This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.63 2095.38 1997.73 7195.54 1599.54 199.69 499.81 1999.99 1
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4297.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
test072699.66 1495.20 2699.77 997.70 7893.95 2999.35 399.54 393.18 18
SED-MVS98.18 298.10 498.41 1499.63 2095.24 2199.77 997.72 7394.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_ONE99.63 2095.24 2197.72 7394.16 2699.30 499.49 1093.32 1599.98 10
test_241102_TWO97.72 7394.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
SMA-MVS97.24 1896.99 2398.00 2799.30 5894.20 5399.16 7597.65 8889.55 12999.22 799.52 990.34 4699.99 598.32 3199.83 1399.82 30
MSP-MVS98.07 698.00 598.29 1599.66 1495.20 2699.72 1497.47 12593.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 59
test_0728_THIRD93.01 4799.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 6893.49 6798.52 15397.50 12094.46 2198.99 1098.64 9291.58 2599.08 13498.49 2499.83 1399.60 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12397.29 399.03 9697.11 15995.83 1098.97 1199.14 4282.48 16399.60 9198.60 1999.08 7698.00 172
旧先验298.67 13585.75 21798.96 1298.97 13793.84 109
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13296.96 499.01 9997.04 16695.51 1698.86 1399.11 4882.19 16999.36 11998.59 2198.14 10398.00 172
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4896.54 598.84 1499.46 1192.55 2399.98 1098.25 3399.93 199.94 14
SD-MVS97.51 1297.40 1497.81 3299.01 7593.79 6199.33 6497.38 13893.73 3898.83 1599.02 5590.87 3399.88 4498.69 1799.74 2899.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6594.97 3099.47 4097.52 11489.85 11998.79 1699.46 1190.41 4499.69 7598.78 1599.67 3799.70 56
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5193.85 5999.65 2395.45 26295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
SF-MVS97.22 2196.92 2498.12 2299.11 6994.88 3299.44 4897.45 12789.60 12598.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2597.73 7191.05 9098.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DPE-MVS98.11 598.00 598.44 1399.50 4295.39 1899.29 6697.72 7394.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
DVP-MVS97.77 898.18 296.53 9799.54 3590.14 13599.41 5497.70 7895.46 1798.60 2199.19 3295.71 499.49 10398.15 3599.85 1199.95 11
9.1496.87 2699.34 5199.50 3897.49 12289.41 13298.59 2299.43 1689.78 5099.69 7598.69 1799.62 46
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6399.16 7597.44 13190.08 11598.59 2299.07 4989.06 5899.42 11397.92 3899.66 3899.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9194.73 4199.13 8797.38 13888.44 16298.53 2499.39 1989.66 5499.69 7598.43 2799.61 5099.61 71
testdata95.26 13998.20 10087.28 19897.60 9785.21 22498.48 2599.15 4088.15 7398.72 14690.29 14799.45 6199.78 38
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7597.74 6791.28 8798.40 2699.29 2289.95 4899.98 1098.20 3499.70 3599.94 14
TEST999.57 3293.17 7199.38 5697.66 8389.57 12798.39 2799.18 3590.88 3299.66 80
train_agg97.20 2297.08 1997.57 4299.57 3293.17 7199.38 5697.66 8390.18 11098.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
test_899.55 3493.07 7599.37 5997.64 8990.18 11098.36 2999.19 3290.94 3099.64 86
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4094.76 3999.19 7097.75 6595.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 60
DPM-MVS97.86 797.25 1799.68 198.25 9899.10 199.76 1297.78 6296.61 498.15 3199.53 793.62 14100.00 191.79 13399.80 2399.94 14
test_part299.54 3595.42 1798.13 32
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12291.46 10299.75 1397.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 3999.64 4299.90 20
Skip Steuart: Steuart Systems R&D Blog.
test_prior397.07 2697.09 1897.01 6299.58 2891.77 9399.57 3097.57 10691.43 8398.12 3498.97 6190.43 4099.49 10398.33 2999.81 1999.79 34
test_prior299.57 3091.43 8398.12 3498.97 6190.43 4098.33 2999.81 19
PHI-MVS96.65 3896.46 3897.21 5699.34 5191.77 9399.70 1798.05 3886.48 20998.05 3699.20 3189.33 5699.96 2798.38 2899.62 4699.90 20
MVSFormer94.71 9094.08 9296.61 9295.05 20394.87 3397.77 21196.17 21686.84 20098.04 3798.52 9985.52 12295.99 26989.83 15098.97 8198.96 118
lupinMVS96.32 4995.94 5497.44 4595.05 20394.87 3399.86 296.50 19393.82 3698.04 3798.77 7985.52 12298.09 16496.98 5298.97 8199.37 88
APDe-MVS97.53 1197.47 1097.70 3699.58 2893.63 6299.56 3297.52 11493.59 4198.01 3999.12 4590.80 3599.55 9399.26 1099.79 2599.93 17
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8593.55 6498.88 11397.59 10190.66 9697.98 4099.14 4286.59 106100.00 196.47 6099.46 5999.89 23
agg_prior197.12 2497.03 2197.38 5099.54 3592.66 8399.35 6197.64 8990.38 10597.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
agg_prior99.54 3592.66 8397.64 8997.98 4099.61 89
CDPH-MVS96.56 4096.18 4597.70 3699.59 2793.92 5799.13 8797.44 13189.02 14197.90 4399.22 2988.90 6199.49 10394.63 9899.79 2599.68 60
EPNet96.82 3496.68 3497.25 5598.65 8993.10 7499.48 3998.76 1296.54 597.84 4498.22 11387.49 8599.66 8095.35 8297.78 10999.00 114
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1893.21 7099.70 1798.13 3694.61 1997.78 4599.46 1189.85 4999.81 6297.97 3799.91 499.88 24
test1297.83 3199.33 5794.45 4797.55 10997.56 4688.60 6499.50 10299.71 3499.55 74
xiu_mvs_v1_base_debu94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base_debi94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
ETV-MVS96.00 5796.00 5296.00 11696.56 14991.05 11699.63 2596.61 18293.26 4697.39 5098.30 11086.62 10598.13 16198.07 3697.57 11198.82 133
DeepPCF-MVS93.56 196.55 4197.84 892.68 20398.71 8878.11 31099.70 1797.71 7798.18 197.36 5199.76 190.37 4599.94 3399.27 999.54 5699.99 1
CANet97.00 2796.49 3798.55 998.86 8496.10 1399.83 597.52 11495.90 997.21 5298.90 7282.66 16099.93 3598.71 1698.80 9099.63 68
CANet_DTU94.31 10093.35 10897.20 5797.03 13694.71 4298.62 14295.54 25795.61 1497.21 5298.47 10571.88 24199.84 5588.38 16997.46 11697.04 195
VNet95.08 8094.26 8597.55 4398.07 10593.88 5898.68 13398.73 1590.33 10797.16 5497.43 14079.19 19299.53 9696.91 5491.85 18199.24 100
region2R96.30 5096.17 4796.70 8899.70 890.31 13199.46 4597.66 8390.55 10097.07 5599.07 4986.85 10099.97 2095.43 8099.74 2899.81 31
原ACMM196.18 10999.03 7490.08 13897.63 9388.98 14297.00 5698.97 6188.14 7499.71 7388.23 17199.62 4698.76 140
Regformer-196.97 2896.80 3097.47 4499.46 4693.11 7398.89 11197.94 4492.89 5296.90 5799.02 5589.78 5099.53 9697.06 4799.26 7299.75 47
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 11999.47 4097.81 5790.54 10196.88 5899.05 5287.57 8299.96 2795.65 7399.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 11999.53 3697.81 5790.94 9496.88 5899.05 5287.57 8299.96 2795.87 7299.72 3099.78 38
Regformer-296.94 3196.78 3197.42 4699.46 4692.97 8098.89 11197.93 4592.86 5496.88 5899.02 5589.74 5299.53 9697.03 4899.26 7299.75 47
XVS96.47 4496.37 4096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6198.96 6487.37 8899.87 4795.65 7399.43 6399.78 38
X-MVStestdata90.69 17388.66 19096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6129.59 35187.37 8899.87 4795.65 7399.43 6399.78 38
112195.19 7894.45 8297.42 4698.88 8292.58 8896.22 26797.75 6585.50 22196.86 6199.01 5988.59 6699.90 4087.64 17799.60 5199.79 34
SR-MVS96.13 5496.16 4996.07 11499.42 4889.04 16198.59 14897.33 14390.44 10396.84 6499.12 4586.75 10299.41 11597.47 4399.44 6299.76 46
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8291.62 9899.58 2996.54 19195.09 1896.84 6498.63 9491.16 2699.77 6799.04 1296.42 12799.81 31
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 12999.47 4097.80 5990.54 10196.83 6699.03 5486.51 11099.95 3095.65 7399.72 3099.75 47
PMMVS93.62 11893.90 10192.79 19996.79 14381.40 28498.85 11496.81 17691.25 8896.82 6798.15 11777.02 20698.13 16193.15 12296.30 13198.83 132
CS-MVS95.85 6395.86 5795.82 12296.80 14289.78 14999.84 396.60 18392.60 5596.81 6898.70 8885.04 13098.25 15797.90 4098.43 10099.42 86
PGM-MVS95.85 6395.65 6596.45 10099.50 4289.77 15098.22 18298.90 1189.19 13596.74 6998.95 6685.91 12099.92 3693.94 10699.46 5999.66 64
jason95.40 7494.86 7697.03 6192.91 25494.23 5299.70 1796.30 20493.56 4296.73 7098.52 9981.46 17897.91 17496.08 6998.47 9998.96 118
jason: jason.
新几何197.40 4898.92 8092.51 9097.77 6485.52 21996.69 7199.06 5188.08 7599.89 4384.88 20599.62 4699.79 34
APD-MVS_3200maxsize95.64 7095.65 6595.62 12899.24 6387.80 18498.42 16597.22 14988.93 14696.64 7298.98 6085.49 12599.36 11996.68 5599.27 7199.70 56
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9199.06 994.45 2296.42 7398.70 8888.81 6299.74 7095.35 8299.86 1099.97 7
alignmvs95.77 6895.00 7598.06 2597.35 12395.68 1699.71 1697.50 12091.50 8196.16 7498.61 9586.28 11599.00 13696.19 6691.74 18399.51 78
Regformer-396.50 4296.36 4196.91 7399.34 5191.72 9698.71 12697.90 4792.48 6096.00 7598.95 6688.60 6499.52 9996.44 6198.83 8799.49 80
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15499.70 1797.61 9690.07 11696.00 7599.16 3987.43 8699.92 3696.03 7099.72 3099.70 56
Regformer-496.45 4596.33 4396.81 8099.34 5191.44 10398.71 12697.88 4892.43 6195.97 7798.95 6688.42 6899.51 10096.40 6298.83 8799.49 80
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1797.98 4397.18 295.96 7899.33 2192.62 22100.00 198.99 1399.93 199.98 6
diffmvs94.59 9594.19 8795.81 12395.54 18190.69 12598.70 13095.68 25091.61 7895.96 7897.81 12180.11 18498.06 16896.52 5995.76 14198.67 144
GST-MVS95.97 5995.66 6396.90 7499.49 4491.22 10599.45 4797.48 12389.69 12395.89 8098.72 8586.37 11499.95 3094.62 9999.22 7599.52 76
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2694.45 4798.85 11497.64 8996.51 795.88 8199.39 1987.35 9299.99 596.61 5699.69 3699.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 9791.21 10698.08 19597.58 10383.74 24895.87 8299.02 5586.74 10399.64 4299.81 31
ZNCC-MVS96.09 5595.81 6096.95 7299.42 4891.19 10799.55 3397.53 11389.72 12295.86 8398.94 7186.59 10699.97 2095.13 8699.56 5499.68 60
canonicalmvs95.02 8193.96 9798.20 1797.53 12095.92 1498.71 12696.19 21591.78 7695.86 8398.49 10379.53 18999.03 13596.12 6791.42 18999.66 64
abl_694.63 9394.48 8195.09 14198.61 9286.96 20398.06 19796.97 17289.31 13395.86 8398.56 9779.82 18599.64 8694.53 10198.65 9598.66 146
Effi-MVS+93.87 10993.15 11396.02 11595.79 17290.76 12396.70 25295.78 24286.98 19795.71 8697.17 15179.58 18798.01 17294.57 10096.09 13599.31 93
HPM-MVS_fast94.89 8294.62 7895.70 12799.11 6988.44 17599.14 8497.11 15985.82 21695.69 8798.47 10583.46 14899.32 12393.16 12199.63 4599.35 89
HY-MVS88.56 795.29 7594.23 8698.48 1197.72 11196.41 1094.03 29698.74 1392.42 6495.65 8894.76 19986.52 10999.49 10395.29 8492.97 16299.53 75
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 10994.42 4994.76 28998.36 2392.50 5995.62 8997.52 13697.92 197.38 20798.31 3298.80 9098.20 168
MP-MVScopyleft96.00 5795.82 5896.54 9699.47 4590.13 13799.36 6097.41 13590.64 9995.49 9098.95 6685.51 12499.98 1096.00 7199.59 5399.52 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 7395.22 7195.99 11799.29 5989.14 15999.17 7497.09 16387.28 19395.40 9198.48 10484.93 13299.38 11795.64 7799.65 3999.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 12692.62 12495.34 13696.27 15888.53 17495.88 27796.97 17290.90 9595.37 9297.07 15582.38 16699.10 13383.91 22094.86 14998.38 157
sss94.85 8493.94 9997.58 4096.43 15394.09 5698.93 10699.16 889.50 13095.27 9397.85 11981.50 17699.65 8492.79 12794.02 15598.99 115
WTY-MVS95.97 5995.11 7398.54 1097.62 11596.65 699.44 4898.74 1392.25 6895.21 9498.46 10786.56 10899.46 11095.00 9092.69 16699.50 79
DELS-MVS97.12 2496.60 3598.68 898.03 10696.57 899.84 397.84 5296.36 895.20 9598.24 11288.17 7299.83 5796.11 6899.60 5199.64 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9391.00 11899.14 8499.45 193.86 3595.15 9698.73 8388.48 6799.76 6897.23 4699.56 5499.40 87
MVS_Test93.67 11692.67 12396.69 8996.72 14592.66 8397.22 23296.03 22187.69 18695.12 9794.03 20781.55 17598.28 15689.17 16396.46 12599.14 107
MVS_111021_LR95.78 6795.94 5495.28 13898.19 10287.69 18598.80 11999.26 793.39 4395.04 9898.69 9084.09 14199.76 6896.96 5399.06 7798.38 157
CostFormer92.89 13492.48 12794.12 17294.99 20585.89 23092.89 30697.00 17186.98 19795.00 9990.78 26890.05 4797.51 20392.92 12591.73 18498.96 118
mPP-MVS95.90 6295.75 6296.38 10499.58 2889.41 15899.26 6797.41 13590.66 9694.82 10098.95 6686.15 11799.98 1095.24 8599.64 4299.74 50
EI-MVSNet-Vis-set95.76 6995.63 6796.17 11199.14 6790.33 13098.49 15997.82 5491.92 7394.75 10198.88 7487.06 9699.48 10895.40 8197.17 12098.70 143
LFMVS92.23 14790.84 15796.42 10298.24 9991.08 11598.24 18196.22 21283.39 25594.74 10298.31 10961.12 29898.85 13894.45 10292.82 16399.32 92
tpmrst92.78 13592.16 13394.65 15596.27 15887.45 19391.83 31197.10 16289.10 13994.68 10390.69 27288.22 7197.73 19289.78 15291.80 18298.77 139
test_yl95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
DCV-MVSNet95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
DP-MVS Recon95.85 6395.15 7297.95 2899.87 294.38 5099.60 2797.48 12386.58 20694.42 10699.13 4487.36 9199.98 1093.64 11398.33 10299.48 82
zzz-MVS96.21 5395.96 5396.96 7099.29 5991.19 10798.69 13197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
MTAPA96.09 5595.80 6196.96 7099.29 5991.19 10797.23 23197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
CPTT-MVS94.60 9494.43 8395.09 14199.66 1486.85 20599.44 4897.47 12583.22 25794.34 10998.96 6482.50 16199.55 9394.81 9399.50 5798.88 126
PVSNet_BlendedMVS93.36 12493.20 11293.84 18198.77 8691.61 9999.47 4098.04 3991.44 8294.21 11092.63 23983.50 14699.87 4797.41 4483.37 23790.05 300
PVSNet_Blended95.94 6195.66 6396.75 8398.77 8691.61 9999.88 198.04 3993.64 4094.21 11097.76 12483.50 14699.87 4797.41 4497.75 11098.79 136
EI-MVSNet-UG-set95.43 7195.29 6995.86 12199.07 7389.87 14698.43 16497.80 5991.78 7694.11 11298.77 7986.25 11699.48 10894.95 9296.45 12698.22 166
EIA-MVS95.11 7995.27 7094.64 15696.34 15686.51 20999.59 2896.62 18192.51 5894.08 11398.64 9286.05 11898.24 15895.07 8898.50 9899.18 105
MAR-MVS94.43 9794.09 9195.45 13399.10 7187.47 19298.39 17197.79 6188.37 16594.02 11499.17 3778.64 19899.91 3892.48 12898.85 8698.96 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 4795.94 5497.58 4094.10 22395.25 2098.93 10698.17 3194.26 2393.94 11598.72 8589.68 5397.88 17796.36 6399.29 7099.62 70
GG-mvs-BLEND96.98 6896.53 15094.81 3887.20 32497.74 6793.91 11696.40 17596.56 296.94 22095.08 8798.95 8499.20 104
API-MVS94.78 8594.18 8996.59 9399.21 6490.06 14298.80 11997.78 6283.59 25293.85 11799.21 3083.79 14399.97 2092.37 12999.00 8099.74 50
tpm291.77 15391.09 15093.82 18294.83 21285.56 23892.51 30897.16 15484.00 24593.83 11890.66 27487.54 8497.17 21187.73 17691.55 18798.72 141
PAPR96.35 4795.82 5897.94 2999.63 2094.19 5499.42 5397.55 10992.43 6193.82 11999.12 4587.30 9399.91 3894.02 10599.06 7799.74 50
PVSNet87.13 1293.69 11392.83 12096.28 10797.99 10790.22 13499.38 5698.93 1091.42 8593.66 12097.68 12971.29 24899.64 8687.94 17497.20 11998.98 116
baseline93.91 10793.30 10995.72 12695.10 20190.07 13997.48 22195.91 23591.03 9193.54 12197.68 12979.58 18798.02 17194.27 10495.14 14699.08 111
VDD-MVS91.24 16390.18 16894.45 16197.08 13385.84 23398.40 17096.10 21986.99 19593.36 12298.16 11654.27 31899.20 12596.59 5790.63 19798.31 163
VDDNet90.08 18388.54 19594.69 15494.41 22087.68 18698.21 18496.40 19876.21 30993.33 12397.75 12554.93 31698.77 14194.71 9790.96 19297.61 181
thisisatest051594.75 8694.19 8796.43 10196.13 16892.64 8799.47 4097.60 9787.55 18993.17 12497.59 13494.71 998.42 15188.28 17093.20 15998.24 165
MP-MVS-pluss95.80 6695.30 6897.29 5298.95 7992.66 8398.59 14897.14 15588.95 14493.12 12599.25 2585.62 12199.94 3396.56 5899.48 5899.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 11091.38 31487.45 19193.08 12686.67 10487.02 18298.95 122
DWT-MVSNet_test94.36 9893.95 9895.62 12896.99 13789.47 15696.62 25497.38 13890.96 9393.07 12797.27 14393.73 1398.09 16485.86 19893.65 15799.29 95
EPNet_dtu92.28 14592.15 13492.70 20297.29 12584.84 24898.64 13997.82 5492.91 5193.02 12897.02 15785.48 12795.70 28372.25 30394.89 14897.55 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 18487.71 20396.89 7996.15 16494.69 4385.15 33097.74 6768.32 33192.97 12960.16 34096.10 396.84 22293.89 10798.87 8599.14 107
casdiffmvs93.98 10593.43 10795.61 13095.07 20289.86 14798.80 11995.84 24190.98 9292.74 13097.66 13179.71 18698.10 16394.72 9695.37 14598.87 128
114514_t94.06 10293.05 11597.06 6099.08 7292.26 9198.97 10397.01 17082.58 26992.57 13198.22 11380.68 18299.30 12489.34 15999.02 7999.63 68
OMC-MVS93.90 10893.62 10594.73 15398.63 9087.00 20298.04 19896.56 18992.19 6992.46 13298.73 8379.49 19099.14 13192.16 13194.34 15398.03 171
PAPM_NR95.43 7195.05 7496.57 9599.42 4890.14 13598.58 15097.51 11790.65 9892.44 13398.90 7287.77 8099.90 4090.88 14199.32 6999.68 60
UGNet91.91 15290.85 15695.10 14097.06 13488.69 17098.01 19998.24 2792.41 6592.39 13493.61 22060.52 29999.68 7888.14 17297.25 11896.92 197
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 16696.14 16588.55 17291.34 31597.51 11789.58 12692.24 13590.50 28586.99 9997.61 19877.64 26692.34 172
Vis-MVSNetpermissive92.64 13891.85 13995.03 14595.12 19788.23 17698.48 16096.81 17691.61 7892.16 13697.22 14771.58 24698.00 17385.85 19997.81 10698.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TESTMET0.1,193.82 11093.26 11195.49 13295.21 19090.25 13299.15 8197.54 11289.18 13691.79 13794.87 19789.13 5797.63 19686.21 19196.29 13298.60 147
thisisatest053094.00 10493.52 10695.43 13495.76 17490.02 14498.99 10197.60 9786.58 20691.74 13897.36 14294.78 898.34 15286.37 19092.48 17097.94 174
EPMVS92.59 14191.59 14595.59 13197.22 12790.03 14391.78 31298.04 3990.42 10491.66 13990.65 27586.49 11197.46 20481.78 24196.31 13099.28 97
test-LLR93.11 13292.68 12294.40 16294.94 20887.27 19999.15 8197.25 14590.21 10891.57 14094.04 20584.89 13397.58 19985.94 19596.13 13398.36 160
test-mter93.27 12892.89 11994.40 16294.94 20887.27 19999.15 8197.25 14588.95 14491.57 14094.04 20588.03 7697.58 19985.94 19596.13 13398.36 160
JIA-IIPM85.97 24684.85 24589.33 27393.23 24973.68 32285.05 33197.13 15769.62 32791.56 14268.03 33888.03 7696.96 21877.89 26593.12 16097.34 185
PVSNet_Blended_VisFu94.67 9194.11 9096.34 10697.14 13091.10 11399.32 6597.43 13392.10 7291.53 14396.38 17883.29 15299.68 7893.42 11896.37 12898.25 164
CHOSEN 1792x268894.35 9993.82 10295.95 11997.40 12188.74 16998.41 16798.27 2592.18 7091.43 14496.40 17578.88 19399.81 6293.59 11497.81 10699.30 94
ACMMPcopyleft94.67 9194.30 8495.79 12499.25 6288.13 17898.41 16798.67 1990.38 10591.43 14498.72 8582.22 16899.95 3093.83 11095.76 14199.29 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPP-MVSNet93.75 11293.67 10494.01 17695.86 17185.70 23598.67 13597.66 8384.46 23891.36 14697.18 15091.16 2697.79 18392.93 12493.75 15698.53 149
PLCcopyleft91.07 394.23 10194.01 9394.87 14799.17 6687.49 19199.25 6896.55 19088.43 16391.26 14798.21 11585.92 11999.86 5289.77 15397.57 11197.24 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 11593.29 11094.87 14797.57 11988.04 18098.18 18698.47 2187.57 18891.24 14895.05 19585.49 12597.46 20493.22 12092.82 16399.10 109
thres20093.69 11392.59 12596.97 6997.76 11094.74 4099.35 6199.36 289.23 13491.21 14996.97 15983.42 14998.77 14185.08 20290.96 19297.39 184
mvs-test191.57 15592.20 13289.70 26395.15 19574.34 31999.51 3795.40 26691.92 7391.02 15097.25 14474.27 22098.08 16789.45 15595.83 14096.67 198
CDS-MVSNet93.47 11993.04 11694.76 15094.75 21489.45 15798.82 11797.03 16887.91 17890.97 15196.48 17389.06 5896.36 24889.50 15492.81 16598.49 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 12192.27 13096.90 7497.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19497.12 190
thres40093.39 12392.27 13096.73 8597.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19496.61 199
CR-MVSNet88.83 20287.38 20893.16 19193.47 24286.24 21884.97 33294.20 30088.92 14790.76 15486.88 31784.43 13794.82 30370.64 30792.17 17798.41 154
RPMNet84.62 26381.78 27693.16 19193.47 24286.24 21884.97 33296.28 20864.85 33790.76 15478.80 33480.95 18194.82 30353.76 33792.17 17798.41 154
PatchmatchNetpermissive92.05 15091.04 15295.06 14396.17 16389.04 16191.26 31697.26 14489.56 12890.64 15690.56 28188.35 7097.11 21379.53 25296.07 13799.03 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 12693.01 11794.17 17095.57 17986.47 21198.51 15697.60 9785.99 21490.55 15797.19 14994.80 798.31 15385.06 20391.86 18097.74 176
PatchT85.44 25683.19 26292.22 20893.13 25183.00 26883.80 33896.37 20070.62 32290.55 15779.63 33384.81 13594.87 30158.18 33491.59 18698.79 136
tpm89.67 18888.95 18391.82 21792.54 25781.43 28392.95 30595.92 23187.81 18090.50 15989.44 30084.99 13195.65 28483.67 22382.71 24298.38 157
thres100view90093.34 12592.15 13496.90 7497.62 11594.84 3599.06 9399.36 287.96 17690.47 16096.78 16683.29 15298.75 14384.11 21690.69 19497.12 190
thres600view793.18 13092.00 13796.75 8397.62 11594.92 3199.07 9199.36 287.96 17690.47 16096.78 16683.29 15298.71 14782.93 23090.47 19896.61 199
AdaColmapbinary93.82 11093.06 11496.10 11399.88 189.07 16098.33 17497.55 10986.81 20290.39 16298.65 9175.09 21299.98 1093.32 11997.53 11499.26 99
XVG-OURS-SEG-HR90.95 16790.66 16391.83 21695.18 19481.14 29195.92 27495.92 23188.40 16490.33 16397.85 11970.66 25199.38 11792.83 12688.83 20394.98 211
IS-MVSNet93.00 13392.51 12694.49 15996.14 16587.36 19698.31 17795.70 24888.58 15490.17 16497.50 13783.02 15597.22 21087.06 18196.07 13798.90 125
CSCG94.87 8394.71 7795.36 13599.54 3586.49 21099.34 6398.15 3482.71 26790.15 16599.25 2589.48 5599.86 5294.97 9198.82 8999.72 53
SCA90.64 17489.25 17894.83 14994.95 20788.83 16596.26 26497.21 15090.06 11790.03 16690.62 27766.61 27596.81 22483.16 22694.36 15298.84 129
XVG-OURS90.83 16990.49 16591.86 21595.23 18981.25 28895.79 28295.92 23188.96 14390.02 16798.03 11871.60 24599.35 12191.06 13887.78 20794.98 211
ADS-MVSNet287.62 22386.88 21689.86 25896.21 16079.14 30187.15 32592.99 31283.01 26089.91 16887.27 31378.87 19492.80 32274.20 29192.27 17497.64 177
ADS-MVSNet88.99 19587.30 20994.07 17396.21 16087.56 19087.15 32596.78 17883.01 26089.91 16887.27 31378.87 19497.01 21774.20 29192.27 17497.64 177
ab-mvs91.05 16589.17 17996.69 8995.96 16991.72 9692.62 30797.23 14885.61 21889.74 17093.89 21368.55 26099.42 11391.09 13787.84 20698.92 124
TAMVS92.62 13992.09 13694.20 16994.10 22387.68 18698.41 16796.97 17287.53 19089.74 17096.04 18284.77 13696.49 23988.97 16692.31 17398.42 153
Vis-MVSNet (Re-imp)93.26 12993.00 11894.06 17496.14 16586.71 20898.68 13396.70 17988.30 16789.71 17297.64 13285.43 12896.39 24688.06 17396.32 12999.08 111
CNLPA93.64 11792.74 12196.36 10598.96 7890.01 14599.19 7095.89 23886.22 21289.40 17398.85 7580.66 18399.84 5588.57 16796.92 12199.24 100
Anonymous20240521188.84 20087.03 21494.27 16698.14 10484.18 25698.44 16395.58 25576.79 30889.34 17496.88 16453.42 32199.54 9587.53 17987.12 21099.09 110
Fast-Effi-MVS+91.72 15490.79 16094.49 15995.89 17087.40 19599.54 3595.70 24885.01 23189.28 17595.68 18677.75 20297.57 20283.22 22595.06 14798.51 150
PatchMatch-RL91.47 15790.54 16494.26 16798.20 10086.36 21696.94 24197.14 15587.75 18288.98 17695.75 18571.80 24399.40 11680.92 24697.39 11797.02 196
dp90.16 18188.83 18694.14 17196.38 15586.42 21291.57 31397.06 16584.76 23588.81 17790.19 29384.29 13997.43 20675.05 28491.35 19198.56 148
DeepC-MVS91.02 494.56 9693.92 10096.46 9997.16 12990.76 12398.39 17197.11 15993.92 3188.66 17898.33 10878.14 20099.85 5495.02 8998.57 9698.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 14091.28 14896.58 9497.05 13594.63 4497.72 21396.20 21389.82 12088.56 17996.85 16586.85 10097.82 18188.42 16880.10 25497.30 186
Anonymous2024052987.66 22285.58 23493.92 17897.59 11885.01 24798.13 18997.13 15766.69 33588.47 18096.01 18355.09 31599.51 10087.00 18384.12 22997.23 189
CVMVSNet90.30 17790.91 15588.46 28694.32 22173.58 32397.61 21897.59 10190.16 11388.43 18197.10 15376.83 20792.86 31982.64 23293.54 15898.93 123
TR-MVS90.77 17089.44 17494.76 15096.31 15788.02 18197.92 20295.96 22585.52 21988.22 18297.23 14666.80 27498.09 16484.58 20992.38 17198.17 169
F-COLMAP92.07 14991.75 14393.02 19498.16 10382.89 27298.79 12395.97 22386.54 20887.92 18397.80 12278.69 19799.65 8485.97 19395.93 13996.53 204
BH-RMVSNet91.25 16289.99 16995.03 14596.75 14488.55 17298.65 13794.95 28287.74 18387.74 18497.80 12268.27 26298.14 16080.53 25097.49 11598.41 154
Effi-MVS+-dtu89.97 18590.68 16287.81 29095.15 19571.98 32897.87 20695.40 26691.92 7387.57 18591.44 25674.27 22096.84 22289.45 15593.10 16194.60 213
HQP-NCC93.95 22799.16 7593.92 3187.57 185
ACMP_Plane93.95 22799.16 7593.92 3187.57 185
HQP4-MVS87.57 18597.77 18592.72 220
HQP-MVS91.50 15691.23 14992.29 20793.95 22786.39 21499.16 7596.37 20093.92 3187.57 18596.67 16973.34 22797.77 18593.82 11186.29 21292.72 220
TAPA-MVS87.50 990.35 17589.05 18194.25 16898.48 9685.17 24498.42 16596.58 18882.44 27387.24 19098.53 9882.77 15998.84 13959.09 33297.88 10598.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS91.26 16090.95 15492.16 21093.84 23486.07 22699.02 9796.30 20493.38 4486.99 19196.52 17172.92 23197.75 19093.46 11686.17 21592.67 222
plane_prior385.91 22993.65 3986.99 191
GA-MVS90.10 18288.69 18994.33 16492.44 25887.97 18299.08 9096.26 20989.65 12486.92 19393.11 23268.09 26396.96 21882.54 23490.15 19998.05 170
1112_ss92.71 13691.55 14696.20 10895.56 18091.12 11198.48 16094.69 28888.29 16886.89 19498.50 10187.02 9798.66 14884.75 20689.77 20198.81 134
MVS_030484.13 27382.66 27188.52 28493.07 25280.15 29695.81 28198.21 2979.27 29486.85 19586.40 32041.33 33994.69 30776.36 27686.69 21190.73 284
Test_1112_low_res92.27 14690.97 15396.18 10995.53 18291.10 11398.47 16294.66 28988.28 16986.83 19693.50 22587.00 9898.65 14984.69 20789.74 20298.80 135
cascas90.93 16889.33 17795.76 12595.69 17693.03 7798.99 10196.59 18580.49 29186.79 19794.45 20265.23 28398.60 15093.52 11592.18 17695.66 210
baseline294.04 10393.80 10394.74 15293.07 25290.25 13298.12 19198.16 3389.86 11886.53 19896.95 16095.56 598.05 16991.44 13594.53 15095.93 208
OPM-MVS89.76 18789.15 18091.57 22390.53 28385.58 23798.11 19295.93 23092.88 5386.05 19996.47 17467.06 27397.87 17889.29 16286.08 21791.26 268
VPA-MVSNet89.10 19487.66 20493.45 18692.56 25691.02 11797.97 20198.32 2486.92 19986.03 20092.01 24568.84 25997.10 21590.92 14075.34 27792.23 232
tpm cat188.89 19887.27 21093.76 18395.79 17285.32 24190.76 32097.09 16376.14 31085.72 20188.59 30682.92 15698.04 17076.96 27091.43 18897.90 175
IB-MVS89.43 692.12 14890.83 15995.98 11895.40 18690.78 12299.81 698.06 3791.23 8985.63 20293.66 21990.63 3798.78 14091.22 13671.85 31198.36 160
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 18689.38 17691.36 22694.32 22185.87 23197.61 21896.59 18585.10 22685.51 20397.10 15381.30 18096.56 23383.85 22283.03 23991.64 247
MVSTER92.71 13692.32 12893.86 18097.29 12592.95 8199.01 9996.59 18590.09 11485.51 20394.00 20994.61 1296.56 23390.77 14483.03 23992.08 238
RRT_MVS91.95 15191.09 15094.53 15896.71 14795.12 2898.64 13996.23 21189.04 14085.24 20595.06 19487.71 8196.43 24389.10 16582.06 24692.05 240
RPSCF85.33 25785.55 23584.67 31094.63 21762.28 33893.73 29993.76 30474.38 31685.23 20697.06 15664.09 28698.31 15380.98 24486.08 21793.41 219
BH-w/o92.32 14491.79 14193.91 17996.85 13986.18 22199.11 8995.74 24588.13 17284.81 20797.00 15877.26 20597.91 17489.16 16498.03 10497.64 177
CLD-MVS91.06 16490.71 16192.10 21194.05 22686.10 22499.55 3396.29 20794.16 2684.70 20897.17 15169.62 25597.82 18194.74 9586.08 21792.39 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 19387.76 20193.35 18797.19 12884.75 25090.58 32297.36 14181.99 27784.56 20989.31 30383.98 14298.17 15974.85 28790.00 20097.12 190
nrg03090.23 17888.87 18494.32 16591.53 27293.54 6598.79 12395.89 23888.12 17384.55 21094.61 20178.80 19696.88 22192.35 13075.21 27892.53 224
VPNet88.30 21186.57 21993.49 18591.95 26591.35 10498.18 18697.20 15188.61 15284.52 21194.89 19662.21 29396.76 22789.34 15972.26 30892.36 227
MVS93.92 10692.28 12998.83 495.69 17696.82 596.22 26798.17 3184.89 23384.34 21298.61 9579.32 19199.83 5793.88 10899.43 6399.86 28
mvs_anonymous92.50 14391.65 14495.06 14396.60 14889.64 15397.06 23796.44 19786.64 20584.14 21393.93 21182.49 16296.17 26391.47 13496.08 13699.35 89
Fast-Effi-MVS+-dtu88.84 20088.59 19389.58 26793.44 24578.18 30898.65 13794.62 29088.46 15884.12 21495.37 19268.91 25796.52 23682.06 23891.70 18594.06 214
LS3D90.19 18088.72 18894.59 15798.97 7686.33 21796.90 24396.60 18374.96 31384.06 21598.74 8275.78 20999.83 5774.93 28597.57 11197.62 180
ACMM86.95 1388.77 20588.22 19990.43 24693.61 23981.34 28698.50 15795.92 23187.88 17983.85 21695.20 19367.20 27197.89 17686.90 18684.90 22392.06 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 15890.84 15793.33 18896.51 15284.83 24998.84 11695.50 25986.44 21183.50 21796.70 16875.49 21197.77 18586.78 18897.81 10697.40 183
FIs90.70 17289.87 17093.18 19092.29 25991.12 11198.17 18898.25 2689.11 13883.44 21894.82 19882.26 16796.17 26387.76 17582.76 24192.25 230
UniMVSNet (Re)89.50 19288.32 19793.03 19392.21 26190.96 11998.90 11098.39 2289.13 13783.22 21992.03 24381.69 17496.34 25486.79 18772.53 30491.81 244
UniMVSNet_NR-MVSNet89.60 18988.55 19492.75 20192.17 26290.07 13998.74 12598.15 3488.37 16583.21 22093.98 21082.86 15795.93 27386.95 18472.47 30592.25 230
DU-MVS88.83 20287.51 20592.79 19991.46 27390.07 13998.71 12697.62 9588.87 14883.21 22093.68 21774.63 21395.93 27386.95 18472.47 30592.36 227
LPG-MVS_test88.86 19988.47 19690.06 25393.35 24780.95 29398.22 18295.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
LGP-MVS_train90.06 25393.35 24780.95 29395.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
miper_enhance_ethall90.33 17689.70 17192.22 20897.12 13188.93 16398.35 17395.96 22588.60 15383.14 22492.33 24187.38 8796.18 26286.49 18977.89 26491.55 255
FC-MVSNet-test90.22 17989.40 17592.67 20491.78 26989.86 14797.89 20398.22 2888.81 14982.96 22594.66 20081.90 17395.96 27185.89 19782.52 24492.20 234
PCF-MVS89.78 591.26 16089.63 17296.16 11295.44 18491.58 10195.29 28596.10 21985.07 22882.75 22697.45 13978.28 19999.78 6680.60 24995.65 14497.12 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 22985.68 23390.98 23389.91 28886.08 22598.32 17695.61 25383.67 25182.72 22790.67 27374.00 22496.53 23581.94 24074.28 28990.32 293
v114486.83 23285.31 23891.40 22489.75 29187.21 20198.31 17795.45 26283.22 25782.70 22890.78 26873.36 22696.36 24879.49 25374.69 28490.63 288
v14419286.40 24084.89 24490.91 23489.48 29785.59 23698.21 18495.43 26582.45 27282.62 22990.58 28072.79 23496.36 24878.45 26274.04 29390.79 280
3Dnovator87.35 1193.17 13191.77 14297.37 5195.41 18593.07 7598.82 11797.85 5191.53 8082.56 23097.58 13571.97 24099.82 6091.01 13999.23 7499.22 103
v2v48287.27 22785.76 23191.78 22289.59 29387.58 18998.56 15195.54 25784.53 23782.51 23191.78 25073.11 23096.47 24082.07 23774.14 29291.30 266
Baseline_NR-MVSNet85.83 24984.82 24688.87 28288.73 30583.34 26598.63 14191.66 32880.41 29282.44 23291.35 25874.63 21395.42 29084.13 21571.39 31487.84 317
v119286.32 24284.71 24891.17 22889.53 29686.40 21398.13 18995.44 26482.52 27182.42 23390.62 27771.58 24696.33 25577.23 26774.88 28190.79 280
test_djsdf88.26 21387.73 20289.84 25988.05 31382.21 27897.77 21196.17 21686.84 20082.41 23491.95 24872.07 23995.99 26989.83 15084.50 22691.32 265
cl-mvsnet289.57 19088.79 18791.91 21497.94 10887.62 18897.98 20096.51 19285.03 22982.37 23591.79 24983.65 14496.50 23785.96 19477.89 26491.61 252
131493.44 12091.98 13897.84 3095.24 18894.38 5096.22 26797.92 4690.18 11082.28 23697.71 12877.63 20399.80 6491.94 13298.67 9499.34 91
v192192086.02 24584.44 25390.77 23989.32 29985.20 24298.10 19395.35 27182.19 27582.25 23790.71 27070.73 24996.30 25976.85 27274.49 28590.80 279
v124085.77 25284.11 25690.73 24089.26 30085.15 24597.88 20595.23 27981.89 28082.16 23890.55 28269.60 25696.31 25675.59 28274.87 28290.72 285
XVG-ACMP-BASELINE85.86 24884.95 24388.57 28389.90 28977.12 31394.30 29295.60 25487.40 19282.12 23992.99 23553.42 32197.66 19485.02 20483.83 23190.92 276
GBi-Net86.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
test186.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
FMVSNet388.81 20487.08 21393.99 17796.52 15194.59 4598.08 19596.20 21385.85 21582.12 23991.60 25374.05 22395.40 29179.04 25680.24 25191.99 242
IterMVS-LS88.34 21087.44 20691.04 23194.10 22385.85 23298.10 19395.48 26085.12 22582.03 24391.21 26181.35 17995.63 28583.86 22175.73 27691.63 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_test8_iter0591.04 16690.40 16792.95 19696.20 16289.75 15198.97 10396.38 19988.52 15582.00 24493.51 22490.69 3696.73 22890.43 14676.91 27292.38 226
miper_ehance_all_eth88.94 19788.12 20091.40 22495.32 18786.93 20497.85 20795.55 25684.19 24281.97 24591.50 25584.16 14095.91 27684.69 20777.89 26491.36 263
MIMVSNet84.48 26781.83 27592.42 20691.73 27087.36 19685.52 32894.42 29581.40 28381.91 24687.58 31051.92 32492.81 32173.84 29488.15 20597.08 194
PS-MVSNAJss89.54 19189.05 18191.00 23288.77 30484.36 25497.39 22295.97 22388.47 15681.88 24793.80 21582.48 16396.50 23789.34 15983.34 23892.15 235
WR-MVS88.54 20987.22 21292.52 20591.93 26789.50 15598.56 15197.84 5286.99 19581.87 24893.81 21474.25 22295.92 27585.29 20074.43 28692.12 236
TranMVSNet+NR-MVSNet87.75 21986.31 22392.07 21290.81 28088.56 17198.33 17497.18 15287.76 18181.87 24893.90 21272.45 23595.43 28983.13 22871.30 31592.23 232
eth_miper_zixun_eth87.76 21887.00 21590.06 25394.67 21682.65 27697.02 24095.37 26984.19 24281.86 25091.58 25481.47 17795.90 27783.24 22473.61 29591.61 252
UniMVSNet_ETH3D85.65 25583.79 26091.21 22790.41 28580.75 29595.36 28495.78 24278.76 29981.83 25194.33 20349.86 32996.66 22984.30 21183.52 23696.22 206
cl_fuxian88.19 21487.23 21191.06 23094.97 20686.17 22297.72 21395.38 26883.43 25481.68 25291.37 25782.81 15895.72 28284.04 21973.70 29491.29 267
DP-MVS88.75 20686.56 22095.34 13698.92 8087.45 19397.64 21793.52 30970.55 32381.49 25397.25 14474.43 21899.88 4471.14 30694.09 15498.67 144
3Dnovator+87.72 893.43 12191.84 14098.17 1895.73 17595.08 2998.92 10897.04 16691.42 8581.48 25497.60 13374.60 21599.79 6590.84 14298.97 8199.64 66
QAPM91.41 15989.49 17397.17 5895.66 17893.42 6898.60 14697.51 11780.92 28981.39 25597.41 14172.89 23399.87 4782.33 23598.68 9398.21 167
XXY-MVS87.75 21986.02 22792.95 19690.46 28489.70 15297.71 21595.90 23684.02 24480.95 25694.05 20467.51 26997.10 21585.16 20178.41 26192.04 241
v14886.38 24185.06 24090.37 24889.47 29884.10 25798.52 15395.48 26083.80 24780.93 25790.22 29174.60 21596.31 25680.92 24671.55 31390.69 286
cl-mvsnet187.82 21686.81 21790.87 23794.87 21185.39 24097.81 20895.22 28082.92 26580.76 25891.31 25981.99 17095.81 28081.36 24275.04 28091.42 261
cl-mvsnet_87.82 21686.79 21890.89 23694.88 21085.43 23997.81 20895.24 27682.91 26680.71 25991.22 26081.97 17295.84 27881.34 24375.06 27991.40 262
FMVSNet286.90 23084.79 24793.24 18995.11 19892.54 8997.67 21695.86 24082.94 26280.55 26091.17 26262.89 29095.29 29377.23 26779.71 25891.90 243
pmmvs487.58 22486.17 22691.80 21889.58 29488.92 16497.25 22995.28 27282.54 27080.49 26193.17 23175.62 21096.05 26882.75 23178.90 25990.42 291
ACMP87.39 1088.71 20788.24 19890.12 25293.91 23281.06 29298.50 15795.67 25189.43 13180.37 26295.55 18765.67 28097.83 18090.55 14584.51 22591.47 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs585.87 24784.40 25590.30 24988.53 30884.23 25598.60 14693.71 30681.53 28280.29 26392.02 24464.51 28595.52 28782.04 23978.34 26291.15 270
test0.0.03 188.96 19688.61 19190.03 25691.09 27784.43 25398.97 10397.02 16990.21 10880.29 26396.31 17984.89 13391.93 33272.98 30085.70 22093.73 215
miper_lstm_enhance86.90 23086.20 22589.00 27994.53 21881.19 28996.74 25095.24 27682.33 27480.15 26590.51 28481.99 17094.68 30880.71 24873.58 29691.12 271
jajsoiax87.35 22586.51 22189.87 25787.75 31881.74 28197.03 23895.98 22288.47 15680.15 26593.80 21561.47 29596.36 24889.44 15784.47 22791.50 256
mvs_tets87.09 22886.22 22489.71 26287.87 31481.39 28596.73 25195.90 23688.19 17179.99 26793.61 22059.96 30196.31 25689.40 15884.34 22891.43 260
ITE_SJBPF87.93 28892.26 26076.44 31493.47 31087.67 18779.95 26895.49 19056.50 30997.38 20775.24 28382.33 24589.98 302
v886.11 24484.45 25291.10 22989.99 28786.85 20597.24 23095.36 27081.99 27779.89 26989.86 29674.53 21796.39 24678.83 26072.32 30790.05 300
v1085.73 25384.01 25890.87 23790.03 28686.73 20797.20 23395.22 28081.25 28579.85 27089.75 29773.30 22996.28 26076.87 27172.64 30389.61 307
WR-MVS_H86.53 23985.49 23689.66 26691.04 27883.31 26697.53 22098.20 3084.95 23279.64 27190.90 26678.01 20195.33 29276.29 27772.81 30190.35 292
anonymousdsp86.69 23485.75 23289.53 26886.46 32482.94 26996.39 25895.71 24783.97 24679.63 27290.70 27168.85 25895.94 27286.01 19284.02 23089.72 305
Patchmtry83.61 27881.64 27789.50 26993.36 24682.84 27484.10 33594.20 30069.47 32879.57 27386.88 31784.43 13794.78 30568.48 31274.30 28890.88 277
CP-MVSNet86.54 23885.45 23789.79 26191.02 27982.78 27597.38 22497.56 10885.37 22279.53 27493.03 23371.86 24295.25 29479.92 25173.43 29991.34 264
Patchmatch-test86.25 24384.06 25792.82 19894.42 21982.88 27382.88 33994.23 29971.58 32079.39 27590.62 27789.00 6096.42 24463.03 32491.37 19099.16 106
DSMNet-mixed81.60 28581.43 28082.10 31684.36 32860.79 33993.63 30186.74 34379.00 29579.32 27687.15 31563.87 28889.78 33566.89 31691.92 17995.73 209
MSDG88.29 21286.37 22294.04 17596.90 13886.15 22396.52 25694.36 29777.89 30579.22 27796.95 16069.72 25499.59 9273.20 29992.58 16996.37 205
Anonymous2023121184.72 26182.65 27290.91 23497.71 11284.55 25297.28 22796.67 18066.88 33479.18 27890.87 26758.47 30396.60 23182.61 23374.20 29091.59 254
PS-CasMVS85.81 25084.58 25189.49 27190.77 28182.11 27997.20 23397.36 14184.83 23479.12 27992.84 23667.42 27095.16 29678.39 26373.25 30091.21 269
IterMVS85.81 25084.67 24989.22 27493.51 24183.67 26296.32 26194.80 28485.09 22778.69 28090.17 29466.57 27793.17 31879.48 25477.42 27090.81 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 25883.93 25989.07 27889.89 29081.31 28797.09 23697.24 14784.45 23978.66 28192.68 23868.44 26194.87 30175.98 27970.92 31691.04 273
IterMVS-SCA-FT85.73 25384.64 25089.00 27993.46 24482.90 27196.27 26294.70 28785.02 23078.62 28290.35 28666.61 27593.33 31779.38 25577.36 27190.76 282
OpenMVScopyleft85.28 1490.75 17188.84 18596.48 9893.58 24093.51 6698.80 11997.41 13582.59 26878.62 28297.49 13868.00 26599.82 6084.52 21098.55 9796.11 207
PVSNet_083.28 1687.31 22685.16 23993.74 18494.78 21384.59 25198.91 10998.69 1889.81 12178.59 28493.23 22961.95 29499.34 12294.75 9455.72 33797.30 186
EU-MVSNet84.19 27184.42 25483.52 31388.64 30767.37 33696.04 27395.76 24485.29 22378.44 28593.18 23070.67 25091.48 33475.79 28175.98 27491.70 246
v7n84.42 26982.75 26989.43 27288.15 31181.86 28096.75 24995.67 25180.53 29078.38 28689.43 30169.89 25296.35 25373.83 29572.13 30990.07 298
FMVSNet183.94 27581.32 28291.80 21891.94 26688.81 16696.77 24695.25 27377.98 30178.25 28790.25 28850.37 32894.97 29873.27 29877.81 26891.62 249
D2MVS87.96 21587.39 20789.70 26391.84 26883.40 26498.31 17798.49 2088.04 17478.23 28890.26 28773.57 22596.79 22684.21 21383.53 23588.90 314
MS-PatchMatch86.75 23385.92 22989.22 27491.97 26482.47 27796.91 24296.14 21883.74 24877.73 28993.53 22358.19 30497.37 20976.75 27398.35 10187.84 317
DTE-MVSNet84.14 27282.80 26688.14 28788.95 30379.87 29996.81 24596.24 21083.50 25377.60 29092.52 24067.89 26794.24 31372.64 30269.05 31990.32 293
COLMAP_ROBcopyleft82.69 1884.54 26682.82 26589.70 26396.72 14578.85 30295.89 27592.83 31571.55 32177.54 29195.89 18459.40 30299.14 13167.26 31488.26 20491.11 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 27383.59 26185.77 30487.81 31570.24 33194.89 28893.65 30886.08 21376.53 29293.28 22861.41 29696.14 26580.95 24577.69 26990.93 275
tfpnnormal83.65 27681.35 28190.56 24391.37 27588.06 17997.29 22697.87 5078.51 30076.20 29390.91 26564.78 28496.47 24061.71 32773.50 29787.13 324
ppachtmachnet_test83.63 27781.57 27989.80 26089.01 30185.09 24697.13 23594.50 29278.84 29776.14 29491.00 26469.78 25394.61 30963.40 32374.36 28789.71 306
pm-mvs184.68 26282.78 26890.40 24789.58 29485.18 24397.31 22594.73 28681.93 27976.05 29592.01 24565.48 28296.11 26678.75 26169.14 31889.91 303
AllTest84.97 25983.12 26390.52 24496.82 14078.84 30395.89 27592.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
TestCases90.52 24496.82 14078.84 30392.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
testgi82.29 28081.00 28486.17 30187.24 32074.84 31897.39 22291.62 32988.63 15175.85 29895.42 19146.07 33491.55 33366.87 31779.94 25592.12 236
MVP-Stereo86.61 23785.83 23088.93 28188.70 30683.85 26196.07 27294.41 29682.15 27675.64 29991.96 24767.65 26896.45 24277.20 26998.72 9286.51 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 28381.17 28384.25 31187.23 32168.87 33593.35 30391.93 32683.35 25675.40 30093.00 23449.25 33196.65 23078.88 25978.11 26387.22 323
our_test_384.47 26882.80 26689.50 26989.01 30183.90 26097.03 23894.56 29181.33 28475.36 30190.52 28371.69 24494.54 31068.81 31076.84 27390.07 298
LTVRE_ROB81.71 1984.59 26582.72 27090.18 25092.89 25583.18 26793.15 30494.74 28578.99 29675.14 30292.69 23765.64 28197.63 19669.46 30881.82 24889.74 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 28879.42 29084.79 30984.78 32772.98 32496.53 25592.97 31379.56 29374.33 30388.83 30461.27 29792.15 32960.59 32975.92 27589.24 311
FMVSNet582.29 28080.54 28587.52 29293.79 23784.01 25893.73 29992.47 31876.92 30774.27 30486.15 32263.69 28989.24 33669.07 30974.79 28389.29 310
MVS-HIRNet79.01 29575.13 30290.66 24193.82 23681.69 28285.16 32993.75 30554.54 33974.17 30559.15 34257.46 30696.58 23263.74 32294.38 15193.72 216
ACMH+83.78 1584.21 27082.56 27489.15 27693.73 23879.16 30096.43 25794.28 29881.09 28674.00 30694.03 20754.58 31797.67 19376.10 27878.81 26090.63 288
NR-MVSNet87.74 22186.00 22892.96 19591.46 27390.68 12696.65 25397.42 13488.02 17573.42 30793.68 21777.31 20495.83 27984.26 21271.82 31292.36 227
USDC84.74 26082.93 26490.16 25191.73 27083.54 26395.00 28793.30 31188.77 15073.19 30893.30 22753.62 32097.65 19575.88 28081.54 24989.30 309
LCM-MVSNet-Re88.59 20888.61 19188.51 28595.53 18272.68 32696.85 24488.43 34188.45 15973.14 30990.63 27675.82 20894.38 31192.95 12395.71 14398.48 152
TDRefinement78.01 30075.31 30186.10 30270.06 34373.84 32193.59 30291.58 33074.51 31573.08 31091.04 26349.63 33097.12 21274.88 28659.47 33387.33 321
TransMVSNet (Re)81.97 28279.61 28989.08 27789.70 29284.01 25897.26 22891.85 32778.84 29773.07 31191.62 25267.17 27295.21 29567.50 31359.46 33488.02 316
SixPastTwentyTwo82.63 27981.58 27885.79 30388.12 31271.01 33095.17 28692.54 31784.33 24072.93 31292.08 24260.41 30095.61 28674.47 28974.15 29190.75 283
pmmvs679.90 29277.31 29487.67 29184.17 32978.13 30995.86 27993.68 30767.94 33272.67 31389.62 29950.98 32795.75 28174.80 28866.04 32489.14 312
ACMH83.09 1784.60 26482.61 27390.57 24293.18 25082.94 26996.27 26294.92 28381.01 28772.61 31493.61 22056.54 30897.79 18374.31 29081.07 25090.99 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Patchmatch-RL test81.90 28480.13 28687.23 29580.71 33570.12 33384.07 33688.19 34283.16 25970.57 31582.18 32687.18 9492.59 32482.28 23662.78 32898.98 116
test_040278.81 29776.33 29986.26 30091.18 27678.44 30795.88 27791.34 33268.55 32970.51 31689.91 29552.65 32394.99 29747.14 34079.78 25785.34 332
TinyColmap80.42 29077.94 29187.85 28992.09 26378.58 30593.74 29889.94 33774.99 31269.77 31791.78 25046.09 33397.58 19965.17 32177.89 26487.38 320
test20.0378.51 29977.48 29381.62 31883.07 33271.03 32996.11 27192.83 31581.66 28169.31 31889.68 29857.53 30587.29 34058.65 33368.47 32086.53 326
N_pmnet70.19 30969.87 31071.12 32488.24 31030.63 35395.85 28028.70 35470.18 32568.73 31986.55 31964.04 28793.81 31453.12 33873.46 29888.94 313
OpenMVS_ROBcopyleft73.86 2077.99 30175.06 30386.77 29883.81 33177.94 31196.38 25991.53 33167.54 33368.38 32087.13 31643.94 33596.08 26755.03 33681.83 24786.29 328
ambc79.60 32172.76 34256.61 34276.20 34192.01 32568.25 32180.23 33123.34 34594.73 30673.78 29660.81 33287.48 319
PM-MVS74.88 30572.85 30780.98 32078.98 33864.75 33790.81 31985.77 34480.95 28868.23 32282.81 32429.08 34492.84 32076.54 27562.46 33085.36 331
pmmvs372.86 30869.76 31182.17 31573.86 34174.19 32094.20 29389.01 34064.23 33867.72 32380.91 32941.48 33788.65 33862.40 32554.02 33983.68 335
lessismore_v085.08 30685.59 32569.28 33490.56 33567.68 32490.21 29254.21 31995.46 28873.88 29362.64 32990.50 290
K. test v381.04 28679.77 28884.83 30887.41 31970.23 33295.60 28393.93 30383.70 25067.51 32589.35 30255.76 31093.58 31676.67 27468.03 32190.67 287
MIMVSNet175.92 30473.30 30683.81 31281.29 33475.57 31692.26 30992.05 32473.09 31967.48 32686.18 32140.87 34087.64 33955.78 33570.68 31788.21 315
ET-MVSNet_ETH3D92.56 14291.45 14795.88 12096.39 15494.13 5599.46 4596.97 17292.18 7066.94 32798.29 11194.65 1194.28 31294.34 10383.82 23399.24 100
pmmvs-eth3d78.71 29876.16 30086.38 29980.25 33681.19 28994.17 29492.13 32377.97 30266.90 32882.31 32555.76 31092.56 32573.63 29762.31 33185.38 330
EG-PatchMatch MVS79.92 29177.59 29286.90 29787.06 32277.90 31296.20 27094.06 30274.61 31466.53 32988.76 30540.40 34196.20 26167.02 31583.66 23486.61 325
UnsupCasMVSNet_eth78.90 29676.67 29885.58 30582.81 33374.94 31791.98 31096.31 20384.64 23665.84 33087.71 30951.33 32592.23 32872.89 30156.50 33689.56 308
new-patchmatchnet74.80 30672.40 30881.99 31778.36 34072.20 32794.44 29092.36 31977.06 30663.47 33179.98 33251.04 32688.85 33760.53 33054.35 33884.92 333
new_pmnet76.02 30373.71 30582.95 31483.88 33072.85 32591.26 31692.26 32070.44 32462.60 33281.37 32747.64 33292.32 32761.85 32672.10 31083.68 335
UnsupCasMVSNet_bld73.85 30770.14 30984.99 30779.44 33775.73 31588.53 32395.24 27670.12 32661.94 33374.81 33541.41 33893.62 31568.65 31151.13 34185.62 329
CMPMVSbinary58.40 2180.48 28980.11 28781.59 31985.10 32659.56 34094.14 29595.95 22768.54 33060.71 33493.31 22655.35 31497.87 17883.06 22984.85 22487.33 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DeepMVS_CXcopyleft76.08 32290.74 28251.65 34590.84 33486.47 21057.89 33587.98 30735.88 34392.60 32365.77 32065.06 32683.97 334
testing_280.92 28777.24 29591.98 21378.88 33987.83 18393.96 29795.72 24684.27 24156.20 33680.42 33038.64 34296.40 24587.20 18079.85 25691.72 245
YYNet179.64 29477.04 29787.43 29487.80 31679.98 29896.23 26694.44 29373.83 31851.83 33787.53 31167.96 26692.07 33166.00 31967.75 32390.23 295
MDA-MVSNet_test_wron79.65 29377.05 29687.45 29387.79 31780.13 29796.25 26594.44 29373.87 31751.80 33887.47 31268.04 26492.12 33066.02 31867.79 32290.09 296
LCM-MVSNet60.07 31156.37 31371.18 32354.81 34948.67 34682.17 34089.48 33937.95 34249.13 33969.12 33613.75 35281.76 34159.28 33151.63 34083.10 337
MDA-MVSNet-bldmvs77.82 30274.75 30487.03 29688.33 30978.52 30696.34 26092.85 31475.57 31148.87 34087.89 30857.32 30792.49 32660.79 32864.80 32790.08 297
PMMVS258.97 31255.07 31470.69 32562.72 34455.37 34385.97 32780.52 34749.48 34045.94 34168.31 33715.73 35080.78 34349.79 33937.12 34275.91 338
FPMVS61.57 31060.32 31265.34 32660.14 34742.44 34891.02 31889.72 33844.15 34142.63 34280.93 32819.02 34680.59 34442.50 34172.76 30273.00 339
Gipumacopyleft54.77 31352.22 31662.40 32886.50 32359.37 34150.20 34690.35 33636.52 34341.20 34349.49 34418.33 34881.29 34232.10 34365.34 32546.54 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 31452.86 31556.05 32932.75 35341.97 34973.42 34376.12 35021.91 34839.68 34496.39 17742.59 33665.10 34778.00 26414.92 34761.08 341
E-PMN41.02 31840.93 31941.29 33261.97 34533.83 35084.00 33765.17 35227.17 34527.56 34546.72 34617.63 34960.41 34919.32 34618.82 34429.61 345
ANet_high50.71 31546.17 31764.33 32744.27 35152.30 34476.13 34278.73 34864.95 33627.37 34655.23 34314.61 35167.74 34636.01 34218.23 34572.95 340
EMVS39.96 31939.88 32040.18 33359.57 34832.12 35284.79 33464.57 35326.27 34626.14 34744.18 34918.73 34759.29 35017.03 34717.67 34629.12 346
MVEpermissive44.00 2241.70 31737.64 32153.90 33149.46 35043.37 34765.09 34566.66 35126.19 34725.77 34848.53 3453.58 35563.35 34826.15 34527.28 34354.97 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 31642.50 31855.17 33034.28 35232.37 35166.24 34478.71 34930.72 34422.04 34959.59 3414.59 35377.85 34527.49 34458.84 33555.29 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 32123.05 3236.10 3364.48 3542.29 35697.78 2103.00 3563.27 35018.60 35062.71 3391.53 3572.49 35314.26 3491.80 34913.50 348
test12316.58 32319.47 3247.91 3353.59 3555.37 35594.32 2911.39 3572.49 35113.98 35144.60 3482.91 3562.65 35211.35 3500.57 35015.70 347
wuyk23d16.71 32216.73 32516.65 33460.15 34625.22 35441.24 3475.17 3556.56 3495.48 3523.61 3523.64 35422.72 35115.20 3489.52 3481.99 349
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
cdsmvs_eth3d_5k22.52 32030.03 3220.00 3370.00 3560.00 3570.00 34897.17 1530.00 3520.00 35398.77 7974.35 2190.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.87 3259.16 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35382.48 1630.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
ab-mvs-re8.21 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.50 1010.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.49 299.64 1998.51 299.77 999.19 3295.12 699.97 2099.90 199.92 399.99 1
save fliter99.34 5193.85 5999.65 2397.63 9395.69 11
test_0728_SECOND98.77 599.66 1496.37 1199.72 1497.68 8199.98 1099.64 599.82 1599.96 8
GSMVS98.84 129
test_part10.00 3370.00 3570.00 34897.69 800.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs188.39 6998.84 129
sam_mvs87.08 95
MTGPAbinary97.45 127
test_post190.74 32141.37 35085.38 12996.36 24883.16 226
test_post46.00 34787.37 8897.11 213
patchmatchnet-post84.86 32388.73 6396.81 224
MTMP99.21 6991.09 333
gm-plane-assit94.69 21588.14 17788.22 17097.20 14898.29 15590.79 143
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4199.87 799.91 18
test_prior492.00 9299.41 54
test_prior97.01 6299.58 2891.77 9397.57 10699.49 10399.79 34
新几何298.26 180
旧先验198.97 7692.90 8297.74 6799.15 4091.05 2999.33 6899.60 72
无先验98.52 15397.82 5487.20 19499.90 4087.64 17799.85 29
原ACMM298.69 131
testdata299.88 4484.16 214
segment_acmp90.56 39
testdata197.89 20392.43 61
plane_prior793.84 23485.73 234
plane_prior693.92 23186.02 22872.92 231
plane_prior596.30 20497.75 19093.46 11686.17 21592.67 222
plane_prior496.52 171
plane_prior299.02 9793.38 44
plane_prior193.90 233
plane_prior86.07 22699.14 8493.81 3786.26 214
n20.00 358
nn0.00 358
door-mid84.90 346
test1197.68 81
door85.30 345
HQP5-MVS86.39 214
BP-MVS93.82 111
HQP3-MVS96.37 20086.29 212
HQP2-MVS73.34 227
NP-MVS93.94 23086.22 22096.67 169
ACMMP++_ref82.64 243
ACMMP++83.83 231
Test By Simon83.62 145