This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
test072699.66 1595.20 2699.77 1097.70 7993.95 2999.35 399.54 393.18 18
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 1097.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7897.65 8889.55 13799.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1597.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15697.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9997.11 16695.83 1098.97 1199.14 4382.48 17499.60 9198.60 1999.08 8098.00 178
旧先验298.67 13885.75 22798.96 1298.97 14293.84 117
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10297.04 17395.51 1698.86 1399.11 5082.19 18099.36 12198.59 2198.14 10998.00 178
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6797.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4297.52 11789.85 12498.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2495.45 27495.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 5097.45 13089.60 13398.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2697.73 7291.05 9498.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6997.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 14099.41 5697.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
9.1496.87 2699.34 5399.50 4097.49 12589.41 14098.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7897.44 13490.08 12098.59 2299.07 5189.06 5999.42 11597.92 4099.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 9097.38 14188.44 17098.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
testdata95.26 14298.20 10487.28 20497.60 9885.21 23498.48 2599.15 4188.15 7498.72 15190.29 15699.45 6299.78 38
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7897.74 6891.28 9198.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
TEST999.57 3393.17 7299.38 5997.66 8389.57 13598.39 2799.18 3590.88 3299.66 80
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5997.66 8390.18 11598.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
test_899.55 3593.07 7699.37 6297.64 8990.18 11598.36 2999.19 3290.94 3099.64 86
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7397.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4399.87 799.68 61
CS-MVS-test95.99 5996.01 5395.93 12195.70 18390.90 12599.86 296.13 22592.45 6298.17 3198.53 10186.43 11597.62 20297.94 3998.88 8999.26 101
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1397.78 6396.61 498.15 3299.53 793.62 14100.00 191.79 14199.80 2399.94 14
test_part299.54 3695.42 1798.13 33
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1497.66 8394.14 2898.13 3399.26 2492.16 2499.66 8097.91 4199.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3197.57 10791.43 8798.12 3598.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior299.57 3191.43 8798.12 3598.97 6390.43 4098.33 3099.81 19
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1898.05 3986.48 21998.05 3799.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
MVSFormer94.71 9494.08 9796.61 9295.05 21494.87 3397.77 21996.17 22286.84 21098.04 3898.52 10385.52 12795.99 27989.83 15998.97 8598.96 123
lupinMVS96.32 4995.94 5697.44 4595.05 21494.87 3399.86 296.50 20093.82 3898.04 3898.77 8385.52 12798.09 16896.98 5698.97 8599.37 90
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3397.52 11793.59 4398.01 4099.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11697.59 10290.66 10097.98 4199.14 4386.59 109100.00 196.47 6699.46 6099.89 23
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6497.64 8990.38 10997.98 4199.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
agg_prior99.54 3692.66 8497.64 8997.98 4199.61 89
CS-MVS95.86 6595.81 6295.98 11895.62 18791.26 10799.80 896.12 22692.15 7497.93 4498.45 11285.88 12597.55 20897.56 4498.80 9599.14 110
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 9097.44 13489.02 14997.90 4599.22 2988.90 6299.49 10494.63 10699.79 2599.68 61
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 4198.76 1296.54 597.84 4698.22 11987.49 8699.66 8095.35 9097.78 11599.00 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1898.13 3694.61 1997.78 4799.46 1189.85 5099.81 6297.97 3899.91 499.88 24
test1297.83 3199.33 5994.45 4797.55 11097.56 4888.60 6599.50 10399.71 3499.55 77
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
DROMVSNet95.24 8195.28 7495.12 14395.48 19388.95 16999.55 3495.95 23591.59 8397.46 5298.38 11383.18 16297.42 21597.32 4998.58 10298.97 122
ZD-MVS99.67 1393.28 7097.61 9687.78 19097.41 5399.16 3990.15 4799.56 9398.35 2999.70 35
ETV-MVS96.00 5796.00 5496.00 11696.56 15491.05 11999.63 2696.61 18993.26 4897.39 5498.30 11686.62 10898.13 16598.07 3797.57 11798.82 138
DeepPCF-MVS93.56 196.55 4197.84 892.68 21198.71 9278.11 32399.70 1897.71 7898.18 197.36 5599.76 190.37 4599.94 3399.27 999.54 5799.99 1
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 597.52 11795.90 997.21 5698.90 7682.66 17199.93 3598.71 1698.80 9599.63 69
CANet_DTU94.31 10493.35 11397.20 5797.03 14294.71 4298.62 14595.54 26995.61 1497.21 5698.47 10971.88 25599.84 5588.38 17897.46 12297.04 202
VNet95.08 8494.26 9097.55 4398.07 10993.88 5898.68 13698.73 1590.33 11197.16 5897.43 14679.19 20399.53 9796.91 5891.85 18899.24 103
region2R96.30 5096.17 4796.70 8899.70 890.31 13699.46 4797.66 8390.55 10497.07 5999.07 5186.85 10199.97 2095.43 8899.74 2899.81 31
原ACMM196.18 10999.03 7890.08 14397.63 9388.98 15097.00 6098.97 6388.14 7599.71 7388.23 18099.62 4798.76 145
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11497.94 4592.89 5496.90 6199.02 5789.78 5199.53 9797.06 5199.26 7699.75 48
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12299.47 4297.81 5890.54 10596.88 6299.05 5487.57 8399.96 2795.65 8199.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12299.53 3897.81 5890.94 9896.88 6299.05 5487.57 8399.96 2795.87 7899.72 3099.78 38
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11497.93 4692.86 5696.88 6299.02 5789.74 5399.53 9797.03 5299.26 7699.75 48
XVS96.47 4496.37 4096.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6598.96 6887.37 8999.87 4795.65 8199.43 6499.78 38
X-MVStestdata90.69 17988.66 19996.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6529.59 36887.37 8999.87 4795.65 8199.43 6499.78 38
112195.19 8294.45 8797.42 4698.88 8692.58 8996.22 27997.75 6685.50 23196.86 6599.01 6188.59 6799.90 4087.64 18799.60 5299.79 34
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16598.59 15197.33 14690.44 10796.84 6899.12 4686.75 10399.41 11797.47 4599.44 6399.76 47
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 3096.54 19895.09 1896.84 6898.63 9791.16 2699.77 6799.04 1296.42 13399.81 31
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13499.47 4297.80 6090.54 10596.83 7099.03 5686.51 11399.95 3095.65 8199.72 3099.75 48
PMMVS93.62 12293.90 10692.79 20696.79 14881.40 29798.85 11796.81 18391.25 9296.82 7198.15 12377.02 21798.13 16593.15 13096.30 13798.83 137
PGM-MVS95.85 6695.65 6996.45 10099.50 4389.77 15498.22 18998.90 1189.19 14396.74 7298.95 7085.91 12499.92 3693.94 11499.46 6099.66 65
jason95.40 7794.86 8197.03 6192.91 26794.23 5299.70 1896.30 21193.56 4496.73 7398.52 10381.46 18997.91 17896.08 7598.47 10698.96 123
jason: jason.
新几何197.40 4898.92 8492.51 9197.77 6585.52 22996.69 7499.06 5388.08 7699.89 4384.88 21599.62 4799.79 34
SR-MVS-dyc-post95.75 7295.86 5995.41 13799.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6386.73 10599.36 12196.62 6099.31 7299.60 73
RE-MVS-def95.70 6699.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6385.24 13596.62 6099.31 7299.60 73
APD-MVS_3200maxsize95.64 7395.65 6995.62 12999.24 6587.80 19098.42 16997.22 15388.93 15496.64 7798.98 6285.49 13099.36 12196.68 5999.27 7599.70 57
test117295.92 6396.07 5295.46 13499.42 4987.24 20998.51 15997.24 15090.29 11296.56 7899.12 4686.73 10599.36 12197.33 4899.42 6799.78 38
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9499.06 994.45 2296.42 7998.70 9288.81 6399.74 7095.35 9099.86 1099.97 7
hse-mvs392.47 14891.95 14494.05 18097.13 13685.01 25798.36 17998.08 3793.85 3696.27 8096.73 17583.19 16099.43 11495.81 7968.09 33097.70 183
hse-mvs291.67 16091.51 15392.15 22096.22 16582.61 28997.74 22297.53 11493.85 3696.27 8096.15 18883.19 16097.44 21395.81 7966.86 33596.40 213
alignmvs95.77 7095.00 8098.06 2597.35 12895.68 1699.71 1797.50 12391.50 8596.16 8298.61 9886.28 11999.00 14196.19 7291.74 19099.51 81
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12997.90 4892.48 6196.00 8398.95 7088.60 6599.52 10096.44 6798.83 9299.49 83
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15899.70 1897.61 9690.07 12196.00 8399.16 3987.43 8799.92 3696.03 7699.72 3099.70 57
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12997.88 4992.43 6395.97 8598.95 7088.42 6999.51 10196.40 6898.83 9299.49 83
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1897.98 4497.18 295.96 8699.33 2192.62 22100.00 198.99 1399.93 199.98 6
diffmvs94.59 9994.19 9295.81 12495.54 19090.69 12998.70 13395.68 26091.61 8195.96 8697.81 12780.11 19598.06 17296.52 6595.76 14798.67 149
GST-MVS95.97 6095.66 6796.90 7499.49 4591.22 10899.45 4997.48 12689.69 12995.89 8898.72 8986.37 11899.95 3094.62 10799.22 7999.52 79
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11797.64 8996.51 795.88 8999.39 1987.35 9399.99 596.61 6299.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 10191.21 10998.08 20397.58 10483.74 25895.87 9099.02 5786.74 10499.64 4399.81 31
ZNCC-MVS96.09 5595.81 6296.95 7299.42 4991.19 11099.55 3497.53 11489.72 12895.86 9198.94 7586.59 10999.97 2095.13 9499.56 5599.68 61
canonicalmvs95.02 8593.96 10298.20 1797.53 12595.92 1498.71 12996.19 22191.78 7995.86 9198.49 10779.53 20099.03 14096.12 7391.42 19699.66 65
abl_694.63 9794.48 8695.09 14598.61 9686.96 21298.06 20596.97 17989.31 14195.86 9198.56 10079.82 19699.64 8694.53 10998.65 10198.66 152
Effi-MVS+93.87 11393.15 11896.02 11595.79 17990.76 12796.70 26495.78 25386.98 20795.71 9497.17 15779.58 19898.01 17694.57 10896.09 14199.31 95
HPM-MVS_fast94.89 8694.62 8395.70 12899.11 7388.44 18299.14 8797.11 16685.82 22695.69 9598.47 10983.46 15399.32 12793.16 12999.63 4699.35 91
HY-MVS88.56 795.29 7894.23 9198.48 1197.72 11596.41 1094.03 31098.74 1392.42 6695.65 9694.76 20986.52 11299.49 10495.29 9292.97 16999.53 78
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30298.36 2392.50 6095.62 9797.52 14297.92 197.38 21698.31 3398.80 9598.20 174
MP-MVScopyleft96.00 5795.82 6096.54 9699.47 4690.13 14299.36 6397.41 13890.64 10395.49 9898.95 7085.51 12999.98 1096.00 7799.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 7695.22 7695.99 11799.29 6189.14 16399.17 7797.09 17087.28 20395.40 9998.48 10884.93 13799.38 11995.64 8599.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 13092.62 12995.34 13996.27 16388.53 18195.88 28996.97 17990.90 9995.37 10097.07 16182.38 17799.10 13883.91 23094.86 15598.38 163
sss94.85 8893.94 10497.58 4096.43 15894.09 5698.93 10999.16 889.50 13895.27 10197.85 12581.50 18799.65 8492.79 13594.02 16198.99 119
WTY-MVS95.97 6095.11 7898.54 1097.62 11996.65 699.44 5098.74 1392.25 7095.21 10298.46 11186.56 11199.46 11195.00 9892.69 17399.50 82
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 497.84 5396.36 895.20 10398.24 11888.17 7399.83 5796.11 7499.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12199.14 8799.45 193.86 3595.15 10498.73 8788.48 6899.76 6897.23 5099.56 5599.40 89
MVS_Test93.67 12092.67 12896.69 8996.72 15092.66 8497.22 24396.03 22987.69 19695.12 10594.03 21781.55 18698.28 16189.17 17296.46 13199.14 110
MVS_111021_LR95.78 6995.94 5695.28 14198.19 10687.69 19198.80 12299.26 793.39 4595.04 10698.69 9384.09 14699.76 6896.96 5799.06 8198.38 163
CostFormer92.89 13892.48 13294.12 17794.99 21685.89 23992.89 31997.00 17886.98 20795.00 10790.78 28090.05 4897.51 20992.92 13391.73 19198.96 123
mPP-MVS95.90 6495.75 6596.38 10499.58 2989.41 16299.26 7097.41 13890.66 10094.82 10898.95 7086.15 12199.98 1095.24 9399.64 4399.74 51
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11199.14 7190.33 13598.49 16397.82 5591.92 7694.75 10998.88 7887.06 9799.48 10995.40 8997.17 12698.70 148
LFMVS92.23 15290.84 16496.42 10298.24 10391.08 11898.24 18896.22 21883.39 26594.74 11098.31 11561.12 31398.85 14394.45 11092.82 17099.32 94
tpmrst92.78 13992.16 13894.65 15996.27 16387.45 19991.83 32797.10 16989.10 14794.68 11190.69 28488.22 7297.73 19689.78 16191.80 18998.77 144
test_yl95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
DCV-MVSNet95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
DP-MVS Recon95.85 6695.15 7797.95 2899.87 294.38 5099.60 2897.48 12686.58 21694.42 11499.13 4587.36 9299.98 1093.64 12198.33 10899.48 85
zzz-MVS96.21 5395.96 5596.96 7099.29 6191.19 11098.69 13497.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
MTAPA96.09 5595.80 6496.96 7099.29 6191.19 11097.23 24297.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
CPTT-MVS94.60 9894.43 8895.09 14599.66 1586.85 21499.44 5097.47 12883.22 26794.34 11798.96 6882.50 17299.55 9494.81 10199.50 5898.88 131
PVSNet_BlendedMVS93.36 12893.20 11793.84 18798.77 9091.61 10199.47 4298.04 4091.44 8694.21 11892.63 25183.50 15199.87 4797.41 4683.37 24490.05 310
PVSNet_Blended95.94 6295.66 6796.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11897.76 13083.50 15199.87 4797.41 4697.75 11698.79 141
EI-MVSNet-UG-set95.43 7495.29 7395.86 12399.07 7789.87 15198.43 16897.80 6091.78 7994.11 12098.77 8386.25 12099.48 10994.95 10096.45 13298.22 172
EIA-MVS95.11 8395.27 7594.64 16096.34 16186.51 21899.59 2996.62 18892.51 5994.08 12198.64 9586.05 12298.24 16295.07 9698.50 10599.18 108
MAR-MVS94.43 10194.09 9695.45 13599.10 7587.47 19898.39 17797.79 6288.37 17394.02 12299.17 3778.64 20999.91 3892.48 13698.85 9198.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 4795.94 5697.58 4094.10 23695.25 2098.93 10998.17 3194.26 2393.94 12398.72 8989.68 5497.88 18196.36 6999.29 7499.62 71
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 34097.74 6893.91 12496.40 18396.56 296.94 23095.08 9598.95 8899.20 107
API-MVS94.78 8994.18 9496.59 9399.21 6890.06 14798.80 12297.78 6383.59 26293.85 12599.21 3083.79 14899.97 2092.37 13799.00 8499.74 51
tpm291.77 15891.09 15793.82 18894.83 22385.56 24792.51 32497.16 16184.00 25493.83 12690.66 28687.54 8597.17 22087.73 18691.55 19498.72 146
PAPR96.35 4795.82 6097.94 2999.63 2194.19 5499.42 5597.55 11092.43 6393.82 12799.12 4687.30 9499.91 3894.02 11399.06 8199.74 51
PVSNet87.13 1293.69 11792.83 12596.28 10797.99 11190.22 13999.38 5998.93 1091.42 8993.66 12897.68 13571.29 26299.64 8687.94 18497.20 12598.98 120
baseline93.91 11193.30 11495.72 12795.10 21190.07 14497.48 23195.91 24491.03 9593.54 12997.68 13579.58 19898.02 17594.27 11295.14 15299.08 115
VDD-MVS91.24 16990.18 17594.45 16697.08 13985.84 24298.40 17496.10 22786.99 20593.36 13098.16 12254.27 33499.20 13096.59 6390.63 20498.31 169
VDDNet90.08 19188.54 20494.69 15894.41 23187.68 19298.21 19196.40 20576.21 32493.33 13197.75 13154.93 33298.77 14694.71 10590.96 19997.61 188
thisisatest051594.75 9094.19 9296.43 10196.13 17592.64 8899.47 4297.60 9887.55 19993.17 13297.59 14094.71 998.42 15688.28 17993.20 16698.24 171
MP-MVS-pluss95.80 6895.30 7297.29 5298.95 8392.66 8498.59 15197.14 16288.95 15293.12 13399.25 2585.62 12699.94 3396.56 6499.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 11391.38 33087.45 20193.08 13486.67 10787.02 19198.95 127
DWT-MVSNet_test94.36 10293.95 10395.62 12996.99 14389.47 16096.62 26697.38 14190.96 9793.07 13597.27 14993.73 1398.09 16885.86 20793.65 16499.29 97
EPNet_dtu92.28 15092.15 13992.70 21097.29 13084.84 25998.64 14297.82 5592.91 5393.02 13697.02 16385.48 13295.70 29472.25 31494.89 15497.55 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 19287.71 21396.89 7996.15 17194.69 4385.15 34697.74 6868.32 34792.97 13760.16 35796.10 396.84 23293.89 11598.87 9099.14 110
casdiffmvs93.98 10993.43 11295.61 13195.07 21389.86 15298.80 12295.84 25290.98 9692.74 13897.66 13779.71 19798.10 16794.72 10495.37 15198.87 133
114514_t94.06 10693.05 12097.06 6099.08 7692.26 9398.97 10697.01 17782.58 27992.57 13998.22 11980.68 19399.30 12889.34 16899.02 8399.63 69
OMC-MVS93.90 11293.62 11094.73 15798.63 9487.00 21198.04 20696.56 19592.19 7192.46 14098.73 8779.49 20199.14 13692.16 13994.34 15998.03 177
PAPM_NR95.43 7495.05 7996.57 9599.42 4990.14 14098.58 15397.51 12090.65 10292.44 14198.90 7687.77 8199.90 4090.88 15099.32 7199.68 61
UGNet91.91 15790.85 16395.10 14497.06 14088.69 17798.01 20798.24 2792.41 6792.39 14293.61 23060.52 31499.68 7888.14 18197.25 12496.92 204
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 17396.14 17288.55 17991.34 33197.51 12089.58 13492.24 14390.50 29786.99 10097.61 20377.64 27792.34 179
Vis-MVSNetpermissive92.64 14291.85 14595.03 14995.12 20788.23 18398.48 16496.81 18391.61 8192.16 14497.22 15371.58 26098.00 17785.85 20897.81 11298.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TESTMET0.1,193.82 11493.26 11695.49 13395.21 20090.25 13799.15 8497.54 11389.18 14491.79 14594.87 20789.13 5897.63 20086.21 20096.29 13898.60 153
thisisatest053094.00 10893.52 11195.43 13695.76 18190.02 14998.99 10497.60 9886.58 21691.74 14697.36 14894.78 898.34 15786.37 19992.48 17797.94 180
AUN-MVS90.17 18889.50 18192.19 21896.21 16682.67 28797.76 22197.53 11488.05 18291.67 14796.15 18883.10 16397.47 21088.11 18266.91 33496.43 212
EPMVS92.59 14591.59 15195.59 13297.22 13290.03 14891.78 32898.04 4090.42 10891.66 14890.65 28786.49 11497.46 21181.78 25196.31 13699.28 99
test-LLR93.11 13692.68 12794.40 16794.94 21987.27 20599.15 8497.25 14890.21 11391.57 14994.04 21584.89 13897.58 20485.94 20496.13 13998.36 166
test-mter93.27 13292.89 12494.40 16794.94 21987.27 20599.15 8497.25 14888.95 15291.57 14994.04 21588.03 7797.58 20485.94 20496.13 13998.36 166
JIA-IIPM85.97 25684.85 25689.33 28493.23 26273.68 33685.05 34797.13 16469.62 34391.56 15168.03 35588.03 7796.96 22877.89 27693.12 16797.34 192
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10697.14 13591.10 11699.32 6897.43 13692.10 7591.53 15296.38 18683.29 15799.68 7893.42 12696.37 13498.25 170
CHOSEN 1792x268894.35 10393.82 10795.95 12097.40 12688.74 17698.41 17198.27 2592.18 7291.43 15396.40 18378.88 20499.81 6293.59 12297.81 11299.30 96
ACMMPcopyleft94.67 9594.30 8995.79 12599.25 6488.13 18598.41 17198.67 1990.38 10991.43 15398.72 8982.22 17999.95 3093.83 11895.76 14799.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPP-MVSNet93.75 11693.67 10994.01 18295.86 17885.70 24498.67 13897.66 8384.46 24891.36 15597.18 15691.16 2697.79 18792.93 13293.75 16298.53 155
PLCcopyleft91.07 394.23 10594.01 9894.87 15199.17 7087.49 19799.25 7196.55 19688.43 17191.26 15698.21 12185.92 12399.86 5289.77 16297.57 11797.24 195
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 11993.29 11594.87 15197.57 12388.04 18798.18 19398.47 2187.57 19891.24 15795.05 20585.49 13097.46 21193.22 12892.82 17099.10 113
thres20093.69 11792.59 13096.97 6997.76 11494.74 4099.35 6499.36 289.23 14291.21 15896.97 16583.42 15498.77 14685.08 21190.96 19997.39 191
mvs-test191.57 16192.20 13789.70 27495.15 20574.34 33399.51 3995.40 27891.92 7691.02 15997.25 15074.27 23498.08 17189.45 16495.83 14696.67 205
CDS-MVSNet93.47 12393.04 12194.76 15494.75 22589.45 16198.82 12097.03 17587.91 18790.97 16096.48 18189.06 5996.36 25889.50 16392.81 17298.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 12592.27 13596.90 7497.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20197.12 197
thres40093.39 12792.27 13596.73 8597.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20196.61 206
CR-MVSNet88.83 21187.38 21893.16 19993.47 25586.24 22784.97 34894.20 31388.92 15590.76 16386.88 33184.43 14294.82 31470.64 31892.17 18498.41 160
RPMNet85.07 26981.88 28694.64 16093.47 25586.24 22784.97 34897.21 15464.85 35390.76 16378.80 35180.95 19299.27 12953.76 35492.17 18498.41 160
PatchmatchNetpermissive92.05 15591.04 15995.06 14796.17 17089.04 16591.26 33297.26 14789.56 13690.64 16590.56 29388.35 7197.11 22279.53 26396.07 14399.03 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 13093.01 12294.17 17595.57 18886.47 22098.51 15997.60 9885.99 22490.55 16697.19 15594.80 798.31 15885.06 21291.86 18797.74 182
PatchT85.44 26683.19 27392.22 21693.13 26483.00 27983.80 35496.37 20770.62 33890.55 16679.63 35084.81 14094.87 31258.18 35191.59 19398.79 141
tpm89.67 19688.95 19291.82 22692.54 27081.43 29692.95 31895.92 24087.81 18990.50 16889.44 31284.99 13695.65 29583.67 23382.71 24998.38 163
thres100view90093.34 12992.15 13996.90 7497.62 11994.84 3599.06 9699.36 287.96 18590.47 16996.78 17383.29 15798.75 14884.11 22690.69 20197.12 197
thres600view793.18 13492.00 14296.75 8397.62 11994.92 3199.07 9499.36 287.96 18590.47 16996.78 17383.29 15798.71 15282.93 24090.47 20596.61 206
AdaColmapbinary93.82 11493.06 11996.10 11399.88 189.07 16498.33 18197.55 11086.81 21290.39 17198.65 9475.09 22399.98 1093.32 12797.53 12099.26 101
XVG-OURS-SEG-HR90.95 17390.66 17091.83 22595.18 20481.14 30495.92 28695.92 24088.40 17290.33 17297.85 12570.66 26599.38 11992.83 13488.83 21094.98 220
IS-MVSNet93.00 13792.51 13194.49 16496.14 17287.36 20298.31 18495.70 25888.58 16290.17 17397.50 14383.02 16497.22 21987.06 19096.07 14398.90 130
CSCG94.87 8794.71 8295.36 13899.54 3686.49 21999.34 6698.15 3482.71 27790.15 17499.25 2589.48 5699.86 5294.97 9998.82 9499.72 54
SCA90.64 18089.25 18794.83 15394.95 21888.83 17296.26 27697.21 15490.06 12290.03 17590.62 28966.61 29096.81 23483.16 23694.36 15898.84 134
XVG-OURS90.83 17590.49 17291.86 22495.23 19981.25 30195.79 29495.92 24088.96 15190.02 17698.03 12471.60 25999.35 12591.06 14787.78 21494.98 220
ADS-MVSNet287.62 23386.88 22689.86 26996.21 16679.14 31487.15 34192.99 32783.01 27089.91 17787.27 32778.87 20592.80 33474.20 30292.27 18197.64 184
ADS-MVSNet88.99 20487.30 21994.07 17896.21 16687.56 19687.15 34196.78 18583.01 27089.91 17787.27 32778.87 20597.01 22774.20 30292.27 18197.64 184
ab-mvs91.05 17189.17 18896.69 8995.96 17691.72 9892.62 32397.23 15285.61 22889.74 17993.89 22368.55 27499.42 11591.09 14687.84 21398.92 129
TAMVS92.62 14392.09 14194.20 17494.10 23687.68 19298.41 17196.97 17987.53 20089.74 17996.04 19284.77 14196.49 25088.97 17592.31 18098.42 159
Vis-MVSNet (Re-imp)93.26 13393.00 12394.06 17996.14 17286.71 21798.68 13696.70 18688.30 17589.71 18197.64 13885.43 13396.39 25688.06 18396.32 13599.08 115
CNLPA93.64 12192.74 12696.36 10598.96 8290.01 15099.19 7395.89 24786.22 22289.40 18298.85 7980.66 19499.84 5588.57 17696.92 12799.24 103
Anonymous20240521188.84 20987.03 22494.27 17198.14 10884.18 26798.44 16795.58 26776.79 32389.34 18396.88 17053.42 33799.54 9687.53 18987.12 21799.09 114
Fast-Effi-MVS+91.72 15990.79 16794.49 16495.89 17787.40 20199.54 3795.70 25885.01 24189.28 18495.68 19677.75 21397.57 20783.22 23595.06 15398.51 156
PatchMatch-RL91.47 16390.54 17194.26 17298.20 10486.36 22596.94 25297.14 16287.75 19288.98 18595.75 19571.80 25799.40 11880.92 25697.39 12397.02 203
dp90.16 18988.83 19594.14 17696.38 16086.42 22191.57 32997.06 17284.76 24588.81 18690.19 30584.29 14497.43 21475.05 29591.35 19898.56 154
DeepC-MVS91.02 494.56 10093.92 10596.46 9997.16 13490.76 12798.39 17797.11 16693.92 3188.66 18798.33 11478.14 21199.85 5495.02 9798.57 10398.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 14491.28 15596.58 9497.05 14194.63 4497.72 22396.20 21989.82 12588.56 18896.85 17186.85 10197.82 18588.42 17780.10 26197.30 193
Anonymous2024052987.66 23285.58 24593.92 18497.59 12285.01 25798.13 19697.13 16466.69 35188.47 18996.01 19355.09 33199.51 10187.00 19284.12 23697.23 196
CVMVSNet90.30 18490.91 16288.46 29794.32 23273.58 33797.61 22897.59 10290.16 11888.43 19097.10 15976.83 21892.86 33182.64 24293.54 16598.93 128
TR-MVS90.77 17689.44 18394.76 15496.31 16288.02 18897.92 21095.96 23385.52 22988.22 19197.23 15266.80 28998.09 16884.58 21992.38 17898.17 175
F-COLMAP92.07 15491.75 14993.02 20198.16 10782.89 28398.79 12695.97 23186.54 21887.92 19297.80 12878.69 20899.65 8485.97 20295.93 14596.53 211
BH-RMVSNet91.25 16889.99 17695.03 14996.75 14988.55 17998.65 14094.95 29487.74 19387.74 19397.80 12868.27 27798.14 16480.53 26097.49 12198.41 160
Effi-MVS+-dtu89.97 19390.68 16987.81 30195.15 20571.98 34397.87 21495.40 27891.92 7687.57 19491.44 26874.27 23496.84 23289.45 16493.10 16894.60 222
HQP-NCC93.95 24099.16 7893.92 3187.57 194
ACMP_Plane93.95 24099.16 7893.92 3187.57 194
HQP4-MVS87.57 19497.77 18992.72 229
HQP-MVS91.50 16291.23 15692.29 21593.95 24086.39 22399.16 7896.37 20793.92 3187.57 19496.67 17773.34 24197.77 18993.82 11986.29 21992.72 229
TAPA-MVS87.50 990.35 18289.05 19094.25 17398.48 10085.17 25498.42 16996.58 19482.44 28387.24 19998.53 10182.77 16898.84 14459.09 34997.88 11198.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE90.60 18189.56 18093.72 19195.10 21185.43 24899.41 5694.94 29583.96 25687.21 20096.83 17274.37 23297.05 22680.50 26193.73 16398.67 149
HQP_MVS91.26 16690.95 16192.16 21993.84 24786.07 23599.02 10096.30 21193.38 4686.99 20196.52 17972.92 24597.75 19493.46 12486.17 22292.67 231
plane_prior385.91 23893.65 4186.99 201
GA-MVS90.10 19088.69 19894.33 16992.44 27187.97 18999.08 9396.26 21589.65 13086.92 20393.11 24468.09 27896.96 22882.54 24490.15 20698.05 176
1112_ss92.71 14091.55 15296.20 10895.56 18991.12 11498.48 16494.69 30188.29 17686.89 20498.50 10587.02 9898.66 15384.75 21689.77 20898.81 139
MVS_030484.13 28382.66 28288.52 29593.07 26580.15 30995.81 29398.21 2979.27 30886.85 20586.40 33441.33 35694.69 31776.36 28786.69 21890.73 294
Test_1112_low_res92.27 15190.97 16096.18 10995.53 19191.10 11698.47 16694.66 30288.28 17786.83 20693.50 23587.00 9998.65 15484.69 21789.74 20998.80 140
cascas90.93 17489.33 18695.76 12695.69 18493.03 7898.99 10496.59 19180.49 30386.79 20794.45 21265.23 29898.60 15593.52 12392.18 18395.66 219
baseline294.04 10793.80 10894.74 15693.07 26590.25 13798.12 19898.16 3389.86 12386.53 20896.95 16695.56 598.05 17391.44 14394.53 15695.93 217
OPM-MVS89.76 19589.15 18991.57 23290.53 29685.58 24698.11 20095.93 23992.88 5586.05 20996.47 18267.06 28897.87 18289.29 17186.08 22491.26 278
VPA-MVSNet89.10 20287.66 21493.45 19492.56 26991.02 12097.97 20998.32 2486.92 20986.03 21092.01 25768.84 27397.10 22490.92 14975.34 28492.23 241
tpm cat188.89 20787.27 22093.76 18995.79 17985.32 25190.76 33697.09 17076.14 32585.72 21188.59 31882.92 16598.04 17476.96 28191.43 19597.90 181
IB-MVS89.43 692.12 15390.83 16695.98 11895.40 19690.78 12699.81 698.06 3891.23 9385.63 21293.66 22990.63 3798.78 14591.22 14571.85 32098.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 19489.38 18591.36 23594.32 23285.87 24097.61 22896.59 19185.10 23685.51 21397.10 15981.30 19196.56 24483.85 23283.03 24691.64 257
MVSTER92.71 14092.32 13393.86 18697.29 13092.95 8299.01 10296.59 19190.09 11985.51 21394.00 21994.61 1296.56 24490.77 15383.03 24692.08 247
RRT_MVS91.95 15691.09 15794.53 16396.71 15295.12 2898.64 14296.23 21789.04 14885.24 21595.06 20487.71 8296.43 25489.10 17482.06 25392.05 249
RPSCF85.33 26785.55 24684.67 32194.63 22862.28 35493.73 31293.76 31874.38 33185.23 21697.06 16264.09 30198.31 15880.98 25486.08 22493.41 228
BH-w/o92.32 14991.79 14793.91 18596.85 14586.18 23099.11 9295.74 25688.13 18084.81 21797.00 16477.26 21697.91 17889.16 17398.03 11097.64 184
CLD-MVS91.06 17090.71 16892.10 22194.05 23986.10 23399.55 3496.29 21494.16 2684.70 21897.17 15769.62 26997.82 18594.74 10386.08 22492.39 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 20187.76 21193.35 19597.19 13384.75 26190.58 33897.36 14481.99 28884.56 21989.31 31583.98 14798.17 16374.85 29890.00 20797.12 197
nrg03090.23 18588.87 19394.32 17091.53 28593.54 6598.79 12695.89 24788.12 18184.55 22094.61 21178.80 20796.88 23192.35 13875.21 28592.53 233
VPNet88.30 22186.57 23093.49 19391.95 27891.35 10698.18 19397.20 15888.61 16084.52 22194.89 20662.21 30896.76 23789.34 16872.26 31792.36 236
MVS93.92 11092.28 13498.83 495.69 18496.82 596.22 27998.17 3184.89 24384.34 22298.61 9879.32 20299.83 5793.88 11699.43 6499.86 28
mvs_anonymous92.50 14791.65 15095.06 14796.60 15389.64 15797.06 24896.44 20486.64 21584.14 22393.93 22182.49 17396.17 27391.47 14296.08 14299.35 91
Fast-Effi-MVS+-dtu88.84 20988.59 20289.58 27893.44 25878.18 32198.65 14094.62 30388.46 16684.12 22495.37 20268.91 27196.52 24782.06 24891.70 19294.06 223
LS3D90.19 18788.72 19794.59 16298.97 8086.33 22696.90 25496.60 19074.96 32884.06 22598.74 8675.78 22099.83 5774.93 29697.57 11797.62 187
bset_n11_16_dypcd89.07 20387.85 21092.76 20886.16 33990.66 13197.30 23695.62 26389.78 12783.94 22693.15 24374.85 22495.89 28891.34 14478.48 26791.74 255
ACMM86.95 1388.77 21488.22 20890.43 25593.61 25281.34 29998.50 16195.92 24087.88 18883.85 22795.20 20367.20 28697.89 18086.90 19584.90 23092.06 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 16490.84 16493.33 19696.51 15784.83 26098.84 11995.50 27186.44 22183.50 22896.70 17675.49 22297.77 18986.78 19797.81 11297.40 190
FIs90.70 17889.87 17793.18 19892.29 27291.12 11498.17 19598.25 2689.11 14683.44 22994.82 20882.26 17896.17 27387.76 18582.76 24892.25 239
UniMVSNet (Re)89.50 20088.32 20693.03 20092.21 27490.96 12298.90 11398.39 2289.13 14583.22 23092.03 25581.69 18596.34 26486.79 19672.53 31391.81 254
UniMVSNet_NR-MVSNet89.60 19788.55 20392.75 20992.17 27590.07 14498.74 12898.15 3488.37 17383.21 23193.98 22082.86 16695.93 28386.95 19372.47 31492.25 239
DU-MVS88.83 21187.51 21592.79 20691.46 28690.07 14498.71 12997.62 9588.87 15683.21 23193.68 22774.63 22595.93 28386.95 19372.47 31492.36 236
LPG-MVS_test88.86 20888.47 20590.06 26493.35 26080.95 30698.22 18995.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
LGP-MVS_train90.06 26493.35 26080.95 30695.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
miper_enhance_ethall90.33 18389.70 17892.22 21697.12 13788.93 17098.35 18095.96 23388.60 16183.14 23592.33 25387.38 8896.18 27286.49 19877.89 27191.55 265
FC-MVSNet-test90.22 18689.40 18492.67 21291.78 28289.86 15297.89 21198.22 2888.81 15782.96 23694.66 21081.90 18495.96 28185.89 20682.52 25192.20 243
PCF-MVS89.78 591.26 16689.63 17996.16 11295.44 19491.58 10395.29 29896.10 22785.07 23882.75 23797.45 14578.28 21099.78 6680.60 25995.65 15097.12 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 23985.68 24490.98 24289.91 30186.08 23498.32 18395.61 26583.67 26182.72 23890.67 28574.00 23896.53 24681.94 25074.28 29790.32 303
v114486.83 24285.31 24991.40 23389.75 30487.21 21098.31 18495.45 27483.22 26782.70 23990.78 28073.36 24096.36 25879.49 26474.69 29190.63 298
v14419286.40 25084.89 25590.91 24389.48 31085.59 24598.21 19195.43 27782.45 28282.62 24090.58 29272.79 24896.36 25878.45 27374.04 30190.79 290
3Dnovator87.35 1193.17 13591.77 14897.37 5195.41 19593.07 7698.82 12097.85 5291.53 8482.56 24197.58 14171.97 25499.82 6091.01 14899.23 7899.22 106
v2v48287.27 23785.76 24291.78 23189.59 30687.58 19598.56 15495.54 26984.53 24782.51 24291.78 26273.11 24496.47 25182.07 24774.14 30091.30 276
Baseline_NR-MVSNet85.83 25984.82 25788.87 29388.73 31883.34 27698.63 14491.66 34380.41 30682.44 24391.35 27074.63 22595.42 30184.13 22571.39 32387.84 331
v119286.32 25284.71 25991.17 23789.53 30986.40 22298.13 19695.44 27682.52 28182.42 24490.62 28971.58 26096.33 26577.23 27874.88 28890.79 290
test_djsdf88.26 22387.73 21289.84 27088.05 32682.21 29197.77 21996.17 22286.84 21082.41 24591.95 26072.07 25395.99 27989.83 15984.50 23391.32 275
cl-mvsnet289.57 19888.79 19691.91 22397.94 11287.62 19497.98 20896.51 19985.03 23982.37 24691.79 26183.65 14996.50 24885.96 20377.89 27191.61 262
131493.44 12491.98 14397.84 3095.24 19894.38 5096.22 27997.92 4790.18 11582.28 24797.71 13477.63 21499.80 6491.94 14098.67 10099.34 93
v192192086.02 25584.44 26490.77 24889.32 31285.20 25298.10 20195.35 28382.19 28682.25 24890.71 28270.73 26396.30 26976.85 28374.49 29390.80 289
v124085.77 26284.11 26790.73 24989.26 31385.15 25597.88 21395.23 29181.89 29182.16 24990.55 29469.60 27096.31 26675.59 29374.87 28990.72 295
XVG-ACMP-BASELINE85.86 25884.95 25488.57 29489.90 30277.12 32694.30 30695.60 26687.40 20282.12 25092.99 24753.42 33797.66 19885.02 21383.83 23890.92 286
GBi-Net86.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
test186.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
FMVSNet388.81 21387.08 22393.99 18396.52 15694.59 4598.08 20396.20 21985.85 22582.12 25091.60 26574.05 23795.40 30279.04 26780.24 25891.99 251
IterMVS-LS88.34 22087.44 21691.04 24094.10 23685.85 24198.10 20195.48 27285.12 23582.03 25491.21 27381.35 19095.63 29683.86 23175.73 28391.63 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_test8_iter0591.04 17290.40 17492.95 20396.20 16989.75 15598.97 10696.38 20688.52 16382.00 25593.51 23490.69 3696.73 23890.43 15576.91 27992.38 235
miper_ehance_all_eth88.94 20688.12 20991.40 23395.32 19786.93 21397.85 21595.55 26884.19 25181.97 25691.50 26784.16 14595.91 28684.69 21777.89 27191.36 273
MIMVSNet84.48 27781.83 28792.42 21491.73 28387.36 20285.52 34494.42 30881.40 29481.91 25787.58 32251.92 34092.81 33373.84 30588.15 21297.08 201
PS-MVSNAJss89.54 19989.05 19091.00 24188.77 31784.36 26597.39 23295.97 23188.47 16481.88 25893.80 22582.48 17496.50 24889.34 16883.34 24592.15 244
WR-MVS88.54 21887.22 22292.52 21391.93 28089.50 15998.56 15497.84 5386.99 20581.87 25993.81 22474.25 23695.92 28585.29 20974.43 29492.12 245
TranMVSNet+NR-MVSNet87.75 22986.31 23492.07 22290.81 29388.56 17898.33 18197.18 15987.76 19181.87 25993.90 22272.45 24995.43 30083.13 23871.30 32492.23 241
eth_miper_zixun_eth87.76 22887.00 22590.06 26494.67 22782.65 28897.02 25195.37 28184.19 25181.86 26191.58 26681.47 18895.90 28783.24 23473.61 30391.61 262
UniMVSNet_ETH3D85.65 26583.79 27191.21 23690.41 29880.75 30895.36 29795.78 25378.76 31381.83 26294.33 21349.86 34596.66 23984.30 22183.52 24396.22 215
cl_fuxian88.19 22487.23 22191.06 23994.97 21786.17 23197.72 22395.38 28083.43 26481.68 26391.37 26982.81 16795.72 29384.04 22973.70 30291.29 277
DP-MVS88.75 21586.56 23195.34 13998.92 8487.45 19997.64 22793.52 32470.55 33981.49 26497.25 15074.43 23199.88 4471.14 31794.09 16098.67 149
3Dnovator+87.72 893.43 12591.84 14698.17 1895.73 18295.08 2998.92 11197.04 17391.42 8981.48 26597.60 13974.60 22799.79 6590.84 15198.97 8599.64 67
QAPM91.41 16589.49 18297.17 5895.66 18693.42 6898.60 14997.51 12080.92 30181.39 26697.41 14772.89 24799.87 4782.33 24598.68 9998.21 173
XXY-MVS87.75 22986.02 23892.95 20390.46 29789.70 15697.71 22595.90 24584.02 25380.95 26794.05 21467.51 28497.10 22485.16 21078.41 26892.04 250
v14886.38 25185.06 25190.37 25989.47 31184.10 26898.52 15695.48 27283.80 25780.93 26890.22 30374.60 22796.31 26680.92 25671.55 32290.69 296
cl-mvsnet187.82 22686.81 22790.87 24694.87 22285.39 25097.81 21695.22 29282.92 27580.76 26991.31 27181.99 18195.81 29181.36 25275.04 28791.42 271
cl-mvsnet____87.82 22686.79 22890.89 24594.88 22185.43 24897.81 21695.24 28882.91 27680.71 27091.22 27281.97 18395.84 28981.34 25375.06 28691.40 272
FMVSNet286.90 24084.79 25893.24 19795.11 20892.54 9097.67 22695.86 25182.94 27280.55 27191.17 27462.89 30595.29 30477.23 27879.71 26491.90 253
pmmvs487.58 23486.17 23791.80 22789.58 30788.92 17197.25 24095.28 28482.54 28080.49 27293.17 24175.62 22196.05 27882.75 24178.90 26590.42 301
ACMP87.39 1088.71 21688.24 20790.12 26393.91 24581.06 30598.50 16195.67 26189.43 13980.37 27395.55 19765.67 29597.83 18490.55 15484.51 23291.47 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_part188.43 21986.68 22993.67 19297.56 12492.40 9298.12 19896.55 19682.26 28580.31 27493.16 24274.59 22996.62 24185.00 21472.61 31291.99 251
pmmvs585.87 25784.40 26690.30 26088.53 32184.23 26698.60 14993.71 32081.53 29380.29 27592.02 25664.51 30095.52 29882.04 24978.34 26991.15 280
test0.0.03 188.96 20588.61 20090.03 26791.09 29084.43 26498.97 10697.02 17690.21 11380.29 27596.31 18784.89 13891.93 34572.98 31185.70 22793.73 224
miper_lstm_enhance86.90 24086.20 23689.00 29094.53 22981.19 30296.74 26295.24 28882.33 28480.15 27790.51 29681.99 18194.68 31880.71 25873.58 30491.12 281
jajsoiax87.35 23586.51 23289.87 26887.75 33181.74 29497.03 24995.98 23088.47 16480.15 27793.80 22561.47 31096.36 25889.44 16684.47 23491.50 266
mvs_tets87.09 23886.22 23589.71 27387.87 32781.39 29896.73 26395.90 24588.19 17979.99 27993.61 23059.96 31696.31 26689.40 16784.34 23591.43 270
ITE_SJBPF87.93 29992.26 27376.44 32793.47 32587.67 19779.95 28095.49 20056.50 32497.38 21675.24 29482.33 25289.98 312
v886.11 25484.45 26391.10 23889.99 30086.85 21497.24 24195.36 28281.99 28879.89 28189.86 30874.53 23096.39 25678.83 27172.32 31690.05 310
v1085.73 26384.01 26990.87 24690.03 29986.73 21697.20 24495.22 29281.25 29679.85 28289.75 30973.30 24396.28 27076.87 28272.64 31189.61 317
WR-MVS_H86.53 24985.49 24789.66 27791.04 29183.31 27797.53 23098.20 3084.95 24279.64 28390.90 27878.01 21295.33 30376.29 28872.81 30990.35 302
anonymousdsp86.69 24485.75 24389.53 27986.46 33782.94 28096.39 27095.71 25783.97 25579.63 28490.70 28368.85 27295.94 28286.01 20184.02 23789.72 315
Patchmtry83.61 28881.64 28889.50 28093.36 25982.84 28584.10 35194.20 31369.47 34479.57 28586.88 33184.43 14294.78 31568.48 32674.30 29690.88 287
CP-MVSNet86.54 24885.45 24889.79 27291.02 29282.78 28697.38 23497.56 10985.37 23279.53 28693.03 24571.86 25695.25 30579.92 26273.43 30791.34 274
Patchmatch-test86.25 25384.06 26892.82 20594.42 23082.88 28482.88 35594.23 31271.58 33679.39 28790.62 28989.00 6196.42 25563.03 34191.37 19799.16 109
DSMNet-mixed81.60 29781.43 29182.10 33084.36 34360.79 35593.63 31486.74 35979.00 30979.32 28887.15 32963.87 30389.78 35066.89 33191.92 18695.73 218
MSDG88.29 22286.37 23394.04 18196.90 14486.15 23296.52 26894.36 31077.89 31979.22 28996.95 16669.72 26899.59 9273.20 31092.58 17696.37 214
Anonymous2023121184.72 27282.65 28390.91 24397.71 11684.55 26397.28 23896.67 18766.88 35079.18 29090.87 27958.47 31896.60 24282.61 24374.20 29891.59 264
PS-CasMVS85.81 26084.58 26289.49 28290.77 29482.11 29297.20 24497.36 14484.83 24479.12 29192.84 24867.42 28595.16 30778.39 27473.25 30891.21 279
IterMVS85.81 26084.67 26089.22 28593.51 25483.67 27396.32 27394.80 29785.09 23778.69 29290.17 30666.57 29293.17 33079.48 26577.42 27790.81 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 26883.93 27089.07 28989.89 30381.31 30097.09 24797.24 15084.45 24978.66 29392.68 25068.44 27694.87 31275.98 29070.92 32591.04 283
IterMVS-SCA-FT85.73 26384.64 26189.00 29093.46 25782.90 28296.27 27494.70 30085.02 24078.62 29490.35 29866.61 29093.33 32779.38 26677.36 27890.76 292
OpenMVScopyleft85.28 1490.75 17788.84 19496.48 9893.58 25393.51 6698.80 12297.41 13882.59 27878.62 29497.49 14468.00 28099.82 6084.52 22098.55 10496.11 216
PVSNet_083.28 1687.31 23685.16 25093.74 19094.78 22484.59 26298.91 11298.69 1889.81 12678.59 29693.23 23961.95 30999.34 12694.75 10255.72 35297.30 193
EU-MVSNet84.19 28184.42 26583.52 32688.64 32067.37 35296.04 28595.76 25585.29 23378.44 29793.18 24070.67 26491.48 34775.79 29275.98 28191.70 256
v7n84.42 27982.75 28089.43 28388.15 32481.86 29396.75 26195.67 26180.53 30278.38 29889.43 31369.89 26696.35 26373.83 30672.13 31890.07 308
FMVSNet183.94 28581.32 29391.80 22791.94 27988.81 17396.77 25895.25 28577.98 31578.25 29990.25 30050.37 34494.97 30973.27 30977.81 27591.62 259
D2MVS87.96 22587.39 21789.70 27491.84 28183.40 27598.31 18498.49 2088.04 18378.23 30090.26 29973.57 23996.79 23684.21 22383.53 24288.90 325
MS-PatchMatch86.75 24385.92 24089.22 28591.97 27782.47 29096.91 25396.14 22483.74 25877.73 30193.53 23358.19 31997.37 21876.75 28498.35 10787.84 331
DTE-MVSNet84.14 28282.80 27788.14 29888.95 31679.87 31296.81 25796.24 21683.50 26377.60 30292.52 25267.89 28294.24 32372.64 31369.05 32890.32 303
COLMAP_ROBcopyleft82.69 1884.54 27682.82 27689.70 27496.72 15078.85 31595.89 28792.83 33071.55 33777.54 30395.89 19459.40 31799.14 13667.26 32988.26 21191.11 282
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 28383.59 27285.77 31587.81 32870.24 34694.89 30193.65 32286.08 22376.53 30493.28 23861.41 31196.14 27580.95 25577.69 27690.93 285
tfpnnormal83.65 28681.35 29290.56 25291.37 28888.06 18697.29 23797.87 5178.51 31476.20 30590.91 27764.78 29996.47 25161.71 34473.50 30587.13 339
ppachtmachnet_test83.63 28781.57 29089.80 27189.01 31485.09 25697.13 24694.50 30578.84 31176.14 30691.00 27669.78 26794.61 31963.40 33974.36 29589.71 316
pm-mvs184.68 27382.78 27990.40 25689.58 30785.18 25397.31 23594.73 29981.93 29076.05 30792.01 25765.48 29796.11 27678.75 27269.14 32789.91 313
AllTest84.97 27083.12 27490.52 25396.82 14678.84 31695.89 28792.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
TestCases90.52 25396.82 14678.84 31692.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
CL-MVSNet_2432*160079.89 30478.34 30484.54 32281.56 35175.01 33096.88 25595.62 26381.10 29775.86 31085.81 33768.49 27590.26 34963.21 34056.51 35088.35 328
testgi82.29 29281.00 29586.17 31287.24 33374.84 33297.39 23291.62 34488.63 15975.85 31195.42 20146.07 35191.55 34666.87 33279.94 26292.12 245
MVP-Stereo86.61 24785.83 24188.93 29288.70 31983.85 27296.07 28494.41 30982.15 28775.64 31291.96 25967.65 28396.45 25377.20 28098.72 9886.51 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 29581.17 29484.25 32387.23 33468.87 35193.35 31691.93 34183.35 26675.40 31393.00 24649.25 34896.65 24078.88 27078.11 27087.22 338
our_test_384.47 27882.80 27789.50 28089.01 31483.90 27197.03 24994.56 30481.33 29575.36 31490.52 29571.69 25894.54 32068.81 32476.84 28090.07 308
LTVRE_ROB81.71 1984.59 27582.72 28190.18 26192.89 26883.18 27893.15 31794.74 29878.99 31075.14 31592.69 24965.64 29697.63 20069.46 32281.82 25589.74 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 29979.42 30384.79 32084.78 34272.98 33896.53 26792.97 32879.56 30774.33 31688.83 31661.27 31292.15 34260.59 34675.92 28289.24 322
FMVSNet582.29 29280.54 29687.52 30393.79 25084.01 26993.73 31292.47 33376.92 32274.27 31786.15 33663.69 30489.24 35169.07 32374.79 29089.29 321
MVS-HIRNet79.01 30775.13 31790.66 25093.82 24981.69 29585.16 34593.75 31954.54 35574.17 31859.15 35957.46 32196.58 24363.74 33894.38 15793.72 225
ACMH+83.78 1584.21 28082.56 28589.15 28793.73 25179.16 31396.43 26994.28 31181.09 29874.00 31994.03 21754.58 33397.67 19776.10 28978.81 26690.63 298
KD-MVS_2432*160082.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
miper_refine_blended82.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
NR-MVSNet87.74 23186.00 23992.96 20291.46 28690.68 13096.65 26597.42 13788.02 18473.42 32293.68 22777.31 21595.83 29084.26 22271.82 32192.36 236
USDC84.74 27182.93 27590.16 26291.73 28383.54 27495.00 30093.30 32688.77 15873.19 32393.30 23753.62 33697.65 19975.88 29181.54 25689.30 320
DIV-MVS_2432*160077.47 31675.88 31582.24 32881.59 35068.93 35092.83 32294.02 31677.03 32173.14 32483.39 34155.44 32990.42 34867.95 32757.53 34987.38 334
LCM-MVSNet-Re88.59 21788.61 20088.51 29695.53 19172.68 34196.85 25688.43 35788.45 16773.14 32490.63 28875.82 21994.38 32192.95 13195.71 14998.48 158
TDRefinement78.01 31375.31 31686.10 31370.06 36073.84 33593.59 31591.58 34574.51 33073.08 32691.04 27549.63 34797.12 22174.88 29759.47 34687.33 336
TransMVSNet (Re)81.97 29479.61 30289.08 28889.70 30584.01 26997.26 23991.85 34278.84 31173.07 32791.62 26467.17 28795.21 30667.50 32859.46 34788.02 330
SixPastTwentyTwo82.63 29181.58 28985.79 31488.12 32571.01 34595.17 29992.54 33284.33 25072.93 32892.08 25460.41 31595.61 29774.47 30074.15 29990.75 293
pmmvs679.90 30377.31 30887.67 30284.17 34478.13 32295.86 29193.68 32167.94 34872.67 32989.62 31150.98 34395.75 29274.80 29966.04 33689.14 323
ACMH83.09 1784.60 27482.61 28490.57 25193.18 26382.94 28096.27 27494.92 29681.01 29972.61 33093.61 23056.54 32397.79 18774.31 30181.07 25790.99 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052178.63 31176.90 31183.82 32482.82 34872.86 33995.72 29593.57 32373.55 33472.17 33184.79 33949.69 34692.51 33865.29 33674.50 29286.09 344
Patchmatch-RL test81.90 29680.13 29987.23 30680.71 35370.12 34884.07 35288.19 35883.16 26970.57 33282.18 34487.18 9592.59 33682.28 24662.78 34098.98 120
test_040278.81 30976.33 31386.26 31191.18 28978.44 32095.88 28991.34 34768.55 34570.51 33389.91 30752.65 33994.99 30847.14 35779.78 26385.34 348
TinyColmap80.42 30177.94 30587.85 30092.09 27678.58 31893.74 31189.94 35274.99 32769.77 33491.78 26246.09 35097.58 20465.17 33777.89 27187.38 334
test20.0378.51 31277.48 30781.62 33283.07 34771.03 34496.11 28392.83 33081.66 29269.31 33589.68 31057.53 32087.29 35558.65 35068.47 32986.53 341
N_pmnet70.19 32369.87 32571.12 33988.24 32330.63 37095.85 29228.70 37070.18 34168.73 33686.55 33364.04 30293.81 32453.12 35573.46 30688.94 324
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31886.77 30983.81 34677.94 32496.38 27191.53 34667.54 34968.38 33787.13 33043.94 35296.08 27755.03 35381.83 25486.29 343
ambc79.60 33572.76 35956.61 35876.20 35792.01 34068.25 33880.23 34823.34 36294.73 31673.78 30760.81 34487.48 333
PM-MVS74.88 31972.85 32280.98 33478.98 35664.75 35390.81 33585.77 36080.95 30068.23 33982.81 34229.08 36192.84 33276.54 28662.46 34285.36 347
pmmvs372.86 32269.76 32682.17 32973.86 35874.19 33494.20 30789.01 35664.23 35467.72 34080.91 34741.48 35488.65 35362.40 34254.02 35483.68 351
lessismore_v085.08 31785.59 34069.28 34990.56 35067.68 34190.21 30454.21 33595.46 29973.88 30462.64 34190.50 300
K. test v381.04 29879.77 30184.83 31987.41 33270.23 34795.60 29693.93 31783.70 26067.51 34289.35 31455.76 32593.58 32676.67 28568.03 33190.67 297
MIMVSNet175.92 31873.30 32183.81 32581.29 35275.57 32992.26 32592.05 33973.09 33567.48 34386.18 33540.87 35787.64 35455.78 35270.68 32688.21 329
ET-MVSNet_ETH3D92.56 14691.45 15495.88 12296.39 15994.13 5599.46 4796.97 17992.18 7266.94 34498.29 11794.65 1194.28 32294.34 11183.82 24099.24 103
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 35481.19 30294.17 30892.13 33877.97 31666.90 34582.31 34355.76 32592.56 33773.63 30862.31 34385.38 346
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 33577.90 32596.20 28294.06 31574.61 32966.53 34688.76 31740.40 35896.20 27167.02 33083.66 24186.61 340
test_method70.10 32468.66 32774.41 33786.30 33855.84 35994.47 30389.82 35335.18 36066.15 34784.75 34030.54 36077.96 36070.40 32160.33 34589.44 319
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 34974.94 33191.98 32696.31 21084.64 24665.84 34887.71 32151.33 34192.23 34172.89 31256.50 35189.56 318
new-patchmatchnet74.80 32072.40 32381.99 33178.36 35772.20 34294.44 30492.36 33477.06 32063.47 34979.98 34951.04 34288.85 35260.53 34754.35 35384.92 349
new_pmnet76.02 31773.71 32082.95 32783.88 34572.85 34091.26 33292.26 33570.44 34062.60 35081.37 34547.64 34992.32 34061.85 34372.10 31983.68 351
UnsupCasMVSNet_bld73.85 32170.14 32484.99 31879.44 35575.73 32888.53 33995.24 28870.12 34261.94 35174.81 35241.41 35593.62 32568.65 32551.13 35685.62 345
CMPMVSbinary58.40 2180.48 30080.11 30081.59 33385.10 34159.56 35694.14 30995.95 23568.54 34660.71 35293.31 23655.35 33097.87 18283.06 23984.85 23187.33 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
DeepMVS_CXcopyleft76.08 33690.74 29551.65 36290.84 34986.47 22057.89 35387.98 31935.88 35992.60 33565.77 33565.06 33883.97 350
YYNet179.64 30677.04 31087.43 30587.80 32979.98 31196.23 27894.44 30673.83 33351.83 35487.53 32367.96 28192.07 34466.00 33467.75 33390.23 305
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33080.13 31096.25 27794.44 30673.87 33251.80 35587.47 32668.04 27992.12 34366.02 33367.79 33290.09 306
LCM-MVSNet60.07 32656.37 32971.18 33854.81 36648.67 36382.17 35689.48 35537.95 35849.13 35669.12 35313.75 36981.76 35659.28 34851.63 35583.10 353
MDA-MVSNet-bldmvs77.82 31574.75 31987.03 30788.33 32278.52 31996.34 27292.85 32975.57 32648.87 35787.89 32057.32 32292.49 33960.79 34564.80 33990.08 307
PMMVS258.97 32755.07 33070.69 34062.72 36155.37 36085.97 34380.52 36349.48 35645.94 35868.31 35415.73 36780.78 35849.79 35637.12 35975.91 354
FPMVS61.57 32560.32 32865.34 34160.14 36442.44 36591.02 33489.72 35444.15 35742.63 35980.93 34619.02 36380.59 35942.50 35872.76 31073.00 355
Gipumacopyleft54.77 32852.22 33262.40 34386.50 33659.37 35750.20 36290.35 35136.52 35941.20 36049.49 36118.33 36581.29 35732.10 36065.34 33746.54 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 32952.86 33156.05 34432.75 37041.97 36673.42 35976.12 36621.91 36539.68 36196.39 18542.59 35365.10 36378.00 27514.92 36461.08 357
E-PMN41.02 33340.93 33541.29 34761.97 36233.83 36784.00 35365.17 36827.17 36227.56 36246.72 36317.63 36660.41 36519.32 36318.82 36129.61 361
ANet_high50.71 33046.17 33364.33 34244.27 36852.30 36176.13 35878.73 36464.95 35227.37 36355.23 36014.61 36867.74 36236.01 35918.23 36272.95 356
EMVS39.96 33439.88 33640.18 34859.57 36532.12 36984.79 35064.57 36926.27 36326.14 36444.18 36618.73 36459.29 36617.03 36417.67 36329.12 362
MVEpermissive44.00 2241.70 33237.64 33753.90 34649.46 36743.37 36465.09 36166.66 36726.19 36425.77 36548.53 3623.58 37263.35 36426.15 36227.28 36054.97 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 33142.50 33455.17 34534.28 36932.37 36866.24 36078.71 36530.72 36122.04 36659.59 3584.59 37077.85 36127.49 36158.84 34855.29 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 33623.05 3396.10 3514.48 3712.29 37397.78 2183.00 3723.27 36718.60 36762.71 3561.53 3742.49 36914.26 3661.80 36613.50 364
test12316.58 33819.47 3407.91 3503.59 3725.37 37294.32 3051.39 3732.49 36813.98 36844.60 3652.91 3732.65 36811.35 3670.57 36715.70 363
wuyk23d16.71 33716.73 34116.65 34960.15 36325.22 37141.24 3635.17 3716.56 3665.48 3693.61 3693.64 37122.72 36715.20 3659.52 3651.99 365
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
cdsmvs_eth3d_5k22.52 33530.03 3380.00 3520.00 3730.00 3740.00 36497.17 1600.00 3690.00 37098.77 8374.35 2330.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.87 3409.16 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37082.48 1740.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
ab-mvs-re8.21 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.50 1050.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.49 299.64 2098.51 299.77 1099.19 3295.12 699.97 2099.90 199.92 399.99 1
save fliter99.34 5393.85 5999.65 2497.63 9395.69 11
test_0728_SECOND98.77 599.66 1596.37 1199.72 1597.68 8199.98 1099.64 599.82 1599.96 8
GSMVS98.84 134
sam_mvs188.39 7098.84 134
sam_mvs87.08 96
MTGPAbinary97.45 130
test_post190.74 33741.37 36785.38 13496.36 25883.16 236
test_post46.00 36487.37 8997.11 222
patchmatchnet-post84.86 33888.73 6496.81 234
MTMP99.21 7291.09 348
gm-plane-assit94.69 22688.14 18488.22 17897.20 15498.29 16090.79 152
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4299.87 799.91 18
test_prior492.00 9499.41 56
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
新几何298.26 187
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
无先验98.52 15697.82 5587.20 20499.90 4087.64 18799.85 29
原ACMM298.69 134
testdata299.88 4484.16 224
segment_acmp90.56 39
testdata197.89 21192.43 63
plane_prior793.84 24785.73 243
plane_prior693.92 24486.02 23772.92 245
plane_prior596.30 21197.75 19493.46 12486.17 22292.67 231
plane_prior496.52 179
plane_prior299.02 10093.38 46
plane_prior193.90 246
plane_prior86.07 23599.14 8793.81 3986.26 221
n20.00 374
nn0.00 374
door-mid84.90 362
test1197.68 81
door85.30 361
HQP5-MVS86.39 223
BP-MVS93.82 119
HQP3-MVS96.37 20786.29 219
HQP2-MVS73.34 241
NP-MVS93.94 24386.22 22996.67 177
ACMMP++_ref82.64 250
ACMMP++83.83 238
Test By Simon83.62 150