This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS95.62 796.54 192.86 9598.31 5480.10 17197.42 9396.78 4892.20 1397.11 1098.29 3193.46 199.10 9996.01 2499.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1499.31 587.69 2199.06 997.12 2394.66 396.79 1198.78 1186.42 2799.95 397.59 1299.18 799.00 27
DVP-MVS++96.05 496.41 394.96 2199.05 1085.34 4998.13 3896.77 5488.38 5997.70 698.77 1292.06 399.84 1297.47 1399.37 199.70 3
SED-MVS95.88 596.22 494.87 2299.03 1685.03 6199.12 696.78 4888.72 5197.79 498.91 388.48 1699.82 1798.15 398.97 1799.74 1
DeepPCF-MVS89.82 194.61 1796.17 589.91 19197.09 10270.21 31998.99 1496.69 6795.57 195.08 3199.23 186.40 2899.87 897.84 1098.66 3499.65 6
MCST-MVS96.17 396.12 696.32 799.42 289.36 1098.94 1597.10 2595.17 292.11 7298.46 2687.33 2399.97 297.21 1699.31 499.63 7
NCCC95.63 695.94 794.69 2799.21 785.15 5999.16 396.96 3494.11 695.59 2498.64 2185.07 3199.91 495.61 3199.10 999.00 27
DVP-MVScopyleft95.58 895.91 894.57 2999.05 1085.18 5499.06 996.46 10088.75 4996.69 1298.76 1487.69 2199.76 2497.90 898.85 2298.77 34
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft95.32 1095.55 994.64 2898.79 2584.87 6697.77 6096.74 5986.11 10196.54 1698.89 788.39 1899.74 3297.67 1199.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1098.26 196.26 11095.09 199.15 496.98 3193.39 996.45 1798.79 1090.17 999.99 189.33 11499.25 699.70 3
HPM-MVS++copyleft95.32 1095.48 1194.85 2398.62 3886.04 3497.81 5896.93 3792.45 1195.69 2398.50 2485.38 3099.85 1094.75 4299.18 798.65 42
ETH3 D test640095.56 995.41 1296.00 999.02 1989.42 998.75 1896.80 4787.28 8395.88 2298.95 285.92 2999.41 6697.15 1798.95 2099.18 24
TSAR-MVS + MP.94.79 1595.17 1393.64 6097.66 8084.10 7895.85 20196.42 10591.26 2097.49 996.80 11686.50 2698.49 13195.54 3299.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SD-MVS94.84 1495.02 1494.29 3797.87 7584.61 7097.76 6496.19 12989.59 3996.66 1498.17 3984.33 3599.60 5096.09 2298.50 4198.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVS94.56 1894.75 1593.96 4898.84 2483.40 9298.04 4696.41 10685.79 10995.00 3498.28 3284.32 3899.18 9197.35 1598.77 2999.28 19
SMA-MVScopyleft94.70 1694.68 1694.76 2598.02 6985.94 3797.47 8596.77 5485.32 12097.92 398.70 1883.09 5099.84 1295.79 2899.08 1098.49 50
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CANet94.89 1394.64 1795.63 1297.55 8688.12 1599.06 996.39 11294.07 795.34 2797.80 6876.83 11999.87 897.08 1897.64 7398.89 30
xxxxxxxxxxxxxcwj94.38 2194.62 1893.68 5898.24 5783.34 9398.61 2392.69 29791.32 1895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
TSAR-MVS + GP.94.35 2294.50 1993.89 4997.38 9683.04 10298.10 4095.29 18191.57 1693.81 5197.45 8486.64 2499.43 6596.28 2194.01 12899.20 22
DELS-MVS94.98 1294.49 2096.44 696.42 10890.59 799.21 297.02 2894.40 591.46 8197.08 10483.32 4699.69 4092.83 6898.70 3399.04 25
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
train_agg94.28 2394.45 2193.74 5498.64 3583.71 8597.82 5696.65 7384.50 14495.16 2898.09 4684.33 3599.36 7495.91 2798.96 1998.16 72
SteuartSystems-ACMMP94.13 2894.44 2293.20 7995.41 13181.35 14099.02 1396.59 8389.50 4094.18 4898.36 3083.68 4399.45 6494.77 4198.45 4498.81 33
Skip Steuart: Steuart Systems R&D Blog.
ETH3D-3000-0.194.43 2094.42 2394.45 3197.78 7685.78 4097.98 4896.53 9285.29 12395.45 2598.81 883.36 4599.38 6896.07 2398.53 3798.19 69
MSLP-MVS++94.28 2394.39 2493.97 4798.30 5584.06 7998.64 2196.93 3790.71 2693.08 6098.70 1879.98 7499.21 8494.12 4999.07 1198.63 43
test_prior394.03 3294.34 2593.09 8498.68 2981.91 12398.37 2896.40 10986.08 10394.57 4198.02 5283.14 4799.06 10195.05 3898.79 2798.29 63
agg_prior194.10 2994.31 2693.48 7098.59 3983.13 9897.77 6096.56 8784.38 14894.19 4598.13 4184.66 3399.16 9395.74 2998.74 3198.15 74
DeepC-MVS_fast89.06 294.48 1994.30 2795.02 1998.86 2385.68 4498.06 4496.64 7693.64 891.74 7898.54 2280.17 7399.90 592.28 7598.75 3099.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
9.1494.26 2898.10 6598.14 3596.52 9384.74 13594.83 3798.80 982.80 5499.37 7295.95 2698.42 46
EPNet94.06 3194.15 2993.76 5397.27 9984.35 7298.29 3097.64 1394.57 495.36 2696.88 11179.96 7599.12 9891.30 8496.11 10497.82 105
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testtj94.09 3094.08 3094.09 4599.28 683.32 9597.59 7596.61 7983.60 17394.77 3998.46 2682.72 5599.64 4695.29 3698.42 4699.32 17
SF-MVS94.17 2694.05 3194.55 3097.56 8585.95 3597.73 6696.43 10484.02 15895.07 3298.74 1682.93 5199.38 6895.42 3498.51 3898.32 58
Regformer-194.00 3394.04 3293.87 5098.41 4884.29 7497.43 9197.04 2789.50 4092.75 6698.13 4182.60 5799.26 7993.55 5596.99 8898.06 81
Regformer-293.92 3494.01 3393.67 5998.41 4883.75 8497.43 9197.00 2989.43 4292.69 6798.13 4182.48 5899.22 8293.51 5696.99 8898.04 82
ETH3D cwj APD-0.1693.91 3693.76 3494.36 3496.70 10685.74 4197.22 10096.41 10683.94 16194.13 4998.69 2083.13 4999.37 7295.25 3798.39 5197.97 94
MG-MVS94.25 2593.72 3595.85 1199.38 389.35 1197.98 4898.09 889.99 3592.34 6996.97 10881.30 6298.99 10588.54 11998.88 2199.20 22
PHI-MVS93.59 3993.63 3693.48 7098.05 6881.76 13198.64 2197.13 2282.60 19394.09 5098.49 2580.35 6899.85 1094.74 4398.62 3598.83 32
APD-MVScopyleft93.61 3893.59 3793.69 5798.76 2683.26 9697.21 10296.09 13482.41 19594.65 4098.21 3481.96 6098.81 11894.65 4498.36 5499.01 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
lupinMVS93.87 3793.58 3894.75 2693.00 20288.08 1699.15 495.50 16691.03 2394.90 3597.66 7278.84 8797.56 16294.64 4597.46 7598.62 44
PS-MVSNAJ94.17 2693.52 3996.10 895.65 12692.35 298.21 3395.79 15192.42 1296.24 1898.18 3571.04 20099.17 9296.77 1997.39 8096.79 158
MVS_111021_HR93.41 4193.39 4093.47 7397.34 9782.83 10597.56 7898.27 689.16 4589.71 10797.14 10079.77 7699.56 5593.65 5397.94 6698.02 84
CS-MVS93.12 4493.27 4192.64 10693.86 17783.12 10098.85 1694.85 20188.61 5494.19 4597.42 8879.02 8597.02 19594.89 4097.77 7097.78 108
xiu_mvs_v2_base93.92 3493.26 4295.91 1095.07 14292.02 698.19 3495.68 15692.06 1496.01 2198.14 4070.83 20398.96 10796.74 2096.57 9996.76 161
ACMMP_NAP93.46 4093.23 4394.17 4297.16 10084.28 7596.82 14096.65 7386.24 9994.27 4497.99 5577.94 10099.83 1693.39 5798.57 3698.39 55
Regformer-393.19 4293.19 4493.19 8098.10 6583.01 10397.08 12196.98 3188.98 4691.35 8697.89 6280.80 6499.23 8092.30 7495.20 11597.32 138
Regformer-493.06 4693.12 4592.89 9498.10 6582.20 11797.08 12196.92 3988.87 4891.23 8897.89 6280.57 6799.19 8992.21 7695.20 11597.29 142
#test#92.99 4792.99 4692.98 8998.71 2781.12 14397.77 6096.70 6485.75 11091.75 7697.97 5978.47 9299.71 3691.36 8398.41 4898.12 77
PVSNet_Blended93.13 4392.98 4793.57 6497.47 8783.86 8199.32 196.73 6091.02 2489.53 11296.21 12576.42 12699.57 5394.29 4795.81 11197.29 142
CDPH-MVS93.12 4492.91 4893.74 5498.65 3483.88 8097.67 7096.26 12283.00 18493.22 5898.24 3381.31 6199.21 8489.12 11598.74 3198.14 75
ETV-MVS92.72 5592.87 4992.28 11994.54 15781.89 12597.98 4895.21 18489.77 3893.11 5996.83 11377.23 11497.50 17095.74 2995.38 11397.44 132
HFP-MVS92.89 4992.86 5092.98 8998.71 2781.12 14397.58 7696.70 6485.20 12691.75 7697.97 5978.47 9299.71 3690.95 8798.41 4898.12 77
zzz-MVS92.74 5292.71 5192.86 9597.90 7180.85 15196.47 16196.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
XVS92.69 5792.71 5192.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8297.83 6777.24 11299.59 5190.46 9798.07 6298.02 84
region2R92.72 5592.70 5392.79 9898.68 2980.53 16197.53 8096.51 9485.22 12491.94 7497.98 5777.26 11099.67 4490.83 9198.37 5398.18 70
ACMMPR92.69 5792.67 5492.75 9998.66 3280.57 15897.58 7696.69 6785.20 12691.57 8097.92 6177.01 11699.67 4490.95 8798.41 4898.00 89
MP-MVScopyleft92.61 6092.67 5492.42 11498.13 6479.73 18097.33 9896.20 12785.63 11290.53 9797.66 7278.14 9899.70 3992.12 7798.30 5797.85 102
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS92.75 5192.60 5693.23 7898.24 5781.82 12997.63 7196.50 9685.00 13191.05 9197.74 7078.38 9499.80 2390.48 9698.34 5598.07 80
CP-MVS92.54 6292.60 5692.34 11698.50 4579.90 17498.40 2696.40 10984.75 13490.48 9998.09 4677.40 10999.21 8491.15 8698.23 5997.92 97
PAPM92.87 5092.40 5894.30 3692.25 22387.85 1896.40 17096.38 11391.07 2288.72 12296.90 10982.11 5997.37 17890.05 10497.70 7297.67 116
MP-MVS-pluss92.58 6192.35 5993.29 7597.30 9882.53 10996.44 16696.04 13884.68 13889.12 11798.37 2977.48 10899.74 3293.31 6198.38 5297.59 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA92.45 6392.31 6092.86 9597.90 7180.85 15192.88 28296.33 11787.92 6990.20 10298.18 3576.71 12299.76 2492.57 7298.09 6097.96 95
SR-MVS92.16 6692.27 6191.83 13598.37 5178.41 21496.67 15295.76 15282.19 19991.97 7398.07 5076.44 12598.64 12293.71 5297.27 8298.45 52
alignmvs92.97 4892.26 6295.12 1895.54 12887.77 1998.67 1996.38 11388.04 6793.01 6197.45 8479.20 8398.60 12593.25 6288.76 17198.99 29
jason92.73 5492.23 6394.21 4190.50 26287.30 2598.65 2095.09 18790.61 2792.76 6597.13 10175.28 15397.30 18193.32 6096.75 9898.02 84
jason: jason.
GST-MVS92.43 6492.22 6493.04 8798.17 6281.64 13697.40 9596.38 11384.71 13790.90 9397.40 9077.55 10799.76 2489.75 10897.74 7197.72 112
PAPR92.74 5292.17 6594.45 3198.89 2284.87 6697.20 10496.20 12787.73 7588.40 12698.12 4478.71 9099.76 2487.99 12696.28 10298.74 35
CS-MVS-test91.92 7092.11 6691.37 14694.00 17579.66 18198.39 2794.38 22987.14 9092.87 6497.05 10677.17 11596.97 19891.44 8296.55 10097.47 131
DROMVSNet91.73 7392.11 6690.58 16993.54 18577.77 23798.07 4394.40 22887.44 7992.99 6297.11 10374.59 16496.87 20593.75 5197.08 8697.11 147
EIA-MVS91.73 7392.05 6890.78 16594.52 15876.40 26098.06 4495.34 17889.19 4488.90 12097.28 9677.56 10697.73 15690.77 9296.86 9598.20 68
test117291.64 7792.00 6990.54 17198.20 6174.48 28396.45 16495.65 15781.97 20391.63 7998.02 5275.76 13898.61 12393.16 6397.17 8498.52 49
CHOSEN 280x42091.71 7691.85 7091.29 15094.94 14782.69 10687.89 32396.17 13085.94 10687.27 13894.31 17290.27 895.65 25894.04 5095.86 10995.53 191
mPP-MVS91.88 7191.82 7192.07 12598.38 5078.63 20897.29 9996.09 13485.12 12888.45 12597.66 7275.53 14399.68 4289.83 10698.02 6597.88 98
PGM-MVS91.93 6991.80 7292.32 11898.27 5679.74 17995.28 21897.27 1883.83 16690.89 9497.78 6976.12 13299.56 5588.82 11797.93 6897.66 117
EI-MVSNet-Vis-set91.84 7291.77 7392.04 12797.60 8281.17 14296.61 15396.87 4188.20 6489.19 11697.55 8278.69 9199.14 9590.29 10290.94 15795.80 184
WTY-MVS92.65 5991.68 7495.56 1396.00 11788.90 1298.23 3297.65 1288.57 5589.82 10697.22 9879.29 7999.06 10189.57 11088.73 17298.73 39
CSCG92.02 6891.65 7593.12 8298.53 4180.59 15797.47 8597.18 2177.06 28384.64 16197.98 5783.98 4099.52 5790.72 9397.33 8199.23 21
MVS_111021_LR91.60 8091.64 7691.47 14595.74 12278.79 20596.15 18596.77 5488.49 5788.64 12397.07 10572.33 18699.19 8993.13 6696.48 10196.43 169
HPM-MVScopyleft91.62 7991.53 7791.89 13197.88 7479.22 19296.99 12695.73 15482.07 20089.50 11497.19 9975.59 14298.93 11390.91 8997.94 6697.54 124
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post91.29 8791.45 7890.80 16397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6575.76 13898.61 12391.99 7996.79 9697.75 110
APD-MVS_3200maxsize91.23 8991.35 7990.89 16197.89 7376.35 26196.30 17795.52 16579.82 24091.03 9297.88 6474.70 16098.54 12892.11 7896.89 9297.77 109
canonicalmvs92.27 6591.22 8095.41 1595.80 12188.31 1397.09 11994.64 21588.49 5792.99 6297.31 9272.68 18398.57 12793.38 5988.58 17499.36 16
EI-MVSNet-UG-set91.35 8691.22 8091.73 13697.39 9380.68 15596.47 16196.83 4487.92 6988.30 12997.36 9177.84 10299.13 9789.43 11389.45 16495.37 194
VNet92.11 6791.22 8094.79 2496.91 10386.98 2697.91 5197.96 986.38 9893.65 5395.74 13370.16 20898.95 11093.39 5788.87 17098.43 53
RE-MVS-def91.18 8397.76 7876.03 26696.20 18395.44 17080.56 22290.72 9597.84 6573.36 17891.99 7996.79 9697.75 110
DeepC-MVS86.58 391.53 8191.06 8492.94 9294.52 15881.89 12595.95 19395.98 14090.76 2583.76 17396.76 11773.24 17999.71 3691.67 8196.96 9097.22 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS Recon91.72 7590.85 8594.34 3599.50 185.00 6398.51 2595.96 14180.57 22188.08 13197.63 7776.84 11899.89 785.67 14194.88 11998.13 76
PAPM_NR91.46 8290.82 8693.37 7498.50 4581.81 13095.03 23296.13 13184.65 14086.10 14897.65 7679.24 8299.75 3083.20 17296.88 9398.56 46
PVSNet_Blended_VisFu91.24 8890.77 8792.66 10495.09 14082.40 11397.77 6095.87 14888.26 6386.39 14493.94 18376.77 12099.27 7788.80 11894.00 12996.31 175
diffmvs91.17 9090.74 8892.44 11393.11 20182.50 11196.25 18093.62 26787.79 7390.40 10095.93 13073.44 17797.42 17493.62 5492.55 14397.41 134
MVSFormer91.36 8590.57 8993.73 5693.00 20288.08 1694.80 23794.48 22280.74 21794.90 3597.13 10178.84 8795.10 28783.77 15997.46 7598.02 84
test_yl91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
DCV-MVSNet91.46 8290.53 9094.24 3997.41 9185.18 5498.08 4197.72 1080.94 21389.85 10496.14 12675.61 14098.81 11890.42 10088.56 17598.74 35
test250690.96 9390.39 9292.65 10593.54 18582.46 11296.37 17197.35 1686.78 9587.55 13495.25 14677.83 10397.50 17084.07 15494.80 12097.98 91
casdiffmvs90.95 9490.39 9292.63 10792.82 20782.53 10996.83 13994.47 22487.69 7688.47 12495.56 14174.04 16997.54 16790.90 9092.74 14197.83 104
HY-MVS84.06 691.63 7890.37 9495.39 1696.12 11488.25 1490.22 30697.58 1488.33 6290.50 9891.96 20479.26 8199.06 10190.29 10289.07 16798.88 31
thisisatest051590.95 9490.26 9593.01 8894.03 17484.27 7697.91 5196.67 6983.18 17886.87 14295.51 14288.66 1597.85 15280.46 18789.01 16896.92 154
MAR-MVS90.63 10090.22 9691.86 13298.47 4778.20 22497.18 10696.61 7983.87 16588.18 13098.18 3568.71 21399.75 3083.66 16497.15 8597.63 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline290.39 10690.21 9790.93 15990.86 25680.99 14795.20 22397.41 1586.03 10580.07 21694.61 16790.58 697.47 17387.29 13189.86 16294.35 210
CHOSEN 1792x268891.07 9190.21 9793.64 6095.18 13883.53 8996.26 17996.13 13188.92 4784.90 15693.10 19472.86 18199.62 4988.86 11695.67 11297.79 107
HPM-MVS_fast90.38 10890.17 9991.03 15797.61 8177.35 24697.15 11195.48 16779.51 24688.79 12196.90 10971.64 19498.81 11887.01 13597.44 7796.94 151
baseline90.76 9790.10 10092.74 10092.90 20682.56 10894.60 23994.56 22087.69 7689.06 11995.67 13773.76 17297.51 16990.43 9992.23 14998.16 72
CANet_DTU90.98 9290.04 10193.83 5194.76 15286.23 3296.32 17693.12 29093.11 1093.71 5296.82 11563.08 24699.48 6284.29 15295.12 11895.77 185
ACMMPcopyleft90.39 10689.97 10291.64 13997.58 8478.21 22396.78 14396.72 6284.73 13684.72 15997.23 9771.22 19799.63 4888.37 12492.41 14697.08 149
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_BlendedMVS90.05 11189.96 10390.33 17797.47 8783.86 8198.02 4796.73 6087.98 6889.53 11289.61 23876.42 12699.57 5394.29 4779.59 23787.57 306
sss90.87 9689.96 10393.60 6394.15 16883.84 8397.14 11298.13 785.93 10789.68 10896.09 12871.67 19299.30 7687.69 12789.16 16697.66 117
PMMVS89.46 12089.92 10588.06 22994.64 15369.57 32696.22 18194.95 19487.27 8491.37 8596.54 12265.88 22997.39 17688.54 11993.89 13097.23 144
Effi-MVS+90.70 9889.90 10693.09 8493.61 18283.48 9095.20 22392.79 29583.22 17791.82 7595.70 13571.82 19197.48 17291.25 8593.67 13398.32 58
CPTT-MVS89.72 11689.87 10789.29 20398.33 5373.30 29297.70 6895.35 17775.68 28987.40 13597.44 8770.43 20598.25 13989.56 11196.90 9196.33 174
112190.66 9989.82 10893.16 8197.39 9381.71 13493.33 26996.66 7274.45 29991.38 8297.55 8279.27 8099.52 5779.95 19398.43 4598.26 66
DWT-MVSNet_test90.52 10589.80 10992.70 10395.73 12482.20 11793.69 26096.55 8988.34 6187.04 14195.34 14586.53 2597.55 16476.32 23188.66 17398.34 56
EPP-MVSNet89.76 11589.72 11089.87 19293.78 17876.02 26897.22 10096.51 9479.35 24885.11 15395.01 16184.82 3297.10 19387.46 13088.21 17996.50 167
abl_689.80 11489.71 11190.07 18396.53 10775.52 27494.48 24095.04 19081.12 21189.22 11597.00 10768.83 21298.96 10789.86 10595.27 11495.73 186
xiu_mvs_v1_base_debu90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
xiu_mvs_v1_base_debi90.54 10289.54 11293.55 6592.31 21687.58 2296.99 12694.87 19887.23 8593.27 5597.56 7957.43 28598.32 13692.72 6993.46 13694.74 204
TESTMET0.1,189.83 11389.34 11591.31 14892.54 21480.19 16997.11 11596.57 8586.15 10086.85 14391.83 20879.32 7896.95 19981.30 18292.35 14796.77 160
MVS_Test90.29 10989.18 11693.62 6295.23 13584.93 6494.41 24394.66 21284.31 15090.37 10191.02 21775.13 15597.82 15383.11 17494.42 12498.12 77
ET-MVSNet_ETH3D90.01 11289.03 11792.95 9194.38 16486.77 2898.14 3596.31 12089.30 4363.33 33496.72 11990.09 1093.63 31690.70 9482.29 22798.46 51
thisisatest053089.65 11789.02 11891.53 14393.46 19180.78 15396.52 15896.67 6981.69 20683.79 17294.90 16388.85 1497.68 15777.80 21087.49 18596.14 178
API-MVS90.18 11088.97 11993.80 5298.66 3282.95 10497.50 8495.63 16075.16 29386.31 14597.69 7172.49 18499.90 581.26 18396.07 10598.56 46
CDS-MVSNet89.50 11988.96 12091.14 15591.94 23980.93 14997.09 11995.81 15084.26 15384.72 15994.20 17780.31 6995.64 25983.37 17088.96 16996.85 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
h-mvs3389.30 12388.95 12190.36 17595.07 14276.04 26596.96 13297.11 2490.39 3192.22 7095.10 15874.70 16098.86 11593.14 6465.89 32796.16 177
MVSTER89.25 12588.92 12290.24 17995.98 11884.66 6996.79 14295.36 17587.19 8880.33 21190.61 22490.02 1195.97 23685.38 14478.64 24690.09 249
Vis-MVSNet (Re-imp)88.88 13288.87 12388.91 20993.89 17674.43 28496.93 13594.19 23684.39 14783.22 17895.67 13778.24 9694.70 29778.88 20694.40 12597.61 122
MVS90.60 10188.64 12496.50 594.25 16690.53 893.33 26997.21 2077.59 27478.88 22397.31 9271.52 19599.69 4089.60 10998.03 6499.27 20
test-mter88.95 12888.60 12589.98 18792.26 22177.23 24897.11 11595.96 14185.32 12086.30 14691.38 21176.37 12896.78 21180.82 18491.92 15195.94 181
HyFIR lowres test89.36 12188.60 12591.63 14194.91 14980.76 15495.60 20995.53 16382.56 19484.03 16691.24 21478.03 9996.81 20987.07 13488.41 17797.32 138
UA-Net88.92 13088.48 12790.24 17994.06 17177.18 25093.04 27894.66 21287.39 8191.09 9093.89 18474.92 15898.18 14375.83 23691.43 15495.35 195
CostFormer89.08 12688.39 12891.15 15493.13 19979.15 19588.61 31796.11 13383.14 17989.58 11186.93 27583.83 4296.87 20588.22 12585.92 19797.42 133
hse-mvs288.22 15288.21 12988.25 22593.54 18573.41 28995.41 21695.89 14590.39 3192.22 7094.22 17574.70 16096.66 21693.14 6464.37 33294.69 208
tttt051788.57 14288.19 13089.71 19893.00 20275.99 26995.67 20696.67 6980.78 21681.82 19794.40 17188.97 1397.58 16176.05 23486.31 19195.57 190
IS-MVSNet88.67 13888.16 13190.20 18193.61 18276.86 25396.77 14593.07 29184.02 15883.62 17495.60 14074.69 16396.24 22978.43 20993.66 13497.49 130
OMC-MVS88.80 13588.16 13190.72 16695.30 13477.92 23394.81 23694.51 22186.80 9484.97 15596.85 11267.53 21898.60 12585.08 14687.62 18295.63 188
test-LLR88.48 14387.98 13389.98 18792.26 22177.23 24897.11 11595.96 14183.76 16886.30 14691.38 21172.30 18796.78 21180.82 18491.92 15195.94 181
EPNet_dtu87.65 16187.89 13486.93 25494.57 15571.37 31396.72 14796.50 9688.56 5687.12 13995.02 16075.91 13694.01 30966.62 29290.00 16195.42 193
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+82.88 889.63 11887.85 13594.99 2094.49 16286.76 2997.84 5595.74 15386.10 10275.47 26796.02 12965.00 23799.51 6082.91 17697.07 8798.72 40
Vis-MVSNetpermissive88.67 13887.82 13691.24 15292.68 20878.82 20296.95 13393.85 25387.55 7887.07 14095.13 15663.43 24497.21 18677.58 21696.15 10397.70 115
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS88.48 14387.79 13790.56 17091.09 25179.18 19396.45 16495.88 14683.64 17183.12 17993.33 19075.94 13595.74 25482.40 17788.27 17896.75 162
PVSNet82.34 989.02 12787.79 13792.71 10295.49 12981.50 13897.70 6897.29 1787.76 7485.47 15195.12 15756.90 29198.90 11480.33 18894.02 12797.71 114
thres20088.92 13087.65 13992.73 10196.30 10985.62 4597.85 5498.86 184.38 14884.82 15793.99 18275.12 15698.01 14470.86 27586.67 18894.56 209
LFMVS89.27 12487.64 14094.16 4497.16 10085.52 4797.18 10694.66 21279.17 25489.63 11096.57 12155.35 30298.22 14089.52 11289.54 16398.74 35
3Dnovator82.32 1089.33 12287.64 14094.42 3393.73 18185.70 4397.73 6696.75 5886.73 9776.21 25595.93 13062.17 25199.68 4281.67 18197.81 6997.88 98
mvs_anonymous88.68 13787.62 14291.86 13294.80 15181.69 13593.53 26594.92 19582.03 20178.87 22490.43 22875.77 13795.34 27285.04 14793.16 13998.55 48
AdaColmapbinary88.81 13487.61 14392.39 11599.33 479.95 17296.70 15195.58 16177.51 27583.05 18196.69 12061.90 25899.72 3584.29 15293.47 13597.50 129
114514_t88.79 13687.57 14492.45 11298.21 6081.74 13296.99 12695.45 16975.16 29382.48 18495.69 13668.59 21498.50 13080.33 18895.18 11797.10 148
HQP-MVS87.91 15987.55 14588.98 20892.08 23078.48 21097.63 7194.80 20490.52 2882.30 18794.56 16865.40 23397.32 17987.67 12883.01 21891.13 231
baseline188.85 13387.49 14692.93 9395.21 13786.85 2795.47 21394.61 21787.29 8283.11 18094.99 16280.70 6596.89 20382.28 17873.72 26795.05 198
CLD-MVS87.97 15787.48 14789.44 20092.16 22880.54 16098.14 3594.92 19591.41 1779.43 21995.40 14462.34 24997.27 18490.60 9582.90 22190.50 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-w/o88.24 15187.47 14890.54 17195.03 14578.54 20997.41 9493.82 25484.08 15678.23 23094.51 17069.34 21197.21 18680.21 19194.58 12395.87 183
1112_ss88.60 14187.47 14892.00 12893.21 19480.97 14896.47 16192.46 29983.64 17180.86 20497.30 9480.24 7197.62 15977.60 21585.49 20297.40 135
tpmrst88.36 14787.38 15091.31 14894.36 16579.92 17387.32 32795.26 18385.32 12088.34 12786.13 29180.60 6696.70 21383.78 15885.34 20597.30 141
PLCcopyleft83.97 788.00 15687.38 15089.83 19498.02 6976.46 25897.16 11094.43 22779.26 25381.98 19496.28 12469.36 21099.27 7777.71 21492.25 14893.77 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ECVR-MVScopyleft88.35 14887.25 15291.65 13893.54 18579.40 18796.56 15790.78 32486.78 9585.57 15095.25 14657.25 28997.56 16284.73 15094.80 12097.98 91
131488.94 12987.20 15394.17 4293.21 19485.73 4293.33 26996.64 7682.89 18675.98 25896.36 12366.83 22599.39 6783.52 16996.02 10797.39 136
mvs-test186.83 17287.17 15485.81 27091.96 23665.24 33997.90 5393.34 28185.57 11384.51 16395.14 15561.99 25597.19 18883.55 16590.55 15995.00 199
tfpn200view988.48 14387.15 15592.47 11196.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19494.17 211
thres40088.42 14687.15 15592.23 12096.21 11185.30 5297.44 8798.85 283.37 17583.99 16793.82 18575.36 15097.93 14669.04 28186.24 19493.45 224
IB-MVS85.34 488.67 13887.14 15793.26 7693.12 20084.32 7398.76 1797.27 1887.19 8879.36 22090.45 22783.92 4198.53 12984.41 15169.79 29496.93 152
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HQP_MVS87.50 16287.09 15888.74 21491.86 24077.96 23097.18 10694.69 20889.89 3681.33 19994.15 17864.77 23897.30 18187.08 13282.82 22290.96 233
test111188.11 15387.04 15991.35 14793.15 19778.79 20596.57 15590.78 32486.88 9385.04 15495.20 15057.23 29097.39 17683.88 15694.59 12297.87 100
VDD-MVS88.28 15087.02 16092.06 12695.09 14080.18 17097.55 7994.45 22683.09 18089.10 11895.92 13247.97 32498.49 13193.08 6786.91 18797.52 128
thres100view90088.30 14986.95 16192.33 11796.10 11584.90 6597.14 11298.85 282.69 19183.41 17593.66 18875.43 14797.93 14669.04 28186.24 19494.17 211
Fast-Effi-MVS+87.93 15886.94 16290.92 16094.04 17279.16 19498.26 3193.72 26381.29 20983.94 17092.90 19569.83 20996.68 21476.70 22591.74 15396.93 152
Test_1112_low_res88.03 15586.73 16391.94 13093.15 19780.88 15096.44 16692.41 30083.59 17480.74 20691.16 21580.18 7297.59 16077.48 21885.40 20397.36 137
thres600view788.06 15486.70 16492.15 12396.10 11585.17 5897.14 11298.85 282.70 19083.41 17593.66 18875.43 14797.82 15367.13 29085.88 19893.45 224
UGNet87.73 16086.55 16591.27 15195.16 13979.11 19696.35 17396.23 12488.14 6587.83 13390.48 22550.65 31499.09 10080.13 19294.03 12695.60 189
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
RRT_test8_iter0587.14 16586.41 16689.32 20294.41 16381.10 14597.06 12395.33 17984.67 13976.27 25390.48 22583.60 4496.33 22485.10 14570.78 28390.53 238
tpm287.35 16486.26 16790.62 16892.93 20578.67 20788.06 32295.99 13979.33 24987.40 13586.43 28680.28 7096.40 22180.23 19085.73 20196.79 158
FIs86.73 17686.10 16888.61 21690.05 27080.21 16896.14 18696.95 3585.56 11678.37 22992.30 19976.73 12195.28 27679.51 19779.27 24090.35 241
RRT_MVS86.89 16985.96 16989.68 19995.01 14684.13 7796.33 17594.98 19384.20 15580.10 21592.07 20270.52 20495.01 29183.30 17177.14 25589.91 253
BH-untuned86.95 16885.94 17089.99 18694.52 15877.46 24396.78 14393.37 28081.80 20476.62 24693.81 18766.64 22697.02 19576.06 23393.88 13195.48 192
EPMVS87.47 16385.90 17192.18 12295.41 13182.26 11687.00 32996.28 12185.88 10884.23 16485.57 29775.07 15796.26 22771.14 27392.50 14498.03 83
AUN-MVS86.25 18285.57 17288.26 22493.57 18473.38 29095.45 21495.88 14683.94 16185.47 15194.21 17673.70 17596.67 21583.54 16764.41 33194.73 207
CVMVSNet84.83 20185.57 17282.63 31291.55 24460.38 35395.13 22695.03 19180.60 22082.10 19394.71 16566.40 22890.19 34874.30 25090.32 16097.31 140
nrg03086.79 17485.43 17490.87 16288.76 28585.34 4997.06 12394.33 23184.31 15080.45 20991.98 20372.36 18596.36 22388.48 12271.13 28090.93 235
FC-MVSNet-test85.96 18485.39 17587.66 23689.38 28278.02 22795.65 20896.87 4185.12 12877.34 23591.94 20676.28 13094.74 29677.09 22078.82 24490.21 245
CNLPA86.96 16785.37 17691.72 13797.59 8379.34 19097.21 10291.05 31974.22 30078.90 22296.75 11867.21 22298.95 11074.68 24590.77 15896.88 156
BH-RMVSNet86.84 17185.28 17791.49 14495.35 13380.26 16796.95 13392.21 30182.86 18881.77 19895.46 14359.34 27197.64 15869.79 27993.81 13296.57 166
GeoE86.36 17985.20 17889.83 19493.17 19676.13 26397.53 8092.11 30279.58 24580.99 20294.01 18166.60 22796.17 23173.48 25789.30 16597.20 146
miper_enhance_ethall85.95 18585.20 17888.19 22894.85 15079.76 17696.00 19094.06 24582.98 18577.74 23388.76 24879.42 7795.46 26880.58 18672.42 27589.36 264
EI-MVSNet85.80 18785.20 17887.59 23891.55 24477.41 24495.13 22695.36 17580.43 22780.33 21194.71 16573.72 17395.97 23676.96 22378.64 24689.39 259
XVG-OURS-SEG-HR85.74 18985.16 18187.49 24390.22 26671.45 31291.29 30094.09 24381.37 20883.90 17195.22 14860.30 26497.53 16885.58 14284.42 20993.50 222
PatchmatchNetpermissive86.83 17285.12 18291.95 12994.12 16982.27 11586.55 33395.64 15984.59 14282.98 18284.99 30977.26 11095.96 23968.61 28591.34 15597.64 119
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
OPM-MVS85.84 18685.10 18388.06 22988.34 29177.83 23695.72 20494.20 23587.89 7280.45 20994.05 18058.57 27697.26 18583.88 15682.76 22489.09 270
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PCF-MVS84.09 586.77 17585.00 18492.08 12492.06 23383.07 10192.14 29094.47 22479.63 24476.90 24294.78 16471.15 19899.20 8872.87 25991.05 15693.98 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ab-mvs87.08 16684.94 18593.48 7093.34 19383.67 8788.82 31495.70 15581.18 21084.55 16290.14 23462.72 24798.94 11285.49 14382.54 22697.85 102
TR-MVS86.30 18084.93 18690.42 17394.63 15477.58 24196.57 15593.82 25480.30 23082.42 18695.16 15358.74 27597.55 16474.88 24387.82 18196.13 179
Effi-MVS+-dtu84.61 20584.90 18783.72 30191.96 23663.14 34694.95 23393.34 28185.57 11379.79 21787.12 27261.99 25595.61 26283.55 16585.83 19992.41 227
UniMVSNet_NR-MVSNet85.49 19284.59 18888.21 22789.44 28179.36 18896.71 14996.41 10685.22 12478.11 23190.98 21976.97 11795.14 28379.14 20368.30 30890.12 247
VDDNet86.44 17884.51 18992.22 12191.56 24381.83 12897.10 11894.64 21569.50 32987.84 13295.19 15148.01 32397.92 15189.82 10786.92 18696.89 155
QAPM86.88 17084.51 18993.98 4694.04 17285.89 3897.19 10596.05 13773.62 30475.12 27095.62 13962.02 25499.74 3270.88 27496.06 10696.30 176
cascas86.50 17784.48 19192.55 11092.64 21285.95 3597.04 12595.07 18975.32 29180.50 20791.02 21754.33 30997.98 14586.79 13687.62 18293.71 220
tpm85.55 19184.47 19288.80 21390.19 26775.39 27688.79 31594.69 20884.83 13383.96 16985.21 30378.22 9794.68 29876.32 23178.02 25396.34 172
XVG-OURS85.18 19684.38 19387.59 23890.42 26471.73 30991.06 30394.07 24482.00 20283.29 17795.08 15956.42 29697.55 16483.70 16383.42 21493.49 223
PS-MVSNAJss84.91 20084.30 19486.74 25585.89 31774.40 28594.95 23394.16 23883.93 16376.45 24890.11 23571.04 20095.77 24983.16 17379.02 24390.06 251
UniMVSNet (Re)85.31 19584.23 19588.55 21789.75 27380.55 15996.72 14796.89 4085.42 11778.40 22888.93 24675.38 14995.52 26678.58 20768.02 31189.57 257
cl2285.11 19784.17 19687.92 23195.06 14478.82 20295.51 21194.22 23479.74 24276.77 24387.92 26175.96 13495.68 25579.93 19572.42 27589.27 265
X-MVStestdata86.26 18184.14 19792.63 10798.52 4280.29 16497.37 9696.44 10287.04 9191.38 8220.73 37377.24 11299.59 5190.46 9798.07 6298.02 84
GA-MVS85.79 18884.04 19891.02 15889.47 28080.27 16696.90 13694.84 20285.57 11380.88 20389.08 24256.56 29596.47 22077.72 21385.35 20496.34 172
VPA-MVSNet85.32 19483.83 19989.77 19790.25 26582.63 10796.36 17297.07 2683.03 18381.21 20189.02 24461.58 25996.31 22685.02 14870.95 28290.36 240
MDTV_nov1_ep1383.69 20094.09 17081.01 14686.78 33196.09 13483.81 16784.75 15884.32 31474.44 16596.54 21763.88 30685.07 206
TAPA-MVS81.61 1285.02 19883.67 20189.06 20596.79 10473.27 29495.92 19594.79 20674.81 29680.47 20896.83 11371.07 19998.19 14249.82 35392.57 14295.71 187
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PatchMatch-RL85.00 19983.66 20289.02 20795.86 12074.55 28292.49 28693.60 26879.30 25179.29 22191.47 20958.53 27798.45 13370.22 27892.17 15094.07 215
SCA85.63 19083.64 20391.60 14292.30 21981.86 12792.88 28295.56 16284.85 13282.52 18385.12 30758.04 28095.39 26973.89 25387.58 18497.54 124
OpenMVScopyleft79.58 1486.09 18383.62 20493.50 6890.95 25386.71 3097.44 8795.83 14975.35 29072.64 28995.72 13457.42 28899.64 4671.41 26895.85 11094.13 214
miper_ehance_all_eth84.57 20683.60 20587.50 24292.64 21278.25 21995.40 21793.47 27279.28 25276.41 24987.64 26476.53 12495.24 27878.58 20772.42 27589.01 275
LCM-MVSNet-Re83.75 21883.54 20684.39 29493.54 18564.14 34292.51 28584.03 35883.90 16466.14 32386.59 28067.36 22092.68 32384.89 14992.87 14096.35 171
LPG-MVS_test84.20 21383.49 20786.33 26190.88 25473.06 29595.28 21894.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
F-COLMAP84.50 20883.44 20887.67 23595.22 13672.22 29995.95 19393.78 25975.74 28876.30 25295.18 15259.50 26998.45 13372.67 26186.59 19092.35 228
DU-MVS84.57 20683.33 20988.28 22388.76 28579.36 18896.43 16895.41 17485.42 11778.11 23190.82 22067.61 21695.14 28379.14 20368.30 30890.33 242
ACMP81.66 1184.00 21483.22 21086.33 26191.53 24672.95 29795.91 19793.79 25883.70 17073.79 27792.22 20054.31 31096.89 20383.98 15579.74 23689.16 268
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
WR-MVS84.32 21182.96 21188.41 21989.38 28280.32 16396.59 15496.25 12383.97 16076.63 24590.36 22967.53 21894.86 29475.82 23770.09 29290.06 251
VPNet84.69 20482.92 21290.01 18589.01 28483.45 9196.71 14995.46 16885.71 11179.65 21892.18 20156.66 29496.01 23583.05 17567.84 31490.56 237
gg-mvs-nofinetune85.48 19382.90 21393.24 7794.51 16185.82 3979.22 34996.97 3361.19 35087.33 13753.01 36390.58 696.07 23286.07 13997.23 8397.81 106
test_part184.72 20282.85 21490.34 17695.73 12484.79 6896.75 14694.10 24279.05 26075.97 25989.51 23967.69 21595.94 24079.34 19967.50 31790.30 244
ACMM80.70 1383.72 21982.85 21486.31 26491.19 24972.12 30295.88 19894.29 23280.44 22577.02 24091.96 20455.24 30397.14 19279.30 20180.38 23289.67 256
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
bset_n11_16_dypcd84.35 21082.83 21688.91 20982.54 34182.07 11994.12 25493.47 27285.39 11978.55 22688.98 24562.23 25095.11 28586.75 13773.42 26989.55 258
IterMVS-LS83.93 21582.80 21787.31 24791.46 24777.39 24595.66 20793.43 27580.44 22575.51 26687.26 26973.72 17395.16 28276.99 22170.72 28589.39 259
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet384.71 20382.71 21890.70 16794.55 15687.71 2095.92 19594.67 21181.73 20575.82 26288.08 25966.99 22394.47 30171.23 27075.38 26189.91 253
c3_l83.80 21782.65 21987.25 24992.10 22977.74 23995.25 22193.04 29278.58 26476.01 25787.21 27175.25 15495.11 28577.54 21768.89 30288.91 281
Fast-Effi-MVS+-dtu83.33 22482.60 22085.50 27689.55 27869.38 32796.09 18991.38 31182.30 19675.96 26091.41 21056.71 29295.58 26475.13 24284.90 20791.54 229
test0.0.03 182.79 23582.48 22183.74 30086.81 30472.22 29996.52 15895.03 19183.76 16873.00 28593.20 19172.30 18788.88 35164.15 30577.52 25490.12 247
test_djsdf83.00 23382.45 22284.64 28784.07 33669.78 32394.80 23794.48 22280.74 21775.41 26887.70 26361.32 26195.10 28783.77 15979.76 23489.04 273
dp84.30 21282.31 22390.28 17894.24 16777.97 22986.57 33295.53 16379.94 23980.75 20585.16 30571.49 19696.39 22263.73 30783.36 21596.48 168
cl____83.27 22582.12 22486.74 25592.20 22475.95 27095.11 22893.27 28478.44 26774.82 27287.02 27474.19 16795.19 28074.67 24669.32 29889.09 270
DIV-MVS_self_test83.27 22582.12 22486.74 25592.19 22575.92 27195.11 22893.26 28578.44 26774.81 27387.08 27374.19 16795.19 28074.66 24769.30 29989.11 269
eth_miper_zixun_eth83.12 22982.01 22686.47 26091.85 24274.80 27994.33 24693.18 28779.11 25575.74 26587.25 27072.71 18295.32 27476.78 22467.13 32189.27 265
XXY-MVS83.84 21682.00 22789.35 20187.13 30281.38 13995.72 20494.26 23380.15 23475.92 26190.63 22361.96 25796.52 21878.98 20573.28 27390.14 246
Anonymous20240521184.41 20981.93 22891.85 13496.78 10578.41 21497.44 8791.34 31470.29 32584.06 16594.26 17441.09 34698.96 10779.46 19882.65 22598.17 71
v2v48283.46 22281.86 22988.25 22586.19 31179.65 18296.34 17494.02 24681.56 20777.32 23688.23 25665.62 23096.03 23377.77 21169.72 29689.09 270
MS-PatchMatch83.05 23081.82 23086.72 25989.64 27679.10 19794.88 23594.59 21979.70 24370.67 30189.65 23750.43 31696.82 20870.82 27795.99 10884.25 340
TranMVSNet+NR-MVSNet83.24 22781.71 23187.83 23287.71 29878.81 20496.13 18894.82 20384.52 14376.18 25690.78 22264.07 24194.60 29974.60 24866.59 32690.09 249
MVP-Stereo82.65 23881.67 23285.59 27586.10 31478.29 21793.33 26992.82 29477.75 27269.17 31187.98 26059.28 27295.76 25071.77 26596.88 9382.73 348
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
D2MVS82.67 23781.55 23386.04 26887.77 29776.47 25795.21 22296.58 8482.66 19270.26 30485.46 30060.39 26395.80 24876.40 22979.18 24185.83 330
V4283.04 23181.53 23487.57 24086.27 31079.09 19895.87 19994.11 24180.35 22977.22 23886.79 27865.32 23596.02 23477.74 21270.14 28887.61 305
NR-MVSNet83.35 22381.52 23588.84 21188.76 28581.31 14194.45 24295.16 18584.65 14067.81 31390.82 22070.36 20694.87 29374.75 24466.89 32490.33 242
tpm cat183.63 22081.38 23690.39 17493.53 19078.19 22585.56 33995.09 18770.78 32378.51 22783.28 32274.80 15997.03 19466.77 29184.05 21095.95 180
CR-MVSNet83.53 22181.36 23790.06 18490.16 26879.75 17779.02 35191.12 31684.24 15482.27 19180.35 33675.45 14593.67 31563.37 31086.25 19296.75 162
v114482.90 23481.27 23887.78 23486.29 30979.07 19996.14 18693.93 24880.05 23677.38 23486.80 27765.50 23195.93 24275.21 24170.13 28988.33 291
jajsoiax82.12 24681.15 23985.03 28184.19 33470.70 31594.22 25293.95 24783.07 18173.48 27989.75 23649.66 31995.37 27182.24 17979.76 23489.02 274
v14882.41 24380.89 24086.99 25386.18 31276.81 25496.27 17893.82 25480.49 22475.28 26986.11 29267.32 22195.75 25175.48 23967.03 32388.42 289
pmmvs482.54 23980.79 24187.79 23386.11 31380.49 16293.55 26493.18 28777.29 27873.35 28189.40 24165.26 23695.05 29075.32 24073.61 26887.83 299
tpmvs83.04 23180.77 24289.84 19395.43 13077.96 23085.59 33895.32 18075.31 29276.27 25383.70 31973.89 17097.41 17559.53 32181.93 22894.14 213
v14419282.43 24080.73 24387.54 24185.81 31878.22 22095.98 19193.78 25979.09 25677.11 23986.49 28264.66 24095.91 24374.20 25169.42 29788.49 285
mvs_tets81.74 24980.71 24484.84 28284.22 33370.29 31893.91 25793.78 25982.77 18973.37 28089.46 24047.36 32895.31 27581.99 18079.55 23988.92 280
miper_lstm_enhance81.66 25280.66 24584.67 28691.19 24971.97 30591.94 29293.19 28677.86 27172.27 29285.26 30173.46 17693.42 31873.71 25667.05 32288.61 283
Anonymous2024052983.15 22880.60 24690.80 16395.74 12278.27 21896.81 14194.92 19560.10 35581.89 19692.54 19845.82 33198.82 11779.25 20278.32 25195.31 196
v119282.31 24480.55 24787.60 23785.94 31578.47 21395.85 20193.80 25779.33 24976.97 24186.51 28163.33 24595.87 24473.11 25870.13 28988.46 287
FMVSNet282.79 23580.44 24889.83 19492.66 20985.43 4895.42 21594.35 23079.06 25774.46 27487.28 26756.38 29794.31 30469.72 28074.68 26489.76 255
GBi-Net82.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
test182.42 24180.43 24988.39 22092.66 20981.95 12094.30 24893.38 27779.06 25775.82 26285.66 29356.38 29793.84 31171.23 27075.38 26189.38 261
v192192082.02 24780.23 25187.41 24485.62 31977.92 23395.79 20393.69 26478.86 26176.67 24486.44 28462.50 24895.83 24672.69 26069.77 29588.47 286
WR-MVS_H81.02 25880.09 25283.79 29888.08 29571.26 31494.46 24196.54 9080.08 23572.81 28886.82 27670.36 20692.65 32464.18 30467.50 31787.46 310
CP-MVSNet81.01 25980.08 25383.79 29887.91 29670.51 31694.29 25195.65 15780.83 21572.54 29188.84 24763.71 24292.32 32768.58 28668.36 30788.55 284
Baseline_NR-MVSNet81.22 25780.07 25484.68 28585.32 32575.12 27896.48 16088.80 33976.24 28777.28 23786.40 28767.61 21694.39 30375.73 23866.73 32584.54 337
v881.88 24880.06 25587.32 24686.63 30579.04 20094.41 24393.65 26678.77 26273.19 28485.57 29766.87 22495.81 24773.84 25567.61 31687.11 313
anonymousdsp80.98 26079.97 25684.01 29581.73 34370.44 31792.49 28693.58 27077.10 28272.98 28686.31 28857.58 28494.90 29279.32 20078.63 24886.69 318
LS3D82.22 24579.94 25789.06 20597.43 9074.06 28893.20 27692.05 30361.90 34673.33 28295.21 14959.35 27099.21 8454.54 34192.48 14593.90 218
v124081.70 25079.83 25887.30 24885.50 32077.70 24095.48 21293.44 27478.46 26676.53 24786.44 28460.85 26295.84 24571.59 26770.17 28788.35 290
pmmvs581.34 25579.54 25986.73 25885.02 32776.91 25296.22 18191.65 30977.65 27373.55 27888.61 25055.70 30094.43 30274.12 25273.35 27288.86 282
v1081.43 25479.53 26087.11 25186.38 30678.87 20194.31 24793.43 27577.88 27073.24 28385.26 30165.44 23295.75 25172.14 26467.71 31586.72 317
PS-CasMVS80.27 26579.18 26183.52 30587.56 30069.88 32194.08 25595.29 18180.27 23272.08 29388.51 25459.22 27392.23 32967.49 28868.15 31088.45 288
IterMVS80.67 26279.16 26285.20 27989.79 27276.08 26492.97 28091.86 30580.28 23171.20 29785.14 30657.93 28391.34 33872.52 26270.74 28488.18 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.51 26479.10 26384.73 28489.63 27774.66 28092.98 27991.81 30780.05 23671.06 29985.18 30458.04 28091.40 33772.48 26370.70 28688.12 295
PVSNet_077.72 1581.70 25078.95 26489.94 19090.77 25976.72 25695.96 19296.95 3585.01 13070.24 30588.53 25352.32 31198.20 14186.68 13844.08 36394.89 200
UniMVSNet_ETH3D80.86 26178.75 26587.22 25086.31 30872.02 30391.95 29193.76 26273.51 30575.06 27190.16 23343.04 34095.66 25676.37 23078.55 24993.98 216
ADS-MVSNet81.26 25678.36 26689.96 18993.78 17879.78 17579.48 34793.60 26873.09 31080.14 21379.99 33962.15 25295.24 27859.49 32283.52 21294.85 201
DP-MVS81.47 25378.28 26791.04 15698.14 6378.48 21095.09 23186.97 34661.14 35171.12 29892.78 19759.59 26799.38 6853.11 34586.61 18995.27 197
PEN-MVS79.47 27278.26 26883.08 30886.36 30768.58 32993.85 25894.77 20779.76 24171.37 29588.55 25159.79 26592.46 32564.50 30365.40 32888.19 293
pm-mvs180.05 26678.02 26986.15 26685.42 32175.81 27295.11 22892.69 29777.13 28070.36 30387.43 26658.44 27895.27 27771.36 26964.25 33387.36 311
XVG-ACMP-BASELINE79.38 27377.90 27083.81 29784.98 32867.14 33689.03 31393.18 28780.26 23372.87 28788.15 25838.55 34996.26 22776.05 23478.05 25288.02 296
MSDG80.62 26377.77 27189.14 20493.43 19277.24 24791.89 29390.18 32869.86 32868.02 31291.94 20652.21 31298.84 11659.32 32483.12 21691.35 230
ADS-MVSNet279.57 27077.53 27285.71 27393.78 17872.13 30179.48 34786.11 35173.09 31080.14 21379.99 33962.15 25290.14 34959.49 32283.52 21294.85 201
v7n79.32 27477.34 27385.28 27884.05 33772.89 29893.38 26793.87 25275.02 29570.68 30084.37 31359.58 26895.62 26167.60 28767.50 31787.32 312
JIA-IIPM79.00 27677.20 27484.40 29389.74 27564.06 34375.30 35895.44 17062.15 34581.90 19559.08 36178.92 8695.59 26366.51 29585.78 20093.54 221
Anonymous2023121179.72 26977.19 27587.33 24595.59 12777.16 25195.18 22594.18 23759.31 35772.57 29086.20 29047.89 32595.66 25674.53 24969.24 30089.18 267
DTE-MVSNet78.37 27977.06 27682.32 31585.22 32667.17 33593.40 26693.66 26578.71 26370.53 30288.29 25559.06 27492.23 32961.38 31763.28 33787.56 307
EU-MVSNet76.92 29376.95 27776.83 33484.10 33554.73 36491.77 29592.71 29672.74 31369.57 30888.69 24958.03 28287.43 35664.91 30270.00 29388.33 291
PatchT79.75 26876.85 27888.42 21889.55 27875.49 27577.37 35594.61 21763.07 34282.46 18573.32 35475.52 14493.41 31951.36 34884.43 20896.36 170
MVS_030478.43 27876.70 27983.60 30388.22 29369.81 32292.91 28195.10 18672.32 31778.71 22580.29 33833.78 35793.37 32068.77 28480.23 23387.63 303
RPSCF77.73 28576.63 28081.06 32088.66 28955.76 36287.77 32487.88 34464.82 34174.14 27692.79 19649.22 32096.81 20967.47 28976.88 25690.62 236
FMVSNet179.50 27176.54 28188.39 22088.47 29081.95 12094.30 24893.38 27773.14 30972.04 29485.66 29343.86 33493.84 31165.48 29972.53 27489.38 261
USDC78.65 27776.25 28285.85 26987.58 29974.60 28189.58 30990.58 32784.05 15763.13 33588.23 25640.69 34896.86 20766.57 29475.81 25986.09 326
OurMVSNet-221017-077.18 29176.06 28380.55 32383.78 33860.00 35590.35 30591.05 31977.01 28466.62 32187.92 26147.73 32694.03 30871.63 26668.44 30687.62 304
MIMVSNet79.18 27575.99 28488.72 21587.37 30180.66 15679.96 34691.82 30677.38 27774.33 27581.87 32841.78 34390.74 34466.36 29783.10 21794.76 203
RPMNet79.85 26775.92 28591.64 13990.16 26879.75 17779.02 35195.44 17058.43 35982.27 19172.55 35573.03 18098.41 13546.10 35986.25 19296.75 162
LTVRE_ROB73.68 1877.99 28275.74 28684.74 28390.45 26372.02 30386.41 33491.12 31672.57 31566.63 32087.27 26854.95 30696.98 19756.29 33675.98 25785.21 334
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
tfpnnormal78.14 28175.42 28786.31 26488.33 29279.24 19194.41 24396.22 12573.51 30569.81 30785.52 29955.43 30195.75 25147.65 35767.86 31383.95 343
our_test_377.90 28475.37 28885.48 27785.39 32276.74 25593.63 26191.67 30873.39 30865.72 32584.65 31258.20 27993.13 32257.82 32867.87 31286.57 319
ACMH75.40 1777.99 28274.96 28987.10 25290.67 26076.41 25993.19 27791.64 31072.47 31663.44 33387.61 26543.34 33797.16 18958.34 32673.94 26687.72 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+76.62 1677.47 28874.94 29085.05 28091.07 25271.58 31193.26 27490.01 32971.80 31964.76 32888.55 25141.62 34496.48 21962.35 31371.00 28187.09 314
KD-MVS_2432*160077.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
miper_refine_blended77.63 28674.92 29185.77 27190.86 25679.44 18588.08 32093.92 24976.26 28567.05 31782.78 32472.15 18991.92 33261.53 31441.62 36485.94 328
Patchmatch-test78.25 28074.72 29388.83 21291.20 24874.10 28773.91 36188.70 34259.89 35666.82 31985.12 30778.38 9494.54 30048.84 35579.58 23897.86 101
Patchmtry77.36 28974.59 29485.67 27489.75 27375.75 27377.85 35491.12 31660.28 35371.23 29680.35 33675.45 14593.56 31757.94 32767.34 32087.68 302
CMPMVSbinary54.94 2175.71 30074.56 29579.17 32979.69 34955.98 36089.59 30893.30 28360.28 35353.85 35789.07 24347.68 32796.33 22476.55 22681.02 22985.22 333
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TransMVSNet (Re)76.94 29274.38 29684.62 28885.92 31675.25 27795.28 21889.18 33673.88 30367.22 31486.46 28359.64 26694.10 30759.24 32552.57 35484.50 338
SixPastTwentyTwo76.04 29674.32 29781.22 31984.54 33061.43 35291.16 30189.30 33577.89 26964.04 33086.31 28848.23 32194.29 30563.54 30963.84 33587.93 298
ppachtmachnet_test77.19 29074.22 29886.13 26785.39 32278.22 22093.98 25691.36 31371.74 32067.11 31684.87 31056.67 29393.37 32052.21 34664.59 33086.80 316
FMVSNet576.46 29574.16 29983.35 30790.05 27076.17 26289.58 30989.85 33071.39 32265.29 32780.42 33550.61 31587.70 35561.05 31969.24 30086.18 324
CL-MVSNet_self_test75.81 29874.14 30080.83 32278.33 35367.79 33294.22 25293.52 27177.28 27969.82 30681.54 33061.47 26089.22 35057.59 33053.51 35085.48 332
Patchmatch-RL test76.65 29474.01 30184.55 28977.37 35764.23 34178.49 35382.84 36278.48 26564.63 32973.40 35376.05 13391.70 33676.99 22157.84 34497.72 112
Anonymous2023120675.29 30173.64 30280.22 32480.75 34463.38 34593.36 26890.71 32673.09 31067.12 31583.70 31950.33 31790.85 34353.63 34470.10 29186.44 320
testgi74.88 30373.40 30379.32 32880.13 34861.75 34993.21 27586.64 34979.49 24766.56 32291.06 21635.51 35588.67 35256.79 33571.25 27987.56 307
AllTest75.92 29773.06 30484.47 29092.18 22667.29 33391.07 30284.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
COLMAP_ROBcopyleft73.24 1975.74 29973.00 30583.94 29692.38 21569.08 32891.85 29486.93 34761.48 34965.32 32690.27 23042.27 34296.93 20250.91 35075.63 26085.80 331
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DSMNet-mixed73.13 31072.45 30675.19 34077.51 35646.82 36785.09 34082.01 36367.61 33669.27 31081.33 33150.89 31386.28 35854.54 34183.80 21192.46 226
EG-PatchMatch MVS74.92 30272.02 30783.62 30283.76 33973.28 29393.62 26292.04 30468.57 33158.88 34883.80 31831.87 36195.57 26556.97 33478.67 24582.00 354
pmmvs674.65 30471.67 30883.60 30379.13 35169.94 32093.31 27390.88 32361.05 35265.83 32484.15 31643.43 33694.83 29566.62 29260.63 34186.02 327
K. test v373.62 30571.59 30979.69 32682.98 34059.85 35690.85 30488.83 33877.13 28058.90 34782.11 32643.62 33591.72 33565.83 29854.10 34987.50 309
test20.0372.36 31471.15 31075.98 33877.79 35459.16 35792.40 28889.35 33474.09 30161.50 34284.32 31448.09 32285.54 36150.63 35162.15 33983.24 344
LF4IMVS72.36 31470.82 31176.95 33379.18 35056.33 35986.12 33586.11 35169.30 33063.06 33686.66 27933.03 35992.25 32865.33 30068.64 30482.28 352
pmmvs-eth3d73.59 30670.66 31282.38 31376.40 36173.38 29089.39 31289.43 33372.69 31460.34 34677.79 34546.43 33091.26 34066.42 29657.06 34582.51 349
UnsupCasMVSNet_eth73.25 30970.57 31381.30 31877.53 35566.33 33787.24 32893.89 25180.38 22857.90 35281.59 32942.91 34190.56 34565.18 30148.51 35787.01 315
YYNet173.53 30870.43 31482.85 31084.52 33171.73 30991.69 29791.37 31267.63 33246.79 36081.21 33255.04 30590.43 34655.93 33759.70 34386.38 321
MDA-MVSNet_test_wron73.54 30770.43 31482.86 30984.55 32971.85 30691.74 29691.32 31567.63 33246.73 36181.09 33355.11 30490.42 34755.91 33859.76 34286.31 322
Anonymous2024052172.06 31669.91 31678.50 33077.11 35861.67 35191.62 29990.97 32165.52 33962.37 33879.05 34236.32 35290.96 34257.75 32968.52 30582.87 345
OpenMVS_ROBcopyleft68.52 2073.02 31169.57 31783.37 30680.54 34771.82 30793.60 26388.22 34362.37 34461.98 34083.15 32335.31 35695.47 26745.08 36075.88 25882.82 346
test_040272.68 31269.54 31882.09 31688.67 28871.81 30892.72 28486.77 34861.52 34862.21 33983.91 31743.22 33893.76 31434.60 36472.23 27880.72 356
KD-MVS_self_test70.97 31969.31 31975.95 33976.24 36355.39 36387.45 32590.94 32270.20 32662.96 33777.48 34644.01 33388.09 35361.25 31853.26 35184.37 339
TinyColmap72.41 31368.99 32082.68 31188.11 29469.59 32588.41 31885.20 35365.55 33857.91 35184.82 31130.80 36395.94 24051.38 34768.70 30382.49 351
MDA-MVSNet-bldmvs71.45 31767.94 32181.98 31785.33 32468.50 33092.35 28988.76 34070.40 32442.99 36281.96 32746.57 32991.31 33948.75 35654.39 34886.11 325
MVS-HIRNet71.36 31867.00 32284.46 29290.58 26169.74 32479.15 35087.74 34546.09 36261.96 34150.50 36445.14 33295.64 25953.74 34388.11 18088.00 297
PM-MVS69.32 32166.93 32376.49 33573.60 36555.84 36185.91 33679.32 36774.72 29761.09 34378.18 34421.76 36691.10 34170.86 27556.90 34682.51 349
MIMVSNet169.44 32066.65 32477.84 33176.48 36062.84 34787.42 32688.97 33766.96 33757.75 35379.72 34132.77 36085.83 36046.32 35863.42 33684.85 336
new-patchmatchnet68.85 32365.93 32577.61 33273.57 36663.94 34490.11 30788.73 34171.62 32155.08 35573.60 35240.84 34787.22 35751.35 34948.49 35881.67 355
TDRefinement69.20 32265.78 32679.48 32766.04 36962.21 34888.21 31986.12 35062.92 34361.03 34485.61 29633.23 35894.16 30655.82 33953.02 35282.08 353
UnsupCasMVSNet_bld68.60 32464.50 32780.92 32174.63 36467.80 33183.97 34192.94 29365.12 34054.63 35668.23 35935.97 35392.17 33160.13 32044.83 36182.78 347
new_pmnet66.18 32563.18 32875.18 34176.27 36261.74 35083.79 34284.66 35556.64 36051.57 35871.85 35831.29 36287.93 35449.98 35262.55 33875.86 359
pmmvs365.75 32662.18 32976.45 33667.12 36864.54 34088.68 31685.05 35454.77 36157.54 35473.79 35129.40 36486.21 35955.49 34047.77 35978.62 357
N_pmnet61.30 32760.20 33064.60 34584.32 33217.00 38091.67 29810.98 37961.77 34758.45 35078.55 34349.89 31891.83 33442.27 36263.94 33484.97 335
test_method56.77 32854.53 33163.49 34776.49 35940.70 37275.68 35774.24 36919.47 37048.73 35971.89 35719.31 36765.80 37057.46 33147.51 36083.97 342
FPMVS55.09 32952.93 33261.57 34855.98 37040.51 37383.11 34383.41 36137.61 36434.95 36571.95 35614.40 37076.95 36429.81 36565.16 32967.25 363
LCM-MVSNet52.52 33048.24 33365.35 34347.63 37541.45 37172.55 36283.62 36031.75 36537.66 36457.92 3629.19 37676.76 36549.26 35444.60 36277.84 358
EGC-MVSNET52.46 33147.56 33467.15 34281.98 34260.11 35482.54 34472.44 3700.11 3760.70 37774.59 34925.11 36583.26 36229.04 36661.51 34058.09 364
PMMVS250.90 33246.31 33564.67 34455.53 37146.67 36877.30 35671.02 37140.89 36334.16 36659.32 3609.83 37576.14 36740.09 36328.63 36771.21 360
Gipumacopyleft45.11 33442.05 33654.30 35080.69 34551.30 36635.80 36883.81 35928.13 36627.94 36834.53 36811.41 37476.70 36621.45 36854.65 34734.90 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt41.54 33541.93 33740.38 35320.10 37926.84 37661.93 36559.09 37514.81 37228.51 36780.58 33435.53 35448.33 37463.70 30813.11 37145.96 367
ANet_high46.22 33341.28 33861.04 34939.91 37746.25 36970.59 36376.18 36858.87 35823.09 36948.00 36612.58 37266.54 36928.65 36713.62 37070.35 361
PMVScopyleft34.80 2339.19 33635.53 33950.18 35129.72 37830.30 37559.60 36666.20 37426.06 36717.91 37149.53 3653.12 37774.09 36818.19 37049.40 35546.14 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 33832.39 34033.65 35453.35 37325.70 37774.07 36053.33 37721.08 36817.17 37233.63 37011.85 37354.84 37212.98 37114.04 36920.42 369
EMVS31.70 33931.45 34132.48 35550.72 37423.95 37874.78 35952.30 37820.36 36916.08 37331.48 37112.80 37153.60 37311.39 37213.10 37219.88 370
MVEpermissive35.65 2233.85 33729.49 34246.92 35241.86 37636.28 37450.45 36756.52 37618.75 37118.28 37037.84 3672.41 37858.41 37118.71 36920.62 36846.06 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k21.43 34028.57 3430.00 3590.00 3820.00 3830.00 37095.93 1440.00 3770.00 37897.66 7263.57 2430.00 3780.00 3760.00 3760.00 374
wuyk23d14.10 34113.89 34414.72 35655.23 37222.91 37933.83 3693.56 3804.94 3734.11 3742.28 3762.06 37919.66 37510.23 3738.74 3731.59 373
testmvs9.92 34212.94 3450.84 3580.65 3800.29 38293.78 2590.39 3810.42 3742.85 37515.84 3740.17 3810.30 3772.18 3740.21 3741.91 372
test1239.07 34311.73 3461.11 3570.50 3810.77 38189.44 3110.20 3820.34 3752.15 37610.72 3750.34 3800.32 3761.79 3750.08 3752.23 371
ab-mvs-re8.11 34410.81 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37897.30 940.00 3820.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.92 3457.89 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37771.04 2000.00 3780.00 3760.00 3760.00 374
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS198.51 4478.01 22898.13 3896.21 12683.04 18294.39 43
MSC_two_6792asdad97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
PC_three_145291.12 2198.33 298.42 2892.51 299.81 2098.96 299.37 199.70 3
No_MVS97.14 399.05 1092.19 496.83 4499.81 2098.08 698.81 2599.43 11
test_one_060198.91 2084.56 7196.70 6488.06 6696.57 1598.77 1288.04 19
eth-test20.00 382
eth-test0.00 382
ZD-MVS99.09 983.22 9796.60 8282.88 18793.61 5498.06 5182.93 5199.14 9595.51 3398.49 42
IU-MVS99.03 1685.34 4996.86 4392.05 1598.74 198.15 398.97 1799.42 13
OPU-MVS97.30 299.19 892.31 399.12 698.54 2292.06 399.84 1299.11 199.37 199.74 1
test_241102_TWO96.78 4888.72 5197.70 698.91 387.86 2099.82 1798.15 399.00 1599.47 9
test_241102_ONE99.03 1685.03 6196.78 4888.72 5197.79 498.90 688.48 1699.82 17
save fliter98.24 5783.34 9398.61 2396.57 8591.32 18
test_0728_THIRD88.38 5996.69 1298.76 1489.64 1299.76 2497.47 1398.84 2499.38 14
test_0728_SECOND95.14 1799.04 1586.14 3399.06 996.77 5499.84 1297.90 898.85 2299.45 10
test072699.05 1085.18 5499.11 896.78 4888.75 4997.65 898.91 387.69 21
GSMVS97.54 124
test_part298.90 2185.14 6096.07 20
sam_mvs177.59 10597.54 124
sam_mvs75.35 152
ambc76.02 33768.11 36751.43 36564.97 36489.59 33160.49 34574.49 35017.17 36992.46 32561.50 31652.85 35384.17 341
MTGPAbinary96.33 117
test_post185.88 33730.24 37273.77 17195.07 28973.89 253
test_post33.80 36976.17 13195.97 236
patchmatchnet-post77.09 34777.78 10495.39 269
GG-mvs-BLEND93.49 6994.94 14786.26 3181.62 34597.00 2988.32 12894.30 17391.23 596.21 23088.49 12197.43 7898.00 89
MTMP97.53 8068.16 372
gm-plane-assit92.27 22079.64 18384.47 14695.15 15497.93 14685.81 140
test9_res96.00 2599.03 1398.31 61
TEST998.64 3583.71 8597.82 5696.65 7384.29 15295.16 2898.09 4684.39 3499.36 74
test_898.63 3783.64 8897.81 5896.63 7884.50 14495.10 3098.11 4584.33 3599.23 80
agg_prior294.30 4699.00 1598.57 45
agg_prior98.59 3983.13 9896.56 8794.19 4599.16 93
TestCases84.47 29092.18 22667.29 33384.43 35667.63 33263.48 33190.18 23138.20 35097.16 18957.04 33273.37 27088.97 278
test_prior482.34 11497.75 65
test_prior298.37 2886.08 10394.57 4198.02 5283.14 4795.05 3898.79 27
test_prior93.09 8498.68 2981.91 12396.40 10999.06 10198.29 63
旧先验296.97 13174.06 30296.10 1997.76 15588.38 123
新几何296.42 169
新几何193.12 8297.44 8981.60 13796.71 6374.54 29891.22 8997.57 7879.13 8499.51 6077.40 21998.46 4398.26 66
旧先验197.39 9379.58 18496.54 9098.08 4984.00 3997.42 7997.62 121
无先验96.87 13796.78 4877.39 27699.52 5779.95 19398.43 53
原ACMM296.84 138
原ACMM191.22 15397.77 7778.10 22696.61 7981.05 21291.28 8797.42 8877.92 10198.98 10679.85 19698.51 3896.59 165
test22296.15 11378.41 21495.87 19996.46 10071.97 31889.66 10997.45 8476.33 12998.24 5898.30 62
testdata299.48 6276.45 228
segment_acmp82.69 56
testdata90.13 18295.92 11974.17 28696.49 9973.49 30794.82 3897.99 5578.80 8997.93 14683.53 16897.52 7498.29 63
testdata195.57 21087.44 79
test1294.25 3898.34 5285.55 4696.35 11692.36 6880.84 6399.22 8298.31 5697.98 91
plane_prior791.86 24077.55 242
plane_prior691.98 23577.92 23364.77 238
plane_prior594.69 20897.30 18187.08 13282.82 22290.96 233
plane_prior494.15 178
plane_prior377.75 23890.17 3481.33 199
plane_prior297.18 10689.89 36
plane_prior191.95 238
plane_prior77.96 23097.52 8390.36 3382.96 220
n20.00 383
nn0.00 383
door-mid79.75 366
lessismore_v079.98 32580.59 34658.34 35880.87 36458.49 34983.46 32143.10 33993.89 31063.11 31148.68 35687.72 300
LGP-MVS_train86.33 26190.88 25473.06 29594.13 23982.20 19776.31 25093.20 19154.83 30796.95 19983.72 16180.83 23088.98 276
test1196.50 96
door80.13 365
HQP5-MVS78.48 210
HQP-NCC92.08 23097.63 7190.52 2882.30 187
ACMP_Plane92.08 23097.63 7190.52 2882.30 187
BP-MVS87.67 128
HQP4-MVS82.30 18797.32 17991.13 231
HQP3-MVS94.80 20483.01 218
HQP2-MVS65.40 233
NP-MVS92.04 23478.22 22094.56 168
MDTV_nov1_ep13_2view81.74 13286.80 33080.65 21985.65 14974.26 16676.52 22796.98 150
ACMMP++_ref78.45 250
ACMMP++79.05 242
Test By Simon71.65 193
ITE_SJBPF82.38 31387.00 30365.59 33889.55 33279.99 23869.37 30991.30 21341.60 34595.33 27362.86 31274.63 26586.24 323
DeepMVS_CXcopyleft64.06 34678.53 35243.26 37068.11 37369.94 32738.55 36376.14 34818.53 36879.34 36343.72 36141.62 36469.57 362