This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4297.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
SED-MVS98.18 298.10 498.41 1499.63 2095.24 2199.77 997.72 7394.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1797.98 4397.18 295.96 7899.33 2192.62 22100.00 198.99 1399.93 199.98 6
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4896.54 598.84 1499.46 1192.55 2399.98 1098.25 3399.93 199.94 14
DPE-MVS98.11 598.00 598.44 1399.50 4295.39 1899.29 6697.72 7394.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
MSP-MVS98.07 698.00 598.29 1599.66 1495.20 2699.72 1497.47 12593.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 59
DPM-MVS97.86 797.25 1799.68 198.25 9899.10 199.76 1297.78 6296.61 498.15 3199.53 793.62 14100.00 191.79 13399.80 2399.94 14
DVP-MVS97.77 898.18 296.53 9799.54 3590.14 13599.41 5497.70 7895.46 1798.60 2199.19 3295.71 499.49 10398.15 3599.85 1199.95 11
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4094.76 3999.19 7097.75 6595.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 60
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2597.73 7191.05 9098.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
APDe-MVS97.53 1197.47 1097.70 3699.58 2893.63 6299.56 3297.52 11493.59 4198.01 3999.12 4590.80 3599.55 9399.26 1099.79 2599.93 17
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5193.85 5999.65 2395.45 26295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
SD-MVS97.51 1297.40 1497.81 3299.01 7593.79 6199.33 6497.38 13893.73 3898.83 1599.02 5590.87 3399.88 4498.69 1799.74 2899.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1893.21 7099.70 1798.13 3694.61 1997.78 4599.46 1189.85 4999.81 6297.97 3799.91 499.88 24
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 6893.49 6798.52 15397.50 12094.46 2198.99 1098.64 9291.58 2599.08 13498.49 2499.83 1399.60 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6594.97 3099.47 4097.52 11489.85 11998.79 1699.46 1190.41 4499.69 7598.78 1599.67 3799.70 56
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12291.46 10299.75 1397.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 3999.64 4299.90 20
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVS97.24 1896.99 2398.00 2799.30 5894.20 5399.16 7597.65 8889.55 12999.22 799.52 990.34 4699.99 598.32 3199.83 1399.82 30
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9199.06 994.45 2296.42 7398.70 8888.81 6299.74 7095.35 8299.86 1099.97 7
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7597.74 6791.28 8798.40 2699.29 2289.95 4899.98 1098.20 3499.70 3599.94 14
SF-MVS97.22 2196.92 2498.12 2299.11 6994.88 3299.44 4897.45 12789.60 12598.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
train_agg97.20 2297.08 1997.57 4299.57 3293.17 7199.38 5697.66 8390.18 11098.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2694.45 4798.85 11497.64 8996.51 795.88 8199.39 1987.35 9299.99 596.61 5699.69 3699.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
agg_prior197.12 2497.03 2197.38 5099.54 3592.66 8399.35 6197.64 8990.38 10597.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
DELS-MVS97.12 2496.60 3598.68 898.03 10696.57 899.84 397.84 5296.36 895.20 9598.24 11288.17 7299.83 5796.11 6899.60 5199.64 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_prior397.07 2697.09 1897.01 6299.58 2891.77 9399.57 3097.57 10691.43 8398.12 3498.97 6190.43 4099.49 10398.33 2999.81 1999.79 34
CANet97.00 2796.49 3798.55 998.86 8496.10 1399.83 597.52 11495.90 997.21 5298.90 7282.66 16099.93 3598.71 1698.80 9099.63 68
Regformer-196.97 2896.80 3097.47 4499.46 4693.11 7398.89 11197.94 4492.89 5296.90 5799.02 5589.78 5099.53 9697.06 4799.26 7299.75 47
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8291.62 9899.58 2996.54 19195.09 1896.84 6498.63 9491.16 2699.77 6799.04 1296.42 12799.81 31
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6399.16 7597.44 13190.08 11598.59 2299.07 4989.06 5899.42 11397.92 3899.66 3899.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9194.73 4199.13 8797.38 13888.44 16298.53 2499.39 1989.66 5499.69 7598.43 2799.61 5099.61 71
Regformer-296.94 3196.78 3197.42 4699.46 4692.97 8098.89 11197.93 4592.86 5496.88 5899.02 5589.74 5299.53 9697.03 4899.26 7299.75 47
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12397.29 399.03 9697.11 15995.83 1098.97 1199.14 4282.48 16399.60 9198.60 1999.08 7698.00 172
EPNet96.82 3496.68 3497.25 5598.65 8993.10 7499.48 3998.76 1296.54 597.84 4498.22 11387.49 8599.66 8095.35 8297.78 10999.00 114
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 10994.42 4994.76 28998.36 2392.50 5995.62 8997.52 13697.92 197.38 20798.31 3298.80 9098.20 168
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9391.00 11899.14 8499.45 193.86 3595.15 9698.73 8388.48 6799.76 6897.23 4699.56 5499.40 87
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13296.96 499.01 9997.04 16695.51 1698.86 1399.11 4882.19 16999.36 11998.59 2198.14 10398.00 172
PHI-MVS96.65 3896.46 3897.21 5699.34 5191.77 9399.70 1798.05 3886.48 20998.05 3699.20 3189.33 5699.96 2798.38 2899.62 4699.90 20
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8593.55 6498.88 11397.59 10190.66 9697.98 4099.14 4286.59 106100.00 196.47 6099.46 5999.89 23
CDPH-MVS96.56 4096.18 4597.70 3699.59 2793.92 5799.13 8797.44 13189.02 14197.90 4399.22 2988.90 6199.49 10394.63 9899.79 2599.68 60
DeepPCF-MVS93.56 196.55 4197.84 892.68 20398.71 8878.11 31099.70 1797.71 7798.18 197.36 5199.76 190.37 4599.94 3399.27 999.54 5699.99 1
Regformer-396.50 4296.36 4196.91 7399.34 5191.72 9698.71 12697.90 4792.48 6096.00 7598.95 6688.60 6499.52 9996.44 6198.83 8799.49 80
#test#96.48 4396.34 4296.90 7499.69 990.96 11999.53 3697.81 5790.94 9496.88 5899.05 5287.57 8299.96 2795.87 7299.72 3099.78 38
XVS96.47 4496.37 4096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6198.96 6487.37 8899.87 4795.65 7399.43 6399.78 38
Regformer-496.45 4596.33 4396.81 8099.34 5191.44 10398.71 12697.88 4892.43 6195.97 7798.95 6688.42 6899.51 10096.40 6298.83 8799.49 80
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 11999.47 4097.81 5790.54 10196.88 5899.05 5287.57 8299.96 2795.65 7399.72 3099.78 38
PAPR96.35 4795.82 5897.94 2999.63 2094.19 5499.42 5397.55 10992.43 6193.82 11999.12 4587.30 9399.91 3894.02 10599.06 7799.74 50
PAPM96.35 4795.94 5497.58 4094.10 22395.25 2098.93 10698.17 3194.26 2393.94 11598.72 8589.68 5397.88 17796.36 6399.29 7099.62 70
lupinMVS96.32 4995.94 5497.44 4595.05 20394.87 3399.86 296.50 19393.82 3698.04 3798.77 7985.52 12298.09 16496.98 5298.97 8199.37 88
region2R96.30 5096.17 4796.70 8899.70 890.31 13199.46 4597.66 8390.55 10097.07 5599.07 4986.85 10099.97 2095.43 8099.74 2899.81 31
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 12999.47 4097.80 5990.54 10196.83 6699.03 5486.51 11099.95 3095.65 7399.72 3099.75 47
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15499.70 1797.61 9690.07 11696.00 7599.16 3987.43 8699.92 3696.03 7099.72 3099.70 56
zzz-MVS96.21 5395.96 5396.96 7099.29 5991.19 10798.69 13197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
SR-MVS96.13 5496.16 4996.07 11499.42 4889.04 16198.59 14897.33 14390.44 10396.84 6499.12 4586.75 10299.41 11597.47 4399.44 6299.76 46
ZNCC-MVS96.09 5595.81 6096.95 7299.42 4891.19 10799.55 3397.53 11389.72 12295.86 8398.94 7186.59 10699.97 2095.13 8699.56 5499.68 60
MTAPA96.09 5595.80 6196.96 7099.29 5991.19 10797.23 23197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
ETV-MVS96.00 5796.00 5296.00 11696.56 14991.05 11699.63 2596.61 18293.26 4697.39 5098.30 11086.62 10598.13 16198.07 3697.57 11198.82 133
MP-MVScopyleft96.00 5795.82 5896.54 9699.47 4590.13 13799.36 6097.41 13590.64 9995.49 9098.95 6685.51 12499.98 1096.00 7199.59 5399.52 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS95.97 5995.66 6396.90 7499.49 4491.22 10599.45 4797.48 12389.69 12395.89 8098.72 8586.37 11499.95 3094.62 9999.22 7599.52 76
WTY-MVS95.97 5995.11 7398.54 1097.62 11596.65 699.44 4898.74 1392.25 6895.21 9498.46 10786.56 10899.46 11095.00 9092.69 16699.50 79
PVSNet_Blended95.94 6195.66 6396.75 8398.77 8691.61 9999.88 198.04 3993.64 4094.21 11097.76 12483.50 14699.87 4797.41 4497.75 11098.79 136
mPP-MVS95.90 6295.75 6296.38 10499.58 2889.41 15899.26 6797.41 13590.66 9694.82 10098.95 6686.15 11799.98 1095.24 8599.64 4299.74 50
CS-MVS95.85 6395.86 5795.82 12296.80 14289.78 14999.84 396.60 18392.60 5596.81 6898.70 8885.04 13098.25 15797.90 4098.43 10099.42 86
PGM-MVS95.85 6395.65 6596.45 10099.50 4289.77 15098.22 18298.90 1189.19 13596.74 6998.95 6685.91 12099.92 3693.94 10699.46 5999.66 64
DP-MVS Recon95.85 6395.15 7297.95 2899.87 294.38 5099.60 2797.48 12386.58 20694.42 10699.13 4487.36 9199.98 1093.64 11398.33 10299.48 82
MP-MVS-pluss95.80 6695.30 6897.29 5298.95 7992.66 8398.59 14897.14 15588.95 14493.12 12599.25 2585.62 12199.94 3396.56 5899.48 5899.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVS_111021_LR95.78 6795.94 5495.28 13898.19 10287.69 18598.80 11999.26 793.39 4395.04 9898.69 9084.09 14199.76 6896.96 5399.06 7798.38 157
alignmvs95.77 6895.00 7598.06 2597.35 12395.68 1699.71 1697.50 12091.50 8196.16 7498.61 9586.28 11599.00 13696.19 6691.74 18399.51 78
EI-MVSNet-Vis-set95.76 6995.63 6796.17 11199.14 6790.33 13098.49 15997.82 5491.92 7394.75 10198.88 7487.06 9699.48 10895.40 8197.17 12098.70 143
APD-MVS_3200maxsize95.64 7095.65 6595.62 12899.24 6387.80 18498.42 16597.22 14988.93 14696.64 7298.98 6085.49 12599.36 11996.68 5599.27 7199.70 56
EI-MVSNet-UG-set95.43 7195.29 6995.86 12199.07 7389.87 14698.43 16497.80 5991.78 7694.11 11298.77 7986.25 11699.48 10894.95 9296.45 12698.22 166
PAPM_NR95.43 7195.05 7496.57 9599.42 4890.14 13598.58 15097.51 11790.65 9892.44 13398.90 7287.77 8099.90 4090.88 14199.32 6999.68 60
HPM-MVScopyleft95.41 7395.22 7195.99 11799.29 5989.14 15999.17 7497.09 16387.28 19395.40 9198.48 10484.93 13299.38 11795.64 7799.65 3999.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
jason95.40 7494.86 7697.03 6192.91 25494.23 5299.70 1796.30 20493.56 4296.73 7098.52 9981.46 17897.91 17496.08 6998.47 9998.96 118
jason: jason.
HY-MVS88.56 795.29 7594.23 8698.48 1197.72 11196.41 1094.03 29698.74 1392.42 6495.65 8894.76 19986.52 10999.49 10395.29 8492.97 16299.53 75
test_yl95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
DCV-MVSNet95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
112195.19 7894.45 8297.42 4698.88 8292.58 8896.22 26797.75 6585.50 22196.86 6199.01 5988.59 6699.90 4087.64 17799.60 5199.79 34
EIA-MVS95.11 7995.27 7094.64 15696.34 15686.51 20999.59 2896.62 18192.51 5894.08 11398.64 9286.05 11898.24 15895.07 8898.50 9899.18 105
VNet95.08 8094.26 8597.55 4398.07 10593.88 5898.68 13398.73 1590.33 10797.16 5497.43 14079.19 19299.53 9696.91 5491.85 18199.24 100
canonicalmvs95.02 8193.96 9798.20 1797.53 12095.92 1498.71 12696.19 21591.78 7695.86 8398.49 10379.53 18999.03 13596.12 6791.42 18999.66 64
HPM-MVS_fast94.89 8294.62 7895.70 12799.11 6988.44 17599.14 8497.11 15985.82 21695.69 8798.47 10583.46 14899.32 12393.16 12199.63 4599.35 89
CSCG94.87 8394.71 7795.36 13599.54 3586.49 21099.34 6398.15 3482.71 26790.15 16599.25 2589.48 5599.86 5294.97 9198.82 8999.72 53
sss94.85 8493.94 9997.58 4096.43 15394.09 5698.93 10699.16 889.50 13095.27 9397.85 11981.50 17699.65 8492.79 12794.02 15598.99 115
API-MVS94.78 8594.18 8996.59 9399.21 6490.06 14298.80 11997.78 6283.59 25293.85 11799.21 3083.79 14399.97 2092.37 12999.00 8099.74 50
thisisatest051594.75 8694.19 8796.43 10196.13 16892.64 8799.47 4097.60 9787.55 18993.17 12497.59 13494.71 998.42 15188.28 17093.20 15998.24 165
xiu_mvs_v1_base_debu94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base_debi94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
MVSFormer94.71 9094.08 9296.61 9295.05 20394.87 3397.77 21196.17 21686.84 20098.04 3798.52 9985.52 12295.99 26989.83 15098.97 8198.96 118
PVSNet_Blended_VisFu94.67 9194.11 9096.34 10697.14 13091.10 11399.32 6597.43 13392.10 7291.53 14396.38 17883.29 15299.68 7893.42 11896.37 12898.25 164
ACMMPcopyleft94.67 9194.30 8495.79 12499.25 6288.13 17898.41 16798.67 1990.38 10591.43 14498.72 8582.22 16899.95 3093.83 11095.76 14199.29 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
abl_694.63 9394.48 8195.09 14198.61 9286.96 20398.06 19796.97 17289.31 13395.86 8398.56 9779.82 18599.64 8694.53 10198.65 9598.66 146
CPTT-MVS94.60 9494.43 8395.09 14199.66 1486.85 20599.44 4897.47 12583.22 25794.34 10998.96 6482.50 16199.55 9394.81 9399.50 5798.88 126
diffmvs94.59 9594.19 8795.81 12395.54 18190.69 12598.70 13095.68 25091.61 7895.96 7897.81 12180.11 18498.06 16896.52 5995.76 14198.67 144
DeepC-MVS91.02 494.56 9693.92 10096.46 9997.16 12990.76 12398.39 17197.11 15993.92 3188.66 17898.33 10878.14 20099.85 5495.02 8998.57 9698.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MAR-MVS94.43 9794.09 9195.45 13399.10 7187.47 19298.39 17197.79 6188.37 16594.02 11499.17 3778.64 19899.91 3892.48 12898.85 8698.96 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DWT-MVSNet_test94.36 9893.95 9895.62 12896.99 13789.47 15696.62 25497.38 13890.96 9393.07 12797.27 14393.73 1398.09 16485.86 19893.65 15799.29 95
CHOSEN 1792x268894.35 9993.82 10295.95 11997.40 12188.74 16998.41 16798.27 2592.18 7091.43 14496.40 17578.88 19399.81 6293.59 11497.81 10699.30 94
CANet_DTU94.31 10093.35 10897.20 5797.03 13694.71 4298.62 14295.54 25795.61 1497.21 5298.47 10571.88 24199.84 5588.38 16997.46 11697.04 195
PLCcopyleft91.07 394.23 10194.01 9394.87 14799.17 6687.49 19199.25 6896.55 19088.43 16391.26 14798.21 11585.92 11999.86 5289.77 15397.57 11197.24 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
114514_t94.06 10293.05 11597.06 6099.08 7292.26 9198.97 10397.01 17082.58 26992.57 13198.22 11380.68 18299.30 12489.34 15999.02 7999.63 68
baseline294.04 10393.80 10394.74 15293.07 25290.25 13298.12 19198.16 3389.86 11886.53 19896.95 16095.56 598.05 16991.44 13594.53 15095.93 208
thisisatest053094.00 10493.52 10695.43 13495.76 17490.02 14498.99 10197.60 9786.58 20691.74 13897.36 14294.78 898.34 15286.37 19092.48 17097.94 174
casdiffmvs93.98 10593.43 10795.61 13095.07 20289.86 14798.80 11995.84 24190.98 9292.74 13097.66 13179.71 18698.10 16394.72 9695.37 14598.87 128
MVS93.92 10692.28 12998.83 495.69 17696.82 596.22 26798.17 3184.89 23384.34 21298.61 9579.32 19199.83 5793.88 10899.43 6399.86 28
baseline93.91 10793.30 10995.72 12695.10 20190.07 13997.48 22195.91 23591.03 9193.54 12197.68 12979.58 18798.02 17194.27 10495.14 14699.08 111
OMC-MVS93.90 10893.62 10594.73 15398.63 9087.00 20298.04 19896.56 18992.19 6992.46 13298.73 8379.49 19099.14 13192.16 13194.34 15398.03 171
Effi-MVS+93.87 10993.15 11396.02 11595.79 17290.76 12396.70 25295.78 24286.98 19795.71 8697.17 15179.58 18798.01 17294.57 10096.09 13599.31 93
TESTMET0.1,193.82 11093.26 11195.49 13295.21 19090.25 13299.15 8197.54 11289.18 13691.79 13794.87 19789.13 5797.63 19686.21 19196.29 13298.60 147
AdaColmapbinary93.82 11093.06 11496.10 11399.88 189.07 16098.33 17497.55 10986.81 20290.39 16298.65 9175.09 21299.98 1093.32 11997.53 11499.26 99
EPP-MVSNet93.75 11293.67 10494.01 17695.86 17185.70 23598.67 13597.66 8384.46 23891.36 14697.18 15091.16 2697.79 18392.93 12493.75 15698.53 149
thres20093.69 11392.59 12596.97 6997.76 11094.74 4099.35 6199.36 289.23 13491.21 14996.97 15983.42 14998.77 14185.08 20290.96 19297.39 184
PVSNet87.13 1293.69 11392.83 12096.28 10797.99 10790.22 13499.38 5698.93 1091.42 8593.66 12097.68 12971.29 24899.64 8687.94 17497.20 11998.98 116
HyFIR lowres test93.68 11593.29 11094.87 14797.57 11988.04 18098.18 18698.47 2187.57 18891.24 14895.05 19585.49 12597.46 20493.22 12092.82 16399.10 109
MVS_Test93.67 11692.67 12396.69 8996.72 14592.66 8397.22 23296.03 22187.69 18695.12 9794.03 20781.55 17598.28 15689.17 16396.46 12599.14 107
CNLPA93.64 11792.74 12196.36 10598.96 7890.01 14599.19 7095.89 23886.22 21289.40 17398.85 7580.66 18399.84 5588.57 16796.92 12199.24 100
PMMVS93.62 11893.90 10192.79 19996.79 14381.40 28498.85 11496.81 17691.25 8896.82 6798.15 11777.02 20698.13 16193.15 12296.30 13198.83 132
CDS-MVSNet93.47 11993.04 11694.76 15094.75 21489.45 15798.82 11797.03 16887.91 17890.97 15196.48 17389.06 5896.36 24889.50 15492.81 16598.49 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
131493.44 12091.98 13897.84 3095.24 18894.38 5096.22 26797.92 4690.18 11082.28 23697.71 12877.63 20399.80 6491.94 13298.67 9499.34 91
tfpn200view993.43 12192.27 13096.90 7497.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19497.12 190
3Dnovator+87.72 893.43 12191.84 14098.17 1895.73 17595.08 2998.92 10897.04 16691.42 8581.48 25497.60 13374.60 21599.79 6590.84 14298.97 8199.64 66
thres40093.39 12392.27 13096.73 8597.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19496.61 199
PVSNet_BlendedMVS93.36 12493.20 11293.84 18198.77 8691.61 9999.47 4098.04 3991.44 8294.21 11092.63 23983.50 14699.87 4797.41 4483.37 23790.05 300
thres100view90093.34 12592.15 13496.90 7497.62 11594.84 3599.06 9399.36 287.96 17690.47 16096.78 16683.29 15298.75 14384.11 21690.69 19497.12 190
tttt051793.30 12693.01 11794.17 17095.57 17986.47 21198.51 15697.60 9785.99 21490.55 15797.19 14994.80 798.31 15385.06 20391.86 18097.74 176
UA-Net93.30 12692.62 12495.34 13696.27 15888.53 17495.88 27796.97 17290.90 9595.37 9297.07 15582.38 16699.10 13383.91 22094.86 14998.38 157
test-mter93.27 12892.89 11994.40 16294.94 20887.27 19999.15 8197.25 14588.95 14491.57 14094.04 20588.03 7697.58 19985.94 19596.13 13398.36 160
Vis-MVSNet (Re-imp)93.26 12993.00 11894.06 17496.14 16586.71 20898.68 13396.70 17988.30 16789.71 17297.64 13285.43 12896.39 24688.06 17396.32 12999.08 111
thres600view793.18 13092.00 13796.75 8397.62 11594.92 3199.07 9199.36 287.96 17690.47 16096.78 16683.29 15298.71 14782.93 23090.47 19896.61 199
3Dnovator87.35 1193.17 13191.77 14297.37 5195.41 18593.07 7598.82 11797.85 5191.53 8082.56 23097.58 13571.97 24099.82 6091.01 13999.23 7499.22 103
test-LLR93.11 13292.68 12294.40 16294.94 20887.27 19999.15 8197.25 14590.21 10891.57 14094.04 20584.89 13397.58 19985.94 19596.13 13398.36 160
IS-MVSNet93.00 13392.51 12694.49 15996.14 16587.36 19698.31 17795.70 24888.58 15490.17 16497.50 13783.02 15597.22 21087.06 18196.07 13798.90 125
CostFormer92.89 13492.48 12794.12 17294.99 20585.89 23092.89 30697.00 17186.98 19795.00 9990.78 26890.05 4797.51 20392.92 12591.73 18498.96 118
tpmrst92.78 13592.16 13394.65 15596.27 15887.45 19391.83 31197.10 16289.10 13994.68 10390.69 27288.22 7197.73 19289.78 15291.80 18298.77 139
MVSTER92.71 13692.32 12893.86 18097.29 12592.95 8199.01 9996.59 18590.09 11485.51 20394.00 20994.61 1296.56 23390.77 14483.03 23992.08 238
1112_ss92.71 13691.55 14696.20 10895.56 18091.12 11198.48 16094.69 28888.29 16886.89 19498.50 10187.02 9798.66 14884.75 20689.77 20198.81 134
Vis-MVSNetpermissive92.64 13891.85 13995.03 14595.12 19788.23 17698.48 16096.81 17691.61 7892.16 13697.22 14771.58 24698.00 17385.85 19997.81 10698.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TAMVS92.62 13992.09 13694.20 16994.10 22387.68 18698.41 16796.97 17287.53 19089.74 17096.04 18284.77 13696.49 23988.97 16692.31 17398.42 153
baseline192.61 14091.28 14896.58 9497.05 13594.63 4497.72 21396.20 21389.82 12088.56 17996.85 16586.85 10097.82 18188.42 16880.10 25497.30 186
EPMVS92.59 14191.59 14595.59 13197.22 12790.03 14391.78 31298.04 3990.42 10491.66 13990.65 27586.49 11197.46 20481.78 24196.31 13099.28 97
ET-MVSNet_ETH3D92.56 14291.45 14795.88 12096.39 15494.13 5599.46 4596.97 17292.18 7066.94 32798.29 11194.65 1194.28 31294.34 10383.82 23399.24 100
mvs_anonymous92.50 14391.65 14495.06 14396.60 14889.64 15397.06 23796.44 19786.64 20584.14 21393.93 21182.49 16296.17 26391.47 13496.08 13699.35 89
BH-w/o92.32 14491.79 14193.91 17996.85 13986.18 22199.11 8995.74 24588.13 17284.81 20797.00 15877.26 20597.91 17489.16 16498.03 10497.64 177
EPNet_dtu92.28 14592.15 13492.70 20297.29 12584.84 24898.64 13997.82 5492.91 5193.02 12897.02 15785.48 12795.70 28372.25 30394.89 14897.55 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Test_1112_low_res92.27 14690.97 15396.18 10995.53 18291.10 11398.47 16294.66 28988.28 16986.83 19693.50 22587.00 9898.65 14984.69 20789.74 20298.80 135
LFMVS92.23 14790.84 15796.42 10298.24 9991.08 11598.24 18196.22 21283.39 25594.74 10298.31 10961.12 29898.85 13894.45 10292.82 16399.32 92
IB-MVS89.43 692.12 14890.83 15995.98 11895.40 18690.78 12299.81 698.06 3791.23 8985.63 20293.66 21990.63 3798.78 14091.22 13671.85 31198.36 160
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
F-COLMAP92.07 14991.75 14393.02 19498.16 10382.89 27298.79 12395.97 22386.54 20887.92 18397.80 12278.69 19799.65 8485.97 19395.93 13996.53 204
PatchmatchNetpermissive92.05 15091.04 15295.06 14396.17 16389.04 16191.26 31697.26 14489.56 12890.64 15690.56 28188.35 7097.11 21379.53 25296.07 13799.03 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
RRT_MVS91.95 15191.09 15094.53 15896.71 14795.12 2898.64 13996.23 21189.04 14085.24 20595.06 19487.71 8196.43 24389.10 16582.06 24692.05 240
UGNet91.91 15290.85 15695.10 14097.06 13488.69 17098.01 19998.24 2792.41 6592.39 13493.61 22060.52 29999.68 7888.14 17297.25 11896.92 197
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tpm291.77 15391.09 15093.82 18294.83 21285.56 23892.51 30897.16 15484.00 24593.83 11890.66 27487.54 8497.17 21187.73 17691.55 18798.72 141
Fast-Effi-MVS+91.72 15490.79 16094.49 15995.89 17087.40 19599.54 3595.70 24885.01 23189.28 17595.68 18677.75 20297.57 20283.22 22595.06 14798.51 150
mvs-test191.57 15592.20 13289.70 26395.15 19574.34 31999.51 3795.40 26691.92 7391.02 15097.25 14474.27 22098.08 16789.45 15595.83 14096.67 198
HQP-MVS91.50 15691.23 14992.29 20793.95 22786.39 21499.16 7596.37 20093.92 3187.57 18596.67 16973.34 22797.77 18593.82 11186.29 21292.72 220
PatchMatch-RL91.47 15790.54 16494.26 16798.20 10086.36 21696.94 24197.14 15587.75 18288.98 17695.75 18571.80 24399.40 11680.92 24697.39 11797.02 196
BH-untuned91.46 15890.84 15793.33 18896.51 15284.83 24998.84 11695.50 25986.44 21183.50 21796.70 16875.49 21197.77 18586.78 18897.81 10697.40 183
QAPM91.41 15989.49 17397.17 5895.66 17893.42 6898.60 14697.51 11780.92 28981.39 25597.41 14172.89 23399.87 4782.33 23598.68 9398.21 167
HQP_MVS91.26 16090.95 15492.16 21093.84 23486.07 22699.02 9796.30 20493.38 4486.99 19196.52 17172.92 23197.75 19093.46 11686.17 21592.67 222
PCF-MVS89.78 591.26 16089.63 17296.16 11295.44 18491.58 10195.29 28596.10 21985.07 22882.75 22697.45 13978.28 19999.78 6680.60 24995.65 14497.12 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 16289.99 16995.03 14596.75 14488.55 17298.65 13794.95 28287.74 18387.74 18497.80 12268.27 26298.14 16080.53 25097.49 11598.41 154
VDD-MVS91.24 16390.18 16894.45 16197.08 13385.84 23398.40 17096.10 21986.99 19593.36 12298.16 11654.27 31899.20 12596.59 5790.63 19798.31 163
CLD-MVS91.06 16490.71 16192.10 21194.05 22686.10 22499.55 3396.29 20794.16 2684.70 20897.17 15169.62 25597.82 18194.74 9586.08 21792.39 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ab-mvs91.05 16589.17 17996.69 8995.96 16991.72 9692.62 30797.23 14885.61 21889.74 17093.89 21368.55 26099.42 11391.09 13787.84 20698.92 124
RRT_test8_iter0591.04 16690.40 16792.95 19696.20 16289.75 15198.97 10396.38 19988.52 15582.00 24493.51 22490.69 3696.73 22890.43 14676.91 27292.38 226
XVG-OURS-SEG-HR90.95 16790.66 16391.83 21695.18 19481.14 29195.92 27495.92 23188.40 16490.33 16397.85 11970.66 25199.38 11792.83 12688.83 20394.98 211
cascas90.93 16889.33 17795.76 12595.69 17693.03 7798.99 10196.59 18580.49 29186.79 19794.45 20265.23 28398.60 15093.52 11592.18 17695.66 210
XVG-OURS90.83 16990.49 16591.86 21595.23 18981.25 28895.79 28295.92 23188.96 14390.02 16798.03 11871.60 24599.35 12191.06 13887.78 20794.98 211
TR-MVS90.77 17089.44 17494.76 15096.31 15788.02 18197.92 20295.96 22585.52 21988.22 18297.23 14666.80 27498.09 16484.58 20992.38 17198.17 169
OpenMVScopyleft85.28 1490.75 17188.84 18596.48 9893.58 24093.51 6698.80 11997.41 13582.59 26878.62 28297.49 13868.00 26599.82 6084.52 21098.55 9796.11 207
FIs90.70 17289.87 17093.18 19092.29 25991.12 11198.17 18898.25 2689.11 13883.44 21894.82 19882.26 16796.17 26387.76 17582.76 24192.25 230
X-MVStestdata90.69 17388.66 19096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6129.59 35187.37 8899.87 4795.65 7399.43 6399.78 38
SCA90.64 17489.25 17894.83 14994.95 20788.83 16596.26 26497.21 15090.06 11790.03 16690.62 27766.61 27596.81 22483.16 22694.36 15298.84 129
TAPA-MVS87.50 990.35 17589.05 18194.25 16898.48 9685.17 24498.42 16596.58 18882.44 27387.24 19098.53 9882.77 15998.84 13959.09 33297.88 10598.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall90.33 17689.70 17192.22 20897.12 13188.93 16398.35 17395.96 22588.60 15383.14 22492.33 24187.38 8796.18 26286.49 18977.89 26491.55 255
CVMVSNet90.30 17790.91 15588.46 28694.32 22173.58 32397.61 21897.59 10190.16 11388.43 18197.10 15376.83 20792.86 31982.64 23293.54 15898.93 123
nrg03090.23 17888.87 18494.32 16591.53 27293.54 6598.79 12395.89 23888.12 17384.55 21094.61 20178.80 19696.88 22192.35 13075.21 27892.53 224
FC-MVSNet-test90.22 17989.40 17592.67 20491.78 26989.86 14797.89 20398.22 2888.81 14982.96 22594.66 20081.90 17395.96 27185.89 19782.52 24492.20 234
LS3D90.19 18088.72 18894.59 15798.97 7686.33 21796.90 24396.60 18374.96 31384.06 21598.74 8275.78 20999.83 5774.93 28597.57 11197.62 180
dp90.16 18188.83 18694.14 17196.38 15586.42 21291.57 31397.06 16584.76 23588.81 17790.19 29384.29 13997.43 20675.05 28491.35 19198.56 148
GA-MVS90.10 18288.69 18994.33 16492.44 25887.97 18299.08 9096.26 20989.65 12486.92 19393.11 23268.09 26396.96 21882.54 23490.15 19998.05 170
VDDNet90.08 18388.54 19594.69 15494.41 22087.68 18698.21 18496.40 19876.21 30993.33 12397.75 12554.93 31698.77 14194.71 9790.96 19297.61 181
gg-mvs-nofinetune90.00 18487.71 20396.89 7996.15 16494.69 4385.15 33097.74 6768.32 33192.97 12960.16 34096.10 396.84 22293.89 10798.87 8599.14 107
Effi-MVS+-dtu89.97 18590.68 16287.81 29095.15 19571.98 32897.87 20695.40 26691.92 7387.57 18591.44 25674.27 22096.84 22289.45 15593.10 16194.60 213
EI-MVSNet89.87 18689.38 17691.36 22694.32 22185.87 23197.61 21896.59 18585.10 22685.51 20397.10 15381.30 18096.56 23383.85 22283.03 23991.64 247
OPM-MVS89.76 18789.15 18091.57 22390.53 28385.58 23798.11 19295.93 23092.88 5386.05 19996.47 17467.06 27397.87 17889.29 16286.08 21791.26 268
tpm89.67 18888.95 18391.82 21792.54 25781.43 28392.95 30595.92 23187.81 18090.50 15989.44 30084.99 13195.65 28483.67 22382.71 24298.38 157
UniMVSNet_NR-MVSNet89.60 18988.55 19492.75 20192.17 26290.07 13998.74 12598.15 3488.37 16583.21 22093.98 21082.86 15795.93 27386.95 18472.47 30592.25 230
cl-mvsnet289.57 19088.79 18791.91 21497.94 10887.62 18897.98 20096.51 19285.03 22982.37 23591.79 24983.65 14496.50 23785.96 19477.89 26491.61 252
PS-MVSNAJss89.54 19189.05 18191.00 23288.77 30484.36 25497.39 22295.97 22388.47 15681.88 24793.80 21582.48 16396.50 23789.34 15983.34 23892.15 235
UniMVSNet (Re)89.50 19288.32 19793.03 19392.21 26190.96 11998.90 11098.39 2289.13 13783.22 21992.03 24381.69 17496.34 25486.79 18772.53 30491.81 244
tpmvs89.16 19387.76 20193.35 18797.19 12884.75 25090.58 32297.36 14181.99 27784.56 20989.31 30383.98 14298.17 15974.85 28790.00 20097.12 190
VPA-MVSNet89.10 19487.66 20493.45 18692.56 25691.02 11797.97 20198.32 2486.92 19986.03 20092.01 24568.84 25997.10 21590.92 14075.34 27792.23 232
ADS-MVSNet88.99 19587.30 20994.07 17396.21 16087.56 19087.15 32596.78 17883.01 26089.91 16887.27 31378.87 19497.01 21774.20 29192.27 17497.64 177
test0.0.03 188.96 19688.61 19190.03 25691.09 27784.43 25398.97 10397.02 16990.21 10880.29 26396.31 17984.89 13391.93 33272.98 30085.70 22093.73 215
miper_ehance_all_eth88.94 19788.12 20091.40 22495.32 18786.93 20497.85 20795.55 25684.19 24281.97 24591.50 25584.16 14095.91 27684.69 20777.89 26491.36 263
tpm cat188.89 19887.27 21093.76 18395.79 17285.32 24190.76 32097.09 16376.14 31085.72 20188.59 30682.92 15698.04 17076.96 27091.43 18897.90 175
LPG-MVS_test88.86 19988.47 19690.06 25393.35 24780.95 29398.22 18295.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
Anonymous20240521188.84 20087.03 21494.27 16698.14 10484.18 25698.44 16395.58 25576.79 30889.34 17496.88 16453.42 32199.54 9587.53 17987.12 21099.09 110
Fast-Effi-MVS+-dtu88.84 20088.59 19389.58 26793.44 24578.18 30898.65 13794.62 29088.46 15884.12 21495.37 19268.91 25796.52 23682.06 23891.70 18594.06 214
DU-MVS88.83 20287.51 20592.79 19991.46 27390.07 13998.71 12697.62 9588.87 14883.21 22093.68 21774.63 21395.93 27386.95 18472.47 30592.36 227
CR-MVSNet88.83 20287.38 20893.16 19193.47 24286.24 21884.97 33294.20 30088.92 14790.76 15486.88 31784.43 13794.82 30370.64 30792.17 17798.41 154
FMVSNet388.81 20487.08 21393.99 17796.52 15194.59 4598.08 19596.20 21385.85 21582.12 23991.60 25374.05 22395.40 29179.04 25680.24 25191.99 242
ACMM86.95 1388.77 20588.22 19990.43 24693.61 23981.34 28698.50 15795.92 23187.88 17983.85 21695.20 19367.20 27197.89 17686.90 18684.90 22392.06 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS88.75 20686.56 22095.34 13698.92 8087.45 19397.64 21793.52 30970.55 32381.49 25397.25 14474.43 21899.88 4471.14 30694.09 15498.67 144
ACMP87.39 1088.71 20788.24 19890.12 25293.91 23281.06 29298.50 15795.67 25189.43 13180.37 26295.55 18765.67 28097.83 18090.55 14584.51 22591.47 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LCM-MVSNet-Re88.59 20888.61 19188.51 28595.53 18272.68 32696.85 24488.43 34188.45 15973.14 30990.63 27675.82 20894.38 31192.95 12395.71 14398.48 152
WR-MVS88.54 20987.22 21292.52 20591.93 26789.50 15598.56 15197.84 5286.99 19581.87 24893.81 21474.25 22295.92 27585.29 20074.43 28692.12 236
IterMVS-LS88.34 21087.44 20691.04 23194.10 22385.85 23298.10 19395.48 26085.12 22582.03 24391.21 26181.35 17995.63 28583.86 22175.73 27691.63 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VPNet88.30 21186.57 21993.49 18591.95 26591.35 10498.18 18697.20 15188.61 15284.52 21194.89 19662.21 29396.76 22789.34 15972.26 30892.36 227
MSDG88.29 21286.37 22294.04 17596.90 13886.15 22396.52 25694.36 29777.89 30579.22 27796.95 16069.72 25499.59 9273.20 29992.58 16996.37 205
test_djsdf88.26 21387.73 20289.84 25988.05 31382.21 27897.77 21196.17 21686.84 20082.41 23491.95 24872.07 23995.99 26989.83 15084.50 22691.32 265
cl_fuxian88.19 21487.23 21191.06 23094.97 20686.17 22297.72 21395.38 26883.43 25481.68 25291.37 25782.81 15895.72 28284.04 21973.70 29491.29 267
D2MVS87.96 21587.39 20789.70 26391.84 26883.40 26498.31 17798.49 2088.04 17478.23 28890.26 28773.57 22596.79 22684.21 21383.53 23588.90 314
cl-mvsnet_87.82 21686.79 21890.89 23694.88 21085.43 23997.81 20895.24 27682.91 26680.71 25991.22 26081.97 17295.84 27881.34 24375.06 27991.40 262
cl-mvsnet187.82 21686.81 21790.87 23794.87 21185.39 24097.81 20895.22 28082.92 26580.76 25891.31 25981.99 17095.81 28081.36 24275.04 28091.42 261
eth_miper_zixun_eth87.76 21887.00 21590.06 25394.67 21682.65 27697.02 24095.37 26984.19 24281.86 25091.58 25481.47 17795.90 27783.24 22473.61 29591.61 252
TranMVSNet+NR-MVSNet87.75 21986.31 22392.07 21290.81 28088.56 17198.33 17497.18 15287.76 18181.87 24893.90 21272.45 23595.43 28983.13 22871.30 31592.23 232
XXY-MVS87.75 21986.02 22792.95 19690.46 28489.70 15297.71 21595.90 23684.02 24480.95 25694.05 20467.51 26997.10 21585.16 20178.41 26192.04 241
NR-MVSNet87.74 22186.00 22892.96 19591.46 27390.68 12696.65 25397.42 13488.02 17573.42 30793.68 21777.31 20495.83 27984.26 21271.82 31292.36 227
Anonymous2024052987.66 22285.58 23493.92 17897.59 11885.01 24798.13 18997.13 15766.69 33588.47 18096.01 18355.09 31599.51 10087.00 18384.12 22997.23 189
ADS-MVSNet287.62 22386.88 21689.86 25896.21 16079.14 30187.15 32592.99 31283.01 26089.91 16887.27 31378.87 19492.80 32274.20 29192.27 17497.64 177
pmmvs487.58 22486.17 22691.80 21889.58 29488.92 16497.25 22995.28 27282.54 27080.49 26193.17 23175.62 21096.05 26882.75 23178.90 25990.42 291
jajsoiax87.35 22586.51 22189.87 25787.75 31881.74 28197.03 23895.98 22288.47 15680.15 26593.80 21561.47 29596.36 24889.44 15784.47 22791.50 256
PVSNet_083.28 1687.31 22685.16 23993.74 18494.78 21384.59 25198.91 10998.69 1889.81 12178.59 28493.23 22961.95 29499.34 12294.75 9455.72 33797.30 186
v2v48287.27 22785.76 23191.78 22289.59 29387.58 18998.56 15195.54 25784.53 23782.51 23191.78 25073.11 23096.47 24082.07 23774.14 29291.30 266
mvs_tets87.09 22886.22 22489.71 26287.87 31481.39 28596.73 25195.90 23688.19 17179.99 26793.61 22059.96 30196.31 25689.40 15884.34 22891.43 260
V4287.00 22985.68 23390.98 23389.91 28886.08 22598.32 17695.61 25383.67 25182.72 22790.67 27374.00 22496.53 23581.94 24074.28 28990.32 293
miper_lstm_enhance86.90 23086.20 22589.00 27994.53 21881.19 28996.74 25095.24 27682.33 27480.15 26590.51 28481.99 17094.68 30880.71 24873.58 29691.12 271
FMVSNet286.90 23084.79 24793.24 18995.11 19892.54 8997.67 21695.86 24082.94 26280.55 26091.17 26262.89 29095.29 29377.23 26779.71 25891.90 243
v114486.83 23285.31 23891.40 22489.75 29187.21 20198.31 17795.45 26283.22 25782.70 22890.78 26873.36 22696.36 24879.49 25374.69 28490.63 288
MS-PatchMatch86.75 23385.92 22989.22 27491.97 26482.47 27796.91 24296.14 21883.74 24877.73 28993.53 22358.19 30497.37 20976.75 27398.35 10187.84 317
anonymousdsp86.69 23485.75 23289.53 26886.46 32482.94 26996.39 25895.71 24783.97 24679.63 27290.70 27168.85 25895.94 27286.01 19284.02 23089.72 305
GBi-Net86.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
test186.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
MVP-Stereo86.61 23785.83 23088.93 28188.70 30683.85 26196.07 27294.41 29682.15 27675.64 29991.96 24767.65 26896.45 24277.20 26998.72 9286.51 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CP-MVSNet86.54 23885.45 23789.79 26191.02 27982.78 27597.38 22497.56 10885.37 22279.53 27493.03 23371.86 24295.25 29479.92 25173.43 29991.34 264
WR-MVS_H86.53 23985.49 23689.66 26691.04 27883.31 26697.53 22098.20 3084.95 23279.64 27190.90 26678.01 20195.33 29276.29 27772.81 30190.35 292
v14419286.40 24084.89 24490.91 23489.48 29785.59 23698.21 18495.43 26582.45 27282.62 22990.58 28072.79 23496.36 24878.45 26274.04 29390.79 280
v14886.38 24185.06 24090.37 24889.47 29884.10 25798.52 15395.48 26083.80 24780.93 25790.22 29174.60 21596.31 25680.92 24671.55 31390.69 286
v119286.32 24284.71 24891.17 22889.53 29686.40 21398.13 18995.44 26482.52 27182.42 23390.62 27771.58 24696.33 25577.23 26774.88 28190.79 280
Patchmatch-test86.25 24384.06 25792.82 19894.42 21982.88 27382.88 33994.23 29971.58 32079.39 27590.62 27789.00 6096.42 24463.03 32491.37 19099.16 106
v886.11 24484.45 25291.10 22989.99 28786.85 20597.24 23095.36 27081.99 27779.89 26989.86 29674.53 21796.39 24678.83 26072.32 30790.05 300
v192192086.02 24584.44 25390.77 23989.32 29985.20 24298.10 19395.35 27182.19 27582.25 23790.71 27070.73 24996.30 25976.85 27274.49 28590.80 279
JIA-IIPM85.97 24684.85 24589.33 27393.23 24973.68 32285.05 33197.13 15769.62 32791.56 14268.03 33888.03 7696.96 21877.89 26593.12 16097.34 185
pmmvs585.87 24784.40 25590.30 24988.53 30884.23 25598.60 14693.71 30681.53 28280.29 26392.02 24464.51 28595.52 28782.04 23978.34 26291.15 270
XVG-ACMP-BASELINE85.86 24884.95 24388.57 28389.90 28977.12 31394.30 29295.60 25487.40 19282.12 23992.99 23553.42 32197.66 19485.02 20483.83 23190.92 276
Baseline_NR-MVSNet85.83 24984.82 24688.87 28288.73 30583.34 26598.63 14191.66 32880.41 29282.44 23291.35 25874.63 21395.42 29084.13 21571.39 31487.84 317
PS-CasMVS85.81 25084.58 25189.49 27190.77 28182.11 27997.20 23397.36 14184.83 23479.12 27992.84 23667.42 27095.16 29678.39 26373.25 30091.21 269
IterMVS85.81 25084.67 24989.22 27493.51 24183.67 26296.32 26194.80 28485.09 22778.69 28090.17 29466.57 27793.17 31879.48 25477.42 27090.81 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124085.77 25284.11 25690.73 24089.26 30085.15 24597.88 20595.23 27981.89 28082.16 23890.55 28269.60 25696.31 25675.59 28274.87 28290.72 285
IterMVS-SCA-FT85.73 25384.64 25089.00 27993.46 24482.90 27196.27 26294.70 28785.02 23078.62 28290.35 28666.61 27593.33 31779.38 25577.36 27190.76 282
v1085.73 25384.01 25890.87 23790.03 28686.73 20797.20 23395.22 28081.25 28579.85 27089.75 29773.30 22996.28 26076.87 27172.64 30389.61 307
UniMVSNet_ETH3D85.65 25583.79 26091.21 22790.41 28580.75 29595.36 28495.78 24278.76 29981.83 25194.33 20349.86 32996.66 22984.30 21183.52 23696.22 206
PatchT85.44 25683.19 26292.22 20893.13 25183.00 26883.80 33896.37 20070.62 32290.55 15779.63 33384.81 13594.87 30158.18 33491.59 18698.79 136
RPSCF85.33 25785.55 23584.67 31094.63 21762.28 33893.73 29993.76 30474.38 31685.23 20697.06 15664.09 28698.31 15380.98 24486.08 21793.41 219
PEN-MVS85.21 25883.93 25989.07 27889.89 29081.31 28797.09 23697.24 14784.45 23978.66 28192.68 23868.44 26194.87 30175.98 27970.92 31691.04 273
AllTest84.97 25983.12 26390.52 24496.82 14078.84 30395.89 27592.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
USDC84.74 26082.93 26490.16 25191.73 27083.54 26395.00 28793.30 31188.77 15073.19 30893.30 22753.62 32097.65 19575.88 28081.54 24989.30 309
Anonymous2023121184.72 26182.65 27290.91 23497.71 11284.55 25297.28 22796.67 18066.88 33479.18 27890.87 26758.47 30396.60 23182.61 23374.20 29091.59 254
pm-mvs184.68 26282.78 26890.40 24789.58 29485.18 24397.31 22594.73 28681.93 27976.05 29592.01 24565.48 28296.11 26678.75 26169.14 31889.91 303
RPMNet84.62 26381.78 27693.16 19193.47 24286.24 21884.97 33296.28 20864.85 33790.76 15478.80 33480.95 18194.82 30353.76 33792.17 17798.41 154
ACMH83.09 1784.60 26482.61 27390.57 24293.18 25082.94 26996.27 26294.92 28381.01 28772.61 31493.61 22056.54 30897.79 18374.31 29081.07 25090.99 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LTVRE_ROB81.71 1984.59 26582.72 27090.18 25092.89 25583.18 26793.15 30494.74 28578.99 29675.14 30292.69 23765.64 28197.63 19669.46 30881.82 24889.74 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft82.69 1884.54 26682.82 26589.70 26396.72 14578.85 30295.89 27592.83 31571.55 32177.54 29195.89 18459.40 30299.14 13167.26 31488.26 20491.11 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MIMVSNet84.48 26781.83 27592.42 20691.73 27087.36 19685.52 32894.42 29581.40 28381.91 24687.58 31051.92 32492.81 32173.84 29488.15 20597.08 194
our_test_384.47 26882.80 26689.50 26989.01 30183.90 26097.03 23894.56 29181.33 28475.36 30190.52 28371.69 24494.54 31068.81 31076.84 27390.07 298
v7n84.42 26982.75 26989.43 27288.15 31181.86 28096.75 24995.67 25180.53 29078.38 28689.43 30169.89 25296.35 25373.83 29572.13 30990.07 298
ACMH+83.78 1584.21 27082.56 27489.15 27693.73 23879.16 30096.43 25794.28 29881.09 28674.00 30694.03 20754.58 31797.67 19376.10 27878.81 26090.63 288
EU-MVSNet84.19 27184.42 25483.52 31388.64 30767.37 33696.04 27395.76 24485.29 22378.44 28593.18 23070.67 25091.48 33475.79 28175.98 27491.70 246
DTE-MVSNet84.14 27282.80 26688.14 28788.95 30379.87 29996.81 24596.24 21083.50 25377.60 29092.52 24067.89 26794.24 31372.64 30269.05 31990.32 293
MVS_030484.13 27382.66 27188.52 28493.07 25280.15 29695.81 28198.21 2979.27 29486.85 19586.40 32041.33 33994.69 30776.36 27686.69 21190.73 284
OurMVSNet-221017-084.13 27383.59 26185.77 30487.81 31570.24 33194.89 28893.65 30886.08 21376.53 29293.28 22861.41 29696.14 26580.95 24577.69 26990.93 275
FMVSNet183.94 27581.32 28291.80 21891.94 26688.81 16696.77 24695.25 27377.98 30178.25 28790.25 28850.37 32894.97 29873.27 29877.81 26891.62 249
tfpnnormal83.65 27681.35 28190.56 24391.37 27588.06 17997.29 22697.87 5078.51 30076.20 29390.91 26564.78 28496.47 24061.71 32773.50 29787.13 324
ppachtmachnet_test83.63 27781.57 27989.80 26089.01 30185.09 24697.13 23594.50 29278.84 29776.14 29491.00 26469.78 25394.61 30963.40 32374.36 28789.71 306
Patchmtry83.61 27881.64 27789.50 26993.36 24682.84 27484.10 33594.20 30069.47 32879.57 27386.88 31784.43 13794.78 30568.48 31274.30 28890.88 277
SixPastTwentyTwo82.63 27981.58 27885.79 30388.12 31271.01 33095.17 28692.54 31784.33 24072.93 31292.08 24260.41 30095.61 28674.47 28974.15 29190.75 283
testgi82.29 28081.00 28486.17 30187.24 32074.84 31897.39 22291.62 32988.63 15175.85 29895.42 19146.07 33491.55 33366.87 31779.94 25592.12 236
FMVSNet582.29 28080.54 28587.52 29293.79 23784.01 25893.73 29992.47 31876.92 30774.27 30486.15 32263.69 28989.24 33669.07 30974.79 28389.29 310
TransMVSNet (Re)81.97 28279.61 28989.08 27789.70 29284.01 25897.26 22891.85 32778.84 29773.07 31191.62 25267.17 27295.21 29567.50 31359.46 33488.02 316
LF4IMVS81.94 28381.17 28384.25 31187.23 32168.87 33593.35 30391.93 32683.35 25675.40 30093.00 23449.25 33196.65 23078.88 25978.11 26387.22 323
Patchmatch-RL test81.90 28480.13 28687.23 29580.71 33570.12 33384.07 33688.19 34283.16 25970.57 31582.18 32687.18 9492.59 32482.28 23662.78 32898.98 116
DSMNet-mixed81.60 28581.43 28082.10 31684.36 32860.79 33993.63 30186.74 34379.00 29579.32 27687.15 31563.87 28889.78 33566.89 31691.92 17995.73 209
K. test v381.04 28679.77 28884.83 30887.41 31970.23 33295.60 28393.93 30383.70 25067.51 32589.35 30255.76 31093.58 31676.67 27468.03 32190.67 287
testing_280.92 28777.24 29591.98 21378.88 33987.83 18393.96 29795.72 24684.27 24156.20 33680.42 33038.64 34296.40 24587.20 18079.85 25691.72 245
Anonymous2023120680.76 28879.42 29084.79 30984.78 32772.98 32496.53 25592.97 31379.56 29374.33 30388.83 30461.27 29792.15 32960.59 32975.92 27589.24 311
CMPMVSbinary58.40 2180.48 28980.11 28781.59 31985.10 32659.56 34094.14 29595.95 22768.54 33060.71 33493.31 22655.35 31497.87 17883.06 22984.85 22487.33 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TinyColmap80.42 29077.94 29187.85 28992.09 26378.58 30593.74 29889.94 33774.99 31269.77 31791.78 25046.09 33397.58 19965.17 32177.89 26487.38 320
EG-PatchMatch MVS79.92 29177.59 29286.90 29787.06 32277.90 31296.20 27094.06 30274.61 31466.53 32988.76 30540.40 34196.20 26167.02 31583.66 23486.61 325
pmmvs679.90 29277.31 29487.67 29184.17 32978.13 30995.86 27993.68 30767.94 33272.67 31389.62 29950.98 32795.75 28174.80 28866.04 32489.14 312
MDA-MVSNet_test_wron79.65 29377.05 29687.45 29387.79 31780.13 29796.25 26594.44 29373.87 31751.80 33887.47 31268.04 26492.12 33066.02 31867.79 32290.09 296
YYNet179.64 29477.04 29787.43 29487.80 31679.98 29896.23 26694.44 29373.83 31851.83 33787.53 31167.96 26692.07 33166.00 31967.75 32390.23 295
MVS-HIRNet79.01 29575.13 30290.66 24193.82 23681.69 28285.16 32993.75 30554.54 33974.17 30559.15 34257.46 30696.58 23263.74 32294.38 15193.72 216
UnsupCasMVSNet_eth78.90 29676.67 29885.58 30582.81 33374.94 31791.98 31096.31 20384.64 23665.84 33087.71 30951.33 32592.23 32872.89 30156.50 33689.56 308
test_040278.81 29776.33 29986.26 30091.18 27678.44 30795.88 27791.34 33268.55 32970.51 31689.91 29552.65 32394.99 29747.14 34079.78 25785.34 332
pmmvs-eth3d78.71 29876.16 30086.38 29980.25 33681.19 28994.17 29492.13 32377.97 30266.90 32882.31 32555.76 31092.56 32573.63 29762.31 33185.38 330
test20.0378.51 29977.48 29381.62 31883.07 33271.03 32996.11 27192.83 31581.66 28169.31 31889.68 29857.53 30587.29 34058.65 33368.47 32086.53 326
TDRefinement78.01 30075.31 30186.10 30270.06 34373.84 32193.59 30291.58 33074.51 31573.08 31091.04 26349.63 33097.12 21274.88 28659.47 33387.33 321
OpenMVS_ROBcopyleft73.86 2077.99 30175.06 30386.77 29883.81 33177.94 31196.38 25991.53 33167.54 33368.38 32087.13 31643.94 33596.08 26755.03 33681.83 24786.29 328
MDA-MVSNet-bldmvs77.82 30274.75 30487.03 29688.33 30978.52 30696.34 26092.85 31475.57 31148.87 34087.89 30857.32 30792.49 32660.79 32864.80 32790.08 297
new_pmnet76.02 30373.71 30582.95 31483.88 33072.85 32591.26 31692.26 32070.44 32462.60 33281.37 32747.64 33292.32 32761.85 32672.10 31083.68 335
MIMVSNet175.92 30473.30 30683.81 31281.29 33475.57 31692.26 30992.05 32473.09 31967.48 32686.18 32140.87 34087.64 33955.78 33570.68 31788.21 315
PM-MVS74.88 30572.85 30780.98 32078.98 33864.75 33790.81 31985.77 34480.95 28868.23 32282.81 32429.08 34492.84 32076.54 27562.46 33085.36 331
new-patchmatchnet74.80 30672.40 30881.99 31778.36 34072.20 32794.44 29092.36 31977.06 30663.47 33179.98 33251.04 32688.85 33760.53 33054.35 33884.92 333
UnsupCasMVSNet_bld73.85 30770.14 30984.99 30779.44 33775.73 31588.53 32395.24 27670.12 32661.94 33374.81 33541.41 33893.62 31568.65 31151.13 34185.62 329
pmmvs372.86 30869.76 31182.17 31573.86 34174.19 32094.20 29389.01 34064.23 33867.72 32380.91 32941.48 33788.65 33862.40 32554.02 33983.68 335
N_pmnet70.19 30969.87 31071.12 32488.24 31030.63 35395.85 28028.70 35470.18 32568.73 31986.55 31964.04 28793.81 31453.12 33873.46 29888.94 313
FPMVS61.57 31060.32 31265.34 32660.14 34742.44 34891.02 31889.72 33844.15 34142.63 34280.93 32819.02 34680.59 34442.50 34172.76 30273.00 339
LCM-MVSNet60.07 31156.37 31371.18 32354.81 34948.67 34682.17 34089.48 33937.95 34249.13 33969.12 33613.75 35281.76 34159.28 33151.63 34083.10 337
PMMVS258.97 31255.07 31470.69 32562.72 34455.37 34385.97 32780.52 34749.48 34045.94 34168.31 33715.73 35080.78 34349.79 33937.12 34275.91 338
Gipumacopyleft54.77 31352.22 31662.40 32886.50 32359.37 34150.20 34690.35 33636.52 34341.20 34349.49 34418.33 34881.29 34232.10 34365.34 32546.54 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 31452.86 31556.05 32932.75 35341.97 34973.42 34376.12 35021.91 34839.68 34496.39 17742.59 33665.10 34778.00 26414.92 34761.08 341
ANet_high50.71 31546.17 31764.33 32744.27 35152.30 34476.13 34278.73 34864.95 33627.37 34655.23 34314.61 35167.74 34636.01 34218.23 34572.95 340
PMVScopyleft41.42 2345.67 31642.50 31855.17 33034.28 35232.37 35166.24 34478.71 34930.72 34422.04 34959.59 3414.59 35377.85 34527.49 34458.84 33555.29 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 31737.64 32153.90 33149.46 35043.37 34765.09 34566.66 35126.19 34725.77 34848.53 3453.58 35563.35 34826.15 34527.28 34354.97 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 31840.93 31941.29 33261.97 34533.83 35084.00 33765.17 35227.17 34527.56 34546.72 34617.63 34960.41 34919.32 34618.82 34429.61 345
EMVS39.96 31939.88 32040.18 33359.57 34832.12 35284.79 33464.57 35326.27 34626.14 34744.18 34918.73 34759.29 35017.03 34717.67 34629.12 346
cdsmvs_eth3d_5k22.52 32030.03 3220.00 3370.00 3560.00 3570.00 34897.17 1530.00 3520.00 35398.77 7974.35 2190.00 3540.00 3510.00 3510.00 350
testmvs18.81 32123.05 3236.10 3364.48 3542.29 35697.78 2103.00 3563.27 35018.60 35062.71 3391.53 3572.49 35314.26 3491.80 34913.50 348
wuyk23d16.71 32216.73 32516.65 33460.15 34625.22 35441.24 3475.17 3556.56 3495.48 3523.61 3523.64 35422.72 35115.20 3489.52 3481.99 349
test12316.58 32319.47 3247.91 3353.59 3555.37 35594.32 2911.39 3572.49 35113.98 35144.60 3482.91 3562.65 35211.35 3500.57 35015.70 347
ab-mvs-re8.21 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.50 1010.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.87 3259.16 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35382.48 1630.00 3540.00 3510.00 3510.00 350
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
IU-MVS99.63 2095.38 1997.73 7195.54 1599.54 199.69 499.81 1999.99 1
OPU-MVS99.49 299.64 1998.51 299.77 999.19 3295.12 699.97 2099.90 199.92 399.99 1
test_241102_TWO97.72 7394.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2095.24 2197.72 7394.16 2699.30 499.49 1093.32 1599.98 10
9.1496.87 2699.34 5199.50 3897.49 12289.41 13298.59 2299.43 1689.78 5099.69 7598.69 1799.62 46
save fliter99.34 5193.85 5999.65 2397.63 9395.69 11
test_0728_THIRD93.01 4799.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
test_0728_SECOND98.77 599.66 1496.37 1199.72 1497.68 8199.98 1099.64 599.82 1599.96 8
test072699.66 1495.20 2699.77 997.70 7893.95 2999.35 399.54 393.18 18
GSMVS98.84 129
test_part299.54 3595.42 1798.13 32
test_part10.00 3370.00 3570.00 34897.69 800.00 3580.00 3540.00 3510.00 3510.00 350
sam_mvs188.39 6998.84 129
sam_mvs87.08 95
ambc79.60 32172.76 34256.61 34276.20 34192.01 32568.25 32180.23 33123.34 34594.73 30673.78 29660.81 33287.48 319
MTGPAbinary97.45 127
test_post190.74 32141.37 35085.38 12996.36 24883.16 226
test_post46.00 34787.37 8897.11 213
patchmatchnet-post84.86 32388.73 6396.81 224
GG-mvs-BLEND96.98 6896.53 15094.81 3887.20 32497.74 6793.91 11696.40 17596.56 296.94 22095.08 8798.95 8499.20 104
MTMP99.21 6991.09 333
gm-plane-assit94.69 21588.14 17788.22 17097.20 14898.29 15590.79 143
test9_res98.60 1999.87 799.90 20
TEST999.57 3293.17 7199.38 5697.66 8389.57 12798.39 2799.18 3590.88 3299.66 80
test_899.55 3493.07 7599.37 5997.64 8990.18 11098.36 2999.19 3290.94 3099.64 86
agg_prior297.84 4199.87 799.91 18
agg_prior99.54 3592.66 8397.64 8997.98 4099.61 89
TestCases90.52 24496.82 14078.84 30392.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
test_prior492.00 9299.41 54
test_prior299.57 3091.43 8398.12 3498.97 6190.43 4098.33 2999.81 19
test_prior97.01 6299.58 2891.77 9397.57 10699.49 10399.79 34
旧先验298.67 13585.75 21798.96 1298.97 13793.84 109
新几何298.26 180
新几何197.40 4898.92 8092.51 9097.77 6485.52 21996.69 7199.06 5188.08 7599.89 4384.88 20599.62 4699.79 34
旧先验198.97 7692.90 8297.74 6799.15 4091.05 2999.33 6899.60 72
无先验98.52 15397.82 5487.20 19499.90 4087.64 17799.85 29
原ACMM298.69 131
原ACMM196.18 10999.03 7490.08 13897.63 9388.98 14297.00 5698.97 6188.14 7499.71 7388.23 17199.62 4698.76 140
test22298.32 9791.21 10698.08 19597.58 10383.74 24895.87 8299.02 5586.74 10399.64 4299.81 31
testdata299.88 4484.16 214
segment_acmp90.56 39
testdata95.26 13998.20 10087.28 19897.60 9785.21 22498.48 2599.15 4088.15 7398.72 14690.29 14799.45 6199.78 38
testdata197.89 20392.43 61
test1297.83 3199.33 5794.45 4797.55 10997.56 4688.60 6499.50 10299.71 3499.55 74
plane_prior793.84 23485.73 234
plane_prior693.92 23186.02 22872.92 231
plane_prior596.30 20497.75 19093.46 11686.17 21592.67 222
plane_prior496.52 171
plane_prior385.91 22993.65 3986.99 191
plane_prior299.02 9793.38 44
plane_prior193.90 233
plane_prior86.07 22699.14 8493.81 3786.26 214
n20.00 358
nn0.00 358
door-mid84.90 346
lessismore_v085.08 30685.59 32569.28 33490.56 33567.68 32490.21 29254.21 31995.46 28873.88 29362.64 32990.50 290
LGP-MVS_train90.06 25393.35 24780.95 29395.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
test1197.68 81
door85.30 345
HQP5-MVS86.39 214
HQP-NCC93.95 22799.16 7593.92 3187.57 185
ACMP_Plane93.95 22799.16 7593.92 3187.57 185
BP-MVS93.82 111
HQP4-MVS87.57 18597.77 18592.72 220
HQP3-MVS96.37 20086.29 212
HQP2-MVS73.34 227
NP-MVS93.94 23086.22 22096.67 169
MDTV_nov1_ep13_2view91.17 11091.38 31487.45 19193.08 12686.67 10487.02 18298.95 122
MDTV_nov1_ep1390.47 16696.14 16588.55 17291.34 31597.51 11789.58 12692.24 13590.50 28586.99 9997.61 19877.64 26692.34 172
ACMMP++_ref82.64 243
ACMMP++83.83 231
Test By Simon83.62 145
ITE_SJBPF87.93 28892.26 26076.44 31493.47 31087.67 18779.95 26895.49 19056.50 30997.38 20775.24 28382.33 24589.98 302
DeepMVS_CXcopyleft76.08 32290.74 28251.65 34590.84 33486.47 21057.89 33587.98 30735.88 34392.60 32365.77 32065.06 32683.97 334