ETH3 D test6400 | | | 83.28 1 | 83.47 1 | 82.72 3 | 91.48 4 | 59.33 6 | 92.10 9 | 90.95 7 | 65.68 57 | 80.67 15 | 94.42 3 | 59.41 7 | 95.89 9 | 86.74 2 | 89.75 5 | 92.94 16 |
|
DVP-MVS | | | 82.30 5 | 83.47 1 | 78.80 49 | 82.99 114 | 52.71 125 | 85.04 130 | 88.63 37 | 66.08 53 | 86.77 2 | 92.75 21 | 72.05 1 | 91.46 65 | 83.35 6 | 93.53 1 | 92.23 29 |
|
MCST-MVS | | | 83.01 2 | 83.30 3 | 82.15 10 | 92.84 2 | 57.58 15 | 93.77 1 | 91.10 6 | 75.95 2 | 77.10 24 | 93.09 17 | 54.15 23 | 95.57 10 | 85.80 3 | 85.87 34 | 93.31 9 |
|
DELS-MVS | | | 82.32 4 | 82.50 4 | 81.79 11 | 86.80 40 | 56.89 25 | 92.77 2 | 86.30 79 | 77.83 1 | 77.88 21 | 92.13 32 | 60.24 4 | 94.78 18 | 78.97 25 | 89.61 6 | 93.69 6 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 173 | 59.50 5 | 92.24 8 | 90.72 8 | 69.37 22 | 83.22 6 | 94.47 2 | 63.81 3 | 93.18 30 | 74.02 60 | 93.25 2 | 94.80 1 |
|
CNVR-MVS | | | 81.76 7 | 81.90 6 | 81.33 15 | 90.04 7 | 57.70 13 | 91.71 10 | 88.87 30 | 70.31 16 | 77.64 23 | 93.87 8 | 52.58 30 | 93.91 24 | 84.17 4 | 87.92 14 | 92.39 26 |
|
SED-MVS | | | 81.92 6 | 81.75 7 | 82.44 7 | 89.48 13 | 56.89 25 | 92.48 3 | 88.94 27 | 57.50 198 | 84.61 3 | 94.09 4 | 58.81 9 | 96.37 5 | 82.28 11 | 87.60 16 | 94.06 3 |
|
DeepPCF-MVS | | 69.37 1 | 80.65 10 | 81.56 8 | 77.94 79 | 85.46 60 | 49.56 196 | 90.99 20 | 86.66 73 | 70.58 14 | 80.07 17 | 95.30 1 | 56.18 15 | 90.97 75 | 82.57 10 | 86.22 32 | 93.28 10 |
|
CANet | | | 80.90 9 | 81.17 9 | 80.09 28 | 87.62 33 | 54.21 84 | 91.60 13 | 86.47 75 | 73.13 5 | 79.89 18 | 93.10 15 | 49.88 50 | 92.98 31 | 84.09 5 | 84.75 47 | 93.08 14 |
|
MSP-MVS | | | 81.30 8 | 81.00 10 | 82.20 8 | 89.40 16 | 57.45 17 | 92.34 5 | 89.99 14 | 57.71 192 | 81.91 9 | 93.64 10 | 55.17 17 | 96.44 2 | 81.68 13 | 87.13 19 | 92.72 21 |
|
HPM-MVS++ | | | 80.50 11 | 80.71 11 | 79.88 30 | 87.34 35 | 55.20 57 | 89.93 28 | 87.55 60 | 66.04 56 | 79.46 19 | 93.00 19 | 53.10 27 | 91.76 58 | 80.40 20 | 89.56 7 | 92.68 22 |
|
CSCG | | | 80.41 12 | 79.72 12 | 82.49 5 | 89.12 20 | 57.67 14 | 89.29 39 | 91.54 3 | 59.19 159 | 71.82 66 | 90.05 82 | 59.72 6 | 96.04 7 | 78.37 28 | 88.40 12 | 93.75 5 |
|
DPE-MVS | | | 79.82 15 | 79.66 13 | 80.29 21 | 89.27 19 | 55.08 62 | 88.70 48 | 87.92 51 | 55.55 225 | 81.21 12 | 93.69 9 | 56.51 14 | 94.27 21 | 78.36 29 | 85.70 36 | 91.51 49 |
|
PS-MVSNAJ | | | 80.06 13 | 79.52 14 | 81.68 13 | 85.58 54 | 60.97 3 | 91.69 11 | 87.02 65 | 70.62 13 | 80.75 14 | 93.22 14 | 37.77 172 | 92.50 42 | 82.75 8 | 86.25 31 | 91.57 46 |
|
xiu_mvs_v2_base | | | 79.86 14 | 79.31 15 | 81.53 14 | 85.03 70 | 60.73 4 | 91.65 12 | 86.86 68 | 70.30 17 | 80.77 13 | 93.07 18 | 37.63 177 | 92.28 49 | 82.73 9 | 85.71 35 | 91.57 46 |
|
NCCC | | | 79.57 16 | 79.23 16 | 80.59 18 | 89.50 11 | 56.99 23 | 91.38 15 | 88.17 47 | 67.71 36 | 73.81 43 | 92.75 21 | 46.88 72 | 93.28 28 | 78.79 26 | 84.07 53 | 91.50 50 |
|
SMA-MVS | | | 79.10 17 | 78.76 17 | 80.12 26 | 84.42 77 | 55.87 42 | 87.58 66 | 86.76 70 | 61.48 121 | 80.26 16 | 93.10 15 | 46.53 77 | 92.41 45 | 79.97 21 | 88.77 9 | 92.08 33 |
|
ETH3D-3000-0.1 | | | 78.73 18 | 78.71 18 | 78.78 51 | 85.58 54 | 52.40 133 | 88.42 52 | 89.03 24 | 60.01 140 | 76.06 29 | 92.80 20 | 48.34 56 | 92.88 33 | 81.66 15 | 86.48 29 | 91.04 62 |
|
EPNet | | | 78.36 23 | 78.49 19 | 77.97 77 | 85.49 57 | 52.04 141 | 89.36 36 | 84.07 134 | 73.22 4 | 77.03 25 | 91.72 43 | 49.32 54 | 90.17 98 | 73.46 66 | 82.77 58 | 91.69 41 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + MP. | | | 78.31 25 | 78.26 20 | 78.48 60 | 81.33 155 | 56.31 37 | 81.59 214 | 86.41 76 | 69.61 21 | 81.72 11 | 88.16 114 | 55.09 19 | 88.04 159 | 74.12 59 | 86.31 30 | 91.09 60 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
APDe-MVS | | | 78.44 20 | 78.20 21 | 79.19 37 | 88.56 21 | 54.55 79 | 89.76 32 | 87.77 55 | 55.91 220 | 78.56 20 | 92.49 25 | 48.20 58 | 92.65 40 | 79.49 22 | 83.04 57 | 90.39 77 |
|
ETH3D cwj APD-0.16 | | | 78.36 23 | 78.19 22 | 78.86 46 | 84.21 83 | 52.68 126 | 86.70 87 | 89.02 25 | 59.13 164 | 75.37 31 | 92.49 25 | 49.06 55 | 93.20 29 | 80.67 19 | 87.08 21 | 90.71 70 |
|
9.14 | | | | 78.19 22 | | 85.67 51 | | 88.32 53 | 88.84 31 | 59.89 142 | 74.58 39 | 92.62 24 | 46.80 73 | 92.66 39 | 81.40 17 | 85.62 37 | |
|
lupinMVS | | | 78.38 22 | 78.11 24 | 79.19 37 | 83.02 112 | 55.24 54 | 91.57 14 | 84.82 116 | 69.12 23 | 76.67 26 | 92.02 36 | 44.82 101 | 90.23 96 | 80.83 18 | 80.09 83 | 92.08 33 |
|
alignmvs | | | 78.08 28 | 77.98 25 | 78.39 65 | 83.53 95 | 53.22 112 | 89.77 31 | 85.45 92 | 66.11 51 | 76.59 28 | 91.99 38 | 54.07 24 | 89.05 119 | 77.34 39 | 77.00 107 | 92.89 18 |
|
CS-MVS | | | 78.19 26 | 77.97 26 | 78.82 47 | 83.52 96 | 53.08 117 | 89.10 41 | 86.30 79 | 68.01 32 | 73.57 45 | 91.26 52 | 47.28 68 | 92.35 47 | 78.21 30 | 84.51 50 | 91.05 61 |
|
VNet | | | 77.99 30 | 77.92 27 | 78.19 70 | 87.43 34 | 50.12 186 | 90.93 21 | 91.41 4 | 67.48 39 | 75.12 32 | 90.15 81 | 46.77 74 | 91.00 73 | 73.52 65 | 78.46 97 | 93.44 7 |
|
canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 40 | 84.30 79 | 54.22 83 | 87.71 59 | 84.57 123 | 67.70 37 | 77.70 22 | 92.11 35 | 50.90 41 | 89.95 101 | 78.18 33 | 77.54 102 | 93.20 12 |
|
DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 39 | 88.52 22 | 55.12 59 | 89.95 27 | 85.98 86 | 68.31 27 | 71.33 72 | 92.75 21 | 45.52 91 | 90.37 89 | 71.15 77 | 85.14 43 | 91.91 38 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 59 | 85.25 66 | 50.27 184 | 90.02 25 | 90.57 9 | 56.58 214 | 74.26 41 | 91.60 46 | 54.26 21 | 92.16 51 | 75.87 45 | 79.91 87 | 93.05 15 |
|
WTY-MVS | | | 77.47 36 | 77.52 31 | 77.30 92 | 88.33 25 | 46.25 253 | 88.46 51 | 90.32 10 | 71.40 10 | 72.32 63 | 91.72 43 | 53.44 25 | 92.37 46 | 66.28 106 | 75.42 121 | 93.28 10 |
|
Regformer-1 | | | 77.80 32 | 77.44 32 | 78.88 44 | 87.78 31 | 52.44 132 | 87.60 61 | 90.08 12 | 68.86 24 | 72.49 61 | 91.79 40 | 47.69 65 | 94.90 16 | 73.57 64 | 77.05 104 | 89.31 98 |
|
SF-MVS | | | 77.64 33 | 77.42 33 | 78.32 68 | 83.75 93 | 52.47 131 | 86.63 89 | 87.80 52 | 58.78 172 | 74.63 36 | 92.38 27 | 47.75 63 | 91.35 67 | 78.18 33 | 86.85 24 | 91.15 58 |
|
test_prior3 | | | 77.59 34 | 77.33 34 | 78.39 65 | 86.35 43 | 54.91 68 | 89.04 42 | 85.45 92 | 61.88 111 | 73.55 46 | 91.46 50 | 48.01 61 | 89.70 107 | 74.73 54 | 85.46 38 | 90.55 72 |
|
LFMVS | | | 78.52 19 | 77.14 35 | 82.67 4 | 89.58 10 | 58.90 8 | 91.27 18 | 88.05 48 | 63.22 91 | 74.63 36 | 90.83 62 | 41.38 142 | 94.40 19 | 75.42 51 | 79.90 88 | 94.72 2 |
|
PHI-MVS | | | 77.49 35 | 77.00 36 | 78.95 41 | 85.33 64 | 50.69 168 | 88.57 50 | 88.59 41 | 58.14 181 | 73.60 44 | 93.31 12 | 43.14 123 | 93.79 25 | 73.81 61 | 88.53 11 | 92.37 27 |
|
MG-MVS | | | 78.42 21 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 28 | 88.51 43 | 64.83 70 | 73.52 48 | 88.09 115 | 48.07 59 | 92.19 50 | 62.24 133 | 84.53 49 | 91.53 48 |
|
casdiffmvs | | | 77.36 37 | 76.85 38 | 78.88 44 | 80.40 171 | 54.66 77 | 87.06 78 | 85.88 87 | 72.11 8 | 71.57 69 | 88.63 108 | 50.89 43 | 90.35 90 | 76.00 44 | 79.11 92 | 91.63 43 |
|
Regformer-2 | | | 77.15 40 | 76.82 39 | 78.14 71 | 87.78 31 | 51.84 147 | 87.60 61 | 89.12 21 | 67.23 40 | 71.93 65 | 91.79 40 | 46.03 83 | 93.53 27 | 72.85 70 | 77.05 104 | 89.05 107 |
|
ETV-MVS | | | 77.17 39 | 76.74 40 | 78.48 60 | 81.80 137 | 54.55 79 | 86.13 98 | 85.33 98 | 68.20 29 | 73.10 51 | 90.52 70 | 45.23 94 | 90.66 82 | 79.37 23 | 80.95 71 | 90.22 81 |
|
xxxxxxxxxxxxxcwj | | | 77.31 38 | 76.54 41 | 79.61 31 | 85.35 62 | 56.34 35 | 89.31 37 | 72.84 289 | 61.55 116 | 74.63 36 | 92.38 27 | 47.75 63 | 91.35 67 | 78.18 33 | 86.85 24 | 91.15 58 |
|
PVSNet_Blended | | | 76.53 51 | 76.54 41 | 76.50 110 | 85.91 46 | 51.83 148 | 88.89 45 | 84.24 131 | 67.82 34 | 69.09 83 | 89.33 95 | 46.70 75 | 88.13 155 | 75.43 49 | 81.48 70 | 89.55 94 |
|
testtj | | | 76.96 43 | 76.48 43 | 78.40 64 | 89.89 9 | 53.67 94 | 88.72 47 | 86.15 83 | 54.56 236 | 74.86 34 | 92.31 30 | 44.38 105 | 91.97 56 | 75.19 52 | 82.24 63 | 89.54 95 |
|
jason | | | 77.01 42 | 76.45 44 | 78.69 54 | 79.69 176 | 54.74 71 | 90.56 23 | 83.99 137 | 68.26 28 | 74.10 42 | 90.91 59 | 42.14 131 | 89.99 100 | 79.30 24 | 79.12 91 | 91.36 54 |
jason: jason. |
train_agg | | | 76.91 44 | 76.40 45 | 78.45 62 | 85.68 49 | 55.42 48 | 87.59 64 | 84.00 135 | 57.84 189 | 72.99 52 | 90.98 55 | 44.99 96 | 88.58 136 | 78.19 31 | 85.32 41 | 91.34 56 |
|
SteuartSystems-ACMMP | | | 77.08 41 | 76.33 46 | 79.34 35 | 80.98 158 | 55.31 52 | 89.76 32 | 86.91 67 | 62.94 95 | 71.65 67 | 91.56 47 | 42.33 127 | 92.56 41 | 77.14 40 | 83.69 55 | 90.15 84 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepC-MVS | | 67.15 4 | 76.90 46 | 76.27 47 | 78.80 49 | 80.70 164 | 55.02 63 | 86.39 92 | 86.71 71 | 66.96 43 | 67.91 92 | 89.97 84 | 48.03 60 | 91.41 66 | 75.60 48 | 84.14 52 | 89.96 87 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
agg_prior1 | | | 76.68 50 | 76.24 48 | 78.00 75 | 85.64 52 | 54.92 66 | 87.55 67 | 83.61 144 | 57.99 185 | 72.53 59 | 91.05 53 | 45.36 92 | 88.10 157 | 77.76 37 | 84.68 48 | 90.99 65 |
|
baseline | | | 76.86 47 | 76.24 48 | 78.71 53 | 80.47 170 | 54.20 86 | 83.90 156 | 84.88 115 | 71.38 11 | 71.51 70 | 89.15 98 | 50.51 44 | 90.55 86 | 75.71 46 | 78.65 95 | 91.39 52 |
|
PAPM | | | 76.76 48 | 76.07 50 | 78.81 48 | 80.20 172 | 59.11 7 | 86.86 85 | 86.23 81 | 68.60 25 | 70.18 80 | 88.84 103 | 51.57 35 | 87.16 180 | 65.48 113 | 86.68 26 | 90.15 84 |
|
APD-MVS | | | 76.15 56 | 75.68 51 | 77.54 86 | 88.52 22 | 53.44 103 | 87.26 75 | 85.03 111 | 53.79 240 | 74.91 33 | 91.68 45 | 43.80 110 | 90.31 92 | 74.36 57 | 81.82 67 | 88.87 111 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMMP_NAP | | | 76.43 52 | 75.66 52 | 78.73 52 | 81.92 135 | 54.67 76 | 84.06 151 | 85.35 97 | 61.10 126 | 72.99 52 | 91.50 48 | 40.25 150 | 91.00 73 | 76.84 41 | 86.98 22 | 90.51 76 |
|
MAR-MVS | | | 76.76 48 | 75.60 53 | 80.21 23 | 90.87 5 | 54.68 75 | 89.14 40 | 89.11 22 | 62.95 94 | 70.54 78 | 92.33 29 | 41.05 143 | 94.95 15 | 57.90 173 | 86.55 28 | 91.00 64 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVS | | | 76.91 44 | 75.48 54 | 81.23 16 | 84.56 75 | 55.21 56 | 80.23 234 | 91.64 2 | 58.65 174 | 65.37 118 | 91.48 49 | 45.72 89 | 95.05 14 | 72.11 74 | 89.52 8 | 93.44 7 |
|
Regformer-3 | | | 76.02 59 | 75.47 55 | 77.70 82 | 85.49 57 | 51.47 156 | 85.12 126 | 90.19 11 | 68.52 26 | 69.36 81 | 90.66 64 | 46.45 78 | 94.81 17 | 70.25 82 | 73.16 137 | 86.81 151 |
|
CLD-MVS | | | 75.60 65 | 75.39 56 | 76.24 115 | 80.69 165 | 52.40 133 | 90.69 22 | 86.20 82 | 74.40 3 | 65.01 123 | 88.93 100 | 42.05 133 | 90.58 85 | 76.57 42 | 73.96 132 | 85.73 168 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVS_111021_HR | | | 76.39 53 | 75.38 57 | 79.42 34 | 85.33 64 | 56.47 32 | 88.15 54 | 84.97 112 | 65.15 68 | 66.06 110 | 89.88 85 | 43.79 111 | 92.16 51 | 75.03 53 | 80.03 86 | 89.64 93 |
|
CDPH-MVS | | | 76.05 58 | 75.19 58 | 78.62 57 | 86.51 42 | 54.98 65 | 87.32 70 | 84.59 122 | 58.62 175 | 70.75 76 | 90.85 61 | 43.10 125 | 90.63 84 | 70.50 80 | 84.51 50 | 90.24 80 |
|
EIA-MVS | | | 75.92 60 | 75.18 59 | 78.13 72 | 85.14 67 | 51.60 152 | 87.17 76 | 85.32 99 | 64.69 71 | 68.56 86 | 90.53 69 | 45.79 88 | 91.58 61 | 67.21 98 | 82.18 65 | 91.20 57 |
|
MP-MVS-pluss | | | 75.54 66 | 75.03 60 | 77.04 98 | 81.37 154 | 52.65 128 | 84.34 143 | 84.46 124 | 61.16 124 | 69.14 82 | 91.76 42 | 39.98 156 | 88.99 125 | 78.19 31 | 84.89 46 | 89.48 96 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ZNCC-MVS | | | 75.82 64 | 75.02 61 | 78.23 69 | 83.88 91 | 53.80 90 | 86.91 84 | 86.05 85 | 59.71 144 | 67.85 93 | 90.55 68 | 42.23 129 | 91.02 72 | 72.66 72 | 85.29 42 | 89.87 89 |
|
VDD-MVS | | | 76.08 57 | 74.97 62 | 79.44 33 | 84.27 82 | 53.33 109 | 91.13 19 | 85.88 87 | 65.33 64 | 72.37 62 | 89.34 93 | 32.52 233 | 92.76 37 | 77.90 36 | 75.96 115 | 92.22 31 |
|
MVS_Test | | | 75.85 61 | 74.93 63 | 78.62 57 | 84.08 85 | 55.20 57 | 83.99 154 | 85.17 106 | 68.07 30 | 73.38 49 | 82.76 178 | 50.44 45 | 89.00 123 | 65.90 109 | 80.61 76 | 91.64 42 |
|
SD-MVS | | | 76.18 55 | 74.85 64 | 80.18 24 | 85.39 61 | 56.90 24 | 85.75 107 | 82.45 163 | 56.79 209 | 74.48 40 | 91.81 39 | 43.72 114 | 90.75 80 | 74.61 56 | 78.65 95 | 92.91 17 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test_yl | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 29 | 51.94 143 | 91.30 16 | 89.28 18 | 57.91 186 | 71.19 74 | 89.20 96 | 42.03 134 | 92.77 35 | 69.41 84 | 75.07 126 | 92.01 36 |
|
DCV-MVSNet | | | 75.85 61 | 74.83 65 | 78.91 42 | 88.08 29 | 51.94 143 | 91.30 16 | 89.28 18 | 57.91 186 | 71.19 74 | 89.20 96 | 42.03 134 | 92.77 35 | 69.41 84 | 75.07 126 | 92.01 36 |
|
diffmvs | | | 75.11 72 | 74.65 67 | 76.46 112 | 78.52 198 | 53.35 107 | 83.28 176 | 79.94 197 | 70.51 15 | 71.64 68 | 88.72 104 | 46.02 84 | 86.08 210 | 77.52 38 | 75.75 119 | 89.96 87 |
|
Regformer-4 | | | 75.06 73 | 74.59 68 | 76.47 111 | 85.49 57 | 50.33 180 | 85.12 126 | 88.61 39 | 66.42 45 | 68.48 87 | 90.66 64 | 44.15 106 | 92.68 38 | 69.24 86 | 73.16 137 | 86.39 158 |
|
baseline2 | | | 75.15 71 | 74.54 69 | 76.98 102 | 81.67 140 | 51.74 150 | 83.84 157 | 91.94 1 | 69.97 18 | 58.98 188 | 86.02 142 | 59.73 5 | 91.73 59 | 68.37 91 | 70.40 161 | 87.48 137 |
|
MP-MVS | | | 74.99 74 | 74.33 70 | 76.95 103 | 82.89 118 | 53.05 119 | 85.63 111 | 83.50 146 | 57.86 188 | 67.25 97 | 90.24 76 | 43.38 120 | 88.85 131 | 76.03 43 | 82.23 64 | 88.96 109 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
PAPR | | | 75.20 70 | 74.13 71 | 78.41 63 | 88.31 26 | 55.10 61 | 84.31 144 | 85.66 90 | 63.76 82 | 67.55 94 | 90.73 63 | 43.48 119 | 89.40 113 | 66.36 105 | 77.03 106 | 90.73 69 |
|
ET-MVSNet_ETH3D | | | 75.23 69 | 74.08 72 | 78.67 55 | 84.52 76 | 55.59 44 | 88.92 44 | 89.21 20 | 68.06 31 | 53.13 256 | 90.22 77 | 49.71 51 | 87.62 171 | 72.12 73 | 70.82 158 | 92.82 19 |
|
CHOSEN 1792x2688 | | | 76.24 54 | 74.03 73 | 82.88 1 | 83.09 108 | 62.84 2 | 85.73 109 | 85.39 95 | 69.79 19 | 64.87 125 | 83.49 168 | 41.52 141 | 93.69 26 | 70.55 79 | 81.82 67 | 92.12 32 |
|
GST-MVS | | | 74.87 75 | 73.90 74 | 77.77 80 | 83.30 102 | 53.45 102 | 85.75 107 | 85.29 101 | 59.22 158 | 66.50 105 | 89.85 86 | 40.94 144 | 90.76 79 | 70.94 78 | 83.35 56 | 89.10 106 |
|
DWT-MVSNet_test | | | 75.47 67 | 73.87 75 | 80.29 21 | 87.33 36 | 57.05 22 | 82.86 185 | 87.96 50 | 72.59 6 | 67.29 96 | 87.79 120 | 51.61 34 | 91.52 63 | 54.75 195 | 72.63 145 | 92.29 28 |
|
#test# | | | 74.86 76 | 73.78 76 | 78.10 73 | 84.30 79 | 53.68 92 | 86.95 81 | 84.36 125 | 59.00 168 | 65.78 113 | 90.56 66 | 40.70 148 | 90.90 76 | 71.48 75 | 80.88 72 | 89.71 90 |
|
Effi-MVS+ | | | 75.24 68 | 73.61 77 | 80.16 25 | 81.92 135 | 57.42 19 | 85.21 120 | 76.71 257 | 60.68 133 | 73.32 50 | 89.34 93 | 47.30 67 | 91.63 60 | 68.28 92 | 79.72 89 | 91.42 51 |
|
PVSNet_BlendedMVS | | | 73.42 91 | 73.30 78 | 73.76 168 | 85.91 46 | 51.83 148 | 86.18 97 | 84.24 131 | 65.40 61 | 69.09 83 | 80.86 203 | 46.70 75 | 88.13 155 | 75.43 49 | 65.92 191 | 81.33 238 |
|
CANet_DTU | | | 73.71 88 | 73.14 79 | 75.40 132 | 82.61 127 | 50.05 187 | 84.67 139 | 79.36 211 | 69.72 20 | 75.39 30 | 90.03 83 | 29.41 255 | 85.93 216 | 67.99 94 | 79.11 92 | 90.22 81 |
|
HY-MVS | | 67.03 5 | 73.90 84 | 73.14 79 | 76.18 118 | 84.70 74 | 47.36 237 | 75.56 263 | 86.36 78 | 66.27 48 | 70.66 77 | 83.91 161 | 51.05 39 | 89.31 114 | 67.10 99 | 72.61 146 | 91.88 39 |
|
HFP-MVS | | | 74.37 78 | 73.13 81 | 78.10 73 | 84.30 79 | 53.68 92 | 85.58 112 | 84.36 125 | 56.82 207 | 65.78 113 | 90.56 66 | 40.70 148 | 90.90 76 | 69.18 87 | 80.88 72 | 89.71 90 |
|
zzz-MVS | | | 74.15 82 | 73.11 82 | 77.27 94 | 81.54 147 | 53.57 96 | 84.02 153 | 81.31 179 | 59.41 151 | 68.39 88 | 90.96 57 | 36.07 201 | 89.01 121 | 73.80 62 | 82.45 61 | 89.23 100 |
|
ACMMPR | | | 73.76 86 | 72.61 83 | 77.24 97 | 83.92 89 | 52.96 122 | 85.58 112 | 84.29 127 | 56.82 207 | 65.12 119 | 90.45 71 | 37.24 187 | 90.18 97 | 69.18 87 | 80.84 74 | 88.58 118 |
|
EI-MVSNet-Vis-set | | | 73.19 94 | 72.60 84 | 74.99 141 | 82.56 128 | 49.80 192 | 82.55 191 | 89.00 26 | 66.17 50 | 65.89 112 | 88.98 99 | 43.83 109 | 92.29 48 | 65.38 120 | 69.01 169 | 82.87 217 |
|
region2R | | | 73.75 87 | 72.55 85 | 77.33 91 | 83.90 90 | 52.98 121 | 85.54 115 | 84.09 133 | 56.83 206 | 65.10 120 | 90.45 71 | 37.34 185 | 90.24 95 | 68.89 89 | 80.83 75 | 88.77 114 |
|
3Dnovator | | 64.70 6 | 74.46 77 | 72.48 86 | 80.41 20 | 82.84 120 | 55.40 51 | 83.08 179 | 88.61 39 | 67.61 38 | 59.85 173 | 88.66 105 | 34.57 214 | 93.97 22 | 58.42 164 | 88.70 10 | 91.85 40 |
|
PVSNet_Blended_VisFu | | | 73.40 92 | 72.44 87 | 76.30 113 | 81.32 156 | 54.70 74 | 85.81 103 | 78.82 221 | 63.70 83 | 64.53 129 | 85.38 149 | 47.11 71 | 87.38 177 | 67.75 95 | 77.55 101 | 86.81 151 |
|
TESTMET0.1,1 | | | 72.86 97 | 72.33 88 | 74.46 149 | 81.98 134 | 50.77 166 | 85.13 123 | 85.47 91 | 66.09 52 | 67.30 95 | 83.69 166 | 37.27 186 | 83.57 244 | 65.06 121 | 78.97 94 | 89.05 107 |
|
MVSTER | | | 73.25 93 | 72.33 88 | 76.01 123 | 85.54 56 | 53.76 91 | 83.52 162 | 87.16 63 | 67.06 42 | 63.88 141 | 81.66 196 | 52.77 28 | 90.44 87 | 64.66 122 | 64.69 196 | 83.84 200 |
|
CostFormer | | | 73.89 85 | 72.30 90 | 78.66 56 | 82.36 131 | 56.58 28 | 75.56 263 | 85.30 100 | 66.06 54 | 70.50 79 | 76.88 242 | 57.02 12 | 89.06 117 | 68.27 93 | 68.74 171 | 90.33 79 |
|
MSLP-MVS++ | | | 74.21 80 | 72.25 91 | 80.11 27 | 81.45 152 | 56.47 32 | 86.32 94 | 79.65 205 | 58.19 180 | 66.36 106 | 92.29 31 | 36.11 200 | 90.66 82 | 67.39 96 | 82.49 60 | 93.18 13 |
|
thisisatest0515 | | | 73.64 89 | 72.20 92 | 77.97 77 | 81.63 141 | 53.01 120 | 86.69 88 | 88.81 32 | 62.53 100 | 64.06 136 | 85.65 145 | 52.15 33 | 92.50 42 | 58.43 162 | 69.84 164 | 88.39 122 |
|
MVSFormer | | | 73.53 90 | 72.19 93 | 77.57 85 | 83.02 112 | 55.24 54 | 81.63 211 | 81.44 177 | 50.28 263 | 76.67 26 | 90.91 59 | 44.82 101 | 86.11 206 | 60.83 144 | 80.09 83 | 91.36 54 |
|
VDDNet | | | 74.37 78 | 72.13 94 | 81.09 17 | 79.58 177 | 56.52 31 | 90.02 25 | 86.70 72 | 52.61 249 | 71.23 73 | 87.20 127 | 31.75 243 | 93.96 23 | 74.30 58 | 75.77 118 | 92.79 20 |
|
baseline1 | | | 72.51 104 | 72.12 95 | 73.69 169 | 85.05 68 | 44.46 268 | 83.51 166 | 86.13 84 | 71.61 9 | 64.64 127 | 87.97 118 | 55.00 20 | 89.48 112 | 59.07 157 | 56.05 268 | 87.13 144 |
|
API-MVS | | | 74.17 81 | 72.07 96 | 80.49 19 | 90.02 8 | 58.55 9 | 87.30 72 | 84.27 128 | 57.51 197 | 65.77 115 | 87.77 122 | 41.61 140 | 95.97 8 | 51.71 215 | 82.63 59 | 86.94 145 |
|
PMMVS | | | 72.98 95 | 72.05 97 | 75.78 127 | 83.57 94 | 48.60 215 | 84.08 149 | 82.85 158 | 61.62 115 | 68.24 90 | 90.33 75 | 28.35 258 | 87.78 167 | 72.71 71 | 76.69 109 | 90.95 66 |
|
IB-MVS | | 68.87 2 | 74.01 83 | 72.03 98 | 79.94 29 | 83.04 111 | 55.50 46 | 90.24 24 | 88.65 35 | 67.14 41 | 61.38 161 | 81.74 195 | 53.21 26 | 94.28 20 | 60.45 150 | 62.41 219 | 90.03 86 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EI-MVSNet-UG-set | | | 72.37 105 | 71.73 99 | 74.29 154 | 81.60 143 | 49.29 202 | 81.85 206 | 88.64 36 | 65.29 66 | 65.05 121 | 88.29 111 | 43.18 121 | 91.83 57 | 63.74 125 | 67.97 176 | 81.75 226 |
|
XVS | | | 72.92 96 | 71.62 100 | 76.81 105 | 83.41 97 | 52.48 129 | 84.88 135 | 83.20 152 | 58.03 182 | 63.91 139 | 89.63 90 | 35.50 207 | 89.78 104 | 65.50 111 | 80.50 78 | 88.16 123 |
|
nrg030 | | | 72.27 110 | 71.56 101 | 74.42 151 | 75.93 234 | 50.60 170 | 86.97 80 | 83.21 151 | 62.75 97 | 67.15 98 | 84.38 156 | 50.07 47 | 86.66 193 | 71.19 76 | 62.37 220 | 85.99 162 |
|
HPM-MVS | | | 72.60 101 | 71.50 102 | 75.89 125 | 82.02 133 | 51.42 158 | 80.70 228 | 83.05 154 | 56.12 219 | 64.03 137 | 89.53 91 | 37.55 179 | 88.37 144 | 70.48 81 | 80.04 85 | 87.88 130 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 72.59 103 | 71.46 103 | 76.00 124 | 82.93 117 | 52.32 138 | 86.93 83 | 82.48 162 | 55.15 229 | 63.65 144 | 90.44 74 | 35.03 211 | 88.53 140 | 68.69 90 | 77.83 100 | 87.15 143 |
|
HQP-MVS | | | 72.34 106 | 71.44 104 | 75.03 139 | 79.02 184 | 51.56 153 | 88.00 55 | 83.68 141 | 65.45 58 | 64.48 130 | 85.13 150 | 37.35 183 | 88.62 134 | 66.70 101 | 73.12 139 | 84.91 181 |
|
VPNet | | | 72.07 111 | 71.42 105 | 74.04 159 | 78.64 195 | 47.17 241 | 89.91 30 | 87.97 49 | 72.56 7 | 64.66 126 | 85.04 152 | 41.83 138 | 88.33 148 | 61.17 141 | 60.97 226 | 86.62 153 |
|
MS-PatchMatch | | | 72.34 106 | 71.26 106 | 75.61 128 | 82.38 130 | 55.55 45 | 88.00 55 | 89.95 15 | 65.38 62 | 56.51 233 | 80.74 205 | 32.28 236 | 92.89 32 | 57.95 172 | 88.10 13 | 78.39 270 |
|
MTAPA | | | 72.73 99 | 71.22 107 | 77.27 94 | 81.54 147 | 53.57 96 | 67.06 306 | 81.31 179 | 59.41 151 | 68.39 88 | 90.96 57 | 36.07 201 | 89.01 121 | 73.80 62 | 82.45 61 | 89.23 100 |
|
PGM-MVS | | | 72.60 101 | 71.20 108 | 76.80 107 | 82.95 115 | 52.82 124 | 83.07 180 | 82.14 164 | 56.51 215 | 63.18 148 | 89.81 87 | 35.68 206 | 89.76 106 | 67.30 97 | 80.19 82 | 87.83 131 |
|
RRT_test8_iter05 | | | 72.74 98 | 71.20 108 | 77.36 90 | 87.25 37 | 53.51 98 | 88.68 49 | 89.53 16 | 65.20 67 | 61.32 162 | 81.27 199 | 45.89 85 | 92.48 44 | 65.99 107 | 55.65 274 | 86.10 161 |
|
Fast-Effi-MVS+ | | | 72.73 99 | 71.15 110 | 77.48 87 | 82.75 122 | 54.76 70 | 86.77 86 | 80.64 189 | 63.05 93 | 65.93 111 | 84.01 159 | 44.42 104 | 89.03 120 | 56.45 186 | 76.36 114 | 88.64 116 |
|
mvs_anonymous | | | 72.29 108 | 70.74 111 | 76.94 104 | 82.85 119 | 54.72 73 | 78.43 250 | 81.54 175 | 63.77 81 | 61.69 160 | 79.32 213 | 51.11 38 | 85.31 223 | 62.15 135 | 75.79 117 | 90.79 68 |
|
VPA-MVSNet | | | 71.12 120 | 70.66 112 | 72.49 192 | 78.75 190 | 44.43 270 | 87.64 60 | 90.02 13 | 63.97 78 | 65.02 122 | 81.58 197 | 42.14 131 | 87.42 176 | 63.42 127 | 63.38 208 | 85.63 172 |
|
3Dnovator+ | | 62.71 7 | 72.29 108 | 70.50 113 | 77.65 84 | 83.40 100 | 51.29 162 | 87.32 70 | 86.40 77 | 59.01 167 | 58.49 201 | 88.32 110 | 32.40 234 | 91.27 69 | 57.04 181 | 82.15 66 | 90.38 78 |
|
MVP-Stereo | | | 70.97 123 | 70.44 114 | 72.59 189 | 76.03 233 | 51.36 159 | 85.02 132 | 86.99 66 | 60.31 137 | 56.53 232 | 78.92 218 | 40.11 154 | 90.00 99 | 60.00 155 | 90.01 4 | 76.41 290 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
mPP-MVS | | | 71.79 115 | 70.38 115 | 76.04 122 | 82.65 126 | 52.06 140 | 84.45 141 | 81.78 172 | 55.59 224 | 62.05 158 | 89.68 89 | 33.48 225 | 88.28 152 | 65.45 116 | 78.24 99 | 87.77 133 |
|
DP-MVS Recon | | | 71.99 112 | 70.31 116 | 77.01 100 | 90.65 6 | 53.44 103 | 89.37 35 | 82.97 156 | 56.33 217 | 63.56 146 | 89.47 92 | 34.02 218 | 92.15 53 | 54.05 198 | 72.41 147 | 85.43 175 |
|
xiu_mvs_v1_base_debu | | | 71.60 116 | 70.29 117 | 75.55 129 | 77.26 217 | 53.15 113 | 85.34 116 | 79.37 208 | 55.83 221 | 72.54 56 | 90.19 78 | 22.38 297 | 86.66 193 | 73.28 67 | 76.39 111 | 86.85 148 |
|
xiu_mvs_v1_base | | | 71.60 116 | 70.29 117 | 75.55 129 | 77.26 217 | 53.15 113 | 85.34 116 | 79.37 208 | 55.83 221 | 72.54 56 | 90.19 78 | 22.38 297 | 86.66 193 | 73.28 67 | 76.39 111 | 86.85 148 |
|
xiu_mvs_v1_base_debi | | | 71.60 116 | 70.29 117 | 75.55 129 | 77.26 217 | 53.15 113 | 85.34 116 | 79.37 208 | 55.83 221 | 72.54 56 | 90.19 78 | 22.38 297 | 86.66 193 | 73.28 67 | 76.39 111 | 86.85 148 |
|
FIs | | | 70.00 140 | 70.24 120 | 69.30 245 | 77.93 208 | 38.55 305 | 83.99 154 | 87.72 57 | 66.86 44 | 57.66 214 | 84.17 158 | 52.28 31 | 85.31 223 | 52.72 212 | 68.80 170 | 84.02 191 |
|
sss | | | 70.49 131 | 70.13 121 | 71.58 214 | 81.59 144 | 39.02 303 | 80.78 227 | 84.71 120 | 59.34 154 | 66.61 102 | 88.09 115 | 37.17 188 | 85.52 219 | 61.82 138 | 71.02 156 | 90.20 83 |
|
EPP-MVSNet | | | 71.14 119 | 70.07 122 | 74.33 153 | 79.18 183 | 46.52 247 | 83.81 158 | 86.49 74 | 56.32 218 | 57.95 207 | 84.90 154 | 54.23 22 | 89.14 116 | 58.14 168 | 69.65 166 | 87.33 140 |
|
PAPM_NR | | | 71.80 114 | 69.98 123 | 77.26 96 | 81.54 147 | 53.34 108 | 78.60 249 | 85.25 104 | 53.46 242 | 60.53 170 | 88.66 105 | 45.69 90 | 89.24 115 | 56.49 183 | 79.62 90 | 89.19 103 |
|
HQP_MVS | | | 70.96 124 | 69.91 124 | 74.12 157 | 77.95 206 | 49.57 194 | 85.76 105 | 82.59 160 | 63.60 86 | 62.15 155 | 83.28 172 | 36.04 203 | 88.30 150 | 65.46 114 | 72.34 148 | 84.49 184 |
|
tpmrst | | | 71.04 122 | 69.77 125 | 74.86 142 | 83.19 105 | 55.86 43 | 75.64 262 | 78.73 224 | 67.88 33 | 64.99 124 | 73.73 268 | 49.96 49 | 79.56 279 | 65.92 108 | 67.85 178 | 89.14 105 |
|
SR-MVS | | | 70.92 125 | 69.73 126 | 74.50 148 | 83.38 101 | 50.48 174 | 84.27 145 | 79.35 212 | 48.96 272 | 66.57 104 | 90.45 71 | 33.65 224 | 87.11 181 | 66.42 103 | 74.56 129 | 85.91 165 |
|
OPM-MVS | | | 70.75 128 | 69.58 127 | 74.26 155 | 75.55 239 | 51.34 160 | 86.05 100 | 83.29 150 | 61.94 110 | 62.95 151 | 85.77 144 | 34.15 217 | 88.44 142 | 65.44 117 | 71.07 155 | 82.99 214 |
|
CDS-MVSNet | | | 70.48 132 | 69.43 128 | 73.64 171 | 77.56 212 | 48.83 212 | 83.51 166 | 77.45 246 | 63.27 90 | 62.33 154 | 85.54 148 | 43.85 108 | 83.29 248 | 57.38 180 | 74.00 131 | 88.79 113 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
1314 | | | 71.11 121 | 69.41 129 | 76.22 116 | 79.32 180 | 50.49 173 | 80.23 234 | 85.14 109 | 59.44 150 | 58.93 190 | 88.89 102 | 33.83 223 | 89.60 111 | 61.49 139 | 77.42 103 | 88.57 119 |
|
1112_ss | | | 70.05 138 | 69.37 130 | 72.10 197 | 80.77 163 | 42.78 283 | 85.12 126 | 76.75 256 | 59.69 145 | 61.19 164 | 92.12 33 | 47.48 66 | 83.84 240 | 53.04 204 | 68.21 173 | 89.66 92 |
|
Vis-MVSNet | | | 70.61 130 | 69.34 131 | 74.42 151 | 80.95 160 | 48.49 220 | 86.03 101 | 77.51 245 | 58.74 173 | 65.55 117 | 87.78 121 | 34.37 215 | 85.95 215 | 52.53 213 | 80.61 76 | 88.80 112 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
QAPM | | | 71.88 113 | 69.33 132 | 79.52 32 | 82.20 132 | 54.30 82 | 86.30 95 | 88.77 33 | 56.61 213 | 59.72 175 | 87.48 125 | 33.90 221 | 95.36 11 | 47.48 239 | 81.49 69 | 88.90 110 |
|
ACMMP | | | 70.81 127 | 69.29 133 | 75.39 133 | 81.52 151 | 51.92 145 | 83.43 169 | 83.03 155 | 56.67 212 | 58.80 195 | 88.91 101 | 31.92 241 | 88.58 136 | 65.89 110 | 73.39 136 | 85.67 169 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
XXY-MVS | | | 70.18 134 | 69.28 134 | 72.89 184 | 77.64 210 | 42.88 282 | 85.06 129 | 87.50 61 | 62.58 99 | 62.66 153 | 82.34 188 | 43.64 116 | 89.83 103 | 58.42 164 | 63.70 204 | 85.96 164 |
|
ab-mvs | | | 70.65 129 | 69.11 135 | 75.29 135 | 80.87 161 | 46.23 254 | 73.48 276 | 85.24 105 | 59.99 141 | 66.65 100 | 80.94 202 | 43.13 124 | 88.69 132 | 63.58 126 | 68.07 174 | 90.95 66 |
|
test-LLR | | | 69.65 148 | 69.01 136 | 71.60 212 | 78.67 192 | 48.17 228 | 85.13 123 | 79.72 202 | 59.18 161 | 63.13 149 | 82.58 183 | 36.91 192 | 80.24 270 | 60.56 148 | 75.17 123 | 86.39 158 |
|
miper_enhance_ethall | | | 69.77 144 | 68.90 137 | 72.38 193 | 78.93 187 | 49.91 190 | 83.29 175 | 78.85 219 | 64.90 69 | 59.37 182 | 79.46 211 | 52.77 28 | 85.16 227 | 63.78 124 | 58.72 239 | 82.08 222 |
|
EI-MVSNet | | | 69.70 147 | 68.70 138 | 72.68 187 | 75.00 245 | 48.90 210 | 79.54 242 | 87.16 63 | 61.05 127 | 63.88 141 | 83.74 164 | 45.87 86 | 90.44 87 | 57.42 179 | 64.68 197 | 78.70 263 |
|
thisisatest0530 | | | 70.47 133 | 68.56 139 | 76.20 117 | 79.78 175 | 51.52 155 | 83.49 168 | 88.58 42 | 57.62 195 | 58.60 197 | 82.79 177 | 51.03 40 | 91.48 64 | 52.84 206 | 62.36 221 | 85.59 173 |
|
BH-w/o | | | 70.02 139 | 68.51 140 | 74.56 147 | 82.77 121 | 50.39 177 | 86.60 90 | 78.14 234 | 59.77 143 | 59.65 176 | 85.57 147 | 39.27 161 | 87.30 178 | 49.86 224 | 74.94 128 | 85.99 162 |
|
tpm2 | | | 70.82 126 | 68.44 141 | 77.98 76 | 80.78 162 | 56.11 39 | 74.21 273 | 81.28 182 | 60.24 138 | 68.04 91 | 75.27 260 | 52.26 32 | 88.50 141 | 55.82 189 | 68.03 175 | 89.33 97 |
|
PCF-MVS | | 61.03 10 | 70.10 136 | 68.40 142 | 75.22 138 | 77.15 221 | 51.99 142 | 79.30 245 | 82.12 165 | 56.47 216 | 61.88 159 | 86.48 140 | 43.98 107 | 87.24 179 | 55.37 190 | 72.79 144 | 86.43 157 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_NR-MVSNet | | | 68.82 159 | 68.29 143 | 70.40 232 | 75.71 237 | 42.59 285 | 84.23 146 | 86.78 69 | 66.31 47 | 58.51 198 | 82.45 185 | 51.57 35 | 84.64 236 | 53.11 202 | 55.96 269 | 83.96 197 |
|
APD-MVS_3200maxsize | | | 69.62 149 | 68.23 144 | 73.80 167 | 81.58 145 | 48.22 227 | 81.91 204 | 79.50 207 | 48.21 274 | 64.24 135 | 89.75 88 | 31.91 242 | 87.55 173 | 63.08 128 | 73.85 134 | 85.64 171 |
|
TAMVS | | | 69.51 151 | 68.16 145 | 73.56 174 | 76.30 228 | 48.71 214 | 82.57 189 | 77.17 251 | 62.10 106 | 61.32 162 | 84.23 157 | 41.90 136 | 83.46 246 | 54.80 194 | 73.09 141 | 88.50 121 |
|
BH-RMVSNet | | | 70.08 137 | 68.01 146 | 76.27 114 | 84.21 83 | 51.22 164 | 87.29 73 | 79.33 214 | 58.96 170 | 63.63 145 | 86.77 134 | 33.29 227 | 90.30 94 | 44.63 254 | 73.96 132 | 87.30 142 |
|
FC-MVSNet-test | | | 67.49 184 | 67.91 147 | 66.21 272 | 76.06 231 | 33.06 322 | 80.82 226 | 87.18 62 | 64.44 73 | 54.81 241 | 82.87 175 | 50.40 46 | 82.60 250 | 48.05 236 | 66.55 184 | 82.98 215 |
|
MVS_111021_LR | | | 69.07 153 | 67.91 147 | 72.54 190 | 77.27 216 | 49.56 196 | 79.77 239 | 73.96 281 | 59.33 156 | 60.73 167 | 87.82 119 | 30.19 252 | 81.53 256 | 69.94 83 | 72.19 150 | 86.53 154 |
|
Anonymous202405211 | | | 70.11 135 | 67.88 149 | 76.79 108 | 87.20 38 | 47.24 240 | 89.49 34 | 77.38 248 | 54.88 232 | 66.14 108 | 86.84 133 | 20.93 307 | 91.54 62 | 56.45 186 | 71.62 151 | 91.59 44 |
|
114514_t | | | 69.87 143 | 67.88 149 | 75.85 126 | 88.38 24 | 52.35 137 | 86.94 82 | 83.68 141 | 53.70 241 | 55.68 239 | 85.60 146 | 30.07 253 | 91.20 70 | 55.84 188 | 71.02 156 | 83.99 193 |
|
TR-MVS | | | 69.71 145 | 67.85 151 | 75.27 136 | 82.94 116 | 48.48 221 | 87.40 69 | 80.86 186 | 57.15 203 | 64.61 128 | 87.08 130 | 32.67 232 | 89.64 110 | 46.38 246 | 71.55 153 | 87.68 135 |
|
PVSNet | | 62.49 8 | 69.27 152 | 67.81 152 | 73.64 171 | 84.41 78 | 51.85 146 | 84.63 140 | 77.80 239 | 66.42 45 | 59.80 174 | 84.95 153 | 22.14 301 | 80.44 267 | 55.03 191 | 75.11 125 | 88.62 117 |
|
cl-mvsnet2 | | | 68.85 157 | 67.69 153 | 72.35 194 | 78.07 205 | 49.98 189 | 82.45 194 | 78.48 230 | 62.50 101 | 58.46 202 | 77.95 223 | 49.99 48 | 85.17 226 | 62.55 131 | 58.72 239 | 81.90 224 |
|
v2v482 | | | 69.55 150 | 67.64 154 | 75.26 137 | 72.32 274 | 53.83 89 | 84.93 134 | 81.94 167 | 65.37 63 | 60.80 166 | 79.25 214 | 41.62 139 | 88.98 126 | 63.03 129 | 59.51 233 | 82.98 215 |
|
miper_ehance_all_eth | | | 68.70 166 | 67.58 155 | 72.08 198 | 76.91 223 | 49.48 199 | 82.47 193 | 78.45 231 | 62.68 98 | 58.28 206 | 77.88 225 | 50.90 41 | 85.01 231 | 61.91 136 | 58.72 239 | 81.75 226 |
|
HyFIR lowres test | | | 69.94 142 | 67.58 155 | 77.04 98 | 77.11 222 | 57.29 20 | 81.49 217 | 79.11 217 | 58.27 179 | 58.86 193 | 80.41 206 | 42.33 127 | 86.96 186 | 61.91 136 | 68.68 172 | 86.87 146 |
|
mvs-test1 | | | 69.04 154 | 67.57 157 | 73.44 176 | 75.17 240 | 51.68 151 | 86.57 91 | 74.48 275 | 62.15 104 | 62.07 157 | 85.79 143 | 30.59 249 | 87.48 174 | 65.40 118 | 65.94 190 | 81.18 242 |
|
IS-MVSNet | | | 68.80 161 | 67.55 158 | 72.54 190 | 78.50 199 | 43.43 278 | 81.03 222 | 79.35 212 | 59.12 165 | 57.27 224 | 86.71 135 | 46.05 82 | 87.70 169 | 44.32 255 | 75.60 120 | 86.49 155 |
|
OpenMVS | | 61.00 11 | 69.99 141 | 67.55 158 | 77.30 92 | 78.37 202 | 54.07 88 | 84.36 142 | 85.76 89 | 57.22 202 | 56.71 229 | 87.67 123 | 30.79 248 | 92.83 34 | 43.04 260 | 84.06 54 | 85.01 179 |
|
tpm | | | 68.36 168 | 67.48 160 | 70.97 224 | 79.93 174 | 51.34 160 | 76.58 259 | 78.75 223 | 67.73 35 | 63.54 147 | 74.86 262 | 48.33 57 | 72.36 320 | 53.93 199 | 63.71 203 | 89.21 102 |
|
FMVSNet3 | | | 68.84 158 | 67.40 161 | 73.19 179 | 85.05 68 | 48.53 218 | 85.71 110 | 85.36 96 | 60.90 129 | 57.58 216 | 79.15 216 | 42.16 130 | 86.77 189 | 47.25 241 | 63.40 205 | 84.27 188 |
|
test-mter | | | 68.36 168 | 67.29 162 | 71.60 212 | 78.67 192 | 48.17 228 | 85.13 123 | 79.72 202 | 53.38 243 | 63.13 149 | 82.58 183 | 27.23 269 | 80.24 270 | 60.56 148 | 75.17 123 | 86.39 158 |
|
Anonymous20240529 | | | 69.71 145 | 67.28 163 | 77.00 101 | 83.78 92 | 50.36 178 | 88.87 46 | 85.10 110 | 47.22 279 | 64.03 137 | 83.37 170 | 27.93 263 | 92.10 54 | 57.78 175 | 67.44 179 | 88.53 120 |
|
thres200 | | | 68.71 164 | 67.27 164 | 73.02 180 | 84.73 73 | 46.76 244 | 85.03 131 | 87.73 56 | 62.34 103 | 59.87 172 | 83.45 169 | 43.15 122 | 88.32 149 | 31.25 302 | 67.91 177 | 83.98 195 |
|
PS-MVSNAJss | | | 68.78 163 | 67.17 165 | 73.62 173 | 73.01 264 | 48.33 226 | 84.95 133 | 84.81 117 | 59.30 157 | 58.91 192 | 79.84 209 | 37.77 172 | 88.86 130 | 62.83 130 | 63.12 214 | 83.67 203 |
|
UGNet | | | 68.71 164 | 67.11 166 | 73.50 175 | 80.55 169 | 47.61 235 | 84.08 149 | 78.51 229 | 59.45 149 | 65.68 116 | 82.73 181 | 23.78 289 | 85.08 230 | 52.80 207 | 76.40 110 | 87.80 132 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
v1144 | | | 68.81 160 | 66.82 167 | 74.80 145 | 72.34 273 | 53.46 100 | 84.68 138 | 81.77 173 | 64.25 75 | 60.28 171 | 77.91 224 | 40.23 151 | 88.95 127 | 60.37 151 | 59.52 232 | 81.97 223 |
|
UniMVSNet (Re) | | | 67.71 179 | 66.80 168 | 70.45 230 | 74.44 250 | 42.93 281 | 82.42 195 | 84.90 114 | 63.69 84 | 59.63 177 | 80.99 201 | 47.18 69 | 85.23 225 | 51.17 218 | 56.75 260 | 83.19 212 |
|
1121 | | | 68.79 162 | 66.77 169 | 74.82 143 | 83.08 109 | 53.46 100 | 80.23 234 | 71.53 299 | 45.47 291 | 66.31 107 | 87.19 128 | 34.02 218 | 85.13 228 | 52.78 208 | 80.36 80 | 85.87 167 |
|
WR-MVS | | | 67.58 181 | 66.76 170 | 70.04 239 | 75.92 235 | 45.06 266 | 86.23 96 | 85.28 102 | 64.31 74 | 58.50 200 | 81.00 200 | 44.80 103 | 82.00 255 | 49.21 229 | 55.57 275 | 83.06 213 |
|
EPNet_dtu | | | 66.25 209 | 66.71 171 | 64.87 282 | 78.66 194 | 34.12 317 | 82.80 186 | 75.51 267 | 61.75 113 | 64.47 133 | 86.90 132 | 37.06 189 | 72.46 319 | 43.65 258 | 69.63 167 | 88.02 129 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
GA-MVS | | | 69.04 154 | 66.70 172 | 76.06 121 | 75.11 242 | 52.36 136 | 83.12 178 | 80.23 193 | 63.32 89 | 60.65 168 | 79.22 215 | 30.98 247 | 88.37 144 | 61.25 140 | 66.41 185 | 87.46 138 |
|
cl_fuxian | | | 67.97 174 | 66.66 173 | 71.91 209 | 76.20 230 | 49.31 201 | 82.13 200 | 78.00 237 | 61.99 108 | 57.64 215 | 76.94 239 | 49.41 52 | 84.93 232 | 60.62 147 | 57.01 259 | 81.49 230 |
|
BH-untuned | | | 68.28 171 | 66.40 174 | 73.91 162 | 81.62 142 | 50.01 188 | 85.56 114 | 77.39 247 | 57.63 194 | 57.47 221 | 83.69 166 | 36.36 198 | 87.08 182 | 44.81 253 | 73.08 142 | 84.65 183 |
|
v148 | | | 68.24 172 | 66.35 175 | 73.88 163 | 71.76 277 | 51.47 156 | 84.23 146 | 81.90 171 | 63.69 84 | 58.94 189 | 76.44 247 | 43.72 114 | 87.78 167 | 60.63 146 | 55.86 271 | 82.39 220 |
|
tttt0517 | | | 68.33 170 | 66.29 176 | 74.46 149 | 78.08 204 | 49.06 204 | 80.88 225 | 89.08 23 | 54.40 238 | 54.75 243 | 80.77 204 | 51.31 37 | 90.33 91 | 49.35 228 | 58.01 250 | 83.99 193 |
|
HPM-MVS_fast | | | 67.86 176 | 66.28 177 | 72.61 188 | 80.67 166 | 48.34 225 | 81.18 220 | 75.95 265 | 50.81 262 | 59.55 180 | 88.05 117 | 27.86 264 | 85.98 212 | 58.83 159 | 73.58 135 | 83.51 204 |
|
UA-Net | | | 67.32 190 | 66.23 178 | 70.59 228 | 78.85 188 | 41.23 296 | 73.60 275 | 75.45 269 | 61.54 118 | 66.61 102 | 84.53 155 | 38.73 165 | 86.57 198 | 42.48 265 | 74.24 130 | 83.98 195 |
|
Test_1112_low_res | | | 67.18 193 | 66.23 178 | 70.02 240 | 78.75 190 | 41.02 297 | 83.43 169 | 73.69 283 | 57.29 201 | 58.45 203 | 82.39 187 | 45.30 93 | 80.88 262 | 50.50 220 | 66.26 189 | 88.16 123 |
|
abl_6 | | | 68.03 173 | 66.15 180 | 73.66 170 | 78.54 197 | 48.48 221 | 79.77 239 | 78.04 235 | 47.39 278 | 63.70 143 | 88.25 112 | 28.21 259 | 89.06 117 | 60.17 154 | 71.25 154 | 83.45 205 |
|
tfpn200view9 | | | 67.57 182 | 66.13 181 | 71.89 210 | 84.05 86 | 45.07 263 | 83.40 171 | 87.71 58 | 60.79 130 | 57.79 211 | 82.76 178 | 43.53 117 | 87.80 164 | 28.80 308 | 66.36 186 | 82.78 218 |
|
thres400 | | | 67.40 189 | 66.13 181 | 71.19 220 | 84.05 86 | 45.07 263 | 83.40 171 | 87.71 58 | 60.79 130 | 57.79 211 | 82.76 178 | 43.53 117 | 87.80 164 | 28.80 308 | 66.36 186 | 80.71 248 |
|
cascas | | | 69.01 156 | 66.13 181 | 77.66 83 | 79.36 178 | 55.41 50 | 86.99 79 | 83.75 140 | 56.69 211 | 58.92 191 | 81.35 198 | 24.31 287 | 92.10 54 | 53.23 201 | 70.61 159 | 85.46 174 |
|
NR-MVSNet | | | 67.25 191 | 65.99 184 | 71.04 223 | 73.27 262 | 43.91 274 | 85.32 119 | 84.75 119 | 66.05 55 | 53.65 254 | 82.11 191 | 45.05 95 | 85.97 214 | 47.55 238 | 56.18 266 | 83.24 210 |
|
cl-mvsnet_ | | | 67.43 186 | 65.93 185 | 71.95 206 | 76.33 226 | 48.02 231 | 82.58 188 | 79.12 216 | 61.30 123 | 56.72 228 | 76.92 240 | 46.12 80 | 86.44 200 | 57.98 170 | 56.31 263 | 81.38 237 |
|
cl-mvsnet1 | | | 67.43 186 | 65.93 185 | 71.94 207 | 76.33 226 | 48.01 232 | 82.57 189 | 79.11 217 | 61.31 122 | 56.73 227 | 76.92 240 | 46.09 81 | 86.43 201 | 57.98 170 | 56.31 263 | 81.39 236 |
|
CPTT-MVS | | | 67.15 194 | 65.84 187 | 71.07 222 | 80.96 159 | 50.32 181 | 81.94 203 | 74.10 278 | 46.18 287 | 57.91 208 | 87.64 124 | 29.57 254 | 81.31 258 | 64.10 123 | 70.18 163 | 81.56 229 |
|
FMVSNet2 | | | 67.57 182 | 65.79 188 | 72.90 182 | 82.71 123 | 47.97 233 | 85.15 122 | 84.93 113 | 58.55 176 | 56.71 229 | 78.26 222 | 36.72 195 | 86.67 192 | 46.15 248 | 62.94 216 | 84.07 190 |
|
v144192 | | | 67.86 176 | 65.76 189 | 74.16 156 | 71.68 278 | 53.09 116 | 84.14 148 | 80.83 187 | 62.85 96 | 59.21 186 | 77.28 234 | 39.30 160 | 88.00 160 | 58.67 161 | 57.88 254 | 81.40 235 |
|
v1192 | | | 67.96 175 | 65.74 190 | 74.63 146 | 71.79 276 | 53.43 105 | 84.06 151 | 80.99 185 | 63.19 92 | 59.56 179 | 77.46 231 | 37.50 182 | 88.65 133 | 58.20 167 | 58.93 238 | 81.79 225 |
|
DU-MVS | | | 66.84 202 | 65.74 190 | 70.16 235 | 73.27 262 | 42.59 285 | 81.50 215 | 82.92 157 | 63.53 88 | 58.51 198 | 82.11 191 | 40.75 145 | 84.64 236 | 53.11 202 | 55.96 269 | 83.24 210 |
|
Vis-MVSNet (Re-imp) | | | 65.52 215 | 65.63 192 | 65.17 280 | 77.49 213 | 30.54 329 | 75.49 266 | 77.73 241 | 59.34 154 | 52.26 263 | 86.69 136 | 49.38 53 | 80.53 266 | 37.07 277 | 75.28 122 | 84.42 186 |
|
TranMVSNet+NR-MVSNet | | | 66.94 200 | 65.61 193 | 70.93 225 | 73.45 259 | 43.38 279 | 83.02 182 | 84.25 129 | 65.31 65 | 58.33 205 | 81.90 194 | 39.92 157 | 85.52 219 | 49.43 227 | 54.89 278 | 83.89 199 |
|
V42 | | | 67.66 180 | 65.60 194 | 73.86 164 | 70.69 289 | 53.63 95 | 81.50 215 | 78.61 227 | 63.85 80 | 59.49 181 | 77.49 230 | 37.98 169 | 87.65 170 | 62.33 132 | 58.43 243 | 80.29 253 |
|
AdaColmap | | | 67.86 176 | 65.48 195 | 75.00 140 | 88.15 28 | 54.99 64 | 86.10 99 | 76.63 259 | 49.30 269 | 57.80 210 | 86.65 137 | 29.39 256 | 88.94 129 | 45.10 252 | 70.21 162 | 81.06 243 |
|
GBi-Net | | | 67.09 195 | 65.47 196 | 71.96 203 | 82.71 123 | 46.36 249 | 83.52 162 | 83.31 147 | 58.55 176 | 57.58 216 | 76.23 251 | 36.72 195 | 86.20 202 | 47.25 241 | 63.40 205 | 83.32 207 |
|
test1 | | | 67.09 195 | 65.47 196 | 71.96 203 | 82.71 123 | 46.36 249 | 83.52 162 | 83.31 147 | 58.55 176 | 57.58 216 | 76.23 251 | 36.72 195 | 86.20 202 | 47.25 241 | 63.40 205 | 83.32 207 |
|
EPMVS | | | 68.45 167 | 65.44 198 | 77.47 88 | 84.91 71 | 56.17 38 | 71.89 291 | 81.91 170 | 61.72 114 | 60.85 165 | 72.49 281 | 36.21 199 | 87.06 183 | 47.32 240 | 71.62 151 | 89.17 104 |
|
thres100view900 | | | 66.87 201 | 65.42 199 | 71.24 218 | 83.29 103 | 43.15 280 | 81.67 210 | 87.78 53 | 59.04 166 | 55.92 237 | 82.18 190 | 43.73 112 | 87.80 164 | 28.80 308 | 66.36 186 | 82.78 218 |
|
IterMVS-LS | | | 66.63 203 | 65.36 200 | 70.42 231 | 75.10 243 | 48.90 210 | 81.45 218 | 76.69 258 | 61.05 127 | 55.71 238 | 77.10 237 | 45.86 87 | 83.65 243 | 57.44 178 | 57.88 254 | 78.70 263 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
eth_miper_zixun_eth | | | 66.98 199 | 65.28 201 | 72.06 199 | 75.61 238 | 50.40 176 | 81.00 223 | 76.97 254 | 62.00 107 | 56.99 226 | 76.97 238 | 44.84 100 | 85.58 218 | 58.75 160 | 54.42 281 | 80.21 254 |
|
v1921920 | | | 67.45 185 | 65.23 202 | 74.10 158 | 71.51 281 | 52.90 123 | 83.75 160 | 80.44 192 | 62.48 102 | 59.12 187 | 77.13 235 | 36.98 190 | 87.90 161 | 57.53 177 | 58.14 248 | 81.49 230 |
|
thres600view7 | | | 66.46 206 | 65.12 203 | 70.47 229 | 83.41 97 | 43.80 276 | 82.15 199 | 87.78 53 | 59.37 153 | 56.02 236 | 82.21 189 | 43.73 112 | 86.90 187 | 26.51 319 | 64.94 193 | 80.71 248 |
|
OMC-MVS | | | 65.97 213 | 65.06 204 | 68.71 254 | 72.97 265 | 42.58 287 | 78.61 248 | 75.35 270 | 54.72 233 | 59.31 184 | 86.25 141 | 33.30 226 | 77.88 291 | 57.99 169 | 67.05 181 | 85.66 170 |
|
v8 | | | 67.25 191 | 64.99 205 | 74.04 159 | 72.89 267 | 53.31 110 | 82.37 196 | 80.11 195 | 61.54 118 | 54.29 248 | 76.02 256 | 42.89 126 | 88.41 143 | 58.43 162 | 56.36 261 | 80.39 252 |
|
Effi-MVS+-dtu | | | 66.24 210 | 64.96 206 | 70.08 237 | 75.17 240 | 49.64 193 | 82.01 201 | 74.48 275 | 62.15 104 | 57.83 209 | 76.08 255 | 30.59 249 | 83.79 241 | 65.40 118 | 60.93 227 | 76.81 285 |
|
v1240 | | | 66.99 198 | 64.68 207 | 73.93 161 | 71.38 284 | 52.66 127 | 83.39 173 | 79.98 196 | 61.97 109 | 58.44 204 | 77.11 236 | 35.25 209 | 87.81 163 | 56.46 185 | 58.15 246 | 81.33 238 |
|
LPG-MVS_test | | | 66.44 207 | 64.58 208 | 72.02 200 | 74.42 251 | 48.60 215 | 83.07 180 | 80.64 189 | 54.69 234 | 53.75 252 | 83.83 162 | 25.73 279 | 86.98 184 | 60.33 152 | 64.71 194 | 80.48 250 |
|
gg-mvs-nofinetune | | | 67.43 186 | 64.53 209 | 76.13 119 | 85.95 45 | 47.79 234 | 64.38 310 | 88.28 46 | 39.34 313 | 66.62 101 | 41.27 334 | 58.69 11 | 89.00 123 | 49.64 226 | 86.62 27 | 91.59 44 |
|
ACMP | | 61.11 9 | 66.24 210 | 64.33 210 | 72.00 202 | 74.89 247 | 49.12 203 | 83.18 177 | 79.83 200 | 55.41 227 | 52.29 261 | 82.68 182 | 25.83 277 | 86.10 208 | 60.89 143 | 63.94 202 | 80.78 246 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Baseline_NR-MVSNet | | | 65.49 216 | 64.27 211 | 69.13 246 | 74.37 253 | 41.65 292 | 83.39 173 | 78.85 219 | 59.56 147 | 59.62 178 | 76.88 242 | 40.75 145 | 87.44 175 | 49.99 222 | 55.05 276 | 78.28 272 |
|
v10 | | | 66.61 204 | 64.20 212 | 73.83 166 | 72.59 270 | 53.37 106 | 81.88 205 | 79.91 199 | 61.11 125 | 54.09 250 | 75.60 258 | 40.06 155 | 88.26 153 | 56.47 184 | 56.10 267 | 79.86 259 |
|
Fast-Effi-MVS+-dtu | | | 66.53 205 | 64.10 213 | 73.84 165 | 72.41 272 | 52.30 139 | 84.73 137 | 75.66 266 | 59.51 148 | 56.34 234 | 79.11 217 | 28.11 261 | 85.85 217 | 57.74 176 | 63.29 209 | 83.35 206 |
|
RRT_MVS | | | 65.43 217 | 64.01 214 | 69.68 242 | 81.54 147 | 50.15 185 | 82.31 197 | 76.78 255 | 55.25 228 | 60.64 169 | 82.00 193 | 25.18 282 | 79.00 280 | 60.96 142 | 51.45 294 | 79.89 258 |
|
Anonymous20231211 | | | 66.08 212 | 63.67 215 | 73.31 177 | 83.07 110 | 48.75 213 | 86.01 102 | 84.67 121 | 45.27 292 | 56.54 231 | 76.67 245 | 28.06 262 | 88.95 127 | 52.78 208 | 59.95 229 | 82.23 221 |
|
PatchmatchNet | | | 67.07 197 | 63.63 216 | 77.40 89 | 83.10 106 | 58.03 10 | 72.11 289 | 77.77 240 | 58.85 171 | 59.37 182 | 70.83 292 | 37.84 171 | 84.93 232 | 42.96 262 | 69.83 165 | 89.26 99 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
tpm cat1 | | | 66.28 208 | 62.78 217 | 76.77 109 | 81.40 153 | 57.14 21 | 70.03 298 | 77.19 250 | 53.00 246 | 58.76 196 | 70.73 295 | 46.17 79 | 86.73 191 | 43.27 259 | 64.46 198 | 86.44 156 |
|
pm-mvs1 | | | 64.12 221 | 62.56 218 | 68.78 252 | 71.68 278 | 38.87 304 | 82.89 184 | 81.57 174 | 55.54 226 | 53.89 251 | 77.82 226 | 37.73 175 | 86.74 190 | 48.46 234 | 53.49 288 | 80.72 247 |
|
test0.0.03 1 | | | 62.54 234 | 62.44 219 | 62.86 292 | 72.28 275 | 29.51 331 | 82.93 183 | 78.78 222 | 59.18 161 | 53.07 257 | 82.41 186 | 36.91 192 | 77.39 295 | 37.45 273 | 58.96 237 | 81.66 228 |
|
miper_lstm_enhance | | | 63.91 222 | 62.30 220 | 68.75 253 | 75.06 244 | 46.78 243 | 69.02 302 | 81.14 183 | 59.68 146 | 52.76 258 | 72.39 284 | 40.71 147 | 77.99 289 | 56.81 182 | 53.09 289 | 81.48 232 |
|
X-MVStestdata | | | 65.85 214 | 62.20 221 | 76.81 105 | 83.41 97 | 52.48 129 | 84.88 135 | 83.20 152 | 58.03 182 | 63.91 139 | 4.82 349 | 35.50 207 | 89.78 104 | 65.50 111 | 80.50 78 | 88.16 123 |
|
FMVSNet1 | | | 64.57 218 | 62.11 222 | 71.96 203 | 77.32 215 | 46.36 249 | 83.52 162 | 83.31 147 | 52.43 251 | 54.42 246 | 76.23 251 | 27.80 265 | 86.20 202 | 42.59 264 | 61.34 225 | 83.32 207 |
|
ACMM | | 58.35 12 | 64.35 220 | 62.01 223 | 71.38 216 | 74.21 254 | 48.51 219 | 82.25 198 | 79.66 204 | 47.61 276 | 54.54 245 | 80.11 207 | 25.26 281 | 86.00 211 | 51.26 216 | 63.16 212 | 79.64 260 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IterMVS | | | 63.77 225 | 61.67 224 | 70.08 237 | 72.68 269 | 51.24 163 | 80.44 230 | 75.51 267 | 60.51 135 | 51.41 266 | 73.70 271 | 32.08 238 | 78.91 281 | 54.30 197 | 54.35 282 | 80.08 256 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
dp | | | 64.41 219 | 61.58 225 | 72.90 182 | 82.40 129 | 54.09 87 | 72.53 283 | 76.59 260 | 60.39 136 | 55.68 239 | 70.39 296 | 35.18 210 | 76.90 299 | 39.34 269 | 61.71 223 | 87.73 134 |
|
test_djsdf | | | 63.84 223 | 61.56 226 | 70.70 227 | 68.78 298 | 44.69 267 | 81.63 211 | 81.44 177 | 50.28 263 | 52.27 262 | 76.26 250 | 26.72 272 | 86.11 206 | 60.83 144 | 55.84 272 | 81.29 241 |
|
MDTV_nov1_ep13 | | | | 61.56 226 | | 81.68 139 | 55.12 59 | 72.41 285 | 78.18 233 | 59.19 159 | 58.85 194 | 69.29 300 | 34.69 213 | 86.16 205 | 36.76 281 | 62.96 215 | |
|
D2MVS | | | 63.49 227 | 61.39 228 | 69.77 241 | 69.29 296 | 48.93 209 | 78.89 247 | 77.71 242 | 60.64 134 | 49.70 275 | 72.10 289 | 27.08 270 | 83.48 245 | 54.48 196 | 62.65 217 | 76.90 284 |
|
pmmvs5 | | | 62.80 233 | 61.18 229 | 67.66 261 | 69.53 295 | 42.37 290 | 82.65 187 | 75.19 271 | 54.30 239 | 52.03 264 | 78.51 221 | 31.64 244 | 80.67 263 | 48.60 232 | 58.15 246 | 79.95 257 |
|
pmmvs4 | | | 63.34 228 | 61.07 230 | 70.16 235 | 70.14 291 | 50.53 172 | 79.97 238 | 71.41 301 | 55.08 230 | 54.12 249 | 78.58 220 | 32.79 231 | 82.09 254 | 50.33 221 | 57.22 258 | 77.86 276 |
|
jajsoiax | | | 63.21 229 | 60.84 231 | 70.32 233 | 68.33 303 | 44.45 269 | 81.23 219 | 81.05 184 | 53.37 244 | 50.96 271 | 77.81 227 | 17.49 319 | 85.49 221 | 59.31 156 | 58.05 249 | 81.02 244 |
|
TransMVSNet (Re) | | | 62.82 232 | 60.76 232 | 69.02 247 | 73.98 256 | 41.61 293 | 86.36 93 | 79.30 215 | 56.90 204 | 52.53 259 | 76.44 247 | 41.85 137 | 87.60 172 | 38.83 270 | 40.61 321 | 77.86 276 |
|
mvs_tets | | | 62.96 231 | 60.55 233 | 70.19 234 | 68.22 306 | 44.24 273 | 80.90 224 | 80.74 188 | 52.99 247 | 50.82 273 | 77.56 228 | 16.74 322 | 85.44 222 | 59.04 158 | 57.94 251 | 80.89 245 |
|
UniMVSNet_ETH3D | | | 62.51 235 | 60.49 234 | 68.57 257 | 68.30 304 | 40.88 299 | 73.89 274 | 79.93 198 | 51.81 257 | 54.77 242 | 79.61 210 | 24.80 285 | 81.10 259 | 49.93 223 | 61.35 224 | 83.73 201 |
|
CVMVSNet | | | 60.85 246 | 60.44 235 | 62.07 293 | 75.00 245 | 32.73 324 | 79.54 242 | 73.49 286 | 36.98 321 | 56.28 235 | 83.74 164 | 29.28 257 | 69.53 326 | 46.48 245 | 63.23 210 | 83.94 198 |
|
MIMVSNet | | | 63.12 230 | 60.29 236 | 71.61 211 | 75.92 235 | 46.65 245 | 65.15 307 | 81.94 167 | 59.14 163 | 54.65 244 | 69.47 299 | 25.74 278 | 80.63 264 | 41.03 266 | 69.56 168 | 87.55 136 |
|
TAPA-MVS | | 56.12 14 | 61.82 242 | 60.18 237 | 66.71 268 | 78.48 200 | 37.97 308 | 75.19 268 | 76.41 262 | 46.82 282 | 57.04 225 | 86.52 139 | 27.67 267 | 77.03 297 | 26.50 320 | 67.02 182 | 85.14 177 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
SCA | | | 63.84 223 | 60.01 238 | 75.32 134 | 78.58 196 | 57.92 11 | 61.61 318 | 77.53 244 | 56.71 210 | 57.75 213 | 70.77 293 | 31.97 239 | 79.91 276 | 48.80 230 | 56.36 261 | 88.13 126 |
|
testing_2 | | | 63.60 226 | 59.86 239 | 74.82 143 | 61.87 328 | 52.39 135 | 73.06 280 | 82.76 159 | 61.49 120 | 39.96 313 | 67.39 307 | 21.06 306 | 88.34 146 | 67.07 100 | 64.10 199 | 83.72 202 |
|
EG-PatchMatch MVS | | | 62.40 239 | 59.59 240 | 70.81 226 | 73.29 261 | 49.05 205 | 85.81 103 | 84.78 118 | 51.85 256 | 44.19 295 | 73.48 274 | 15.52 327 | 89.85 102 | 40.16 267 | 67.24 180 | 73.54 308 |
|
XVG-OURS-SEG-HR | | | 62.02 240 | 59.54 241 | 69.46 244 | 65.30 314 | 45.88 256 | 65.06 308 | 73.57 285 | 46.45 285 | 57.42 222 | 83.35 171 | 26.95 271 | 78.09 287 | 53.77 200 | 64.03 200 | 84.42 186 |
|
tpmvs | | | 62.45 238 | 59.42 242 | 71.53 215 | 83.93 88 | 54.32 81 | 70.03 298 | 77.61 243 | 51.91 254 | 53.48 255 | 68.29 303 | 37.91 170 | 86.66 193 | 33.36 292 | 58.27 244 | 73.62 307 |
|
XVG-OURS | | | 61.88 241 | 59.34 243 | 69.49 243 | 65.37 313 | 46.27 252 | 64.80 309 | 73.49 286 | 47.04 281 | 57.41 223 | 82.85 176 | 25.15 283 | 78.18 285 | 53.00 205 | 64.98 192 | 84.01 192 |
|
v7n | | | 62.50 236 | 59.27 244 | 72.20 196 | 67.25 309 | 49.83 191 | 77.87 252 | 80.12 194 | 52.50 250 | 48.80 279 | 73.07 276 | 32.10 237 | 87.90 161 | 46.83 244 | 54.92 277 | 78.86 262 |
|
tfpnnormal | | | 61.47 243 | 59.09 245 | 68.62 256 | 76.29 229 | 41.69 291 | 81.14 221 | 85.16 107 | 54.48 237 | 51.32 267 | 73.63 272 | 32.32 235 | 86.89 188 | 21.78 329 | 55.71 273 | 77.29 282 |
|
CR-MVSNet | | | 62.47 237 | 59.04 246 | 72.77 185 | 73.97 257 | 56.57 29 | 60.52 321 | 71.72 295 | 60.04 139 | 57.49 219 | 65.86 311 | 38.94 162 | 80.31 268 | 42.86 263 | 59.93 230 | 81.42 233 |
|
PLC | | 52.38 18 | 60.89 245 | 58.97 247 | 66.68 270 | 81.77 138 | 45.70 258 | 78.96 246 | 74.04 280 | 43.66 303 | 47.63 283 | 83.19 174 | 23.52 292 | 77.78 294 | 37.47 272 | 60.46 228 | 76.55 289 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
IterMVS-SCA-FT | | | 59.12 254 | 58.81 248 | 60.08 304 | 70.68 290 | 45.07 263 | 80.42 231 | 74.25 277 | 43.54 304 | 50.02 274 | 73.73 268 | 31.97 239 | 56.74 335 | 51.06 219 | 53.60 287 | 78.42 269 |
|
CNLPA | | | 60.59 247 | 58.44 249 | 67.05 267 | 79.21 182 | 47.26 239 | 79.75 241 | 64.34 319 | 42.46 309 | 51.90 265 | 83.94 160 | 27.79 266 | 75.41 304 | 37.12 275 | 59.49 234 | 78.47 267 |
|
WR-MVS_H | | | 58.91 257 | 58.04 250 | 61.54 298 | 69.07 297 | 33.83 319 | 76.91 256 | 81.99 166 | 51.40 259 | 48.17 280 | 74.67 263 | 40.23 151 | 74.15 308 | 31.78 299 | 48.10 299 | 76.64 287 |
|
anonymousdsp | | | 60.46 248 | 57.65 251 | 68.88 248 | 63.63 322 | 45.09 262 | 72.93 281 | 78.63 226 | 46.52 284 | 51.12 268 | 72.80 280 | 21.46 304 | 83.07 249 | 57.79 174 | 53.97 283 | 78.47 267 |
|
Anonymous20231206 | | | 59.08 256 | 57.59 252 | 63.55 287 | 68.77 299 | 32.14 327 | 80.26 233 | 79.78 201 | 50.00 266 | 49.39 276 | 72.39 284 | 26.64 273 | 78.36 284 | 33.12 295 | 57.94 251 | 80.14 255 |
|
CP-MVSNet | | | 58.54 263 | 57.57 253 | 61.46 299 | 68.50 301 | 33.96 318 | 76.90 257 | 78.60 228 | 51.67 258 | 47.83 281 | 76.60 246 | 34.99 212 | 72.79 317 | 35.45 284 | 47.58 301 | 77.64 280 |
|
PVSNet_0 | | 57.04 13 | 61.19 244 | 57.24 254 | 73.02 180 | 77.45 214 | 50.31 182 | 79.43 244 | 77.36 249 | 63.96 79 | 47.51 286 | 72.45 283 | 25.03 284 | 83.78 242 | 52.76 211 | 19.22 340 | 84.96 180 |
|
pmmvs6 | | | 59.64 250 | 57.15 255 | 67.09 265 | 66.01 310 | 36.86 312 | 80.50 229 | 78.64 225 | 45.05 294 | 49.05 278 | 73.94 267 | 27.28 268 | 86.10 208 | 43.96 257 | 49.94 297 | 78.31 271 |
|
PEN-MVS | | | 58.35 265 | 57.15 255 | 61.94 295 | 67.55 308 | 34.39 316 | 77.01 255 | 78.35 232 | 51.87 255 | 47.72 282 | 76.73 244 | 33.91 220 | 73.75 312 | 34.03 291 | 47.17 305 | 77.68 278 |
|
PS-CasMVS | | | 58.12 266 | 57.03 257 | 61.37 300 | 68.24 305 | 33.80 320 | 76.73 258 | 78.01 236 | 51.20 260 | 47.54 285 | 76.20 254 | 32.85 229 | 72.76 318 | 35.17 286 | 47.37 303 | 77.55 281 |
|
LCM-MVSNet-Re | | | 58.82 258 | 56.54 258 | 65.68 274 | 79.31 181 | 29.09 334 | 61.39 320 | 45.79 337 | 60.73 132 | 37.65 319 | 72.47 282 | 31.42 245 | 81.08 260 | 49.66 225 | 70.41 160 | 86.87 146 |
|
FMVSNet5 | | | 58.61 260 | 56.45 259 | 65.10 281 | 77.20 220 | 39.74 301 | 74.77 269 | 77.12 252 | 50.27 265 | 43.28 301 | 67.71 305 | 26.15 276 | 76.90 299 | 36.78 280 | 54.78 279 | 78.65 265 |
|
CHOSEN 280x420 | | | 57.53 268 | 56.38 260 | 60.97 302 | 74.01 255 | 48.10 230 | 46.30 333 | 54.31 331 | 48.18 275 | 50.88 272 | 77.43 232 | 38.37 168 | 59.16 334 | 54.83 192 | 63.14 213 | 75.66 294 |
|
DP-MVS | | | 59.24 252 | 56.12 261 | 68.63 255 | 88.24 27 | 50.35 179 | 82.51 192 | 64.43 318 | 41.10 311 | 46.70 289 | 78.77 219 | 24.75 286 | 88.57 139 | 22.26 327 | 56.29 265 | 66.96 326 |
|
OpenMVS_ROB | | 53.19 17 | 59.20 253 | 56.00 262 | 68.83 250 | 71.13 286 | 44.30 271 | 83.64 161 | 75.02 272 | 46.42 286 | 46.48 291 | 73.03 277 | 18.69 314 | 88.14 154 | 27.74 315 | 61.80 222 | 74.05 304 |
|
ACMH | | 53.70 16 | 59.78 249 | 55.94 263 | 71.28 217 | 76.59 225 | 48.35 224 | 80.15 237 | 76.11 263 | 49.74 267 | 41.91 306 | 73.45 275 | 16.50 324 | 90.31 92 | 31.42 300 | 57.63 256 | 75.17 297 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
DTE-MVSNet | | | 57.03 269 | 55.73 264 | 60.95 303 | 65.94 311 | 32.57 325 | 75.71 261 | 77.09 253 | 51.16 261 | 46.65 290 | 76.34 249 | 32.84 230 | 73.22 316 | 30.94 303 | 44.87 313 | 77.06 283 |
|
ACMH+ | | 54.58 15 | 58.55 262 | 55.24 265 | 68.50 258 | 74.68 249 | 45.80 257 | 80.27 232 | 70.21 306 | 47.15 280 | 42.77 303 | 75.48 259 | 16.73 323 | 85.98 212 | 35.10 288 | 54.78 279 | 73.72 306 |
|
MVS_0304 | | | 56.72 270 | 55.17 266 | 61.37 300 | 70.71 287 | 36.80 313 | 75.74 260 | 68.75 310 | 44.11 301 | 52.53 259 | 68.20 304 | 15.05 328 | 74.53 307 | 42.98 261 | 58.44 242 | 72.79 313 |
|
UnsupCasMVSNet_eth | | | 57.56 267 | 55.15 267 | 64.79 283 | 64.57 319 | 33.12 321 | 73.17 279 | 83.87 139 | 58.98 169 | 41.75 307 | 70.03 297 | 22.54 296 | 79.92 274 | 46.12 249 | 35.31 327 | 81.32 240 |
|
MSDG | | | 59.44 251 | 55.14 268 | 72.32 195 | 74.69 248 | 50.71 167 | 74.39 272 | 73.58 284 | 44.44 298 | 43.40 300 | 77.52 229 | 19.45 311 | 90.87 78 | 31.31 301 | 57.49 257 | 75.38 296 |
|
our_test_3 | | | 59.11 255 | 55.08 269 | 71.18 221 | 71.42 282 | 53.29 111 | 81.96 202 | 74.52 274 | 48.32 273 | 42.08 304 | 69.28 301 | 28.14 260 | 82.15 252 | 34.35 290 | 45.68 312 | 78.11 275 |
|
ppachtmachnet_test | | | 58.56 261 | 54.34 270 | 71.24 218 | 71.42 282 | 54.74 71 | 81.84 207 | 72.27 292 | 49.02 271 | 45.86 294 | 68.99 302 | 26.27 274 | 83.30 247 | 30.12 304 | 43.23 317 | 75.69 293 |
|
Patchmatch-RL test | | | 58.72 259 | 54.32 271 | 71.92 208 | 63.91 321 | 44.25 272 | 61.73 317 | 55.19 329 | 57.38 200 | 49.31 277 | 54.24 331 | 37.60 178 | 80.89 261 | 62.19 134 | 47.28 304 | 90.63 71 |
|
test20.03 | | | 55.22 281 | 54.07 272 | 58.68 308 | 63.14 324 | 25.00 338 | 77.69 253 | 74.78 273 | 52.64 248 | 43.43 299 | 72.39 284 | 26.21 275 | 74.76 306 | 29.31 306 | 47.05 307 | 76.28 291 |
|
LS3D | | | 56.40 275 | 53.82 273 | 64.12 284 | 81.12 157 | 45.69 259 | 73.42 277 | 66.14 314 | 35.30 328 | 43.24 302 | 79.88 208 | 22.18 300 | 79.62 278 | 19.10 335 | 64.00 201 | 67.05 325 |
|
PatchMatch-RL | | | 56.66 271 | 53.75 274 | 65.37 279 | 77.91 209 | 45.28 261 | 69.78 300 | 60.38 324 | 41.35 310 | 47.57 284 | 73.73 268 | 16.83 321 | 76.91 298 | 36.99 278 | 59.21 236 | 73.92 305 |
|
RPMNet | | | 58.49 264 | 53.74 275 | 72.77 185 | 73.97 257 | 56.57 29 | 60.52 321 | 72.39 291 | 35.72 324 | 57.49 219 | 58.87 327 | 37.73 175 | 80.31 268 | 27.01 318 | 59.93 230 | 81.42 233 |
|
F-COLMAP | | | 55.96 279 | 53.65 276 | 62.87 291 | 72.76 268 | 42.77 284 | 74.70 271 | 70.37 305 | 40.03 312 | 41.11 310 | 79.36 212 | 17.77 318 | 73.70 313 | 32.80 296 | 53.96 284 | 72.15 314 |
|
test_0402 | | | 56.45 274 | 53.03 277 | 66.69 269 | 76.78 224 | 50.31 182 | 81.76 208 | 69.61 308 | 42.79 307 | 43.88 296 | 72.13 287 | 22.82 295 | 86.46 199 | 16.57 337 | 50.94 295 | 63.31 332 |
|
PatchT | | | 56.60 272 | 52.97 278 | 67.48 262 | 72.94 266 | 46.16 255 | 57.30 325 | 73.78 282 | 38.77 315 | 54.37 247 | 57.26 330 | 37.52 180 | 78.06 288 | 32.02 297 | 52.79 290 | 78.23 274 |
|
Patchmtry | | | 56.56 273 | 52.95 279 | 67.42 263 | 72.53 271 | 50.59 171 | 59.05 323 | 71.72 295 | 37.86 319 | 46.92 287 | 65.86 311 | 38.94 162 | 80.06 273 | 36.94 279 | 46.72 309 | 71.60 317 |
|
XVG-ACMP-BASELINE | | | 56.03 277 | 52.85 280 | 65.58 275 | 61.91 327 | 40.95 298 | 63.36 311 | 72.43 290 | 45.20 293 | 46.02 292 | 74.09 265 | 9.20 337 | 78.12 286 | 45.13 251 | 58.27 244 | 77.66 279 |
|
pmmvs-eth3d | | | 55.97 278 | 52.78 281 | 65.54 276 | 61.02 330 | 46.44 248 | 75.36 267 | 67.72 312 | 49.61 268 | 43.65 298 | 67.58 306 | 21.63 303 | 77.04 296 | 44.11 256 | 44.33 314 | 73.15 312 |
|
CMPMVS | | 40.41 21 | 55.34 280 | 52.64 282 | 63.46 288 | 60.88 331 | 43.84 275 | 61.58 319 | 71.06 302 | 30.43 331 | 36.33 320 | 74.63 264 | 24.14 288 | 75.44 303 | 48.05 236 | 66.62 183 | 71.12 320 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
testgi | | | 54.25 285 | 52.57 283 | 59.29 306 | 62.76 325 | 21.65 342 | 72.21 288 | 70.47 304 | 53.25 245 | 41.94 305 | 77.33 233 | 14.28 329 | 77.95 290 | 29.18 307 | 51.72 293 | 78.28 272 |
|
ADS-MVSNet | | | 56.17 276 | 51.95 284 | 68.84 249 | 80.60 167 | 53.07 118 | 55.03 327 | 70.02 307 | 44.72 295 | 51.00 269 | 61.19 321 | 22.83 293 | 78.88 282 | 28.54 311 | 53.63 285 | 74.57 301 |
|
ADS-MVSNet2 | | | 55.21 282 | 51.44 285 | 66.51 271 | 80.60 167 | 49.56 196 | 55.03 327 | 65.44 315 | 44.72 295 | 51.00 269 | 61.19 321 | 22.83 293 | 75.41 304 | 28.54 311 | 53.63 285 | 74.57 301 |
|
USDC | | | 54.36 284 | 51.23 286 | 63.76 286 | 64.29 320 | 37.71 309 | 62.84 316 | 73.48 288 | 56.85 205 | 35.47 323 | 71.94 290 | 9.23 336 | 78.43 283 | 38.43 271 | 48.57 298 | 75.13 298 |
|
EU-MVSNet | | | 52.63 292 | 50.72 287 | 58.37 309 | 62.69 326 | 28.13 336 | 72.60 282 | 75.97 264 | 30.94 330 | 40.76 312 | 72.11 288 | 20.16 309 | 70.80 322 | 35.11 287 | 46.11 310 | 76.19 292 |
|
UnsupCasMVSNet_bld | | | 53.86 287 | 50.53 288 | 63.84 285 | 63.52 323 | 34.75 315 | 71.38 292 | 81.92 169 | 46.53 283 | 38.95 317 | 57.93 328 | 20.55 308 | 80.20 272 | 39.91 268 | 34.09 333 | 76.57 288 |
|
SixPastTwentyTwo | | | 54.37 283 | 50.10 289 | 67.21 264 | 70.70 288 | 41.46 294 | 74.73 270 | 64.69 317 | 47.56 277 | 39.12 316 | 69.49 298 | 18.49 316 | 84.69 235 | 31.87 298 | 34.20 332 | 75.48 295 |
|
YYNet1 | | | 53.82 288 | 49.96 290 | 65.41 278 | 70.09 293 | 48.95 207 | 72.30 286 | 71.66 297 | 44.25 299 | 31.89 332 | 63.07 318 | 23.73 290 | 73.95 310 | 33.26 293 | 39.40 323 | 73.34 309 |
|
MDA-MVSNet_test_wron | | | 53.82 288 | 49.95 291 | 65.43 277 | 70.13 292 | 49.05 205 | 72.30 286 | 71.65 298 | 44.23 300 | 31.85 333 | 63.13 317 | 23.68 291 | 74.01 309 | 33.25 294 | 39.35 324 | 73.23 311 |
|
LTVRE_ROB | | 45.45 19 | 52.73 291 | 49.74 292 | 61.69 297 | 69.78 294 | 34.99 314 | 44.52 334 | 67.60 313 | 43.11 306 | 43.79 297 | 74.03 266 | 18.54 315 | 81.45 257 | 28.39 313 | 57.94 251 | 68.62 323 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
K. test v3 | | | 54.04 286 | 49.42 293 | 67.92 260 | 68.55 300 | 42.57 288 | 75.51 265 | 63.07 321 | 52.07 252 | 39.21 315 | 64.59 315 | 19.34 312 | 82.21 251 | 37.11 276 | 25.31 337 | 78.97 261 |
|
OurMVSNet-221017-0 | | | 52.39 293 | 48.73 294 | 63.35 289 | 65.21 315 | 38.42 306 | 68.54 304 | 64.95 316 | 38.19 316 | 39.57 314 | 71.43 291 | 13.23 331 | 79.92 274 | 37.16 274 | 40.32 322 | 71.72 316 |
|
Patchmatch-test | | | 53.33 290 | 48.17 295 | 68.81 251 | 73.31 260 | 42.38 289 | 42.98 336 | 58.23 326 | 32.53 329 | 38.79 318 | 70.77 293 | 39.66 158 | 73.51 314 | 25.18 322 | 52.06 292 | 90.55 72 |
|
COLMAP_ROB | | 43.60 20 | 50.90 296 | 48.05 296 | 59.47 305 | 67.81 307 | 40.57 300 | 71.25 293 | 62.72 323 | 36.49 323 | 36.19 321 | 73.51 273 | 13.48 330 | 73.92 311 | 20.71 331 | 50.26 296 | 63.92 331 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MIMVSNet1 | | | 50.35 297 | 47.81 297 | 57.96 310 | 61.53 329 | 27.80 337 | 67.40 305 | 74.06 279 | 43.25 305 | 33.31 331 | 65.38 314 | 16.03 325 | 71.34 321 | 21.80 328 | 47.55 302 | 74.75 299 |
|
JIA-IIPM | | | 52.33 294 | 47.77 298 | 66.03 273 | 71.20 285 | 46.92 242 | 40.00 340 | 76.48 261 | 37.10 320 | 46.73 288 | 37.02 336 | 32.96 228 | 77.88 291 | 35.97 282 | 52.45 291 | 73.29 310 |
|
MDA-MVSNet-bldmvs | | | 51.56 295 | 47.75 299 | 63.00 290 | 71.60 280 | 47.32 238 | 69.70 301 | 72.12 293 | 43.81 302 | 27.65 337 | 63.38 316 | 21.97 302 | 75.96 301 | 27.30 317 | 32.19 334 | 65.70 329 |
|
new-patchmatchnet | | | 48.21 299 | 46.55 300 | 53.18 315 | 57.73 334 | 18.19 346 | 70.24 296 | 71.02 303 | 45.70 288 | 33.70 327 | 60.23 323 | 18.00 317 | 69.86 325 | 27.97 314 | 34.35 330 | 71.49 319 |
|
MVS-HIRNet | | | 49.01 298 | 44.71 301 | 61.92 296 | 76.06 231 | 46.61 246 | 63.23 313 | 54.90 330 | 24.77 335 | 33.56 328 | 36.60 337 | 21.28 305 | 75.88 302 | 29.49 305 | 62.54 218 | 63.26 333 |
|
AllTest | | | 47.32 301 | 44.66 302 | 55.32 313 | 65.08 316 | 37.50 310 | 62.96 315 | 54.25 332 | 35.45 326 | 33.42 329 | 72.82 278 | 9.98 334 | 59.33 332 | 24.13 324 | 43.84 315 | 69.13 321 |
|
TinyColmap | | | 48.15 300 | 44.49 303 | 59.13 307 | 65.73 312 | 38.04 307 | 63.34 312 | 62.86 322 | 38.78 314 | 29.48 335 | 67.23 309 | 6.46 342 | 73.30 315 | 24.59 323 | 41.90 319 | 66.04 327 |
|
RPSCF | | | 45.77 303 | 44.13 304 | 50.68 317 | 57.67 335 | 29.66 330 | 54.92 329 | 45.25 339 | 26.69 334 | 45.92 293 | 75.92 257 | 17.43 320 | 45.70 343 | 27.44 316 | 45.95 311 | 76.67 286 |
|
PM-MVS | | | 46.92 302 | 43.76 305 | 56.41 312 | 52.18 337 | 32.26 326 | 63.21 314 | 38.18 342 | 37.99 318 | 40.78 311 | 66.20 310 | 5.09 345 | 65.42 329 | 48.19 235 | 41.99 318 | 71.54 318 |
|
pmmvs3 | | | 45.53 304 | 41.55 306 | 57.44 311 | 48.97 340 | 39.68 302 | 70.06 297 | 57.66 327 | 28.32 333 | 34.06 326 | 57.29 329 | 8.50 338 | 66.85 328 | 34.86 289 | 34.26 331 | 65.80 328 |
|
N_pmnet | | | 41.25 305 | 39.77 307 | 45.66 321 | 68.50 301 | 0.82 354 | 72.51 284 | 0.38 355 | 35.61 325 | 35.26 324 | 61.51 320 | 20.07 310 | 67.74 327 | 23.51 326 | 40.63 320 | 68.42 324 |
|
TDRefinement | | | 40.91 306 | 38.37 308 | 48.55 319 | 50.45 338 | 33.03 323 | 58.98 324 | 50.97 335 | 28.50 332 | 29.89 334 | 67.39 307 | 6.21 344 | 54.51 336 | 17.67 336 | 35.25 328 | 58.11 334 |
|
DSMNet-mixed | | | 38.35 307 | 35.36 309 | 47.33 320 | 48.11 341 | 14.91 348 | 37.87 341 | 36.60 344 | 19.18 339 | 34.37 325 | 59.56 326 | 15.53 326 | 53.01 338 | 20.14 333 | 46.89 308 | 74.07 303 |
|
FPMVS | | | 35.40 308 | 33.67 310 | 40.57 323 | 46.34 342 | 28.74 335 | 41.05 338 | 57.05 328 | 20.37 338 | 22.27 339 | 53.38 332 | 6.87 340 | 44.94 344 | 8.62 341 | 47.11 306 | 48.01 338 |
|
LF4IMVS | | | 33.04 311 | 32.55 311 | 34.52 327 | 40.96 343 | 22.03 341 | 44.45 335 | 35.62 345 | 20.42 337 | 28.12 336 | 62.35 319 | 5.03 346 | 31.88 348 | 21.61 330 | 34.42 329 | 49.63 337 |
|
new_pmnet | | | 33.56 310 | 31.89 312 | 38.59 324 | 49.01 339 | 20.42 343 | 51.01 330 | 37.92 343 | 20.58 336 | 23.45 338 | 46.79 333 | 6.66 341 | 49.28 341 | 20.00 334 | 31.57 336 | 46.09 339 |
|
ANet_high | | | 34.39 309 | 29.59 313 | 48.78 318 | 30.34 348 | 22.28 340 | 55.53 326 | 63.79 320 | 38.11 317 | 15.47 341 | 36.56 338 | 6.94 339 | 59.98 331 | 13.93 339 | 5.64 348 | 64.08 330 |
|
cdsmvs_eth3d_5k | | | 18.33 318 | 24.44 314 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 89.40 17 | 0.00 350 | 0.00 353 | 92.02 36 | 38.55 166 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
Gipuma | | | 27.47 313 | 24.26 315 | 37.12 326 | 60.55 332 | 29.17 333 | 11.68 346 | 60.00 325 | 14.18 342 | 10.52 345 | 15.12 346 | 2.20 350 | 63.01 330 | 8.39 342 | 35.65 326 | 19.18 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet | | | 28.07 312 | 23.85 316 | 40.71 322 | 27.46 350 | 18.93 345 | 30.82 343 | 46.19 336 | 12.76 343 | 16.40 340 | 34.70 340 | 1.90 351 | 48.69 342 | 20.25 332 | 24.22 338 | 54.51 335 |
|
PMMVS2 | | | 26.71 314 | 22.98 317 | 37.87 325 | 36.89 345 | 8.51 352 | 42.51 337 | 29.32 349 | 19.09 340 | 13.01 342 | 37.54 335 | 2.23 349 | 53.11 337 | 14.54 338 | 11.71 341 | 51.99 336 |
|
PMVS | | 19.57 22 | 25.07 315 | 22.43 318 | 32.99 328 | 23.12 351 | 22.98 339 | 40.98 339 | 35.19 346 | 15.99 341 | 11.95 344 | 35.87 339 | 1.47 353 | 49.29 340 | 5.41 346 | 31.90 335 | 26.70 341 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
E-PMN | | | 19.16 316 | 18.40 319 | 21.44 330 | 36.19 346 | 13.63 349 | 47.59 331 | 30.89 347 | 10.73 344 | 5.91 348 | 16.59 344 | 3.66 348 | 39.77 345 | 5.95 345 | 8.14 343 | 10.92 344 |
|
EMVS | | | 18.42 317 | 17.66 320 | 20.71 331 | 34.13 347 | 12.64 350 | 46.94 332 | 29.94 348 | 10.46 346 | 5.58 349 | 14.93 347 | 4.23 347 | 38.83 346 | 5.24 347 | 7.51 345 | 10.67 345 |
|
MVE | | 16.60 23 | 17.34 319 | 13.39 321 | 29.16 329 | 28.43 349 | 19.72 344 | 13.73 345 | 23.63 350 | 7.23 347 | 7.96 346 | 21.41 342 | 0.80 354 | 36.08 347 | 6.97 343 | 10.39 342 | 31.69 340 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
tmp_tt | | | 9.44 320 | 10.68 322 | 5.73 334 | 2.49 353 | 4.21 353 | 10.48 347 | 18.04 351 | 0.34 349 | 12.59 343 | 20.49 343 | 11.39 332 | 7.03 351 | 13.84 340 | 6.46 347 | 5.95 346 |
|
ab-mvs-re | | | 7.68 322 | 10.24 323 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 92.12 33 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
wuyk23d | | | 9.11 321 | 8.77 324 | 10.15 333 | 40.18 344 | 16.76 347 | 20.28 344 | 1.01 354 | 2.58 348 | 2.66 350 | 0.98 350 | 0.23 355 | 12.49 350 | 4.08 348 | 6.90 346 | 1.19 347 |
|
testmvs | | | 6.14 323 | 8.18 325 | 0.01 335 | 0.01 354 | 0.00 356 | 73.40 278 | 0.00 356 | 0.00 350 | 0.02 351 | 0.15 351 | 0.00 356 | 0.00 352 | 0.02 349 | 0.00 349 | 0.02 348 |
|
test123 | | | 6.01 324 | 8.01 326 | 0.01 335 | 0.00 355 | 0.01 355 | 71.93 290 | 0.00 356 | 0.00 350 | 0.02 351 | 0.11 352 | 0.00 356 | 0.00 352 | 0.02 349 | 0.00 349 | 0.02 348 |
|
pcd_1.5k_mvsjas | | | 3.15 325 | 4.20 327 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 37.77 172 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
uanet_test | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
sosnet-low-res | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
sosnet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
uncertanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
Regformer | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
uanet | | | 0.00 326 | 0.00 328 | 0.00 337 | 0.00 355 | 0.00 356 | 0.00 348 | 0.00 356 | 0.00 350 | 0.00 353 | 0.00 353 | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
IU-MVS | | | | | | 89.48 13 | 57.49 16 | | 91.38 5 | 66.22 49 | 88.26 1 | | | | 82.83 7 | 87.60 16 | 92.44 25 |
|
OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 41 | 92.48 3 | | | | 94.01 6 | 67.21 2 | 95.10 13 | 89.82 1 | 92.55 3 | 94.06 3 |
|
test_241102_TWO | | | | | | | | | 88.76 34 | 57.50 198 | 83.60 5 | 94.09 4 | 56.14 16 | 96.37 5 | 82.28 11 | 87.43 18 | 92.55 23 |
|
test_241102_ONE | | | | | | 89.48 13 | 56.89 25 | | 88.94 27 | 57.53 196 | 84.61 3 | 93.29 13 | 58.81 9 | 96.45 1 | | | |
|
save fliter | | | | | | 85.35 62 | 56.34 35 | 89.31 37 | 81.46 176 | 61.55 116 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 58.00 184 | 81.91 9 | 93.64 10 | 56.54 13 | 96.44 2 | 81.64 16 | 86.86 23 | 92.23 29 |
|
test_0728_SECOND | | | | | 82.20 8 | 89.50 11 | 57.73 12 | 92.34 5 | 88.88 29 | | | | | 96.39 4 | 81.68 13 | 87.13 19 | 92.47 24 |
|
test0726 | | | | | | 89.40 16 | 57.45 17 | 92.32 7 | 88.63 37 | 57.71 192 | 83.14 7 | 93.96 7 | 55.17 17 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.13 126 |
|
test_part2 | | | | | | 89.33 18 | 55.48 47 | | | | 82.27 8 | | | | | | |
|
test_part1 | | | | | 0.00 337 | | 0.00 356 | 0.00 348 | 88.42 45 | | | | 0.00 356 | 0.00 352 | 0.00 351 | 0.00 349 | 0.00 350 |
|
sam_mvs1 | | | | | | | | | | | | | 38.86 164 | | | | 88.13 126 |
|
sam_mvs | | | | | | | | | | | | | 35.99 205 | | | | |
|
ambc | | | | | 62.06 294 | 53.98 336 | 29.38 332 | 35.08 342 | 79.65 205 | | 41.37 308 | 59.96 324 | 6.27 343 | 82.15 252 | 35.34 285 | 38.22 325 | 74.65 300 |
|
MTGPA | | | | | | | | | 81.31 179 | | | | | | | | |
|
test_post1 | | | | | | | | 70.84 295 | | | | 14.72 348 | 34.33 216 | 83.86 239 | 48.80 230 | | |
|
test_post | | | | | | | | | | | | 16.22 345 | 37.52 180 | 84.72 234 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 59.74 325 | 38.41 167 | 79.91 276 | | | |
|
GG-mvs-BLEND | | | | | 77.77 80 | 86.68 41 | 50.61 169 | 68.67 303 | 88.45 44 | | 68.73 85 | 87.45 126 | 59.15 8 | 90.67 81 | 54.83 192 | 87.67 15 | 92.03 35 |
|
MTMP | | | | | | | | 87.27 74 | 15.34 352 | | | | | | | | |
|
gm-plane-assit | | | | | | 83.24 104 | 54.21 84 | | | 70.91 12 | | 88.23 113 | | 95.25 12 | 66.37 104 | | |
|
test9_res | | | | | | | | | | | | | | | 78.72 27 | 85.44 40 | 91.39 52 |
|
TEST9 | | | | | | 85.68 49 | 55.42 48 | 87.59 64 | 84.00 135 | 57.72 191 | 72.99 52 | 90.98 55 | 44.87 99 | 88.58 136 | | | |
|
test_8 | | | | | | 85.72 48 | 55.31 52 | 87.60 61 | 83.88 138 | 57.84 189 | 72.84 55 | 90.99 54 | 44.99 96 | 88.34 146 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 75.65 47 | 85.11 44 | 91.01 63 |
|
agg_prior | | | | | | 85.64 52 | 54.92 66 | | 83.61 144 | | 72.53 59 | | | 88.10 157 | | | |
|
TestCases | | | | | 55.32 313 | 65.08 316 | 37.50 310 | | 54.25 332 | 35.45 326 | 33.42 329 | 72.82 278 | 9.98 334 | 59.33 332 | 24.13 324 | 43.84 315 | 69.13 321 |
|
test_prior4 | | | | | | | 56.39 34 | 87.15 77 | | | | | | | | | |
|
test_prior2 | | | | | | | | 89.04 42 | | 61.88 111 | 73.55 46 | 91.46 50 | 48.01 61 | | 74.73 54 | 85.46 38 | |
|
test_prior | | | | | 78.39 65 | 86.35 43 | 54.91 68 | | 85.45 92 | | | | | 89.70 107 | | | 90.55 72 |
|
旧先验2 | | | | | | | | 81.73 209 | | 45.53 290 | 74.66 35 | | | 70.48 324 | 58.31 166 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.61 213 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 73.30 178 | 83.10 106 | 53.48 99 | | 71.43 300 | 45.55 289 | 66.14 108 | 87.17 129 | 33.88 222 | 80.54 265 | 48.50 233 | 80.33 81 | 85.88 166 |
|
旧先验1 | | | | | | 81.57 146 | 47.48 236 | | 71.83 294 | | | 88.66 105 | 36.94 191 | | | 78.34 98 | 88.67 115 |
|
æ— å…ˆéªŒ | | | | | | | | 85.19 121 | 78.00 237 | 49.08 270 | | | | 85.13 228 | 52.78 208 | | 87.45 139 |
|
原ACMM2 | | | | | | | | 83.77 159 | | | | | | | | | |
|
原ACMM1 | | | | | 76.13 119 | 84.89 72 | 54.59 78 | | 85.26 103 | 51.98 253 | 66.70 99 | 87.07 131 | 40.15 153 | 89.70 107 | 51.23 217 | 85.06 45 | 84.10 189 |
|
test222 | | | | | | 79.36 178 | 50.97 165 | 77.99 251 | 67.84 311 | 42.54 308 | 62.84 152 | 86.53 138 | 30.26 251 | | | 76.91 108 | 85.23 176 |
|
testdata2 | | | | | | | | | | | | | | 77.81 293 | 45.64 250 | | |
|
segment_acmp | | | | | | | | | | | | | 44.97 98 | | | | |
|
testdata | | | | | 67.08 266 | 77.59 211 | 45.46 260 | | 69.20 309 | 44.47 297 | 71.50 71 | 88.34 109 | 31.21 246 | 70.76 323 | 52.20 214 | 75.88 116 | 85.03 178 |
|
testdata1 | | | | | | | | 77.55 254 | | 64.14 76 | | | | | | | |
|
test12 | | | | | 79.24 36 | 86.89 39 | 56.08 40 | | 85.16 107 | | 72.27 64 | | 47.15 70 | 91.10 71 | | 85.93 33 | 90.54 75 |
|
plane_prior7 | | | | | | 77.95 206 | 48.46 223 | | | | | | | | | | |
|
plane_prior6 | | | | | | 78.42 201 | 49.39 200 | | | | | | 36.04 203 | | | | |
|
plane_prior5 | | | | | | | | | 82.59 160 | | | | | 88.30 150 | 65.46 114 | 72.34 148 | 84.49 184 |
|
plane_prior4 | | | | | | | | | | | | 83.28 172 | | | | | |
|
plane_prior3 | | | | | | | 48.95 207 | | | 64.01 77 | 62.15 155 | | | | | | |
|
plane_prior2 | | | | | | | | 85.76 105 | | 63.60 86 | | | | | | | |
|
plane_prior1 | | | | | | 78.31 203 | | | | | | | | | | | |
|
plane_prior | | | | | | | 49.57 194 | 87.43 68 | | 64.57 72 | | | | | | 72.84 143 | |
|
n2 | | | | | | | | | 0.00 356 | | | | | | | | |
|
nn | | | | | | | | | 0.00 356 | | | | | | | | |
|
door-mid | | | | | | | | | 41.31 341 | | | | | | | | |
|
lessismore_v0 | | | | | 67.98 259 | 64.76 318 | 41.25 295 | | 45.75 338 | | 36.03 322 | 65.63 313 | 19.29 313 | 84.11 238 | 35.67 283 | 21.24 339 | 78.59 266 |
|
LGP-MVS_train | | | | | 72.02 200 | 74.42 251 | 48.60 215 | | 80.64 189 | 54.69 234 | 53.75 252 | 83.83 162 | 25.73 279 | 86.98 184 | 60.33 152 | 64.71 194 | 80.48 250 |
|
test11 | | | | | | | | | 84.25 129 | | | | | | | | |
|
door | | | | | | | | | 43.27 340 | | | | | | | | |
|
HQP5-MVS | | | | | | | 51.56 153 | | | | | | | | | | |
|
HQP-NCC | | | | | | 79.02 184 | | 88.00 55 | | 65.45 58 | 64.48 130 | | | | | | |
|
ACMP_Plane | | | | | | 79.02 184 | | 88.00 55 | | 65.45 58 | 64.48 130 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 66.70 101 | | |
|
HQP4-MVS | | | | | | | | | | | 64.47 133 | | | 88.61 135 | | | 84.91 181 |
|
HQP3-MVS | | | | | | | | | 83.68 141 | | | | | | | 73.12 139 | |
|
HQP2-MVS | | | | | | | | | | | | | 37.35 183 | | | | |
|
NP-MVS | | | | | | 78.76 189 | 50.43 175 | | | | | 85.12 151 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 43.62 277 | 71.13 294 | | 54.95 231 | 59.29 185 | | 36.76 194 | | 46.33 247 | | 87.32 141 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 211 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 59.38 235 | |
|
Test By Simon | | | | | | | | | | | | | 39.38 159 | | | | |
|
ITE_SJBPF | | | | | 51.84 316 | 58.03 333 | 31.94 328 | | 53.57 334 | 36.67 322 | 41.32 309 | 75.23 261 | 11.17 333 | 51.57 339 | 25.81 321 | 48.04 300 | 72.02 315 |
|
DeepMVS_CX | | | | | 13.10 332 | 21.34 352 | 8.99 351 | | 10.02 353 | 10.59 345 | 7.53 347 | 30.55 341 | 1.82 352 | 14.55 349 | 6.83 344 | 7.52 344 | 15.75 343 |
|