28 15496.27 136100.00 197.52 23495.29 7599.25 7099.65 9991.18 15398.94 16398.96 5799.04 12199.73 108
VDD-MVS93.77 19292.94 19896.27 19298.55 14290.22 27998.77 26397.79 21090.85 22596.82 14799.42 11661.18 34599.77 11598.95 5894.13 20498.82 195
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12599.82 11298.30 15693.95 12599.37 6099.77 6892.84 12199.76 11898.95 5899.92 6799.97 63
VNet97.21 10096.57 11099.13 6898.97 11997.82 8199.03 23799.21 2794.31 10899.18 7598.88 16086.26 20899.89 7998.93 6094.32 20299.69 114
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5598.42 12796.22 4999.41 5499.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 18892.06 21799.15 6199.94 1497.50 9499.94 5598.42 12796.22 4999.41 5441.37 36494.34 7699.96 5398.92 6199.95 5199.99 20
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 13798.18 17393.35 14496.45 15699.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13499.76 13198.31 15394.43 10099.40 5899.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
RE-MVS-def98.13 5599.79 7096.37 13499.76 13198.31 15394.43 10099.40 5899.75 7792.95 11998.90 6499.92 6799.97 63
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13399.90 7398.17 17492.61 17198.62 10099.57 10591.87 14399.67 13698.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4098.39 13594.70 9098.26 11799.81 5791.84 144100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_yl97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
DCV-MVSNet97.83 7797.37 8499.21 5199.18 10897.98 7599.64 16099.27 2591.43 21297.88 12698.99 14795.84 3599.84 10398.82 6895.32 19499.79 100
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15398.52 9095.79 5999.01 8199.77 6894.40 7199.75 12198.82 6899.83 8199.98 51
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15398.52 9095.76 6299.01 8199.77 6894.33 7999.75 12198.80 7199.83 8199.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4098.61 6995.00 8199.31 6399.85 3394.22 83100.00 198.78 7299.98 3399.98 51
PVSNet_088.03 1991.80 23690.27 24896.38 19098.27 15790.46 27599.94 5599.61 1193.99 12286.26 30097.39 21271.13 31499.89 7998.77 7367.05 34598.79 197
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16099.44 1897.33 1799.00 8399.72 8494.03 9099.98 4298.73 74100.00 1100.00 1
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4098.61 6994.77 8799.31 6399.85 3394.22 83100.00 198.70 7599.98 3399.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4098.60 7194.77 8799.31 6399.84 4693.73 98100.00 198.70 7599.98 3399.98 51
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 11998.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 19698.28 15895.76 6297.18 13999.88 2292.74 124100.00 198.67 7799.88 7699.99 20
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2398.55 8394.87 8599.45 5099.85 3394.07 89100.00 198.67 77100.00 199.98 51
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10198.37 14294.68 9199.53 4499.83 4992.87 120100.00 198.66 8099.84 8099.99 20
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4098.38 13995.04 8098.61 10199.80 5893.39 104100.00 198.64 81100.00 199.98 51
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 11999.24 13292.58 12899.94 6898.63 8299.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs97.81 7997.33 8799.25 4998.77 13798.66 4699.99 498.44 10894.40 10498.41 10899.47 11293.65 10099.42 15198.57 8394.26 20399.67 117
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 8798.33 14993.97 12399.76 2499.87 2694.99 5899.75 12198.55 84100.00 199.98 51
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12699.40 19298.51 9795.29 7598.51 10499.76 7293.60 10299.71 12998.53 8599.52 10699.95 78
canonicalmvs97.09 10496.32 11699.39 4398.93 12398.95 2199.72 14597.35 25394.45 9897.88 12699.42 11686.71 20399.52 14298.48 8693.97 20799.72 111
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 16899.47 18598.87 4491.68 20398.84 8799.85 3392.34 13499.99 3698.44 8799.96 48100.00 1
lupinMVS97.85 7597.60 7798.62 10097.28 21397.70 8599.99 497.55 22895.50 7199.43 5299.67 9590.92 15898.71 17698.40 8899.62 9899.45 154
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13699.36 20198.50 10195.21 7898.30 11499.75 7793.29 10999.73 12898.37 8999.30 11599.81 98
diffmvs97.00 10596.64 10798.09 13397.64 19696.17 14599.81 11497.19 26594.67 9398.95 8499.28 12486.43 20698.76 17298.37 8997.42 15499.33 167
CPTT-MVS97.64 8697.32 8898.58 10599.97 395.77 15799.96 2398.35 14689.90 24098.36 11199.79 6291.18 15399.99 3698.37 8999.99 2099.99 20
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5598.44 10894.31 10898.50 10599.82 5393.06 11799.99 3698.30 9299.99 2099.93 81
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6598.44 10892.06 19398.40 11099.84 4695.68 38100.00 198.19 9399.71 9399.97 63
GG-mvs-BLEND98.54 10998.21 16198.01 7393.87 33998.52 9097.92 12497.92 20299.02 297.94 23098.17 9499.58 10399.67 117
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6198.39 13594.04 12198.80 8999.74 8192.98 118100.00 198.16 9599.76 8999.93 81
CSCG97.10 10297.04 9697.27 16499.89 4591.92 24599.90 7399.07 3188.67 26095.26 17999.82 5393.17 11599.98 4298.15 9699.47 10999.90 89
MAR-MVS97.43 8997.19 9098.15 13299.47 10094.79 18799.05 23598.76 5192.65 16998.66 9899.82 5388.52 18999.98 4298.12 9799.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4098.43 11695.35 7398.03 12299.75 7794.03 9099.98 4298.11 9899.83 8199.99 20
CLD-MVS94.06 18693.90 17794.55 23896.02 24890.69 26899.98 897.72 21296.62 3991.05 21998.85 16777.21 27698.47 18798.11 9889.51 22494.48 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDDNet93.12 20591.91 22096.76 17596.67 24092.65 23098.69 26998.21 16882.81 32397.75 12999.28 12461.57 34399.48 14998.09 10094.09 20598.15 205
HY-MVS92.50 797.79 8197.17 9299.63 1298.98 11899.32 697.49 30899.52 1395.69 6698.32 11397.41 21093.32 10799.77 11598.08 10195.75 18799.81 98
EIA-MVS97.53 8897.46 8197.76 14598.04 17094.84 18499.98 897.61 22294.41 10397.90 12599.59 10392.40 13298.87 16498.04 10299.13 11999.59 130
LFMVS94.75 16893.56 18698.30 12599.03 11495.70 16298.74 26497.98 19287.81 27298.47 10699.39 12067.43 32799.53 14198.01 10395.20 19699.67 117
AdaColmapbinary97.23 9996.80 10398.51 11299.99 195.60 16499.09 22498.84 4793.32 14596.74 14999.72 8486.04 209100.00 198.01 10399.43 11299.94 80
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7399.51 1597.60 1299.20 7199.36 12393.71 9999.91 7497.99 10598.71 12799.61 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft97.74 8397.44 8298.66 9799.92 3596.13 14699.18 21999.45 1794.84 8696.41 15999.71 8691.40 14799.99 3697.99 10598.03 14499.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS98.10 6797.60 7799.60 1798.92 12599.28 1299.89 8199.52 1395.58 6998.24 11899.39 12093.33 10699.74 12597.98 10795.58 19099.78 103
jason97.24 9896.86 10098.38 12295.73 25997.32 10399.97 1697.40 25095.34 7498.60 10299.54 10887.70 19398.56 18397.94 10899.47 10999.25 174
jason: jason.
BP-MVS97.92 109
HQP-MVS94.61 17394.50 16494.92 22495.78 25391.85 24699.87 8797.89 20196.82 3093.37 19898.65 17380.65 25498.39 19897.92 10989.60 21994.53 228
hse-mvs394.92 16394.36 16696.59 18298.85 13291.29 26198.93 24798.94 3695.90 5698.77 9198.42 18990.89 16099.77 11597.80 11170.76 33598.72 199
hse-mvs294.38 18094.08 17395.31 21298.27 15790.02 28399.29 21198.56 7795.90 5698.77 9198.00 19890.89 16098.26 21497.80 11169.20 34197.64 214
131496.84 11195.96 13099.48 3396.74 23798.52 5598.31 28798.86 4595.82 5889.91 23298.98 14987.49 19599.96 5397.80 11199.73 9199.96 70
HQP_MVS94.49 17894.36 16694.87 22595.71 26291.74 25099.84 10597.87 20396.38 4493.01 20298.59 17780.47 25898.37 20397.79 11489.55 22294.52 230
plane_prior597.87 20398.37 20397.79 11489.55 22294.52 230
gg-mvs-nofinetune93.51 19891.86 22298.47 11497.72 19397.96 7792.62 34398.51 9774.70 34697.33 13669.59 35698.91 397.79 23397.77 11699.56 10499.67 117
casdiffmvs96.42 12995.97 12897.77 14497.30 21294.98 18099.84 10597.09 27693.75 13596.58 15299.26 13085.07 21998.78 16997.77 11697.04 16399.54 143
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13499.50 1693.90 12899.37 6099.76 7293.24 113100.00 197.75 11899.96 4899.98 51
DeepC-MVS94.51 496.92 10996.40 11598.45 11699.16 11095.90 15399.66 15398.06 18696.37 4794.37 18899.49 11183.29 23299.90 7597.63 11999.61 10199.55 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast97.80 8097.50 8098.68 9599.79 7096.42 13099.88 8498.16 17791.75 20298.94 8599.54 10891.82 14599.65 13897.62 12099.99 2099.99 20
baseline96.43 12895.98 12597.76 14597.34 20895.17 17799.51 17997.17 26893.92 12796.90 14599.28 12485.37 21698.64 18097.50 12196.86 16899.46 152
abl_697.67 8597.34 8698.66 9799.68 8696.11 14999.68 15098.14 18093.80 13299.27 6899.70 8888.65 18899.98 4297.46 12299.72 9299.89 90
PLCcopyleft95.54 397.93 7297.89 6998.05 13599.82 6594.77 18899.92 6598.46 10593.93 12697.20 13899.27 12795.44 4499.97 5197.41 12399.51 10899.41 159
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS96.60 12395.56 14299.72 996.85 23099.22 1598.31 28798.94 3691.57 20690.90 22099.61 10286.66 20499.96 5397.36 12499.88 7699.99 20
XVG-OURS-SEG-HR94.79 16594.70 16295.08 21898.05 16989.19 29299.08 22697.54 23093.66 13794.87 18299.58 10478.78 26999.79 10997.31 12593.40 21196.25 222
3Dnovator91.47 1296.28 13695.34 14799.08 7196.82 23297.47 9799.45 18898.81 4895.52 7089.39 24699.00 14681.97 23799.95 6097.27 12699.83 8199.84 95
cascas94.64 17293.61 18197.74 14797.82 18396.26 13899.96 2397.78 21185.76 29894.00 19397.54 20776.95 27999.21 15497.23 12795.43 19297.76 213
LCM-MVSNet-Re92.31 22492.60 20491.43 30297.53 20079.27 34899.02 23891.83 35492.07 19180.31 32894.38 31483.50 23095.48 32097.22 12897.58 15099.54 143
CNLPA97.76 8297.38 8398.92 8599.53 9596.84 11899.87 8798.14 18093.78 13396.55 15499.69 9192.28 13599.98 4297.13 12999.44 11199.93 81
Effi-MVS+96.30 13495.69 13998.16 12997.85 18196.26 13897.41 30997.21 26490.37 23298.65 9998.58 17986.61 20598.70 17797.11 13097.37 15699.52 146
PVSNet_Blended_VisFu97.27 9796.81 10298.66 9798.81 13496.67 12299.92 6598.64 6394.51 9796.38 16098.49 18389.05 18299.88 8597.10 13198.34 13399.43 157
3Dnovator+91.53 1196.31 13395.24 14999.52 2696.88 22998.64 4999.72 14598.24 16495.27 7788.42 26998.98 14982.76 23499.94 6897.10 13199.83 8199.96 70
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14699.82 11298.43 11694.56 9597.52 13299.70 8894.40 7199.98 4297.00 13399.98 3399.99 20
CHOSEN 1792x268896.81 11296.53 11197.64 14998.91 12793.07 21799.65 15699.80 395.64 6795.39 17698.86 16484.35 22599.90 7596.98 13499.16 11899.95 78
旧先验299.46 18794.21 11299.85 699.95 6096.96 135
PMMVS96.76 11596.76 10496.76 17598.28 15492.10 24099.91 6997.98 19294.12 11499.53 4499.39 12086.93 20298.73 17496.95 13697.73 14699.45 154
EPP-MVSNet96.69 12096.60 10896.96 16997.74 18993.05 21999.37 19998.56 7788.75 25895.83 17099.01 14496.01 2898.56 18396.92 13797.20 16099.25 174
ET-MVSNet_ETH3D94.37 18193.28 19597.64 14998.30 15197.99 7499.99 497.61 22294.35 10571.57 34799.45 11596.23 2795.34 32396.91 13885.14 26599.59 130
HyFIR lowres test96.66 12296.43 11497.36 16199.05 11393.91 20399.70 14799.80 390.54 22996.26 16298.08 19592.15 13898.23 21596.84 13995.46 19199.93 81
OMC-MVS97.28 9697.23 8997.41 15799.76 7493.36 21599.65 15697.95 19596.03 5597.41 13599.70 8889.61 17399.51 14396.73 14098.25 13899.38 161
CostFormer96.10 13895.88 13596.78 17497.03 22092.55 23297.08 31697.83 20890.04 23998.72 9594.89 30095.01 5698.29 20896.54 14195.77 18599.50 149
sss97.57 8797.03 9799.18 5498.37 14998.04 7299.73 14299.38 2193.46 14298.76 9399.06 14091.21 14999.89 7996.33 14297.01 16499.62 125
114514_t97.41 9396.83 10199.14 6399.51 9897.83 8099.89 8198.27 16188.48 26499.06 7899.66 9790.30 16699.64 13996.32 14399.97 4499.96 70
ACMP92.05 992.74 21492.42 21193.73 26895.91 25288.72 29799.81 11497.53 23294.13 11387.00 28798.23 19274.07 30298.47 18796.22 14488.86 23193.99 280
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS92.85 694.99 16293.94 17698.16 12997.72 19395.69 16399.99 498.81 4894.28 11092.70 20896.90 22795.08 5099.17 15696.07 14573.88 33399.60 129
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 16494.74 16195.06 21998.00 17189.19 29299.08 22697.55 22894.10 11594.71 18399.62 10180.51 25699.74 12596.04 14693.06 21596.25 222
ab-mvs94.69 16993.42 18998.51 11298.07 16896.26 13896.49 32398.68 5690.31 23494.54 18497.00 22576.30 28699.71 12995.98 14793.38 21299.56 138
mvs_anonymous95.65 15095.03 15597.53 15298.19 16295.74 15999.33 20397.49 23990.87 22490.47 22597.10 21988.23 19097.16 26095.92 14897.66 14999.68 115
nrg03093.51 19892.53 20896.45 18594.36 28397.20 10699.81 11497.16 27091.60 20589.86 23497.46 20886.37 20797.68 23695.88 14980.31 30394.46 233
LPG-MVS_test92.96 20992.71 20293.71 27095.43 26888.67 29899.75 13497.62 21992.81 15890.05 22798.49 18375.24 29498.40 19695.84 15089.12 22694.07 272
LGP-MVS_train93.71 27095.43 26888.67 29897.62 21992.81 15890.05 22798.49 18375.24 29498.40 19695.84 15089.12 22694.07 272
VPA-MVSNet92.70 21591.55 22796.16 19495.09 27296.20 14398.88 25299.00 3391.02 22291.82 21295.29 28776.05 29097.96 22795.62 15281.19 29194.30 248
F-COLMAP96.93 10896.95 9996.87 17299.71 8491.74 25099.85 10197.95 19593.11 15295.72 17299.16 13692.35 13399.94 6895.32 15399.35 11498.92 189
BH-w/o95.71 14895.38 14696.68 17898.49 14692.28 23699.84 10597.50 23892.12 19092.06 21198.79 16884.69 22198.67 17995.29 15499.66 9699.09 185
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 11999.62 3799.85 3394.97 5999.96 5395.11 15599.95 5199.92 87
Anonymous20240521193.10 20691.99 21896.40 18899.10 11289.65 28998.88 25297.93 19783.71 31894.00 19398.75 16968.79 31999.88 8595.08 15691.71 21799.68 115
testdata98.42 11999.47 10095.33 17098.56 7793.78 13399.79 2199.85 3393.64 10199.94 6894.97 15799.94 57100.00 1
gm-plane-assit96.97 22393.76 20691.47 21098.96 15398.79 16894.92 158
PVSNet91.05 1397.13 10196.69 10698.45 11699.52 9695.81 15599.95 4099.65 1094.73 8999.04 7999.21 13484.48 22399.95 6094.92 15898.74 12699.58 136
tpmrst96.27 13795.98 12597.13 16697.96 17393.15 21696.34 32598.17 17492.07 19198.71 9695.12 29193.91 9398.73 17494.91 16096.62 16999.50 149
VPNet91.81 23390.46 24295.85 20294.74 27895.54 16598.98 24198.59 7292.14 18990.77 22297.44 20968.73 32197.54 24194.89 16177.89 31794.46 233
baseline296.71 11996.49 11297.37 16095.63 26695.96 15299.74 13798.88 4392.94 15491.61 21398.97 15197.72 598.62 18194.83 16298.08 14397.53 217
Effi-MVS+-dtu94.53 17795.30 14892.22 29497.77 18682.54 33299.59 16697.06 27994.92 8295.29 17895.37 28185.81 21097.89 23194.80 16397.07 16296.23 224
mvs-test195.53 15195.97 12894.20 25297.77 18685.44 32199.95 4097.06 27994.92 8296.58 15298.72 17085.81 21098.98 16094.80 16398.11 13998.18 204
MVSTER95.53 15195.22 15096.45 18598.56 14197.72 8299.91 6997.67 21592.38 18391.39 21597.14 21797.24 1497.30 25294.80 16387.85 24494.34 247
thisisatest051597.41 9397.02 9898.59 10497.71 19597.52 9199.97 1698.54 8791.83 19897.45 13499.04 14197.50 899.10 15794.75 16696.37 17499.16 179
mvs_tets91.81 23391.08 23494.00 26191.63 32690.58 27298.67 27197.43 24492.43 18287.37 28497.05 22371.76 30997.32 25194.75 16688.68 23494.11 270
RRT_test8_iter0594.58 17494.11 17195.98 19897.88 17796.11 14999.89 8197.45 24191.66 20488.28 27096.71 23596.53 2497.40 24594.73 16883.85 27794.45 238
Anonymous2024052992.10 22990.65 24096.47 18398.82 13390.61 27198.72 26698.67 5975.54 34493.90 19598.58 17966.23 33099.90 7594.70 16990.67 21898.90 192
MVSFormer96.94 10796.60 10897.95 13797.28 21397.70 8599.55 17397.27 26191.17 21699.43 5299.54 10890.92 15896.89 27994.67 17099.62 9899.25 174
test_djsdf92.83 21292.29 21394.47 24391.90 32292.46 23399.55 17397.27 26191.17 21689.96 23096.07 25581.10 24796.89 27994.67 17088.91 22894.05 274
UGNet95.33 15594.57 16397.62 15198.55 14294.85 18398.67 27199.32 2495.75 6596.80 14896.27 24972.18 30899.96 5394.58 17299.05 12098.04 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax91.92 23191.18 23394.15 25391.35 32890.95 26599.00 23997.42 24692.61 17187.38 28397.08 22072.46 30797.36 24794.53 17388.77 23294.13 269
bset_n11_16_dypcd93.05 20892.30 21295.31 21290.23 33795.05 17999.44 19097.28 26092.51 17990.65 22396.68 23685.30 21796.71 28994.49 17484.14 27294.16 263
MVS_Test96.46 12795.74 13898.61 10198.18 16397.23 10599.31 20697.15 27191.07 22098.84 8797.05 22388.17 19198.97 16194.39 17597.50 15199.61 127
PS-MVSNAJss93.64 19793.31 19494.61 23492.11 31992.19 23899.12 22297.38 25192.51 17988.45 26496.99 22691.20 15097.29 25594.36 17687.71 24694.36 243
无先验99.49 18298.71 5393.46 142100.00 194.36 17699.99 20
112198.03 6997.57 7999.40 4199.74 7798.21 6698.31 28798.62 6792.78 16199.53 4499.83 4995.08 50100.00 194.36 17699.92 6799.99 20
MDTV_nov1_ep13_2view96.26 13896.11 32891.89 19698.06 12194.40 7194.30 17999.67 117
thres20096.96 10696.21 11899.22 5098.97 11998.84 3099.85 10199.71 593.17 15096.26 16298.88 16089.87 17199.51 14394.26 18094.91 19799.31 169
BH-untuned95.18 15794.83 15896.22 19398.36 15091.22 26299.80 11997.32 25790.91 22391.08 21898.67 17283.51 22998.54 18594.23 18199.61 10198.92 189
FIs94.10 18593.43 18896.11 19594.70 27996.82 11999.58 16798.93 4092.54 17789.34 24897.31 21387.62 19497.10 26694.22 18286.58 25494.40 240
DWT-MVSNet_test97.31 9597.19 9097.66 14898.24 15994.67 18998.86 25698.20 17293.60 13998.09 12098.89 15897.51 798.78 16994.04 18397.28 15799.55 139
tpm295.47 15395.18 15296.35 19196.91 22591.70 25496.96 31997.93 19788.04 26998.44 10795.40 27793.32 10797.97 22594.00 18495.61 18999.38 161
OpenMVScopyleft90.15 1594.77 16793.59 18498.33 12396.07 24697.48 9699.56 17198.57 7590.46 23086.51 29398.95 15578.57 27199.94 6893.86 18599.74 9097.57 216
thres100view90096.74 11795.92 13399.18 5498.90 12898.77 3699.74 13799.71 592.59 17395.84 16898.86 16489.25 17999.50 14593.84 18694.57 19899.27 172
tfpn200view996.79 11395.99 12399.19 5398.94 12198.82 3199.78 12399.71 592.86 15596.02 16598.87 16289.33 17799.50 14593.84 18694.57 19899.27 172
thres40096.78 11495.99 12399.16 5998.94 12198.82 3199.78 12399.71 592.86 15596.02 16598.87 16289.33 17799.50 14593.84 18694.57 19899.16 179
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2398.44 10897.96 799.55 4299.94 497.18 17100.00 193.81 18999.94 5799.98 51
CDS-MVSNet96.34 13196.07 12097.13 16697.37 20694.96 18199.53 17697.91 20091.55 20795.37 17798.32 19195.05 5397.13 26393.80 19095.75 18799.30 170
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline195.78 14594.86 15798.54 10998.47 14798.07 7099.06 23197.99 19092.68 16794.13 19298.62 17693.28 11098.69 17893.79 19185.76 25898.84 194
OPM-MVS93.21 20392.80 20094.44 24593.12 30590.85 26799.77 12697.61 22296.19 5191.56 21498.65 17375.16 29698.47 18793.78 19289.39 22593.99 280
TAMVS95.85 14395.58 14196.65 18097.07 21793.50 21099.17 22097.82 20991.39 21595.02 18198.01 19792.20 13697.30 25293.75 19395.83 18499.14 182
thisisatest053097.10 10296.72 10598.22 12897.60 19896.70 12199.92 6598.54 8791.11 21997.07 14298.97 15197.47 999.03 15893.73 19496.09 17798.92 189
IS-MVSNet96.29 13595.90 13497.45 15598.13 16794.80 18699.08 22697.61 22292.02 19495.54 17598.96 15390.64 16398.08 22093.73 19497.41 15599.47 151
RRT_MVS95.23 15694.77 16096.61 18198.28 15498.32 6399.81 11497.41 24892.59 17391.28 21797.76 20495.02 5497.23 25893.65 19687.14 25194.28 250
ACMM91.95 1092.88 21192.52 20993.98 26395.75 25889.08 29599.77 12697.52 23493.00 15389.95 23197.99 20076.17 28898.46 19093.63 19788.87 23094.39 241
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)96.32 13295.98 12597.35 16297.93 17594.82 18599.47 18598.15 17991.83 19895.09 18099.11 13791.37 14897.47 24493.47 19897.43 15299.74 107
thres600view796.69 12095.87 13699.14 6398.90 12898.78 3599.74 13799.71 592.59 17395.84 16898.86 16489.25 17999.50 14593.44 19994.50 20199.16 179
Vis-MVSNetpermissive95.72 14695.15 15397.45 15597.62 19794.28 19599.28 21298.24 16494.27 11196.84 14698.94 15679.39 26498.76 17293.25 20098.49 13099.30 170
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-test93.81 19093.15 19795.80 20394.30 28596.20 14399.42 19198.89 4292.33 18589.03 25797.27 21587.39 19796.83 28393.20 20186.48 25594.36 243
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20594.61 28195.28 17299.83 11199.08 3091.49 20889.21 25296.86 23087.14 19996.73 28793.20 20177.52 32094.46 233
DU-MVS92.46 22191.45 23095.49 20594.05 28895.28 17299.81 11498.74 5292.25 18789.21 25296.64 23981.66 24196.73 28793.20 20177.52 32094.46 233
WR-MVS92.31 22491.25 23295.48 20894.45 28295.29 17199.60 16598.68 5690.10 23688.07 27396.89 22880.68 25396.80 28593.14 20479.67 30794.36 243
UniMVSNet (Re)93.07 20792.13 21495.88 20094.84 27696.24 14299.88 8498.98 3492.49 18189.25 25095.40 27787.09 20097.14 26293.13 20578.16 31594.26 251
QAPM95.40 15494.17 17099.10 6996.92 22497.71 8399.40 19298.68 5689.31 24588.94 25898.89 15882.48 23599.96 5393.12 20699.83 8199.62 125
tttt051796.85 11096.49 11297.92 13997.48 20495.89 15499.85 10198.54 8790.72 22896.63 15198.93 15797.47 999.02 15993.03 20795.76 18698.85 193
TR-MVS94.54 17593.56 18697.49 15497.96 17394.34 19498.71 26797.51 23790.30 23594.51 18698.69 17175.56 29198.77 17192.82 20895.99 17999.35 165
CANet_DTU96.76 11596.15 11998.60 10298.78 13697.53 9099.84 10597.63 21797.25 2399.20 7199.64 10081.36 24599.98 4292.77 20998.89 12298.28 203
AUN-MVS93.28 20292.60 20495.34 21098.29 15290.09 28299.31 20698.56 7791.80 20196.35 16198.00 19889.38 17698.28 21092.46 21069.22 34097.64 214
anonymousdsp91.79 23890.92 23694.41 24890.76 33392.93 22198.93 24797.17 26889.08 24787.46 28295.30 28478.43 27496.92 27892.38 21188.73 23393.39 308
XVG-ACMP-BASELINE91.22 24690.75 23792.63 29193.73 29485.61 31898.52 27997.44 24392.77 16289.90 23396.85 23166.64 32998.39 19892.29 21288.61 23593.89 288
miper_enhance_ethall94.36 18393.98 17595.49 20598.68 14095.24 17499.73 14297.29 25993.28 14789.86 23495.97 25694.37 7597.05 26992.20 21384.45 26994.19 257
RPSCF91.80 23692.79 20188.83 32198.15 16569.87 35298.11 29796.60 31283.93 31694.33 18999.27 12779.60 26399.46 15091.99 21493.16 21497.18 218
cl-mvsnet293.77 19293.25 19695.33 21199.49 9994.43 19299.61 16498.09 18390.38 23189.16 25595.61 26590.56 16497.34 24991.93 21584.45 26994.21 256
1112_ss96.01 14195.20 15198.42 11997.80 18496.41 13199.65 15696.66 31092.71 16492.88 20699.40 11892.16 13799.30 15291.92 21693.66 20899.55 139
Test_1112_low_res95.72 14694.83 15898.42 11997.79 18596.41 13199.65 15696.65 31192.70 16592.86 20796.13 25392.15 13899.30 15291.88 21793.64 20999.55 139
tmp_tt65.23 32562.94 32872.13 33844.90 36550.03 36181.05 35589.42 36038.45 35748.51 35999.90 1754.09 35278.70 35891.84 21818.26 36087.64 350
XXY-MVS91.82 23290.46 24295.88 20093.91 29195.40 16998.87 25597.69 21488.63 26287.87 27597.08 22074.38 30197.89 23191.66 21984.07 27494.35 246
D2MVS92.76 21392.59 20793.27 28095.13 27189.54 29199.69 14899.38 2192.26 18687.59 27894.61 30885.05 22097.79 23391.59 22088.01 24392.47 323
UniMVSNet_ETH3D90.06 27388.58 27994.49 24294.67 28088.09 30797.81 30597.57 22783.91 31788.44 26597.41 21057.44 34997.62 23991.41 22188.59 23797.77 212
NR-MVSNet91.56 24190.22 24995.60 20494.05 28895.76 15898.25 29098.70 5491.16 21880.78 32796.64 23983.23 23396.57 29491.41 22177.73 31994.46 233
新几何199.42 3899.75 7698.27 6598.63 6692.69 16699.55 4299.82 5394.40 71100.00 191.21 22399.94 5799.99 20
UA-Net96.54 12495.96 13098.27 12698.23 16095.71 16198.00 30198.45 10793.72 13698.41 10899.27 12788.71 18799.66 13791.19 22497.69 14799.44 156
EPMVS96.53 12596.01 12298.09 13398.43 14896.12 14896.36 32499.43 1993.53 14097.64 13095.04 29394.41 7098.38 20291.13 22598.11 13999.75 106
EI-MVSNet93.73 19493.40 19294.74 22996.80 23392.69 22799.06 23197.67 21588.96 25391.39 21599.02 14288.75 18697.30 25291.07 22687.85 24494.22 254
test_part192.15 22890.72 23896.44 18798.87 13197.46 9898.99 24098.26 16285.89 29586.34 29896.34 24781.71 23997.48 24391.06 22778.99 30994.37 242
test_post195.78 33359.23 36393.20 11497.74 23591.06 227
SCA94.69 16993.81 18097.33 16397.10 21694.44 19198.86 25698.32 15193.30 14696.17 16495.59 26776.48 28497.95 22891.06 22797.43 15299.59 130
Baseline_NR-MVSNet90.33 26589.51 26392.81 28992.84 31189.95 28599.77 12693.94 35084.69 31389.04 25695.66 26481.66 24196.52 29590.99 23076.98 32591.97 329
IterMVS-LS92.69 21692.11 21594.43 24796.80 23392.74 22499.45 18896.89 29788.98 25189.65 24195.38 28088.77 18596.34 30290.98 23182.04 28594.22 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D95.84 14495.11 15498.02 13699.85 5595.10 17898.74 26498.50 10187.22 27993.66 19799.86 2987.45 19699.95 6090.94 23299.81 8799.02 187
CVMVSNet94.68 17194.94 15693.89 26696.80 23386.92 31399.06 23198.98 3494.45 9894.23 19199.02 14285.60 21295.31 32490.91 23395.39 19399.43 157
BH-RMVSNet95.18 15794.31 16897.80 14198.17 16495.23 17599.76 13197.53 23292.52 17894.27 19099.25 13176.84 28098.80 16790.89 23499.54 10599.35 165
Anonymous2023121189.86 27588.44 28194.13 25598.93 12390.68 26998.54 27798.26 16276.28 34086.73 28995.54 26970.60 31597.56 24090.82 23580.27 30494.15 265
miper_ehance_all_eth93.16 20492.60 20494.82 22897.57 19993.56 20999.50 18097.07 27888.75 25888.85 25995.52 27190.97 15796.74 28690.77 23684.45 26994.17 258
tpm93.70 19693.41 19194.58 23695.36 27087.41 31197.01 31796.90 29690.85 22596.72 15094.14 31690.40 16596.84 28290.75 23788.54 23899.51 147
TESTMET0.1,196.74 11796.26 11798.16 12997.36 20796.48 12899.96 2398.29 15791.93 19595.77 17198.07 19695.54 4098.29 20890.55 23898.89 12299.70 112
testdata299.99 3690.54 239
cl_fuxian92.53 21991.87 22194.52 23997.40 20592.99 22099.40 19296.93 29487.86 27088.69 26295.44 27589.95 17096.44 29890.45 24080.69 30094.14 268
test-LLR96.47 12696.04 12197.78 14297.02 22195.44 16699.96 2398.21 16894.07 11795.55 17396.38 24493.90 9498.27 21290.42 24198.83 12499.64 123
test-mter96.39 13095.93 13297.78 14297.02 22195.44 16699.96 2398.21 16891.81 20095.55 17396.38 24495.17 4798.27 21290.42 24198.83 12499.64 123
PCF-MVS94.20 595.18 15794.10 17298.43 11898.55 14295.99 15197.91 30397.31 25890.35 23389.48 24599.22 13385.19 21899.89 7990.40 24398.47 13199.41 159
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CP-MVSNet91.23 24590.22 24994.26 25093.96 29092.39 23599.09 22498.57 7588.95 25486.42 29696.57 24179.19 26696.37 30090.29 24478.95 31094.02 275
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22593.69 29593.98 20199.69 14898.65 6091.03 22188.44 26596.83 23480.05 26196.18 30890.26 24576.89 32794.45 238
PatchMatch-RL96.04 14095.40 14497.95 13799.59 9095.22 17699.52 17799.07 3193.96 12496.49 15598.35 19082.28 23699.82 10590.15 24699.22 11798.81 196
MDTV_nov1_ep1395.69 13997.90 17694.15 19695.98 33098.44 10893.12 15197.98 12395.74 26095.10 4998.58 18290.02 24796.92 166
eth_miper_zixun_eth92.41 22291.93 21993.84 26797.28 21390.68 26998.83 25896.97 28988.57 26389.19 25495.73 26289.24 18196.69 29089.97 24881.55 28894.15 265
Fast-Effi-MVS+95.02 16194.19 16997.52 15397.88 17794.55 19099.97 1697.08 27788.85 25794.47 18797.96 20184.59 22298.41 19489.84 24997.10 16199.59 130
Fast-Effi-MVS+-dtu93.72 19593.86 17993.29 27997.06 21886.16 31599.80 11996.83 30192.66 16892.58 20997.83 20381.39 24497.67 23789.75 25096.87 16796.05 226
ACMH89.72 1790.64 25789.63 25893.66 27495.64 26588.64 30098.55 27597.45 24189.03 24981.62 32397.61 20669.75 31798.41 19489.37 25187.62 24893.92 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs492.10 22991.07 23595.18 21692.82 31294.96 18199.48 18496.83 30187.45 27588.66 26396.56 24283.78 22896.83 28389.29 25284.77 26793.75 297
PatchmatchNetpermissive95.94 14295.45 14397.39 15997.83 18294.41 19396.05 32998.40 13292.86 15597.09 14195.28 28894.21 8698.07 22289.26 25398.11 13999.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+89.98 1690.35 26489.54 26192.78 29095.99 24986.12 31698.81 26097.18 26789.38 24483.14 31697.76 20468.42 32398.43 19289.11 25486.05 25793.78 296
DP-MVS94.54 17593.42 18997.91 14099.46 10294.04 19898.93 24797.48 24081.15 32990.04 22999.55 10687.02 20199.95 6088.97 25598.11 13999.73 108
PS-CasMVS90.63 25889.51 26393.99 26293.83 29291.70 25498.98 24198.52 9088.48 26486.15 30196.53 24375.46 29296.31 30388.83 25678.86 31293.95 283
cl-mvsnet_92.31 22491.58 22594.52 23997.33 21092.77 22299.57 16996.78 30686.97 28487.56 27995.51 27289.43 17596.62 29288.60 25782.44 28294.16 263
cl-mvsnet192.32 22391.60 22494.47 24397.31 21192.74 22499.58 16796.75 30786.99 28387.64 27795.54 26989.55 17496.50 29688.58 25882.44 28294.17 258
pmmvs590.17 27189.09 27093.40 27792.10 32089.77 28899.74 13795.58 33385.88 29787.24 28695.74 26073.41 30596.48 29788.54 25983.56 27893.95 283
LF4IMVS89.25 28588.85 27490.45 31192.81 31381.19 34198.12 29694.79 34391.44 21186.29 29997.11 21865.30 33598.11 21988.53 26085.25 26392.07 326
JIA-IIPM91.76 23990.70 23994.94 22396.11 24587.51 31093.16 34298.13 18275.79 34397.58 13177.68 35392.84 12197.97 22588.47 26196.54 17099.33 167
miper_lstm_enhance91.81 23391.39 23193.06 28697.34 20889.18 29499.38 19796.79 30586.70 28787.47 28195.22 28990.00 16995.86 31888.26 26281.37 29094.15 265
WR-MVS_H91.30 24290.35 24594.15 25394.17 28792.62 23199.17 22098.94 3688.87 25686.48 29594.46 31384.36 22496.61 29388.19 26378.51 31393.21 313
tpmvs94.28 18493.57 18596.40 18898.55 14291.50 25995.70 33498.55 8387.47 27492.15 21094.26 31591.42 14698.95 16288.15 26495.85 18398.76 198
OurMVSNet-221017-089.81 27689.48 26590.83 30791.64 32581.21 34098.17 29595.38 33691.48 20985.65 30597.31 21372.66 30697.29 25588.15 26484.83 26693.97 282
TDRefinement84.76 30682.56 31391.38 30374.58 35684.80 32597.36 31094.56 34684.73 31280.21 32996.12 25463.56 33998.39 19887.92 26663.97 34690.95 337
CMPMVSbinary61.59 2184.75 30785.14 30183.57 33190.32 33662.54 35596.98 31897.59 22674.33 34769.95 34996.66 23764.17 33798.32 20687.88 26788.41 24089.84 344
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test86.90 29685.98 29889.67 31684.45 35075.59 34989.71 35192.43 35286.89 28577.83 33690.94 33794.22 8393.63 34187.75 26869.61 33799.79 100
GA-MVS93.83 18892.84 19996.80 17395.73 25993.57 20899.88 8497.24 26392.57 17692.92 20496.66 23778.73 27097.67 23787.75 26894.06 20699.17 178
ADS-MVSNet293.80 19193.88 17893.55 27697.87 17985.94 31794.24 33596.84 30090.07 23796.43 15794.48 31190.29 16795.37 32287.44 27097.23 15899.36 163
ADS-MVSNet94.79 16594.02 17497.11 16897.87 17993.79 20494.24 33598.16 17790.07 23796.43 15794.48 31190.29 16798.19 21787.44 27097.23 15899.36 163
v14890.70 25589.63 25893.92 26492.97 30990.97 26499.75 13496.89 29787.51 27388.27 27195.01 29481.67 24097.04 27187.40 27277.17 32493.75 297
V4291.28 24490.12 25394.74 22993.42 30093.46 21199.68 15097.02 28287.36 27689.85 23695.05 29281.31 24697.34 24987.34 27380.07 30593.40 307
v2v48291.30 24290.07 25495.01 22093.13 30393.79 20499.77 12697.02 28288.05 26889.25 25095.37 28180.73 25297.15 26187.28 27480.04 30694.09 271
IterMVS90.91 25090.17 25193.12 28396.78 23690.42 27798.89 25097.05 28189.03 24986.49 29495.42 27676.59 28395.02 32687.22 27584.09 27393.93 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS90.19 27089.06 27193.57 27593.06 30790.90 26699.06 23198.47 10388.11 26785.91 30396.30 24876.67 28195.94 31787.07 27676.91 32693.89 288
IterMVS-SCA-FT90.85 25390.16 25292.93 28796.72 23889.96 28498.89 25096.99 28588.95 25486.63 29195.67 26376.48 28495.00 32787.04 27784.04 27693.84 292
tpm cat193.51 19892.52 20996.47 18397.77 18691.47 26096.13 32798.06 18680.98 33092.91 20593.78 31989.66 17298.87 16487.03 27896.39 17399.09 185
GBi-Net90.88 25189.82 25694.08 25697.53 20091.97 24198.43 28296.95 29087.05 28089.68 23894.72 30271.34 31196.11 30987.01 27985.65 25994.17 258
test190.88 25189.82 25694.08 25697.53 20091.97 24198.43 28296.95 29087.05 28089.68 23894.72 30271.34 31196.11 30987.01 27985.65 25994.17 258
FMVSNet392.69 21691.58 22595.99 19798.29 15297.42 10199.26 21497.62 21989.80 24289.68 23895.32 28381.62 24396.27 30587.01 27985.65 25994.29 249
dp95.05 16094.43 16596.91 17097.99 17292.73 22696.29 32697.98 19289.70 24395.93 16794.67 30693.83 9798.45 19186.91 28296.53 17199.54 143
MSDG94.37 18193.36 19397.40 15898.88 13093.95 20299.37 19997.38 25185.75 30090.80 22199.17 13584.11 22799.88 8586.35 28398.43 13298.36 202
EU-MVSNet90.14 27290.34 24689.54 31792.55 31581.06 34298.69 26998.04 18891.41 21486.59 29296.84 23380.83 25193.31 34486.20 28481.91 28694.26 251
pm-mvs189.36 28287.81 28994.01 26093.40 30191.93 24498.62 27496.48 31686.25 29283.86 31396.14 25273.68 30497.04 27186.16 28575.73 33193.04 316
COLMAP_ROBcopyleft90.47 1492.18 22791.49 22994.25 25199.00 11788.04 30898.42 28596.70 30982.30 32688.43 26799.01 14476.97 27899.85 9486.11 28696.50 17294.86 227
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ITE_SJBPF92.38 29295.69 26485.14 32295.71 32992.81 15889.33 24998.11 19470.23 31698.42 19385.91 28788.16 24293.59 304
K. test v388.05 29187.24 29390.47 31091.82 32482.23 33598.96 24497.42 24689.05 24876.93 33895.60 26668.49 32295.42 32185.87 28881.01 29793.75 297
AllTest92.48 22091.64 22395.00 22199.01 11588.43 30298.94 24696.82 30386.50 28888.71 26098.47 18774.73 29899.88 8585.39 28996.18 17596.71 220
TestCases95.00 22199.01 11588.43 30296.82 30386.50 28888.71 26098.47 18774.73 29899.88 8585.39 28996.18 17596.71 220
FMVSNet291.02 24889.56 26095.41 20997.53 20095.74 15998.98 24197.41 24887.05 28088.43 26795.00 29671.34 31196.24 30785.12 29185.21 26494.25 253
v114491.09 24789.83 25594.87 22593.25 30293.69 20799.62 16396.98 28786.83 28689.64 24294.99 29780.94 24997.05 26985.08 29281.16 29293.87 290
v890.54 26089.17 26894.66 23293.43 29993.40 21499.20 21796.94 29385.76 29887.56 27994.51 30981.96 23897.19 25984.94 29378.25 31493.38 309
ambc83.23 33277.17 35562.61 35487.38 35394.55 34776.72 33986.65 34730.16 35896.36 30184.85 29469.86 33690.73 338
MVS_030489.28 28488.31 28392.21 29597.05 21986.53 31497.76 30699.57 1285.58 30393.86 19692.71 32751.04 35596.30 30484.49 29592.72 21693.79 295
LTVRE_ROB88.28 1890.29 26789.05 27294.02 25995.08 27390.15 28197.19 31397.43 24484.91 31183.99 31297.06 22274.00 30398.28 21084.08 29687.71 24693.62 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo88.73 28788.01 28890.88 30591.85 32382.24 33498.22 29395.18 34188.97 25282.26 31996.89 22871.75 31096.67 29184.00 29782.98 27993.72 301
v14419290.79 25489.52 26294.59 23593.11 30692.77 22299.56 17196.99 28586.38 29089.82 23794.95 29980.50 25797.10 26683.98 29880.41 30193.90 287
USDC90.00 27488.96 27393.10 28594.81 27788.16 30698.71 26795.54 33493.66 13783.75 31497.20 21665.58 33298.31 20783.96 29987.49 25092.85 318
MVP-Stereo90.93 24990.45 24492.37 29391.25 33088.76 29698.05 30096.17 32187.27 27884.04 31195.30 28478.46 27397.27 25783.78 30099.70 9491.09 334
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch90.65 25690.30 24791.71 30194.22 28685.50 32098.24 29197.70 21388.67 26086.42 29696.37 24667.82 32598.03 22383.62 30199.62 9891.60 331
DTE-MVSNet89.40 28188.24 28592.88 28892.66 31489.95 28599.10 22398.22 16787.29 27785.12 30896.22 25076.27 28795.30 32583.56 30275.74 33093.41 306
pmmvs685.69 29983.84 30591.26 30490.00 33984.41 32697.82 30496.15 32275.86 34281.29 32595.39 27961.21 34496.87 28183.52 30373.29 33492.50 322
lessismore_v090.53 30890.58 33480.90 34395.80 32777.01 33795.84 25766.15 33196.95 27683.03 30475.05 33293.74 300
v1090.25 26888.82 27594.57 23793.53 29793.43 21299.08 22696.87 29985.00 30887.34 28594.51 30980.93 25097.02 27582.85 30579.23 30893.26 311
DeepMVS_CXcopyleft82.92 33395.98 25158.66 35796.01 32492.72 16378.34 33595.51 27258.29 34898.08 22082.57 30685.29 26292.03 328
PM-MVS80.47 31778.88 32185.26 33083.79 35272.22 35195.89 33291.08 35585.71 30176.56 34088.30 34236.64 35793.90 33882.39 30769.57 33889.66 345
v119290.62 25989.25 26794.72 23193.13 30393.07 21799.50 18097.02 28286.33 29189.56 24495.01 29479.22 26597.09 26882.34 30881.16 29294.01 277
v192192090.46 26189.12 26994.50 24192.96 31092.46 23399.49 18296.98 28786.10 29389.61 24395.30 28478.55 27297.03 27382.17 30980.89 29994.01 277
MIMVSNet90.30 26688.67 27895.17 21796.45 24191.64 25692.39 34497.15 27185.99 29490.50 22493.19 32566.95 32894.86 33082.01 31093.43 21099.01 188
UnsupCasMVSNet_eth85.52 30183.99 30290.10 31389.36 34183.51 32896.65 32197.99 19089.14 24675.89 34293.83 31863.25 34093.92 33781.92 31167.90 34492.88 317
FMVSNet188.50 28886.64 29494.08 25695.62 26791.97 24198.43 28296.95 29083.00 32186.08 30294.72 30259.09 34796.11 30981.82 31284.07 27494.17 258
test0.0.03 193.86 18793.61 18194.64 23395.02 27592.18 23999.93 6198.58 7394.07 11787.96 27498.50 18293.90 9494.96 32881.33 31393.17 21396.78 219
v7n89.65 27988.29 28493.72 26992.22 31890.56 27399.07 23097.10 27585.42 30686.73 28994.72 30280.06 26097.13 26381.14 31478.12 31693.49 305
pmmvs-eth3d84.03 31281.97 31590.20 31284.15 35187.09 31298.10 29894.73 34583.05 32074.10 34587.77 34465.56 33394.01 33681.08 31569.24 33989.49 346
v124090.20 26988.79 27694.44 24593.05 30892.27 23799.38 19796.92 29585.89 29589.36 24794.87 30177.89 27597.03 27380.66 31681.08 29594.01 277
our_test_390.39 26289.48 26593.12 28392.40 31689.57 29099.33 20396.35 31887.84 27185.30 30694.99 29784.14 22696.09 31280.38 31784.56 26893.71 302
TinyColmap87.87 29486.51 29591.94 29895.05 27485.57 31997.65 30794.08 34884.40 31481.82 32296.85 23162.14 34298.33 20580.25 31886.37 25691.91 330
Patchmtry89.70 27888.49 28093.33 27896.24 24489.94 28791.37 34996.23 31978.22 33787.69 27693.31 32391.04 15596.03 31480.18 31982.10 28494.02 275
KD-MVS_2432*160088.00 29286.10 29693.70 27296.91 22594.04 19897.17 31497.12 27384.93 30981.96 32092.41 33092.48 13094.51 33379.23 32052.68 35392.56 320
miper_refine_blended88.00 29286.10 29693.70 27296.91 22594.04 19897.17 31497.12 27384.93 30981.96 32092.41 33092.48 13094.51 33379.23 32052.68 35392.56 320
CR-MVSNet93.45 20192.62 20395.94 19996.29 24292.66 22892.01 34696.23 31992.62 17096.94 14393.31 32391.04 15596.03 31479.23 32095.96 18099.13 183
EG-PatchMatch MVS85.35 30483.81 30689.99 31590.39 33581.89 33798.21 29496.09 32381.78 32874.73 34493.72 32051.56 35497.12 26579.16 32388.61 23590.96 336
DSMNet-mixed88.28 29088.24 28588.42 32589.64 34075.38 35098.06 29989.86 35785.59 30288.20 27292.14 33376.15 28991.95 34678.46 32496.05 17897.92 208
UnsupCasMVSNet_bld79.97 32077.03 32388.78 32285.62 34981.98 33693.66 34097.35 25375.51 34570.79 34883.05 35048.70 35694.91 32978.31 32560.29 35189.46 347
EPNet_dtu95.71 14895.39 14596.66 17998.92 12593.41 21399.57 16998.90 4196.19 5197.52 13298.56 18192.65 12697.36 24777.89 32698.33 13499.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testgi89.01 28688.04 28791.90 29993.49 29884.89 32499.73 14295.66 33193.89 13085.14 30798.17 19359.68 34694.66 33277.73 32788.88 22996.16 225
Patchmatch-test92.65 21891.50 22896.10 19696.85 23090.49 27491.50 34897.19 26582.76 32490.23 22695.59 26795.02 5498.00 22477.41 32896.98 16599.82 97
YYNet185.50 30383.33 30892.00 29790.89 33288.38 30599.22 21696.55 31379.60 33557.26 35492.72 32679.09 26893.78 34077.25 32977.37 32393.84 292
MDA-MVSNet_test_wron85.51 30283.32 30992.10 29690.96 33188.58 30199.20 21796.52 31479.70 33457.12 35592.69 32879.11 26793.86 33977.10 33077.46 32293.86 291
tfpnnormal89.29 28387.61 29094.34 24994.35 28494.13 19798.95 24598.94 3683.94 31584.47 31095.51 27274.84 29797.39 24677.05 33180.41 30191.48 333
TransMVSNet (Re)87.25 29585.28 30093.16 28293.56 29691.03 26398.54 27794.05 34983.69 31981.09 32696.16 25175.32 29396.40 29976.69 33268.41 34292.06 327
FMVSNet588.32 28987.47 29190.88 30596.90 22888.39 30497.28 31195.68 33082.60 32584.67 30992.40 33279.83 26291.16 34876.39 33381.51 28993.09 314
ppachtmachnet_test89.58 28088.35 28293.25 28192.40 31690.44 27699.33 20396.73 30885.49 30485.90 30495.77 25981.09 24896.00 31676.00 33482.49 28193.30 310
MVS-HIRNet86.22 29883.19 31095.31 21296.71 23990.29 27892.12 34597.33 25662.85 35286.82 28870.37 35569.37 31897.49 24275.12 33597.99 14598.15 205
MDA-MVSNet-bldmvs84.09 31181.52 31791.81 30091.32 32988.00 30998.67 27195.92 32680.22 33255.60 35693.32 32268.29 32493.60 34273.76 33676.61 32893.82 294
DIV-MVS_2432*160083.59 31482.06 31488.20 32686.93 34680.70 34497.21 31296.38 31782.87 32282.49 31888.97 34167.63 32692.32 34573.75 33762.30 34991.58 332
Anonymous2024052185.15 30583.81 30689.16 31988.32 34382.69 33098.80 26195.74 32879.72 33381.53 32490.99 33665.38 33494.16 33572.69 33881.11 29490.63 339
new_pmnet84.49 31082.92 31289.21 31890.03 33882.60 33196.89 32095.62 33280.59 33175.77 34389.17 34065.04 33694.79 33172.12 33981.02 29690.23 341
new-patchmatchnet81.19 31679.34 32086.76 32982.86 35380.36 34797.92 30295.27 33882.09 32772.02 34686.87 34662.81 34190.74 35071.10 34063.08 34789.19 348
pmmvs380.27 31877.77 32287.76 32780.32 35482.43 33398.23 29291.97 35372.74 34978.75 33387.97 34357.30 35090.99 34970.31 34162.37 34889.87 343
TAPA-MVS92.12 894.42 17993.60 18396.90 17199.33 10691.78 24999.78 12398.00 18989.89 24194.52 18599.47 11291.97 14199.18 15569.90 34299.52 10699.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CL-MVSNet_2432*160084.50 30983.15 31188.53 32486.00 34881.79 33898.82 25997.35 25385.12 30783.62 31590.91 33876.66 28291.40 34769.53 34360.36 35092.40 324
LCM-MVSNet67.77 32264.73 32676.87 33562.95 36256.25 35989.37 35293.74 35144.53 35661.99 35180.74 35120.42 36486.53 35469.37 34459.50 35287.84 349
OpenMVS_ROBcopyleft79.82 2083.77 31381.68 31690.03 31488.30 34482.82 32998.46 28095.22 33973.92 34876.00 34191.29 33555.00 35196.94 27768.40 34588.51 23990.34 340
N_pmnet80.06 31980.78 31877.89 33491.94 32145.28 36398.80 26156.82 36678.10 33880.08 33093.33 32177.03 27795.76 31968.14 34682.81 28092.64 319
Anonymous2023120686.32 29785.42 29989.02 32089.11 34280.53 34699.05 23595.28 33785.43 30582.82 31793.92 31774.40 30093.44 34366.99 34781.83 28793.08 315
test20.0384.72 30883.99 30286.91 32888.19 34580.62 34598.88 25295.94 32588.36 26678.87 33294.62 30768.75 32089.11 35266.52 34875.82 32991.00 335
PatchT90.38 26388.75 27795.25 21595.99 24990.16 28091.22 35097.54 23076.80 33997.26 13786.01 34891.88 14296.07 31366.16 34995.91 18299.51 147
test_040285.58 30083.94 30490.50 30993.81 29385.04 32398.55 27595.20 34076.01 34179.72 33195.13 29064.15 33896.26 30666.04 35086.88 25390.21 342
MIMVSNet182.58 31580.51 31988.78 32286.68 34784.20 32796.65 32195.41 33578.75 33678.59 33492.44 32951.88 35389.76 35165.26 35178.95 31092.38 325
RPMNet89.76 27787.28 29297.19 16596.29 24292.66 22892.01 34698.31 15370.19 35196.94 14385.87 34987.25 19899.78 11162.69 35295.96 18099.13 183
FPMVS68.72 32168.72 32468.71 33965.95 36044.27 36595.97 33194.74 34451.13 35453.26 35790.50 33925.11 36283.00 35660.80 35380.97 29878.87 352
PMMVS267.15 32364.15 32776.14 33670.56 35962.07 35693.89 33887.52 36158.09 35360.02 35278.32 35222.38 36384.54 35559.56 35447.03 35581.80 351
testmvs40.60 33144.45 33429.05 34619.49 36814.11 36999.68 15018.47 36720.74 36264.59 35098.48 18610.95 36717.09 36556.66 35511.01 36155.94 358
Gipumacopyleft66.95 32465.00 32572.79 33791.52 32767.96 35366.16 35895.15 34247.89 35558.54 35367.99 35729.74 35987.54 35350.20 35677.83 31862.87 356
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 33239.14 33533.31 34519.94 36724.83 36898.36 2869.75 36815.53 36351.31 35887.14 34519.62 36517.74 36447.10 3573.47 36357.36 357
ANet_high56.10 32652.24 32967.66 34049.27 36456.82 35883.94 35482.02 36270.47 35033.28 36364.54 35817.23 36669.16 36045.59 35823.85 35977.02 353
PMVScopyleft49.05 2353.75 32751.34 33160.97 34240.80 36634.68 36674.82 35789.62 35937.55 35828.67 36472.12 3547.09 36881.63 35743.17 35968.21 34366.59 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive53.74 2251.54 32947.86 33362.60 34159.56 36350.93 36079.41 35677.69 36335.69 36036.27 36261.76 3615.79 37069.63 35937.97 36036.61 35667.24 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN52.30 32852.18 33052.67 34371.51 35745.40 36293.62 34176.60 36436.01 35943.50 36064.13 35927.11 36167.31 36131.06 36126.06 35745.30 360
EMVS51.44 33051.22 33252.11 34470.71 35844.97 36494.04 33775.66 36535.34 36142.40 36161.56 36228.93 36065.87 36227.64 36224.73 35845.49 359
wuyk23d20.37 33420.84 33718.99 34765.34 36127.73 36750.43 3597.67 3699.50 3648.01 3656.34 3656.13 36926.24 36323.40 36310.69 3622.99 361
uanet_test0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
cdsmvs_eth3d_5k23.43 33331.24 3360.00 3480.00 3690.00 3700.00 36098.09 1830.00 3650.00 36699.67 9583.37 2310.00 3660.00 3640.00 3640.00 362
pcd_1.5k_mvsjas7.60 33610.13 3390.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 36691.20 1500.00 3660.00 3640.00 3640.00 362
sosnet-low-res0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
sosnet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
uncertanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
Regformer0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
ab-mvs-re8.28 33511.04 3380.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 36699.40 1180.00 3710.00 3660.00 3640.00 3640.00 362
uanet0.00 3370.00 3400.00 3480.00 3690.00 3700.00 3600.00 3700.00 3650.00 3660.00 3660.00 3710.00 3660.00 3640.00 3640.00 362
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
save fliter99.82 6598.79 3399.96 2398.40 13297.66 10
test072699.93 2699.29 1099.96 2398.42 12797.28 1899.86 499.94 497.22 15
GSMVS99.59 130
test_part299.89 4599.25 1399.49 48
sam_mvs194.72 6499.59 130
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post63.35 36094.43 6998.13 218
patchmatchnet-post91.70 33495.12 4897.95 228
MTMP99.87 8796.49 315
TEST999.92 3598.92 2399.96 2398.43 11693.90 12899.71 3099.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2398.43 11694.35 10599.69 3299.85 3395.94 3199.85 94
agg_prior99.93 2698.77 3698.43 11699.63 3599.85 94
test_prior498.05 7199.94 55
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
新几何299.40 192
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
原ACMM299.90 73
test22299.55 9497.41 10299.34 20298.55 8391.86 19799.27 6899.83 4993.84 9699.95 5199.99 20
segment_acmp96.68 22
testdata199.28 21296.35 48
test1299.43 3599.74 7798.56 5398.40 13299.65 3394.76 6399.75 12199.98 3399.99 20
plane_prior795.71 26291.59 258
plane_prior695.76 25791.72 25380.47 258
plane_prior498.59 177
plane_prior391.64 25696.63 3893.01 202
plane_prior299.84 10596.38 44
plane_prior195.73 259
plane_prior91.74 25099.86 9896.76 3489.59 221
n20.00 370
nn0.00 370
door-mid89.69 358
test1198.44 108
door90.31 356
HQP5-MVS91.85 246
HQP-NCC95.78 25399.87 8796.82 3093.37 198
ACMP_Plane95.78 25399.87 8796.82 3093.37 198
HQP4-MVS93.37 19898.39 19894.53 228
HQP3-MVS97.89 20189.60 219
HQP2-MVS80.65 254
NP-MVS95.77 25691.79 24898.65 173
ACMMP++_ref87.04 252
ACMMP++88.23 241
Test By Simon92.82 123