This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2198.46 3099.97 199.33 10699.92 199.96 2598.44 10897.96 799.55 4599.94 497.18 17100.00 193.81 19199.94 5799.98 51
OPU-MVS99.93 299.89 4599.80 299.96 2599.80 5897.44 11100.00 1100.00 199.98 33100.00 1
MCST-MVS99.32 399.14 499.86 399.97 399.59 399.97 1898.64 6398.47 299.13 7899.92 1196.38 26100.00 199.74 24100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 499.98 299.51 499.98 1098.69 5598.20 399.93 199.98 296.82 19100.00 199.75 22100.00 199.99 20
test_0728_SECOND99.82 599.94 1499.47 599.95 4398.43 116100.00 199.99 5100.00 1100.00 1
SED-MVS99.28 599.11 699.77 699.93 2699.30 899.96 2598.43 11697.27 2099.80 1699.94 496.71 20100.00 1100.00 1100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 799.74 799.89 4599.24 1499.87 9098.44 10897.48 1599.64 3699.94 496.68 2299.99 3699.99 5100.00 199.99 20
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS99.30 499.16 399.73 899.93 2699.29 1099.95 4398.32 15197.28 1899.83 1099.91 1397.22 15100.00 199.99 5100.00 199.89 90
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MVS96.60 12595.56 14499.72 996.85 23399.22 1598.31 29198.94 3691.57 20890.90 22399.61 10186.66 20699.96 5397.36 12699.88 7699.99 20
NCCC99.37 299.25 299.71 1099.96 899.15 1699.97 1898.62 6798.02 699.90 299.95 397.33 13100.00 199.54 33100.00 1100.00 1
MG-MVS98.91 1798.65 2099.68 1199.94 1499.07 1899.64 16399.44 1897.33 1799.00 8599.72 8494.03 9099.98 4298.73 76100.00 1100.00 1
CANet98.27 5997.82 7099.63 1299.72 8399.10 1799.98 1098.51 9797.00 2898.52 10599.71 8687.80 19499.95 6099.75 2299.38 11399.83 96
HPM-MVS++copyleft99.07 998.88 1399.63 1299.90 4299.02 1999.95 4398.56 7797.56 1399.44 5499.85 3395.38 45100.00 199.31 4399.99 2099.87 93
HY-MVS92.50 797.79 8197.17 9499.63 1298.98 11899.32 697.49 31299.52 1395.69 6698.32 11597.41 21393.32 10799.77 11598.08 10395.75 19099.81 98
SMA-MVScopyleft98.76 2698.48 2999.62 1599.87 5298.87 2799.86 10198.38 13993.19 15199.77 2399.94 495.54 40100.00 199.74 2499.99 20100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS_fast96.59 198.81 2298.54 2699.62 1599.90 4298.85 2999.24 21998.47 10398.14 499.08 7999.91 1393.09 116100.00 199.04 5499.99 20100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WTY-MVS98.10 6797.60 7899.60 1798.92 12599.28 1299.89 8499.52 1395.58 6998.24 12099.39 12193.33 10699.74 12597.98 10995.58 19399.78 103
ETH3 D test640098.81 2298.54 2699.59 1899.93 2698.93 2299.93 6498.46 10594.56 9799.84 899.92 1194.32 8099.86 9099.96 899.98 33100.00 1
train_agg98.88 1998.65 2099.59 1899.92 3598.92 2399.96 2598.43 11694.35 10799.71 3299.86 2995.94 3199.85 9499.69 3199.98 3399.99 20
PAPR98.52 4198.16 5399.58 2099.97 398.77 3699.95 4398.43 11695.35 7398.03 12499.75 7794.03 9099.98 4298.11 10099.83 8199.99 20
SD-MVS98.92 1698.70 1799.56 2199.70 8598.73 4199.94 5898.34 14896.38 4499.81 1299.76 7294.59 6799.98 4299.84 1399.96 4899.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS Recon98.41 4998.02 6199.56 2199.97 398.70 4399.92 6898.44 10892.06 19598.40 11299.84 4695.68 38100.00 198.19 9599.71 9399.97 63
xxxxxxxxxxxxxcwj98.98 1498.79 1599.54 2399.82 6598.79 3399.96 2597.52 23497.66 1099.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
ACMMP_NAP98.49 4398.14 5499.54 2399.66 8798.62 5099.85 10498.37 14294.68 9299.53 4799.83 4992.87 120100.00 198.66 8299.84 8099.99 20
agg_prior198.88 1998.66 1999.54 2399.93 2698.77 3699.96 2598.43 11694.63 9699.63 3899.85 3395.79 3799.85 9499.72 2899.99 2099.99 20
testtj98.89 1898.69 1899.52 2699.94 1498.56 5399.90 7698.55 8395.14 7899.72 3199.84 4695.46 43100.00 199.65 3299.99 2099.99 20
3Dnovator+91.53 1196.31 13595.24 15199.52 2696.88 23298.64 4999.72 14898.24 16495.27 7688.42 27298.98 15182.76 23699.94 6897.10 13399.83 8199.96 70
APDe-MVS99.06 1098.91 1299.51 2899.94 1498.76 4099.91 7298.39 13597.20 2499.46 5299.85 3395.53 4299.79 10999.86 12100.00 199.99 20
SF-MVS98.67 3098.40 3599.50 2999.77 7398.67 4499.90 7698.21 16893.53 14299.81 1299.89 1994.70 6599.86 9099.84 1399.93 6399.96 70
DELS-MVS98.54 3998.22 4899.50 2999.15 11198.65 48100.00 198.58 7397.70 998.21 12199.24 13492.58 12899.94 6898.63 8499.94 5799.92 87
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MSLP-MVS++99.13 799.01 999.49 3199.94 1498.46 5999.98 1098.86 4597.10 2599.80 1699.94 495.92 33100.00 199.51 34100.00 1100.00 1
CDPH-MVS98.65 3198.36 4299.49 3199.94 1498.73 4199.87 9098.33 14993.97 12599.76 2499.87 2694.99 5899.75 12198.55 86100.00 199.98 51
131496.84 11395.96 13299.48 3396.74 24098.52 5598.31 29198.86 4595.82 5889.91 23598.98 15187.49 19799.96 5397.80 11399.73 9199.96 70
ETH3D-3000-0.198.68 2998.42 3199.47 3499.83 6398.57 5199.90 7698.37 14293.81 13399.81 1299.90 1794.34 7699.86 9099.84 1399.98 3399.97 63
test_prior398.99 1398.84 1499.43 3599.94 1498.49 5799.95 4398.65 6095.78 6099.73 2799.76 7296.00 2999.80 10699.78 20100.00 199.99 20
test_prior99.43 3599.94 1498.49 5798.65 6099.80 10699.99 20
test1299.43 3599.74 7798.56 5398.40 13299.65 3594.76 6399.75 12199.98 3399.99 20
新几何199.42 3899.75 7698.27 6598.63 6692.69 16899.55 4599.82 5394.40 71100.00 191.21 22599.94 5799.99 20
TSAR-MVS + MP.98.93 1598.77 1699.41 3999.74 7798.67 4499.77 12998.38 13996.73 3599.88 399.74 8194.89 6299.59 14099.80 1899.98 3399.97 63
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVScopyleft98.62 3298.35 4399.41 3999.90 4298.51 5699.87 9098.36 14494.08 11899.74 2699.73 8394.08 8899.74 12599.42 3999.99 2099.99 20
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1698.40 5198.07 5999.40 4199.59 9098.41 6099.86 10198.24 16492.18 19099.73 2799.87 2693.47 10399.85 9499.74 2499.95 5199.93 81
112198.03 6997.57 8099.40 4199.74 7798.21 6698.31 29198.62 6792.78 16399.53 4799.83 4995.08 50100.00 194.36 17899.92 6799.99 20
canonicalmvs97.09 10696.32 11899.39 4398.93 12398.95 2199.72 14897.35 25294.45 10097.88 12899.42 11686.71 20599.52 14298.48 8893.97 21099.72 111
MP-MVS-pluss98.07 6897.64 7599.38 4499.74 7798.41 6099.74 14098.18 17393.35 14696.45 15899.85 3392.64 12799.97 5198.91 6399.89 7499.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-198.79 2498.60 2399.36 4599.85 5598.34 6299.87 9098.52 9096.05 5399.41 5799.79 6294.93 6099.76 11899.07 4999.90 7299.99 20
Regformer-298.78 2598.59 2499.36 4599.85 5598.32 6399.87 9098.52 9096.04 5499.41 5799.79 6294.92 6199.76 11899.05 5099.90 7299.98 51
zzz-MVS98.33 5598.00 6299.30 4799.85 5597.93 7899.80 12298.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
MTAPA98.29 5897.96 6799.30 4799.85 5597.93 7899.39 20098.28 15895.76 6297.18 14199.88 2292.74 124100.00 198.67 7999.88 7699.99 20
alignmvs97.81 7997.33 8899.25 4998.77 13798.66 4699.99 598.44 10894.40 10698.41 11099.47 11193.65 10099.42 15198.57 8594.26 20699.67 117
thres20096.96 10896.21 12099.22 5098.97 11998.84 3099.85 10499.71 593.17 15296.26 16498.88 16389.87 17299.51 14394.26 18294.91 20099.31 172
test_yl97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
DCV-MVSNet97.83 7797.37 8599.21 5199.18 10897.98 7599.64 16399.27 2591.43 21497.88 12898.99 14995.84 3599.84 10398.82 6995.32 19799.79 100
tfpn200view996.79 11595.99 12599.19 5398.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.27 175
thres100view90096.74 11995.92 13599.18 5498.90 12898.77 3699.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.84 18894.57 20199.27 175
SteuartSystems-ACMMP99.02 1198.97 1199.18 5498.72 13897.71 8399.98 1098.44 10896.85 2999.80 1699.91 1397.57 699.85 9499.44 3899.99 2099.99 20
Skip Steuart: Steuart Systems R&D Blog.
sss97.57 8897.03 9999.18 5498.37 14998.04 7299.73 14599.38 2193.46 14498.76 9599.06 14291.21 15199.89 7996.33 14497.01 16699.62 126
ZNCC-MVS98.31 5698.03 6099.17 5799.88 4997.59 8799.94 5898.44 10894.31 11098.50 10799.82 5393.06 11799.99 3698.30 9499.99 2099.93 81
GST-MVS98.27 5997.97 6499.17 5799.92 3597.57 8899.93 6498.39 13594.04 12398.80 9199.74 8192.98 118100.00 198.16 9799.76 8999.93 81
PS-MVSNAJ98.44 4798.20 5099.16 5998.80 13598.92 2399.54 17898.17 17497.34 1699.85 699.85 3391.20 15299.89 7999.41 4099.67 9598.69 203
thres40096.78 11695.99 12599.16 5998.94 12198.82 3199.78 12699.71 592.86 15796.02 16798.87 16589.33 17999.50 14593.84 18894.57 20199.16 182
XVS98.70 2898.55 2599.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5799.78 6694.34 7699.96 5398.92 6199.95 5199.99 20
X-MVStestdata93.83 19192.06 22099.15 6199.94 1497.50 9499.94 5898.42 12796.22 4999.41 5741.37 36894.34 7699.96 5398.92 6199.95 5199.99 20
HFP-MVS98.56 3798.37 4099.14 6399.96 897.43 9999.95 4398.61 6994.77 8899.31 6699.85 3394.22 83100.00 198.70 7799.98 3399.98 51
#test#98.59 3598.41 3399.14 6399.96 897.43 9999.95 4398.61 6995.00 8199.31 6699.85 3394.22 83100.00 198.78 7399.98 3399.98 51
thres600view796.69 12295.87 13899.14 6398.90 12898.78 3599.74 14099.71 592.59 17595.84 17098.86 16789.25 18199.50 14593.44 20194.50 20499.16 182
114514_t97.41 9596.83 10399.14 6399.51 9897.83 8099.89 8498.27 16188.48 26699.06 8099.66 9790.30 16799.64 13996.32 14599.97 4499.96 70
PAPM98.60 3398.42 3199.14 6396.05 25098.96 2099.90 7699.35 2396.68 3798.35 11499.66 9796.45 2598.51 18599.45 3799.89 7499.96 70
VNet97.21 10296.57 11299.13 6898.97 11997.82 8199.03 24199.21 2794.31 11099.18 7798.88 16386.26 21099.89 7998.93 6094.32 20599.69 114
Regformer-398.58 3698.41 3399.10 6999.84 6097.57 8899.66 15698.52 9095.79 5999.01 8399.77 6894.40 7199.75 12198.82 6999.83 8199.98 51
QAPM95.40 15694.17 17299.10 6996.92 22797.71 8399.40 19698.68 5689.31 24788.94 26198.89 16182.48 23799.96 5393.12 20899.83 8199.62 126
Regformer-498.56 3798.39 3799.08 7199.84 6097.52 9199.66 15698.52 9095.76 6299.01 8399.77 6894.33 7999.75 12198.80 7299.83 8199.98 51
3Dnovator91.47 1296.28 13895.34 14999.08 7196.82 23597.47 9799.45 19298.81 4895.52 7089.39 24999.00 14881.97 24099.95 6097.27 12899.83 8199.84 95
region2R98.54 3998.37 4099.05 7399.96 897.18 10799.96 2598.55 8394.87 8699.45 5399.85 3394.07 89100.00 198.67 79100.00 199.98 51
ACMMPR98.50 4298.32 4499.05 7399.96 897.18 10799.95 4398.60 7194.77 8899.31 6699.84 4693.73 98100.00 198.70 7799.98 3399.98 51
MP-MVScopyleft98.23 6397.97 6499.03 7599.94 1497.17 11099.95 4398.39 13594.70 9198.26 11999.81 5791.84 145100.00 198.85 6799.97 4499.93 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 4998.21 4999.03 7599.86 5497.10 11199.98 1098.80 5090.78 22999.62 4099.78 6695.30 46100.00 199.80 1899.93 6399.99 20
xiu_mvs_v2_base98.23 6397.97 6499.02 7798.69 13998.66 4699.52 18098.08 18597.05 2699.86 499.86 2990.65 16399.71 12999.39 4198.63 13098.69 203
MVS_111021_HR98.72 2798.62 2299.01 7899.36 10597.18 10799.93 6499.90 196.81 3398.67 9999.77 6893.92 9299.89 7999.27 4599.94 5799.96 70
PGM-MVS98.34 5498.13 5598.99 7999.92 3597.00 11399.75 13799.50 1693.90 13099.37 6399.76 7293.24 113100.00 197.75 12099.96 4899.98 51
MSP-MVS99.09 899.12 598.98 8099.93 2697.24 10499.95 4398.42 12797.50 1499.52 5099.88 2297.43 1299.71 12999.50 3599.98 33100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS98.39 5298.20 5098.97 8199.97 396.92 11799.95 4398.38 13995.04 8098.61 10399.80 5893.39 104100.00 198.64 83100.00 199.98 51
原ACMM198.96 8299.73 8196.99 11498.51 9794.06 12199.62 4099.85 3394.97 5999.96 5395.11 15799.95 5199.92 87
CHOSEN 280x42099.01 1299.03 898.95 8399.38 10498.87 2798.46 28499.42 2097.03 2799.02 8299.09 14099.35 198.21 21799.73 2799.78 8899.77 104
SR-MVS98.46 4598.30 4698.93 8499.88 4997.04 11299.84 10898.35 14694.92 8399.32 6599.80 5893.35 10599.78 11199.30 4499.95 5199.96 70
CNLPA97.76 8297.38 8498.92 8599.53 9596.84 11899.87 9098.14 18093.78 13596.55 15699.69 9192.28 13599.98 4297.13 13199.44 11199.93 81
CP-MVS98.45 4698.32 4498.87 8699.96 896.62 12699.97 1898.39 13594.43 10298.90 8899.87 2694.30 81100.00 199.04 5499.99 2099.99 20
TSAR-MVS + GP.98.60 3398.51 2898.86 8799.73 8196.63 12599.97 1897.92 19998.07 598.76 9599.55 10595.00 5799.94 6899.91 1197.68 15099.99 20
PVSNet_Blended97.94 7197.64 7598.83 8899.59 9096.99 114100.00 199.10 2895.38 7298.27 11799.08 14189.00 18599.95 6099.12 4799.25 11799.57 138
APD-MVS_3200maxsize98.25 6298.08 5898.78 8999.81 6896.60 12799.82 11598.30 15693.95 12799.37 6399.77 6892.84 12199.76 11898.95 5899.92 6799.97 63
test117298.38 5398.25 4798.77 9099.88 4996.56 12999.80 12298.36 14494.68 9299.20 7399.80 5893.28 11099.78 11199.34 4299.92 6799.98 51
EPNet98.49 4398.40 3598.77 9099.62 8996.80 12099.90 7699.51 1597.60 1299.20 7399.36 12493.71 9999.91 7497.99 10798.71 12999.61 128
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet-Vis-set98.27 5998.11 5798.75 9299.83 6396.59 12899.40 19698.51 9795.29 7598.51 10699.76 7293.60 10299.71 12998.53 8799.52 10699.95 78
SR-MVS-dyc-post98.31 5698.17 5298.71 9399.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7793.28 11099.78 11198.90 6499.92 6799.97 63
PAPM_NR98.12 6697.93 6898.70 9499.94 1496.13 14799.82 11598.43 11694.56 9797.52 13499.70 8894.40 7199.98 4297.00 13599.98 3399.99 20
HPM-MVS_fast97.80 8097.50 8198.68 9599.79 7096.42 13299.88 8798.16 17791.75 20498.94 8799.54 10791.82 14699.65 13897.62 12299.99 2099.99 20
HPM-MVScopyleft97.96 7097.72 7298.68 9599.84 6096.39 13599.90 7698.17 17492.61 17398.62 10299.57 10491.87 14499.67 13698.87 6699.99 2099.99 20
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_697.67 8697.34 8798.66 9799.68 8696.11 15099.68 15398.14 18093.80 13499.27 7199.70 8888.65 19099.98 4297.46 12499.72 9299.89 90
PVSNet_Blended_VisFu97.27 9996.81 10498.66 9798.81 13496.67 12499.92 6898.64 6394.51 9996.38 16298.49 18689.05 18499.88 8597.10 13398.34 13599.43 159
ACMMPcopyleft97.74 8397.44 8398.66 9799.92 3596.13 14799.18 22399.45 1794.84 8796.41 16199.71 8691.40 14999.99 3697.99 10798.03 14699.87 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
lupinMVS97.85 7597.60 7898.62 10097.28 21697.70 8599.99 597.55 22895.50 7199.43 5599.67 9590.92 15998.71 17598.40 9099.62 9899.45 156
MVS_Test96.46 12995.74 14098.61 10198.18 16297.23 10599.31 21097.15 27091.07 22298.84 8997.05 22688.17 19398.97 16194.39 17797.50 15399.61 128
CANet_DTU96.76 11796.15 12198.60 10298.78 13697.53 9099.84 10897.63 21797.25 2399.20 7399.64 9981.36 24899.98 4292.77 21198.89 12498.28 206
EI-MVSNet-UG-set98.14 6597.99 6398.60 10299.80 6996.27 13899.36 20598.50 10195.21 7798.30 11699.75 7793.29 10999.73 12898.37 9199.30 11599.81 98
thisisatest051597.41 9597.02 10098.59 10497.71 19497.52 9199.97 1898.54 8791.83 20097.45 13699.04 14397.50 899.10 15794.75 16896.37 17799.16 182
CPTT-MVS97.64 8797.32 8998.58 10599.97 395.77 15999.96 2598.35 14689.90 24298.36 11399.79 6291.18 15599.99 3698.37 9199.99 2099.99 20
xiu_mvs_v1_base_debu97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
xiu_mvs_v1_base_debi97.43 9197.06 9598.55 10697.74 18898.14 6799.31 21097.86 20596.43 4199.62 4099.69 9185.56 21599.68 13399.05 5098.31 13797.83 212
GG-mvs-BLEND98.54 10998.21 16098.01 7393.87 34398.52 9097.92 12697.92 20599.02 297.94 23398.17 9699.58 10399.67 117
baseline195.78 14794.86 15998.54 10998.47 14798.07 7099.06 23597.99 19092.68 16994.13 19498.62 17993.28 11098.69 17793.79 19385.76 26198.84 197
MVS_111021_LR98.42 4898.38 3898.53 11199.39 10395.79 15899.87 9099.86 296.70 3698.78 9299.79 6292.03 14199.90 7599.17 4699.86 7999.88 92
ab-mvs94.69 17193.42 19298.51 11298.07 16796.26 13996.49 32798.68 5690.31 23694.54 18697.00 22876.30 28999.71 12995.98 14993.38 21599.56 139
AdaColmapbinary97.23 10196.80 10598.51 11299.99 195.60 16699.09 22898.84 4793.32 14796.74 15199.72 8486.04 211100.00 198.01 10599.43 11299.94 80
gg-mvs-nofinetune93.51 20191.86 22598.47 11497.72 19297.96 7792.62 34798.51 9774.70 34997.33 13869.59 36098.91 397.79 23697.77 11899.56 10499.67 117
API-MVS97.86 7497.66 7498.47 11499.52 9695.41 17099.47 18998.87 4491.68 20598.84 8999.85 3392.34 13499.99 3698.44 8999.96 48100.00 1
PVSNet91.05 1397.13 10396.69 10898.45 11699.52 9695.81 15799.95 4399.65 1094.73 9099.04 8199.21 13684.48 22599.95 6094.92 16098.74 12899.58 137
DeepC-MVS94.51 496.92 11196.40 11798.45 11699.16 11095.90 15499.66 15698.06 18696.37 4794.37 19099.49 11083.29 23499.90 7597.63 12199.61 10199.55 140
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PCF-MVS94.20 595.18 15994.10 17498.43 11898.55 14295.99 15297.91 30797.31 25790.35 23589.48 24899.22 13585.19 22099.89 7990.40 24598.47 13399.41 161
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testdata98.42 11999.47 10095.33 17298.56 7793.78 13599.79 2199.85 3393.64 10199.94 6894.97 15999.94 57100.00 1
Test_1112_low_res95.72 14894.83 16098.42 11997.79 18496.41 13399.65 15996.65 31492.70 16792.86 21096.13 25692.15 13899.30 15291.88 21993.64 21299.55 140
1112_ss96.01 14395.20 15398.42 11997.80 18396.41 13399.65 15996.66 31392.71 16692.88 20999.40 11992.16 13799.30 15291.92 21893.66 21199.55 140
jason97.24 10096.86 10298.38 12295.73 26297.32 10399.97 1897.40 24995.34 7498.60 10499.54 10787.70 19598.56 18297.94 11099.47 10999.25 177
jason: jason.
OpenMVScopyleft90.15 1594.77 16993.59 18698.33 12396.07 24997.48 9699.56 17498.57 7590.46 23286.51 29698.95 15778.57 27499.94 6893.86 18799.74 9097.57 219
CS-MVS-test97.85 7597.70 7398.30 12497.57 19896.72 121100.00 197.11 27495.06 7999.76 2499.45 11492.12 14098.44 19198.97 5799.28 11699.75 106
LFMVS94.75 17093.56 18898.30 12499.03 11495.70 16498.74 26897.98 19287.81 27598.47 10899.39 12167.43 33099.53 14198.01 10595.20 19999.67 117
UA-Net96.54 12695.96 13298.27 12698.23 15995.71 16398.00 30598.45 10793.72 13898.41 11099.27 12988.71 18999.66 13791.19 22697.69 14999.44 158
ETV-MVS97.92 7397.80 7198.25 12798.14 16596.48 13099.98 1097.63 21795.61 6899.29 7099.46 11392.55 12998.82 16599.02 5698.54 13199.46 154
thisisatest053097.10 10496.72 10798.22 12897.60 19796.70 12299.92 6898.54 8791.11 22197.07 14498.97 15397.47 999.03 15893.73 19696.09 18098.92 192
Effi-MVS+96.30 13695.69 14198.16 12997.85 18096.26 13997.41 31397.21 26390.37 23498.65 10198.58 18286.61 20798.70 17697.11 13297.37 15899.52 147
TESTMET0.1,196.74 11996.26 11998.16 12997.36 20996.48 13099.96 2598.29 15791.93 19795.77 17398.07 19995.54 4098.29 20890.55 24098.89 12499.70 112
IB-MVS92.85 694.99 16493.94 17898.16 12997.72 19295.69 16599.99 598.81 4894.28 11292.70 21196.90 23095.08 5099.17 15696.07 14773.88 33799.60 130
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CS-MVS97.74 8397.61 7798.15 13297.52 20496.69 123100.00 197.11 27494.93 8299.73 2799.41 11891.68 14798.25 21598.84 6899.24 11999.52 147
MAR-MVS97.43 9197.19 9298.15 13299.47 10094.79 18999.05 23998.76 5192.65 17198.66 10099.82 5388.52 19199.98 4298.12 9999.63 9799.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
diffmvs97.00 10796.64 10998.09 13497.64 19596.17 14699.81 11797.19 26494.67 9498.95 8699.28 12686.43 20898.76 17198.37 9197.42 15699.33 170
EPMVS96.53 12796.01 12498.09 13498.43 14896.12 14996.36 32899.43 1993.53 14297.64 13295.04 29694.41 7098.38 20291.13 22798.11 14199.75 106
PLCcopyleft95.54 397.93 7297.89 6998.05 13699.82 6594.77 19099.92 6898.46 10593.93 12897.20 14099.27 12995.44 4499.97 5197.41 12599.51 10899.41 161
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LS3D95.84 14695.11 15698.02 13799.85 5595.10 18098.74 26898.50 10187.22 28293.66 19999.86 2987.45 19899.95 6090.94 23499.81 8799.02 190
MVSFormer96.94 10996.60 11097.95 13897.28 21697.70 8599.55 17697.27 26091.17 21899.43 5599.54 10790.92 15996.89 28294.67 17299.62 9899.25 177
PatchMatch-RL96.04 14295.40 14697.95 13899.59 9095.22 17899.52 18099.07 3193.96 12696.49 15798.35 19382.28 23899.82 10590.15 24899.22 12098.81 199
tttt051796.85 11296.49 11497.92 14097.48 20595.89 15699.85 10498.54 8790.72 23096.63 15398.93 16097.47 999.02 15993.03 20995.76 18998.85 196
DP-MVS94.54 17793.42 19297.91 14199.46 10294.04 20098.93 25197.48 23981.15 33290.04 23299.55 10587.02 20399.95 6088.97 25798.11 14199.73 109
DROMVSNet97.45 9097.30 9097.90 14297.43 20695.90 15499.99 597.08 27894.64 9599.64 3699.33 12589.56 17598.15 21998.76 7599.25 11799.65 123
BH-RMVSNet95.18 15994.31 17097.80 14398.17 16395.23 17799.76 13497.53 23292.52 18094.27 19299.25 13376.84 28398.80 16690.89 23699.54 10599.35 168
test-LLR96.47 12896.04 12397.78 14497.02 22495.44 16899.96 2598.21 16894.07 11995.55 17596.38 24793.90 9498.27 21290.42 24398.83 12699.64 124
test-mter96.39 13295.93 13497.78 14497.02 22495.44 16899.96 2598.21 16891.81 20295.55 17596.38 24795.17 4798.27 21290.42 24398.83 12699.64 124
casdiffmvs96.42 13195.97 13097.77 14697.30 21494.98 18299.84 10897.09 27793.75 13796.58 15499.26 13285.07 22198.78 16897.77 11897.04 16599.54 144
EIA-MVS97.53 8997.46 8297.76 14798.04 16994.84 18699.98 1097.61 22294.41 10597.90 12799.59 10292.40 13298.87 16398.04 10499.13 12299.59 131
baseline96.43 13095.98 12797.76 14797.34 21095.17 17999.51 18297.17 26793.92 12996.90 14799.28 12685.37 21898.64 17997.50 12396.86 17099.46 154
cascas94.64 17493.61 18397.74 14997.82 18296.26 13999.96 2597.78 21185.76 30194.00 19597.54 21076.95 28299.21 15497.23 12995.43 19597.76 216
DWT-MVSNet_test97.31 9797.19 9297.66 15098.24 15894.67 19198.86 26098.20 17293.60 14198.09 12298.89 16197.51 798.78 16894.04 18597.28 15999.55 140
ET-MVSNet_ETH3D94.37 18393.28 19897.64 15198.30 15197.99 7499.99 597.61 22294.35 10771.57 35199.45 11496.23 2795.34 32696.91 14085.14 26899.59 131
CHOSEN 1792x268896.81 11496.53 11397.64 15198.91 12793.07 22099.65 15999.80 395.64 6795.39 17898.86 16784.35 22799.90 7596.98 13699.16 12199.95 78
UGNet95.33 15794.57 16597.62 15398.55 14294.85 18598.67 27599.32 2495.75 6596.80 15096.27 25272.18 31199.96 5394.58 17499.05 12398.04 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs_anonymous95.65 15295.03 15797.53 15498.19 16195.74 16199.33 20797.49 23890.87 22690.47 22897.10 22288.23 19297.16 26395.92 15097.66 15199.68 115
Fast-Effi-MVS+95.02 16394.19 17197.52 15597.88 17694.55 19299.97 1897.08 27888.85 25994.47 18997.96 20484.59 22498.41 19489.84 25197.10 16399.59 131
TR-MVS94.54 17793.56 18897.49 15697.96 17294.34 19698.71 27197.51 23690.30 23794.51 18898.69 17475.56 29498.77 17092.82 21095.99 18299.35 168
Vis-MVSNetpermissive95.72 14895.15 15597.45 15797.62 19694.28 19799.28 21698.24 16494.27 11396.84 14898.94 15879.39 26798.76 17193.25 20298.49 13299.30 173
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet96.29 13795.90 13697.45 15798.13 16694.80 18899.08 23097.61 22292.02 19695.54 17798.96 15590.64 16498.08 22293.73 19697.41 15799.47 153
OMC-MVS97.28 9897.23 9197.41 15999.76 7493.36 21899.65 15997.95 19596.03 5597.41 13799.70 8889.61 17499.51 14396.73 14298.25 14099.38 163
MSDG94.37 18393.36 19697.40 16098.88 13093.95 20499.37 20397.38 25085.75 30390.80 22499.17 13784.11 22999.88 8586.35 28698.43 13498.36 205
PatchmatchNetpermissive95.94 14495.45 14597.39 16197.83 18194.41 19596.05 33398.40 13292.86 15797.09 14395.28 29194.21 8698.07 22489.26 25598.11 14199.70 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
baseline296.71 12196.49 11497.37 16295.63 26995.96 15399.74 14098.88 4392.94 15691.61 21698.97 15397.72 598.62 18094.83 16498.08 14597.53 220
HyFIR lowres test96.66 12496.43 11697.36 16399.05 11393.91 20599.70 15099.80 390.54 23196.26 16498.08 19892.15 13898.23 21696.84 14195.46 19499.93 81
Vis-MVSNet (Re-imp)96.32 13495.98 12797.35 16497.93 17494.82 18799.47 18998.15 17991.83 20095.09 18299.11 13991.37 15097.47 24793.47 20097.43 15499.74 108
SCA94.69 17193.81 18297.33 16597.10 21994.44 19398.86 26098.32 15193.30 14896.17 16695.59 27076.48 28797.95 23191.06 22997.43 15499.59 131
CSCG97.10 10497.04 9897.27 16699.89 4591.92 24899.90 7699.07 3188.67 26295.26 18199.82 5393.17 11599.98 4298.15 9899.47 10999.90 89
RPMNet89.76 28087.28 29597.19 16796.29 24592.66 23192.01 35098.31 15370.19 35496.94 14585.87 35387.25 20099.78 11162.69 35695.96 18399.13 186
tpmrst96.27 13995.98 12797.13 16897.96 17293.15 21996.34 32998.17 17492.07 19398.71 9895.12 29493.91 9398.73 17394.91 16296.62 17199.50 151
CDS-MVSNet96.34 13396.07 12297.13 16897.37 20894.96 18399.53 17997.91 20091.55 20995.37 17998.32 19495.05 5397.13 26693.80 19295.75 19099.30 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ADS-MVSNet94.79 16794.02 17697.11 17097.87 17893.79 20694.24 33998.16 17790.07 23996.43 15994.48 31490.29 16898.19 21887.44 27397.23 16099.36 166
GeoE94.36 18593.48 19096.99 17197.29 21593.54 21299.96 2596.72 31188.35 26993.43 20098.94 15882.05 23998.05 22588.12 26896.48 17599.37 165
EPP-MVSNet96.69 12296.60 11096.96 17297.74 18893.05 22299.37 20398.56 7788.75 26095.83 17299.01 14696.01 2898.56 18296.92 13997.20 16299.25 177
dp95.05 16294.43 16796.91 17397.99 17192.73 22996.29 33097.98 19289.70 24595.93 16994.67 30993.83 9798.45 19086.91 28596.53 17399.54 144
TAPA-MVS92.12 894.42 18193.60 18596.90 17499.33 10691.78 25299.78 12698.00 18989.89 24394.52 18799.47 11191.97 14299.18 15569.90 34699.52 10699.73 109
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
F-COLMAP96.93 11096.95 10196.87 17599.71 8491.74 25399.85 10497.95 19593.11 15495.72 17499.16 13892.35 13399.94 6895.32 15599.35 11498.92 192
GA-MVS93.83 19192.84 20296.80 17695.73 26293.57 21099.88 8797.24 26292.57 17892.92 20796.66 24078.73 27397.67 24087.75 27194.06 20999.17 181
CostFormer96.10 14095.88 13796.78 17797.03 22392.55 23597.08 32097.83 20890.04 24198.72 9794.89 30395.01 5698.29 20896.54 14395.77 18899.50 151
VDDNet93.12 20891.91 22396.76 17896.67 24392.65 23398.69 27398.21 16882.81 32697.75 13199.28 12661.57 34699.48 14998.09 10294.09 20898.15 208
PMMVS96.76 11796.76 10696.76 17898.28 15492.10 24399.91 7297.98 19294.12 11699.53 4799.39 12186.93 20498.73 17396.95 13897.73 14899.45 156
PVSNet_BlendedMVS96.05 14195.82 13996.72 18099.59 9096.99 11499.95 4399.10 2894.06 12198.27 11795.80 26189.00 18599.95 6099.12 4787.53 25293.24 315
BH-w/o95.71 15095.38 14896.68 18198.49 14692.28 23999.84 10897.50 23792.12 19292.06 21498.79 17184.69 22398.67 17895.29 15699.66 9699.09 188
EPNet_dtu95.71 15095.39 14796.66 18298.92 12593.41 21699.57 17298.90 4196.19 5197.52 13498.56 18492.65 12697.36 25077.89 33098.33 13699.20 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAMVS95.85 14595.58 14396.65 18397.07 22093.50 21399.17 22497.82 20991.39 21795.02 18398.01 20092.20 13697.30 25593.75 19595.83 18799.14 185
RRT_MVS95.23 15894.77 16296.61 18498.28 15498.32 6399.81 11797.41 24792.59 17591.28 22097.76 20795.02 5497.23 26193.65 19887.14 25494.28 253
hse-mvs394.92 16594.36 16896.59 18598.85 13291.29 26498.93 25198.94 3695.90 5698.77 9398.42 19290.89 16199.77 11597.80 11370.76 33998.72 202
Anonymous2024052992.10 23290.65 24396.47 18698.82 13390.61 27498.72 27098.67 5975.54 34793.90 19798.58 18266.23 33399.90 7594.70 17190.67 22198.90 195
tpm cat193.51 20192.52 21296.47 18697.77 18591.47 26396.13 33198.06 18680.98 33392.91 20893.78 32289.66 17398.87 16387.03 28196.39 17699.09 188
nrg03093.51 20192.53 21196.45 18894.36 28697.20 10699.81 11797.16 26991.60 20789.86 23797.46 21186.37 20997.68 23995.88 15180.31 30694.46 236
MVSTER95.53 15395.22 15296.45 18898.56 14197.72 8299.91 7297.67 21592.38 18591.39 21897.14 22097.24 1497.30 25594.80 16587.85 24794.34 250
test_part192.15 23190.72 24196.44 19098.87 13197.46 9898.99 24498.26 16285.89 29886.34 30196.34 25081.71 24297.48 24691.06 22978.99 31294.37 245
Anonymous20240521193.10 20991.99 22196.40 19199.10 11289.65 29298.88 25697.93 19783.71 32194.00 19598.75 17268.79 32299.88 8595.08 15891.71 22099.68 115
tpmvs94.28 18793.57 18796.40 19198.55 14291.50 26295.70 33898.55 8387.47 27792.15 21394.26 31891.42 14898.95 16288.15 26695.85 18698.76 201
PVSNet_088.03 1991.80 23990.27 25196.38 19398.27 15690.46 27899.94 5899.61 1193.99 12486.26 30397.39 21571.13 31799.89 7998.77 7467.05 34998.79 200
tpm295.47 15595.18 15496.35 19496.91 22891.70 25796.96 32397.93 19788.04 27298.44 10995.40 28093.32 10797.97 22894.00 18695.61 19299.38 163
VDD-MVS93.77 19592.94 20196.27 19598.55 14290.22 28298.77 26797.79 21090.85 22796.82 14999.42 11661.18 34899.77 11598.95 5894.13 20798.82 198
BH-untuned95.18 15994.83 16096.22 19698.36 15091.22 26599.80 12297.32 25690.91 22591.08 22198.67 17583.51 23198.54 18494.23 18399.61 10198.92 192
VPA-MVSNet92.70 21891.55 23096.16 19795.09 27596.20 14498.88 25699.00 3391.02 22491.82 21595.29 29076.05 29397.96 23095.62 15481.19 29494.30 251
FIs94.10 18893.43 19196.11 19894.70 28296.82 11999.58 17098.93 4092.54 17989.34 25197.31 21687.62 19697.10 26994.22 18486.58 25794.40 243
Patchmatch-test92.65 22191.50 23196.10 19996.85 23390.49 27791.50 35297.19 26482.76 32790.23 22995.59 27095.02 5498.00 22777.41 33296.98 16799.82 97
FMVSNet392.69 21991.58 22895.99 20098.29 15297.42 10199.26 21897.62 21989.80 24489.68 24195.32 28681.62 24696.27 30887.01 28285.65 26294.29 252
RRT_test8_iter0594.58 17694.11 17395.98 20197.88 17696.11 15099.89 8497.45 24091.66 20688.28 27396.71 23896.53 2497.40 24894.73 17083.85 28094.45 241
CR-MVSNet93.45 20492.62 20695.94 20296.29 24592.66 23192.01 35096.23 32292.62 17296.94 14593.31 32791.04 15696.03 31779.23 32395.96 18399.13 186
UniMVSNet (Re)93.07 21092.13 21795.88 20394.84 27996.24 14399.88 8798.98 3492.49 18389.25 25395.40 28087.09 20297.14 26593.13 20778.16 31894.26 254
XXY-MVS91.82 23590.46 24595.88 20393.91 29495.40 17198.87 25997.69 21488.63 26487.87 27897.08 22374.38 30497.89 23491.66 22184.07 27794.35 249
VPNet91.81 23690.46 24595.85 20594.74 28195.54 16798.98 24598.59 7292.14 19190.77 22597.44 21268.73 32497.54 24494.89 16377.89 32094.46 236
FC-MVSNet-test93.81 19393.15 20095.80 20694.30 28896.20 14499.42 19598.89 4292.33 18789.03 26097.27 21887.39 19996.83 28693.20 20386.48 25894.36 246
NR-MVSNet91.56 24490.22 25295.60 20794.05 29195.76 16098.25 29498.70 5491.16 22080.78 33196.64 24283.23 23596.57 29791.41 22377.73 32294.46 236
miper_enhance_ethall94.36 18593.98 17795.49 20898.68 14095.24 17699.73 14597.29 25893.28 14989.86 23795.97 25994.37 7597.05 27292.20 21584.45 27294.19 260
UniMVSNet_NR-MVSNet92.95 21392.11 21895.49 20894.61 28495.28 17499.83 11499.08 3091.49 21089.21 25596.86 23387.14 20196.73 29093.20 20377.52 32394.46 236
DU-MVS92.46 22491.45 23395.49 20894.05 29195.28 17499.81 11798.74 5292.25 18989.21 25596.64 24281.66 24496.73 29093.20 20377.52 32394.46 236
WR-MVS92.31 22791.25 23595.48 21194.45 28595.29 17399.60 16898.68 5690.10 23888.07 27696.89 23180.68 25696.80 28893.14 20679.67 31094.36 246
FMVSNet291.02 25189.56 26395.41 21297.53 20095.74 16198.98 24597.41 24787.05 28388.43 27095.00 29971.34 31496.24 31085.12 29485.21 26794.25 256
AUN-MVS93.28 20592.60 20795.34 21398.29 15290.09 28599.31 21098.56 7791.80 20396.35 16398.00 20189.38 17898.28 21092.46 21269.22 34497.64 217
cl-mvsnet293.77 19593.25 19995.33 21499.49 9994.43 19499.61 16798.09 18390.38 23389.16 25895.61 26890.56 16597.34 25291.93 21784.45 27294.21 259
hse-mvs294.38 18294.08 17595.31 21598.27 15690.02 28699.29 21598.56 7795.90 5698.77 9398.00 20190.89 16198.26 21497.80 11369.20 34597.64 217
bset_n11_16_dypcd93.05 21192.30 21595.31 21590.23 34195.05 18199.44 19497.28 25992.51 18190.65 22696.68 23985.30 21996.71 29294.49 17684.14 27594.16 266
MVS-HIRNet86.22 30183.19 31395.31 21596.71 24290.29 28192.12 34997.33 25562.85 35586.82 29170.37 35969.37 32197.49 24575.12 33997.99 14798.15 208
PatchT90.38 26688.75 28095.25 21895.99 25290.16 28391.22 35497.54 23076.80 34297.26 13986.01 35291.88 14396.07 31666.16 35395.91 18599.51 149
pmmvs492.10 23291.07 23895.18 21992.82 31694.96 18399.48 18896.83 30387.45 27888.66 26696.56 24583.78 23096.83 28689.29 25484.77 27093.75 300
MIMVSNet90.30 26988.67 28195.17 22096.45 24491.64 25992.39 34897.15 27085.99 29790.50 22793.19 32966.95 33194.86 33382.01 31393.43 21399.01 191
XVG-OURS-SEG-HR94.79 16794.70 16495.08 22198.05 16889.19 29599.08 23097.54 23093.66 13994.87 18499.58 10378.78 27299.79 10997.31 12793.40 21496.25 225
XVG-OURS94.82 16694.74 16395.06 22298.00 17089.19 29599.08 23097.55 22894.10 11794.71 18599.62 10080.51 25999.74 12596.04 14893.06 21896.25 225
v2v48291.30 24590.07 25795.01 22393.13 30693.79 20699.77 12997.02 28488.05 27189.25 25395.37 28480.73 25597.15 26487.28 27780.04 30994.09 274
AllTest92.48 22391.64 22695.00 22499.01 11588.43 30598.94 25096.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
TestCases95.00 22499.01 11588.43 30596.82 30586.50 29188.71 26398.47 19074.73 30199.88 8585.39 29296.18 17896.71 223
JIA-IIPM91.76 24290.70 24294.94 22696.11 24887.51 31393.16 34698.13 18275.79 34697.58 13377.68 35792.84 12197.97 22888.47 26396.54 17299.33 170
HQP-MVS94.61 17594.50 16694.92 22795.78 25691.85 24999.87 9097.89 20196.82 3093.37 20198.65 17680.65 25798.39 19897.92 11189.60 22294.53 231
v114491.09 25089.83 25894.87 22893.25 30593.69 20999.62 16696.98 28986.83 28989.64 24594.99 30080.94 25297.05 27285.08 29581.16 29593.87 293
HQP_MVS94.49 18094.36 16894.87 22895.71 26591.74 25399.84 10897.87 20396.38 4493.01 20598.59 18080.47 26198.37 20397.79 11689.55 22594.52 233
TranMVSNet+NR-MVSNet91.68 24390.61 24494.87 22893.69 29893.98 20399.69 15198.65 6091.03 22388.44 26896.83 23780.05 26496.18 31190.26 24776.89 33194.45 241
miper_ehance_all_eth93.16 20792.60 20794.82 23197.57 19893.56 21199.50 18497.07 28088.75 26088.85 26295.52 27490.97 15896.74 28990.77 23884.45 27294.17 261
V4291.28 24790.12 25694.74 23293.42 30393.46 21499.68 15397.02 28487.36 27989.85 23995.05 29581.31 24997.34 25287.34 27680.07 30893.40 310
EI-MVSNet93.73 19793.40 19594.74 23296.80 23692.69 23099.06 23597.67 21588.96 25591.39 21899.02 14488.75 18897.30 25591.07 22887.85 24794.22 257
v119290.62 26289.25 27094.72 23493.13 30693.07 22099.50 18497.02 28486.33 29489.56 24795.01 29779.22 26897.09 27182.34 31181.16 29594.01 280
v890.54 26389.17 27194.66 23593.43 30293.40 21799.20 22196.94 29585.76 30187.56 28294.51 31281.96 24197.19 26284.94 29678.25 31793.38 312
test0.0.03 193.86 19093.61 18394.64 23695.02 27892.18 24299.93 6498.58 7394.07 11987.96 27798.50 18593.90 9494.96 33181.33 31693.17 21696.78 222
PS-MVSNAJss93.64 20093.31 19794.61 23792.11 32392.19 24199.12 22697.38 25092.51 18188.45 26796.99 22991.20 15297.29 25894.36 17887.71 24994.36 246
v14419290.79 25789.52 26594.59 23893.11 30992.77 22599.56 17496.99 28786.38 29389.82 24094.95 30280.50 26097.10 26983.98 30180.41 30493.90 290
tpm93.70 19993.41 19494.58 23995.36 27387.41 31497.01 32196.90 29890.85 22796.72 15294.14 31990.40 16696.84 28590.75 23988.54 24199.51 149
v1090.25 27188.82 27894.57 24093.53 30093.43 21599.08 23096.87 30185.00 31187.34 28894.51 31280.93 25397.02 27882.85 30879.23 31193.26 314
CLD-MVS94.06 18993.90 17994.55 24196.02 25190.69 27199.98 1097.72 21296.62 3991.05 22298.85 17077.21 27998.47 18698.11 10089.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cl-mvsnet____92.31 22791.58 22894.52 24297.33 21292.77 22599.57 17296.78 30886.97 28787.56 28295.51 27589.43 17796.62 29588.60 25982.44 28594.16 266
cl_fuxian92.53 22291.87 22494.52 24297.40 20792.99 22399.40 19696.93 29687.86 27388.69 26595.44 27889.95 17196.44 30190.45 24280.69 30394.14 271
v192192090.46 26489.12 27294.50 24492.96 31392.46 23699.49 18696.98 28986.10 29689.61 24695.30 28778.55 27597.03 27682.17 31280.89 30294.01 280
UniMVSNet_ETH3D90.06 27688.58 28294.49 24594.67 28388.09 31097.81 30997.57 22783.91 32088.44 26897.41 21357.44 35297.62 24291.41 22388.59 24097.77 215
cl-mvsnet192.32 22691.60 22794.47 24697.31 21392.74 22799.58 17096.75 30986.99 28687.64 28095.54 27289.55 17696.50 29988.58 26082.44 28594.17 261
test_djsdf92.83 21592.29 21694.47 24691.90 32692.46 23699.55 17697.27 26091.17 21889.96 23396.07 25881.10 25096.89 28294.67 17288.91 23194.05 277
OPM-MVS93.21 20692.80 20394.44 24893.12 30890.85 27099.77 12997.61 22296.19 5191.56 21798.65 17675.16 29998.47 18693.78 19489.39 22893.99 283
v124090.20 27288.79 27994.44 24893.05 31192.27 24099.38 20196.92 29785.89 29889.36 25094.87 30477.89 27897.03 27680.66 31981.08 29894.01 280
IterMVS-LS92.69 21992.11 21894.43 25096.80 23692.74 22799.45 19296.89 29988.98 25389.65 24495.38 28388.77 18796.34 30590.98 23382.04 28894.22 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
anonymousdsp91.79 24190.92 23994.41 25190.76 33792.93 22498.93 25197.17 26789.08 24987.46 28595.30 28778.43 27796.92 28192.38 21388.73 23693.39 311
tfpnnormal89.29 28687.61 29394.34 25294.35 28794.13 19998.95 24998.94 3683.94 31884.47 31395.51 27574.84 30097.39 24977.05 33580.41 30491.48 337
CP-MVSNet91.23 24890.22 25294.26 25393.96 29392.39 23899.09 22898.57 7588.95 25686.42 29996.57 24479.19 26996.37 30390.29 24678.95 31394.02 278
COLMAP_ROBcopyleft90.47 1492.18 23091.49 23294.25 25499.00 11788.04 31198.42 28996.70 31282.30 32988.43 27099.01 14676.97 28199.85 9486.11 28996.50 17494.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
mvs-test195.53 15395.97 13094.20 25597.77 18585.44 32499.95 4397.06 28194.92 8396.58 15498.72 17385.81 21298.98 16094.80 16598.11 14198.18 207
jajsoiax91.92 23491.18 23694.15 25691.35 33290.95 26899.00 24397.42 24592.61 17387.38 28697.08 22372.46 31097.36 25094.53 17588.77 23594.13 272
WR-MVS_H91.30 24590.35 24894.15 25694.17 29092.62 23499.17 22498.94 3688.87 25886.48 29894.46 31684.36 22696.61 29688.19 26578.51 31693.21 316
Anonymous2023121189.86 27888.44 28494.13 25898.93 12390.68 27298.54 28198.26 16276.28 34386.73 29295.54 27270.60 31897.56 24390.82 23780.27 30794.15 268
GBi-Net90.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
test190.88 25489.82 25994.08 25997.53 20091.97 24498.43 28696.95 29287.05 28389.68 24194.72 30571.34 31496.11 31287.01 28285.65 26294.17 261
FMVSNet188.50 29186.64 29794.08 25995.62 27091.97 24498.43 28696.95 29283.00 32486.08 30594.72 30559.09 35096.11 31281.82 31584.07 27794.17 261
LTVRE_ROB88.28 1890.29 27089.05 27594.02 26295.08 27690.15 28497.19 31797.43 24384.91 31483.99 31597.06 22574.00 30698.28 21084.08 29987.71 24993.62 306
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 28587.81 29294.01 26393.40 30491.93 24798.62 27896.48 31986.25 29583.86 31696.14 25573.68 30797.04 27486.16 28875.73 33593.04 319
mvs_tets91.81 23691.08 23794.00 26491.63 33090.58 27598.67 27597.43 24392.43 18487.37 28797.05 22671.76 31297.32 25494.75 16888.68 23794.11 273
PS-CasMVS90.63 26189.51 26693.99 26593.83 29591.70 25798.98 24598.52 9088.48 26686.15 30496.53 24675.46 29596.31 30688.83 25878.86 31593.95 286
ACMM91.95 1092.88 21492.52 21293.98 26695.75 26189.08 29899.77 12997.52 23493.00 15589.95 23497.99 20376.17 29198.46 18993.63 19988.87 23394.39 244
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v14890.70 25889.63 26193.92 26792.97 31290.97 26799.75 13796.89 29987.51 27688.27 27495.01 29781.67 24397.04 27487.40 27577.17 32893.75 300
DeepPCF-MVS95.94 297.71 8598.98 1093.92 26799.63 8881.76 34299.96 2598.56 7799.47 199.19 7699.99 194.16 87100.00 199.92 999.93 63100.00 1
CVMVSNet94.68 17394.94 15893.89 26996.80 23686.92 31699.06 23598.98 3494.45 10094.23 19399.02 14485.60 21495.31 32790.91 23595.39 19699.43 159
eth_miper_zixun_eth92.41 22591.93 22293.84 27097.28 21690.68 27298.83 26296.97 29188.57 26589.19 25795.73 26589.24 18396.69 29389.97 25081.55 29194.15 268
ACMP92.05 992.74 21792.42 21493.73 27195.91 25588.72 30099.81 11797.53 23294.13 11587.00 29098.23 19574.07 30598.47 18696.22 14688.86 23493.99 283
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v7n89.65 28288.29 28793.72 27292.22 32290.56 27699.07 23497.10 27685.42 30986.73 29294.72 30580.06 26397.13 26681.14 31778.12 31993.49 308
LPG-MVS_test92.96 21292.71 20593.71 27395.43 27188.67 30199.75 13797.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
LGP-MVS_train93.71 27395.43 27188.67 30197.62 21992.81 16090.05 23098.49 18675.24 29798.40 19695.84 15289.12 22994.07 275
KD-MVS_2432*160088.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
miper_refine_blended88.00 29586.10 29993.70 27596.91 22894.04 20097.17 31897.12 27284.93 31281.96 32392.41 33492.48 13094.51 33679.23 32352.68 35792.56 324
ACMH89.72 1790.64 26089.63 26193.66 27795.64 26888.64 30398.55 27997.45 24089.03 25181.62 32697.61 20969.75 32098.41 19489.37 25387.62 25193.92 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS90.19 27389.06 27493.57 27893.06 31090.90 26999.06 23598.47 10388.11 27085.91 30696.30 25176.67 28495.94 32087.07 27976.91 33093.89 291
ADS-MVSNet293.80 19493.88 18093.55 27997.87 17885.94 32094.24 33996.84 30290.07 23996.43 15994.48 31490.29 16895.37 32587.44 27397.23 16099.36 166
pmmvs590.17 27489.09 27393.40 28092.10 32489.77 29199.74 14095.58 33685.88 30087.24 28995.74 26373.41 30896.48 30088.54 26183.56 28193.95 286
Patchmtry89.70 28188.49 28393.33 28196.24 24789.94 29091.37 35396.23 32278.22 34087.69 27993.31 32791.04 15696.03 31780.18 32282.10 28794.02 278
Fast-Effi-MVS+-dtu93.72 19893.86 18193.29 28297.06 22186.16 31899.80 12296.83 30392.66 17092.58 21297.83 20681.39 24797.67 24089.75 25296.87 16996.05 229
D2MVS92.76 21692.59 21093.27 28395.13 27489.54 29499.69 15199.38 2192.26 18887.59 28194.61 31185.05 22297.79 23691.59 22288.01 24692.47 327
ppachtmachnet_test89.58 28388.35 28593.25 28492.40 32090.44 27999.33 20796.73 31085.49 30785.90 30795.77 26281.09 25196.00 31976.00 33882.49 28493.30 313
TransMVSNet (Re)87.25 29885.28 30393.16 28593.56 29991.03 26698.54 28194.05 35383.69 32281.09 32996.16 25475.32 29696.40 30276.69 33668.41 34692.06 331
our_test_390.39 26589.48 26893.12 28692.40 32089.57 29399.33 20796.35 32187.84 27485.30 30994.99 30084.14 22896.09 31580.38 32084.56 27193.71 305
IterMVS90.91 25390.17 25493.12 28696.78 23990.42 28098.89 25497.05 28389.03 25186.49 29795.42 27976.59 28695.02 32987.22 27884.09 27693.93 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC90.00 27788.96 27693.10 28894.81 28088.16 30998.71 27195.54 33793.66 13983.75 31797.20 21965.58 33598.31 20783.96 30287.49 25392.85 322
miper_lstm_enhance91.81 23691.39 23493.06 28997.34 21089.18 29799.38 20196.79 30786.70 29087.47 28495.22 29290.00 17095.86 32188.26 26481.37 29394.15 268
IterMVS-SCA-FT90.85 25690.16 25592.93 29096.72 24189.96 28798.89 25496.99 28788.95 25686.63 29495.67 26676.48 28795.00 33087.04 28084.04 27993.84 295
DTE-MVSNet89.40 28488.24 28892.88 29192.66 31889.95 28899.10 22798.22 16787.29 28085.12 31196.22 25376.27 29095.30 32883.56 30575.74 33493.41 309
Baseline_NR-MVSNet90.33 26889.51 26692.81 29292.84 31489.95 28899.77 12993.94 35484.69 31689.04 25995.66 26781.66 24496.52 29890.99 23276.98 32991.97 333
ACMH+89.98 1690.35 26789.54 26492.78 29395.99 25286.12 31998.81 26497.18 26689.38 24683.14 31997.76 20768.42 32698.43 19289.11 25686.05 26093.78 299
XVG-ACMP-BASELINE91.22 24990.75 24092.63 29493.73 29785.61 32198.52 28397.44 24292.77 16489.90 23696.85 23466.64 33298.39 19892.29 21488.61 23893.89 291
ITE_SJBPF92.38 29595.69 26785.14 32595.71 33292.81 16089.33 25298.11 19770.23 31998.42 19385.91 29088.16 24593.59 307
MVP-Stereo90.93 25290.45 24792.37 29691.25 33488.76 29998.05 30496.17 32487.27 28184.04 31495.30 28778.46 27697.27 26083.78 30399.70 9491.09 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu94.53 17995.30 15092.22 29797.77 18582.54 33599.59 16997.06 28194.92 8395.29 18095.37 28485.81 21297.89 23494.80 16597.07 16496.23 227
MVS_030489.28 28788.31 28692.21 29897.05 22286.53 31797.76 31099.57 1285.58 30693.86 19892.71 33151.04 35896.30 30784.49 29892.72 21993.79 298
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 33588.58 30499.20 22196.52 31779.70 33757.12 35992.69 33279.11 27093.86 34277.10 33477.46 32593.86 294
YYNet185.50 30683.33 31192.00 30090.89 33688.38 30899.22 22096.55 31679.60 33857.26 35892.72 33079.09 27193.78 34377.25 33377.37 32693.84 295
TinyColmap87.87 29786.51 29891.94 30195.05 27785.57 32297.65 31194.08 35284.40 31781.82 32596.85 23462.14 34598.33 20580.25 32186.37 25991.91 334
testgi89.01 28988.04 29091.90 30293.49 30184.89 32799.73 14595.66 33493.89 13285.14 31098.17 19659.68 34994.66 33577.73 33188.88 23296.16 228
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33388.00 31298.67 27595.92 32980.22 33555.60 36093.32 32668.29 32793.60 34573.76 34076.61 33293.82 297
MS-PatchMatch90.65 25990.30 25091.71 30494.22 28985.50 32398.24 29597.70 21388.67 26286.42 29996.37 24967.82 32898.03 22683.62 30499.62 9891.60 335
LCM-MVSNet-Re92.31 22792.60 20791.43 30597.53 20079.27 35199.02 24291.83 35892.07 19380.31 33294.38 31783.50 23295.48 32397.22 13097.58 15299.54 144
TDRefinement84.76 30982.56 31691.38 30674.58 36084.80 32897.36 31494.56 35084.73 31580.21 33396.12 25763.56 34298.39 19887.92 26963.97 35090.95 341
pmmvs685.69 30283.84 30891.26 30790.00 34384.41 32997.82 30896.15 32575.86 34581.29 32895.39 28261.21 34796.87 28483.52 30673.29 33892.50 326
SixPastTwentyTwo88.73 29088.01 29190.88 30891.85 32782.24 33798.22 29795.18 34588.97 25482.26 32296.89 23171.75 31396.67 29484.00 30082.98 28293.72 304
FMVSNet588.32 29287.47 29490.88 30896.90 23188.39 30797.28 31595.68 33382.60 32884.67 31292.40 33679.83 26591.16 35276.39 33781.51 29293.09 317
OurMVSNet-221017-089.81 27989.48 26890.83 31091.64 32981.21 34398.17 29995.38 34091.48 21185.65 30897.31 21672.66 30997.29 25888.15 26684.83 26993.97 285
lessismore_v090.53 31190.58 33880.90 34695.80 33077.01 34195.84 26066.15 33496.95 27983.03 30775.05 33693.74 303
test_040285.58 30383.94 30790.50 31293.81 29685.04 32698.55 27995.20 34476.01 34479.72 33595.13 29364.15 34196.26 30966.04 35486.88 25690.21 346
K. test v388.05 29487.24 29690.47 31391.82 32882.23 33898.96 24897.42 24589.05 25076.93 34295.60 26968.49 32595.42 32485.87 29181.01 30093.75 300
LF4IMVS89.25 28888.85 27790.45 31492.81 31781.19 34498.12 30094.79 34791.44 21386.29 30297.11 22165.30 33898.11 22188.53 26285.25 26692.07 330
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 35587.09 31598.10 30294.73 34983.05 32374.10 34987.77 34865.56 33694.01 33981.08 31869.24 34389.49 350
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 34583.51 33196.65 32597.99 19089.14 24875.89 34693.83 32163.25 34393.92 34081.92 31467.90 34892.88 321
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 34882.82 33298.46 28495.22 34373.92 35176.00 34591.29 33955.00 35496.94 28068.40 34988.51 24290.34 344
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 33981.89 34098.21 29896.09 32681.78 33174.73 34893.72 32351.56 35797.12 26879.16 32688.61 23890.96 340
Patchmatch-RL test86.90 29985.98 30189.67 31984.45 35475.59 35289.71 35592.43 35686.89 28877.83 34090.94 34194.22 8393.63 34487.75 27169.61 34199.79 100
EU-MVSNet90.14 27590.34 24989.54 32092.55 31981.06 34598.69 27398.04 18891.41 21686.59 29596.84 23680.83 25493.31 34786.20 28781.91 28994.26 254
new_pmnet84.49 31382.92 31589.21 32190.03 34282.60 33496.89 32495.62 33580.59 33475.77 34789.17 34465.04 33994.79 33472.12 34381.02 29990.23 345
Anonymous2024052185.15 30883.81 30989.16 32288.32 34782.69 33398.80 26595.74 33179.72 33681.53 32790.99 34065.38 33794.16 33872.69 34281.11 29790.63 343
Anonymous2023120686.32 30085.42 30289.02 32389.11 34680.53 34999.05 23995.28 34185.43 30882.82 32093.92 32074.40 30393.44 34666.99 35181.83 29093.08 318
RPSCF91.80 23992.79 20488.83 32498.15 16469.87 35598.11 30196.60 31583.93 31994.33 19199.27 12979.60 26699.46 15091.99 21693.16 21797.18 221
UnsupCasMVSNet_bld79.97 32477.03 32788.78 32585.62 35381.98 33993.66 34497.35 25275.51 34870.79 35283.05 35448.70 35994.91 33278.31 32960.29 35589.46 351
MIMVSNet182.58 31880.51 32288.78 32586.68 35184.20 33096.65 32595.41 33978.75 33978.59 33892.44 33351.88 35689.76 35565.26 35578.95 31392.38 329
CL-MVSNet_2432*160084.50 31283.15 31488.53 32786.00 35281.79 34198.82 26397.35 25285.12 31083.62 31890.91 34276.66 28591.40 35169.53 34760.36 35492.40 328
DSMNet-mixed88.28 29388.24 28888.42 32889.64 34475.38 35398.06 30389.86 36185.59 30588.20 27592.14 33776.15 29291.95 35078.46 32896.05 18197.92 211
DIV-MVS_2432*160083.59 31782.06 31788.20 32986.93 35080.70 34797.21 31696.38 32082.87 32582.49 32188.97 34567.63 32992.32 34873.75 34162.30 35391.58 336
pmmvs380.27 32277.77 32687.76 33080.32 35882.43 33698.23 29691.97 35772.74 35278.75 33787.97 34757.30 35390.99 35370.31 34562.37 35289.87 347
test20.0384.72 31183.99 30586.91 33188.19 34980.62 34898.88 25695.94 32888.36 26878.87 33694.62 31068.75 32389.11 35666.52 35275.82 33391.00 339
new-patchmatchnet81.19 31979.34 32486.76 33282.86 35780.36 35097.92 30695.27 34282.09 33072.02 35086.87 35062.81 34490.74 35471.10 34463.08 35189.19 352
PM-MVS80.47 32178.88 32585.26 33383.79 35672.22 35495.89 33691.08 35985.71 30476.56 34488.30 34636.64 36193.90 34182.39 31069.57 34289.66 349
test_method80.79 32079.70 32384.08 33492.83 31567.06 35799.51 18295.42 33854.34 35781.07 33093.53 32444.48 36092.22 34978.90 32777.23 32792.94 320
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33590.32 34062.54 35996.98 32297.59 22674.33 35069.95 35396.66 24064.17 34098.32 20687.88 27088.41 24389.84 348
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc83.23 33677.17 35962.61 35887.38 35794.55 35176.72 34386.65 35130.16 36296.36 30484.85 29769.86 34090.73 342
DeepMVS_CXcopyleft82.92 33795.98 25458.66 36196.01 32792.72 16578.34 33995.51 27558.29 35198.08 22282.57 30985.29 26592.03 332
N_pmnet80.06 32380.78 32177.89 33891.94 32545.28 36798.80 26556.82 37078.10 34180.08 33493.33 32577.03 28095.76 32268.14 35082.81 28392.64 323
LCM-MVSNet67.77 32664.73 33076.87 33962.95 36656.25 36389.37 35693.74 35544.53 36061.99 35580.74 35520.42 36886.53 35869.37 34859.50 35687.84 353
PMMVS267.15 32764.15 33176.14 34070.56 36362.07 36093.89 34287.52 36558.09 35660.02 35678.32 35622.38 36784.54 35959.56 35847.03 35981.80 355
Gipumacopyleft66.95 32865.00 32972.79 34191.52 33167.96 35666.16 36295.15 34647.89 35958.54 35767.99 36129.74 36387.54 35750.20 36077.83 32162.87 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt65.23 32962.94 33272.13 34244.90 36950.03 36581.05 35989.42 36438.45 36148.51 36399.90 1754.09 35578.70 36291.84 22018.26 36487.64 354
FPMVS68.72 32568.72 32868.71 34365.95 36444.27 36995.97 33594.74 34851.13 35853.26 36190.50 34325.11 36683.00 36060.80 35780.97 30178.87 356
ANet_high56.10 33052.24 33367.66 34449.27 36856.82 36283.94 35882.02 36670.47 35333.28 36764.54 36217.23 37069.16 36445.59 36223.85 36377.02 357
MVEpermissive53.74 2251.54 33347.86 33762.60 34559.56 36750.93 36479.41 36077.69 36735.69 36436.27 36661.76 3655.79 37469.63 36337.97 36436.61 36067.24 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft49.05 2353.75 33151.34 33560.97 34640.80 37034.68 37074.82 36189.62 36337.55 36228.67 36872.12 3587.09 37281.63 36143.17 36368.21 34766.59 359
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN52.30 33252.18 33452.67 34771.51 36145.40 36693.62 34576.60 36836.01 36343.50 36464.13 36327.11 36567.31 36531.06 36526.06 36145.30 364
EMVS51.44 33451.22 33652.11 34870.71 36244.97 36894.04 34175.66 36935.34 36542.40 36561.56 36628.93 36465.87 36627.64 36624.73 36245.49 363
test12337.68 33639.14 33933.31 34919.94 37124.83 37298.36 2909.75 37215.53 36751.31 36287.14 34919.62 36917.74 36847.10 3613.47 36757.36 361
testmvs40.60 33544.45 33829.05 35019.49 37214.11 37399.68 15318.47 37120.74 36664.59 35498.48 18910.95 37117.09 36956.66 35911.01 36555.94 362
wuyk23d20.37 33820.84 34118.99 35165.34 36527.73 37150.43 3637.67 3739.50 3688.01 3696.34 3696.13 37326.24 36723.40 36710.69 3662.99 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k23.43 33731.24 3400.00 3520.00 3730.00 3740.00 36498.09 1830.00 3690.00 37099.67 9583.37 2330.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.60 34010.13 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37091.20 1520.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.28 33911.04 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37099.40 1190.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
ZD-MVS99.92 3598.57 5198.52 9092.34 18699.31 6699.83 4995.06 5299.80 10699.70 3099.97 44
RE-MVS-def98.13 5599.79 7096.37 13699.76 13498.31 15394.43 10299.40 6199.75 7792.95 11998.90 6499.92 6799.97 63
IU-MVS99.93 2699.31 798.41 13197.71 899.84 8100.00 1100.00 1100.00 1
test_241102_TWO98.43 11697.27 2099.80 1699.94 497.18 17100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2699.30 898.43 11697.26 2299.80 1699.88 2296.71 20100.00 1
9.1498.38 3899.87 5299.91 7298.33 14993.22 15099.78 2299.89 1994.57 6899.85 9499.84 1399.97 44
save fliter99.82 6598.79 3399.96 2598.40 13297.66 10
test_0728_THIRD96.48 4099.83 1099.91 1397.87 4100.00 199.92 9100.00 1100.00 1
test072699.93 2699.29 1099.96 2598.42 12797.28 1899.86 499.94 497.22 15
GSMVS99.59 131
test_part299.89 4599.25 1399.49 51
sam_mvs194.72 6499.59 131
sam_mvs94.25 82
MTGPAbinary98.28 158
test_post195.78 33759.23 36793.20 11497.74 23891.06 229
test_post63.35 36494.43 6998.13 220
patchmatchnet-post91.70 33895.12 4897.95 231
MTMP99.87 9096.49 318
gm-plane-assit96.97 22693.76 20891.47 21298.96 15598.79 16794.92 160
test9_res99.71 2999.99 20100.00 1
TEST999.92 3598.92 2399.96 2598.43 11693.90 13099.71 3299.86 2995.88 3499.85 94
test_899.92 3598.88 2699.96 2598.43 11694.35 10799.69 3499.85 3395.94 3199.85 94
agg_prior299.48 36100.00 1100.00 1
agg_prior99.93 2698.77 3698.43 11699.63 3899.85 94
test_prior498.05 7199.94 58
test_prior299.95 4395.78 6099.73 2799.76 7296.00 2999.78 20100.00 1
旧先验299.46 19194.21 11499.85 699.95 6096.96 137
新几何299.40 196
旧先验199.76 7497.52 9198.64 6399.85 3395.63 3999.94 5799.99 20
无先验99.49 18698.71 5393.46 144100.00 194.36 17899.99 20
原ACMM299.90 76
test22299.55 9497.41 10299.34 20698.55 8391.86 19999.27 7199.83 4993.84 9699.95 5199.99 20
testdata299.99 3690.54 241
segment_acmp96.68 22
testdata199.28 21696.35 48
plane_prior795.71 26591.59 261
plane_prior695.76 26091.72 25680.47 261
plane_prior597.87 20398.37 20397.79 11689.55 22594.52 233
plane_prior498.59 180
plane_prior391.64 25996.63 3893.01 205
plane_prior299.84 10896.38 44
plane_prior195.73 262
plane_prior91.74 25399.86 10196.76 3489.59 224
n20.00 374
nn0.00 374
door-mid89.69 362
test1198.44 108
door90.31 360
HQP5-MVS91.85 249
HQP-NCC95.78 25699.87 9096.82 3093.37 201
ACMP_Plane95.78 25699.87 9096.82 3093.37 201
BP-MVS97.92 111
HQP4-MVS93.37 20198.39 19894.53 231
HQP3-MVS97.89 20189.60 222
HQP2-MVS80.65 257
NP-MVS95.77 25991.79 25198.65 176
MDTV_nov1_ep13_2view96.26 13996.11 33291.89 19898.06 12394.40 7194.30 18199.67 117
MDTV_nov1_ep1395.69 14197.90 17594.15 19895.98 33498.44 10893.12 15397.98 12595.74 26395.10 4998.58 18190.02 24996.92 168
ACMMP++_ref87.04 255
ACMMP++88.23 244
Test By Simon92.82 123