This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CHOSEN 1792x268876.24 5574.03 7582.88 183.09 11162.84 285.73 11285.39 9669.79 2064.87 13183.49 17841.52 14893.69 2670.55 8481.82 6992.12 32
MG-MVS78.42 2376.99 3882.73 293.17 164.46 189.93 3188.51 4364.83 7373.52 5088.09 12248.07 6292.19 5262.24 14184.53 5191.53 48
ETH3 D test640083.28 183.47 182.72 391.48 459.33 692.10 990.95 765.68 6080.67 1594.42 359.41 795.89 986.74 289.75 592.94 16
LFMVS78.52 2177.14 3682.67 489.58 1058.90 891.27 2088.05 4763.22 9674.63 3890.83 6441.38 14994.40 1975.42 5579.90 9194.72 2
DPM-MVS82.39 382.36 582.49 580.12 18259.50 592.24 890.72 869.37 2383.22 694.47 263.81 393.18 3074.02 6593.25 294.80 1
CSCG80.41 1279.72 1482.49 589.12 2157.67 1589.29 4291.54 359.19 16671.82 7190.05 8659.72 696.04 778.37 3288.40 1293.75 5
SED-MVS81.92 681.75 782.44 789.48 1456.89 2692.48 388.94 2757.50 20684.61 394.09 458.81 996.37 582.28 1187.60 1694.06 3
DVP-MVS81.30 881.00 1082.20 889.40 1757.45 1892.34 589.99 1457.71 20081.91 993.64 1055.17 1796.44 281.68 1387.13 2092.72 21
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1257.73 1392.34 588.88 2996.39 481.68 1387.13 2092.47 24
MCST-MVS83.01 283.30 382.15 1092.84 257.58 1693.77 191.10 675.95 277.10 2493.09 1754.15 2395.57 1085.80 385.87 3693.31 9
DELS-MVS82.32 482.50 481.79 1186.80 4156.89 2692.77 286.30 8177.83 177.88 2192.13 3360.24 494.78 1878.97 2789.61 693.69 6
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 667.21 295.10 1389.82 192.55 394.06 3
PS-MVSNAJ80.06 1379.52 1681.68 1385.58 5660.97 391.69 1187.02 6670.62 1380.75 1493.22 1437.77 18092.50 4482.75 886.25 3391.57 46
xiu_mvs_v2_base79.86 1579.31 1781.53 1485.03 7260.73 491.65 1386.86 6970.30 1880.77 1393.07 1837.63 18592.28 5082.73 985.71 3791.57 46
CNVR-MVS81.76 781.90 681.33 1590.04 757.70 1491.71 1088.87 3070.31 1777.64 2393.87 852.58 3093.91 2484.17 487.92 1492.39 26
MVS76.91 4575.48 5681.23 1684.56 7755.21 5880.23 24491.64 258.65 18265.37 12391.48 5145.72 9195.05 1472.11 7989.52 893.44 7
VDDNet74.37 8072.13 9781.09 1779.58 18656.52 3390.02 2886.70 7452.61 26071.23 7887.20 13431.75 25493.96 2374.30 6375.77 12192.79 20
NCCC79.57 1879.23 1880.59 1889.50 1256.99 2491.38 1688.17 4667.71 3973.81 4692.75 2146.88 7493.28 2878.79 3084.07 5491.50 50
API-MVS74.17 8372.07 10080.49 1990.02 858.55 987.30 7584.27 13157.51 20565.77 12087.77 12941.61 14695.97 851.71 22582.63 6186.94 149
3Dnovator64.70 674.46 7972.48 8980.41 2082.84 12355.40 5383.08 18588.61 3967.61 4159.85 18488.66 11134.57 22593.97 2258.42 17488.70 1091.85 40
DPE-MVScopyleft79.82 1679.66 1580.29 2189.27 2055.08 6488.70 5087.92 5155.55 23481.21 1293.69 956.51 1494.27 2178.36 3385.70 3891.51 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DWT-MVSNet_test75.47 6973.87 7780.29 2187.33 3757.05 2382.86 19187.96 5072.59 667.29 10187.79 12751.61 3591.52 6654.75 20572.63 14992.29 28
MAR-MVS76.76 4975.60 5580.21 2390.87 554.68 7789.14 4389.11 2262.95 9970.54 8392.33 3041.05 15094.95 1557.90 18386.55 3091.00 63
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SD-MVS76.18 5674.85 6680.18 2485.39 6356.90 2585.75 11082.45 16756.79 21874.48 4291.81 4143.72 11890.75 8574.61 6178.65 9892.91 17
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Effi-MVS+75.24 7073.61 7980.16 2581.92 13957.42 2085.21 12376.71 27060.68 13973.32 5289.34 9947.30 7091.63 6268.28 9779.72 9291.42 51
SMA-MVScopyleft79.10 1978.76 1980.12 2684.42 7955.87 4487.58 6986.76 7261.48 12580.26 1693.10 1546.53 7992.41 4779.97 2388.77 992.08 33
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSLP-MVS++74.21 8272.25 9480.11 2781.45 15656.47 3486.32 9779.65 21158.19 18866.36 11192.29 3236.11 21190.66 8767.39 10182.49 6293.18 13
CANet80.90 981.17 980.09 2887.62 3454.21 8791.60 1486.47 7773.13 579.89 1893.10 1549.88 5392.98 3184.09 584.75 4993.08 14
IB-MVS68.87 274.01 8572.03 10279.94 2983.04 11455.50 4890.24 2788.65 3567.14 4461.38 17181.74 20553.21 2694.28 2060.45 16062.41 22590.03 85
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HPM-MVS++copyleft80.50 1180.71 1179.88 3087.34 3655.20 5989.93 3187.55 6166.04 5979.46 1993.00 1953.10 2791.76 6080.40 2289.56 792.68 22
CS-MVS80.02 1480.13 1279.68 3183.44 9956.75 2991.66 1287.84 5270.41 1675.69 3192.06 3751.47 3992.80 3581.17 1987.42 1989.49 96
xxxxxxxxxxxxxcwj77.31 3976.54 4279.61 3285.35 6456.34 3789.31 4072.84 30461.55 12174.63 3892.38 2847.75 6691.35 7078.18 3686.85 2691.15 58
QAPM71.88 11769.33 13779.52 3382.20 13654.30 8586.30 9888.77 3356.61 22259.72 18687.48 13233.90 23295.36 1147.48 25081.49 7288.90 112
VDD-MVS76.08 5874.97 6479.44 3484.27 8453.33 11391.13 2185.88 8865.33 6772.37 6489.34 9932.52 24492.76 3877.90 3975.96 11892.22 31
MVS_111021_HR76.39 5475.38 5979.42 3585.33 6656.47 3488.15 5684.97 11365.15 7166.06 11589.88 8943.79 11592.16 5375.03 5880.03 8989.64 93
SteuartSystems-ACMMP77.08 4276.33 4779.34 3680.98 16455.31 5489.76 3586.91 6862.94 10071.65 7291.56 4942.33 13392.56 4377.14 4383.69 5690.15 83
Skip Steuart: Steuart Systems R&D Blog.
test1279.24 3786.89 4056.08 4285.16 10872.27 6647.15 7291.10 7685.93 3590.54 74
APDe-MVS78.44 2278.20 2379.19 3888.56 2254.55 8189.76 3587.77 5655.91 22978.56 2092.49 2648.20 6192.65 4279.49 2483.04 5990.39 76
lupinMVS78.38 2478.11 2679.19 3883.02 11555.24 5691.57 1584.82 11869.12 2476.67 2692.02 3844.82 10490.23 10180.83 2080.09 8692.08 33
DeepC-MVS_fast67.50 378.00 3077.63 3079.13 4088.52 2355.12 6189.95 3085.98 8768.31 2871.33 7792.75 2145.52 9390.37 9471.15 8285.14 4591.91 38
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs78.17 2877.86 2979.12 4184.30 8154.22 8687.71 6284.57 12567.70 4077.70 2292.11 3650.90 4489.95 10678.18 3677.54 10593.20 12
PHI-MVS77.49 3677.00 3778.95 4285.33 6650.69 17188.57 5288.59 4158.14 18973.60 4793.31 1243.14 12793.79 2573.81 6688.53 1192.37 27
test_yl75.85 6374.83 6778.91 4388.08 3051.94 14591.30 1889.28 1857.91 19471.19 7989.20 10242.03 14092.77 3669.41 8975.07 12992.01 36
DCV-MVSNet75.85 6374.83 6778.91 4388.08 3051.94 14591.30 1889.28 1857.91 19471.19 7989.20 10242.03 14092.77 3669.41 8975.07 12992.01 36
Regformer-177.80 3377.44 3378.88 4587.78 3252.44 13587.60 6490.08 1268.86 2572.49 6391.79 4247.69 6894.90 1673.57 6977.05 10789.31 100
casdiffmvs77.36 3876.85 3978.88 4580.40 17954.66 7987.06 8185.88 8872.11 871.57 7488.63 11550.89 4690.35 9576.00 4779.11 9591.63 43
ETH3D cwj APD-0.1678.36 2578.19 2478.86 4784.21 8552.68 12986.70 9089.02 2559.13 17275.37 3392.49 2649.06 5893.20 2980.67 2187.08 2390.71 69
CS-MVS-test79.65 1779.93 1378.84 4883.45 9854.39 8391.36 1787.98 4867.94 3576.05 3092.52 2551.56 3892.66 4081.37 1887.11 2289.46 98
PAPM76.76 4976.07 5178.81 4980.20 18059.11 786.86 8886.23 8268.60 2670.18 8588.84 10951.57 3687.16 18565.48 11886.68 2890.15 83
MSP-MVS82.30 583.47 178.80 5082.99 11752.71 12885.04 13388.63 3766.08 5686.77 292.75 2172.05 191.46 6883.35 693.53 192.23 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 4776.27 4878.80 5080.70 17255.02 6586.39 9586.71 7366.96 4667.91 9789.97 8848.03 6391.41 6975.60 5184.14 5389.96 86
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_part173.80 8972.13 9778.79 5285.92 4758.26 1090.60 2586.85 7063.98 8163.95 14581.54 20852.08 3492.24 5164.93 12759.32 24285.87 173
ETH3D-3000-0.178.73 2078.71 2078.78 5385.58 5652.40 13688.42 5489.03 2460.01 14676.06 2992.80 2048.34 5992.88 3381.66 1586.48 3191.04 61
ACMMP_NAP76.43 5375.66 5478.73 5481.92 13954.67 7884.06 15785.35 9861.10 13072.99 5491.50 5040.25 15891.00 7876.84 4486.98 2490.51 75
baseline76.86 4876.24 4978.71 5580.47 17854.20 8983.90 16284.88 11771.38 1171.51 7589.15 10450.51 4790.55 9175.71 4978.65 9891.39 52
jason77.01 4376.45 4578.69 5679.69 18554.74 7390.56 2683.99 14068.26 2974.10 4490.91 6142.14 13789.99 10579.30 2679.12 9491.36 54
jason: jason.
ET-MVSNet_ETH3D75.23 7174.08 7478.67 5784.52 7855.59 4688.92 4689.21 2068.06 3453.13 26990.22 8049.71 5487.62 17672.12 7870.82 16492.82 19
CostFormer73.89 8872.30 9378.66 5882.36 13556.58 3075.56 27585.30 10166.06 5770.50 8476.88 25457.02 1289.06 12268.27 9868.74 17890.33 78
MVS_Test75.85 6374.93 6578.62 5984.08 8755.20 5983.99 16085.17 10768.07 3373.38 5182.76 18850.44 4889.00 12865.90 11480.61 7991.64 42
CDPH-MVS76.05 6075.19 6078.62 5986.51 4354.98 6787.32 7384.59 12458.62 18370.75 8190.85 6343.10 12990.63 8970.50 8584.51 5290.24 79
TSAR-MVS + GP.77.82 3277.59 3178.49 6185.25 6850.27 18890.02 2890.57 956.58 22374.26 4391.60 4854.26 2192.16 5375.87 4879.91 9093.05 15
ETV-MVS77.17 4076.74 4178.48 6281.80 14154.55 8186.13 10185.33 9968.20 3073.10 5390.52 7245.23 9690.66 8779.37 2580.95 7490.22 80
TSAR-MVS + MP.78.31 2778.26 2278.48 6281.33 15956.31 3981.59 22186.41 7869.61 2281.72 1188.16 12155.09 1988.04 16474.12 6486.31 3291.09 60
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
train_agg76.91 4576.40 4678.45 6485.68 5155.42 5087.59 6784.00 13857.84 19772.99 5490.98 5744.99 9988.58 14178.19 3485.32 4391.34 56
PAPR75.20 7274.13 7378.41 6588.31 2755.10 6384.31 14985.66 9163.76 8667.55 9990.73 6543.48 12389.40 11866.36 11077.03 10990.73 68
testtj76.96 4476.48 4478.40 6689.89 953.67 9788.72 4986.15 8454.56 24774.86 3692.31 3144.38 10991.97 5875.19 5782.24 6589.54 95
alignmvs78.08 2977.98 2778.39 6783.53 9753.22 11689.77 3485.45 9366.11 5476.59 2891.99 4054.07 2489.05 12477.34 4277.00 11092.89 18
test_prior377.59 3577.33 3578.39 6786.35 4454.91 7089.04 4485.45 9361.88 11673.55 4891.46 5248.01 6489.70 11274.73 5985.46 4090.55 71
test_prior78.39 6786.35 4454.91 7085.45 9389.70 11290.55 71
SF-MVS77.64 3477.42 3478.32 7083.75 9552.47 13486.63 9287.80 5358.78 18074.63 3892.38 2847.75 6691.35 7078.18 3686.85 2691.15 58
ZNCC-MVS75.82 6675.02 6378.23 7183.88 9353.80 9386.91 8786.05 8659.71 15167.85 9890.55 7042.23 13591.02 7772.66 7785.29 4489.87 89
VNet77.99 3177.92 2878.19 7287.43 3550.12 19290.93 2391.41 467.48 4275.12 3490.15 8446.77 7691.00 7873.52 7078.46 10093.44 7
Regformer-277.15 4176.82 4078.14 7387.78 3251.84 14987.60 6489.12 2167.23 4371.93 7091.79 4246.03 8593.53 2772.85 7577.05 10789.05 109
EIA-MVS75.92 6275.18 6178.13 7485.14 6951.60 15587.17 7985.32 10064.69 7468.56 9190.53 7145.79 9091.58 6467.21 10382.18 6791.20 57
HFP-MVS74.37 8073.13 8378.10 7584.30 8153.68 9585.58 11584.36 12856.82 21665.78 11890.56 6840.70 15590.90 8169.18 9280.88 7589.71 90
#test#74.86 7873.78 7878.10 7584.30 8153.68 9586.95 8484.36 12859.00 17665.78 11890.56 6840.70 15590.90 8171.48 8080.88 7589.71 90
agg_prior176.68 5176.24 4978.00 7785.64 5454.92 6887.55 7083.61 14757.99 19372.53 6191.05 5445.36 9488.10 16177.76 4084.68 5090.99 64
tpm270.82 13168.44 14677.98 7880.78 17056.11 4174.21 28581.28 18660.24 14468.04 9675.27 27252.26 3288.50 14655.82 19968.03 18289.33 99
thisisatest051573.64 9372.20 9577.97 7981.63 14553.01 12386.69 9188.81 3262.53 10564.06 14285.65 15452.15 3392.50 4458.43 17269.84 17188.39 125
EPNet78.36 2578.49 2177.97 7985.49 5952.04 14389.36 3984.07 13773.22 477.03 2591.72 4549.32 5790.17 10373.46 7182.77 6091.69 41
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS69.37 180.65 1081.56 877.94 8185.46 6249.56 20290.99 2286.66 7570.58 1480.07 1795.30 156.18 1590.97 8082.57 1086.22 3493.28 10
GST-MVS74.87 7773.90 7677.77 8283.30 10553.45 10685.75 11085.29 10259.22 16566.50 11089.85 9040.94 15190.76 8470.94 8383.35 5789.10 108
GG-mvs-BLEND77.77 8286.68 4250.61 17268.67 31788.45 4468.73 9087.45 13359.15 890.67 8654.83 20287.67 1592.03 35
Regformer-376.02 6175.47 5777.70 8485.49 5951.47 15985.12 12990.19 1168.52 2769.36 8690.66 6646.45 8094.81 1770.25 8773.16 14186.81 157
cascas69.01 16366.13 19177.66 8579.36 18755.41 5286.99 8283.75 14356.69 22058.92 20381.35 20924.31 30292.10 5653.23 21170.61 16585.46 181
3Dnovator+62.71 772.29 11270.50 11877.65 8683.40 10351.29 16587.32 7386.40 7959.01 17558.49 21388.32 11732.40 24591.27 7257.04 19182.15 6890.38 77
MVSFormer73.53 9472.19 9677.57 8783.02 11555.24 5681.63 21881.44 18150.28 27476.67 2690.91 6144.82 10486.11 21360.83 15280.09 8691.36 54
APD-MVScopyleft76.15 5775.68 5377.54 8888.52 2353.44 10787.26 7885.03 11253.79 25174.91 3591.68 4743.80 11490.31 9774.36 6281.82 6988.87 113
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Fast-Effi-MVS+72.73 10371.15 11477.48 8982.75 12654.76 7286.77 8980.64 19363.05 9865.93 11684.01 16944.42 10889.03 12556.45 19676.36 11788.64 119
EPMVS68.45 17465.44 20877.47 9084.91 7356.17 4071.89 30581.91 17461.72 11960.85 17672.49 29436.21 21087.06 18847.32 25171.62 15789.17 106
PatchmatchNetpermissive67.07 20663.63 22677.40 9183.10 10958.03 1172.11 30377.77 24958.85 17959.37 19370.83 30737.84 17984.93 24342.96 27369.83 17289.26 101
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_test8_iter0572.74 10271.20 11277.36 9287.25 3853.51 10188.68 5189.53 1665.20 7061.32 17281.27 21045.89 8792.48 4665.99 11255.65 28386.10 167
region2R73.75 9172.55 8877.33 9383.90 9252.98 12485.54 11884.09 13656.83 21565.10 12690.45 7437.34 19390.24 10068.89 9480.83 7888.77 117
WTY-MVS77.47 3777.52 3277.30 9488.33 2646.25 26488.46 5390.32 1071.40 1072.32 6591.72 4553.44 2592.37 4866.28 11175.42 12493.28 10
OpenMVScopyleft61.00 1169.99 14667.55 16577.30 9478.37 21354.07 9184.36 14785.76 9057.22 21056.71 24187.67 13030.79 26192.83 3443.04 27184.06 5585.01 187
zzz-MVS74.15 8473.11 8477.27 9681.54 15153.57 9984.02 15981.31 18359.41 15868.39 9390.96 5936.07 21289.01 12673.80 6782.45 6389.23 102
MTAPA72.73 10371.22 11177.27 9681.54 15153.57 9967.06 32081.31 18359.41 15868.39 9390.96 5936.07 21289.01 12673.80 6782.45 6389.23 102
PAPM_NR71.80 11869.98 12877.26 9881.54 15153.34 11278.60 26185.25 10553.46 25360.53 18188.66 11145.69 9289.24 12056.49 19379.62 9389.19 105
ACMMPR73.76 9072.61 8677.24 9983.92 9152.96 12585.58 11584.29 13056.82 21665.12 12590.45 7437.24 19590.18 10269.18 9280.84 7788.58 121
hse-mvs373.95 8672.89 8577.15 10080.17 18150.37 18184.68 14183.33 15068.08 3171.97 6888.65 11442.50 13191.15 7578.82 2857.78 26389.91 88
MP-MVS-pluss75.54 6875.03 6277.04 10181.37 15852.65 13184.34 14884.46 12661.16 12869.14 8791.76 4439.98 16488.99 13078.19 3484.89 4889.48 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HyFIR lowres test69.94 14867.58 16277.04 10177.11 23357.29 2181.49 22679.11 22558.27 18758.86 20580.41 21742.33 13386.96 19161.91 14468.68 17986.87 151
DP-MVS Recon71.99 11670.31 12177.01 10390.65 653.44 10789.37 3882.97 16156.33 22663.56 15389.47 9634.02 22992.15 5554.05 20872.41 15185.43 182
Anonymous2024052969.71 15167.28 17077.00 10483.78 9450.36 18288.87 4885.10 11147.22 29064.03 14383.37 18027.93 27792.10 5657.78 18567.44 18688.53 123
baseline275.15 7374.54 7176.98 10581.67 14451.74 15283.84 16391.94 169.97 1958.98 20086.02 14959.73 591.73 6168.37 9670.40 16887.48 140
MP-MVScopyleft74.99 7674.33 7276.95 10682.89 12153.05 12285.63 11483.50 14957.86 19667.25 10290.24 7943.38 12488.85 13676.03 4682.23 6688.96 111
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mvs_anonymous72.29 11270.74 11576.94 10782.85 12254.72 7578.43 26281.54 17963.77 8561.69 17079.32 22451.11 4185.31 23262.15 14375.79 12090.79 67
XVS72.92 10071.62 10476.81 10883.41 10052.48 13284.88 13883.20 15658.03 19063.91 14689.63 9435.50 21889.78 10965.50 11680.50 8188.16 126
X-MVStestdata65.85 22362.20 23276.81 10883.41 10052.48 13284.88 13883.20 15658.03 19063.91 1464.82 36635.50 21889.78 10965.50 11680.50 8188.16 126
PGM-MVS72.60 10571.20 11276.80 11082.95 11852.82 12783.07 18682.14 16856.51 22463.18 15589.81 9135.68 21789.76 11167.30 10280.19 8587.83 134
Anonymous20240521170.11 14067.88 15576.79 11187.20 3947.24 25189.49 3777.38 25754.88 24366.14 11386.84 14020.93 32191.54 6556.45 19671.62 15791.59 44
tpm cat166.28 21762.78 22876.77 11281.40 15757.14 2270.03 31277.19 25953.00 25758.76 20870.73 31046.17 8186.73 19843.27 27064.46 20586.44 162
PVSNet_Blended76.53 5276.54 4276.50 11385.91 4851.83 15088.89 4784.24 13467.82 3769.09 8889.33 10146.70 7788.13 15975.43 5381.48 7389.55 94
Regformer-475.06 7574.59 7076.47 11485.49 5950.33 18485.12 12988.61 3966.42 4868.48 9290.66 6644.15 11092.68 3969.24 9173.16 14186.39 164
diffmvs75.11 7474.65 6976.46 11578.52 20953.35 11183.28 18279.94 20370.51 1571.64 7388.72 11046.02 8686.08 21977.52 4175.75 12289.96 86
DROMVSNet76.08 5876.00 5276.34 11681.28 16150.25 18987.85 6184.94 11463.52 9372.04 6790.51 7345.20 9791.62 6375.56 5283.07 5887.16 146
PVSNet_Blended_VisFu73.40 9672.44 9076.30 11781.32 16054.70 7685.81 10678.82 22963.70 8764.53 13585.38 15847.11 7387.38 18267.75 10077.55 10486.81 157
BH-RMVSNet70.08 14268.01 15276.27 11884.21 8551.22 16787.29 7679.33 22258.96 17863.63 15286.77 14133.29 23890.30 9944.63 26573.96 13587.30 145
CLD-MVS75.60 6775.39 5876.24 11980.69 17352.40 13690.69 2486.20 8374.40 365.01 12988.93 10642.05 13990.58 9076.57 4573.96 13585.73 175
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GeoE69.96 14767.88 15576.22 12081.11 16351.71 15384.15 15376.74 26959.83 14960.91 17584.38 16541.56 14788.10 16151.67 22670.57 16688.84 114
131471.11 12669.41 13476.22 12079.32 18950.49 17680.23 24485.14 11059.44 15758.93 20288.89 10833.83 23489.60 11661.49 14777.42 10688.57 122
thisisatest053070.47 13868.56 14476.20 12279.78 18451.52 15883.49 17488.58 4257.62 20358.60 20982.79 18751.03 4391.48 6752.84 21662.36 22785.59 180
HY-MVS67.03 573.90 8773.14 8176.18 12384.70 7647.36 24875.56 27586.36 8066.27 5170.66 8283.91 17151.05 4289.31 11967.10 10472.61 15091.88 39
gg-mvs-nofinetune67.43 19564.53 21976.13 12485.95 4647.79 24364.38 32488.28 4539.34 32866.62 10641.27 35058.69 1189.00 12849.64 23786.62 2991.59 44
原ACMM176.13 12484.89 7454.59 8085.26 10451.98 26466.70 10487.07 13840.15 16189.70 11251.23 22885.06 4784.10 197
GA-MVS69.04 16166.70 18076.06 12675.11 25552.36 13883.12 18480.23 19963.32 9460.65 17979.22 22630.98 26088.37 14961.25 14866.41 19287.46 141
mPP-MVS71.79 11970.38 12076.04 12782.65 13052.06 14284.45 14581.78 17655.59 23362.05 16889.68 9333.48 23688.28 15665.45 12178.24 10287.77 136
MVSTER73.25 9772.33 9176.01 12885.54 5853.76 9483.52 16887.16 6467.06 4563.88 14881.66 20652.77 2890.44 9264.66 12864.69 20383.84 208
CP-MVS72.59 10771.46 10776.00 12982.93 12052.32 14086.93 8682.48 16655.15 23863.65 15190.44 7735.03 22288.53 14568.69 9577.83 10387.15 147
HPM-MVScopyleft72.60 10571.50 10675.89 13082.02 13751.42 16180.70 23883.05 15856.12 22864.03 14389.53 9537.55 18788.37 14970.48 8680.04 8887.88 133
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t69.87 14967.88 15575.85 13188.38 2552.35 13986.94 8583.68 14453.70 25255.68 25185.60 15530.07 26691.20 7355.84 19871.02 16283.99 201
PMMVS72.98 9972.05 10175.78 13283.57 9648.60 22284.08 15582.85 16361.62 12068.24 9590.33 7828.35 27287.78 17272.71 7676.69 11290.95 65
MS-PatchMatch72.34 11071.26 11075.61 13382.38 13455.55 4788.00 5789.95 1565.38 6556.51 24580.74 21632.28 24792.89 3257.95 18288.10 1378.39 281
xiu_mvs_v1_base_debu71.60 12070.29 12275.55 13477.26 22853.15 11785.34 11979.37 21655.83 23072.54 5890.19 8122.38 31286.66 20073.28 7276.39 11486.85 153
xiu_mvs_v1_base71.60 12070.29 12275.55 13477.26 22853.15 11785.34 11979.37 21655.83 23072.54 5890.19 8122.38 31286.66 20073.28 7276.39 11486.85 153
xiu_mvs_v1_base_debi71.60 12070.29 12275.55 13477.26 22853.15 11785.34 11979.37 21655.83 23072.54 5890.19 8122.38 31286.66 20073.28 7276.39 11486.85 153
CANet_DTU73.71 9273.14 8175.40 13782.61 13150.05 19384.67 14379.36 21969.72 2175.39 3290.03 8729.41 26885.93 22567.99 9979.11 9590.22 80
ACMMPcopyleft70.81 13269.29 13875.39 13881.52 15551.92 14783.43 17583.03 15956.67 22158.80 20788.91 10731.92 25288.58 14165.89 11573.39 14085.67 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SCA63.84 23360.01 25075.32 13978.58 20757.92 1261.61 33277.53 25356.71 21957.75 22570.77 30831.97 25079.91 28748.80 24156.36 27088.13 129
ab-mvs70.65 13469.11 14075.29 14080.87 16946.23 26573.48 28985.24 10659.99 14766.65 10580.94 21343.13 12888.69 13763.58 13368.07 18190.95 65
TR-MVS69.71 15167.85 15875.27 14182.94 11948.48 22887.40 7280.86 19057.15 21164.61 13487.08 13732.67 24389.64 11546.38 25771.55 15987.68 138
v2v48269.55 15767.64 16175.26 14272.32 28753.83 9284.93 13781.94 17165.37 6660.80 17779.25 22541.62 14588.98 13163.03 13659.51 23982.98 224
PCF-MVS61.03 1070.10 14168.40 14775.22 14377.15 23251.99 14479.30 25782.12 16956.47 22561.88 16986.48 14743.98 11187.24 18455.37 20072.79 14886.43 163
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP-MVS72.34 11071.44 10875.03 14479.02 19551.56 15688.00 5783.68 14465.45 6164.48 13685.13 15937.35 19188.62 13966.70 10673.12 14384.91 189
AdaColmapbinary67.86 18565.48 20575.00 14588.15 2954.99 6686.10 10276.63 27249.30 28057.80 22286.65 14429.39 26988.94 13445.10 26370.21 16981.06 253
EI-MVSNet-Vis-set73.19 9872.60 8774.99 14682.56 13249.80 19882.55 19889.00 2666.17 5365.89 11788.98 10543.83 11392.29 4965.38 12569.01 17682.87 226
tpmrst71.04 12769.77 13074.86 14783.19 10855.86 4575.64 27478.73 23267.88 3664.99 13073.73 28049.96 5279.56 29065.92 11367.85 18589.14 107
112168.79 16966.77 17774.82 14883.08 11253.46 10380.23 24471.53 31445.47 30566.31 11287.19 13534.02 22985.13 23952.78 21880.36 8385.87 173
v114468.81 16766.82 17574.80 14972.34 28653.46 10384.68 14181.77 17764.25 7860.28 18277.91 23640.23 15988.95 13260.37 16159.52 23881.97 232
v119267.96 18465.74 20074.63 15071.79 28953.43 10984.06 15780.99 18963.19 9759.56 19077.46 24337.50 19088.65 13858.20 17758.93 24581.79 235
BH-w/o70.02 14468.51 14574.56 15182.77 12450.39 18086.60 9378.14 24359.77 15059.65 18785.57 15639.27 16987.30 18349.86 23574.94 13185.99 168
SR-MVS70.92 13069.73 13174.50 15283.38 10450.48 17784.27 15079.35 22048.96 28366.57 10990.45 7433.65 23587.11 18666.42 10874.56 13285.91 171
tttt051768.33 17766.29 18674.46 15378.08 21549.06 21080.88 23589.08 2354.40 24954.75 25580.77 21551.31 4090.33 9649.35 23958.01 25783.99 201
TESTMET0.1,172.86 10172.33 9174.46 15381.98 13850.77 16985.13 12685.47 9266.09 5567.30 10083.69 17637.27 19483.57 25665.06 12678.97 9789.05 109
nrg03072.27 11471.56 10574.42 15575.93 24750.60 17386.97 8383.21 15562.75 10267.15 10384.38 16550.07 5086.66 20071.19 8162.37 22685.99 168
RPMNet59.29 26254.25 28574.42 15573.97 27056.57 3160.52 33576.98 26335.72 34057.49 23158.87 34337.73 18385.26 23527.01 33459.93 23681.42 243
Vis-MVSNetpermissive70.61 13569.34 13674.42 15580.95 16848.49 22786.03 10477.51 25458.74 18165.55 12287.78 12834.37 22685.95 22452.53 22380.61 7988.80 115
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EPP-MVSNet71.14 12470.07 12774.33 15879.18 19246.52 25883.81 16486.49 7656.32 22757.95 21984.90 16354.23 2289.14 12158.14 17869.65 17387.33 143
EI-MVSNet-UG-set72.37 10971.73 10374.29 15981.60 14749.29 20881.85 21388.64 3665.29 6965.05 12788.29 11843.18 12591.83 5963.74 13267.97 18381.75 236
OPM-MVS70.75 13369.58 13274.26 16075.55 25251.34 16386.05 10383.29 15461.94 11562.95 15885.77 15334.15 22888.44 14765.44 12271.07 16182.99 223
v14419267.86 18565.76 19974.16 16171.68 29153.09 12084.14 15480.83 19162.85 10159.21 19777.28 24639.30 16888.00 16558.67 17157.88 26181.40 245
HQP_MVS70.96 12969.91 12974.12 16277.95 21749.57 20085.76 10882.59 16463.60 9062.15 16583.28 18236.04 21488.30 15465.46 11972.34 15284.49 192
v192192067.45 19465.23 21274.10 16371.51 29452.90 12683.75 16680.44 19662.48 10759.12 19977.13 24736.98 19887.90 16657.53 18758.14 25581.49 240
v867.25 20064.99 21574.04 16472.89 28053.31 11482.37 20380.11 20161.54 12354.29 26076.02 26842.89 13088.41 14858.43 17256.36 27080.39 262
VPNet72.07 11571.42 10974.04 16478.64 20647.17 25289.91 3387.97 4972.56 764.66 13285.04 16141.83 14488.33 15261.17 14960.97 23286.62 159
v124066.99 20764.68 21773.93 16671.38 29752.66 13083.39 17979.98 20261.97 11458.44 21677.11 24835.25 22087.81 16856.46 19558.15 25381.33 248
BH-untuned68.28 17866.40 18373.91 16781.62 14650.01 19485.56 11777.39 25657.63 20257.47 23383.69 17636.36 20987.08 18744.81 26473.08 14684.65 191
v14868.24 18066.35 18473.88 16871.76 29051.47 15984.23 15181.90 17563.69 8858.94 20176.44 25943.72 11887.78 17260.63 15455.86 28082.39 229
V4267.66 18965.60 20473.86 16970.69 30253.63 9881.50 22478.61 23563.85 8459.49 19277.49 24237.98 17787.65 17562.33 13958.43 25080.29 263
Fast-Effi-MVS+-dtu66.53 21464.10 22373.84 17072.41 28552.30 14184.73 14075.66 27959.51 15556.34 24679.11 22828.11 27585.85 22657.74 18663.29 21583.35 213
v1066.61 21364.20 22273.83 17172.59 28353.37 11081.88 21279.91 20561.11 12954.09 26275.60 27040.06 16388.26 15756.47 19456.10 27679.86 269
APD-MVS_3200maxsize69.62 15668.23 15073.80 17281.58 14948.22 23481.91 21179.50 21448.21 28564.24 14189.75 9231.91 25387.55 17863.08 13573.85 13785.64 178
AUN-MVS68.20 18166.35 18473.76 17376.37 23747.45 24679.52 25479.52 21360.98 13362.34 16386.02 14936.59 20886.94 19262.32 14053.47 29886.89 150
PVSNet_BlendedMVS73.42 9573.30 8073.76 17385.91 4851.83 15086.18 10084.24 13465.40 6469.09 8880.86 21446.70 7788.13 15975.43 5365.92 19881.33 248
hse-mvs271.44 12370.68 11673.73 17576.34 23847.44 24779.45 25579.47 21568.08 3171.97 6886.01 15142.50 13186.93 19378.82 2853.46 29986.83 156
baseline172.51 10872.12 9973.69 17685.05 7044.46 28183.51 17286.13 8571.61 964.64 13387.97 12555.00 2089.48 11759.07 16756.05 27787.13 148
abl_668.03 18266.15 19073.66 17778.54 20848.48 22879.77 24978.04 24447.39 28963.70 15088.25 11928.21 27389.06 12260.17 16471.25 16083.45 212
CDS-MVSNet70.48 13769.43 13373.64 17877.56 22348.83 21983.51 17277.45 25563.27 9562.33 16485.54 15743.85 11283.29 26057.38 19074.00 13488.79 116
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet62.49 869.27 15967.81 15973.64 17884.41 8051.85 14884.63 14477.80 24866.42 4859.80 18584.95 16222.14 31680.44 27955.03 20175.11 12888.62 120
PS-MVSNAJss68.78 17067.17 17273.62 18073.01 27748.33 23384.95 13684.81 11959.30 16458.91 20479.84 22037.77 18088.86 13562.83 13763.12 22083.67 210
TAMVS69.51 15868.16 15173.56 18176.30 24148.71 22182.57 19677.17 26062.10 11161.32 17284.23 16741.90 14283.46 25854.80 20473.09 14588.50 124
UGNet68.71 17167.11 17373.50 18280.55 17747.61 24484.08 15578.51 23759.45 15665.68 12182.73 19123.78 30485.08 24152.80 21776.40 11387.80 135
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs-test169.04 16167.57 16473.44 18375.17 25351.68 15486.57 9474.48 28862.15 10962.07 16785.79 15230.59 26287.48 17965.40 12365.94 19781.18 252
test117269.64 15568.38 14873.41 18482.77 12448.84 21882.79 19378.34 24147.02 29365.27 12490.07 8531.17 25886.09 21764.51 12973.49 13985.31 183
Anonymous2023121166.08 22163.67 22573.31 18583.07 11348.75 22086.01 10584.67 12345.27 30656.54 24376.67 25728.06 27688.95 13252.78 21859.95 23582.23 230
新几何173.30 18683.10 10953.48 10271.43 31545.55 30366.14 11387.17 13633.88 23380.54 27748.50 24480.33 8485.88 172
FMVSNet368.84 16567.40 16873.19 18785.05 7048.53 22585.71 11385.36 9760.90 13557.58 22879.15 22742.16 13686.77 19647.25 25263.40 21184.27 196
thres20068.71 17167.27 17173.02 18884.73 7546.76 25585.03 13487.73 5762.34 10859.87 18383.45 17943.15 12688.32 15331.25 31867.91 18483.98 203
PVSNet_057.04 1361.19 25457.24 26573.02 18877.45 22550.31 18679.43 25677.36 25863.96 8347.51 30172.45 29625.03 29983.78 25352.76 22119.22 35784.96 188
dp64.41 22961.58 23672.90 19082.40 13354.09 9072.53 29576.59 27360.39 14255.68 25170.39 31135.18 22176.90 31239.34 28161.71 22987.73 137
FMVSNet267.57 19165.79 19872.90 19082.71 12747.97 24285.15 12584.93 11558.55 18456.71 24178.26 23436.72 20586.67 19946.15 25962.94 22284.07 198
XXY-MVS70.18 13969.28 13972.89 19277.64 22142.88 29685.06 13287.50 6262.58 10462.66 16282.34 19843.64 12089.83 10858.42 17463.70 21085.96 170
CR-MVSNet62.47 24759.04 25772.77 19373.97 27056.57 3160.52 33571.72 31060.04 14557.49 23165.86 32538.94 17080.31 28042.86 27459.93 23681.42 243
EI-MVSNet69.70 15368.70 14372.68 19475.00 25848.90 21679.54 25287.16 6461.05 13163.88 14883.74 17445.87 8890.44 9257.42 18964.68 20478.70 274
HPM-MVS_fast67.86 18566.28 18772.61 19580.67 17448.34 23281.18 23075.95 27850.81 27359.55 19188.05 12427.86 27885.98 22158.83 16973.58 13883.51 211
MVP-Stereo70.97 12870.44 11972.59 19676.03 24651.36 16285.02 13586.99 6760.31 14356.53 24478.92 22940.11 16290.00 10460.00 16590.01 476.41 303
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVS_111021_LR69.07 16067.91 15372.54 19777.27 22749.56 20279.77 24973.96 29459.33 16360.73 17887.82 12630.19 26581.53 26869.94 8872.19 15486.53 160
IS-MVSNet68.80 16867.55 16572.54 19778.50 21043.43 29181.03 23279.35 22059.12 17357.27 23686.71 14246.05 8487.70 17444.32 26675.60 12386.49 161
VPA-MVSNet71.12 12570.66 11772.49 19978.75 20144.43 28387.64 6390.02 1363.97 8265.02 12881.58 20742.14 13787.42 18163.42 13463.38 21485.63 179
SR-MVS-dyc-post68.27 17966.87 17472.48 20080.96 16548.14 23781.54 22276.98 26346.42 29862.75 16089.42 9731.17 25886.09 21760.52 15872.06 15583.19 219
bset_n11_16_dypcd65.51 22563.21 22772.41 20168.84 31150.15 19081.25 22872.40 30659.17 17059.20 19878.66 23125.69 29585.27 23466.80 10556.88 26881.80 234
miper_enhance_ethall69.77 15068.90 14272.38 20278.93 19849.91 19683.29 18178.85 22764.90 7259.37 19379.46 22252.77 2885.16 23863.78 13158.72 24682.08 231
cl-mvsnet268.85 16467.69 16072.35 20378.07 21649.98 19582.45 20178.48 23862.50 10658.46 21477.95 23549.99 5185.17 23762.55 13858.72 24681.90 233
MSDG59.44 26155.14 28172.32 20474.69 26150.71 17074.39 28473.58 29744.44 31243.40 31577.52 24119.45 32590.87 8331.31 31757.49 26575.38 309
v7n62.50 24659.27 25572.20 20567.25 32349.83 19777.87 26480.12 20052.50 26148.80 29273.07 28832.10 24887.90 16646.83 25554.92 28678.86 272
1112_ss70.05 14369.37 13572.10 20680.77 17142.78 29785.12 12976.75 26859.69 15261.19 17492.12 3447.48 6983.84 25153.04 21468.21 18089.66 92
miper_ehance_all_eth68.70 17367.58 16272.08 20776.91 23449.48 20582.47 20078.45 23962.68 10358.28 21877.88 23750.90 4485.01 24261.91 14458.72 24681.75 236
eth_miper_zixun_eth66.98 20865.28 21172.06 20875.61 25150.40 17981.00 23376.97 26662.00 11256.99 23876.97 25044.84 10385.58 22758.75 17054.42 29080.21 264
LPG-MVS_test66.44 21664.58 21872.02 20974.42 26448.60 22283.07 18680.64 19354.69 24553.75 26583.83 17225.73 29386.98 18960.33 16264.71 20180.48 260
LGP-MVS_train72.02 20974.42 26448.60 22280.64 19354.69 24553.75 26583.83 17225.73 29386.98 18960.33 16264.71 20180.48 260
ACMP61.11 966.24 21964.33 22072.00 21174.89 26049.12 20983.18 18379.83 20655.41 23652.29 27482.68 19225.83 29186.10 21560.89 15163.94 20880.78 256
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GBi-Net67.09 20465.47 20671.96 21282.71 12746.36 26083.52 16883.31 15158.55 18457.58 22876.23 26336.72 20586.20 20947.25 25263.40 21183.32 214
test167.09 20465.47 20671.96 21282.71 12746.36 26083.52 16883.31 15158.55 18457.58 22876.23 26336.72 20586.20 20947.25 25263.40 21183.32 214
FMVSNet164.57 22862.11 23371.96 21277.32 22646.36 26083.52 16883.31 15152.43 26254.42 25876.23 26327.80 27986.20 20942.59 27561.34 23183.32 214
cl-mvsnet____67.43 19565.93 19571.95 21576.33 23948.02 24082.58 19579.12 22461.30 12756.72 24076.92 25246.12 8286.44 20757.98 18056.31 27281.38 247
cl-mvsnet167.43 19565.93 19571.94 21676.33 23948.01 24182.57 19679.11 22561.31 12656.73 23976.92 25246.09 8386.43 20857.98 18056.31 27281.39 246
Patchmatch-RL test58.72 27254.32 28471.92 21763.91 33644.25 28561.73 33155.19 34457.38 20849.31 29054.24 34737.60 18680.89 27362.19 14247.28 31790.63 70
cl_fuxian67.97 18366.66 18171.91 21876.20 24349.31 20782.13 20778.00 24661.99 11357.64 22776.94 25149.41 5584.93 24360.62 15557.01 26781.49 240
tfpn200view967.57 19166.13 19171.89 21984.05 8845.07 27683.40 17787.71 5960.79 13657.79 22382.76 18843.53 12187.80 16928.80 32466.36 19382.78 227
MIMVSNet63.12 23960.29 24871.61 22075.92 24846.65 25665.15 32181.94 17159.14 17154.65 25669.47 31425.74 29280.63 27641.03 27869.56 17587.55 139
test-LLR69.65 15469.01 14171.60 22178.67 20348.17 23585.13 12679.72 20859.18 16863.13 15682.58 19336.91 20080.24 28160.56 15675.17 12686.39 164
test-mter68.36 17567.29 16971.60 22178.67 20348.17 23585.13 12679.72 20853.38 25463.13 15682.58 19327.23 28380.24 28160.56 15675.17 12686.39 164
sss70.49 13670.13 12671.58 22381.59 14839.02 31880.78 23784.71 12259.34 16166.61 10788.09 12237.17 19685.52 22861.82 14671.02 16290.20 82
tpmvs62.45 24859.42 25371.53 22483.93 9054.32 8470.03 31277.61 25251.91 26553.48 26868.29 31837.91 17886.66 20033.36 30858.27 25173.62 321
ACMM58.35 1264.35 23062.01 23471.38 22574.21 26748.51 22682.25 20579.66 21047.61 28754.54 25780.11 21825.26 29686.00 22051.26 22763.16 21879.64 270
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH53.70 1659.78 25955.94 27671.28 22676.59 23648.35 23180.15 24776.11 27649.74 27841.91 32173.45 28716.50 33990.31 9731.42 31657.63 26475.17 311
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ppachtmachnet_test58.56 27454.34 28371.24 22771.42 29554.74 7381.84 21472.27 30749.02 28245.86 30968.99 31726.27 28883.30 25930.12 32043.23 33075.69 306
thres100view90066.87 21065.42 20971.24 22783.29 10643.15 29381.67 21787.78 5459.04 17455.92 24982.18 20043.73 11687.80 16928.80 32466.36 19382.78 227
thres40067.40 19866.13 19171.19 22984.05 8845.07 27683.40 17787.71 5960.79 13657.79 22382.76 18843.53 12187.80 16928.80 32466.36 19380.71 258
our_test_359.11 26655.08 28271.18 23071.42 29553.29 11581.96 20974.52 28748.32 28442.08 31969.28 31628.14 27482.15 26434.35 30545.68 32578.11 286
CPTT-MVS67.15 20365.84 19771.07 23180.96 16550.32 18581.94 21074.10 29146.18 30157.91 22087.64 13129.57 26781.31 27064.10 13070.18 17081.56 239
NR-MVSNet67.25 20065.99 19471.04 23273.27 27543.91 28785.32 12284.75 12166.05 5853.65 26782.11 20145.05 9885.97 22347.55 24956.18 27583.24 217
tpm68.36 17567.48 16770.97 23379.93 18351.34 16376.58 27178.75 23167.73 3863.54 15474.86 27448.33 6072.36 33353.93 20963.71 20989.21 104
TranMVSNet+NR-MVSNet66.94 20965.61 20370.93 23473.45 27243.38 29283.02 18884.25 13265.31 6858.33 21781.90 20439.92 16585.52 22849.43 23854.89 28783.89 207
EG-PatchMatch MVS62.40 24959.59 25170.81 23573.29 27449.05 21185.81 10684.78 12051.85 26744.19 31073.48 28615.52 34289.85 10740.16 27967.24 18773.54 322
test_djsdf63.84 23361.56 23770.70 23668.78 31244.69 28081.63 21881.44 18150.28 27452.27 27576.26 26226.72 28686.11 21360.83 15255.84 28181.29 251
UA-Net67.32 19966.23 18870.59 23778.85 19941.23 31073.60 28775.45 28261.54 12366.61 10784.53 16438.73 17386.57 20542.48 27674.24 13383.98 203
thres600view766.46 21565.12 21370.47 23883.41 10043.80 28982.15 20687.78 5459.37 16056.02 24882.21 19943.73 11686.90 19426.51 33564.94 20080.71 258
UniMVSNet (Re)67.71 18866.80 17670.45 23974.44 26342.93 29582.42 20284.90 11663.69 8859.63 18880.99 21247.18 7185.23 23651.17 22956.75 26983.19 219
IterMVS-LS66.63 21265.36 21070.42 24075.10 25648.90 21681.45 22776.69 27161.05 13155.71 25077.10 24945.86 8983.65 25557.44 18857.88 26178.70 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet68.82 16668.29 14970.40 24175.71 25042.59 29984.23 15186.78 7166.31 5058.51 21082.45 19551.57 3684.64 24753.11 21255.96 27883.96 205
jajsoiax63.21 23860.84 24370.32 24268.33 31744.45 28281.23 22981.05 18853.37 25550.96 28477.81 23917.49 33485.49 23059.31 16658.05 25681.02 254
mvs_tets62.96 24160.55 24570.19 24368.22 32044.24 28680.90 23480.74 19252.99 25850.82 28677.56 24016.74 33785.44 23159.04 16857.94 25880.89 255
pmmvs463.34 23761.07 24270.16 24470.14 30450.53 17579.97 24871.41 31655.08 23954.12 26178.58 23232.79 24282.09 26650.33 23257.22 26677.86 287
DU-MVS66.84 21165.74 20070.16 24473.27 27542.59 29981.50 22482.92 16263.53 9258.51 21082.11 20140.75 15284.64 24753.11 21255.96 27883.24 217
Effi-MVS+-dtu66.24 21964.96 21670.08 24675.17 25349.64 19982.01 20874.48 28862.15 10957.83 22176.08 26730.59 26283.79 25265.40 12360.93 23376.81 296
IterMVS63.77 23561.67 23570.08 24672.68 28251.24 16680.44 24075.51 28060.51 14151.41 27973.70 28332.08 24978.91 29254.30 20754.35 29180.08 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS67.58 19066.76 17870.04 24875.92 24845.06 27986.23 9985.28 10364.31 7758.50 21281.00 21144.80 10682.00 26749.21 24055.57 28483.06 222
Test_1112_low_res67.18 20266.23 18870.02 24978.75 20141.02 31183.43 17573.69 29657.29 20958.45 21582.39 19745.30 9580.88 27450.50 23166.26 19688.16 126
D2MVS63.49 23661.39 23969.77 25069.29 30948.93 21578.89 25977.71 25160.64 14049.70 28872.10 30227.08 28483.48 25754.48 20662.65 22376.90 295
RRT_MVS65.43 22764.01 22469.68 25181.54 15150.15 19082.31 20476.78 26755.25 23760.64 18082.00 20325.18 29779.00 29160.96 15051.45 30579.89 268
XVG-OURS61.88 25159.34 25469.49 25265.37 32846.27 26364.80 32373.49 29947.04 29257.41 23582.85 18625.15 29878.18 29653.00 21564.98 19984.01 200
XVG-OURS-SEG-HR62.02 25059.54 25269.46 25365.30 32945.88 26765.06 32273.57 29846.45 29757.42 23483.35 18126.95 28578.09 29853.77 21064.03 20684.42 194
FIs70.00 14570.24 12569.30 25477.93 21938.55 32083.99 16087.72 5866.86 4757.66 22684.17 16852.28 3185.31 23252.72 22268.80 17784.02 199
Baseline_NR-MVSNet65.49 22664.27 22169.13 25574.37 26641.65 30683.39 17978.85 22759.56 15459.62 18976.88 25440.75 15287.44 18049.99 23355.05 28578.28 283
TransMVSNet (Re)62.82 24260.76 24469.02 25673.98 26941.61 30786.36 9679.30 22356.90 21352.53 27276.44 25941.85 14387.60 17738.83 28240.61 33577.86 287
anonymousdsp60.46 25857.65 26268.88 25763.63 33745.09 27572.93 29378.63 23446.52 29651.12 28172.80 29221.46 31983.07 26157.79 18453.97 29278.47 278
ADS-MVSNet56.17 28851.95 29768.84 25880.60 17553.07 12155.03 34270.02 32244.72 30951.00 28261.19 33622.83 30878.88 29328.54 32753.63 29474.57 315
OpenMVS_ROBcopyleft53.19 1759.20 26456.00 27568.83 25971.13 29944.30 28483.64 16775.02 28546.42 29846.48 30673.03 28918.69 32988.14 15827.74 33161.80 22874.05 318
Patchmatch-test53.33 30248.17 30968.81 26073.31 27342.38 30342.98 35158.23 34132.53 34538.79 33270.77 30839.66 16673.51 32725.18 33852.06 30390.55 71
pm-mvs164.12 23162.56 22968.78 26171.68 29138.87 31982.89 19081.57 17855.54 23553.89 26477.82 23837.73 18386.74 19748.46 24553.49 29780.72 257
miper_lstm_enhance63.91 23262.30 23168.75 26275.06 25746.78 25469.02 31681.14 18759.68 15352.76 27172.39 29740.71 15477.99 30256.81 19253.09 30081.48 242
OMC-MVS65.97 22265.06 21468.71 26372.97 27842.58 30178.61 26075.35 28354.72 24459.31 19586.25 14833.30 23777.88 30457.99 17967.05 18885.66 177
DP-MVS59.24 26356.12 27468.63 26488.24 2850.35 18382.51 19964.43 33341.10 32646.70 30478.77 23024.75 30188.57 14422.26 34356.29 27466.96 341
tfpnnormal61.47 25359.09 25668.62 26576.29 24241.69 30581.14 23185.16 10854.48 24851.32 28073.63 28432.32 24686.89 19521.78 34555.71 28277.29 293
UniMVSNet_ETH3D62.51 24560.49 24668.57 26668.30 31840.88 31373.89 28679.93 20451.81 26854.77 25479.61 22124.80 30081.10 27149.93 23461.35 23083.73 209
CL-MVSNet_2432*160062.98 24061.14 24168.50 26765.86 32642.96 29484.37 14682.98 16060.98 13353.95 26372.70 29340.43 15783.71 25441.10 27747.93 31378.83 273
ACMH+54.58 1558.55 27555.24 27868.50 26774.68 26245.80 27080.27 24270.21 32147.15 29142.77 31875.48 27116.73 33885.98 22135.10 30354.78 28873.72 320
lessismore_v067.98 26964.76 33341.25 30945.75 35336.03 33865.63 32719.29 32784.11 24935.67 29521.24 35678.59 277
K. test v354.04 29849.42 30667.92 27068.55 31442.57 30275.51 27763.07 33652.07 26339.21 32964.59 32919.34 32682.21 26337.11 28825.31 35378.97 271
pmmvs562.80 24361.18 24067.66 27169.53 30842.37 30482.65 19475.19 28454.30 25052.03 27778.51 23331.64 25580.67 27548.60 24358.15 25379.95 267
PatchT56.60 28452.97 29167.48 27272.94 27946.16 26657.30 34073.78 29538.77 33054.37 25957.26 34637.52 18878.06 29932.02 31352.79 30178.23 285
Patchmtry56.56 28552.95 29267.42 27372.53 28450.59 17459.05 33771.72 31037.86 33446.92 30265.86 32538.94 17080.06 28436.94 29146.72 32271.60 332
SixPastTwentyTwo54.37 29550.10 30267.21 27470.70 30141.46 30874.73 28264.69 33247.56 28839.12 33069.49 31318.49 33184.69 24631.87 31434.20 34675.48 308
pmmvs659.64 26057.15 26667.09 27566.01 32436.86 32780.50 23978.64 23345.05 30849.05 29173.94 27927.28 28286.10 21543.96 26849.94 30878.31 282
testdata67.08 27677.59 22245.46 27369.20 32444.47 31171.50 7688.34 11631.21 25770.76 33852.20 22475.88 11985.03 186
CNLPA60.59 25758.44 26067.05 27779.21 19147.26 25079.75 25164.34 33442.46 32451.90 27883.94 17027.79 28075.41 31737.12 28759.49 24078.47 278
KD-MVS_2432*160059.04 26856.44 27166.86 27879.07 19345.87 26872.13 30180.42 19755.03 24048.15 29471.01 30536.73 20378.05 30035.21 29930.18 35176.67 297
miper_refine_blended59.04 26856.44 27166.86 27879.07 19345.87 26872.13 30180.42 19755.03 24048.15 29471.01 30536.73 20378.05 30035.21 29930.18 35176.67 297
TAPA-MVS56.12 1461.82 25260.18 24966.71 28078.48 21137.97 32375.19 28076.41 27546.82 29457.04 23786.52 14627.67 28177.03 31026.50 33667.02 18985.14 185
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_040256.45 28653.03 29066.69 28176.78 23550.31 18681.76 21569.61 32342.79 32243.88 31172.13 30022.82 31086.46 20616.57 35450.94 30663.31 347
PLCcopyleft52.38 1860.89 25558.97 25866.68 28281.77 14245.70 27178.96 25874.04 29343.66 31847.63 29883.19 18423.52 30777.78 30737.47 28460.46 23476.55 302
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet255.21 29451.44 29866.51 28380.60 17549.56 20255.03 34265.44 33044.72 30951.00 28261.19 33622.83 30875.41 31728.54 32753.63 29474.57 315
FC-MVSNet-test67.49 19367.91 15366.21 28476.06 24433.06 33780.82 23687.18 6364.44 7654.81 25382.87 18550.40 4982.60 26248.05 24766.55 19182.98 224
JIA-IIPM52.33 30647.77 31266.03 28571.20 29846.92 25340.00 35576.48 27437.10 33546.73 30337.02 35232.96 23977.88 30435.97 29452.45 30273.29 324
LCM-MVSNet-Re58.82 27156.54 26965.68 28679.31 19029.09 34961.39 33445.79 35260.73 13837.65 33472.47 29531.42 25681.08 27249.66 23670.41 16786.87 151
XVG-ACMP-BASELINE56.03 28952.85 29365.58 28761.91 34240.95 31263.36 32572.43 30545.20 30746.02 30774.09 2779.20 35378.12 29745.13 26258.27 25177.66 290
pmmvs-eth3d55.97 29052.78 29465.54 28861.02 34446.44 25975.36 27967.72 32749.61 27943.65 31367.58 32121.63 31877.04 30944.11 26744.33 32773.15 326
MDA-MVSNet_test_wron53.82 30049.95 30465.43 28970.13 30549.05 21172.30 29871.65 31344.23 31531.85 34963.13 33223.68 30674.01 32233.25 31039.35 33873.23 325
YYNet153.82 30049.96 30365.41 29070.09 30648.95 21372.30 29871.66 31244.25 31431.89 34863.07 33323.73 30573.95 32333.26 30939.40 33773.34 323
PatchMatch-RL56.66 28353.75 28865.37 29177.91 22045.28 27469.78 31460.38 33941.35 32547.57 29973.73 28016.83 33676.91 31136.99 29059.21 24373.92 319
Vis-MVSNet (Re-imp)65.52 22465.63 20265.17 29277.49 22430.54 34475.49 27877.73 25059.34 16152.26 27686.69 14349.38 5680.53 27837.07 28975.28 12584.42 194
FMVSNet558.61 27356.45 27065.10 29377.20 23139.74 31574.77 28177.12 26150.27 27643.28 31667.71 32026.15 29076.90 31236.78 29254.78 28878.65 276
EPNet_dtu66.25 21866.71 17964.87 29478.66 20534.12 33282.80 19275.51 28061.75 11864.47 13986.90 13937.06 19772.46 33243.65 26969.63 17488.02 132
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_eth57.56 27955.15 28064.79 29564.57 33433.12 33673.17 29283.87 14258.98 17741.75 32270.03 31222.54 31179.92 28546.12 26035.31 34181.32 250
LS3D56.40 28753.82 28764.12 29681.12 16245.69 27273.42 29066.14 32935.30 34443.24 31779.88 21922.18 31579.62 28919.10 35164.00 20767.05 340
UnsupCasMVSNet_bld53.86 29950.53 30163.84 29763.52 33834.75 33071.38 30681.92 17346.53 29538.95 33157.93 34420.55 32280.20 28339.91 28034.09 34776.57 301
USDC54.36 29651.23 29963.76 29864.29 33537.71 32462.84 33073.48 30156.85 21435.47 33971.94 3039.23 35278.43 29438.43 28348.57 31075.13 312
Anonymous2023120659.08 26757.59 26363.55 29968.77 31332.14 34280.26 24379.78 20750.00 27749.39 28972.39 29726.64 28778.36 29533.12 31157.94 25880.14 265
CMPMVSbinary40.41 2155.34 29252.64 29563.46 30060.88 34543.84 28861.58 33371.06 31730.43 34736.33 33674.63 27624.14 30375.44 31648.05 24766.62 19071.12 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OurMVSNet-221017-052.39 30548.73 30763.35 30165.21 33038.42 32168.54 31864.95 33138.19 33139.57 32871.43 30413.23 34679.92 28537.16 28640.32 33671.72 331
MDA-MVSNet-bldmvs51.56 30847.75 31363.00 30271.60 29347.32 24969.70 31572.12 30843.81 31727.65 35363.38 33121.97 31775.96 31427.30 33332.19 34865.70 344
F-COLMAP55.96 29153.65 28962.87 30372.76 28142.77 29874.70 28370.37 32040.03 32741.11 32579.36 22317.77 33373.70 32632.80 31253.96 29372.15 328
test0.0.03 162.54 24462.44 23062.86 30472.28 28829.51 34682.93 18978.78 23059.18 16853.07 27082.41 19636.91 20077.39 30837.45 28558.96 24481.66 238
CVMVSNet60.85 25660.44 24762.07 30575.00 25832.73 33979.54 25273.49 29936.98 33656.28 24783.74 17429.28 27069.53 34146.48 25663.23 21683.94 206
ambc62.06 30653.98 35229.38 34735.08 35779.65 21141.37 32359.96 3396.27 35982.15 26435.34 29838.22 33974.65 314
PEN-MVS58.35 27757.15 26661.94 30767.55 32234.39 33177.01 26778.35 24051.87 26647.72 29776.73 25633.91 23173.75 32534.03 30647.17 31877.68 289
MVS-HIRNet49.01 31244.71 31661.92 30876.06 24446.61 25763.23 32754.90 34524.77 35133.56 34436.60 35421.28 32075.88 31529.49 32162.54 22463.26 348
LTVRE_ROB45.45 1952.73 30349.74 30561.69 30969.78 30734.99 32944.52 34967.60 32843.11 32143.79 31274.03 27818.54 33081.45 26928.39 32957.94 25868.62 338
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H58.91 27058.04 26161.54 31069.07 31033.83 33476.91 26881.99 17051.40 27048.17 29374.67 27540.23 15974.15 32131.78 31548.10 31176.64 300
CP-MVSNet58.54 27657.57 26461.46 31168.50 31533.96 33376.90 26978.60 23651.67 26947.83 29676.60 25834.99 22372.79 33035.45 29647.58 31477.64 291
MVS_030456.72 28255.17 27961.37 31270.71 30036.80 32875.74 27268.75 32544.11 31652.53 27268.20 31915.05 34374.53 32042.98 27258.44 24972.79 327
PS-CasMVS58.12 27857.03 26861.37 31268.24 31933.80 33576.73 27078.01 24551.20 27147.54 30076.20 26632.85 24072.76 33135.17 30147.37 31677.55 292
Anonymous2024052151.65 30748.42 30861.34 31456.43 35039.65 31773.57 28873.47 30236.64 33836.59 33563.98 33010.75 34972.25 33435.35 29749.01 30972.11 329
CHOSEN 280x42057.53 28056.38 27360.97 31574.01 26848.10 23946.30 34854.31 34648.18 28650.88 28577.43 24438.37 17659.16 34954.83 20263.14 21975.66 307
DTE-MVSNet57.03 28155.73 27760.95 31665.94 32532.57 34075.71 27377.09 26251.16 27246.65 30576.34 26132.84 24173.22 32930.94 31944.87 32677.06 294
IterMVS-SCA-FT59.12 26558.81 25960.08 31770.68 30345.07 27680.42 24174.25 29043.54 31950.02 28773.73 28031.97 25056.74 35051.06 23053.60 29678.42 280
COLMAP_ROBcopyleft43.60 2050.90 30948.05 31059.47 31867.81 32140.57 31471.25 30762.72 33836.49 33936.19 33773.51 28513.48 34573.92 32420.71 34750.26 30763.92 346
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testgi54.25 29752.57 29659.29 31962.76 34021.65 35872.21 30070.47 31953.25 25641.94 32077.33 24514.28 34477.95 30329.18 32351.72 30478.28 283
TinyColmap48.15 31444.49 31859.13 32065.73 32738.04 32263.34 32662.86 33738.78 32929.48 35167.23 3236.46 35873.30 32824.59 33941.90 33366.04 342
test20.0355.22 29354.07 28658.68 32163.14 33925.00 35377.69 26574.78 28652.64 25943.43 31472.39 29726.21 28974.76 31929.31 32247.05 32076.28 304
EU-MVSNet52.63 30450.72 30058.37 32262.69 34128.13 35172.60 29475.97 27730.94 34640.76 32772.11 30120.16 32370.80 33735.11 30246.11 32376.19 305
MIMVSNet150.35 31047.81 31157.96 32361.53 34327.80 35267.40 31974.06 29243.25 32033.31 34765.38 32816.03 34071.34 33521.80 34447.55 31574.75 313
pmmvs345.53 31841.55 32157.44 32448.97 35639.68 31670.06 31157.66 34228.32 34934.06 34257.29 3458.50 35466.85 34334.86 30434.26 34565.80 343
DIV-MVS_2432*160049.24 31146.85 31456.44 32554.32 35122.87 35557.39 33973.36 30344.36 31337.98 33359.30 34218.97 32871.17 33633.48 30742.44 33175.26 310
PM-MVS46.92 31643.76 32056.41 32652.18 35332.26 34163.21 32838.18 35737.99 33340.78 32666.20 3245.09 36165.42 34448.19 24641.99 33271.54 333
AllTest47.32 31544.66 31755.32 32765.08 33137.50 32562.96 32954.25 34735.45 34233.42 34572.82 2909.98 35059.33 34724.13 34043.84 32869.13 336
TestCases55.32 32765.08 33137.50 32554.25 34735.45 34233.42 34572.82 2909.98 35059.33 34724.13 34043.84 32869.13 336
new-patchmatchnet48.21 31346.55 31553.18 32957.73 34818.19 36270.24 31071.02 31845.70 30233.70 34360.23 33818.00 33269.86 34027.97 33034.35 34471.49 334
ITE_SJBPF51.84 33058.03 34731.94 34353.57 34936.67 33741.32 32475.23 27311.17 34851.57 35425.81 33748.04 31272.02 330
RPSCF45.77 31744.13 31950.68 33157.67 34929.66 34554.92 34445.25 35426.69 35045.92 30875.92 26917.43 33545.70 35827.44 33245.95 32476.67 297
ANet_high34.39 32329.59 32848.78 33230.34 36422.28 35655.53 34163.79 33538.11 33215.47 35736.56 3556.94 35559.98 34613.93 3565.64 36564.08 345
TDRefinement40.91 32038.37 32348.55 33350.45 35433.03 33858.98 33850.97 35028.50 34829.89 35067.39 3226.21 36054.51 35117.67 35335.25 34258.11 349
DSMNet-mixed38.35 32135.36 32447.33 33448.11 35714.91 36437.87 35636.60 35919.18 35534.37 34159.56 34115.53 34153.01 35320.14 34946.89 32174.07 317
N_pmnet41.25 31939.77 32245.66 33568.50 3150.82 37172.51 2960.38 37135.61 34135.26 34061.51 33520.07 32467.74 34223.51 34240.63 33468.42 339
LCM-MVSNet28.07 32623.85 33140.71 33627.46 36718.93 36130.82 35846.19 35112.76 35916.40 35634.70 3571.90 36848.69 35720.25 34824.22 35454.51 351
FPMVS35.40 32233.67 32540.57 33746.34 35828.74 35041.05 35357.05 34320.37 35422.27 35553.38 3486.87 35644.94 3598.62 35847.11 31948.01 354
new_pmnet33.56 32431.89 32738.59 33849.01 35520.42 35951.01 34537.92 35820.58 35223.45 35446.79 3496.66 35749.28 35620.00 35031.57 35046.09 355
PMMVS226.71 32822.98 33237.87 33936.89 3618.51 36842.51 35229.32 36519.09 35613.01 35937.54 3512.23 36653.11 35214.54 35511.71 35851.99 352
Gipumacopyleft27.47 32724.26 33037.12 34060.55 34629.17 34811.68 36260.00 34014.18 35810.52 36215.12 3632.20 36763.01 3458.39 35935.65 34019.18 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LF4IMVS33.04 32532.55 32634.52 34140.96 35922.03 35744.45 35035.62 36020.42 35328.12 35262.35 3345.03 36231.88 36421.61 34634.42 34349.63 353
test_method24.09 33021.07 33433.16 34227.67 3668.35 36926.63 35935.11 3623.40 36414.35 35836.98 3533.46 36535.31 36319.08 35222.95 35555.81 350
PMVScopyleft19.57 2225.07 32922.43 33332.99 34323.12 36822.98 35440.98 35435.19 36115.99 35711.95 36135.87 3561.47 37049.29 3555.41 36331.90 34926.70 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive16.60 2317.34 33413.39 33729.16 34428.43 36519.72 36013.73 36123.63 3667.23 3637.96 36321.41 3590.80 37136.08 3626.97 36010.39 35931.69 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN19.16 33118.40 33521.44 34536.19 36213.63 36547.59 34630.89 36310.73 3605.91 36516.59 3613.66 36439.77 3605.95 3628.14 36010.92 360
EMVS18.42 33217.66 33620.71 34634.13 36312.64 36646.94 34729.94 36410.46 3625.58 36614.93 3644.23 36338.83 3615.24 3647.51 36210.67 361
DeepMVS_CXcopyleft13.10 34721.34 3698.99 36710.02 36910.59 3617.53 36430.55 3581.82 36914.55 3656.83 3617.52 36115.75 359
wuyk23d9.11 3368.77 34010.15 34840.18 36016.76 36320.28 3601.01 3702.58 3652.66 3670.98 3670.23 37212.49 3664.08 3656.90 3631.19 363
tmp_tt9.44 33510.68 3385.73 3492.49 3704.21 37010.48 36318.04 3670.34 36612.59 36020.49 36011.39 3477.03 36713.84 3576.46 3645.95 362
testmvs6.14 3388.18 3410.01 3500.01 3710.00 37373.40 2910.00 3720.00 3670.02 3680.15 3680.00 3730.00 3680.02 3660.00 3660.02 364
test1236.01 3398.01 3420.01 3500.00 3720.01 37271.93 3040.00 3720.00 3670.02 3680.11 3690.00 3730.00 3680.02 3660.00 3660.02 364
uanet_test0.00 3410.00 3440.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 3700.00 3730.00 3680.00 3680.00 3660.00 366
cdsmvs_eth3d_5k18.33 33324.44 3290.00 3520.00 3720.00 3730.00 36489.40 170.00 3670.00 37092.02 3838.55 1740.00 3680.00 3680.00 3660.00 366
pcd_1.5k_mvsjas3.15 3404.20 3430.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 37037.77 1800.00 3680.00 3680.00 3660.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 3700.00 3730.00 3680.00 3680.00 3660.00 366
sosnet0.00 3410.00 3440.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 3700.00 3730.00 3680.00 3680.00 3660.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 3700.00 3730.00 3680.00 3680.00 3660.00 366
Regformer0.00 3410.00 3440.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 3700.00 3730.00 3680.00 3680.00 3660.00 366
ab-mvs-re7.68 33710.24 3390.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 37092.12 340.00 3730.00 3680.00 3680.00 3660.00 366
uanet0.00 3410.00 3440.00 3520.00 3720.00 3730.00 3640.00 3720.00 3670.00 3700.00 3700.00 3730.00 3680.00 3680.00 3660.00 366
eth-test20.00 372
eth-test0.00 372
ZD-MVS89.55 1153.46 10384.38 12757.02 21273.97 4591.03 5544.57 10791.17 7475.41 5681.78 71
RE-MVS-def66.66 18180.96 16548.14 23781.54 22276.98 26346.42 29862.75 16089.42 9729.28 27060.52 15872.06 15583.19 219
IU-MVS89.48 1457.49 1791.38 566.22 5288.26 182.83 787.60 1692.44 25
test_241102_TWO88.76 3457.50 20683.60 594.09 456.14 1696.37 582.28 1187.43 1892.55 23
test_241102_ONE89.48 1456.89 2688.94 2757.53 20484.61 393.29 1358.81 996.45 1
9.1478.19 2485.67 5388.32 5588.84 3159.89 14874.58 4192.62 2446.80 7592.66 4081.40 1785.62 39
save fliter85.35 6456.34 3789.31 4081.46 18061.55 121
test_0728_THIRD58.00 19281.91 993.64 1056.54 1396.44 281.64 1686.86 2592.23 29
test072689.40 1757.45 1892.32 788.63 3757.71 20083.14 793.96 755.17 17
GSMVS88.13 129
test_part289.33 1955.48 4982.27 8
sam_mvs138.86 17288.13 129
sam_mvs35.99 216
MTGPAbinary81.31 183
test_post170.84 30914.72 36534.33 22783.86 25048.80 241
test_post16.22 36237.52 18884.72 245
patchmatchnet-post59.74 34038.41 17579.91 287
MTMP87.27 7715.34 368
gm-plane-assit83.24 10754.21 8770.91 1288.23 12095.25 1266.37 109
test9_res78.72 3185.44 4291.39 52
TEST985.68 5155.42 5087.59 6784.00 13857.72 19972.99 5490.98 5744.87 10288.58 141
test_885.72 5055.31 5487.60 6483.88 14157.84 19772.84 5790.99 5644.99 9988.34 151
agg_prior275.65 5085.11 4691.01 62
agg_prior85.64 5454.92 6883.61 14772.53 6188.10 161
test_prior456.39 3687.15 80
test_prior289.04 4461.88 11673.55 4891.46 5248.01 6474.73 5985.46 40
旧先验281.73 21645.53 30474.66 3770.48 33958.31 176
新几何281.61 220
旧先验181.57 15047.48 24571.83 30988.66 11136.94 19978.34 10188.67 118
无先验85.19 12478.00 24649.08 28185.13 23952.78 21887.45 142
原ACMM283.77 165
test22279.36 18750.97 16877.99 26367.84 32642.54 32362.84 15986.53 14530.26 26476.91 11185.23 184
testdata277.81 30645.64 261
segment_acmp44.97 101
testdata177.55 26664.14 79
plane_prior777.95 21748.46 230
plane_prior678.42 21249.39 20636.04 214
plane_prior582.59 16488.30 15465.46 11972.34 15284.49 192
plane_prior483.28 182
plane_prior348.95 21364.01 8062.15 165
plane_prior285.76 10863.60 90
plane_prior178.31 214
plane_prior49.57 20087.43 7164.57 7572.84 147
n20.00 372
nn0.00 372
door-mid41.31 356
test1184.25 132
door43.27 355
HQP5-MVS51.56 156
HQP-NCC79.02 19588.00 5765.45 6164.48 136
ACMP_Plane79.02 19588.00 5765.45 6164.48 136
BP-MVS66.70 106
HQP4-MVS64.47 13988.61 14084.91 189
HQP3-MVS83.68 14473.12 143
HQP2-MVS37.35 191
NP-MVS78.76 20050.43 17885.12 160
MDTV_nov1_ep13_2view43.62 29071.13 30854.95 24259.29 19636.76 20246.33 25887.32 144
MDTV_nov1_ep1361.56 23781.68 14355.12 6172.41 29778.18 24259.19 16658.85 20669.29 31534.69 22486.16 21236.76 29362.96 221
ACMMP++_ref63.20 217
ACMMP++59.38 241
Test By Simon39.38 167