This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1385.34 4796.86 4292.05 1598.74 198.15 298.97 1599.42 9
SMA-MVScopyleft94.70 1594.68 1594.76 2298.02 6485.94 3597.47 8396.77 5185.32 11497.92 298.70 1683.09 4799.84 1295.79 2499.08 898.49 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS95.88 496.22 394.87 1999.03 1385.03 5899.12 696.78 4588.72 5197.79 398.91 388.48 1499.82 1698.15 298.97 1599.74 1
test_241102_ONE99.03 1385.03 5896.78 4588.72 5197.79 398.90 688.48 1499.82 16
test_241102_TWO96.78 4588.72 5197.70 598.91 387.86 1799.82 1698.15 299.00 1399.47 7
test072699.05 1085.18 5199.11 896.78 4588.75 4997.65 698.91 387.69 18
TSAR-MVS + MP.94.79 1495.17 1293.64 5797.66 7584.10 7495.85 19696.42 10091.26 2097.49 796.80 11386.50 2398.49 12795.54 2999.03 1198.33 53
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS95.62 696.54 192.86 9298.31 4980.10 16797.42 9196.78 4592.20 1397.11 898.29 2893.46 199.10 9596.01 2099.30 399.38 10
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1299.31 587.69 1999.06 997.12 2294.66 396.79 998.78 1186.42 2499.95 397.59 999.18 599.00 23
DVP-MVS95.58 795.91 794.57 2699.05 1085.18 5199.06 996.46 9588.75 4996.69 1098.76 1287.69 1899.76 2097.90 598.85 2098.77 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 5996.69 1098.76 1289.64 1099.76 2097.47 1098.84 2299.38 10
SD-MVS94.84 1395.02 1394.29 3497.87 7084.61 6797.76 6296.19 12389.59 3896.66 1298.17 3684.33 3299.60 4696.09 1898.50 3798.66 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft95.32 995.55 894.64 2598.79 2184.87 6397.77 5896.74 5586.11 9596.54 1398.89 788.39 1699.74 2897.67 899.05 1099.31 14
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 998.26 196.26 10595.09 199.15 496.98 3093.39 996.45 1498.79 1090.17 799.99 189.33 11099.25 499.70 3
PS-MVSNAJ94.17 2593.52 3996.10 695.65 12192.35 298.21 3495.79 14592.42 1296.24 1598.18 3271.04 19699.17 8896.77 1597.39 7796.79 151
旧先验296.97 12974.06 29596.10 1697.76 15188.38 119
test_part298.90 1785.14 5796.07 17
xiu_mvs_v2_base93.92 3393.26 4295.91 895.07 13792.02 498.19 3595.68 15092.06 1496.01 1898.14 3770.83 19998.96 10396.74 1696.57 9696.76 154
ETH3 D test640095.56 895.41 1196.00 799.02 1689.42 798.75 1996.80 4487.28 8195.88 1998.95 285.92 2699.41 6297.15 1398.95 1899.18 20
HPM-MVS++copyleft95.32 995.48 1094.85 2098.62 3486.04 3297.81 5696.93 3692.45 1195.69 2098.50 2285.38 2799.85 1094.75 3999.18 598.65 38
NCCC95.63 595.94 694.69 2499.21 785.15 5699.16 396.96 3394.11 695.59 2198.64 1985.07 2899.91 495.61 2899.10 799.00 23
ETH3D-3000-0.194.43 1994.42 2294.45 2897.78 7185.78 3897.98 4696.53 8785.29 11795.45 2298.81 883.36 4299.38 6496.07 1998.53 3398.19 65
EPNet94.06 3094.15 2893.76 5097.27 9484.35 6898.29 3097.64 1394.57 495.36 2396.88 10879.96 7299.12 9491.30 8096.11 10097.82 99
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1294.64 1695.63 1097.55 8188.12 1399.06 996.39 10794.07 795.34 2497.80 6576.83 11599.87 897.08 1497.64 7098.89 26
TEST998.64 3183.71 8197.82 5496.65 6884.29 14695.16 2598.09 4384.39 3199.36 70
train_agg94.28 2294.45 2093.74 5198.64 3183.71 8197.82 5496.65 6884.50 13895.16 2598.09 4384.33 3299.36 7095.91 2398.96 1798.16 68
test_898.63 3383.64 8497.81 5696.63 7384.50 13895.10 2798.11 4284.33 3299.23 76
DeepPCF-MVS89.82 194.61 1696.17 489.91 18597.09 9770.21 31198.99 1596.69 6295.57 195.08 2899.23 186.40 2599.87 897.84 798.66 3099.65 4
xxxxxxxxxxxxxcwj94.38 2094.62 1793.68 5598.24 5283.34 8998.61 2492.69 29191.32 1895.07 2998.74 1482.93 4899.38 6495.42 3198.51 3498.32 54
SF-MVS94.17 2594.05 3094.55 2797.56 8085.95 3397.73 6496.43 9984.02 15295.07 2998.74 1482.93 4899.38 6495.42 3198.51 3498.32 54
APDe-MVS94.56 1794.75 1493.96 4598.84 2083.40 8898.04 4496.41 10185.79 10395.00 3198.28 2984.32 3599.18 8797.35 1198.77 2599.28 15
MVSFormer91.36 8490.57 8893.73 5393.00 19488.08 1494.80 23294.48 21780.74 21094.90 3297.13 10078.84 8595.10 28083.77 15297.46 7298.02 80
lupinMVS93.87 3693.58 3894.75 2393.00 19488.08 1499.15 495.50 16091.03 2294.90 3297.66 6978.84 8597.56 15894.64 4297.46 7298.62 40
9.1494.26 2798.10 6098.14 3696.52 8884.74 12994.83 3498.80 982.80 5199.37 6895.95 2298.42 42
testdata90.13 17695.92 11474.17 27896.49 9473.49 30094.82 3597.99 5278.80 8797.93 14283.53 16197.52 7198.29 59
testtj94.09 2994.08 2994.09 4299.28 683.32 9197.59 7396.61 7483.60 16794.77 3698.46 2482.72 5299.64 4295.29 3398.42 4299.32 13
CS-MVS-test93.32 4193.61 3692.46 10894.06 16682.39 10999.02 1394.92 18989.03 4594.70 3797.52 8179.57 7497.07 18795.74 2597.88 6597.93 91
APD-MVScopyleft93.61 3793.59 3793.69 5498.76 2283.26 9297.21 10096.09 12882.41 18894.65 3898.21 3181.96 5798.81 11494.65 4198.36 5099.01 22
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior394.03 3194.34 2493.09 8198.68 2581.91 11998.37 2896.40 10486.08 9794.57 3998.02 4983.14 4499.06 9795.05 3598.79 2398.29 59
test_prior298.37 2886.08 9794.57 3998.02 4983.14 4495.05 3598.79 23
ACMMP_NAP93.46 3993.23 4394.17 3997.16 9584.28 7196.82 13896.65 6886.24 9394.27 4197.99 5277.94 9899.83 1593.39 5498.57 3298.39 51
CS-MVS93.12 4493.27 4192.64 10293.86 17283.12 9698.85 1794.85 19688.61 5494.19 4297.42 8679.02 8397.02 18994.89 3797.77 6797.78 102
agg_prior194.10 2894.31 2593.48 6798.59 3583.13 9497.77 5896.56 8284.38 14294.19 4298.13 3884.66 3099.16 8995.74 2598.74 2798.15 70
agg_prior98.59 3583.13 9496.56 8294.19 4299.16 89
SteuartSystems-ACMMP94.13 2794.44 2193.20 7695.41 12681.35 13699.02 1396.59 7889.50 3994.18 4598.36 2783.68 4099.45 6094.77 3898.45 4098.81 29
Skip Steuart: Steuart Systems R&D Blog.
ETH3D cwj APD-0.1693.91 3593.76 3394.36 3196.70 10185.74 3997.22 9896.41 10183.94 15594.13 4698.69 1883.13 4699.37 6895.25 3498.39 4797.97 88
PHI-MVS93.59 3893.63 3593.48 6798.05 6381.76 12798.64 2297.13 2182.60 18694.09 4798.49 2380.35 6599.85 1094.74 4098.62 3198.83 28
TSAR-MVS + GP.94.35 2194.50 1893.89 4697.38 9183.04 9898.10 3995.29 17591.57 1693.81 4897.45 8286.64 2199.43 6196.28 1794.01 12199.20 18
CANet_DTU90.98 9190.04 9993.83 4894.76 14786.23 3096.32 17193.12 28493.11 1093.71 4996.82 11263.08 24299.48 5884.29 14795.12 11495.77 178
VNet92.11 6791.22 7994.79 2196.91 9886.98 2497.91 4997.96 986.38 9293.65 5095.74 13070.16 20498.95 10693.39 5488.87 16398.43 49
ZD-MVS99.09 983.22 9396.60 7782.88 18093.61 5198.06 4882.93 4899.14 9195.51 3098.49 38
xiu_mvs_v1_base_debu90.54 10089.54 11093.55 6292.31 20887.58 2096.99 12494.87 19387.23 8393.27 5297.56 7657.43 28198.32 13292.72 6693.46 12994.74 197
xiu_mvs_v1_base90.54 10089.54 11093.55 6292.31 20887.58 2096.99 12494.87 19387.23 8393.27 5297.56 7657.43 28198.32 13292.72 6693.46 12994.74 197
xiu_mvs_v1_base_debi90.54 10089.54 11093.55 6292.31 20887.58 2096.99 12494.87 19387.23 8393.27 5297.56 7657.43 28198.32 13292.72 6693.46 12994.74 197
DROMVSNet92.00 6992.32 6091.03 15193.66 17778.95 19598.22 3394.47 21987.62 7693.27 5297.17 9875.32 14996.91 19694.02 4897.11 8397.24 137
CDPH-MVS93.12 4492.91 4893.74 5198.65 3083.88 7697.67 6896.26 11783.00 17793.22 5698.24 3081.31 5899.21 8089.12 11198.74 2798.14 71
ETV-MVS92.72 5592.87 4992.28 11694.54 15281.89 12197.98 4695.21 17889.77 3793.11 5796.83 11077.23 11197.50 16595.74 2595.38 10997.44 125
MSLP-MVS++94.28 2294.39 2393.97 4498.30 5084.06 7598.64 2296.93 3690.71 2593.08 5898.70 1679.98 7199.21 8094.12 4699.07 998.63 39
alignmvs92.97 4892.26 6395.12 1695.54 12387.77 1798.67 2096.38 10888.04 6593.01 5997.45 8279.20 8198.60 12193.25 5988.76 16498.99 25
canonicalmvs92.27 6591.22 7995.41 1395.80 11688.31 1197.09 11794.64 21088.49 5792.99 6097.31 9072.68 17998.57 12393.38 5688.58 16799.36 12
jason92.73 5492.23 6494.21 3890.50 25487.30 2398.65 2195.09 18190.61 2692.76 6197.13 10075.28 15097.30 17493.32 5796.75 9598.02 80
jason: jason.
Regformer-194.00 3294.04 3193.87 4798.41 4384.29 7097.43 8997.04 2689.50 3992.75 6298.13 3882.60 5499.26 7593.55 5296.99 8598.06 77
Regformer-293.92 3394.01 3293.67 5698.41 4383.75 8097.43 8997.00 2889.43 4192.69 6398.13 3882.48 5599.22 7893.51 5396.99 8598.04 78
test1294.25 3598.34 4785.55 4496.35 11192.36 6480.84 6099.22 7898.31 5297.98 87
MG-MVS94.25 2493.72 3495.85 999.38 389.35 997.98 4698.09 889.99 3492.34 6596.97 10581.30 5998.99 10188.54 11598.88 1999.20 18
hse-mvs389.30 12188.95 11990.36 16995.07 13776.04 25796.96 13097.11 2390.39 3092.22 6695.10 15274.70 15798.86 11193.14 6165.89 32096.16 170
hse-mvs288.22 14988.21 12788.25 21993.54 18173.41 28195.41 21195.89 13990.39 3092.22 6694.22 16974.70 15796.66 20993.14 6164.37 32594.69 201
MCST-MVS96.17 396.12 596.32 599.42 289.36 898.94 1697.10 2495.17 292.11 6898.46 2487.33 2099.97 297.21 1299.31 299.63 5
SR-MVS92.16 6692.27 6291.83 13298.37 4678.41 20896.67 15095.76 14682.19 19291.97 6998.07 4776.44 12198.64 11893.71 4997.27 7998.45 48
region2R92.72 5592.70 5392.79 9598.68 2580.53 15797.53 7896.51 8985.22 11891.94 7097.98 5477.26 10799.67 4090.83 8798.37 4998.18 66
Effi-MVS+90.70 9689.90 10493.09 8193.61 17883.48 8695.20 21892.79 28983.22 17191.82 7195.70 13271.82 18797.48 16691.25 8193.67 12698.32 54
HFP-MVS92.89 4992.86 5092.98 8698.71 2381.12 13997.58 7496.70 6085.20 12091.75 7297.97 5678.47 9099.71 3290.95 8398.41 4498.12 73
#test#92.99 4792.99 4692.98 8698.71 2381.12 13997.77 5896.70 6085.75 10491.75 7297.97 5678.47 9099.71 3291.36 7998.41 4498.12 73
DeepC-MVS_fast89.06 294.48 1894.30 2695.02 1798.86 1985.68 4298.06 4296.64 7193.64 891.74 7498.54 2080.17 7099.90 592.28 7298.75 2699.49 6
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test117291.64 7692.00 6890.54 16598.20 5674.48 27596.45 16095.65 15181.97 19691.63 7598.02 4975.76 13498.61 11993.16 6097.17 8198.52 45
ACMMPR92.69 5792.67 5492.75 9698.66 2880.57 15497.58 7496.69 6285.20 12091.57 7697.92 5877.01 11299.67 4090.95 8398.41 4498.00 85
DELS-MVS94.98 1194.49 1996.44 496.42 10390.59 599.21 297.02 2794.40 591.46 7797.08 10283.32 4399.69 3692.83 6598.70 2999.04 21
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 5792.71 5192.63 10398.52 3880.29 16097.37 9496.44 9787.04 8891.38 7897.83 6477.24 10999.59 4790.46 9398.07 5898.02 80
X-MVStestdata86.26 17784.14 19392.63 10398.52 3880.29 16097.37 9496.44 9787.04 8891.38 7820.73 36677.24 10999.59 4790.46 9398.07 5898.02 80
112190.66 9789.82 10693.16 7897.39 8881.71 13093.33 26496.66 6774.45 29291.38 7897.55 7979.27 7899.52 5379.95 18698.43 4198.26 62
PMMVS89.46 11889.92 10388.06 22394.64 14869.57 31896.22 17694.95 18887.27 8291.37 8196.54 11965.88 22597.39 17088.54 11593.89 12397.23 138
Regformer-393.19 4293.19 4493.19 7798.10 6083.01 9997.08 11996.98 3088.98 4691.35 8297.89 5980.80 6199.23 7692.30 7195.20 11197.32 131
原ACMM191.22 14797.77 7278.10 22096.61 7481.05 20591.28 8397.42 8677.92 9998.98 10279.85 18998.51 3496.59 158
Regformer-493.06 4693.12 4592.89 9198.10 6082.20 11397.08 11996.92 3888.87 4891.23 8497.89 5980.57 6499.19 8592.21 7395.20 11197.29 135
新几何193.12 7997.44 8481.60 13396.71 5974.54 29191.22 8597.57 7579.13 8299.51 5677.40 21298.46 3998.26 62
UA-Net88.92 12888.48 12590.24 17394.06 16677.18 24293.04 27394.66 20787.39 7991.09 8693.89 17874.92 15598.18 13975.83 22991.43 14795.35 188
ZNCC-MVS92.75 5192.60 5693.23 7598.24 5281.82 12597.63 6996.50 9185.00 12591.05 8797.74 6778.38 9299.80 1990.48 9298.34 5198.07 76
APD-MVS_3200maxsize91.23 8891.35 7890.89 15697.89 6876.35 25396.30 17295.52 15979.82 23391.03 8897.88 6174.70 15798.54 12492.11 7596.89 8997.77 103
GST-MVS92.43 6492.22 6593.04 8498.17 5781.64 13297.40 9396.38 10884.71 13190.90 8997.40 8877.55 10499.76 2089.75 10497.74 6897.72 106
PGM-MVS91.93 7091.80 7192.32 11598.27 5179.74 17595.28 21397.27 1783.83 16090.89 9097.78 6676.12 12899.56 5188.82 11397.93 6497.66 111
SR-MVS-dyc-post91.29 8691.45 7790.80 15897.76 7376.03 25896.20 17895.44 16480.56 21590.72 9197.84 6275.76 13498.61 11991.99 7696.79 9397.75 104
RE-MVS-def91.18 8297.76 7376.03 25896.20 17895.44 16480.56 21590.72 9197.84 6273.36 17491.99 7696.79 9397.75 104
MP-MVScopyleft92.61 6092.67 5492.42 11198.13 5979.73 17697.33 9696.20 12185.63 10690.53 9397.66 6978.14 9699.70 3592.12 7498.30 5397.85 96
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 7790.37 9295.39 1496.12 10988.25 1290.22 30197.58 1488.33 6190.50 9491.96 19879.26 7999.06 9790.29 9889.07 16098.88 27
CP-MVS92.54 6292.60 5692.34 11398.50 4079.90 17098.40 2796.40 10484.75 12890.48 9598.09 4377.40 10699.21 8091.15 8298.23 5597.92 92
diffmvs91.17 8990.74 8792.44 11093.11 19382.50 10796.25 17593.62 26187.79 7190.40 9695.93 12773.44 17397.42 16893.62 5192.55 13697.41 127
MVS_Test90.29 10789.18 11493.62 5995.23 13084.93 6194.41 23894.66 20784.31 14490.37 9791.02 21175.13 15297.82 14983.11 16794.42 11798.12 73
zzz-MVS92.74 5292.71 5192.86 9297.90 6680.85 14796.47 15796.33 11287.92 6790.20 9898.18 3276.71 11899.76 2092.57 6998.09 5697.96 89
MTAPA92.45 6392.31 6192.86 9297.90 6680.85 14792.88 27796.33 11287.92 6790.20 9898.18 3276.71 11899.76 2092.57 6998.09 5697.96 89
test_yl91.46 8190.53 8994.24 3697.41 8685.18 5198.08 4097.72 1080.94 20689.85 10096.14 12375.61 13698.81 11490.42 9688.56 16898.74 31
DCV-MVSNet91.46 8190.53 8994.24 3697.41 8685.18 5198.08 4097.72 1080.94 20689.85 10096.14 12375.61 13698.81 11490.42 9688.56 16898.74 31
WTY-MVS92.65 5991.68 7395.56 1196.00 11288.90 1098.23 3297.65 1288.57 5589.82 10297.22 9679.29 7799.06 9789.57 10688.73 16598.73 35
MVS_111021_HR93.41 4093.39 4093.47 7097.34 9282.83 10197.56 7698.27 689.16 4489.71 10397.14 9979.77 7399.56 5193.65 5097.94 6298.02 80
sss90.87 9489.96 10193.60 6094.15 16383.84 7997.14 11098.13 785.93 10189.68 10496.09 12571.67 18899.30 7287.69 12389.16 15997.66 111
test22296.15 10878.41 20895.87 19496.46 9571.97 31189.66 10597.45 8276.33 12598.24 5498.30 58
LFMVS89.27 12287.64 13894.16 4197.16 9585.52 4597.18 10494.66 20779.17 24789.63 10696.57 11855.35 29698.22 13689.52 10889.54 15698.74 31
CostFormer89.08 12488.39 12691.15 14893.13 19179.15 18988.61 31296.11 12783.14 17389.58 10786.93 26983.83 3996.87 19988.22 12185.92 19097.42 126
PVSNet_BlendedMVS90.05 10989.96 10190.33 17197.47 8283.86 7798.02 4596.73 5687.98 6689.53 10889.61 23276.42 12299.57 4994.29 4479.59 23087.57 299
PVSNet_Blended93.13 4392.98 4793.57 6197.47 8283.86 7799.32 196.73 5691.02 2389.53 10896.21 12276.42 12299.57 4994.29 4495.81 10797.29 135
HPM-MVScopyleft91.62 7891.53 7691.89 12897.88 6979.22 18696.99 12495.73 14882.07 19389.50 11097.19 9775.59 13898.93 10990.91 8597.94 6297.54 118
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
abl_689.80 11289.71 10990.07 17796.53 10275.52 26694.48 23595.04 18481.12 20489.22 11197.00 10468.83 20898.96 10389.86 10195.27 11095.73 179
EI-MVSNet-Vis-set91.84 7291.77 7292.04 12497.60 7781.17 13896.61 15196.87 4088.20 6389.19 11297.55 7978.69 8999.14 9190.29 9890.94 15095.80 177
MP-MVS-pluss92.58 6192.35 5993.29 7297.30 9382.53 10596.44 16296.04 13284.68 13289.12 11398.37 2677.48 10599.74 2893.31 5898.38 4897.59 117
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 14787.02 15692.06 12395.09 13580.18 16697.55 7794.45 22283.09 17489.10 11495.92 12947.97 31898.49 12793.08 6486.91 18097.52 122
baseline90.76 9590.10 9892.74 9792.90 19882.56 10494.60 23494.56 21587.69 7489.06 11595.67 13473.76 16897.51 16490.43 9592.23 14298.16 68
EIA-MVS91.73 7392.05 6790.78 16094.52 15376.40 25298.06 4295.34 17289.19 4388.90 11697.28 9477.56 10397.73 15290.77 8896.86 9298.20 64
HPM-MVS_fast90.38 10690.17 9791.03 15197.61 7677.35 23897.15 10995.48 16179.51 23988.79 11796.90 10671.64 19098.81 11487.01 13197.44 7496.94 144
PAPM92.87 5092.40 5894.30 3392.25 21587.85 1696.40 16696.38 10891.07 2188.72 11896.90 10682.11 5697.37 17190.05 10097.70 6997.67 110
MVS_111021_LR91.60 7991.64 7591.47 14195.74 11778.79 20096.15 18096.77 5188.49 5788.64 11997.07 10372.33 18299.19 8593.13 6396.48 9796.43 162
casdiffmvs90.95 9290.39 9192.63 10392.82 19982.53 10596.83 13794.47 21987.69 7488.47 12095.56 13874.04 16597.54 16290.90 8692.74 13497.83 98
mPP-MVS91.88 7191.82 7092.07 12298.38 4578.63 20297.29 9796.09 12885.12 12288.45 12197.66 6975.53 13999.68 3889.83 10298.02 6197.88 93
PAPR92.74 5292.17 6694.45 2898.89 1884.87 6397.20 10296.20 12187.73 7388.40 12298.12 4178.71 8899.76 2087.99 12296.28 9898.74 31
tpmrst88.36 14587.38 14891.31 14294.36 16079.92 16987.32 32295.26 17785.32 11488.34 12386.13 28580.60 6396.70 20683.78 15185.34 19897.30 134
GG-mvs-BLEND93.49 6694.94 14286.26 2981.62 33997.00 2888.32 12494.30 16791.23 396.21 22388.49 11797.43 7598.00 85
EI-MVSNet-UG-set91.35 8591.22 7991.73 13397.39 8880.68 15196.47 15796.83 4387.92 6788.30 12597.36 8977.84 10099.13 9389.43 10989.45 15795.37 187
MAR-MVS90.63 9890.22 9491.86 12998.47 4278.20 21897.18 10496.61 7483.87 15988.18 12698.18 3268.71 20999.75 2683.66 15797.15 8297.63 114
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 7490.85 8494.34 3299.50 185.00 6098.51 2695.96 13580.57 21488.08 12797.63 7476.84 11499.89 785.67 13794.88 11598.13 72
VDDNet86.44 17484.51 18592.22 11891.56 23581.83 12497.10 11694.64 21069.50 32287.84 12895.19 14548.01 31797.92 14789.82 10386.92 17996.89 148
UGNet87.73 15686.55 16191.27 14595.16 13479.11 19096.35 16896.23 11988.14 6487.83 12990.48 21950.65 30899.09 9680.13 18594.03 11995.60 182
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm287.35 16086.26 16390.62 16392.93 19778.67 20188.06 31795.99 13379.33 24287.40 13086.43 28080.28 6796.40 21480.23 18385.73 19496.79 151
CPTT-MVS89.72 11489.87 10589.29 19798.33 4873.30 28497.70 6695.35 17175.68 28287.40 13097.44 8570.43 20198.25 13589.56 10796.90 8896.33 167
gg-mvs-nofinetune85.48 18982.90 20993.24 7494.51 15685.82 3779.22 34396.97 3261.19 34387.33 13253.01 35690.58 496.07 22586.07 13597.23 8097.81 100
CHOSEN 280x42091.71 7591.85 6991.29 14494.94 14282.69 10287.89 31896.17 12485.94 10087.27 13394.31 16690.27 695.65 25194.04 4795.86 10595.53 184
EPNet_dtu87.65 15787.89 13286.93 24894.57 15071.37 30596.72 14596.50 9188.56 5687.12 13495.02 15475.91 13294.01 30266.62 28590.00 15495.42 186
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 13687.82 13491.24 14692.68 20078.82 19796.95 13193.85 24787.55 7787.07 13595.13 15063.43 24097.21 17977.58 20996.15 9997.70 109
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DWT-MVSNet_test90.52 10389.80 10792.70 10095.73 11982.20 11393.69 25596.55 8488.34 6087.04 13695.34 14286.53 2297.55 15976.32 22488.66 16698.34 52
thisisatest051590.95 9290.26 9393.01 8594.03 17084.27 7297.91 4996.67 6483.18 17286.87 13795.51 13988.66 1397.85 14880.46 18089.01 16196.92 147
TESTMET0.1,189.83 11189.34 11391.31 14292.54 20680.19 16597.11 11396.57 8086.15 9486.85 13891.83 20279.32 7696.95 19281.30 17592.35 14096.77 153
PVSNet_Blended_VisFu91.24 8790.77 8692.66 10195.09 13582.40 10897.77 5895.87 14288.26 6286.39 13993.94 17776.77 11699.27 7388.80 11494.00 12296.31 168
API-MVS90.18 10888.97 11793.80 4998.66 2882.95 10097.50 8295.63 15475.16 28686.31 14097.69 6872.49 18099.90 581.26 17696.07 10198.56 42
test-LLR88.48 14187.98 13189.98 18192.26 21377.23 24097.11 11395.96 13583.76 16286.30 14191.38 20572.30 18396.78 20480.82 17791.92 14495.94 174
test-mter88.95 12688.60 12389.98 18192.26 21377.23 24097.11 11395.96 13585.32 11486.30 14191.38 20576.37 12496.78 20480.82 17791.92 14495.94 174
PAPM_NR91.46 8190.82 8593.37 7198.50 4081.81 12695.03 22796.13 12584.65 13486.10 14397.65 7379.24 8099.75 2683.20 16596.88 9098.56 42
MDTV_nov1_ep13_2view81.74 12886.80 32580.65 21285.65 14474.26 16276.52 22096.98 143
AUN-MVS86.25 17885.57 16888.26 21893.57 18073.38 28295.45 20995.88 14083.94 15585.47 14594.21 17073.70 17196.67 20883.54 16064.41 32494.73 200
PVSNet82.34 989.02 12587.79 13592.71 9995.49 12481.50 13497.70 6697.29 1687.76 7285.47 14595.12 15156.90 28598.90 11080.33 18194.02 12097.71 108
EPP-MVSNet89.76 11389.72 10889.87 18693.78 17376.02 26097.22 9896.51 8979.35 24185.11 14795.01 15584.82 2997.10 18687.46 12688.21 17296.50 160
OMC-MVS88.80 13388.16 12990.72 16195.30 12977.92 22694.81 23194.51 21686.80 9084.97 14896.85 10967.53 21498.60 12185.08 14287.62 17595.63 181
CHOSEN 1792x268891.07 9090.21 9593.64 5795.18 13383.53 8596.26 17496.13 12588.92 4784.90 14993.10 18872.86 17799.62 4588.86 11295.67 10897.79 101
thres20088.92 12887.65 13792.73 9896.30 10485.62 4397.85 5298.86 184.38 14284.82 15093.99 17675.12 15398.01 14070.86 26886.67 18194.56 202
MDTV_nov1_ep1383.69 19694.09 16581.01 14286.78 32696.09 12883.81 16184.75 15184.32 30874.44 16196.54 21063.88 29985.07 199
CDS-MVSNet89.50 11788.96 11891.14 14991.94 23180.93 14597.09 11795.81 14484.26 14784.72 15294.20 17180.31 6695.64 25283.37 16388.96 16296.85 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 10489.97 10091.64 13597.58 7978.21 21796.78 14196.72 5884.73 13084.72 15297.23 9571.22 19399.63 4488.37 12092.41 13997.08 142
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 6891.65 7493.12 7998.53 3780.59 15397.47 8397.18 2077.06 27684.64 15497.98 5483.98 3799.52 5390.72 8997.33 7899.23 17
ab-mvs87.08 16284.94 18193.48 6793.34 18683.67 8388.82 30995.70 14981.18 20384.55 15590.14 22862.72 24398.94 10885.49 13982.54 21997.85 96
mvs-test186.83 16887.17 15185.81 26491.96 22865.24 33197.90 5193.34 27585.57 10784.51 15695.14 14961.99 25197.19 18183.55 15890.55 15295.00 192
EPMVS87.47 15985.90 16792.18 11995.41 12682.26 11287.00 32496.28 11685.88 10284.23 15785.57 29175.07 15496.26 22071.14 26692.50 13798.03 79
Anonymous20240521184.41 20581.93 22491.85 13196.78 10078.41 20897.44 8591.34 30870.29 31884.06 15894.26 16841.09 34098.96 10379.46 19182.65 21898.17 67
HyFIR lowres test89.36 11988.60 12391.63 13794.91 14480.76 15095.60 20495.53 15782.56 18784.03 15991.24 20878.03 9796.81 20287.07 13088.41 17097.32 131
tfpn200view988.48 14187.15 15292.47 10796.21 10685.30 4997.44 8598.85 283.37 16983.99 16093.82 17975.36 14697.93 14269.04 27486.24 18794.17 204
thres40088.42 14487.15 15292.23 11796.21 10685.30 4997.44 8598.85 283.37 16983.99 16093.82 17975.36 14697.93 14269.04 27486.24 18793.45 217
tpm85.55 18784.47 18888.80 20790.19 25975.39 26888.79 31094.69 20384.83 12783.96 16285.21 29778.22 9594.68 29176.32 22478.02 24696.34 165
Fast-Effi-MVS+87.93 15486.94 15890.92 15594.04 16879.16 18898.26 3193.72 25781.29 20283.94 16392.90 18969.83 20596.68 20776.70 21891.74 14696.93 145
XVG-OURS-SEG-HR85.74 18585.16 17787.49 23790.22 25871.45 30491.29 29594.09 23781.37 20183.90 16495.22 14360.30 26097.53 16385.58 13884.42 20293.50 215
thisisatest053089.65 11589.02 11691.53 13993.46 18480.78 14996.52 15496.67 6481.69 19983.79 16594.90 15788.85 1297.68 15377.80 20387.49 17896.14 171
DeepC-MVS86.58 391.53 8091.06 8392.94 8994.52 15381.89 12195.95 18895.98 13490.76 2483.76 16696.76 11473.24 17599.71 3291.67 7896.96 8797.22 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 13688.16 12990.20 17593.61 17876.86 24596.77 14393.07 28584.02 15283.62 16795.60 13774.69 16096.24 22278.43 20293.66 12797.49 124
thres100view90088.30 14686.95 15792.33 11496.10 11084.90 6297.14 11098.85 282.69 18483.41 16893.66 18275.43 14397.93 14269.04 27486.24 18794.17 204
thres600view788.06 15086.70 16092.15 12096.10 11085.17 5597.14 11098.85 282.70 18383.41 16893.66 18275.43 14397.82 14967.13 28385.88 19193.45 217
XVG-OURS85.18 19284.38 18987.59 23290.42 25671.73 30191.06 29894.07 23882.00 19583.29 17095.08 15356.42 29097.55 15983.70 15683.42 20793.49 216
Vis-MVSNet (Re-imp)88.88 13088.87 12188.91 20393.89 17174.43 27696.93 13394.19 23084.39 14183.22 17195.67 13478.24 9494.70 29078.88 19994.40 11897.61 116
TAMVS88.48 14187.79 13590.56 16491.09 24379.18 18796.45 16095.88 14083.64 16583.12 17293.33 18475.94 13195.74 24782.40 17088.27 17196.75 155
baseline188.85 13187.49 14492.93 9095.21 13286.85 2595.47 20894.61 21287.29 8083.11 17394.99 15680.70 6296.89 19782.28 17173.72 26095.05 191
AdaColmapbinary88.81 13287.61 14192.39 11299.33 479.95 16896.70 14995.58 15577.51 26883.05 17496.69 11761.90 25499.72 3184.29 14793.47 12897.50 123
PatchmatchNetpermissive86.83 16885.12 17891.95 12694.12 16482.27 11186.55 32895.64 15384.59 13682.98 17584.99 30377.26 10795.96 23268.61 27891.34 14897.64 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 18683.64 19991.60 13892.30 21181.86 12392.88 27795.56 15684.85 12682.52 17685.12 30158.04 27695.39 26273.89 24687.58 17797.54 118
114514_t88.79 13487.57 14292.45 10998.21 5581.74 12896.99 12495.45 16375.16 28682.48 17795.69 13368.59 21098.50 12680.33 18195.18 11397.10 141
PatchT79.75 26476.85 27488.42 21289.55 27075.49 26777.37 34994.61 21263.07 33582.46 17873.32 34775.52 14093.41 31251.36 34184.43 20196.36 163
TR-MVS86.30 17684.93 18290.42 16794.63 14977.58 23396.57 15393.82 24880.30 22382.42 17995.16 14758.74 27197.55 15974.88 23687.82 17496.13 172
HQP-NCC92.08 22297.63 6990.52 2782.30 180
ACMP_Plane92.08 22297.63 6990.52 2782.30 180
HQP4-MVS82.30 18097.32 17291.13 224
HQP-MVS87.91 15587.55 14388.98 20292.08 22278.48 20497.63 6994.80 19990.52 2782.30 18094.56 16265.40 22997.32 17287.67 12483.01 21191.13 224
CR-MVSNet83.53 21781.36 23390.06 17890.16 26079.75 17379.02 34591.12 31084.24 14882.27 18480.35 33075.45 14193.67 30863.37 30386.25 18596.75 155
RPMNet79.85 26375.92 28191.64 13590.16 26079.75 17379.02 34595.44 16458.43 35282.27 18472.55 34873.03 17698.41 13146.10 35286.25 18596.75 155
CVMVSNet84.83 19785.57 16882.63 30691.55 23660.38 34595.13 22195.03 18580.60 21382.10 18694.71 15966.40 22490.19 34174.30 24390.32 15397.31 133
PLCcopyleft83.97 788.00 15287.38 14889.83 18898.02 6476.46 25097.16 10894.43 22379.26 24681.98 18796.28 12169.36 20699.27 7377.71 20792.25 14193.77 212
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 27277.20 27084.40 28789.74 26764.06 33575.30 35295.44 16462.15 33881.90 18859.08 35478.92 8495.59 25666.51 28885.78 19393.54 214
Anonymous2024052983.15 22480.60 24290.80 15895.74 11778.27 21296.81 13994.92 18960.10 34881.89 18992.54 19245.82 32598.82 11379.25 19578.32 24495.31 189
tttt051788.57 14088.19 12889.71 19293.00 19475.99 26195.67 20196.67 6480.78 20981.82 19094.40 16588.97 1197.58 15776.05 22786.31 18495.57 183
BH-RMVSNet86.84 16785.28 17391.49 14095.35 12880.26 16396.95 13192.21 29582.86 18181.77 19195.46 14059.34 26797.64 15469.79 27293.81 12596.57 159
HQP_MVS87.50 15887.09 15588.74 20891.86 23277.96 22397.18 10494.69 20389.89 3581.33 19294.15 17264.77 23497.30 17487.08 12882.82 21590.96 226
plane_prior377.75 23090.17 3381.33 192
VPA-MVSNet85.32 19083.83 19589.77 19190.25 25782.63 10396.36 16797.07 2583.03 17681.21 19489.02 23861.58 25596.31 21985.02 14470.95 27590.36 233
GeoE86.36 17585.20 17489.83 18893.17 18976.13 25597.53 7892.11 29679.58 23880.99 19594.01 17566.60 22396.17 22473.48 25089.30 15897.20 140
GA-MVS85.79 18484.04 19491.02 15389.47 27280.27 16296.90 13494.84 19785.57 10780.88 19689.08 23656.56 28996.47 21377.72 20685.35 19796.34 165
1112_ss88.60 13987.47 14692.00 12593.21 18780.97 14496.47 15792.46 29383.64 16580.86 19797.30 9280.24 6897.62 15577.60 20885.49 19597.40 128
dp84.30 20882.31 21990.28 17294.24 16277.97 22286.57 32795.53 15779.94 23280.75 19885.16 29971.49 19296.39 21563.73 30083.36 20896.48 161
Test_1112_low_res88.03 15186.73 15991.94 12793.15 19080.88 14696.44 16292.41 29483.59 16880.74 19991.16 20980.18 6997.59 15677.48 21185.40 19697.36 130
cascas86.50 17384.48 18792.55 10692.64 20485.95 3397.04 12395.07 18375.32 28480.50 20091.02 21154.33 30397.98 14186.79 13287.62 17593.71 213
TAPA-MVS81.61 1285.02 19483.67 19789.06 19996.79 9973.27 28695.92 19094.79 20174.81 28980.47 20196.83 11071.07 19598.19 13849.82 34692.57 13595.71 180
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 18285.10 17988.06 22388.34 28377.83 22995.72 19994.20 22987.89 7080.45 20294.05 17458.57 27297.26 17883.88 15082.76 21789.09 263
nrg03086.79 17085.43 17090.87 15788.76 27785.34 4797.06 12194.33 22584.31 14480.45 20291.98 19772.36 18196.36 21688.48 11871.13 27390.93 228
EI-MVSNet85.80 18385.20 17487.59 23291.55 23677.41 23695.13 22195.36 16980.43 22080.33 20494.71 15973.72 16995.97 22976.96 21678.64 23989.39 252
MVSTER89.25 12388.92 12090.24 17395.98 11384.66 6696.79 14095.36 16987.19 8680.33 20490.61 21890.02 995.97 22985.38 14078.64 23990.09 242
ADS-MVSNet279.57 26677.53 26885.71 26793.78 17372.13 29379.48 34186.11 34373.09 30380.14 20679.99 33362.15 24890.14 34259.49 31583.52 20594.85 194
ADS-MVSNet81.26 25278.36 26289.96 18393.78 17379.78 17179.48 34193.60 26273.09 30380.14 20679.99 33362.15 24895.24 27159.49 31583.52 20594.85 194
RRT_MVS86.89 16585.96 16589.68 19395.01 14184.13 7396.33 17094.98 18784.20 14980.10 20892.07 19670.52 20095.01 28483.30 16477.14 24889.91 246
baseline290.39 10490.21 9590.93 15490.86 24880.99 14395.20 21897.41 1586.03 9980.07 20994.61 16190.58 497.47 16787.29 12789.86 15594.35 203
Effi-MVS+-dtu84.61 20184.90 18383.72 29591.96 22863.14 33894.95 22893.34 27585.57 10779.79 21087.12 26661.99 25195.61 25583.55 15885.83 19292.41 220
VPNet84.69 20082.92 20890.01 17989.01 27683.45 8796.71 14795.46 16285.71 10579.65 21192.18 19556.66 28896.01 22883.05 16867.84 30790.56 230
CLD-MVS87.97 15387.48 14589.44 19492.16 22080.54 15698.14 3694.92 18991.41 1779.43 21295.40 14162.34 24597.27 17790.60 9182.90 21490.50 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 13687.14 15493.26 7393.12 19284.32 6998.76 1897.27 1787.19 8679.36 21390.45 22183.92 3898.53 12584.41 14669.79 28796.93 145
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 19583.66 19889.02 20195.86 11574.55 27492.49 28193.60 26279.30 24479.29 21491.47 20358.53 27398.45 12970.22 27192.17 14394.07 208
CNLPA86.96 16385.37 17291.72 13497.59 7879.34 18497.21 10091.05 31374.22 29378.90 21596.75 11567.21 21898.95 10674.68 23890.77 15196.88 149
MVS90.60 9988.64 12296.50 394.25 16190.53 693.33 26497.21 1977.59 26778.88 21697.31 9071.52 19199.69 3689.60 10598.03 6099.27 16
mvs_anonymous88.68 13587.62 14091.86 12994.80 14681.69 13193.53 26094.92 18982.03 19478.87 21790.43 22275.77 13395.34 26585.04 14393.16 13298.55 44
MVS_030478.43 27476.70 27583.60 29788.22 28569.81 31492.91 27695.10 18072.32 31078.71 21880.29 33233.78 35193.37 31368.77 27780.23 22687.63 296
bset_n11_16_dypcd84.35 20682.83 21288.91 20382.54 33382.07 11594.12 24993.47 26685.39 11378.55 21988.98 23962.23 24695.11 27886.75 13373.42 26289.55 251
tpm cat183.63 21681.38 23290.39 16893.53 18378.19 21985.56 33495.09 18170.78 31678.51 22083.28 31674.80 15697.03 18866.77 28484.05 20395.95 173
UniMVSNet (Re)85.31 19184.23 19188.55 21189.75 26580.55 15596.72 14596.89 3985.42 11178.40 22188.93 24075.38 14595.52 25978.58 20068.02 30489.57 250
FIs86.73 17286.10 16488.61 21090.05 26280.21 16496.14 18196.95 3485.56 11078.37 22292.30 19376.73 11795.28 26979.51 19079.27 23390.35 234
BH-w/o88.24 14887.47 14690.54 16595.03 14078.54 20397.41 9293.82 24884.08 15078.23 22394.51 16469.34 20797.21 17980.21 18494.58 11695.87 176
UniMVSNet_NR-MVSNet85.49 18884.59 18488.21 22189.44 27379.36 18296.71 14796.41 10185.22 11878.11 22490.98 21376.97 11395.14 27679.14 19668.30 30190.12 240
DU-MVS84.57 20283.33 20588.28 21788.76 27779.36 18296.43 16495.41 16885.42 11178.11 22490.82 21467.61 21295.14 27679.14 19668.30 30190.33 235
miper_enhance_ethall85.95 18185.20 17488.19 22294.85 14579.76 17296.00 18594.06 23982.98 17877.74 22688.76 24279.42 7595.46 26180.58 17972.42 26889.36 257
v114482.90 23081.27 23487.78 22886.29 30179.07 19396.14 18193.93 24280.05 22977.38 22786.80 27165.50 22795.93 23575.21 23470.13 28288.33 284
FC-MVSNet-test85.96 18085.39 17187.66 23089.38 27478.02 22195.65 20396.87 4085.12 12277.34 22891.94 20076.28 12694.74 28977.09 21378.82 23790.21 238
v2v48283.46 21881.86 22588.25 21986.19 30379.65 17796.34 16994.02 24081.56 20077.32 22988.23 25065.62 22696.03 22677.77 20469.72 28989.09 263
Baseline_NR-MVSNet81.22 25380.07 25084.68 27985.32 31775.12 27096.48 15688.80 33176.24 28077.28 23086.40 28167.61 21294.39 29675.73 23166.73 31884.54 330
V4283.04 22781.53 23087.57 23486.27 30279.09 19295.87 19494.11 23580.35 22277.22 23186.79 27265.32 23196.02 22777.74 20570.14 28187.61 298
v14419282.43 23680.73 23987.54 23585.81 31078.22 21495.98 18693.78 25379.09 24977.11 23286.49 27664.66 23695.91 23674.20 24469.42 29088.49 278
ACMM80.70 1383.72 21582.85 21086.31 25891.19 24172.12 29495.88 19394.29 22680.44 21877.02 23391.96 19855.24 29797.14 18579.30 19480.38 22589.67 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 24080.55 24387.60 23185.94 30778.47 20795.85 19693.80 25179.33 24276.97 23486.51 27563.33 24195.87 23773.11 25170.13 28288.46 280
PCF-MVS84.09 586.77 17185.00 18092.08 12192.06 22583.07 9792.14 28594.47 21979.63 23776.90 23594.78 15871.15 19499.20 8472.87 25291.05 14993.98 209
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl-mvsnet285.11 19384.17 19287.92 22595.06 13978.82 19795.51 20694.22 22879.74 23576.77 23687.92 25575.96 13095.68 24879.93 18872.42 26889.27 258
v192192082.02 24380.23 24787.41 23885.62 31177.92 22695.79 19893.69 25878.86 25476.67 23786.44 27862.50 24495.83 23972.69 25369.77 28888.47 279
WR-MVS84.32 20782.96 20788.41 21389.38 27480.32 15996.59 15296.25 11883.97 15476.63 23890.36 22367.53 21494.86 28775.82 23070.09 28590.06 244
BH-untuned86.95 16485.94 16689.99 18094.52 15377.46 23596.78 14193.37 27481.80 19776.62 23993.81 18166.64 22297.02 18976.06 22693.88 12495.48 185
v124081.70 24679.83 25487.30 24285.50 31277.70 23295.48 20793.44 26878.46 25976.53 24086.44 27860.85 25895.84 23871.59 26070.17 28088.35 283
PS-MVSNAJss84.91 19684.30 19086.74 24985.89 30974.40 27794.95 22894.16 23283.93 15776.45 24190.11 22971.04 19695.77 24283.16 16679.02 23690.06 244
miper_ehance_all_eth84.57 20283.60 20187.50 23692.64 20478.25 21395.40 21293.47 26679.28 24576.41 24287.64 25876.53 12095.24 27178.58 20072.42 26889.01 268
LPG-MVS_test84.20 20983.49 20386.33 25590.88 24673.06 28795.28 21394.13 23382.20 19076.31 24393.20 18554.83 30196.95 19283.72 15480.83 22388.98 269
LGP-MVS_train86.33 25590.88 24673.06 28794.13 23382.20 19076.31 24393.20 18554.83 30196.95 19283.72 15480.83 22388.98 269
F-COLMAP84.50 20483.44 20487.67 22995.22 13172.22 29195.95 18893.78 25375.74 28176.30 24595.18 14659.50 26598.45 12972.67 25486.59 18392.35 221
tpmvs83.04 22780.77 23889.84 18795.43 12577.96 22385.59 33395.32 17475.31 28576.27 24683.70 31373.89 16697.41 16959.53 31481.93 22194.14 206
RRT_test8_iter0587.14 16186.41 16289.32 19694.41 15881.10 14197.06 12195.33 17384.67 13376.27 24690.48 21983.60 4196.33 21785.10 14170.78 27690.53 231
3Dnovator82.32 1089.33 12087.64 13894.42 3093.73 17685.70 4197.73 6496.75 5486.73 9176.21 24895.93 12762.17 24799.68 3881.67 17497.81 6697.88 93
TranMVSNet+NR-MVSNet83.24 22381.71 22787.83 22687.71 29078.81 19996.13 18394.82 19884.52 13776.18 24990.78 21664.07 23794.60 29274.60 24166.59 31990.09 242
cl_fuxian83.80 21382.65 21587.25 24392.10 22177.74 23195.25 21693.04 28678.58 25776.01 25087.21 26575.25 15195.11 27877.54 21068.89 29588.91 274
131488.94 12787.20 15094.17 3993.21 18785.73 4093.33 26496.64 7182.89 17975.98 25196.36 12066.83 22199.39 6383.52 16296.02 10397.39 129
test_part184.72 19882.85 21090.34 17095.73 11984.79 6596.75 14494.10 23679.05 25375.97 25289.51 23367.69 21195.94 23379.34 19267.50 31090.30 237
Fast-Effi-MVS+-dtu83.33 22082.60 21685.50 27089.55 27069.38 31996.09 18491.38 30582.30 18975.96 25391.41 20456.71 28695.58 25775.13 23584.90 20091.54 222
XXY-MVS83.84 21282.00 22389.35 19587.13 29481.38 13595.72 19994.26 22780.15 22775.92 25490.63 21761.96 25396.52 21178.98 19873.28 26690.14 239
GBi-Net82.42 23780.43 24588.39 21492.66 20181.95 11694.30 24393.38 27179.06 25075.82 25585.66 28756.38 29193.84 30471.23 26375.38 25489.38 254
test182.42 23780.43 24588.39 21492.66 20181.95 11694.30 24393.38 27179.06 25075.82 25585.66 28756.38 29193.84 30471.23 26375.38 25489.38 254
FMVSNet384.71 19982.71 21490.70 16294.55 15187.71 1895.92 19094.67 20681.73 19875.82 25588.08 25366.99 21994.47 29471.23 26375.38 25489.91 246
eth_miper_zixun_eth83.12 22582.01 22286.47 25491.85 23474.80 27194.33 24193.18 28179.11 24875.74 25887.25 26472.71 17895.32 26776.78 21767.13 31489.27 258
IterMVS-LS83.93 21182.80 21387.31 24191.46 23977.39 23795.66 20293.43 26980.44 21875.51 25987.26 26373.72 16995.16 27576.99 21470.72 27889.39 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 11687.85 13394.99 1894.49 15786.76 2797.84 5395.74 14786.10 9675.47 26096.02 12665.00 23399.51 5682.91 16997.07 8498.72 36
test_djsdf83.00 22982.45 21884.64 28184.07 32869.78 31594.80 23294.48 21780.74 21075.41 26187.70 25761.32 25795.10 28083.77 15279.76 22789.04 266
v14882.41 23980.89 23686.99 24786.18 30476.81 24696.27 17393.82 24880.49 21775.28 26286.11 28667.32 21795.75 24475.48 23267.03 31688.42 282
QAPM86.88 16684.51 18593.98 4394.04 16885.89 3697.19 10396.05 13173.62 29775.12 26395.62 13662.02 25099.74 2870.88 26796.06 10296.30 169
UniMVSNet_ETH3D80.86 25778.75 26187.22 24486.31 30072.02 29591.95 28693.76 25673.51 29875.06 26490.16 22743.04 33495.66 24976.37 22378.55 24293.98 209
cl-mvsnet____83.27 22182.12 22086.74 24992.20 21675.95 26295.11 22393.27 27878.44 26074.82 26587.02 26874.19 16395.19 27374.67 23969.32 29189.09 263
cl-mvsnet183.27 22182.12 22086.74 24992.19 21775.92 26395.11 22393.26 27978.44 26074.81 26687.08 26774.19 16395.19 27374.66 24069.30 29289.11 262
FMVSNet282.79 23180.44 24489.83 18892.66 20185.43 4695.42 21094.35 22479.06 25074.46 26787.28 26156.38 29194.31 29769.72 27374.68 25789.76 248
MIMVSNet79.18 27175.99 28088.72 20987.37 29380.66 15279.96 34091.82 30077.38 27074.33 26881.87 32241.78 33790.74 33766.36 29083.10 21094.76 196
RPSCF77.73 28176.63 27681.06 31488.66 28155.76 35387.77 31987.88 33664.82 33474.14 26992.79 19049.22 31496.81 20267.47 28276.88 24990.62 229
ACMP81.66 1184.00 21083.22 20686.33 25591.53 23872.95 28995.91 19293.79 25283.70 16473.79 27092.22 19454.31 30496.89 19783.98 14979.74 22989.16 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 25179.54 25586.73 25285.02 31976.91 24496.22 17691.65 30377.65 26673.55 27188.61 24455.70 29494.43 29574.12 24573.35 26588.86 275
jajsoiax82.12 24281.15 23585.03 27584.19 32670.70 30794.22 24793.95 24183.07 17573.48 27289.75 23049.66 31395.37 26482.24 17279.76 22789.02 267
mvs_tets81.74 24580.71 24084.84 27684.22 32570.29 31093.91 25293.78 25382.77 18273.37 27389.46 23447.36 32295.31 26881.99 17379.55 23288.92 273
pmmvs482.54 23580.79 23787.79 22786.11 30580.49 15893.55 25993.18 28177.29 27173.35 27489.40 23565.26 23295.05 28375.32 23373.61 26187.83 292
LS3D82.22 24179.94 25389.06 19997.43 8574.06 28093.20 27192.05 29761.90 33973.33 27595.21 14459.35 26699.21 8054.54 33492.48 13893.90 211
v1081.43 25079.53 25687.11 24586.38 29878.87 19694.31 24293.43 26977.88 26373.24 27685.26 29565.44 22895.75 24472.14 25767.71 30886.72 310
v881.88 24480.06 25187.32 24086.63 29779.04 19494.41 23893.65 26078.77 25573.19 27785.57 29166.87 22095.81 24073.84 24867.61 30987.11 306
test0.0.03 182.79 23182.48 21783.74 29486.81 29672.22 29196.52 15495.03 18583.76 16273.00 27893.20 18572.30 18388.88 34464.15 29877.52 24790.12 240
anonymousdsp80.98 25679.97 25284.01 28981.73 33470.44 30992.49 28193.58 26477.10 27572.98 27986.31 28257.58 28094.90 28579.32 19378.63 24186.69 311
XVG-ACMP-BASELINE79.38 26977.90 26683.81 29184.98 32067.14 32889.03 30893.18 28180.26 22672.87 28088.15 25238.55 34396.26 22076.05 22778.05 24588.02 289
WR-MVS_H81.02 25480.09 24883.79 29288.08 28771.26 30694.46 23696.54 8580.08 22872.81 28186.82 27070.36 20292.65 31764.18 29767.50 31087.46 303
OpenMVScopyleft79.58 1486.09 17983.62 20093.50 6590.95 24586.71 2897.44 8595.83 14375.35 28372.64 28295.72 13157.42 28499.64 4271.41 26195.85 10694.13 207
Anonymous2023121179.72 26577.19 27187.33 23995.59 12277.16 24395.18 22094.18 23159.31 35072.57 28386.20 28447.89 31995.66 24974.53 24269.24 29389.18 260
CP-MVSNet81.01 25580.08 24983.79 29287.91 28870.51 30894.29 24695.65 15180.83 20872.54 28488.84 24163.71 23892.32 32068.58 27968.36 30088.55 277
miper_lstm_enhance81.66 24880.66 24184.67 28091.19 24171.97 29791.94 28793.19 28077.86 26472.27 28585.26 29573.46 17293.42 31173.71 24967.05 31588.61 276
PS-CasMVS80.27 26179.18 25783.52 29987.56 29269.88 31394.08 25095.29 17580.27 22572.08 28688.51 24859.22 26992.23 32267.49 28168.15 30388.45 281
FMVSNet179.50 26776.54 27788.39 21488.47 28281.95 11694.30 24393.38 27173.14 30272.04 28785.66 28743.86 32893.84 30465.48 29272.53 26789.38 254
PEN-MVS79.47 26878.26 26483.08 30286.36 29968.58 32193.85 25394.77 20279.76 23471.37 28888.55 24559.79 26192.46 31864.50 29665.40 32188.19 286
Patchmtry77.36 28574.59 29085.67 26889.75 26575.75 26577.85 34891.12 31060.28 34671.23 28980.35 33075.45 14193.56 31057.94 32067.34 31387.68 295
IterMVS80.67 25879.16 25885.20 27389.79 26476.08 25692.97 27591.86 29980.28 22471.20 29085.14 30057.93 27991.34 33172.52 25570.74 27788.18 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 24978.28 26391.04 15098.14 5878.48 20495.09 22686.97 33861.14 34471.12 29192.78 19159.59 26399.38 6453.11 33886.61 18295.27 190
IterMVS-SCA-FT80.51 26079.10 25984.73 27889.63 26974.66 27292.98 27491.81 30180.05 22971.06 29285.18 29858.04 27691.40 33072.48 25670.70 27988.12 288
v7n79.32 27077.34 26985.28 27284.05 32972.89 29093.38 26293.87 24675.02 28870.68 29384.37 30759.58 26495.62 25467.60 28067.50 31087.32 305
MS-PatchMatch83.05 22681.82 22686.72 25389.64 26879.10 19194.88 23094.59 21479.70 23670.67 29489.65 23150.43 31096.82 20170.82 27095.99 10484.25 333
DTE-MVSNet78.37 27577.06 27282.32 30985.22 31867.17 32793.40 26193.66 25978.71 25670.53 29588.29 24959.06 27092.23 32261.38 31063.28 33087.56 300
pm-mvs180.05 26278.02 26586.15 26085.42 31375.81 26495.11 22392.69 29177.13 27370.36 29687.43 26058.44 27495.27 27071.36 26264.25 32687.36 304
D2MVS82.67 23381.55 22986.04 26287.77 28976.47 24995.21 21796.58 7982.66 18570.26 29785.46 29460.39 25995.80 24176.40 22279.18 23485.83 323
PVSNet_077.72 1581.70 24678.95 26089.94 18490.77 25176.72 24895.96 18796.95 3485.01 12470.24 29888.53 24752.32 30598.20 13786.68 13444.08 35594.89 193
CL-MVSNet_2432*160075.81 29474.14 29680.83 31678.33 34467.79 32494.22 24793.52 26577.28 27269.82 29981.54 32461.47 25689.22 34357.59 32353.51 34285.48 325
tfpnnormal78.14 27775.42 28386.31 25888.33 28479.24 18594.41 23896.22 12073.51 29869.81 30085.52 29355.43 29595.75 24447.65 35067.86 30683.95 336
EU-MVSNet76.92 28976.95 27376.83 32884.10 32754.73 35591.77 29092.71 29072.74 30669.57 30188.69 24358.03 27887.43 34964.91 29570.00 28688.33 284
ITE_SJBPF82.38 30787.00 29565.59 33089.55 32479.99 23169.37 30291.30 20741.60 33995.33 26662.86 30574.63 25886.24 316
DSMNet-mixed73.13 30672.45 30275.19 33477.51 34746.82 35885.09 33582.01 35567.61 32969.27 30381.33 32550.89 30786.28 35154.54 33483.80 20492.46 219
MVP-Stereo82.65 23481.67 22885.59 26986.10 30678.29 21193.33 26492.82 28877.75 26569.17 30487.98 25459.28 26895.76 24371.77 25896.88 9082.73 341
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 25977.77 26789.14 19893.43 18577.24 23991.89 28890.18 32069.86 32168.02 30591.94 20052.21 30698.84 11259.32 31783.12 20991.35 223
NR-MVSNet83.35 21981.52 23188.84 20588.76 27781.31 13794.45 23795.16 17984.65 13467.81 30690.82 21470.36 20294.87 28674.75 23766.89 31790.33 235
TransMVSNet (Re)76.94 28874.38 29284.62 28285.92 30875.25 26995.28 21389.18 32873.88 29667.22 30786.46 27759.64 26294.10 30059.24 31852.57 34684.50 331
Anonymous2023120675.29 29773.64 29880.22 31880.75 33563.38 33793.36 26390.71 31873.09 30367.12 30883.70 31350.33 31190.85 33653.63 33770.10 28486.44 313
ppachtmachnet_test77.19 28674.22 29486.13 26185.39 31478.22 21493.98 25191.36 30771.74 31367.11 30984.87 30456.67 28793.37 31352.21 33964.59 32386.80 309
KD-MVS_2432*160077.63 28274.92 28785.77 26590.86 24879.44 18088.08 31593.92 24376.26 27867.05 31082.78 31872.15 18591.92 32561.53 30741.62 35685.94 321
miper_refine_blended77.63 28274.92 28785.77 26590.86 24879.44 18088.08 31593.92 24376.26 27867.05 31082.78 31872.15 18591.92 32561.53 30741.62 35685.94 321
Patchmatch-test78.25 27674.72 28988.83 20691.20 24074.10 27973.91 35588.70 33459.89 34966.82 31285.12 30178.38 9294.54 29348.84 34879.58 23197.86 95
LTVRE_ROB73.68 1877.99 27875.74 28284.74 27790.45 25572.02 29586.41 32991.12 31072.57 30866.63 31387.27 26254.95 30096.98 19156.29 32975.98 25085.21 327
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 28776.06 27980.55 31783.78 33060.00 34690.35 30091.05 31377.01 27766.62 31487.92 25547.73 32094.03 30171.63 25968.44 29987.62 297
testgi74.88 29973.40 29979.32 32280.13 33961.75 34193.21 27086.64 34179.49 24066.56 31591.06 21035.51 34988.67 34556.79 32871.25 27287.56 300
LCM-MVSNet-Re83.75 21483.54 20284.39 28893.54 18164.14 33492.51 28084.03 35083.90 15866.14 31686.59 27467.36 21692.68 31684.89 14592.87 13396.35 164
pmmvs674.65 30071.67 30483.60 29779.13 34269.94 31293.31 26890.88 31761.05 34565.83 31784.15 31043.43 33094.83 28866.62 28560.63 33386.02 320
our_test_377.90 28075.37 28485.48 27185.39 31476.74 24793.63 25691.67 30273.39 30165.72 31884.65 30658.20 27593.13 31557.82 32167.87 30586.57 312
COLMAP_ROBcopyleft73.24 1975.74 29573.00 30183.94 29092.38 20769.08 32091.85 28986.93 33961.48 34265.32 31990.27 22442.27 33696.93 19550.91 34375.63 25385.80 324
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 29174.16 29583.35 30190.05 26276.17 25489.58 30489.85 32271.39 31565.29 32080.42 32950.61 30987.70 34861.05 31269.24 29386.18 317
ACMH+76.62 1677.47 28474.94 28685.05 27491.07 24471.58 30393.26 26990.01 32171.80 31264.76 32188.55 24541.62 33896.48 21262.35 30671.00 27487.09 307
Patchmatch-RL test76.65 29074.01 29784.55 28377.37 34864.23 33378.49 34782.84 35478.48 25864.63 32273.40 34676.05 12991.70 32976.99 21457.84 33697.72 106
SixPastTwentyTwo76.04 29274.32 29381.22 31384.54 32261.43 34491.16 29689.30 32777.89 26264.04 32386.31 28248.23 31594.29 29863.54 30263.84 32887.93 291
AllTest75.92 29373.06 30084.47 28492.18 21867.29 32591.07 29784.43 34867.63 32563.48 32490.18 22538.20 34497.16 18257.04 32573.37 26388.97 271
TestCases84.47 28492.18 21867.29 32584.43 34867.63 32563.48 32490.18 22538.20 34497.16 18257.04 32573.37 26388.97 271
ACMH75.40 1777.99 27874.96 28587.10 24690.67 25276.41 25193.19 27291.64 30472.47 30963.44 32687.61 25943.34 33197.16 18258.34 31973.94 25987.72 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 11089.03 11592.95 8894.38 15986.77 2698.14 3696.31 11589.30 4263.33 32796.72 11690.09 893.63 30990.70 9082.29 22098.46 47
USDC78.65 27376.25 27885.85 26387.58 29174.60 27389.58 30490.58 31984.05 15163.13 32888.23 25040.69 34296.86 20066.57 28775.81 25286.09 319
LF4IMVS72.36 31070.82 30776.95 32779.18 34156.33 35086.12 33086.11 34369.30 32363.06 32986.66 27333.03 35392.25 32165.33 29368.64 29782.28 345
DIV-MVS_2432*160070.97 31569.31 31575.95 33376.24 35455.39 35487.45 32090.94 31670.20 31962.96 33077.48 34044.01 32788.09 34661.25 31153.26 34384.37 332
Anonymous2024052172.06 31269.91 31278.50 32477.11 34961.67 34391.62 29490.97 31565.52 33262.37 33179.05 33636.32 34690.96 33557.75 32268.52 29882.87 338
test_040272.68 30869.54 31482.09 31088.67 28071.81 30092.72 27986.77 34061.52 34162.21 33283.91 31143.22 33293.76 30734.60 35772.23 27180.72 349
OpenMVS_ROBcopyleft68.52 2073.02 30769.57 31383.37 30080.54 33871.82 29993.60 25888.22 33562.37 33761.98 33383.15 31735.31 35095.47 26045.08 35375.88 25182.82 339
MVS-HIRNet71.36 31467.00 31884.46 28690.58 25369.74 31679.15 34487.74 33746.09 35561.96 33450.50 35745.14 32695.64 25253.74 33688.11 17388.00 290
test20.0372.36 31071.15 30675.98 33277.79 34559.16 34892.40 28389.35 32674.09 29461.50 33584.32 30848.09 31685.54 35450.63 34462.15 33283.24 337
PM-MVS69.32 31766.93 31976.49 32973.60 35655.84 35285.91 33179.32 35974.72 29061.09 33678.18 33821.76 35991.10 33470.86 26856.90 33882.51 342
TDRefinement69.20 31865.78 32279.48 32166.04 36062.21 34088.21 31486.12 34262.92 33661.03 33785.61 29033.23 35294.16 29955.82 33253.02 34482.08 346
ambc76.02 33168.11 35851.43 35664.97 35889.59 32360.49 33874.49 34317.17 36292.46 31861.50 30952.85 34584.17 334
pmmvs-eth3d73.59 30270.66 30882.38 30776.40 35273.38 28289.39 30789.43 32572.69 30760.34 33977.79 33946.43 32491.26 33366.42 28957.06 33782.51 342
K. test v373.62 30171.59 30579.69 32082.98 33259.85 34790.85 29988.83 33077.13 27358.90 34082.11 32043.62 32991.72 32865.83 29154.10 34187.50 302
EG-PatchMatch MVS74.92 29872.02 30383.62 29683.76 33173.28 28593.62 25792.04 29868.57 32458.88 34183.80 31231.87 35595.57 25856.97 32778.67 23882.00 347
lessismore_v079.98 31980.59 33758.34 34980.87 35658.49 34283.46 31543.10 33393.89 30363.11 30448.68 34887.72 293
N_pmnet61.30 32360.20 32664.60 33884.32 32417.00 37191.67 29310.98 37061.77 34058.45 34378.55 33749.89 31291.83 32742.27 35563.94 32784.97 328
TinyColmap72.41 30968.99 31682.68 30588.11 28669.59 31788.41 31385.20 34565.55 33157.91 34484.82 30530.80 35795.94 23351.38 34068.70 29682.49 344
UnsupCasMVSNet_eth73.25 30570.57 30981.30 31277.53 34666.33 32987.24 32393.89 24580.38 22157.90 34581.59 32342.91 33590.56 33865.18 29448.51 34987.01 308
MIMVSNet169.44 31666.65 32077.84 32576.48 35162.84 33987.42 32188.97 32966.96 33057.75 34679.72 33532.77 35485.83 35346.32 35163.42 32984.85 329
pmmvs365.75 32262.18 32576.45 33067.12 35964.54 33288.68 31185.05 34654.77 35457.54 34773.79 34429.40 35886.21 35255.49 33347.77 35178.62 350
new-patchmatchnet68.85 31965.93 32177.61 32673.57 35763.94 33690.11 30288.73 33371.62 31455.08 34873.60 34540.84 34187.22 35051.35 34248.49 35081.67 348
UnsupCasMVSNet_bld68.60 32064.50 32380.92 31574.63 35567.80 32383.97 33692.94 28765.12 33354.63 34968.23 35235.97 34792.17 32460.13 31344.83 35382.78 340
CMPMVSbinary54.94 2175.71 29674.56 29179.17 32379.69 34055.98 35189.59 30393.30 27760.28 34653.85 35089.07 23747.68 32196.33 21776.55 21981.02 22285.22 326
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 32163.18 32475.18 33576.27 35361.74 34283.79 33784.66 34756.64 35351.57 35171.85 35131.29 35687.93 34749.98 34562.55 33175.86 352
test_method56.77 32454.53 32763.49 34076.49 35040.70 36375.68 35174.24 36119.47 36348.73 35271.89 35019.31 36065.80 36257.46 32447.51 35283.97 335
YYNet173.53 30470.43 31082.85 30484.52 32371.73 30191.69 29291.37 30667.63 32546.79 35381.21 32655.04 29990.43 33955.93 33059.70 33586.38 314
MDA-MVSNet_test_wron73.54 30370.43 31082.86 30384.55 32171.85 29891.74 29191.32 30967.63 32546.73 35481.09 32755.11 29890.42 34055.91 33159.76 33486.31 315
MDA-MVSNet-bldmvs71.45 31367.94 31781.98 31185.33 31668.50 32292.35 28488.76 33270.40 31742.99 35581.96 32146.57 32391.31 33248.75 34954.39 34086.11 318
DeepMVS_CXcopyleft64.06 33978.53 34343.26 36168.11 36469.94 32038.55 35676.14 34218.53 36179.34 35543.72 35441.62 35669.57 355
LCM-MVSNet52.52 32648.24 32965.35 33647.63 36641.45 36272.55 35683.62 35231.75 35837.66 35757.92 3559.19 36976.76 35749.26 34744.60 35477.84 351
FPMVS55.09 32552.93 32861.57 34155.98 36140.51 36483.11 33883.41 35337.61 35734.95 35871.95 34914.40 36376.95 35629.81 35865.16 32267.25 356
PMMVS250.90 32746.31 33064.67 33755.53 36246.67 35977.30 35071.02 36240.89 35634.16 35959.32 3539.83 36876.14 35940.09 35628.63 35971.21 353
tmp_tt41.54 33041.93 33240.38 34620.10 37026.84 36761.93 35959.09 36614.81 36528.51 36080.58 32835.53 34848.33 36663.70 30113.11 36345.96 359
Gipumacopyleft45.11 32942.05 33154.30 34380.69 33651.30 35735.80 36283.81 35128.13 35927.94 36134.53 36111.41 36776.70 35821.45 36054.65 33934.90 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 32841.28 33361.04 34239.91 36846.25 36070.59 35776.18 36058.87 35123.09 36248.00 35912.58 36566.54 36128.65 35913.62 36270.35 354
MVEpermissive35.65 2233.85 33229.49 33746.92 34541.86 36736.28 36550.45 36156.52 36718.75 36418.28 36337.84 3602.41 37158.41 36318.71 36120.62 36046.06 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 33135.53 33450.18 34429.72 36930.30 36659.60 36066.20 36526.06 36017.91 36449.53 3583.12 37074.09 36018.19 36249.40 34746.14 357
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 33332.39 33533.65 34753.35 36425.70 36874.07 35453.33 36821.08 36117.17 36533.63 36311.85 36654.84 36412.98 36314.04 36120.42 361
EMVS31.70 33431.45 33632.48 34850.72 36523.95 36974.78 35352.30 36920.36 36216.08 36631.48 36412.80 36453.60 36511.39 36413.10 36419.88 362
wuyk23d14.10 33613.89 33914.72 34955.23 36322.91 37033.83 3633.56 3714.94 3664.11 3672.28 3692.06 37219.66 36710.23 3658.74 3651.59 365
testmvs9.92 33712.94 3400.84 3510.65 3710.29 37393.78 2540.39 3720.42 3672.85 36815.84 3670.17 3740.30 3692.18 3660.21 3661.91 364
test1239.07 33811.73 3411.11 3500.50 3720.77 37289.44 3060.20 3730.34 3682.15 36910.72 3680.34 3730.32 3681.79 3670.08 3672.23 363
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k21.43 33528.57 3380.00 3520.00 3730.00 3740.00 36495.93 1380.00 3690.00 37097.66 6963.57 2390.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas5.92 3407.89 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37071.04 1960.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.11 33910.81 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37097.30 920.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS97.30 299.19 892.31 399.12 698.54 2092.06 299.84 1299.11 199.37 199.74 1
save fliter98.24 5283.34 8998.61 2496.57 8091.32 18
test_0728_SECOND95.14 1599.04 1286.14 3199.06 996.77 5199.84 1297.90 598.85 2099.45 8
GSMVS97.54 118
sam_mvs177.59 10297.54 118
sam_mvs75.35 148
MTGPAbinary96.33 112
test_post185.88 33230.24 36573.77 16795.07 28273.89 246
test_post33.80 36276.17 12795.97 229
patchmatchnet-post77.09 34177.78 10195.39 262
MTMP97.53 7868.16 363
gm-plane-assit92.27 21279.64 17884.47 14095.15 14897.93 14285.81 136
test9_res96.00 2199.03 1198.31 57
agg_prior294.30 4399.00 1398.57 41
test_prior482.34 11097.75 63
test_prior93.09 8198.68 2581.91 11996.40 10499.06 9798.29 59
新几何296.42 165
旧先验197.39 8879.58 17996.54 8598.08 4684.00 3697.42 7697.62 115
无先验96.87 13596.78 4577.39 26999.52 5379.95 18698.43 49
原ACMM296.84 136
testdata299.48 5876.45 221
segment_acmp82.69 53
testdata195.57 20587.44 78
plane_prior791.86 23277.55 234
plane_prior691.98 22777.92 22664.77 234
plane_prior594.69 20397.30 17487.08 12882.82 21590.96 226
plane_prior494.15 172
plane_prior297.18 10489.89 35
plane_prior191.95 230
plane_prior77.96 22397.52 8190.36 3282.96 213
n20.00 374
nn0.00 374
door-mid79.75 358
test1196.50 91
door80.13 357
HQP5-MVS78.48 204
BP-MVS87.67 124
HQP3-MVS94.80 19983.01 211
HQP2-MVS65.40 229
NP-MVS92.04 22678.22 21494.56 162
ACMMP++_ref78.45 243
ACMMP++79.05 235
Test By Simon71.65 189