This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9391.00 11899.14 8499.45 193.86 3595.15 9698.73 8388.48 6799.76 6897.23 4699.56 5499.40 87
thres100view90093.34 12592.15 13496.90 7497.62 11594.84 3599.06 9399.36 287.96 17690.47 16096.78 16683.29 15298.75 14384.11 21690.69 19497.12 190
tfpn200view993.43 12192.27 13096.90 7497.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19497.12 190
thres600view793.18 13092.00 13796.75 8397.62 11594.92 3199.07 9199.36 287.96 17690.47 16096.78 16683.29 15298.71 14782.93 23090.47 19896.61 199
thres40093.39 12392.27 13096.73 8597.68 11394.84 3599.18 7299.36 288.45 15990.79 15296.90 16283.31 15098.75 14384.11 21690.69 19496.61 199
thres20093.69 11392.59 12596.97 6997.76 11094.74 4099.35 6199.36 289.23 13491.21 14996.97 15983.42 14998.77 14185.08 20290.96 19297.39 184
MVS_111021_LR95.78 6795.94 5495.28 13898.19 10287.69 18598.80 11999.26 793.39 4395.04 9898.69 9084.09 14199.76 6896.96 5399.06 7798.38 157
sss94.85 8493.94 9997.58 4096.43 15394.09 5698.93 10699.16 889.50 13095.27 9397.85 11981.50 17699.65 8492.79 12794.02 15598.99 115
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9199.06 994.45 2296.42 7398.70 8888.81 6299.74 7095.35 8299.86 1099.97 7
PVSNet87.13 1293.69 11392.83 12096.28 10797.99 10790.22 13499.38 5698.93 1091.42 8593.66 12097.68 12971.29 24899.64 8687.94 17497.20 11998.98 116
PGM-MVS95.85 6395.65 6596.45 10099.50 4289.77 15098.22 18298.90 1189.19 13596.74 6998.95 6685.91 12099.92 3693.94 10699.46 5999.66 64
EPNet96.82 3496.68 3497.25 5598.65 8993.10 7499.48 3998.76 1296.54 597.84 4498.22 11387.49 8599.66 8095.35 8297.78 10999.00 114
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 5995.11 7398.54 1097.62 11596.65 699.44 4898.74 1392.25 6895.21 9498.46 10786.56 10899.46 11095.00 9092.69 16699.50 79
HY-MVS88.56 795.29 7594.23 8698.48 1197.72 11196.41 1094.03 29698.74 1392.42 6495.65 8894.76 19986.52 10999.49 10395.29 8492.97 16299.53 75
VNet95.08 8094.26 8597.55 4398.07 10593.88 5898.68 13398.73 1590.33 10797.16 5497.43 14079.19 19299.53 9696.91 5491.85 18199.24 100
test_yl95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
DCV-MVSNet95.27 7694.60 7997.28 5398.53 9492.98 7899.05 9498.70 1686.76 20394.65 10497.74 12687.78 7899.44 11195.57 7892.61 16799.44 84
PVSNet_083.28 1687.31 22685.16 23993.74 18494.78 21384.59 25198.91 10998.69 1889.81 12178.59 28493.23 22961.95 29499.34 12294.75 9455.72 33797.30 186
ACMMPcopyleft94.67 9194.30 8495.79 12499.25 6288.13 17898.41 16798.67 1990.38 10591.43 14498.72 8582.22 16899.95 3093.83 11095.76 14199.29 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 21587.39 20789.70 26391.84 26883.40 26498.31 17798.49 2088.04 17478.23 28890.26 28773.57 22596.79 22684.21 21383.53 23588.90 314
HyFIR lowres test93.68 11593.29 11094.87 14797.57 11988.04 18098.18 18698.47 2187.57 18891.24 14895.05 19585.49 12597.46 20493.22 12092.82 16399.10 109
UniMVSNet (Re)89.50 19288.32 19793.03 19392.21 26190.96 11998.90 11098.39 2289.13 13783.22 21992.03 24381.69 17496.34 25486.79 18772.53 30491.81 244
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 10994.42 4994.76 28998.36 2392.50 5995.62 8997.52 13697.92 197.38 20798.31 3298.80 9098.20 168
VPA-MVSNet89.10 19487.66 20493.45 18692.56 25691.02 11797.97 20198.32 2486.92 19986.03 20092.01 24568.84 25997.10 21590.92 14075.34 27792.23 232
CHOSEN 1792x268894.35 9993.82 10295.95 11997.40 12188.74 16998.41 16798.27 2592.18 7091.43 14496.40 17578.88 19399.81 6293.59 11497.81 10699.30 94
FIs90.70 17289.87 17093.18 19092.29 25991.12 11198.17 18898.25 2689.11 13883.44 21894.82 19882.26 16796.17 26387.76 17582.76 24192.25 230
UGNet91.91 15290.85 15695.10 14097.06 13488.69 17098.01 19998.24 2792.41 6592.39 13493.61 22060.52 29999.68 7888.14 17297.25 11896.92 197
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 17989.40 17592.67 20491.78 26989.86 14797.89 20398.22 2888.81 14982.96 22594.66 20081.90 17395.96 27185.89 19782.52 24492.20 234
MVS_030484.13 27382.66 27188.52 28493.07 25280.15 29695.81 28198.21 2979.27 29486.85 19586.40 32041.33 33994.69 30776.36 27686.69 21190.73 284
WR-MVS_H86.53 23985.49 23689.66 26691.04 27883.31 26697.53 22098.20 3084.95 23279.64 27190.90 26678.01 20195.33 29276.29 27772.81 30190.35 292
MVS93.92 10692.28 12998.83 495.69 17696.82 596.22 26798.17 3184.89 23384.34 21298.61 9579.32 19199.83 5793.88 10899.43 6399.86 28
PAPM96.35 4795.94 5497.58 4094.10 22395.25 2098.93 10698.17 3194.26 2393.94 11598.72 8589.68 5397.88 17796.36 6399.29 7099.62 70
baseline294.04 10393.80 10394.74 15293.07 25290.25 13298.12 19198.16 3389.86 11886.53 19896.95 16095.56 598.05 16991.44 13594.53 15095.93 208
UniMVSNet_NR-MVSNet89.60 18988.55 19492.75 20192.17 26290.07 13998.74 12598.15 3488.37 16583.21 22093.98 21082.86 15795.93 27386.95 18472.47 30592.25 230
CSCG94.87 8394.71 7795.36 13599.54 3586.49 21099.34 6398.15 3482.71 26790.15 16599.25 2589.48 5599.86 5294.97 9198.82 8999.72 53
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1893.21 7099.70 1798.13 3694.61 1997.78 4599.46 1189.85 4999.81 6297.97 3799.91 499.88 24
IB-MVS89.43 692.12 14890.83 15995.98 11895.40 18690.78 12299.81 698.06 3791.23 8985.63 20293.66 21990.63 3798.78 14091.22 13671.85 31198.36 160
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS96.65 3896.46 3897.21 5699.34 5191.77 9399.70 1798.05 3886.48 20998.05 3699.20 3189.33 5699.96 2798.38 2899.62 4699.90 20
PVSNet_BlendedMVS93.36 12493.20 11293.84 18198.77 8691.61 9999.47 4098.04 3991.44 8294.21 11092.63 23983.50 14699.87 4797.41 4483.37 23790.05 300
PVSNet_Blended95.94 6195.66 6396.75 8398.77 8691.61 9999.88 198.04 3993.64 4094.21 11097.76 12483.50 14699.87 4797.41 4497.75 11098.79 136
EPMVS92.59 14191.59 14595.59 13197.22 12790.03 14391.78 31298.04 3990.42 10491.66 13990.65 27586.49 11197.46 20481.78 24196.31 13099.28 97
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4297.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1797.98 4397.18 295.96 7899.33 2192.62 22100.00 198.99 1399.93 199.98 6
Regformer-196.97 2896.80 3097.47 4499.46 4693.11 7398.89 11197.94 4492.89 5296.90 5799.02 5589.78 5099.53 9697.06 4799.26 7299.75 47
Regformer-296.94 3196.78 3197.42 4699.46 4692.97 8098.89 11197.93 4592.86 5496.88 5899.02 5589.74 5299.53 9697.03 4899.26 7299.75 47
131493.44 12091.98 13897.84 3095.24 18894.38 5096.22 26797.92 4690.18 11082.28 23697.71 12877.63 20399.80 6491.94 13298.67 9499.34 91
Regformer-396.50 4296.36 4196.91 7399.34 5191.72 9698.71 12697.90 4792.48 6096.00 7598.95 6688.60 6499.52 9996.44 6198.83 8799.49 80
Regformer-496.45 4596.33 4396.81 8099.34 5191.44 10398.71 12697.88 4892.43 6195.97 7798.95 6688.42 6899.51 10096.40 6298.83 8799.49 80
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4896.54 598.84 1499.46 1192.55 2399.98 1098.25 3399.93 199.94 14
tfpnnormal83.65 27681.35 28190.56 24391.37 27588.06 17997.29 22697.87 5078.51 30076.20 29390.91 26564.78 28496.47 24061.71 32773.50 29787.13 324
3Dnovator87.35 1193.17 13191.77 14297.37 5195.41 18593.07 7598.82 11797.85 5191.53 8082.56 23097.58 13571.97 24099.82 6091.01 13999.23 7499.22 103
WR-MVS88.54 20987.22 21292.52 20591.93 26789.50 15598.56 15197.84 5286.99 19581.87 24893.81 21474.25 22295.92 27585.29 20074.43 28692.12 236
DELS-MVS97.12 2496.60 3598.68 898.03 10696.57 899.84 397.84 5296.36 895.20 9598.24 11288.17 7299.83 5796.11 6899.60 5199.64 66
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 6995.63 6796.17 11199.14 6790.33 13098.49 15997.82 5491.92 7394.75 10198.88 7487.06 9699.48 10895.40 8197.17 12098.70 143
无先验98.52 15397.82 5487.20 19499.90 4087.64 17799.85 29
EPNet_dtu92.28 14592.15 13492.70 20297.29 12584.84 24898.64 13997.82 5492.91 5193.02 12897.02 15785.48 12795.70 28372.25 30394.89 14897.55 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 11999.47 4097.81 5790.54 10196.88 5899.05 5287.57 8299.96 2795.65 7399.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 11999.53 3697.81 5790.94 9496.88 5899.05 5287.57 8299.96 2795.87 7299.72 3099.78 38
EI-MVSNet-UG-set95.43 7195.29 6995.86 12199.07 7389.87 14698.43 16497.80 5991.78 7694.11 11298.77 7986.25 11699.48 10894.95 9296.45 12698.22 166
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 12999.47 4097.80 5990.54 10196.83 6699.03 5486.51 11099.95 3095.65 7399.72 3099.75 47
MAR-MVS94.43 9794.09 9195.45 13399.10 7187.47 19298.39 17197.79 6188.37 16594.02 11499.17 3778.64 19899.91 3892.48 12898.85 8698.96 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 797.25 1799.68 198.25 9899.10 199.76 1297.78 6296.61 498.15 3199.53 793.62 14100.00 191.79 13399.80 2399.94 14
API-MVS94.78 8594.18 8996.59 9399.21 6490.06 14298.80 11997.78 6283.59 25293.85 11799.21 3083.79 14399.97 2092.37 12999.00 8099.74 50
新几何197.40 4898.92 8092.51 9097.77 6485.52 21996.69 7199.06 5188.08 7599.89 4384.88 20599.62 4699.79 34
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4094.76 3999.19 7097.75 6595.66 1398.21 3099.29 2291.10 2899.99 597.68 4299.87 799.68 60
112195.19 7894.45 8297.42 4698.88 8292.58 8896.22 26797.75 6585.50 22196.86 6199.01 5988.59 6699.90 4087.64 17799.60 5199.79 34
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7597.74 6791.28 8798.40 2699.29 2289.95 4899.98 1098.20 3499.70 3599.94 14
GG-mvs-BLEND96.98 6896.53 15094.81 3887.20 32497.74 6793.91 11696.40 17596.56 296.94 22095.08 8798.95 8499.20 104
gg-mvs-nofinetune90.00 18487.71 20396.89 7996.15 16494.69 4385.15 33097.74 6768.32 33192.97 12960.16 34096.10 396.84 22293.89 10798.87 8599.14 107
旧先验198.97 7692.90 8297.74 6799.15 4091.05 2999.33 6899.60 72
IU-MVS99.63 2095.38 1997.73 7195.54 1599.54 199.69 499.81 1999.99 1
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2597.73 7191.05 9098.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
SED-MVS98.18 298.10 498.41 1499.63 2095.24 2199.77 997.72 7394.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_TWO97.72 7394.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2095.24 2197.72 7394.16 2699.30 499.49 1093.32 1599.98 10
DPE-MVS98.11 598.00 598.44 1399.50 4295.39 1899.29 6697.72 7394.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
DeepPCF-MVS93.56 196.55 4197.84 892.68 20398.71 8878.11 31099.70 1797.71 7798.18 197.36 5199.76 190.37 4599.94 3399.27 999.54 5699.99 1
test072699.66 1495.20 2699.77 997.70 7893.95 2999.35 399.54 393.18 18
DVP-MVS97.77 898.18 296.53 9799.54 3590.14 13599.41 5497.70 7895.46 1798.60 2199.19 3295.71 499.49 10398.15 3599.85 1199.95 11
test_part10.00 3370.00 3570.00 34897.69 800.00 3580.00 3540.00 3510.00 3510.00 350
test_0728_SECOND98.77 599.66 1496.37 1199.72 1497.68 8199.98 1099.64 599.82 1599.96 8
test1197.68 81
TEST999.57 3293.17 7199.38 5697.66 8389.57 12798.39 2799.18 3590.88 3299.66 80
train_agg97.20 2297.08 1997.57 4299.57 3293.17 7199.38 5697.66 8390.18 11098.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
region2R96.30 5096.17 4796.70 8899.70 890.31 13199.46 4597.66 8390.55 10097.07 5599.07 4986.85 10099.97 2095.43 8099.74 2899.81 31
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12291.46 10299.75 1397.66 8394.14 2898.13 3299.26 2492.16 2499.66 8097.91 3999.64 4299.90 20
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 11293.67 10494.01 17695.86 17185.70 23598.67 13597.66 8384.46 23891.36 14697.18 15091.16 2697.79 18392.93 12493.75 15698.53 149
SMA-MVS97.24 1896.99 2398.00 2799.30 5894.20 5399.16 7597.65 8889.55 12999.22 799.52 990.34 4699.99 598.32 3199.83 1399.82 30
test_899.55 3493.07 7599.37 5997.64 8990.18 11098.36 2999.19 3290.94 3099.64 86
agg_prior197.12 2497.03 2197.38 5099.54 3592.66 8399.35 6197.64 8990.38 10597.98 4099.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
agg_prior99.54 3592.66 8397.64 8997.98 4099.61 89
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2694.45 4798.85 11497.64 8996.51 795.88 8199.39 1987.35 9299.99 596.61 5699.69 3699.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5193.85 5999.65 2397.63 9395.69 11
原ACMM196.18 10999.03 7490.08 13897.63 9388.98 14297.00 5698.97 6188.14 7499.71 7388.23 17199.62 4698.76 140
DU-MVS88.83 20287.51 20592.79 19991.46 27390.07 13998.71 12697.62 9588.87 14883.21 22093.68 21774.63 21395.93 27386.95 18472.47 30592.36 227
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15499.70 1797.61 9690.07 11696.00 7599.16 3987.43 8699.92 3696.03 7099.72 3099.70 56
thisisatest053094.00 10493.52 10695.43 13495.76 17490.02 14498.99 10197.60 9786.58 20691.74 13897.36 14294.78 898.34 15286.37 19092.48 17097.94 174
tttt051793.30 12693.01 11794.17 17095.57 17986.47 21198.51 15697.60 9785.99 21490.55 15797.19 14994.80 798.31 15385.06 20391.86 18097.74 176
thisisatest051594.75 8694.19 8796.43 10196.13 16892.64 8799.47 4097.60 9787.55 18993.17 12497.59 13494.71 998.42 15188.28 17093.20 15998.24 165
testdata95.26 13998.20 10087.28 19897.60 9785.21 22498.48 2599.15 4088.15 7398.72 14690.29 14799.45 6199.78 38
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8593.55 6498.88 11397.59 10190.66 9697.98 4099.14 4286.59 106100.00 196.47 6099.46 5999.89 23
CVMVSNet90.30 17790.91 15588.46 28694.32 22173.58 32397.61 21897.59 10190.16 11388.43 18197.10 15376.83 20792.86 31982.64 23293.54 15898.93 123
XVS96.47 4496.37 4096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6198.96 6487.37 8899.87 4795.65 7399.43 6399.78 38
X-MVStestdata90.69 17388.66 19096.77 8199.62 2490.66 12799.43 5197.58 10392.41 6596.86 6129.59 35187.37 8899.87 4795.65 7399.43 6399.78 38
test22298.32 9791.21 10698.08 19597.58 10383.74 24895.87 8299.02 5586.74 10399.64 4299.81 31
test_prior397.07 2697.09 1897.01 6299.58 2891.77 9399.57 3097.57 10691.43 8398.12 3498.97 6190.43 4099.49 10398.33 2999.81 1999.79 34
test_prior97.01 6299.58 2891.77 9397.57 10699.49 10399.79 34
CP-MVSNet86.54 23885.45 23789.79 26191.02 27982.78 27597.38 22497.56 10885.37 22279.53 27493.03 23371.86 24295.25 29479.92 25173.43 29991.34 264
test1297.83 3199.33 5794.45 4797.55 10997.56 4688.60 6499.50 10299.71 3499.55 74
PAPR96.35 4795.82 5897.94 2999.63 2094.19 5499.42 5397.55 10992.43 6193.82 11999.12 4587.30 9399.91 3894.02 10599.06 7799.74 50
AdaColmapbinary93.82 11093.06 11496.10 11399.88 189.07 16098.33 17497.55 10986.81 20290.39 16298.65 9175.09 21299.98 1093.32 11997.53 11499.26 99
TESTMET0.1,193.82 11093.26 11195.49 13295.21 19090.25 13299.15 8197.54 11289.18 13691.79 13794.87 19789.13 5797.63 19686.21 19196.29 13298.60 147
ZNCC-MVS96.09 5595.81 6096.95 7299.42 4891.19 10799.55 3397.53 11389.72 12295.86 8398.94 7186.59 10699.97 2095.13 8699.56 5499.68 60
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6594.97 3099.47 4097.52 11489.85 11998.79 1699.46 1190.41 4499.69 7598.78 1599.67 3799.70 56
CANet97.00 2796.49 3798.55 998.86 8496.10 1399.83 597.52 11495.90 997.21 5298.90 7282.66 16099.93 3598.71 1698.80 9099.63 68
APDe-MVS97.53 1197.47 1097.70 3699.58 2893.63 6299.56 3297.52 11493.59 4198.01 3999.12 4590.80 3599.55 9399.26 1099.79 2599.93 17
MDTV_nov1_ep1390.47 16696.14 16588.55 17291.34 31597.51 11789.58 12692.24 13590.50 28586.99 9997.61 19877.64 26692.34 172
QAPM91.41 15989.49 17397.17 5895.66 17893.42 6898.60 14697.51 11780.92 28981.39 25597.41 14172.89 23399.87 4782.33 23598.68 9398.21 167
PAPM_NR95.43 7195.05 7496.57 9599.42 4890.14 13598.58 15097.51 11790.65 9892.44 13398.90 7287.77 8099.90 4090.88 14199.32 6999.68 60
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 6893.49 6798.52 15397.50 12094.46 2198.99 1098.64 9291.58 2599.08 13498.49 2499.83 1399.60 72
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 6895.00 7598.06 2597.35 12395.68 1699.71 1697.50 12091.50 8196.16 7498.61 9586.28 11599.00 13696.19 6691.74 18399.51 78
9.1496.87 2699.34 5199.50 3897.49 12289.41 13298.59 2299.43 1689.78 5099.69 7598.69 1799.62 46
GST-MVS95.97 5995.66 6396.90 7499.49 4491.22 10599.45 4797.48 12389.69 12395.89 8098.72 8586.37 11499.95 3094.62 9999.22 7599.52 76
DP-MVS Recon95.85 6395.15 7297.95 2899.87 294.38 5099.60 2797.48 12386.58 20694.42 10699.13 4487.36 9199.98 1093.64 11398.33 10299.48 82
MSP-MVS98.07 698.00 598.29 1599.66 1495.20 2699.72 1497.47 12593.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 59
CPTT-MVS94.60 9494.43 8395.09 14199.66 1486.85 20599.44 4897.47 12583.22 25794.34 10998.96 6482.50 16199.55 9394.81 9399.50 5798.88 126
SF-MVS97.22 2196.92 2498.12 2299.11 6994.88 3299.44 4897.45 12789.60 12598.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
zzz-MVS96.21 5395.96 5396.96 7099.29 5991.19 10798.69 13197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
MTGPAbinary97.45 127
MTAPA96.09 5595.80 6196.96 7099.29 5991.19 10797.23 23197.45 12792.58 5694.39 10799.24 2786.43 11299.99 596.22 6499.40 6699.71 54
CDPH-MVS96.56 4096.18 4597.70 3699.59 2793.92 5799.13 8797.44 13189.02 14197.90 4399.22 2988.90 6199.49 10394.63 9899.79 2599.68 60
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4193.58 6399.16 7597.44 13190.08 11598.59 2299.07 4989.06 5899.42 11397.92 3899.66 3899.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 9194.11 9096.34 10697.14 13091.10 11399.32 6597.43 13392.10 7291.53 14396.38 17883.29 15299.68 7893.42 11896.37 12898.25 164
NR-MVSNet87.74 22186.00 22892.96 19591.46 27390.68 12696.65 25397.42 13488.02 17573.42 30793.68 21777.31 20495.83 27984.26 21271.82 31292.36 227
MP-MVScopyleft96.00 5795.82 5896.54 9699.47 4590.13 13799.36 6097.41 13590.64 9995.49 9098.95 6685.51 12499.98 1096.00 7199.59 5399.52 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6295.75 6296.38 10499.58 2889.41 15899.26 6797.41 13590.66 9694.82 10098.95 6686.15 11799.98 1095.24 8599.64 4299.74 50
OpenMVScopyleft85.28 1490.75 17188.84 18596.48 9893.58 24093.51 6698.80 11997.41 13582.59 26878.62 28297.49 13868.00 26599.82 6084.52 21098.55 9796.11 207
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9194.73 4199.13 8797.38 13888.44 16298.53 2499.39 1989.66 5499.69 7598.43 2799.61 5099.61 71
SD-MVS97.51 1297.40 1497.81 3299.01 7593.79 6199.33 6497.38 13893.73 3898.83 1599.02 5590.87 3399.88 4498.69 1799.74 2899.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DWT-MVSNet_test94.36 9893.95 9895.62 12896.99 13789.47 15696.62 25497.38 13890.96 9393.07 12797.27 14393.73 1398.09 16485.86 19893.65 15799.29 95
tpmvs89.16 19387.76 20193.35 18797.19 12884.75 25090.58 32297.36 14181.99 27784.56 20989.31 30383.98 14298.17 15974.85 28790.00 20097.12 190
PS-CasMVS85.81 25084.58 25189.49 27190.77 28182.11 27997.20 23397.36 14184.83 23479.12 27992.84 23667.42 27095.16 29678.39 26373.25 30091.21 269
SR-MVS96.13 5496.16 4996.07 11499.42 4889.04 16198.59 14897.33 14390.44 10396.84 6499.12 4586.75 10299.41 11597.47 4399.44 6299.76 46
PatchmatchNetpermissive92.05 15091.04 15295.06 14396.17 16389.04 16191.26 31697.26 14489.56 12890.64 15690.56 28188.35 7097.11 21379.53 25296.07 13799.03 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR93.11 13292.68 12294.40 16294.94 20887.27 19999.15 8197.25 14590.21 10891.57 14094.04 20584.89 13397.58 19985.94 19596.13 13398.36 160
test-mter93.27 12892.89 11994.40 16294.94 20887.27 19999.15 8197.25 14588.95 14491.57 14094.04 20588.03 7697.58 19985.94 19596.13 13398.36 160
PEN-MVS85.21 25883.93 25989.07 27889.89 29081.31 28797.09 23697.24 14784.45 23978.66 28192.68 23868.44 26194.87 30175.98 27970.92 31691.04 273
ab-mvs91.05 16589.17 17996.69 8995.96 16991.72 9692.62 30797.23 14885.61 21889.74 17093.89 21368.55 26099.42 11391.09 13787.84 20698.92 124
APD-MVS_3200maxsize95.64 7095.65 6595.62 12899.24 6387.80 18498.42 16597.22 14988.93 14696.64 7298.98 6085.49 12599.36 11996.68 5599.27 7199.70 56
SCA90.64 17489.25 17894.83 14994.95 20788.83 16596.26 26497.21 15090.06 11790.03 16690.62 27766.61 27596.81 22483.16 22694.36 15298.84 129
VPNet88.30 21186.57 21993.49 18591.95 26591.35 10498.18 18697.20 15188.61 15284.52 21194.89 19662.21 29396.76 22789.34 15972.26 30892.36 227
TranMVSNet+NR-MVSNet87.75 21986.31 22392.07 21290.81 28088.56 17198.33 17497.18 15287.76 18181.87 24893.90 21272.45 23595.43 28983.13 22871.30 31592.23 232
cdsmvs_eth3d_5k22.52 32030.03 3220.00 3370.00 3560.00 3570.00 34897.17 1530.00 3520.00 35398.77 7974.35 2190.00 3540.00 3510.00 3510.00 350
tpm291.77 15391.09 15093.82 18294.83 21285.56 23892.51 30897.16 15484.00 24593.83 11890.66 27487.54 8497.17 21187.73 17691.55 18798.72 141
MP-MVS-pluss95.80 6695.30 6897.29 5298.95 7992.66 8398.59 14897.14 15588.95 14493.12 12599.25 2585.62 12199.94 3396.56 5899.48 5899.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 15790.54 16494.26 16798.20 10086.36 21696.94 24197.14 15587.75 18288.98 17695.75 18571.80 24399.40 11680.92 24697.39 11797.02 196
Anonymous2024052987.66 22285.58 23493.92 17897.59 11885.01 24798.13 18997.13 15766.69 33588.47 18096.01 18355.09 31599.51 10087.00 18384.12 22997.23 189
JIA-IIPM85.97 24684.85 24589.33 27393.23 24973.68 32285.05 33197.13 15769.62 32791.56 14268.03 33888.03 7696.96 21877.89 26593.12 16097.34 185
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12397.29 399.03 9697.11 15995.83 1098.97 1199.14 4282.48 16399.60 9198.60 1999.08 7698.00 172
HPM-MVS_fast94.89 8294.62 7895.70 12799.11 6988.44 17599.14 8497.11 15985.82 21695.69 8798.47 10583.46 14899.32 12393.16 12199.63 4599.35 89
DeepC-MVS91.02 494.56 9693.92 10096.46 9997.16 12990.76 12398.39 17197.11 15993.92 3188.66 17898.33 10878.14 20099.85 5495.02 8998.57 9698.78 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 13592.16 13394.65 15596.27 15887.45 19391.83 31197.10 16289.10 13994.68 10390.69 27288.22 7197.73 19289.78 15291.80 18298.77 139
HPM-MVScopyleft95.41 7395.22 7195.99 11799.29 5989.14 15999.17 7497.09 16387.28 19395.40 9198.48 10484.93 13299.38 11795.64 7799.65 3999.47 83
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 19887.27 21093.76 18395.79 17285.32 24190.76 32097.09 16376.14 31085.72 20188.59 30682.92 15698.04 17076.96 27091.43 18897.90 175
dp90.16 18188.83 18694.14 17196.38 15586.42 21291.57 31397.06 16584.76 23588.81 17790.19 29384.29 13997.43 20675.05 28491.35 19198.56 148
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13296.96 499.01 9997.04 16695.51 1698.86 1399.11 4882.19 16999.36 11998.59 2198.14 10398.00 172
3Dnovator+87.72 893.43 12191.84 14098.17 1895.73 17595.08 2998.92 10897.04 16691.42 8581.48 25497.60 13374.60 21599.79 6590.84 14298.97 8199.64 66
CDS-MVSNet93.47 11993.04 11694.76 15094.75 21489.45 15798.82 11797.03 16887.91 17890.97 15196.48 17389.06 5896.36 24889.50 15492.81 16598.49 151
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 19688.61 19190.03 25691.09 27784.43 25398.97 10397.02 16990.21 10880.29 26396.31 17984.89 13391.93 33272.98 30085.70 22093.73 215
114514_t94.06 10293.05 11597.06 6099.08 7292.26 9198.97 10397.01 17082.58 26992.57 13198.22 11380.68 18299.30 12489.34 15999.02 7999.63 68
CostFormer92.89 13492.48 12794.12 17294.99 20585.89 23092.89 30697.00 17186.98 19795.00 9990.78 26890.05 4797.51 20392.92 12591.73 18498.96 118
ET-MVSNet_ETH3D92.56 14291.45 14795.88 12096.39 15494.13 5599.46 4596.97 17292.18 7066.94 32798.29 11194.65 1194.28 31294.34 10383.82 23399.24 100
UA-Net93.30 12692.62 12495.34 13696.27 15888.53 17495.88 27796.97 17290.90 9595.37 9297.07 15582.38 16699.10 13383.91 22094.86 14998.38 157
abl_694.63 9394.48 8195.09 14198.61 9286.96 20398.06 19796.97 17289.31 13395.86 8398.56 9779.82 18599.64 8694.53 10198.65 9598.66 146
TAMVS92.62 13992.09 13694.20 16994.10 22387.68 18698.41 16796.97 17287.53 19089.74 17096.04 18284.77 13696.49 23988.97 16692.31 17398.42 153
Vis-MVSNetpermissive92.64 13891.85 13995.03 14595.12 19788.23 17698.48 16096.81 17691.61 7892.16 13697.22 14771.58 24698.00 17385.85 19997.81 10698.88 126
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 11893.90 10192.79 19996.79 14381.40 28498.85 11496.81 17691.25 8896.82 6798.15 11777.02 20698.13 16193.15 12296.30 13198.83 132
ADS-MVSNet88.99 19587.30 20994.07 17396.21 16087.56 19087.15 32596.78 17883.01 26089.91 16887.27 31378.87 19497.01 21774.20 29192.27 17497.64 177
Vis-MVSNet (Re-imp)93.26 12993.00 11894.06 17496.14 16586.71 20898.68 13396.70 17988.30 16789.71 17297.64 13285.43 12896.39 24688.06 17396.32 12999.08 111
Anonymous2023121184.72 26182.65 27290.91 23497.71 11284.55 25297.28 22796.67 18066.88 33479.18 27890.87 26758.47 30396.60 23182.61 23374.20 29091.59 254
EIA-MVS95.11 7995.27 7094.64 15696.34 15686.51 20999.59 2896.62 18192.51 5894.08 11398.64 9286.05 11898.24 15895.07 8898.50 9899.18 105
ETV-MVS96.00 5796.00 5296.00 11696.56 14991.05 11699.63 2596.61 18293.26 4697.39 5098.30 11086.62 10598.13 16198.07 3697.57 11198.82 133
CS-MVS95.85 6395.86 5795.82 12296.80 14289.78 14999.84 396.60 18392.60 5596.81 6898.70 8885.04 13098.25 15797.90 4098.43 10099.42 86
LS3D90.19 18088.72 18894.59 15798.97 7686.33 21796.90 24396.60 18374.96 31384.06 21598.74 8275.78 20999.83 5774.93 28597.57 11197.62 180
EI-MVSNet89.87 18689.38 17691.36 22694.32 22185.87 23197.61 21896.59 18585.10 22685.51 20397.10 15381.30 18096.56 23383.85 22283.03 23991.64 247
MVSTER92.71 13692.32 12893.86 18097.29 12592.95 8199.01 9996.59 18590.09 11485.51 20394.00 20994.61 1296.56 23390.77 14483.03 23992.08 238
cascas90.93 16889.33 17795.76 12595.69 17693.03 7798.99 10196.59 18580.49 29186.79 19794.45 20265.23 28398.60 15093.52 11592.18 17695.66 210
TAPA-MVS87.50 990.35 17589.05 18194.25 16898.48 9685.17 24498.42 16596.58 18882.44 27387.24 19098.53 9882.77 15998.84 13959.09 33297.88 10598.72 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 10893.62 10594.73 15398.63 9087.00 20298.04 19896.56 18992.19 6992.46 13298.73 8379.49 19099.14 13192.16 13194.34 15398.03 171
PLCcopyleft91.07 394.23 10194.01 9394.87 14799.17 6687.49 19199.25 6896.55 19088.43 16391.26 14798.21 11585.92 11999.86 5289.77 15397.57 11197.24 188
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8291.62 9899.58 2996.54 19195.09 1896.84 6498.63 9491.16 2699.77 6799.04 1296.42 12799.81 31
cl-mvsnet289.57 19088.79 18791.91 21497.94 10887.62 18897.98 20096.51 19285.03 22982.37 23591.79 24983.65 14496.50 23785.96 19477.89 26491.61 252
xiu_mvs_v1_base_debu94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
xiu_mvs_v1_base_debi94.73 8793.98 9496.99 6595.19 19195.24 2198.62 14296.50 19392.99 4897.52 4798.83 7672.37 23699.15 12897.03 4896.74 12296.58 201
lupinMVS96.32 4995.94 5497.44 4595.05 20394.87 3399.86 296.50 19393.82 3698.04 3798.77 7985.52 12298.09 16496.98 5298.97 8199.37 88
mvs_anonymous92.50 14391.65 14495.06 14396.60 14889.64 15397.06 23796.44 19786.64 20584.14 21393.93 21182.49 16296.17 26391.47 13496.08 13699.35 89
VDDNet90.08 18388.54 19594.69 15494.41 22087.68 18698.21 18496.40 19876.21 30993.33 12397.75 12554.93 31698.77 14194.71 9790.96 19297.61 181
RRT_test8_iter0591.04 16690.40 16792.95 19696.20 16289.75 15198.97 10396.38 19988.52 15582.00 24493.51 22490.69 3696.73 22890.43 14676.91 27292.38 226
HQP3-MVS96.37 20086.29 212
PatchT85.44 25683.19 26292.22 20893.13 25183.00 26883.80 33896.37 20070.62 32290.55 15779.63 33384.81 13594.87 30158.18 33491.59 18698.79 136
HQP-MVS91.50 15691.23 14992.29 20793.95 22786.39 21499.16 7596.37 20093.92 3187.57 18596.67 16973.34 22797.77 18593.82 11186.29 21292.72 220
UnsupCasMVSNet_eth78.90 29676.67 29885.58 30582.81 33374.94 31791.98 31096.31 20384.64 23665.84 33087.71 30951.33 32592.23 32872.89 30156.50 33689.56 308
HQP_MVS91.26 16090.95 15492.16 21093.84 23486.07 22699.02 9796.30 20493.38 4486.99 19196.52 17172.92 23197.75 19093.46 11686.17 21592.67 222
plane_prior596.30 20497.75 19093.46 11686.17 21592.67 222
jason95.40 7494.86 7697.03 6192.91 25494.23 5299.70 1796.30 20493.56 4296.73 7098.52 9981.46 17897.91 17496.08 6998.47 9998.96 118
jason: jason.
CLD-MVS91.06 16490.71 16192.10 21194.05 22686.10 22499.55 3396.29 20794.16 2684.70 20897.17 15169.62 25597.82 18194.74 9586.08 21792.39 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
RPMNet84.62 26381.78 27693.16 19193.47 24286.24 21884.97 33296.28 20864.85 33790.76 15478.80 33480.95 18194.82 30353.76 33792.17 17798.41 154
GA-MVS90.10 18288.69 18994.33 16492.44 25887.97 18299.08 9096.26 20989.65 12486.92 19393.11 23268.09 26396.96 21882.54 23490.15 19998.05 170
DTE-MVSNet84.14 27282.80 26688.14 28788.95 30379.87 29996.81 24596.24 21083.50 25377.60 29092.52 24067.89 26794.24 31372.64 30269.05 31990.32 293
RRT_MVS91.95 15191.09 15094.53 15896.71 14795.12 2898.64 13996.23 21189.04 14085.24 20595.06 19487.71 8196.43 24389.10 16582.06 24692.05 240
LFMVS92.23 14790.84 15796.42 10298.24 9991.08 11598.24 18196.22 21283.39 25594.74 10298.31 10961.12 29898.85 13894.45 10292.82 16399.32 92
baseline192.61 14091.28 14896.58 9497.05 13594.63 4497.72 21396.20 21389.82 12088.56 17996.85 16586.85 10097.82 18188.42 16880.10 25497.30 186
FMVSNet388.81 20487.08 21393.99 17796.52 15194.59 4598.08 19596.20 21385.85 21582.12 23991.60 25374.05 22395.40 29179.04 25680.24 25191.99 242
canonicalmvs95.02 8193.96 9798.20 1797.53 12095.92 1498.71 12696.19 21591.78 7695.86 8398.49 10379.53 18999.03 13596.12 6791.42 18999.66 64
MVSFormer94.71 9094.08 9296.61 9295.05 20394.87 3397.77 21196.17 21686.84 20098.04 3798.52 9985.52 12295.99 26989.83 15098.97 8198.96 118
test_djsdf88.26 21387.73 20289.84 25988.05 31382.21 27897.77 21196.17 21686.84 20082.41 23491.95 24872.07 23995.99 26989.83 15084.50 22691.32 265
MS-PatchMatch86.75 23385.92 22989.22 27491.97 26482.47 27796.91 24296.14 21883.74 24877.73 28993.53 22358.19 30497.37 20976.75 27398.35 10187.84 317
VDD-MVS91.24 16390.18 16894.45 16197.08 13385.84 23398.40 17096.10 21986.99 19593.36 12298.16 11654.27 31899.20 12596.59 5790.63 19798.31 163
PCF-MVS89.78 591.26 16089.63 17296.16 11295.44 18491.58 10195.29 28596.10 21985.07 22882.75 22697.45 13978.28 19999.78 6680.60 24995.65 14497.12 190
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_Test93.67 11692.67 12396.69 8996.72 14592.66 8397.22 23296.03 22187.69 18695.12 9794.03 20781.55 17598.28 15689.17 16396.46 12599.14 107
jajsoiax87.35 22586.51 22189.87 25787.75 31881.74 28197.03 23895.98 22288.47 15680.15 26593.80 21561.47 29596.36 24889.44 15784.47 22791.50 256
PS-MVSNAJss89.54 19189.05 18191.00 23288.77 30484.36 25497.39 22295.97 22388.47 15681.88 24793.80 21582.48 16396.50 23789.34 15983.34 23892.15 235
F-COLMAP92.07 14991.75 14393.02 19498.16 10382.89 27298.79 12395.97 22386.54 20887.92 18397.80 12278.69 19799.65 8485.97 19395.93 13996.53 204
miper_enhance_ethall90.33 17689.70 17192.22 20897.12 13188.93 16398.35 17395.96 22588.60 15383.14 22492.33 24187.38 8796.18 26286.49 18977.89 26491.55 255
TR-MVS90.77 17089.44 17494.76 15096.31 15788.02 18197.92 20295.96 22585.52 21988.22 18297.23 14666.80 27498.09 16484.58 20992.38 17198.17 169
CMPMVSbinary58.40 2180.48 28980.11 28781.59 31985.10 32659.56 34094.14 29595.95 22768.54 33060.71 33493.31 22655.35 31497.87 17883.06 22984.85 22487.33 321
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LPG-MVS_test88.86 19988.47 19690.06 25393.35 24780.95 29398.22 18295.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
LGP-MVS_train90.06 25393.35 24780.95 29395.94 22887.73 18483.17 22296.11 18066.28 27897.77 18590.19 14885.19 22191.46 258
OPM-MVS89.76 18789.15 18091.57 22390.53 28385.58 23798.11 19295.93 23092.88 5386.05 19996.47 17467.06 27397.87 17889.29 16286.08 21791.26 268
XVG-OURS-SEG-HR90.95 16790.66 16391.83 21695.18 19481.14 29195.92 27495.92 23188.40 16490.33 16397.85 11970.66 25199.38 11792.83 12688.83 20394.98 211
XVG-OURS90.83 16990.49 16591.86 21595.23 18981.25 28895.79 28295.92 23188.96 14390.02 16798.03 11871.60 24599.35 12191.06 13887.78 20794.98 211
tpm89.67 18888.95 18391.82 21792.54 25781.43 28392.95 30595.92 23187.81 18090.50 15989.44 30084.99 13195.65 28483.67 22382.71 24298.38 157
ACMM86.95 1388.77 20588.22 19990.43 24693.61 23981.34 28698.50 15795.92 23187.88 17983.85 21695.20 19367.20 27197.89 17686.90 18684.90 22392.06 239
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 10793.30 10995.72 12695.10 20190.07 13997.48 22195.91 23591.03 9193.54 12197.68 12979.58 18798.02 17194.27 10495.14 14699.08 111
mvs_tets87.09 22886.22 22489.71 26287.87 31481.39 28596.73 25195.90 23688.19 17179.99 26793.61 22059.96 30196.31 25689.40 15884.34 22891.43 260
XXY-MVS87.75 21986.02 22792.95 19690.46 28489.70 15297.71 21595.90 23684.02 24480.95 25694.05 20467.51 26997.10 21585.16 20178.41 26192.04 241
nrg03090.23 17888.87 18494.32 16591.53 27293.54 6598.79 12395.89 23888.12 17384.55 21094.61 20178.80 19696.88 22192.35 13075.21 27892.53 224
CNLPA93.64 11792.74 12196.36 10598.96 7890.01 14599.19 7095.89 23886.22 21289.40 17398.85 7580.66 18399.84 5588.57 16796.92 12199.24 100
FMVSNet286.90 23084.79 24793.24 18995.11 19892.54 8997.67 21695.86 24082.94 26280.55 26091.17 26262.89 29095.29 29377.23 26779.71 25891.90 243
casdiffmvs93.98 10593.43 10795.61 13095.07 20289.86 14798.80 11995.84 24190.98 9292.74 13097.66 13179.71 18698.10 16394.72 9695.37 14598.87 128
UniMVSNet_ETH3D85.65 25583.79 26091.21 22790.41 28580.75 29595.36 28495.78 24278.76 29981.83 25194.33 20349.86 32996.66 22984.30 21183.52 23696.22 206
Effi-MVS+93.87 10993.15 11396.02 11595.79 17290.76 12396.70 25295.78 24286.98 19795.71 8697.17 15179.58 18798.01 17294.57 10096.09 13599.31 93
EU-MVSNet84.19 27184.42 25483.52 31388.64 30767.37 33696.04 27395.76 24485.29 22378.44 28593.18 23070.67 25091.48 33475.79 28175.98 27491.70 246
BH-w/o92.32 14491.79 14193.91 17996.85 13986.18 22199.11 8995.74 24588.13 17284.81 20797.00 15877.26 20597.91 17489.16 16498.03 10497.64 177
testing_280.92 28777.24 29591.98 21378.88 33987.83 18393.96 29795.72 24684.27 24156.20 33680.42 33038.64 34296.40 24587.20 18079.85 25691.72 245
anonymousdsp86.69 23485.75 23289.53 26886.46 32482.94 26996.39 25895.71 24783.97 24679.63 27290.70 27168.85 25895.94 27286.01 19284.02 23089.72 305
Fast-Effi-MVS+91.72 15490.79 16094.49 15995.89 17087.40 19599.54 3595.70 24885.01 23189.28 17595.68 18677.75 20297.57 20283.22 22595.06 14798.51 150
IS-MVSNet93.00 13392.51 12694.49 15996.14 16587.36 19698.31 17795.70 24888.58 15490.17 16497.50 13783.02 15597.22 21087.06 18196.07 13798.90 125
diffmvs94.59 9594.19 8795.81 12395.54 18190.69 12598.70 13095.68 25091.61 7895.96 7897.81 12180.11 18498.06 16896.52 5995.76 14198.67 144
v7n84.42 26982.75 26989.43 27288.15 31181.86 28096.75 24995.67 25180.53 29078.38 28689.43 30169.89 25296.35 25373.83 29572.13 30990.07 298
ACMP87.39 1088.71 20788.24 19890.12 25293.91 23281.06 29298.50 15795.67 25189.43 13180.37 26295.55 18765.67 28097.83 18090.55 14584.51 22591.47 257
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
V4287.00 22985.68 23390.98 23389.91 28886.08 22598.32 17695.61 25383.67 25182.72 22790.67 27374.00 22496.53 23581.94 24074.28 28990.32 293
XVG-ACMP-BASELINE85.86 24884.95 24388.57 28389.90 28977.12 31394.30 29295.60 25487.40 19282.12 23992.99 23553.42 32197.66 19485.02 20483.83 23190.92 276
Anonymous20240521188.84 20087.03 21494.27 16698.14 10484.18 25698.44 16395.58 25576.79 30889.34 17496.88 16453.42 32199.54 9587.53 17987.12 21099.09 110
miper_ehance_all_eth88.94 19788.12 20091.40 22495.32 18786.93 20497.85 20795.55 25684.19 24281.97 24591.50 25584.16 14095.91 27684.69 20777.89 26491.36 263
CANet_DTU94.31 10093.35 10897.20 5797.03 13694.71 4298.62 14295.54 25795.61 1497.21 5298.47 10571.88 24199.84 5588.38 16997.46 11697.04 195
v2v48287.27 22785.76 23191.78 22289.59 29387.58 18998.56 15195.54 25784.53 23782.51 23191.78 25073.11 23096.47 24082.07 23774.14 29291.30 266
BH-untuned91.46 15890.84 15793.33 18896.51 15284.83 24998.84 11695.50 25986.44 21183.50 21796.70 16875.49 21197.77 18586.78 18897.81 10697.40 183
v14886.38 24185.06 24090.37 24889.47 29884.10 25798.52 15395.48 26083.80 24780.93 25790.22 29174.60 21596.31 25680.92 24671.55 31390.69 286
IterMVS-LS88.34 21087.44 20691.04 23194.10 22385.85 23298.10 19395.48 26085.12 22582.03 24391.21 26181.35 17995.63 28583.86 22175.73 27691.63 248
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5193.85 5999.65 2395.45 26295.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 3999.77 43
v114486.83 23285.31 23891.40 22489.75 29187.21 20198.31 17795.45 26283.22 25782.70 22890.78 26873.36 22696.36 24879.49 25374.69 28490.63 288
v119286.32 24284.71 24891.17 22889.53 29686.40 21398.13 18995.44 26482.52 27182.42 23390.62 27771.58 24696.33 25577.23 26774.88 28190.79 280
v14419286.40 24084.89 24490.91 23489.48 29785.59 23698.21 18495.43 26582.45 27282.62 22990.58 28072.79 23496.36 24878.45 26274.04 29390.79 280
Effi-MVS+-dtu89.97 18590.68 16287.81 29095.15 19571.98 32897.87 20695.40 26691.92 7387.57 18591.44 25674.27 22096.84 22289.45 15593.10 16194.60 213
mvs-test191.57 15592.20 13289.70 26395.15 19574.34 31999.51 3795.40 26691.92 7391.02 15097.25 14474.27 22098.08 16789.45 15595.83 14096.67 198
cl_fuxian88.19 21487.23 21191.06 23094.97 20686.17 22297.72 21395.38 26883.43 25481.68 25291.37 25782.81 15895.72 28284.04 21973.70 29491.29 267
eth_miper_zixun_eth87.76 21887.00 21590.06 25394.67 21682.65 27697.02 24095.37 26984.19 24281.86 25091.58 25481.47 17795.90 27783.24 22473.61 29591.61 252
v886.11 24484.45 25291.10 22989.99 28786.85 20597.24 23095.36 27081.99 27779.89 26989.86 29674.53 21796.39 24678.83 26072.32 30790.05 300
v192192086.02 24584.44 25390.77 23989.32 29985.20 24298.10 19395.35 27182.19 27582.25 23790.71 27070.73 24996.30 25976.85 27274.49 28590.80 279
pmmvs487.58 22486.17 22691.80 21889.58 29488.92 16497.25 22995.28 27282.54 27080.49 26193.17 23175.62 21096.05 26882.75 23178.90 25990.42 291
GBi-Net86.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
test186.67 23584.96 24191.80 21895.11 19888.81 16696.77 24695.25 27382.94 26282.12 23990.25 28862.89 29094.97 29879.04 25680.24 25191.62 249
FMVSNet183.94 27581.32 28291.80 21891.94 26688.81 16696.77 24695.25 27377.98 30178.25 28790.25 28850.37 32894.97 29873.27 29877.81 26891.62 249
cl-mvsnet_87.82 21686.79 21890.89 23694.88 21085.43 23997.81 20895.24 27682.91 26680.71 25991.22 26081.97 17295.84 27881.34 24375.06 27991.40 262
miper_lstm_enhance86.90 23086.20 22589.00 27994.53 21881.19 28996.74 25095.24 27682.33 27480.15 26590.51 28481.99 17094.68 30880.71 24873.58 29691.12 271
UnsupCasMVSNet_bld73.85 30770.14 30984.99 30779.44 33775.73 31588.53 32395.24 27670.12 32661.94 33374.81 33541.41 33893.62 31568.65 31151.13 34185.62 329
v124085.77 25284.11 25690.73 24089.26 30085.15 24597.88 20595.23 27981.89 28082.16 23890.55 28269.60 25696.31 25675.59 28274.87 28290.72 285
cl-mvsnet187.82 21686.81 21790.87 23794.87 21185.39 24097.81 20895.22 28082.92 26580.76 25891.31 25981.99 17095.81 28081.36 24275.04 28091.42 261
v1085.73 25384.01 25890.87 23790.03 28686.73 20797.20 23395.22 28081.25 28579.85 27089.75 29773.30 22996.28 26076.87 27172.64 30389.61 307
BH-RMVSNet91.25 16289.99 16995.03 14596.75 14488.55 17298.65 13794.95 28287.74 18387.74 18497.80 12268.27 26298.14 16080.53 25097.49 11598.41 154
ACMH83.09 1784.60 26482.61 27390.57 24293.18 25082.94 26996.27 26294.92 28381.01 28772.61 31493.61 22056.54 30897.79 18374.31 29081.07 25090.99 274
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS85.81 25084.67 24989.22 27493.51 24183.67 26296.32 26194.80 28485.09 22778.69 28090.17 29466.57 27793.17 31879.48 25477.42 27090.81 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 26582.72 27090.18 25092.89 25583.18 26793.15 30494.74 28578.99 29675.14 30292.69 23765.64 28197.63 19669.46 30881.82 24889.74 304
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 26282.78 26890.40 24789.58 29485.18 24397.31 22594.73 28681.93 27976.05 29592.01 24565.48 28296.11 26678.75 26169.14 31889.91 303
IterMVS-SCA-FT85.73 25384.64 25089.00 27993.46 24482.90 27196.27 26294.70 28785.02 23078.62 28290.35 28666.61 27593.33 31779.38 25577.36 27190.76 282
1112_ss92.71 13691.55 14696.20 10895.56 18091.12 11198.48 16094.69 28888.29 16886.89 19498.50 10187.02 9798.66 14884.75 20689.77 20198.81 134
Test_1112_low_res92.27 14690.97 15396.18 10995.53 18291.10 11398.47 16294.66 28988.28 16986.83 19693.50 22587.00 9898.65 14984.69 20789.74 20298.80 135
Fast-Effi-MVS+-dtu88.84 20088.59 19389.58 26793.44 24578.18 30898.65 13794.62 29088.46 15884.12 21495.37 19268.91 25796.52 23682.06 23891.70 18594.06 214
our_test_384.47 26882.80 26689.50 26989.01 30183.90 26097.03 23894.56 29181.33 28475.36 30190.52 28371.69 24494.54 31068.81 31076.84 27390.07 298
ppachtmachnet_test83.63 27781.57 27989.80 26089.01 30185.09 24697.13 23594.50 29278.84 29776.14 29491.00 26469.78 25394.61 30963.40 32374.36 28789.71 306
YYNet179.64 29477.04 29787.43 29487.80 31679.98 29896.23 26694.44 29373.83 31851.83 33787.53 31167.96 26692.07 33166.00 31967.75 32390.23 295
MDA-MVSNet_test_wron79.65 29377.05 29687.45 29387.79 31780.13 29796.25 26594.44 29373.87 31751.80 33887.47 31268.04 26492.12 33066.02 31867.79 32290.09 296
MIMVSNet84.48 26781.83 27592.42 20691.73 27087.36 19685.52 32894.42 29581.40 28381.91 24687.58 31051.92 32492.81 32173.84 29488.15 20597.08 194
MVP-Stereo86.61 23785.83 23088.93 28188.70 30683.85 26196.07 27294.41 29682.15 27675.64 29991.96 24767.65 26896.45 24277.20 26998.72 9286.51 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 21286.37 22294.04 17596.90 13886.15 22396.52 25694.36 29777.89 30579.22 27796.95 16069.72 25499.59 9273.20 29992.58 16996.37 205
ACMH+83.78 1584.21 27082.56 27489.15 27693.73 23879.16 30096.43 25794.28 29881.09 28674.00 30694.03 20754.58 31797.67 19376.10 27878.81 26090.63 288
Patchmatch-test86.25 24384.06 25792.82 19894.42 21982.88 27382.88 33994.23 29971.58 32079.39 27590.62 27789.00 6096.42 24463.03 32491.37 19099.16 106
CR-MVSNet88.83 20287.38 20893.16 19193.47 24286.24 21884.97 33294.20 30088.92 14790.76 15486.88 31784.43 13794.82 30370.64 30792.17 17798.41 154
Patchmtry83.61 27881.64 27789.50 26993.36 24682.84 27484.10 33594.20 30069.47 32879.57 27386.88 31784.43 13794.78 30568.48 31274.30 28890.88 277
EG-PatchMatch MVS79.92 29177.59 29286.90 29787.06 32277.90 31296.20 27094.06 30274.61 31466.53 32988.76 30540.40 34196.20 26167.02 31583.66 23486.61 325
K. test v381.04 28679.77 28884.83 30887.41 31970.23 33295.60 28393.93 30383.70 25067.51 32589.35 30255.76 31093.58 31676.67 27468.03 32190.67 287
RPSCF85.33 25785.55 23584.67 31094.63 21762.28 33893.73 29993.76 30474.38 31685.23 20697.06 15664.09 28698.31 15380.98 24486.08 21793.41 219
MVS-HIRNet79.01 29575.13 30290.66 24193.82 23681.69 28285.16 32993.75 30554.54 33974.17 30559.15 34257.46 30696.58 23263.74 32294.38 15193.72 216
pmmvs585.87 24784.40 25590.30 24988.53 30884.23 25598.60 14693.71 30681.53 28280.29 26392.02 24464.51 28595.52 28782.04 23978.34 26291.15 270
pmmvs679.90 29277.31 29487.67 29184.17 32978.13 30995.86 27993.68 30767.94 33272.67 31389.62 29950.98 32795.75 28174.80 28866.04 32489.14 312
OurMVSNet-221017-084.13 27383.59 26185.77 30487.81 31570.24 33194.89 28893.65 30886.08 21376.53 29293.28 22861.41 29696.14 26580.95 24577.69 26990.93 275
DP-MVS88.75 20686.56 22095.34 13698.92 8087.45 19397.64 21793.52 30970.55 32381.49 25397.25 14474.43 21899.88 4471.14 30694.09 15498.67 144
ITE_SJBPF87.93 28892.26 26076.44 31493.47 31087.67 18779.95 26895.49 19056.50 30997.38 20775.24 28382.33 24589.98 302
USDC84.74 26082.93 26490.16 25191.73 27083.54 26395.00 28793.30 31188.77 15073.19 30893.30 22753.62 32097.65 19575.88 28081.54 24989.30 309
ADS-MVSNet287.62 22386.88 21689.86 25896.21 16079.14 30187.15 32592.99 31283.01 26089.91 16887.27 31378.87 19492.80 32274.20 29192.27 17497.64 177
Anonymous2023120680.76 28879.42 29084.79 30984.78 32772.98 32496.53 25592.97 31379.56 29374.33 30388.83 30461.27 29792.15 32960.59 32975.92 27589.24 311
MDA-MVSNet-bldmvs77.82 30274.75 30487.03 29688.33 30978.52 30696.34 26092.85 31475.57 31148.87 34087.89 30857.32 30792.49 32660.79 32864.80 32790.08 297
test20.0378.51 29977.48 29381.62 31883.07 33271.03 32996.11 27192.83 31581.66 28169.31 31889.68 29857.53 30587.29 34058.65 33368.47 32086.53 326
COLMAP_ROBcopyleft82.69 1884.54 26682.82 26589.70 26396.72 14578.85 30295.89 27592.83 31571.55 32177.54 29195.89 18459.40 30299.14 13167.26 31488.26 20491.11 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo82.63 27981.58 27885.79 30388.12 31271.01 33095.17 28692.54 31784.33 24072.93 31292.08 24260.41 30095.61 28674.47 28974.15 29190.75 283
FMVSNet582.29 28080.54 28587.52 29293.79 23784.01 25893.73 29992.47 31876.92 30774.27 30486.15 32263.69 28989.24 33669.07 30974.79 28389.29 310
new-patchmatchnet74.80 30672.40 30881.99 31778.36 34072.20 32794.44 29092.36 31977.06 30663.47 33179.98 33251.04 32688.85 33760.53 33054.35 33884.92 333
new_pmnet76.02 30373.71 30582.95 31483.88 33072.85 32591.26 31692.26 32070.44 32462.60 33281.37 32747.64 33292.32 32761.85 32672.10 31083.68 335
AllTest84.97 25983.12 26390.52 24496.82 14078.84 30395.89 27592.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
TestCases90.52 24496.82 14078.84 30392.17 32177.96 30375.94 29695.50 18855.48 31299.18 12671.15 30487.14 20893.55 217
pmmvs-eth3d78.71 29876.16 30086.38 29980.25 33681.19 28994.17 29492.13 32377.97 30266.90 32882.31 32555.76 31092.56 32573.63 29762.31 33185.38 330
MIMVSNet175.92 30473.30 30683.81 31281.29 33475.57 31692.26 30992.05 32473.09 31967.48 32686.18 32140.87 34087.64 33955.78 33570.68 31788.21 315
ambc79.60 32172.76 34256.61 34276.20 34192.01 32568.25 32180.23 33123.34 34594.73 30673.78 29660.81 33287.48 319
LF4IMVS81.94 28381.17 28384.25 31187.23 32168.87 33593.35 30391.93 32683.35 25675.40 30093.00 23449.25 33196.65 23078.88 25978.11 26387.22 323
TransMVSNet (Re)81.97 28279.61 28989.08 27789.70 29284.01 25897.26 22891.85 32778.84 29773.07 31191.62 25267.17 27295.21 29567.50 31359.46 33488.02 316
Baseline_NR-MVSNet85.83 24984.82 24688.87 28288.73 30583.34 26598.63 14191.66 32880.41 29282.44 23291.35 25874.63 21395.42 29084.13 21571.39 31487.84 317
testgi82.29 28081.00 28486.17 30187.24 32074.84 31897.39 22291.62 32988.63 15175.85 29895.42 19146.07 33491.55 33366.87 31779.94 25592.12 236
TDRefinement78.01 30075.31 30186.10 30270.06 34373.84 32193.59 30291.58 33074.51 31573.08 31091.04 26349.63 33097.12 21274.88 28659.47 33387.33 321
OpenMVS_ROBcopyleft73.86 2077.99 30175.06 30386.77 29883.81 33177.94 31196.38 25991.53 33167.54 33368.38 32087.13 31643.94 33596.08 26755.03 33681.83 24786.29 328
test_040278.81 29776.33 29986.26 30091.18 27678.44 30795.88 27791.34 33268.55 32970.51 31689.91 29552.65 32394.99 29747.14 34079.78 25785.34 332
MTMP99.21 6991.09 333
DeepMVS_CXcopyleft76.08 32290.74 28251.65 34590.84 33486.47 21057.89 33587.98 30735.88 34392.60 32365.77 32065.06 32683.97 334
lessismore_v085.08 30685.59 32569.28 33490.56 33567.68 32490.21 29254.21 31995.46 28873.88 29362.64 32990.50 290
Gipumacopyleft54.77 31352.22 31662.40 32886.50 32359.37 34150.20 34690.35 33636.52 34341.20 34349.49 34418.33 34881.29 34232.10 34365.34 32546.54 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 29077.94 29187.85 28992.09 26378.58 30593.74 29889.94 33774.99 31269.77 31791.78 25046.09 33397.58 19965.17 32177.89 26487.38 320
FPMVS61.57 31060.32 31265.34 32660.14 34742.44 34891.02 31889.72 33844.15 34142.63 34280.93 32819.02 34680.59 34442.50 34172.76 30273.00 339
LCM-MVSNet60.07 31156.37 31371.18 32354.81 34948.67 34682.17 34089.48 33937.95 34249.13 33969.12 33613.75 35281.76 34159.28 33151.63 34083.10 337
pmmvs372.86 30869.76 31182.17 31573.86 34174.19 32094.20 29389.01 34064.23 33867.72 32380.91 32941.48 33788.65 33862.40 32554.02 33983.68 335
LCM-MVSNet-Re88.59 20888.61 19188.51 28595.53 18272.68 32696.85 24488.43 34188.45 15973.14 30990.63 27675.82 20894.38 31192.95 12395.71 14398.48 152
Patchmatch-RL test81.90 28480.13 28687.23 29580.71 33570.12 33384.07 33688.19 34283.16 25970.57 31582.18 32687.18 9492.59 32482.28 23662.78 32898.98 116
DSMNet-mixed81.60 28581.43 28082.10 31684.36 32860.79 33993.63 30186.74 34379.00 29579.32 27687.15 31563.87 28889.78 33566.89 31691.92 17995.73 209
PM-MVS74.88 30572.85 30780.98 32078.98 33864.75 33790.81 31985.77 34480.95 28868.23 32282.81 32429.08 34492.84 32076.54 27562.46 33085.36 331
door85.30 345
door-mid84.90 346
PMMVS258.97 31255.07 31470.69 32562.72 34455.37 34385.97 32780.52 34749.48 34045.94 34168.31 33715.73 35080.78 34349.79 33937.12 34275.91 338
ANet_high50.71 31546.17 31764.33 32744.27 35152.30 34476.13 34278.73 34864.95 33627.37 34655.23 34314.61 35167.74 34636.01 34218.23 34572.95 340
PMVScopyleft41.42 2345.67 31642.50 31855.17 33034.28 35232.37 35166.24 34478.71 34930.72 34422.04 34959.59 3414.59 35377.85 34527.49 34458.84 33555.29 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 31452.86 31556.05 32932.75 35341.97 34973.42 34376.12 35021.91 34839.68 34496.39 17742.59 33665.10 34778.00 26414.92 34761.08 341
MVEpermissive44.00 2241.70 31737.64 32153.90 33149.46 35043.37 34765.09 34566.66 35126.19 34725.77 34848.53 3453.58 35563.35 34826.15 34527.28 34354.97 343
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 31840.93 31941.29 33261.97 34533.83 35084.00 33765.17 35227.17 34527.56 34546.72 34617.63 34960.41 34919.32 34618.82 34429.61 345
EMVS39.96 31939.88 32040.18 33359.57 34832.12 35284.79 33464.57 35326.27 34626.14 34744.18 34918.73 34759.29 35017.03 34717.67 34629.12 346
N_pmnet70.19 30969.87 31071.12 32488.24 31030.63 35395.85 28028.70 35470.18 32568.73 31986.55 31964.04 28793.81 31453.12 33873.46 29888.94 313
wuyk23d16.71 32216.73 32516.65 33460.15 34625.22 35441.24 3475.17 3556.56 3495.48 3523.61 3523.64 35422.72 35115.20 3489.52 3481.99 349
testmvs18.81 32123.05 3236.10 3364.48 3542.29 35697.78 2103.00 3563.27 35018.60 35062.71 3391.53 3572.49 35314.26 3491.80 34913.50 348
test12316.58 32319.47 3247.91 3353.59 3555.37 35594.32 2911.39 3572.49 35113.98 35144.60 3482.91 3562.65 35211.35 3500.57 35015.70 347
uanet_test0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
pcd_1.5k_mvsjas6.87 3259.16 3270.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 35382.48 1630.00 3540.00 3510.00 3510.00 350
sosnet-low-res0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
sosnet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
uncertanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
Regformer0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
n20.00 358
nn0.00 358
ab-mvs-re8.21 32410.94 3260.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 35398.50 1010.00 3580.00 3540.00 3510.00 3510.00 350
uanet0.00 3260.00 3280.00 3370.00 3560.00 3570.00 3480.00 3580.00 3520.00 3530.00 3530.00 3580.00 3540.00 3510.00 3510.00 350
OPU-MVS99.49 299.64 1998.51 299.77 999.19 3295.12 699.97 2099.90 199.92 399.99 1
test_0728_THIRD93.01 4799.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
GSMVS98.84 129
test_part299.54 3595.42 1798.13 32
sam_mvs188.39 6998.84 129
sam_mvs87.08 95
test_post190.74 32141.37 35085.38 12996.36 24883.16 226
test_post46.00 34787.37 8897.11 213
patchmatchnet-post84.86 32388.73 6396.81 224
gm-plane-assit94.69 21588.14 17788.22 17097.20 14898.29 15590.79 143
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4199.87 799.91 18
test_prior492.00 9299.41 54
test_prior299.57 3091.43 8398.12 3498.97 6190.43 4098.33 2999.81 19
旧先验298.67 13585.75 21798.96 1298.97 13793.84 109
新几何298.26 180
原ACMM298.69 131
testdata299.88 4484.16 214
segment_acmp90.56 39
testdata197.89 20392.43 61
plane_prior793.84 23485.73 234
plane_prior693.92 23186.02 22872.92 231
plane_prior496.52 171
plane_prior385.91 22993.65 3986.99 191
plane_prior299.02 9793.38 44
plane_prior193.90 233
plane_prior86.07 22699.14 8493.81 3786.26 214
HQP5-MVS86.39 214
HQP-NCC93.95 22799.16 7593.92 3187.57 185
ACMP_Plane93.95 22799.16 7593.92 3187.57 185
BP-MVS93.82 111
HQP4-MVS87.57 18597.77 18592.72 220
HQP2-MVS73.34 227
NP-MVS93.94 23086.22 22096.67 169
MDTV_nov1_ep13_2view91.17 11091.38 31487.45 19193.08 12686.67 10487.02 18298.95 122
ACMMP++_ref82.64 243
ACMMP++83.83 231
Test By Simon83.62 145