SED-MVS | | | 99.28 5 | 99.11 6 | 99.77 6 | 99.93 26 | 99.30 8 | 99.96 23 | 98.43 113 | 97.27 20 | 99.80 16 | 99.94 4 | 96.71 20 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 99.93 26 | 99.31 7 | | 98.41 128 | 97.71 8 | 99.84 8 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
OPU-MVS | | | | | 99.93 2 | 99.89 45 | 99.80 2 | 99.96 23 | | | | 99.80 58 | 97.44 11 | 100.00 1 | 100.00 1 | 99.98 33 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 98.43 113 | 97.27 20 | 99.80 16 | 99.94 4 | 97.18 17 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
DVP-MVS | | | 99.30 4 | 99.16 3 | 99.73 8 | 99.93 26 | 99.29 10 | 99.95 40 | 98.32 148 | 97.28 18 | 99.83 10 | 99.91 13 | 97.22 15 | 100.00 1 | 99.99 5 | 100.00 1 | 99.89 90 |
|
test_0728_SECOND | | | | | 99.82 5 | 99.94 14 | 99.47 5 | 99.95 40 | 98.43 113 | | | | | 100.00 1 | 99.99 5 | 100.00 1 | 100.00 1 |
|
DPE-MVS | | | 99.26 6 | 99.10 7 | 99.74 7 | 99.89 45 | 99.24 14 | 99.87 87 | 98.44 105 | 97.48 15 | 99.64 34 | 99.94 4 | 96.68 22 | 99.99 36 | 99.99 5 | 100.00 1 | 99.99 20 |
|
ETH3 D test6400 | | | 98.81 22 | 98.54 26 | 99.59 18 | 99.93 26 | 98.93 22 | 99.93 61 | 98.46 102 | 94.56 93 | 99.84 8 | 99.92 11 | 94.32 80 | 99.86 90 | 99.96 8 | 99.98 33 | 100.00 1 |
|
test_0728_THIRD | | | | | | | | | | 96.48 40 | 99.83 10 | 99.91 13 | 97.87 4 | 100.00 1 | 99.92 9 | 100.00 1 | 100.00 1 |
|
DeepPCF-MVS | | 95.94 2 | 97.71 84 | 98.98 10 | 93.92 260 | 99.63 88 | 81.76 332 | 99.96 23 | 98.56 76 | 99.47 1 | 99.19 74 | 99.99 1 | 94.16 87 | 100.00 1 | 99.92 9 | 99.93 63 | 100.00 1 |
|
TSAR-MVS + GP. | | | 98.60 33 | 98.51 28 | 98.86 87 | 99.73 81 | 96.63 122 | 99.97 16 | 97.92 195 | 98.07 5 | 98.76 91 | 99.55 106 | 95.00 57 | 99.94 68 | 99.91 11 | 97.68 148 | 99.99 20 |
|
APDe-MVS | | | 99.06 10 | 98.91 12 | 99.51 28 | 99.94 14 | 98.76 40 | 99.91 69 | 98.39 132 | 97.20 24 | 99.46 49 | 99.85 33 | 95.53 42 | 99.79 109 | 99.86 12 | 100.00 1 | 99.99 20 |
|
xxxxxxxxxxxxxcwj | | | 98.98 14 | 98.79 15 | 99.54 23 | 99.82 65 | 98.79 33 | 99.96 23 | 97.52 231 | 97.66 10 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
SF-MVS | | | 98.67 30 | 98.40 35 | 99.50 29 | 99.77 73 | 98.67 44 | 99.90 73 | 98.21 164 | 93.53 138 | 99.81 12 | 99.89 19 | 94.70 65 | 99.86 90 | 99.84 13 | 99.93 63 | 99.96 70 |
|
9.14 | | | | 98.38 38 | | 99.87 52 | | 99.91 69 | 98.33 146 | 93.22 146 | 99.78 22 | 99.89 19 | 94.57 68 | 99.85 94 | 99.84 13 | 99.97 44 | |
|
ETH3D-3000-0.1 | | | 98.68 29 | 98.42 31 | 99.47 34 | 99.83 63 | 98.57 51 | 99.90 73 | 98.37 139 | 93.81 129 | 99.81 12 | 99.90 17 | 94.34 76 | 99.86 90 | 99.84 13 | 99.98 33 | 99.97 63 |
|
SD-MVS | | | 98.92 16 | 98.70 17 | 99.56 21 | 99.70 85 | 98.73 41 | 99.94 55 | 98.34 145 | 96.38 44 | 99.81 12 | 99.76 72 | 94.59 67 | 99.98 42 | 99.84 13 | 99.96 48 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
TSAR-MVS + MP. | | | 98.93 15 | 98.77 16 | 99.41 39 | 99.74 77 | 98.67 44 | 99.77 126 | 98.38 136 | 96.73 35 | 99.88 3 | 99.74 81 | 94.89 62 | 99.59 139 | 99.80 18 | 99.98 33 | 99.97 63 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
PHI-MVS | | | 98.41 49 | 98.21 49 | 99.03 75 | 99.86 54 | 97.10 110 | 99.98 8 | 98.80 49 | 90.78 223 | 99.62 37 | 99.78 66 | 95.30 46 | 100.00 1 | 99.80 18 | 99.93 63 | 99.99 20 |
|
test_prior3 | | | 98.99 13 | 98.84 14 | 99.43 35 | 99.94 14 | 98.49 57 | 99.95 40 | 98.65 59 | 95.78 58 | 99.73 26 | 99.76 72 | 96.00 29 | 99.80 106 | 99.78 20 | 100.00 1 | 99.99 20 |
|
test_prior2 | | | | | | | | 99.95 40 | | 95.78 58 | 99.73 26 | 99.76 72 | 96.00 29 | | 99.78 20 | 100.00 1 | |
|
CANet | | | 98.27 59 | 97.82 70 | 99.63 12 | 99.72 83 | 99.10 17 | 99.98 8 | 98.51 94 | 97.00 28 | 98.52 101 | 99.71 86 | 87.80 187 | 99.95 60 | 99.75 22 | 99.38 113 | 99.83 96 |
|
CNVR-MVS | | | 99.40 1 | 99.26 1 | 99.84 4 | 99.98 2 | 99.51 4 | 99.98 8 | 98.69 54 | 98.20 3 | 99.93 1 | 99.98 2 | 96.82 19 | 100.00 1 | 99.75 22 | 100.00 1 | 99.99 20 |
|
ETH3D cwj APD-0.16 | | | 98.40 51 | 98.07 59 | 99.40 41 | 99.59 90 | 98.41 60 | 99.86 98 | 98.24 160 | 92.18 185 | 99.73 26 | 99.87 26 | 93.47 103 | 99.85 94 | 99.74 24 | 99.95 51 | 99.93 81 |
|
SMA-MVS | | | 98.76 26 | 98.48 29 | 99.62 15 | 99.87 52 | 98.87 27 | 99.86 98 | 98.38 136 | 93.19 147 | 99.77 23 | 99.94 4 | 95.54 40 | 100.00 1 | 99.74 24 | 99.99 20 | 100.00 1 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
MCST-MVS | | | 99.32 3 | 99.14 4 | 99.86 3 | 99.97 3 | 99.59 3 | 99.97 16 | 98.64 62 | 98.47 2 | 99.13 76 | 99.92 11 | 96.38 26 | 100.00 1 | 99.74 24 | 100.00 1 | 100.00 1 |
|
CHOSEN 280x420 | | | 99.01 12 | 99.03 8 | 98.95 83 | 99.38 104 | 98.87 27 | 98.46 273 | 99.42 20 | 97.03 27 | 99.02 80 | 99.09 138 | 99.35 1 | 98.21 213 | 99.73 27 | 99.78 88 | 99.77 104 |
|
agg_prior1 | | | 98.88 19 | 98.66 19 | 99.54 23 | 99.93 26 | 98.77 36 | 99.96 23 | 98.43 113 | 94.63 92 | 99.63 35 | 99.85 33 | 95.79 37 | 99.85 94 | 99.72 28 | 99.99 20 | 99.99 20 |
|
test9_res | | | | | | | | | | | | | | | 99.71 29 | 99.99 20 | 100.00 1 |
|
ZD-MVS | | | | | | 99.92 35 | 98.57 51 | | 98.52 87 | 92.34 181 | 99.31 63 | 99.83 49 | 95.06 52 | 99.80 106 | 99.70 30 | 99.97 44 | |
|
train_agg | | | 98.88 19 | 98.65 20 | 99.59 18 | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 113 | 94.35 103 | 99.71 30 | 99.86 29 | 95.94 31 | 99.85 94 | 99.69 31 | 99.98 33 | 99.99 20 |
|
testtj | | | 98.89 18 | 98.69 18 | 99.52 26 | 99.94 14 | 98.56 53 | 99.90 73 | 98.55 80 | 95.14 77 | 99.72 29 | 99.84 46 | 95.46 43 | 100.00 1 | 99.65 32 | 99.99 20 | 99.99 20 |
|
NCCC | | | 99.37 2 | 99.25 2 | 99.71 10 | 99.96 8 | 99.15 16 | 99.97 16 | 98.62 66 | 98.02 6 | 99.90 2 | 99.95 3 | 97.33 13 | 100.00 1 | 99.54 33 | 100.00 1 | 100.00 1 |
|
MSLP-MVS++ | | | 99.13 7 | 99.01 9 | 99.49 31 | 99.94 14 | 98.46 59 | 99.98 8 | 98.86 44 | 97.10 25 | 99.80 16 | 99.94 4 | 95.92 33 | 100.00 1 | 99.51 34 | 100.00 1 | 100.00 1 |
|
MSP-MVS | | | 99.09 8 | 99.12 5 | 98.98 80 | 99.93 26 | 97.24 103 | 99.95 40 | 98.42 124 | 97.50 14 | 99.52 47 | 99.88 22 | 97.43 12 | 99.71 128 | 99.50 35 | 99.98 33 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 99.48 36 | 100.00 1 | 100.00 1 |
|
PAPM | | | 98.60 33 | 98.42 31 | 99.14 63 | 96.05 241 | 98.96 20 | 99.90 73 | 99.35 23 | 96.68 37 | 98.35 110 | 99.66 97 | 96.45 25 | 98.51 185 | 99.45 37 | 99.89 74 | 99.96 70 |
|
SteuartSystems-ACMMP | | | 99.02 11 | 98.97 11 | 99.18 54 | 98.72 136 | 97.71 83 | 99.98 8 | 98.44 105 | 96.85 29 | 99.80 16 | 99.91 13 | 97.57 6 | 99.85 94 | 99.44 38 | 99.99 20 | 99.99 20 |
Skip Steuart: Steuart Systems R&D Blog. |
APD-MVS | | | 98.62 32 | 98.35 43 | 99.41 39 | 99.90 42 | 98.51 56 | 99.87 87 | 98.36 141 | 94.08 114 | 99.74 25 | 99.73 83 | 94.08 88 | 99.74 124 | 99.42 39 | 99.99 20 | 99.99 20 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PS-MVSNAJ | | | 98.44 47 | 98.20 50 | 99.16 59 | 98.80 133 | 98.92 23 | 99.54 175 | 98.17 170 | 97.34 16 | 99.85 6 | 99.85 33 | 91.20 148 | 99.89 79 | 99.41 40 | 99.67 95 | 98.69 199 |
|
xiu_mvs_v2_base | | | 98.23 63 | 97.97 64 | 99.02 77 | 98.69 137 | 98.66 46 | 99.52 177 | 98.08 181 | 97.05 26 | 99.86 4 | 99.86 29 | 90.65 158 | 99.71 128 | 99.39 41 | 98.63 128 | 98.69 199 |
|
test1172 | | | 98.38 53 | 98.25 47 | 98.77 90 | 99.88 49 | 96.56 126 | 99.80 119 | 98.36 141 | 94.68 89 | 99.20 71 | 99.80 58 | 93.28 110 | 99.78 111 | 99.34 42 | 99.92 67 | 99.98 51 |
|
HPM-MVS++ | | | 99.07 9 | 98.88 13 | 99.63 12 | 99.90 42 | 99.02 19 | 99.95 40 | 98.56 76 | 97.56 13 | 99.44 51 | 99.85 33 | 95.38 45 | 100.00 1 | 99.31 43 | 99.99 20 | 99.87 93 |
|
SR-MVS | | | 98.46 45 | 98.30 46 | 98.93 84 | 99.88 49 | 97.04 111 | 99.84 105 | 98.35 143 | 94.92 80 | 99.32 62 | 99.80 58 | 93.35 105 | 99.78 111 | 99.30 44 | 99.95 51 | 99.96 70 |
|
MVS_111021_HR | | | 98.72 27 | 98.62 22 | 99.01 78 | 99.36 105 | 97.18 106 | 99.93 61 | 99.90 1 | 96.81 33 | 98.67 95 | 99.77 68 | 93.92 92 | 99.89 79 | 99.27 45 | 99.94 57 | 99.96 70 |
|
MVS_111021_LR | | | 98.42 48 | 98.38 38 | 98.53 111 | 99.39 103 | 95.79 155 | 99.87 87 | 99.86 2 | 96.70 36 | 98.78 90 | 99.79 62 | 92.03 138 | 99.90 75 | 99.17 46 | 99.86 79 | 99.88 92 |
|
PVSNet_BlendedMVS | | | 96.05 139 | 95.82 137 | 96.72 177 | 99.59 90 | 96.99 113 | 99.95 40 | 99.10 28 | 94.06 117 | 98.27 113 | 95.80 253 | 89.00 178 | 99.95 60 | 99.12 47 | 87.53 249 | 93.24 309 |
|
PVSNet_Blended | | | 97.94 71 | 97.64 75 | 98.83 88 | 99.59 90 | 96.99 113 | 100.00 1 | 99.10 28 | 95.38 70 | 98.27 113 | 99.08 139 | 89.00 178 | 99.95 60 | 99.12 47 | 99.25 116 | 99.57 137 |
|
Regformer-1 | | | 98.79 24 | 98.60 23 | 99.36 45 | 99.85 55 | 98.34 62 | 99.87 87 | 98.52 87 | 96.05 53 | 99.41 54 | 99.79 62 | 94.93 60 | 99.76 117 | 99.07 49 | 99.90 72 | 99.99 20 |
|
xiu_mvs_v1_base_debu | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 185 | 98.14 67 | 99.31 205 | 97.86 201 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 208 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
xiu_mvs_v1_base | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 185 | 98.14 67 | 99.31 205 | 97.86 201 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 208 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
xiu_mvs_v1_base_debi | | | 97.43 89 | 97.06 93 | 98.55 106 | 97.74 185 | 98.14 67 | 99.31 205 | 97.86 201 | 96.43 41 | 99.62 37 | 99.69 91 | 85.56 208 | 99.68 132 | 99.05 50 | 98.31 135 | 97.83 208 |
|
Regformer-2 | | | 98.78 25 | 98.59 24 | 99.36 45 | 99.85 55 | 98.32 63 | 99.87 87 | 98.52 87 | 96.04 54 | 99.41 54 | 99.79 62 | 94.92 61 | 99.76 117 | 99.05 50 | 99.90 72 | 99.98 51 |
|
CP-MVS | | | 98.45 46 | 98.32 44 | 98.87 86 | 99.96 8 | 96.62 123 | 99.97 16 | 98.39 132 | 94.43 98 | 98.90 86 | 99.87 26 | 94.30 81 | 100.00 1 | 99.04 54 | 99.99 20 | 99.99 20 |
|
DeepC-MVS_fast | | 96.59 1 | 98.81 22 | 98.54 26 | 99.62 15 | 99.90 42 | 98.85 29 | 99.24 212 | 98.47 100 | 98.14 4 | 99.08 77 | 99.91 13 | 93.09 116 | 100.00 1 | 99.04 54 | 99.99 20 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
ETV-MVS | | | 97.92 73 | 97.80 71 | 98.25 127 | 98.14 162 | 96.48 127 | 99.98 8 | 97.63 214 | 95.61 66 | 99.29 67 | 99.46 114 | 92.55 129 | 98.82 165 | 99.02 56 | 98.54 129 | 99.46 152 |
|
CS-MVS | | | 97.84 76 | 97.69 73 | 98.31 124 | 98.28 151 | 96.27 135 | 100.00 1 | 97.52 231 | 95.29 73 | 99.25 70 | 99.65 99 | 91.18 151 | 98.94 162 | 98.96 57 | 99.04 121 | 99.73 108 |
|
VDD-MVS | | | 93.77 190 | 92.94 196 | 96.27 190 | 98.55 140 | 90.22 275 | 98.77 256 | 97.79 206 | 90.85 221 | 96.82 145 | 99.42 116 | 61.18 336 | 99.77 115 | 98.95 58 | 94.13 204 | 98.82 195 |
|
APD-MVS_3200maxsize | | | 98.25 62 | 98.08 58 | 98.78 89 | 99.81 68 | 96.60 124 | 99.82 112 | 98.30 153 | 93.95 123 | 99.37 60 | 99.77 68 | 92.84 121 | 99.76 117 | 98.95 58 | 99.92 67 | 99.97 63 |
|
VNet | | | 97.21 100 | 96.57 110 | 99.13 68 | 98.97 119 | 97.82 81 | 99.03 234 | 99.21 27 | 94.31 106 | 99.18 75 | 98.88 160 | 86.26 203 | 99.89 79 | 98.93 60 | 94.32 202 | 99.69 114 |
|
XVS | | | 98.70 28 | 98.55 25 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 124 | 96.22 49 | 99.41 54 | 99.78 66 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
X-MVStestdata | | | 93.83 186 | 92.06 213 | 99.15 61 | 99.94 14 | 97.50 94 | 99.94 55 | 98.42 124 | 96.22 49 | 99.41 54 | 41.37 356 | 94.34 76 | 99.96 53 | 98.92 61 | 99.95 51 | 99.99 20 |
|
MP-MVS-pluss | | | 98.07 68 | 97.64 75 | 99.38 44 | 99.74 77 | 98.41 60 | 99.74 137 | 98.18 169 | 93.35 142 | 96.45 154 | 99.85 33 | 92.64 127 | 99.97 51 | 98.91 63 | 99.89 74 | 99.77 104 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SR-MVS-dyc-post | | | 98.31 56 | 98.17 52 | 98.71 93 | 99.79 70 | 96.37 133 | 99.76 131 | 98.31 150 | 94.43 98 | 99.40 58 | 99.75 77 | 93.28 110 | 99.78 111 | 98.90 64 | 99.92 67 | 99.97 63 |
|
RE-MVS-def | | | | 98.13 55 | | 99.79 70 | 96.37 133 | 99.76 131 | 98.31 150 | 94.43 98 | 99.40 58 | 99.75 77 | 92.95 119 | | 98.90 64 | 99.92 67 | 99.97 63 |
|
HPM-MVS | | | 97.96 70 | 97.72 72 | 98.68 95 | 99.84 60 | 96.39 132 | 99.90 73 | 98.17 170 | 92.61 169 | 98.62 98 | 99.57 105 | 91.87 141 | 99.67 135 | 98.87 66 | 99.99 20 | 99.99 20 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MP-MVS | | | 98.23 63 | 97.97 64 | 99.03 75 | 99.94 14 | 97.17 109 | 99.95 40 | 98.39 132 | 94.70 88 | 98.26 115 | 99.81 57 | 91.84 142 | 100.00 1 | 98.85 67 | 99.97 44 | 99.93 81 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
test_yl | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 208 | 97.88 124 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
DCV-MVSNet | | | 97.83 77 | 97.37 84 | 99.21 51 | 99.18 108 | 97.98 75 | 99.64 160 | 99.27 25 | 91.43 208 | 97.88 124 | 98.99 147 | 95.84 35 | 99.84 103 | 98.82 68 | 95.32 194 | 99.79 100 |
|
Regformer-3 | | | 98.58 36 | 98.41 33 | 99.10 69 | 99.84 60 | 97.57 88 | 99.66 153 | 98.52 87 | 95.79 57 | 99.01 81 | 99.77 68 | 94.40 71 | 99.75 120 | 98.82 68 | 99.83 81 | 99.98 51 |
|
Regformer-4 | | | 98.56 37 | 98.39 37 | 99.08 71 | 99.84 60 | 97.52 91 | 99.66 153 | 98.52 87 | 95.76 60 | 99.01 81 | 99.77 68 | 94.33 79 | 99.75 120 | 98.80 71 | 99.83 81 | 99.98 51 |
|
#test# | | | 98.59 35 | 98.41 33 | 99.14 63 | 99.96 8 | 97.43 98 | 99.95 40 | 98.61 68 | 95.00 79 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.78 72 | 99.98 33 | 99.98 51 |
|
PVSNet_0 | | 88.03 19 | 91.80 231 | 90.27 243 | 96.38 188 | 98.27 154 | 90.46 271 | 99.94 55 | 99.61 11 | 93.99 120 | 86.26 295 | 97.39 209 | 71.13 306 | 99.89 79 | 98.77 73 | 67.05 341 | 98.79 197 |
|
MG-MVS | | | 98.91 17 | 98.65 20 | 99.68 11 | 99.94 14 | 99.07 18 | 99.64 160 | 99.44 18 | 97.33 17 | 99.00 83 | 99.72 84 | 94.03 90 | 99.98 42 | 98.73 74 | 100.00 1 | 100.00 1 |
|
HFP-MVS | | | 98.56 37 | 98.37 40 | 99.14 63 | 99.96 8 | 97.43 98 | 99.95 40 | 98.61 68 | 94.77 85 | 99.31 63 | 99.85 33 | 94.22 83 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
ACMMPR | | | 98.50 42 | 98.32 44 | 99.05 73 | 99.96 8 | 97.18 106 | 99.95 40 | 98.60 70 | 94.77 85 | 99.31 63 | 99.84 46 | 93.73 98 | 100.00 1 | 98.70 75 | 99.98 33 | 99.98 51 |
|
zzz-MVS | | | 98.33 55 | 98.00 62 | 99.30 47 | 99.85 55 | 97.93 78 | 99.80 119 | 98.28 155 | 95.76 60 | 97.18 137 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
MTAPA | | | 98.29 58 | 97.96 67 | 99.30 47 | 99.85 55 | 97.93 78 | 99.39 195 | 98.28 155 | 95.76 60 | 97.18 137 | 99.88 22 | 92.74 124 | 100.00 1 | 98.67 77 | 99.88 76 | 99.99 20 |
|
region2R | | | 98.54 39 | 98.37 40 | 99.05 73 | 99.96 8 | 97.18 106 | 99.96 23 | 98.55 80 | 94.87 83 | 99.45 50 | 99.85 33 | 94.07 89 | 100.00 1 | 98.67 77 | 100.00 1 | 99.98 51 |
|
ACMMP_NAP | | | 98.49 43 | 98.14 54 | 99.54 23 | 99.66 87 | 98.62 50 | 99.85 101 | 98.37 139 | 94.68 89 | 99.53 44 | 99.83 49 | 92.87 120 | 100.00 1 | 98.66 80 | 99.84 80 | 99.99 20 |
|
mPP-MVS | | | 98.39 52 | 98.20 50 | 98.97 81 | 99.97 3 | 96.92 116 | 99.95 40 | 98.38 136 | 95.04 78 | 98.61 99 | 99.80 58 | 93.39 104 | 100.00 1 | 98.64 81 | 100.00 1 | 99.98 51 |
|
DELS-MVS | | | 98.54 39 | 98.22 48 | 99.50 29 | 99.15 111 | 98.65 48 | 100.00 1 | 98.58 72 | 97.70 9 | 98.21 117 | 99.24 132 | 92.58 128 | 99.94 68 | 98.63 82 | 99.94 57 | 99.92 87 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
alignmvs | | | 97.81 79 | 97.33 87 | 99.25 49 | 98.77 135 | 98.66 46 | 99.99 4 | 98.44 105 | 94.40 102 | 98.41 106 | 99.47 112 | 93.65 100 | 99.42 150 | 98.57 83 | 94.26 203 | 99.67 117 |
|
CDPH-MVS | | | 98.65 31 | 98.36 42 | 99.49 31 | 99.94 14 | 98.73 41 | 99.87 87 | 98.33 146 | 93.97 121 | 99.76 24 | 99.87 26 | 94.99 58 | 99.75 120 | 98.55 84 | 100.00 1 | 99.98 51 |
|
EI-MVSNet-Vis-set | | | 98.27 59 | 98.11 57 | 98.75 92 | 99.83 63 | 96.59 125 | 99.40 191 | 98.51 94 | 95.29 73 | 98.51 102 | 99.76 72 | 93.60 102 | 99.71 128 | 98.53 85 | 99.52 106 | 99.95 78 |
|
canonicalmvs | | | 97.09 104 | 96.32 116 | 99.39 43 | 98.93 123 | 98.95 21 | 99.72 145 | 97.35 250 | 94.45 96 | 97.88 124 | 99.42 116 | 86.71 198 | 99.52 141 | 98.48 86 | 93.97 207 | 99.72 111 |
|
API-MVS | | | 97.86 74 | 97.66 74 | 98.47 114 | 99.52 96 | 95.41 167 | 99.47 185 | 98.87 43 | 91.68 199 | 98.84 87 | 99.85 33 | 92.34 132 | 99.99 36 | 98.44 87 | 99.96 48 | 100.00 1 |
|
lupinMVS | | | 97.85 75 | 97.60 77 | 98.62 100 | 97.28 209 | 97.70 85 | 99.99 4 | 97.55 225 | 95.50 69 | 99.43 52 | 99.67 95 | 90.92 156 | 98.71 175 | 98.40 88 | 99.62 98 | 99.45 154 |
|
EI-MVSNet-UG-set | | | 98.14 65 | 97.99 63 | 98.60 102 | 99.80 69 | 96.27 135 | 99.36 200 | 98.50 98 | 95.21 76 | 98.30 112 | 99.75 77 | 93.29 109 | 99.73 127 | 98.37 89 | 99.30 115 | 99.81 98 |
|
diffmvs | | | 97.00 105 | 96.64 107 | 98.09 133 | 97.64 192 | 96.17 144 | 99.81 114 | 97.19 260 | 94.67 91 | 98.95 84 | 99.28 124 | 86.43 201 | 98.76 171 | 98.37 89 | 97.42 154 | 99.33 167 |
|
CPTT-MVS | | | 97.64 86 | 97.32 88 | 98.58 105 | 99.97 3 | 95.77 156 | 99.96 23 | 98.35 143 | 89.90 236 | 98.36 109 | 99.79 62 | 91.18 151 | 99.99 36 | 98.37 89 | 99.99 20 | 99.99 20 |
|
ZNCC-MVS | | | 98.31 56 | 98.03 60 | 99.17 57 | 99.88 49 | 97.59 87 | 99.94 55 | 98.44 105 | 94.31 106 | 98.50 103 | 99.82 53 | 93.06 117 | 99.99 36 | 98.30 92 | 99.99 20 | 99.93 81 |
|
DP-MVS Recon | | | 98.41 49 | 98.02 61 | 99.56 21 | 99.97 3 | 98.70 43 | 99.92 65 | 98.44 105 | 92.06 190 | 98.40 108 | 99.84 46 | 95.68 38 | 100.00 1 | 98.19 93 | 99.71 93 | 99.97 63 |
|
GG-mvs-BLEND | | | | | 98.54 109 | 98.21 157 | 98.01 73 | 93.87 331 | 98.52 87 | | 97.92 122 | 97.92 199 | 99.02 2 | 97.94 227 | 98.17 94 | 99.58 103 | 99.67 117 |
|
GST-MVS | | | 98.27 59 | 97.97 64 | 99.17 57 | 99.92 35 | 97.57 88 | 99.93 61 | 98.39 132 | 94.04 119 | 98.80 89 | 99.74 81 | 92.98 118 | 100.00 1 | 98.16 95 | 99.76 89 | 99.93 81 |
|
CSCG | | | 97.10 102 | 97.04 96 | 97.27 164 | 99.89 45 | 91.92 242 | 99.90 73 | 99.07 31 | 88.67 256 | 95.26 176 | 99.82 53 | 93.17 115 | 99.98 42 | 98.15 96 | 99.47 109 | 99.90 89 |
|
MAR-MVS | | | 97.43 89 | 97.19 90 | 98.15 132 | 99.47 100 | 94.79 185 | 99.05 232 | 98.76 50 | 92.65 167 | 98.66 96 | 99.82 53 | 88.52 184 | 99.98 42 | 98.12 97 | 99.63 97 | 99.67 117 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PAPR | | | 98.52 41 | 98.16 53 | 99.58 20 | 99.97 3 | 98.77 36 | 99.95 40 | 98.43 113 | 95.35 71 | 98.03 120 | 99.75 77 | 94.03 90 | 99.98 42 | 98.11 98 | 99.83 81 | 99.99 20 |
|
CLD-MVS | | | 94.06 184 | 93.90 175 | 94.55 234 | 96.02 242 | 90.69 264 | 99.98 8 | 97.72 208 | 96.62 39 | 91.05 216 | 98.85 167 | 77.21 269 | 98.47 186 | 98.11 98 | 89.51 224 | 94.48 229 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
VDDNet | | | 93.12 202 | 91.91 216 | 96.76 175 | 96.67 234 | 92.65 227 | 98.69 262 | 98.21 164 | 82.81 315 | 97.75 127 | 99.28 124 | 61.57 334 | 99.48 148 | 98.09 100 | 94.09 205 | 98.15 204 |
|
HY-MVS | | 92.50 7 | 97.79 81 | 97.17 92 | 99.63 12 | 98.98 118 | 99.32 6 | 97.49 303 | 99.52 13 | 95.69 64 | 98.32 111 | 97.41 207 | 93.32 107 | 99.77 115 | 98.08 101 | 95.75 187 | 99.81 98 |
|
EIA-MVS | | | 97.53 88 | 97.46 81 | 97.76 145 | 98.04 166 | 94.84 182 | 99.98 8 | 97.61 219 | 94.41 101 | 97.90 123 | 99.59 103 | 92.40 130 | 98.87 163 | 98.04 102 | 99.13 119 | 99.59 130 |
|
LFMVS | | | 94.75 167 | 93.56 184 | 98.30 125 | 99.03 114 | 95.70 161 | 98.74 257 | 97.98 188 | 87.81 269 | 98.47 104 | 99.39 120 | 67.43 318 | 99.53 140 | 98.01 103 | 95.20 196 | 99.67 117 |
|
AdaColmap | | | 97.23 99 | 96.80 103 | 98.51 112 | 99.99 1 | 95.60 163 | 99.09 221 | 98.84 46 | 93.32 143 | 96.74 147 | 99.72 84 | 86.04 204 | 100.00 1 | 98.01 103 | 99.43 112 | 99.94 80 |
|
EPNet | | | 98.49 43 | 98.40 35 | 98.77 90 | 99.62 89 | 96.80 119 | 99.90 73 | 99.51 15 | 97.60 12 | 99.20 71 | 99.36 123 | 93.71 99 | 99.91 74 | 97.99 105 | 98.71 127 | 99.61 127 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP | | | 97.74 83 | 97.44 82 | 98.66 97 | 99.92 35 | 96.13 145 | 99.18 216 | 99.45 17 | 94.84 84 | 96.41 157 | 99.71 86 | 91.40 145 | 99.99 36 | 97.99 105 | 98.03 144 | 99.87 93 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
WTY-MVS | | | 98.10 67 | 97.60 77 | 99.60 17 | 98.92 125 | 99.28 12 | 99.89 81 | 99.52 13 | 95.58 67 | 98.24 116 | 99.39 120 | 93.33 106 | 99.74 124 | 97.98 107 | 95.58 190 | 99.78 103 |
|
jason | | | 97.24 98 | 96.86 100 | 98.38 122 | 95.73 253 | 97.32 102 | 99.97 16 | 97.40 247 | 95.34 72 | 98.60 100 | 99.54 108 | 87.70 188 | 98.56 182 | 97.94 108 | 99.47 109 | 99.25 174 |
jason: jason. |
BP-MVS | | | | | | | | | | | | | | | 97.92 109 | | |
|
HQP-MVS | | | 94.61 172 | 94.50 164 | 94.92 220 | 95.78 247 | 91.85 243 | 99.87 87 | 97.89 197 | 96.82 30 | 93.37 195 | 98.65 173 | 80.65 247 | 98.39 197 | 97.92 109 | 89.60 219 | 94.53 225 |
|
1314 | | | 96.84 111 | 95.96 130 | 99.48 33 | 96.74 231 | 98.52 55 | 98.31 280 | 98.86 44 | 95.82 56 | 89.91 228 | 98.98 149 | 87.49 190 | 99.96 53 | 97.80 111 | 99.73 91 | 99.96 70 |
|
HQP_MVS | | | 94.49 177 | 94.36 166 | 94.87 221 | 95.71 256 | 91.74 247 | 99.84 105 | 97.87 199 | 96.38 44 | 93.01 199 | 98.59 177 | 80.47 251 | 98.37 202 | 97.79 112 | 89.55 222 | 94.52 227 |
|
plane_prior5 | | | | | | | | | 97.87 199 | | | | | 98.37 202 | 97.79 112 | 89.55 222 | 94.52 227 |
|
gg-mvs-nofinetune | | | 93.51 196 | 91.86 218 | 98.47 114 | 97.72 189 | 97.96 77 | 92.62 335 | 98.51 94 | 74.70 337 | 97.33 134 | 69.59 348 | 98.91 3 | 97.79 230 | 97.77 114 | 99.56 104 | 99.67 117 |
|
casdiffmvs | | | 96.42 129 | 95.97 128 | 97.77 144 | 97.30 208 | 94.98 178 | 99.84 105 | 97.09 269 | 93.75 133 | 96.58 150 | 99.26 130 | 85.07 213 | 98.78 168 | 97.77 114 | 97.04 163 | 99.54 143 |
|
PGM-MVS | | | 98.34 54 | 98.13 55 | 98.99 79 | 99.92 35 | 97.00 112 | 99.75 134 | 99.50 16 | 93.90 126 | 99.37 60 | 99.76 72 | 93.24 113 | 100.00 1 | 97.75 116 | 99.96 48 | 99.98 51 |
|
DeepC-MVS | | 94.51 4 | 96.92 109 | 96.40 115 | 98.45 116 | 99.16 110 | 95.90 152 | 99.66 153 | 98.06 182 | 96.37 47 | 94.37 185 | 99.49 111 | 83.29 226 | 99.90 75 | 97.63 117 | 99.61 101 | 99.55 139 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HPM-MVS_fast | | | 97.80 80 | 97.50 80 | 98.68 95 | 99.79 70 | 96.42 129 | 99.88 84 | 98.16 173 | 91.75 198 | 98.94 85 | 99.54 108 | 91.82 143 | 99.65 137 | 97.62 118 | 99.99 20 | 99.99 20 |
|
baseline | | | 96.43 128 | 95.98 125 | 97.76 145 | 97.34 204 | 95.17 176 | 99.51 179 | 97.17 263 | 93.92 125 | 96.90 143 | 99.28 124 | 85.37 211 | 98.64 179 | 97.50 119 | 96.86 168 | 99.46 152 |
|
abl_6 | | | 97.67 85 | 97.34 86 | 98.66 97 | 99.68 86 | 96.11 148 | 99.68 150 | 98.14 176 | 93.80 130 | 99.27 68 | 99.70 88 | 88.65 183 | 99.98 42 | 97.46 120 | 99.72 92 | 99.89 90 |
|
PLC | | 95.54 3 | 97.93 72 | 97.89 69 | 98.05 135 | 99.82 65 | 94.77 186 | 99.92 65 | 98.46 102 | 93.93 124 | 97.20 136 | 99.27 127 | 95.44 44 | 99.97 51 | 97.41 121 | 99.51 108 | 99.41 159 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MVS | | | 96.60 123 | 95.56 142 | 99.72 9 | 96.85 224 | 99.22 15 | 98.31 280 | 98.94 36 | 91.57 202 | 90.90 217 | 99.61 102 | 86.66 199 | 99.96 53 | 97.36 122 | 99.88 76 | 99.99 20 |
|
XVG-OURS-SEG-HR | | | 94.79 164 | 94.70 162 | 95.08 214 | 98.05 165 | 89.19 286 | 99.08 223 | 97.54 227 | 93.66 135 | 94.87 179 | 99.58 104 | 78.78 262 | 99.79 109 | 97.31 123 | 93.40 211 | 96.25 219 |
|
3Dnovator | | 91.47 12 | 96.28 136 | 95.34 147 | 99.08 71 | 96.82 226 | 97.47 97 | 99.45 188 | 98.81 47 | 95.52 68 | 89.39 242 | 99.00 146 | 81.97 231 | 99.95 60 | 97.27 124 | 99.83 81 | 99.84 95 |
|
cascas | | | 94.64 171 | 93.61 179 | 97.74 147 | 97.82 179 | 96.26 137 | 99.96 23 | 97.78 207 | 85.76 294 | 94.00 190 | 97.54 204 | 76.95 272 | 99.21 153 | 97.23 125 | 95.43 192 | 97.76 212 |
|
LCM-MVSNet-Re | | | 92.31 220 | 92.60 202 | 91.43 297 | 97.53 196 | 79.27 340 | 99.02 235 | 91.83 346 | 92.07 188 | 80.31 319 | 94.38 310 | 83.50 224 | 95.48 317 | 97.22 126 | 97.58 150 | 99.54 143 |
|
CNLPA | | | 97.76 82 | 97.38 83 | 98.92 85 | 99.53 95 | 96.84 117 | 99.87 87 | 98.14 176 | 93.78 131 | 96.55 152 | 99.69 91 | 92.28 133 | 99.98 42 | 97.13 127 | 99.44 111 | 99.93 81 |
|
Effi-MVS+ | | | 96.30 134 | 95.69 139 | 98.16 129 | 97.85 177 | 96.26 137 | 97.41 304 | 97.21 259 | 90.37 228 | 98.65 97 | 98.58 179 | 86.61 200 | 98.70 176 | 97.11 128 | 97.37 156 | 99.52 146 |
|
PVSNet_Blended_VisFu | | | 97.27 97 | 96.81 102 | 98.66 97 | 98.81 132 | 96.67 121 | 99.92 65 | 98.64 62 | 94.51 95 | 96.38 158 | 98.49 183 | 89.05 177 | 99.88 85 | 97.10 129 | 98.34 133 | 99.43 157 |
|
3Dnovator+ | | 91.53 11 | 96.31 133 | 95.24 149 | 99.52 26 | 96.88 223 | 98.64 49 | 99.72 145 | 98.24 160 | 95.27 75 | 88.42 265 | 98.98 149 | 82.76 228 | 99.94 68 | 97.10 129 | 99.83 81 | 99.96 70 |
|
PAPM_NR | | | 98.12 66 | 97.93 68 | 98.70 94 | 99.94 14 | 96.13 145 | 99.82 112 | 98.43 113 | 94.56 93 | 97.52 130 | 99.70 88 | 94.40 71 | 99.98 42 | 97.00 131 | 99.98 33 | 99.99 20 |
|
CHOSEN 1792x2688 | | | 96.81 112 | 96.53 111 | 97.64 149 | 98.91 127 | 93.07 214 | 99.65 156 | 99.80 3 | 95.64 65 | 95.39 173 | 98.86 164 | 84.35 219 | 99.90 75 | 96.98 132 | 99.16 118 | 99.95 78 |
|
旧先验2 | | | | | | | | 99.46 187 | | 94.21 110 | 99.85 6 | | | 99.95 60 | 96.96 133 | | |
|
PMMVS | | | 96.76 115 | 96.76 104 | 96.76 175 | 98.28 151 | 92.10 237 | 99.91 69 | 97.98 188 | 94.12 112 | 99.53 44 | 99.39 120 | 86.93 197 | 98.73 173 | 96.95 134 | 97.73 146 | 99.45 154 |
|
EPP-MVSNet | | | 96.69 120 | 96.60 108 | 96.96 169 | 97.74 185 | 93.05 216 | 99.37 198 | 98.56 76 | 88.75 254 | 95.83 167 | 99.01 144 | 96.01 28 | 98.56 182 | 96.92 135 | 97.20 160 | 99.25 174 |
|
ET-MVSNet_ETH3D | | | 94.37 179 | 93.28 193 | 97.64 149 | 98.30 149 | 97.99 74 | 99.99 4 | 97.61 219 | 94.35 103 | 71.57 338 | 99.45 115 | 96.23 27 | 95.34 320 | 96.91 136 | 85.14 266 | 99.59 130 |
|
HyFIR lowres test | | | 96.66 122 | 96.43 114 | 97.36 161 | 99.05 113 | 93.91 200 | 99.70 147 | 99.80 3 | 90.54 225 | 96.26 159 | 98.08 194 | 92.15 136 | 98.23 212 | 96.84 137 | 95.46 191 | 99.93 81 |
|
OMC-MVS | | | 97.28 96 | 97.23 89 | 97.41 157 | 99.76 74 | 93.36 212 | 99.65 156 | 97.95 191 | 96.03 55 | 97.41 133 | 99.70 88 | 89.61 169 | 99.51 142 | 96.73 138 | 98.25 138 | 99.38 161 |
|
CostFormer | | | 96.10 138 | 95.88 135 | 96.78 174 | 97.03 216 | 92.55 229 | 97.08 308 | 97.83 204 | 90.04 235 | 98.72 93 | 94.89 296 | 95.01 56 | 98.29 207 | 96.54 139 | 95.77 185 | 99.50 149 |
|
sss | | | 97.57 87 | 97.03 97 | 99.18 54 | 98.37 147 | 98.04 72 | 99.73 142 | 99.38 21 | 93.46 140 | 98.76 91 | 99.06 140 | 91.21 147 | 99.89 79 | 96.33 140 | 97.01 164 | 99.62 125 |
|
114514_t | | | 97.41 93 | 96.83 101 | 99.14 63 | 99.51 98 | 97.83 80 | 99.89 81 | 98.27 158 | 88.48 260 | 99.06 78 | 99.66 97 | 90.30 162 | 99.64 138 | 96.32 141 | 99.97 44 | 99.96 70 |
|
ACMP | | 92.05 9 | 92.74 210 | 92.42 208 | 93.73 264 | 95.91 246 | 88.72 291 | 99.81 114 | 97.53 229 | 94.13 111 | 87.00 283 | 98.23 191 | 74.07 294 | 98.47 186 | 96.22 142 | 88.86 231 | 93.99 276 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
IB-MVS | | 92.85 6 | 94.99 162 | 93.94 174 | 98.16 129 | 97.72 189 | 95.69 162 | 99.99 4 | 98.81 47 | 94.28 108 | 92.70 205 | 96.90 224 | 95.08 50 | 99.17 155 | 96.07 143 | 73.88 332 | 99.60 129 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
XVG-OURS | | | 94.82 163 | 94.74 161 | 95.06 215 | 98.00 167 | 89.19 286 | 99.08 223 | 97.55 225 | 94.10 113 | 94.71 180 | 99.62 101 | 80.51 249 | 99.74 124 | 96.04 144 | 93.06 215 | 96.25 219 |
|
ab-mvs | | | 94.69 168 | 93.42 187 | 98.51 112 | 98.07 164 | 96.26 137 | 96.49 315 | 98.68 55 | 90.31 230 | 94.54 181 | 97.00 222 | 76.30 278 | 99.71 128 | 95.98 145 | 93.38 212 | 99.56 138 |
|
mvs_anonymous | | | 95.65 150 | 95.03 155 | 97.53 152 | 98.19 158 | 95.74 158 | 99.33 202 | 97.49 236 | 90.87 220 | 90.47 221 | 97.10 216 | 88.23 185 | 97.16 258 | 95.92 146 | 97.66 149 | 99.68 115 |
|
nrg030 | | | 93.51 196 | 92.53 205 | 96.45 184 | 94.36 278 | 97.20 105 | 99.81 114 | 97.16 265 | 91.60 201 | 89.86 230 | 97.46 205 | 86.37 202 | 97.68 233 | 95.88 147 | 80.31 302 | 94.46 230 |
|
LPG-MVS_test | | | 92.96 205 | 92.71 200 | 93.71 266 | 95.43 262 | 88.67 292 | 99.75 134 | 97.62 216 | 92.81 156 | 90.05 223 | 98.49 183 | 75.24 286 | 98.40 195 | 95.84 148 | 89.12 226 | 94.07 268 |
|
LGP-MVS_train | | | | | 93.71 266 | 95.43 262 | 88.67 292 | | 97.62 216 | 92.81 156 | 90.05 223 | 98.49 183 | 75.24 286 | 98.40 195 | 95.84 148 | 89.12 226 | 94.07 268 |
|
VPA-MVSNet | | | 92.70 211 | 91.55 223 | 96.16 192 | 95.09 267 | 96.20 142 | 98.88 247 | 99.00 33 | 91.02 218 | 91.82 209 | 95.29 283 | 76.05 282 | 97.96 224 | 95.62 150 | 81.19 291 | 94.30 245 |
|
F-COLMAP | | | 96.93 108 | 96.95 99 | 96.87 172 | 99.71 84 | 91.74 247 | 99.85 101 | 97.95 191 | 93.11 150 | 95.72 169 | 99.16 136 | 92.35 131 | 99.94 68 | 95.32 151 | 99.35 114 | 98.92 189 |
|
BH-w/o | | | 95.71 148 | 95.38 146 | 96.68 178 | 98.49 144 | 92.28 233 | 99.84 105 | 97.50 235 | 92.12 187 | 92.06 208 | 98.79 168 | 84.69 215 | 98.67 178 | 95.29 152 | 99.66 96 | 99.09 185 |
|
原ACMM1 | | | | | 98.96 82 | 99.73 81 | 96.99 113 | | 98.51 94 | 94.06 117 | 99.62 37 | 99.85 33 | 94.97 59 | 99.96 53 | 95.11 153 | 99.95 51 | 99.92 87 |
|
Anonymous202405211 | | | 93.10 203 | 91.99 214 | 96.40 186 | 99.10 112 | 89.65 283 | 98.88 247 | 97.93 193 | 83.71 311 | 94.00 190 | 98.75 169 | 68.79 311 | 99.88 85 | 95.08 154 | 91.71 217 | 99.68 115 |
|
testdata | | | | | 98.42 119 | 99.47 100 | 95.33 169 | | 98.56 76 | 93.78 131 | 99.79 21 | 99.85 33 | 93.64 101 | 99.94 68 | 94.97 155 | 99.94 57 | 100.00 1 |
|
gm-plane-assit | | | | | | 96.97 219 | 93.76 203 | | | 91.47 206 | | 98.96 153 | | 98.79 167 | 94.92 156 | | |
|
PVSNet | | 91.05 13 | 97.13 101 | 96.69 106 | 98.45 116 | 99.52 96 | 95.81 154 | 99.95 40 | 99.65 10 | 94.73 87 | 99.04 79 | 99.21 134 | 84.48 217 | 99.95 60 | 94.92 156 | 98.74 126 | 99.58 136 |
|
tpmrst | | | 96.27 137 | 95.98 125 | 97.13 166 | 97.96 169 | 93.15 213 | 96.34 317 | 98.17 170 | 92.07 188 | 98.71 94 | 95.12 287 | 93.91 93 | 98.73 173 | 94.91 158 | 96.62 169 | 99.50 149 |
|
VPNet | | | 91.81 228 | 90.46 237 | 95.85 200 | 94.74 273 | 95.54 164 | 98.98 237 | 98.59 71 | 92.14 186 | 90.77 219 | 97.44 206 | 68.73 313 | 97.54 238 | 94.89 159 | 77.89 315 | 94.46 230 |
|
baseline2 | | | 96.71 119 | 96.49 112 | 97.37 160 | 95.63 260 | 95.96 151 | 99.74 137 | 98.88 42 | 92.94 152 | 91.61 210 | 98.97 151 | 97.72 5 | 98.62 180 | 94.83 160 | 98.08 143 | 97.53 214 |
|
Effi-MVS+-dtu | | | 94.53 176 | 95.30 148 | 92.22 289 | 97.77 182 | 82.54 326 | 99.59 166 | 97.06 272 | 94.92 80 | 95.29 175 | 95.37 277 | 85.81 205 | 97.89 228 | 94.80 161 | 97.07 162 | 96.23 221 |
|
mvs-test1 | | | 95.53 151 | 95.97 128 | 94.20 248 | 97.77 182 | 85.44 316 | 99.95 40 | 97.06 272 | 94.92 80 | 96.58 150 | 98.72 170 | 85.81 205 | 98.98 159 | 94.80 161 | 98.11 139 | 98.18 203 |
|
MVSTER | | | 95.53 151 | 95.22 150 | 96.45 184 | 98.56 139 | 97.72 82 | 99.91 69 | 97.67 212 | 92.38 180 | 91.39 212 | 97.14 214 | 97.24 14 | 97.30 248 | 94.80 161 | 87.85 244 | 94.34 243 |
|
thisisatest0515 | | | 97.41 93 | 97.02 98 | 98.59 104 | 97.71 191 | 97.52 91 | 99.97 16 | 98.54 84 | 91.83 195 | 97.45 132 | 99.04 141 | 97.50 8 | 99.10 156 | 94.75 164 | 96.37 174 | 99.16 179 |
|
mvs_tets | | | 91.81 228 | 91.08 230 | 94.00 257 | 91.63 321 | 90.58 268 | 98.67 264 | 97.43 241 | 92.43 179 | 87.37 280 | 97.05 220 | 71.76 301 | 97.32 247 | 94.75 164 | 88.68 234 | 94.11 266 |
|
RRT_test8_iter05 | | | 94.58 173 | 94.11 170 | 95.98 196 | 97.88 173 | 96.11 148 | 99.89 81 | 97.45 238 | 91.66 200 | 88.28 266 | 96.71 232 | 96.53 24 | 97.40 241 | 94.73 166 | 83.85 277 | 94.45 235 |
|
Anonymous20240529 | | | 92.10 224 | 90.65 235 | 96.47 182 | 98.82 131 | 90.61 267 | 98.72 259 | 98.67 58 | 75.54 335 | 93.90 192 | 98.58 179 | 66.23 321 | 99.90 75 | 94.70 167 | 90.67 218 | 98.90 192 |
|
MVSFormer | | | 96.94 107 | 96.60 108 | 97.95 137 | 97.28 209 | 97.70 85 | 99.55 173 | 97.27 256 | 91.17 212 | 99.43 52 | 99.54 108 | 90.92 156 | 96.89 277 | 94.67 168 | 99.62 98 | 99.25 174 |
|
test_djsdf | | | 92.83 208 | 92.29 209 | 94.47 239 | 91.90 317 | 92.46 230 | 99.55 173 | 97.27 256 | 91.17 212 | 89.96 226 | 96.07 250 | 81.10 240 | 96.89 277 | 94.67 168 | 88.91 228 | 94.05 270 |
|
UGNet | | | 95.33 155 | 94.57 163 | 97.62 151 | 98.55 140 | 94.85 181 | 98.67 264 | 99.32 24 | 95.75 63 | 96.80 146 | 96.27 244 | 72.18 300 | 99.96 53 | 94.58 170 | 99.05 120 | 98.04 206 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
jajsoiax | | | 91.92 226 | 91.18 229 | 94.15 249 | 91.35 323 | 90.95 261 | 99.00 236 | 97.42 243 | 92.61 169 | 87.38 279 | 97.08 217 | 72.46 299 | 97.36 243 | 94.53 171 | 88.77 232 | 94.13 265 |
|
MVS_Test | | | 96.46 127 | 95.74 138 | 98.61 101 | 98.18 159 | 97.23 104 | 99.31 205 | 97.15 266 | 91.07 216 | 98.84 87 | 97.05 220 | 88.17 186 | 98.97 160 | 94.39 172 | 97.50 151 | 99.61 127 |
|
PS-MVSNAJss | | | 93.64 195 | 93.31 192 | 94.61 230 | 92.11 314 | 92.19 235 | 99.12 219 | 97.38 248 | 92.51 177 | 88.45 260 | 96.99 223 | 91.20 148 | 97.29 251 | 94.36 173 | 87.71 246 | 94.36 239 |
|
æ— å…ˆéªŒ | | | | | | | | 99.49 182 | 98.71 52 | 93.46 140 | | | | 100.00 1 | 94.36 173 | | 99.99 20 |
|
1121 | | | 98.03 69 | 97.57 79 | 99.40 41 | 99.74 77 | 98.21 66 | 98.31 280 | 98.62 66 | 92.78 159 | 99.53 44 | 99.83 49 | 95.08 50 | 100.00 1 | 94.36 173 | 99.92 67 | 99.99 20 |
|
MDTV_nov1_ep13_2view | | | | | | | 96.26 137 | 96.11 320 | | 91.89 193 | 98.06 119 | | 94.40 71 | | 94.30 176 | | 99.67 117 |
|
thres200 | | | 96.96 106 | 96.21 118 | 99.22 50 | 98.97 119 | 98.84 30 | 99.85 101 | 99.71 5 | 93.17 148 | 96.26 159 | 98.88 160 | 89.87 167 | 99.51 142 | 94.26 177 | 94.91 197 | 99.31 169 |
|
BH-untuned | | | 95.18 157 | 94.83 158 | 96.22 191 | 98.36 148 | 91.22 258 | 99.80 119 | 97.32 253 | 90.91 219 | 91.08 215 | 98.67 172 | 83.51 223 | 98.54 184 | 94.23 178 | 99.61 101 | 98.92 189 |
|
FIs | | | 94.10 183 | 93.43 186 | 96.11 193 | 94.70 274 | 96.82 118 | 99.58 167 | 98.93 39 | 92.54 175 | 89.34 244 | 97.31 210 | 87.62 189 | 97.10 264 | 94.22 179 | 86.58 254 | 94.40 237 |
|
DWT-MVSNet_test | | | 97.31 95 | 97.19 90 | 97.66 148 | 98.24 155 | 94.67 187 | 98.86 251 | 98.20 168 | 93.60 137 | 98.09 118 | 98.89 158 | 97.51 7 | 98.78 168 | 94.04 180 | 97.28 157 | 99.55 139 |
|
tpm2 | | | 95.47 153 | 95.18 152 | 96.35 189 | 96.91 221 | 91.70 251 | 96.96 311 | 97.93 193 | 88.04 266 | 98.44 105 | 95.40 273 | 93.32 107 | 97.97 222 | 94.00 181 | 95.61 189 | 99.38 161 |
|
OpenMVS | | 90.15 15 | 94.77 166 | 93.59 182 | 98.33 123 | 96.07 240 | 97.48 96 | 99.56 171 | 98.57 74 | 90.46 226 | 86.51 289 | 98.95 155 | 78.57 264 | 99.94 68 | 93.86 182 | 99.74 90 | 97.57 213 |
|
thres100view900 | | | 96.74 117 | 95.92 133 | 99.18 54 | 98.90 128 | 98.77 36 | 99.74 137 | 99.71 5 | 92.59 171 | 95.84 165 | 98.86 164 | 89.25 174 | 99.50 144 | 93.84 183 | 94.57 198 | 99.27 172 |
|
tfpn200view9 | | | 96.79 113 | 95.99 123 | 99.19 53 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 153 | 96.02 162 | 98.87 162 | 89.33 172 | 99.50 144 | 93.84 183 | 94.57 198 | 99.27 172 |
|
thres400 | | | 96.78 114 | 95.99 123 | 99.16 59 | 98.94 121 | 98.82 31 | 99.78 123 | 99.71 5 | 92.86 153 | 96.02 162 | 98.87 162 | 89.33 172 | 99.50 144 | 93.84 183 | 94.57 198 | 99.16 179 |
|
DPM-MVS | | | 98.83 21 | 98.46 30 | 99.97 1 | 99.33 106 | 99.92 1 | 99.96 23 | 98.44 105 | 97.96 7 | 99.55 42 | 99.94 4 | 97.18 17 | 100.00 1 | 93.81 186 | 99.94 57 | 99.98 51 |
|
CDS-MVSNet | | | 96.34 131 | 96.07 120 | 97.13 166 | 97.37 202 | 94.96 179 | 99.53 176 | 97.91 196 | 91.55 203 | 95.37 174 | 98.32 190 | 95.05 53 | 97.13 261 | 93.80 187 | 95.75 187 | 99.30 170 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
baseline1 | | | 95.78 145 | 94.86 157 | 98.54 109 | 98.47 145 | 98.07 70 | 99.06 228 | 97.99 186 | 92.68 165 | 94.13 189 | 98.62 176 | 93.28 110 | 98.69 177 | 93.79 188 | 85.76 258 | 98.84 194 |
|
OPM-MVS | | | 93.21 200 | 92.80 198 | 94.44 241 | 93.12 300 | 90.85 263 | 99.77 126 | 97.61 219 | 96.19 51 | 91.56 211 | 98.65 173 | 75.16 288 | 98.47 186 | 93.78 189 | 89.39 225 | 93.99 276 |
|
TAMVS | | | 95.85 143 | 95.58 141 | 96.65 180 | 97.07 213 | 93.50 207 | 99.17 217 | 97.82 205 | 91.39 211 | 95.02 178 | 98.01 196 | 92.20 134 | 97.30 248 | 93.75 190 | 95.83 184 | 99.14 182 |
|
thisisatest0530 | | | 97.10 102 | 96.72 105 | 98.22 128 | 97.60 194 | 96.70 120 | 99.92 65 | 98.54 84 | 91.11 215 | 97.07 140 | 98.97 151 | 97.47 9 | 99.03 157 | 93.73 191 | 96.09 177 | 98.92 189 |
|
IS-MVSNet | | | 96.29 135 | 95.90 134 | 97.45 155 | 98.13 163 | 94.80 184 | 99.08 223 | 97.61 219 | 92.02 191 | 95.54 172 | 98.96 153 | 90.64 159 | 98.08 217 | 93.73 191 | 97.41 155 | 99.47 151 |
|
RRT_MVS | | | 95.23 156 | 94.77 160 | 96.61 181 | 98.28 151 | 98.32 63 | 99.81 114 | 97.41 245 | 92.59 171 | 91.28 214 | 97.76 201 | 95.02 54 | 97.23 255 | 93.65 193 | 87.14 251 | 94.28 247 |
|
ACMM | | 91.95 10 | 92.88 207 | 92.52 206 | 93.98 259 | 95.75 252 | 89.08 289 | 99.77 126 | 97.52 231 | 93.00 151 | 89.95 227 | 97.99 197 | 76.17 280 | 98.46 189 | 93.63 194 | 88.87 230 | 94.39 238 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
Vis-MVSNet (Re-imp) | | | 96.32 132 | 95.98 125 | 97.35 162 | 97.93 171 | 94.82 183 | 99.47 185 | 98.15 175 | 91.83 195 | 95.09 177 | 99.11 137 | 91.37 146 | 97.47 240 | 93.47 195 | 97.43 152 | 99.74 107 |
|
thres600view7 | | | 96.69 120 | 95.87 136 | 99.14 63 | 98.90 128 | 98.78 35 | 99.74 137 | 99.71 5 | 92.59 171 | 95.84 165 | 98.86 164 | 89.25 174 | 99.50 144 | 93.44 196 | 94.50 201 | 99.16 179 |
|
Vis-MVSNet | | | 95.72 146 | 95.15 153 | 97.45 155 | 97.62 193 | 94.28 193 | 99.28 209 | 98.24 160 | 94.27 109 | 96.84 144 | 98.94 156 | 79.39 257 | 98.76 171 | 93.25 197 | 98.49 130 | 99.30 170 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
FC-MVSNet-test | | | 93.81 188 | 93.15 195 | 95.80 201 | 94.30 280 | 96.20 142 | 99.42 190 | 98.89 41 | 92.33 182 | 89.03 253 | 97.27 212 | 87.39 192 | 96.83 281 | 93.20 198 | 86.48 255 | 94.36 239 |
|
UniMVSNet_NR-MVSNet | | | 92.95 206 | 92.11 211 | 95.49 203 | 94.61 276 | 95.28 171 | 99.83 111 | 99.08 30 | 91.49 204 | 89.21 248 | 96.86 227 | 87.14 194 | 96.73 285 | 93.20 198 | 77.52 318 | 94.46 230 |
|
DU-MVS | | | 92.46 217 | 91.45 226 | 95.49 203 | 94.05 283 | 95.28 171 | 99.81 114 | 98.74 51 | 92.25 184 | 89.21 248 | 96.64 235 | 81.66 234 | 96.73 285 | 93.20 198 | 77.52 318 | 94.46 230 |
|
WR-MVS | | | 92.31 220 | 91.25 228 | 95.48 206 | 94.45 277 | 95.29 170 | 99.60 165 | 98.68 55 | 90.10 232 | 88.07 269 | 96.89 225 | 80.68 246 | 96.80 283 | 93.14 201 | 79.67 306 | 94.36 239 |
|
UniMVSNet (Re) | | | 93.07 204 | 92.13 210 | 95.88 198 | 94.84 271 | 96.24 141 | 99.88 84 | 98.98 34 | 92.49 178 | 89.25 246 | 95.40 273 | 87.09 195 | 97.14 260 | 93.13 202 | 78.16 313 | 94.26 248 |
|
QAPM | | | 95.40 154 | 94.17 169 | 99.10 69 | 96.92 220 | 97.71 83 | 99.40 191 | 98.68 55 | 89.31 241 | 88.94 254 | 98.89 158 | 82.48 229 | 99.96 53 | 93.12 203 | 99.83 81 | 99.62 125 |
|
tttt0517 | | | 96.85 110 | 96.49 112 | 97.92 139 | 97.48 200 | 95.89 153 | 99.85 101 | 98.54 84 | 90.72 224 | 96.63 149 | 98.93 157 | 97.47 9 | 99.02 158 | 93.03 204 | 95.76 186 | 98.85 193 |
|
TR-MVS | | | 94.54 174 | 93.56 184 | 97.49 154 | 97.96 169 | 94.34 192 | 98.71 260 | 97.51 234 | 90.30 231 | 94.51 183 | 98.69 171 | 75.56 283 | 98.77 170 | 92.82 205 | 95.99 179 | 99.35 165 |
|
CANet_DTU | | | 96.76 115 | 96.15 119 | 98.60 102 | 98.78 134 | 97.53 90 | 99.84 105 | 97.63 214 | 97.25 23 | 99.20 71 | 99.64 100 | 81.36 238 | 99.98 42 | 92.77 206 | 98.89 122 | 98.28 202 |
|
anonymousdsp | | | 91.79 233 | 90.92 232 | 94.41 244 | 90.76 328 | 92.93 218 | 98.93 243 | 97.17 263 | 89.08 243 | 87.46 278 | 95.30 280 | 78.43 267 | 96.92 276 | 92.38 207 | 88.73 233 | 93.39 305 |
|
XVG-ACMP-BASELINE | | | 91.22 241 | 90.75 233 | 92.63 286 | 93.73 289 | 85.61 313 | 98.52 272 | 97.44 240 | 92.77 160 | 89.90 229 | 96.85 228 | 66.64 320 | 98.39 197 | 92.29 208 | 88.61 235 | 93.89 285 |
|
testing_2 | | | 85.10 299 | 81.72 307 | 95.22 211 | 82.25 345 | 94.16 194 | 97.54 302 | 97.01 278 | 88.15 263 | 62.23 342 | 86.43 339 | 44.43 348 | 97.18 257 | 92.28 209 | 85.20 265 | 94.31 244 |
|
miper_enhance_ethall | | | 94.36 181 | 93.98 173 | 95.49 203 | 98.68 138 | 95.24 173 | 99.73 142 | 97.29 255 | 93.28 145 | 89.86 230 | 95.97 251 | 94.37 75 | 97.05 267 | 92.20 210 | 84.45 270 | 94.19 254 |
|
RPSCF | | | 91.80 231 | 92.79 199 | 88.83 315 | 98.15 161 | 69.87 344 | 98.11 291 | 96.60 306 | 83.93 309 | 94.33 186 | 99.27 127 | 79.60 256 | 99.46 149 | 91.99 211 | 93.16 214 | 97.18 215 |
|
cl-mvsnet2 | | | 93.77 190 | 93.25 194 | 95.33 208 | 99.49 99 | 94.43 190 | 99.61 164 | 98.09 179 | 90.38 227 | 89.16 251 | 95.61 261 | 90.56 160 | 97.34 245 | 91.93 212 | 84.45 270 | 94.21 253 |
|
1112_ss | | | 96.01 141 | 95.20 151 | 98.42 119 | 97.80 180 | 96.41 130 | 99.65 156 | 96.66 304 | 92.71 162 | 92.88 203 | 99.40 118 | 92.16 135 | 99.30 151 | 91.92 213 | 93.66 208 | 99.55 139 |
|
Test_1112_low_res | | | 95.72 146 | 94.83 158 | 98.42 119 | 97.79 181 | 96.41 130 | 99.65 156 | 96.65 305 | 92.70 163 | 92.86 204 | 96.13 248 | 92.15 136 | 99.30 151 | 91.88 214 | 93.64 209 | 99.55 139 |
|
tmp_tt | | | 65.23 317 | 62.94 320 | 72.13 330 | 44.90 357 | 50.03 353 | 81.05 347 | 89.42 352 | 38.45 349 | 48.51 351 | 99.90 17 | 54.09 343 | 78.70 350 | 91.84 215 | 18.26 352 | 87.64 342 |
|
XXY-MVS | | | 91.82 227 | 90.46 237 | 95.88 198 | 93.91 286 | 95.40 168 | 98.87 250 | 97.69 211 | 88.63 258 | 87.87 271 | 97.08 217 | 74.38 293 | 97.89 228 | 91.66 216 | 84.07 274 | 94.35 242 |
|
D2MVS | | | 92.76 209 | 92.59 204 | 93.27 274 | 95.13 266 | 89.54 285 | 99.69 148 | 99.38 21 | 92.26 183 | 87.59 274 | 94.61 304 | 85.05 214 | 97.79 230 | 91.59 217 | 88.01 243 | 92.47 318 |
|
UniMVSNet_ETH3D | | | 90.06 268 | 88.58 274 | 94.49 238 | 94.67 275 | 88.09 302 | 97.81 299 | 97.57 224 | 83.91 310 | 88.44 261 | 97.41 207 | 57.44 340 | 97.62 236 | 91.41 218 | 88.59 237 | 97.77 211 |
|
NR-MVSNet | | | 91.56 236 | 90.22 244 | 95.60 202 | 94.05 283 | 95.76 157 | 98.25 284 | 98.70 53 | 91.16 214 | 80.78 318 | 96.64 235 | 83.23 227 | 96.57 291 | 91.41 218 | 77.73 317 | 94.46 230 |
|
æ–°å‡ ä½•1 | | | | | 99.42 38 | 99.75 76 | 98.27 65 | | 98.63 65 | 92.69 164 | 99.55 42 | 99.82 53 | 94.40 71 | 100.00 1 | 91.21 220 | 99.94 57 | 99.99 20 |
|
UA-Net | | | 96.54 124 | 95.96 130 | 98.27 126 | 98.23 156 | 95.71 160 | 98.00 295 | 98.45 104 | 93.72 134 | 98.41 106 | 99.27 127 | 88.71 182 | 99.66 136 | 91.19 221 | 97.69 147 | 99.44 156 |
|
EPMVS | | | 96.53 125 | 96.01 122 | 98.09 133 | 98.43 146 | 96.12 147 | 96.36 316 | 99.43 19 | 93.53 138 | 97.64 128 | 95.04 289 | 94.41 70 | 98.38 201 | 91.13 222 | 98.11 139 | 99.75 106 |
|
EI-MVSNet | | | 93.73 192 | 93.40 190 | 94.74 225 | 96.80 227 | 92.69 224 | 99.06 228 | 97.67 212 | 88.96 249 | 91.39 212 | 99.02 142 | 88.75 181 | 97.30 248 | 91.07 223 | 87.85 244 | 94.22 251 |
|
test_post1 | | | | | | | | 95.78 325 | | | | 59.23 355 | 93.20 114 | 97.74 232 | 91.06 224 | | |
|
SCA | | | 94.69 168 | 93.81 178 | 97.33 163 | 97.10 212 | 94.44 189 | 98.86 251 | 98.32 148 | 93.30 144 | 96.17 161 | 95.59 263 | 76.48 276 | 97.95 225 | 91.06 224 | 97.43 152 | 99.59 130 |
|
Baseline_NR-MVSNet | | | 90.33 260 | 89.51 258 | 92.81 284 | 92.84 306 | 89.95 279 | 99.77 126 | 93.94 342 | 84.69 306 | 89.04 252 | 95.66 259 | 81.66 234 | 96.52 292 | 90.99 226 | 76.98 324 | 91.97 323 |
|
IterMVS-LS | | | 92.69 212 | 92.11 211 | 94.43 243 | 96.80 227 | 92.74 221 | 99.45 188 | 96.89 291 | 88.98 247 | 89.65 237 | 95.38 276 | 88.77 180 | 96.34 299 | 90.98 227 | 82.04 285 | 94.22 251 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
LS3D | | | 95.84 144 | 95.11 154 | 98.02 136 | 99.85 55 | 95.10 177 | 98.74 257 | 98.50 98 | 87.22 276 | 93.66 194 | 99.86 29 | 87.45 191 | 99.95 60 | 90.94 228 | 99.81 87 | 99.02 187 |
|
CVMVSNet | | | 94.68 170 | 94.94 156 | 93.89 262 | 96.80 227 | 86.92 308 | 99.06 228 | 98.98 34 | 94.45 96 | 94.23 188 | 99.02 142 | 85.60 207 | 95.31 321 | 90.91 229 | 95.39 193 | 99.43 157 |
|
BH-RMVSNet | | | 95.18 157 | 94.31 167 | 97.80 141 | 98.17 160 | 95.23 174 | 99.76 131 | 97.53 229 | 92.52 176 | 94.27 187 | 99.25 131 | 76.84 273 | 98.80 166 | 90.89 230 | 99.54 105 | 99.35 165 |
|
Anonymous20231211 | | | 89.86 270 | 88.44 276 | 94.13 251 | 98.93 123 | 90.68 265 | 98.54 270 | 98.26 159 | 76.28 331 | 86.73 285 | 95.54 265 | 70.60 307 | 97.56 237 | 90.82 231 | 80.27 303 | 94.15 261 |
|
miper_ehance_all_eth | | | 93.16 201 | 92.60 202 | 94.82 224 | 97.57 195 | 93.56 206 | 99.50 180 | 97.07 271 | 88.75 254 | 88.85 255 | 95.52 267 | 90.97 155 | 96.74 284 | 90.77 232 | 84.45 270 | 94.17 255 |
|
tpm | | | 93.70 194 | 93.41 189 | 94.58 232 | 95.36 264 | 87.41 306 | 97.01 309 | 96.90 290 | 90.85 221 | 96.72 148 | 94.14 312 | 90.40 161 | 96.84 280 | 90.75 233 | 88.54 238 | 99.51 147 |
|
TESTMET0.1,1 | | | 96.74 117 | 96.26 117 | 98.16 129 | 97.36 203 | 96.48 127 | 99.96 23 | 98.29 154 | 91.93 192 | 95.77 168 | 98.07 195 | 95.54 40 | 98.29 207 | 90.55 234 | 98.89 122 | 99.70 112 |
|
testdata2 | | | | | | | | | | | | | | 99.99 36 | 90.54 235 | | |
|
cl_fuxian | | | 92.53 215 | 91.87 217 | 94.52 235 | 97.40 201 | 92.99 217 | 99.40 191 | 96.93 288 | 87.86 267 | 88.69 258 | 95.44 271 | 89.95 166 | 96.44 295 | 90.45 236 | 80.69 299 | 94.14 264 |
|
test-LLR | | | 96.47 126 | 96.04 121 | 97.78 142 | 97.02 217 | 95.44 165 | 99.96 23 | 98.21 164 | 94.07 115 | 95.55 170 | 96.38 240 | 93.90 94 | 98.27 210 | 90.42 237 | 98.83 124 | 99.64 123 |
|
test-mter | | | 96.39 130 | 95.93 132 | 97.78 142 | 97.02 217 | 95.44 165 | 99.96 23 | 98.21 164 | 91.81 197 | 95.55 170 | 96.38 240 | 95.17 47 | 98.27 210 | 90.42 237 | 98.83 124 | 99.64 123 |
|
PCF-MVS | | 94.20 5 | 95.18 157 | 94.10 171 | 98.43 118 | 98.55 140 | 95.99 150 | 97.91 297 | 97.31 254 | 90.35 229 | 89.48 241 | 99.22 133 | 85.19 212 | 99.89 79 | 90.40 239 | 98.47 131 | 99.41 159 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
CP-MVSNet | | | 91.23 240 | 90.22 244 | 94.26 246 | 93.96 285 | 92.39 232 | 99.09 221 | 98.57 74 | 88.95 250 | 86.42 292 | 96.57 237 | 79.19 259 | 96.37 297 | 90.29 240 | 78.95 308 | 94.02 271 |
|
TranMVSNet+NR-MVSNet | | | 91.68 235 | 90.61 236 | 94.87 221 | 93.69 290 | 93.98 198 | 99.69 148 | 98.65 59 | 91.03 217 | 88.44 261 | 96.83 231 | 80.05 254 | 96.18 305 | 90.26 241 | 76.89 326 | 94.45 235 |
|
PatchMatch-RL | | | 96.04 140 | 95.40 144 | 97.95 137 | 99.59 90 | 95.22 175 | 99.52 177 | 99.07 31 | 93.96 122 | 96.49 153 | 98.35 189 | 82.28 230 | 99.82 105 | 90.15 242 | 99.22 117 | 98.81 196 |
|
MDTV_nov1_ep13 | | | | 95.69 139 | | 97.90 172 | 94.15 195 | 95.98 322 | 98.44 105 | 93.12 149 | 97.98 121 | 95.74 255 | 95.10 49 | 98.58 181 | 90.02 243 | 96.92 166 | |
|
eth_miper_zixun_eth | | | 92.41 218 | 91.93 215 | 93.84 263 | 97.28 209 | 90.68 265 | 98.83 253 | 96.97 283 | 88.57 259 | 89.19 250 | 95.73 257 | 89.24 176 | 96.69 287 | 89.97 244 | 81.55 288 | 94.15 261 |
|
Fast-Effi-MVS+ | | | 95.02 161 | 94.19 168 | 97.52 153 | 97.88 173 | 94.55 188 | 99.97 16 | 97.08 270 | 88.85 253 | 94.47 184 | 97.96 198 | 84.59 216 | 98.41 193 | 89.84 245 | 97.10 161 | 99.59 130 |
|
test_part1 | | | 87.55 288 | 85.69 292 | 93.15 277 | 95.35 265 | 88.21 300 | 98.30 283 | 97.70 209 | 71.40 341 | 83.19 310 | 95.62 260 | 62.37 332 | 97.28 253 | 89.77 246 | 77.47 320 | 93.96 279 |
|
Fast-Effi-MVS+-dtu | | | 93.72 193 | 93.86 177 | 93.29 273 | 97.06 214 | 86.16 310 | 99.80 119 | 96.83 295 | 92.66 166 | 92.58 206 | 97.83 200 | 81.39 237 | 97.67 234 | 89.75 247 | 96.87 167 | 96.05 223 |
|
ACMH | | 89.72 17 | 90.64 252 | 89.63 253 | 93.66 268 | 95.64 259 | 88.64 294 | 98.55 268 | 97.45 238 | 89.03 245 | 81.62 315 | 97.61 203 | 69.75 309 | 98.41 193 | 89.37 248 | 87.62 248 | 93.92 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs4 | | | 92.10 224 | 91.07 231 | 95.18 212 | 92.82 307 | 94.96 179 | 99.48 184 | 96.83 295 | 87.45 272 | 88.66 259 | 96.56 238 | 83.78 222 | 96.83 281 | 89.29 249 | 84.77 268 | 93.75 294 |
|
PatchmatchNet | | | 95.94 142 | 95.45 143 | 97.39 159 | 97.83 178 | 94.41 191 | 96.05 321 | 98.40 129 | 92.86 153 | 97.09 139 | 95.28 284 | 94.21 86 | 98.07 219 | 89.26 250 | 98.11 139 | 99.70 112 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
ACMH+ | | 89.98 16 | 90.35 259 | 89.54 256 | 92.78 285 | 95.99 243 | 86.12 311 | 98.81 254 | 97.18 262 | 89.38 240 | 83.14 311 | 97.76 201 | 68.42 315 | 98.43 191 | 89.11 251 | 86.05 257 | 93.78 293 |
|
DP-MVS | | | 94.54 174 | 93.42 187 | 97.91 140 | 99.46 102 | 94.04 197 | 98.93 243 | 97.48 237 | 81.15 321 | 90.04 225 | 99.55 106 | 87.02 196 | 99.95 60 | 88.97 252 | 98.11 139 | 99.73 108 |
|
PS-CasMVS | | | 90.63 253 | 89.51 258 | 93.99 258 | 93.83 287 | 91.70 251 | 98.98 237 | 98.52 87 | 88.48 260 | 86.15 296 | 96.53 239 | 75.46 284 | 96.31 300 | 88.83 253 | 78.86 310 | 93.95 280 |
|
cl-mvsnet_ | | | 92.31 220 | 91.58 221 | 94.52 235 | 97.33 206 | 92.77 219 | 99.57 169 | 96.78 300 | 86.97 281 | 87.56 275 | 95.51 268 | 89.43 171 | 96.62 289 | 88.60 254 | 82.44 282 | 94.16 260 |
|
cl-mvsnet1 | | | 92.32 219 | 91.60 220 | 94.47 239 | 97.31 207 | 92.74 221 | 99.58 167 | 96.75 301 | 86.99 280 | 87.64 273 | 95.54 265 | 89.55 170 | 96.50 293 | 88.58 255 | 82.44 282 | 94.17 255 |
|
pmmvs5 | | | 90.17 266 | 89.09 265 | 93.40 271 | 92.10 315 | 89.77 282 | 99.74 137 | 95.58 325 | 85.88 293 | 87.24 282 | 95.74 255 | 73.41 297 | 96.48 294 | 88.54 256 | 83.56 278 | 93.95 280 |
|
LF4IMVS | | | 89.25 280 | 88.85 269 | 90.45 306 | 92.81 308 | 81.19 334 | 98.12 290 | 94.79 335 | 91.44 207 | 86.29 294 | 97.11 215 | 65.30 325 | 98.11 216 | 88.53 257 | 85.25 263 | 92.07 320 |
|
JIA-IIPM | | | 91.76 234 | 90.70 234 | 94.94 219 | 96.11 239 | 87.51 305 | 93.16 334 | 98.13 178 | 75.79 334 | 97.58 129 | 77.68 345 | 92.84 121 | 97.97 222 | 88.47 258 | 96.54 170 | 99.33 167 |
|
miper_lstm_enhance | | | 91.81 228 | 91.39 227 | 93.06 281 | 97.34 204 | 89.18 288 | 99.38 196 | 96.79 299 | 86.70 284 | 87.47 277 | 95.22 285 | 90.00 165 | 95.86 315 | 88.26 259 | 81.37 290 | 94.15 261 |
|
WR-MVS_H | | | 91.30 237 | 90.35 240 | 94.15 249 | 94.17 282 | 92.62 228 | 99.17 217 | 98.94 36 | 88.87 252 | 86.48 291 | 94.46 309 | 84.36 218 | 96.61 290 | 88.19 260 | 78.51 311 | 93.21 310 |
|
tpmvs | | | 94.28 182 | 93.57 183 | 96.40 186 | 98.55 140 | 91.50 256 | 95.70 326 | 98.55 80 | 87.47 271 | 92.15 207 | 94.26 311 | 91.42 144 | 98.95 161 | 88.15 261 | 95.85 183 | 98.76 198 |
|
OurMVSNet-221017-0 | | | 89.81 271 | 89.48 260 | 90.83 302 | 91.64 320 | 81.21 333 | 98.17 289 | 95.38 328 | 91.48 205 | 85.65 300 | 97.31 210 | 72.66 298 | 97.29 251 | 88.15 261 | 84.83 267 | 93.97 278 |
|
TDRefinement | | | 84.76 300 | 82.56 305 | 91.38 298 | 74.58 348 | 84.80 320 | 97.36 305 | 94.56 338 | 84.73 305 | 80.21 320 | 96.12 249 | 63.56 329 | 98.39 197 | 87.92 263 | 63.97 342 | 90.95 330 |
|
CMPMVS | | 61.59 21 | 84.75 301 | 85.14 295 | 83.57 323 | 90.32 331 | 62.54 347 | 96.98 310 | 97.59 223 | 74.33 338 | 69.95 340 | 96.66 233 | 64.17 327 | 98.32 205 | 87.88 264 | 88.41 240 | 89.84 336 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Patchmatch-RL test | | | 86.90 290 | 85.98 291 | 89.67 311 | 84.45 341 | 75.59 341 | 89.71 343 | 92.43 344 | 86.89 282 | 77.83 327 | 90.94 330 | 94.22 83 | 93.63 335 | 87.75 265 | 69.61 335 | 99.79 100 |
|
GA-MVS | | | 93.83 186 | 92.84 197 | 96.80 173 | 95.73 253 | 93.57 205 | 99.88 84 | 97.24 258 | 92.57 174 | 92.92 201 | 96.66 233 | 78.73 263 | 97.67 234 | 87.75 265 | 94.06 206 | 99.17 178 |
|
ADS-MVSNet2 | | | 93.80 189 | 93.88 176 | 93.55 270 | 97.87 175 | 85.94 312 | 94.24 327 | 96.84 294 | 90.07 233 | 96.43 155 | 94.48 307 | 90.29 163 | 95.37 319 | 87.44 267 | 97.23 158 | 99.36 163 |
|
ADS-MVSNet | | | 94.79 164 | 94.02 172 | 97.11 168 | 97.87 175 | 93.79 201 | 94.24 327 | 98.16 173 | 90.07 233 | 96.43 155 | 94.48 307 | 90.29 163 | 98.19 214 | 87.44 267 | 97.23 158 | 99.36 163 |
|
v148 | | | 90.70 250 | 89.63 253 | 93.92 260 | 92.97 304 | 90.97 260 | 99.75 134 | 96.89 291 | 87.51 270 | 88.27 267 | 95.01 290 | 81.67 233 | 97.04 269 | 87.40 269 | 77.17 323 | 93.75 294 |
|
V42 | | | 91.28 239 | 90.12 248 | 94.74 225 | 93.42 295 | 93.46 208 | 99.68 150 | 97.02 275 | 87.36 273 | 89.85 232 | 95.05 288 | 81.31 239 | 97.34 245 | 87.34 270 | 80.07 304 | 93.40 304 |
|
v2v482 | | | 91.30 237 | 90.07 249 | 95.01 216 | 93.13 298 | 93.79 201 | 99.77 126 | 97.02 275 | 88.05 265 | 89.25 246 | 95.37 277 | 80.73 245 | 97.15 259 | 87.28 271 | 80.04 305 | 94.09 267 |
|
IterMVS | | | 90.91 245 | 90.17 246 | 93.12 278 | 96.78 230 | 90.42 273 | 98.89 245 | 97.05 274 | 89.03 245 | 86.49 290 | 95.42 272 | 76.59 275 | 95.02 323 | 87.22 272 | 84.09 273 | 93.93 282 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PEN-MVS | | | 90.19 265 | 89.06 266 | 93.57 269 | 93.06 302 | 90.90 262 | 99.06 228 | 98.47 100 | 88.11 264 | 85.91 298 | 96.30 243 | 76.67 274 | 95.94 314 | 87.07 273 | 76.91 325 | 93.89 285 |
|
IterMVS-SCA-FT | | | 90.85 248 | 90.16 247 | 92.93 282 | 96.72 232 | 89.96 278 | 98.89 245 | 96.99 279 | 88.95 250 | 86.63 287 | 95.67 258 | 76.48 276 | 95.00 324 | 87.04 274 | 84.04 276 | 93.84 289 |
|
tpm cat1 | | | 93.51 196 | 92.52 206 | 96.47 182 | 97.77 182 | 91.47 257 | 96.13 319 | 98.06 182 | 80.98 322 | 92.91 202 | 93.78 315 | 89.66 168 | 98.87 163 | 87.03 275 | 96.39 173 | 99.09 185 |
|
GBi-Net | | | 90.88 246 | 89.82 251 | 94.08 252 | 97.53 196 | 91.97 238 | 98.43 275 | 96.95 284 | 87.05 277 | 89.68 234 | 94.72 298 | 71.34 303 | 96.11 306 | 87.01 276 | 85.65 259 | 94.17 255 |
|
test1 | | | 90.88 246 | 89.82 251 | 94.08 252 | 97.53 196 | 91.97 238 | 98.43 275 | 96.95 284 | 87.05 277 | 89.68 234 | 94.72 298 | 71.34 303 | 96.11 306 | 87.01 276 | 85.65 259 | 94.17 255 |
|
FMVSNet3 | | | 92.69 212 | 91.58 221 | 95.99 195 | 98.29 150 | 97.42 100 | 99.26 211 | 97.62 216 | 89.80 238 | 89.68 234 | 95.32 279 | 81.62 236 | 96.27 302 | 87.01 276 | 85.65 259 | 94.29 246 |
|
dp | | | 95.05 160 | 94.43 165 | 96.91 170 | 97.99 168 | 92.73 223 | 96.29 318 | 97.98 188 | 89.70 239 | 95.93 164 | 94.67 302 | 93.83 97 | 98.45 190 | 86.91 279 | 96.53 171 | 99.54 143 |
|
MSDG | | | 94.37 179 | 93.36 191 | 97.40 158 | 98.88 130 | 93.95 199 | 99.37 198 | 97.38 248 | 85.75 296 | 90.80 218 | 99.17 135 | 84.11 221 | 99.88 85 | 86.35 280 | 98.43 132 | 98.36 201 |
|
EU-MVSNet | | | 90.14 267 | 90.34 241 | 89.54 312 | 92.55 310 | 81.06 335 | 98.69 262 | 98.04 184 | 91.41 210 | 86.59 288 | 96.84 230 | 80.83 244 | 93.31 338 | 86.20 281 | 81.91 286 | 94.26 248 |
|
pm-mvs1 | | | 89.36 277 | 87.81 284 | 94.01 256 | 93.40 296 | 91.93 241 | 98.62 267 | 96.48 310 | 86.25 289 | 83.86 308 | 96.14 247 | 73.68 296 | 97.04 269 | 86.16 282 | 75.73 330 | 93.04 313 |
|
COLMAP_ROB | | 90.47 14 | 92.18 223 | 91.49 225 | 94.25 247 | 99.00 117 | 88.04 303 | 98.42 278 | 96.70 303 | 82.30 318 | 88.43 263 | 99.01 144 | 76.97 271 | 99.85 94 | 86.11 283 | 96.50 172 | 94.86 224 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
ITE_SJBPF | | | | | 92.38 287 | 95.69 258 | 85.14 317 | | 95.71 321 | 92.81 156 | 89.33 245 | 98.11 193 | 70.23 308 | 98.42 192 | 85.91 284 | 88.16 242 | 93.59 301 |
|
K. test v3 | | | 88.05 286 | 87.24 288 | 90.47 305 | 91.82 319 | 82.23 329 | 98.96 240 | 97.42 243 | 89.05 244 | 76.93 329 | 95.60 262 | 68.49 314 | 95.42 318 | 85.87 285 | 81.01 296 | 93.75 294 |
|
AllTest | | | 92.48 216 | 91.64 219 | 95.00 217 | 99.01 115 | 88.43 296 | 98.94 242 | 96.82 297 | 86.50 285 | 88.71 256 | 98.47 187 | 74.73 290 | 99.88 85 | 85.39 286 | 96.18 175 | 96.71 217 |
|
TestCases | | | | | 95.00 217 | 99.01 115 | 88.43 296 | | 96.82 297 | 86.50 285 | 88.71 256 | 98.47 187 | 74.73 290 | 99.88 85 | 85.39 286 | 96.18 175 | 96.71 217 |
|
FMVSNet2 | | | 91.02 243 | 89.56 255 | 95.41 207 | 97.53 196 | 95.74 158 | 98.98 237 | 97.41 245 | 87.05 277 | 88.43 263 | 95.00 292 | 71.34 303 | 96.24 304 | 85.12 288 | 85.21 264 | 94.25 250 |
|
v1144 | | | 91.09 242 | 89.83 250 | 94.87 221 | 93.25 297 | 93.69 204 | 99.62 163 | 96.98 281 | 86.83 283 | 89.64 238 | 94.99 293 | 80.94 242 | 97.05 267 | 85.08 289 | 81.16 292 | 93.87 287 |
|
v8 | | | 90.54 255 | 89.17 263 | 94.66 228 | 93.43 294 | 93.40 211 | 99.20 214 | 96.94 287 | 85.76 294 | 87.56 275 | 94.51 305 | 81.96 232 | 97.19 256 | 84.94 290 | 78.25 312 | 93.38 306 |
|
ambc | | | | | 83.23 324 | 77.17 347 | 62.61 346 | 87.38 345 | 94.55 339 | | 76.72 330 | 86.65 338 | 30.16 350 | 96.36 298 | 84.85 291 | 69.86 334 | 90.73 331 |
|
MVS_0304 | | | 89.28 279 | 88.31 278 | 92.21 290 | 97.05 215 | 86.53 309 | 97.76 300 | 99.57 12 | 85.58 299 | 93.86 193 | 92.71 323 | 51.04 346 | 96.30 301 | 84.49 292 | 92.72 216 | 93.79 292 |
|
LTVRE_ROB | | 88.28 18 | 90.29 262 | 89.05 267 | 94.02 255 | 95.08 268 | 90.15 277 | 97.19 307 | 97.43 241 | 84.91 304 | 83.99 307 | 97.06 219 | 74.00 295 | 98.28 209 | 84.08 293 | 87.71 246 | 93.62 300 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
SixPastTwentyTwo | | | 88.73 282 | 88.01 283 | 90.88 300 | 91.85 318 | 82.24 328 | 98.22 287 | 95.18 333 | 88.97 248 | 82.26 313 | 96.89 225 | 71.75 302 | 96.67 288 | 84.00 294 | 82.98 279 | 93.72 298 |
|
v144192 | | | 90.79 249 | 89.52 257 | 94.59 231 | 93.11 301 | 92.77 219 | 99.56 171 | 96.99 279 | 86.38 287 | 89.82 233 | 94.95 295 | 80.50 250 | 97.10 264 | 83.98 295 | 80.41 300 | 93.90 284 |
|
USDC | | | 90.00 269 | 88.96 268 | 93.10 280 | 94.81 272 | 88.16 301 | 98.71 260 | 95.54 326 | 93.66 135 | 83.75 309 | 97.20 213 | 65.58 323 | 98.31 206 | 83.96 296 | 87.49 250 | 92.85 315 |
|
MVP-Stereo | | | 90.93 244 | 90.45 239 | 92.37 288 | 91.25 325 | 88.76 290 | 98.05 294 | 96.17 314 | 87.27 275 | 84.04 306 | 95.30 280 | 78.46 266 | 97.27 254 | 83.78 297 | 99.70 94 | 91.09 327 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MS-PatchMatch | | | 90.65 251 | 90.30 242 | 91.71 296 | 94.22 281 | 85.50 315 | 98.24 285 | 97.70 209 | 88.67 256 | 86.42 292 | 96.37 242 | 67.82 317 | 98.03 220 | 83.62 298 | 99.62 98 | 91.60 325 |
|
DTE-MVSNet | | | 89.40 276 | 88.24 280 | 92.88 283 | 92.66 309 | 89.95 279 | 99.10 220 | 98.22 163 | 87.29 274 | 85.12 303 | 96.22 245 | 76.27 279 | 95.30 322 | 83.56 299 | 75.74 329 | 93.41 303 |
|
pmmvs6 | | | 85.69 293 | 83.84 299 | 91.26 299 | 90.00 333 | 84.41 321 | 97.82 298 | 96.15 315 | 75.86 333 | 81.29 316 | 95.39 275 | 61.21 335 | 96.87 279 | 83.52 300 | 73.29 333 | 92.50 317 |
|
lessismore_v0 | | | | | 90.53 303 | 90.58 329 | 80.90 336 | | 95.80 320 | | 77.01 328 | 95.84 252 | 66.15 322 | 96.95 274 | 83.03 301 | 75.05 331 | 93.74 297 |
|
v10 | | | 90.25 263 | 88.82 270 | 94.57 233 | 93.53 292 | 93.43 209 | 99.08 223 | 96.87 293 | 85.00 303 | 87.34 281 | 94.51 305 | 80.93 243 | 97.02 273 | 82.85 302 | 79.23 307 | 93.26 308 |
|
DeepMVS_CX | | | | | 82.92 325 | 95.98 245 | 58.66 349 | | 96.01 317 | 92.72 161 | 78.34 326 | 95.51 268 | 58.29 339 | 98.08 217 | 82.57 303 | 85.29 262 | 92.03 322 |
|
PM-MVS | | | 80.47 309 | 78.88 313 | 85.26 322 | 83.79 343 | 72.22 343 | 95.89 324 | 91.08 347 | 85.71 297 | 76.56 331 | 88.30 333 | 36.64 349 | 93.90 332 | 82.39 304 | 69.57 336 | 89.66 337 |
|
v1192 | | | 90.62 254 | 89.25 262 | 94.72 227 | 93.13 298 | 93.07 214 | 99.50 180 | 97.02 275 | 86.33 288 | 89.56 240 | 95.01 290 | 79.22 258 | 97.09 266 | 82.34 305 | 81.16 292 | 94.01 273 |
|
v1921920 | | | 90.46 256 | 89.12 264 | 94.50 237 | 92.96 305 | 92.46 230 | 99.49 182 | 96.98 281 | 86.10 290 | 89.61 239 | 95.30 280 | 78.55 265 | 97.03 271 | 82.17 306 | 80.89 298 | 94.01 273 |
|
MIMVSNet | | | 90.30 261 | 88.67 273 | 95.17 213 | 96.45 235 | 91.64 253 | 92.39 336 | 97.15 266 | 85.99 291 | 90.50 220 | 93.19 321 | 66.95 319 | 94.86 327 | 82.01 307 | 93.43 210 | 99.01 188 |
|
UnsupCasMVSNet_eth | | | 85.52 295 | 83.99 296 | 90.10 308 | 89.36 335 | 83.51 323 | 96.65 313 | 97.99 186 | 89.14 242 | 75.89 333 | 93.83 314 | 63.25 330 | 93.92 331 | 81.92 308 | 67.90 340 | 92.88 314 |
|
FMVSNet1 | | | 88.50 283 | 86.64 289 | 94.08 252 | 95.62 261 | 91.97 238 | 98.43 275 | 96.95 284 | 83.00 314 | 86.08 297 | 94.72 298 | 59.09 338 | 96.11 306 | 81.82 309 | 84.07 274 | 94.17 255 |
|
test0.0.03 1 | | | 93.86 185 | 93.61 179 | 94.64 229 | 95.02 270 | 92.18 236 | 99.93 61 | 98.58 72 | 94.07 115 | 87.96 270 | 98.50 182 | 93.90 94 | 94.96 325 | 81.33 310 | 93.17 213 | 96.78 216 |
|
v7n | | | 89.65 274 | 88.29 279 | 93.72 265 | 92.22 313 | 90.56 269 | 99.07 227 | 97.10 268 | 85.42 302 | 86.73 285 | 94.72 298 | 80.06 253 | 97.13 261 | 81.14 311 | 78.12 314 | 93.49 302 |
|
pmmvs-eth3d | | | 84.03 305 | 81.97 306 | 90.20 307 | 84.15 342 | 87.09 307 | 98.10 292 | 94.73 337 | 83.05 313 | 74.10 336 | 87.77 335 | 65.56 324 | 94.01 330 | 81.08 312 | 69.24 337 | 89.49 338 |
|
v1240 | | | 90.20 264 | 88.79 271 | 94.44 241 | 93.05 303 | 92.27 234 | 99.38 196 | 96.92 289 | 85.89 292 | 89.36 243 | 94.87 297 | 77.89 268 | 97.03 271 | 80.66 313 | 81.08 294 | 94.01 273 |
|
our_test_3 | | | 90.39 257 | 89.48 260 | 93.12 278 | 92.40 311 | 89.57 284 | 99.33 202 | 96.35 311 | 87.84 268 | 85.30 301 | 94.99 293 | 84.14 220 | 96.09 309 | 80.38 314 | 84.56 269 | 93.71 299 |
|
TinyColmap | | | 87.87 287 | 86.51 290 | 91.94 293 | 95.05 269 | 85.57 314 | 97.65 301 | 94.08 340 | 84.40 307 | 81.82 314 | 96.85 228 | 62.14 333 | 98.33 204 | 80.25 315 | 86.37 256 | 91.91 324 |
|
Patchmtry | | | 89.70 273 | 88.49 275 | 93.33 272 | 96.24 238 | 89.94 281 | 91.37 341 | 96.23 312 | 78.22 328 | 87.69 272 | 93.31 319 | 91.04 153 | 96.03 311 | 80.18 316 | 82.10 284 | 94.02 271 |
|
CR-MVSNet | | | 93.45 199 | 92.62 201 | 95.94 197 | 96.29 236 | 92.66 225 | 92.01 338 | 96.23 312 | 92.62 168 | 96.94 141 | 93.31 319 | 91.04 153 | 96.03 311 | 79.23 317 | 95.96 180 | 99.13 183 |
|
EG-PatchMatch MVS | | | 85.35 298 | 83.81 300 | 89.99 310 | 90.39 330 | 81.89 331 | 98.21 288 | 96.09 316 | 81.78 320 | 74.73 335 | 93.72 316 | 51.56 345 | 97.12 263 | 79.16 318 | 88.61 235 | 90.96 329 |
|
DSMNet-mixed | | | 88.28 285 | 88.24 280 | 88.42 318 | 89.64 334 | 75.38 342 | 98.06 293 | 89.86 349 | 85.59 298 | 88.20 268 | 92.14 327 | 76.15 281 | 91.95 339 | 78.46 319 | 96.05 178 | 97.92 207 |
|
UnsupCasMVSNet_bld | | | 79.97 312 | 77.03 315 | 88.78 316 | 85.62 340 | 81.98 330 | 93.66 332 | 97.35 250 | 75.51 336 | 70.79 339 | 83.05 342 | 48.70 347 | 94.91 326 | 78.31 320 | 60.29 345 | 89.46 339 |
|
EPNet_dtu | | | 95.71 148 | 95.39 145 | 96.66 179 | 98.92 125 | 93.41 210 | 99.57 169 | 98.90 40 | 96.19 51 | 97.52 130 | 98.56 181 | 92.65 126 | 97.36 243 | 77.89 321 | 98.33 134 | 99.20 177 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
testgi | | | 89.01 281 | 88.04 282 | 91.90 294 | 93.49 293 | 84.89 319 | 99.73 142 | 95.66 323 | 93.89 128 | 85.14 302 | 98.17 192 | 59.68 337 | 94.66 329 | 77.73 322 | 88.88 229 | 96.16 222 |
|
Patchmatch-test | | | 92.65 214 | 91.50 224 | 96.10 194 | 96.85 224 | 90.49 270 | 91.50 340 | 97.19 260 | 82.76 316 | 90.23 222 | 95.59 263 | 95.02 54 | 98.00 221 | 77.41 323 | 96.98 165 | 99.82 97 |
|
YYNet1 | | | 85.50 297 | 83.33 301 | 92.00 292 | 90.89 327 | 88.38 299 | 99.22 213 | 96.55 307 | 79.60 326 | 57.26 346 | 92.72 322 | 79.09 261 | 93.78 334 | 77.25 324 | 77.37 322 | 93.84 289 |
|
MDA-MVSNet_test_wron | | | 85.51 296 | 83.32 302 | 92.10 291 | 90.96 326 | 88.58 295 | 99.20 214 | 96.52 308 | 79.70 325 | 57.12 347 | 92.69 324 | 79.11 260 | 93.86 333 | 77.10 325 | 77.46 321 | 93.86 288 |
|
tfpnnormal | | | 89.29 278 | 87.61 285 | 94.34 245 | 94.35 279 | 94.13 196 | 98.95 241 | 98.94 36 | 83.94 308 | 84.47 305 | 95.51 268 | 74.84 289 | 97.39 242 | 77.05 326 | 80.41 300 | 91.48 326 |
|
TransMVSNet (Re) | | | 87.25 289 | 85.28 294 | 93.16 276 | 93.56 291 | 91.03 259 | 98.54 270 | 94.05 341 | 83.69 312 | 81.09 317 | 96.16 246 | 75.32 285 | 96.40 296 | 76.69 327 | 68.41 338 | 92.06 321 |
|
FMVSNet5 | | | 88.32 284 | 87.47 286 | 90.88 300 | 96.90 222 | 88.39 298 | 97.28 306 | 95.68 322 | 82.60 317 | 84.67 304 | 92.40 326 | 79.83 255 | 91.16 340 | 76.39 328 | 81.51 289 | 93.09 311 |
|
ppachtmachnet_test | | | 89.58 275 | 88.35 277 | 93.25 275 | 92.40 311 | 90.44 272 | 99.33 202 | 96.73 302 | 85.49 300 | 85.90 299 | 95.77 254 | 81.09 241 | 96.00 313 | 76.00 329 | 82.49 281 | 93.30 307 |
|
MVS-HIRNet | | | 86.22 292 | 83.19 303 | 95.31 209 | 96.71 233 | 90.29 274 | 92.12 337 | 97.33 252 | 62.85 344 | 86.82 284 | 70.37 347 | 69.37 310 | 97.49 239 | 75.12 330 | 97.99 145 | 98.15 204 |
|
MDA-MVSNet-bldmvs | | | 84.09 304 | 81.52 309 | 91.81 295 | 91.32 324 | 88.00 304 | 98.67 264 | 95.92 319 | 80.22 324 | 55.60 348 | 93.32 318 | 68.29 316 | 93.60 336 | 73.76 331 | 76.61 327 | 93.82 291 |
|
new_pmnet | | | 84.49 303 | 82.92 304 | 89.21 313 | 90.03 332 | 82.60 325 | 96.89 312 | 95.62 324 | 80.59 323 | 75.77 334 | 89.17 332 | 65.04 326 | 94.79 328 | 72.12 332 | 81.02 295 | 90.23 333 |
|
new-patchmatchnet | | | 81.19 308 | 79.34 312 | 86.76 321 | 82.86 344 | 80.36 339 | 97.92 296 | 95.27 330 | 82.09 319 | 72.02 337 | 86.87 337 | 62.81 331 | 90.74 342 | 71.10 333 | 63.08 343 | 89.19 340 |
|
pmmvs3 | | | 80.27 310 | 77.77 314 | 87.76 319 | 80.32 346 | 82.43 327 | 98.23 286 | 91.97 345 | 72.74 340 | 78.75 324 | 87.97 334 | 57.30 341 | 90.99 341 | 70.31 334 | 62.37 344 | 89.87 335 |
|
TAPA-MVS | | 92.12 8 | 94.42 178 | 93.60 181 | 96.90 171 | 99.33 106 | 91.78 246 | 99.78 123 | 98.00 185 | 89.89 237 | 94.52 182 | 99.47 112 | 91.97 139 | 99.18 154 | 69.90 335 | 99.52 106 | 99.73 108 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
LCM-MVSNet | | | 67.77 314 | 64.73 318 | 76.87 327 | 62.95 354 | 56.25 351 | 89.37 344 | 93.74 343 | 44.53 348 | 61.99 343 | 80.74 343 | 20.42 356 | 86.53 346 | 69.37 336 | 59.50 346 | 87.84 341 |
|
OpenMVS_ROB | | 79.82 20 | 83.77 306 | 81.68 308 | 90.03 309 | 88.30 337 | 82.82 324 | 98.46 273 | 95.22 331 | 73.92 339 | 76.00 332 | 91.29 329 | 55.00 342 | 96.94 275 | 68.40 337 | 88.51 239 | 90.34 332 |
|
N_pmnet | | | 80.06 311 | 80.78 310 | 77.89 326 | 91.94 316 | 45.28 355 | 98.80 255 | 56.82 358 | 78.10 329 | 80.08 321 | 93.33 317 | 77.03 270 | 95.76 316 | 68.14 338 | 82.81 280 | 92.64 316 |
|
Anonymous20231206 | | | 86.32 291 | 85.42 293 | 89.02 314 | 89.11 336 | 80.53 338 | 99.05 232 | 95.28 329 | 85.43 301 | 82.82 312 | 93.92 313 | 74.40 292 | 93.44 337 | 66.99 339 | 81.83 287 | 93.08 312 |
|
test20.03 | | | 84.72 302 | 83.99 296 | 86.91 320 | 88.19 338 | 80.62 337 | 98.88 247 | 95.94 318 | 88.36 262 | 78.87 323 | 94.62 303 | 68.75 312 | 89.11 344 | 66.52 340 | 75.82 328 | 91.00 328 |
|
PatchT | | | 90.38 258 | 88.75 272 | 95.25 210 | 95.99 243 | 90.16 276 | 91.22 342 | 97.54 227 | 76.80 330 | 97.26 135 | 86.01 340 | 91.88 140 | 96.07 310 | 66.16 341 | 95.91 182 | 99.51 147 |
|
test_0402 | | | 85.58 294 | 83.94 298 | 90.50 304 | 93.81 288 | 85.04 318 | 98.55 268 | 95.20 332 | 76.01 332 | 79.72 322 | 95.13 286 | 64.15 328 | 96.26 303 | 66.04 342 | 86.88 253 | 90.21 334 |
|
MIMVSNet1 | | | 82.58 307 | 80.51 311 | 88.78 316 | 86.68 339 | 84.20 322 | 96.65 313 | 95.41 327 | 78.75 327 | 78.59 325 | 92.44 325 | 51.88 344 | 89.76 343 | 65.26 343 | 78.95 308 | 92.38 319 |
|
RPMNet | | | 89.76 272 | 87.28 287 | 97.19 165 | 96.29 236 | 92.66 225 | 92.01 338 | 98.31 150 | 70.19 343 | 96.94 141 | 85.87 341 | 87.25 193 | 99.78 111 | 62.69 344 | 95.96 180 | 99.13 183 |
|
FPMVS | | | 68.72 313 | 68.72 316 | 68.71 331 | 65.95 352 | 44.27 357 | 95.97 323 | 94.74 336 | 51.13 346 | 53.26 349 | 90.50 331 | 25.11 354 | 83.00 348 | 60.80 345 | 80.97 297 | 78.87 344 |
|
PMMVS2 | | | 67.15 315 | 64.15 319 | 76.14 328 | 70.56 351 | 62.07 348 | 93.89 330 | 87.52 353 | 58.09 345 | 60.02 344 | 78.32 344 | 22.38 355 | 84.54 347 | 59.56 346 | 47.03 347 | 81.80 343 |
|
testmvs | | | 40.60 323 | 44.45 326 | 29.05 338 | 19.49 360 | 14.11 361 | 99.68 150 | 18.47 359 | 20.74 354 | 64.59 341 | 98.48 186 | 10.95 359 | 17.09 357 | 56.66 347 | 11.01 353 | 55.94 350 |
|
Gipuma | | | 66.95 316 | 65.00 317 | 72.79 329 | 91.52 322 | 67.96 345 | 66.16 350 | 95.15 334 | 47.89 347 | 58.54 345 | 67.99 349 | 29.74 351 | 87.54 345 | 50.20 348 | 77.83 316 | 62.87 348 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
test123 | | | 37.68 324 | 39.14 327 | 33.31 337 | 19.94 359 | 24.83 360 | 98.36 279 | 9.75 360 | 15.53 355 | 51.31 350 | 87.14 336 | 19.62 357 | 17.74 356 | 47.10 349 | 3.47 355 | 57.36 349 |
|
ANet_high | | | 56.10 318 | 52.24 321 | 67.66 332 | 49.27 356 | 56.82 350 | 83.94 346 | 82.02 354 | 70.47 342 | 33.28 355 | 64.54 350 | 17.23 358 | 69.16 352 | 45.59 350 | 23.85 351 | 77.02 345 |
|
PMVS | | 49.05 23 | 53.75 319 | 51.34 323 | 60.97 334 | 40.80 358 | 34.68 358 | 74.82 349 | 89.62 351 | 37.55 350 | 28.67 356 | 72.12 346 | 7.09 360 | 81.63 349 | 43.17 351 | 68.21 339 | 66.59 347 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVE | | 53.74 22 | 51.54 321 | 47.86 325 | 62.60 333 | 59.56 355 | 50.93 352 | 79.41 348 | 77.69 355 | 35.69 352 | 36.27 354 | 61.76 353 | 5.79 362 | 69.63 351 | 37.97 352 | 36.61 348 | 67.24 346 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
E-PMN | | | 52.30 320 | 52.18 322 | 52.67 335 | 71.51 349 | 45.40 354 | 93.62 333 | 76.60 356 | 36.01 351 | 43.50 352 | 64.13 351 | 27.11 353 | 67.31 353 | 31.06 353 | 26.06 349 | 45.30 352 |
|
EMVS | | | 51.44 322 | 51.22 324 | 52.11 336 | 70.71 350 | 44.97 356 | 94.04 329 | 75.66 357 | 35.34 353 | 42.40 353 | 61.56 354 | 28.93 352 | 65.87 354 | 27.64 354 | 24.73 350 | 45.49 351 |
|
wuyk23d | | | 20.37 326 | 20.84 329 | 18.99 339 | 65.34 353 | 27.73 359 | 50.43 351 | 7.67 361 | 9.50 356 | 8.01 357 | 6.34 357 | 6.13 361 | 26.24 355 | 23.40 355 | 10.69 354 | 2.99 353 |
|
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
cdsmvs_eth3d_5k | | | 23.43 325 | 31.24 328 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 98.09 179 | 0.00 357 | 0.00 358 | 99.67 95 | 83.37 225 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 7.60 328 | 10.13 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 91.20 148 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 8.28 327 | 11.04 330 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 99.40 118 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
test_241102_ONE | | | | | | 99.93 26 | 99.30 8 | | 98.43 113 | 97.26 22 | 99.80 16 | 99.88 22 | 96.71 20 | 100.00 1 | | | |
|
save fliter | | | | | | 99.82 65 | 98.79 33 | 99.96 23 | 98.40 129 | 97.66 10 | | | | | | | |
|
test0726 | | | | | | 99.93 26 | 99.29 10 | 99.96 23 | 98.42 124 | 97.28 18 | 99.86 4 | 99.94 4 | 97.22 15 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 99.59 130 |
|
test_part2 | | | | | | 99.89 45 | 99.25 13 | | | | 99.49 48 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 94.72 64 | | | | 99.59 130 |
|
sam_mvs | | | | | | | | | | | | | 94.25 82 | | | | |
|
MTGPA | | | | | | | | | 98.28 155 | | | | | | | | |
|
test_post | | | | | | | | | | | | 63.35 352 | 94.43 69 | 98.13 215 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.70 328 | 95.12 48 | 97.95 225 | | | |
|
MTMP | | | | | | | | 99.87 87 | 96.49 309 | | | | | | | | |
|
TEST9 | | | | | | 99.92 35 | 98.92 23 | 99.96 23 | 98.43 113 | 93.90 126 | 99.71 30 | 99.86 29 | 95.88 34 | 99.85 94 | | | |
|
test_8 | | | | | | 99.92 35 | 98.88 26 | 99.96 23 | 98.43 113 | 94.35 103 | 99.69 32 | 99.85 33 | 95.94 31 | 99.85 94 | | | |
|
agg_prior | | | | | | 99.93 26 | 98.77 36 | | 98.43 113 | | 99.63 35 | | | 99.85 94 | | | |
|
test_prior4 | | | | | | | 98.05 71 | 99.94 55 | | | | | | | | | |
|
test_prior | | | | | 99.43 35 | 99.94 14 | 98.49 57 | | 98.65 59 | | | | | 99.80 106 | | | 99.99 20 |
|
æ–°å‡ ä½•2 | | | | | | | | 99.40 191 | | | | | | | | | |
|
旧先验1 | | | | | | 99.76 74 | 97.52 91 | | 98.64 62 | | | 99.85 33 | 95.63 39 | | | 99.94 57 | 99.99 20 |
|
原ACMM2 | | | | | | | | 99.90 73 | | | | | | | | | |
|
test222 | | | | | | 99.55 94 | 97.41 101 | 99.34 201 | 98.55 80 | 91.86 194 | 99.27 68 | 99.83 49 | 93.84 96 | | | 99.95 51 | 99.99 20 |
|
segment_acmp | | | | | | | | | | | | | 96.68 22 | | | | |
|
testdata1 | | | | | | | | 99.28 209 | | 96.35 48 | | | | | | | |
|
test12 | | | | | 99.43 35 | 99.74 77 | 98.56 53 | | 98.40 129 | | 99.65 33 | | 94.76 63 | 99.75 120 | | 99.98 33 | 99.99 20 |
|
plane_prior7 | | | | | | 95.71 256 | 91.59 255 | | | | | | | | | | |
|
plane_prior6 | | | | | | 95.76 251 | 91.72 250 | | | | | | 80.47 251 | | | | |
|
plane_prior4 | | | | | | | | | | | | 98.59 177 | | | | | |
|
plane_prior3 | | | | | | | 91.64 253 | | | 96.63 38 | 93.01 199 | | | | | | |
|
plane_prior2 | | | | | | | | 99.84 105 | | 96.38 44 | | | | | | | |
|
plane_prior1 | | | | | | 95.73 253 | | | | | | | | | | | |
|
plane_prior | | | | | | | 91.74 247 | 99.86 98 | | 96.76 34 | | | | | | 89.59 221 | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 89.69 350 | | | | | | | | |
|
test11 | | | | | | | | | 98.44 105 | | | | | | | | |
|
door | | | | | | | | | 90.31 348 | | | | | | | | |
|
HQP5-MVS | | | | | | | 91.85 243 | | | | | | | | | | |
|
HQP-NCC | | | | | | 95.78 247 | | 99.87 87 | | 96.82 30 | 93.37 195 | | | | | | |
|
ACMP_Plane | | | | | | 95.78 247 | | 99.87 87 | | 96.82 30 | 93.37 195 | | | | | | |
|
HQP4-MVS | | | | | | | | | | | 93.37 195 | | | 98.39 197 | | | 94.53 225 |
|
HQP3-MVS | | | | | | | | | 97.89 197 | | | | | | | 89.60 219 | |
|
HQP2-MVS | | | | | | | | | | | | | 80.65 247 | | | | |
|
NP-MVS | | | | | | 95.77 250 | 91.79 245 | | | | | 98.65 173 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 87.04 252 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 88.23 241 | |
|
Test By Simon | | | | | | | | | | | | | 92.82 123 | | | | |
|