This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
MVS_111021_HR96.69 3696.69 3396.72 8798.58 9791.00 12199.14 8799.45 193.86 3595.15 10498.73 8788.48 6899.76 6897.23 5099.56 5599.40 89
thres100view90093.34 12992.15 13996.90 7497.62 11994.84 3599.06 9699.36 287.96 18590.47 16996.78 17383.29 15798.75 14884.11 22690.69 20197.12 197
tfpn200view993.43 12592.27 13596.90 7497.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20197.12 197
thres600view793.18 13492.00 14296.75 8397.62 11994.92 3199.07 9499.36 287.96 18590.47 16996.78 17383.29 15798.71 15282.93 24090.47 20596.61 206
thres40093.39 12792.27 13596.73 8597.68 11794.84 3599.18 7599.36 288.45 16790.79 16196.90 16883.31 15598.75 14884.11 22690.69 20196.61 206
thres20093.69 11792.59 13096.97 6997.76 11494.74 4099.35 6499.36 289.23 14291.21 15896.97 16583.42 15498.77 14685.08 21190.96 19997.39 191
MVS_111021_LR95.78 6995.94 5695.28 14198.19 10687.69 19198.80 12299.26 793.39 4595.04 10698.69 9384.09 14699.76 6896.96 5799.06 8198.38 163
sss94.85 8893.94 10497.58 4096.43 15894.09 5698.93 10999.16 889.50 13895.27 10197.85 12581.50 18799.65 8492.79 13594.02 16198.99 119
MG-MVS97.24 1896.83 2998.47 1299.79 595.71 1599.07 9499.06 994.45 2296.42 7998.70 9288.81 6399.74 7095.35 9099.86 1099.97 7
PVSNet87.13 1293.69 11792.83 12596.28 10797.99 11190.22 13999.38 5998.93 1091.42 8993.66 12897.68 13571.29 26299.64 8687.94 18497.20 12598.98 120
PGM-MVS95.85 6695.65 6996.45 10099.50 4389.77 15498.22 18998.90 1189.19 14396.74 7298.95 7085.91 12499.92 3693.94 11499.46 6099.66 65
EPNet96.82 3496.68 3497.25 5598.65 9393.10 7599.48 4198.76 1296.54 597.84 4698.22 11987.49 8699.66 8095.35 9097.78 11599.00 118
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
WTY-MVS95.97 6095.11 7898.54 1097.62 11996.65 699.44 5098.74 1392.25 7095.21 10298.46 11186.56 11199.46 11195.00 9892.69 17399.50 82
HY-MVS88.56 795.29 7894.23 9198.48 1197.72 11596.41 1094.03 31098.74 1392.42 6695.65 9694.76 20986.52 11299.49 10495.29 9292.97 16999.53 78
VNet95.08 8494.26 9097.55 4398.07 10993.88 5898.68 13698.73 1590.33 11197.16 5897.43 14679.19 20399.53 9796.91 5891.85 18899.24 103
test_yl95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
DCV-MVSNet95.27 7994.60 8497.28 5398.53 9892.98 7999.05 9798.70 1686.76 21394.65 11297.74 13287.78 7999.44 11295.57 8692.61 17499.44 87
PVSNet_083.28 1687.31 23685.16 25093.74 19094.78 22484.59 26298.91 11298.69 1889.81 12678.59 29693.23 23961.95 30999.34 12694.75 10255.72 35297.30 193
ACMMPcopyleft94.67 9594.30 8995.79 12599.25 6488.13 18598.41 17198.67 1990.38 10991.43 15398.72 8982.22 17999.95 3093.83 11895.76 14799.29 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
D2MVS87.96 22587.39 21789.70 27491.84 28183.40 27598.31 18498.49 2088.04 18378.23 30090.26 29973.57 23996.79 23684.21 22383.53 24288.90 325
HyFIR lowres test93.68 11993.29 11594.87 15197.57 12388.04 18798.18 19398.47 2187.57 19891.24 15795.05 20585.49 13097.46 21193.22 12892.82 17099.10 113
UniMVSNet (Re)89.50 20088.32 20693.03 20092.21 27490.96 12298.90 11398.39 2289.13 14583.22 23092.03 25581.69 18596.34 26486.79 19672.53 31391.81 254
CHOSEN 280x42096.80 3596.85 2796.66 9197.85 11394.42 4994.76 30298.36 2392.50 6095.62 9797.52 14297.92 197.38 21698.31 3398.80 9598.20 174
VPA-MVSNet89.10 20287.66 21493.45 19492.56 26991.02 12097.97 20998.32 2486.92 20986.03 21092.01 25768.84 27397.10 22490.92 14975.34 28492.23 241
CHOSEN 1792x268894.35 10393.82 10795.95 12097.40 12688.74 17698.41 17198.27 2592.18 7291.43 15396.40 18378.88 20499.81 6293.59 12297.81 11299.30 96
FIs90.70 17889.87 17793.18 19892.29 27291.12 11498.17 19598.25 2689.11 14683.44 22994.82 20882.26 17896.17 27387.76 18582.76 24892.25 239
UGNet91.91 15790.85 16395.10 14497.06 14088.69 17798.01 20798.24 2792.41 6792.39 14293.61 23060.52 31499.68 7888.14 18197.25 12496.92 204
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test90.22 18689.40 18492.67 21291.78 28289.86 15297.89 21198.22 2888.81 15782.96 23694.66 21081.90 18495.96 28185.89 20682.52 25192.20 243
MVS_030484.13 28382.66 28288.52 29593.07 26580.15 30995.81 29398.21 2979.27 30886.85 20586.40 33441.33 35694.69 31776.36 28786.69 21890.73 294
WR-MVS_H86.53 24985.49 24789.66 27791.04 29183.31 27797.53 23098.20 3084.95 24279.64 28390.90 27878.01 21295.33 30376.29 28872.81 30990.35 302
MVS93.92 11092.28 13498.83 495.69 18496.82 596.22 27998.17 3184.89 24384.34 22298.61 9879.32 20299.83 5793.88 11699.43 6499.86 28
PAPM96.35 4795.94 5697.58 4094.10 23695.25 2098.93 10998.17 3194.26 2393.94 12398.72 8989.68 5497.88 18196.36 6999.29 7499.62 71
baseline294.04 10793.80 10894.74 15693.07 26590.25 13798.12 19898.16 3389.86 12386.53 20896.95 16695.56 598.05 17391.44 14394.53 15695.93 217
UniMVSNet_NR-MVSNet89.60 19788.55 20392.75 20992.17 27590.07 14498.74 12898.15 3488.37 17383.21 23193.98 22082.86 16695.93 28386.95 19372.47 31492.25 239
CSCG94.87 8794.71 8295.36 13899.54 3686.49 21999.34 6698.15 3482.71 27790.15 17499.25 2589.48 5699.86 5294.97 9998.82 9499.72 54
MSLP-MVS++97.50 1497.45 1297.63 3899.65 1993.21 7199.70 1898.13 3694.61 1997.78 4799.46 1189.85 5099.81 6297.97 3899.91 499.88 24
hse-mvs392.47 14891.95 14494.05 18097.13 13685.01 25798.36 17998.08 3793.85 3696.27 8096.73 17583.19 16099.43 11495.81 7968.09 33097.70 183
IB-MVS89.43 692.12 15390.83 16695.98 11895.40 19690.78 12699.81 698.06 3891.23 9385.63 21293.66 22990.63 3798.78 14591.22 14571.85 32098.36 166
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PHI-MVS96.65 3896.46 3897.21 5699.34 5391.77 9599.70 1898.05 3986.48 21998.05 3799.20 3189.33 5799.96 2798.38 2899.62 4799.90 20
PVSNet_BlendedMVS93.36 12893.20 11793.84 18798.77 9091.61 10199.47 4298.04 4091.44 8694.21 11892.63 25183.50 15199.87 4797.41 4683.37 24490.05 310
PVSNet_Blended95.94 6295.66 6796.75 8398.77 9091.61 10199.88 198.04 4093.64 4294.21 11897.76 13083.50 15199.87 4797.41 4697.75 11698.79 141
EPMVS92.59 14591.59 15195.59 13297.22 13290.03 14891.78 32898.04 4090.42 10891.66 14890.65 28786.49 11497.46 21181.78 25196.31 13699.28 99
CNVR-MVS98.46 198.38 198.72 699.80 496.19 1299.80 897.99 4397.05 399.41 299.59 292.89 21100.00 198.99 1399.90 599.96 8
MCST-MVS98.18 297.95 798.86 399.85 396.60 799.70 1897.98 4497.18 295.96 8699.33 2192.62 22100.00 198.99 1399.93 199.98 6
Regformer-196.97 2896.80 3097.47 4499.46 4793.11 7498.89 11497.94 4592.89 5496.90 6199.02 5789.78 5199.53 9797.06 5199.26 7699.75 48
Regformer-296.94 3196.78 3197.42 4699.46 4792.97 8198.89 11497.93 4692.86 5696.88 6299.02 5789.74 5399.53 9797.03 5299.26 7699.75 48
131493.44 12491.98 14397.84 3095.24 19894.38 5096.22 27997.92 4790.18 11582.28 24797.71 13477.63 21499.80 6491.94 14098.67 10099.34 93
Regformer-396.50 4296.36 4196.91 7399.34 5391.72 9898.71 12997.90 4892.48 6196.00 8398.95 7088.60 6599.52 10096.44 6798.83 9299.49 83
Regformer-496.45 4596.33 4396.81 8099.34 5391.44 10598.71 12997.88 4992.43 6395.97 8598.95 7088.42 6999.51 10196.40 6898.83 9299.49 83
NCCC98.12 498.11 398.13 2099.76 694.46 4699.81 697.88 4996.54 598.84 1499.46 1192.55 2399.98 1098.25 3499.93 199.94 14
tfpnnormal83.65 28681.35 29290.56 25291.37 28888.06 18697.29 23797.87 5178.51 31476.20 30590.91 27764.78 29996.47 25161.71 34473.50 30587.13 339
3Dnovator87.35 1193.17 13591.77 14897.37 5195.41 19593.07 7698.82 12097.85 5291.53 8482.56 24197.58 14171.97 25499.82 6091.01 14899.23 7899.22 106
WR-MVS88.54 21887.22 22292.52 21391.93 28089.50 15998.56 15497.84 5386.99 20581.87 25993.81 22474.25 23695.92 28585.29 20974.43 29492.12 245
DELS-MVS97.12 2496.60 3598.68 898.03 11096.57 899.84 497.84 5396.36 895.20 10398.24 11888.17 7399.83 5796.11 7499.60 5299.64 67
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EI-MVSNet-Vis-set95.76 7195.63 7196.17 11199.14 7190.33 13598.49 16397.82 5591.92 7694.75 10998.88 7887.06 9799.48 10995.40 8997.17 12698.70 148
无先验98.52 15697.82 5587.20 20499.90 4087.64 18799.85 29
EPNet_dtu92.28 15092.15 13992.70 21097.29 13084.84 25998.64 14297.82 5592.91 5393.02 13697.02 16385.48 13295.70 29472.25 31494.89 15497.55 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HFP-MVS96.42 4696.26 4496.90 7499.69 990.96 12299.47 4297.81 5890.54 10596.88 6299.05 5487.57 8399.96 2795.65 8199.72 3099.78 38
#test#96.48 4396.34 4296.90 7499.69 990.96 12299.53 3897.81 5890.94 9896.88 6299.05 5487.57 8399.96 2795.87 7899.72 3099.78 38
EI-MVSNet-UG-set95.43 7495.29 7395.86 12399.07 7789.87 15198.43 16897.80 6091.78 7994.11 12098.77 8386.25 12099.48 10994.95 10096.45 13298.22 172
ACMMPR96.28 5196.14 5196.73 8599.68 1290.47 13499.47 4297.80 6090.54 10596.83 7099.03 5686.51 11399.95 3095.65 8199.72 3099.75 48
MAR-MVS94.43 10194.09 9695.45 13599.10 7587.47 19898.39 17797.79 6288.37 17394.02 12299.17 3778.64 20999.91 3892.48 13698.85 9198.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS97.86 797.25 1799.68 198.25 10299.10 199.76 1397.78 6396.61 498.15 3299.53 793.62 14100.00 191.79 14199.80 2399.94 14
API-MVS94.78 8994.18 9496.59 9399.21 6890.06 14798.80 12297.78 6383.59 26293.85 12599.21 3083.79 14899.97 2092.37 13799.00 8499.74 51
新几何197.40 4898.92 8492.51 9197.77 6585.52 22996.69 7499.06 5388.08 7699.89 4384.88 21599.62 4799.79 34
HPM-MVS++copyleft97.72 997.59 998.14 1999.53 4194.76 3999.19 7397.75 6695.66 1398.21 3099.29 2291.10 2899.99 597.68 4399.87 799.68 61
112195.19 8294.45 8797.42 4698.88 8692.58 8996.22 27997.75 6685.50 23196.86 6599.01 6188.59 6799.90 4087.64 18799.60 5299.79 34
testtj97.23 2097.05 2097.75 3599.75 793.34 6999.16 7897.74 6891.28 9198.40 2699.29 2289.95 4999.98 1098.20 3599.70 3599.94 14
GG-mvs-BLEND96.98 6896.53 15594.81 3887.20 34097.74 6893.91 12496.40 18396.56 296.94 23095.08 9598.95 8899.20 107
gg-mvs-nofinetune90.00 19287.71 21396.89 7996.15 17194.69 4385.15 34697.74 6868.32 34792.97 13760.16 35796.10 396.84 23293.89 11598.87 9099.14 110
旧先验198.97 8092.90 8397.74 6899.15 4191.05 2999.33 7099.60 73
IU-MVS99.63 2195.38 1997.73 7295.54 1599.54 199.69 499.81 1999.99 1
ETH3 D test640097.67 1097.33 1698.69 799.69 996.43 999.63 2697.73 7291.05 9498.66 1999.53 790.59 3899.71 7399.32 899.80 2399.91 18
SED-MVS98.18 298.10 498.41 1499.63 2195.24 2199.77 1097.72 7494.17 2499.30 499.54 393.32 1599.98 1099.70 299.81 1999.99 1
test_241102_TWO97.72 7494.17 2499.23 699.54 393.14 2099.98 1099.70 299.82 1599.99 1
test_241102_ONE99.63 2195.24 2197.72 7494.16 2699.30 499.49 1093.32 1599.98 10
DPE-MVScopyleft98.11 598.00 598.44 1399.50 4395.39 1899.29 6997.72 7494.50 2098.64 2099.54 393.32 1599.97 2099.58 799.90 599.95 11
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DeepPCF-MVS93.56 196.55 4197.84 892.68 21198.71 9278.11 32399.70 1897.71 7898.18 197.36 5599.76 190.37 4599.94 3399.27 999.54 5799.99 1
test072699.66 1595.20 2699.77 1097.70 7993.95 2999.35 399.54 393.18 18
MSP-MVS97.77 898.18 296.53 9799.54 3690.14 14099.41 5697.70 7995.46 1798.60 2199.19 3295.71 499.49 10498.15 3699.85 1199.95 11
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 599.66 1596.37 1199.72 1597.68 8199.98 1099.64 599.82 1599.96 8
test1197.68 81
TEST999.57 3393.17 7299.38 5997.66 8389.57 13598.39 2799.18 3590.88 3299.66 80
train_agg97.20 2297.08 1997.57 4299.57 3393.17 7299.38 5997.66 8390.18 11598.39 2799.18 3590.94 3099.66 8098.58 2299.85 1199.88 24
region2R96.30 5096.17 4796.70 8899.70 890.31 13699.46 4797.66 8390.55 10497.07 5999.07 5186.85 10199.97 2095.43 8899.74 2899.81 31
SteuartSystems-ACMMP97.25 1797.34 1597.01 6297.38 12791.46 10499.75 1497.66 8394.14 2898.13 3399.26 2492.16 2499.66 8097.91 4199.64 4399.90 20
Skip Steuart: Steuart Systems R&D Blog.
EPP-MVSNet93.75 11693.67 10994.01 18295.86 17885.70 24498.67 13897.66 8384.46 24891.36 15597.18 15691.16 2697.79 18792.93 13293.75 16298.53 155
SMA-MVScopyleft97.24 1896.99 2398.00 2799.30 6094.20 5399.16 7897.65 8889.55 13799.22 799.52 990.34 4699.99 598.32 3299.83 1399.82 30
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_899.55 3593.07 7699.37 6297.64 8990.18 11598.36 2999.19 3290.94 3099.64 86
agg_prior197.12 2497.03 2197.38 5099.54 3692.66 8499.35 6497.64 8990.38 10997.98 4199.17 3790.84 3499.61 8998.57 2399.78 2799.87 27
agg_prior99.54 3692.66 8497.64 8997.98 4199.61 89
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2099.61 2794.45 4798.85 11797.64 8996.51 795.88 8999.39 1987.35 9399.99 596.61 6299.69 3799.96 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.34 5393.85 5999.65 2497.63 9395.69 11
原ACMM196.18 10999.03 7890.08 14397.63 9388.98 15097.00 6098.97 6388.14 7599.71 7388.23 18099.62 4798.76 145
DU-MVS88.83 21187.51 21592.79 20691.46 28690.07 14498.71 12997.62 9588.87 15683.21 23193.68 22774.63 22595.93 28386.95 19372.47 31492.36 236
ZD-MVS99.67 1393.28 7097.61 9687.78 19097.41 5399.16 3990.15 4799.56 9398.35 2999.70 35
CP-MVS96.22 5296.15 5096.42 10299.67 1389.62 15899.70 1897.61 9690.07 12196.00 8399.16 3987.43 8799.92 3696.03 7699.72 3099.70 57
thisisatest053094.00 10893.52 11195.43 13695.76 18190.02 14998.99 10497.60 9886.58 21691.74 14697.36 14894.78 898.34 15786.37 19992.48 17797.94 180
tttt051793.30 13093.01 12294.17 17595.57 18886.47 22098.51 15997.60 9885.99 22490.55 16697.19 15594.80 798.31 15885.06 21291.86 18797.74 182
thisisatest051594.75 9094.19 9296.43 10196.13 17592.64 8899.47 4297.60 9887.55 19993.17 13297.59 14094.71 998.42 15688.28 17993.20 16698.24 171
testdata95.26 14298.20 10487.28 20497.60 9885.21 23498.48 2599.15 4188.15 7498.72 15190.29 15699.45 6299.78 38
ACMMP_NAP96.59 3996.18 4597.81 3298.82 8993.55 6498.88 11697.59 10290.66 10097.98 4199.14 4386.59 109100.00 196.47 6699.46 6099.89 23
CVMVSNet90.30 18490.91 16288.46 29794.32 23273.58 33797.61 22897.59 10290.16 11888.43 19097.10 15976.83 21892.86 33182.64 24293.54 16598.93 128
XVS96.47 4496.37 4096.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6598.96 6887.37 8999.87 4795.65 8199.43 6499.78 38
X-MVStestdata90.69 17988.66 19996.77 8199.62 2590.66 13199.43 5397.58 10492.41 6796.86 6529.59 36887.37 8999.87 4795.65 8199.43 6499.78 38
test22298.32 10191.21 10998.08 20397.58 10483.74 25895.87 9099.02 5786.74 10499.64 4399.81 31
test_prior397.07 2697.09 1897.01 6299.58 2991.77 9599.57 3197.57 10791.43 8798.12 3598.97 6390.43 4099.49 10498.33 3099.81 1999.79 34
test_prior97.01 6299.58 2991.77 9597.57 10799.49 10499.79 34
CP-MVSNet86.54 24885.45 24889.79 27291.02 29282.78 28697.38 23497.56 10985.37 23279.53 28693.03 24571.86 25695.25 30579.92 26273.43 30791.34 274
test1297.83 3199.33 5994.45 4797.55 11097.56 4888.60 6599.50 10399.71 3499.55 77
PAPR96.35 4795.82 6097.94 2999.63 2194.19 5499.42 5597.55 11092.43 6393.82 12799.12 4687.30 9499.91 3894.02 11399.06 8199.74 51
AdaColmapbinary93.82 11493.06 11996.10 11399.88 189.07 16498.33 18197.55 11086.81 21290.39 17198.65 9475.09 22399.98 1093.32 12797.53 12099.26 101
TESTMET0.1,193.82 11493.26 11695.49 13395.21 20090.25 13799.15 8497.54 11389.18 14491.79 14594.87 20789.13 5897.63 20086.21 20096.29 13898.60 153
hse-mvs291.67 16091.51 15392.15 22096.22 16582.61 28997.74 22297.53 11493.85 3696.27 8096.15 18883.19 16097.44 21395.81 7966.86 33596.40 213
AUN-MVS90.17 18889.50 18192.19 21896.21 16682.67 28797.76 22197.53 11488.05 18291.67 14796.15 18883.10 16397.47 21088.11 18266.91 33496.43 212
ZNCC-MVS96.09 5595.81 6296.95 7299.42 4991.19 11099.55 3497.53 11489.72 12895.86 9198.94 7586.59 10999.97 2095.13 9499.56 5599.68 61
ETH3D-3000-0.197.29 1697.01 2298.12 2299.18 6994.97 3099.47 4297.52 11789.85 12498.79 1699.46 1190.41 4499.69 7598.78 1599.67 3899.70 57
CANet97.00 2796.49 3798.55 998.86 8896.10 1399.83 597.52 11795.90 997.21 5698.90 7682.66 17199.93 3598.71 1698.80 9599.63 69
APDe-MVS97.53 1197.47 1097.70 3699.58 2993.63 6299.56 3397.52 11793.59 4398.01 4099.12 4690.80 3599.55 9499.26 1099.79 2599.93 17
MDTV_nov1_ep1390.47 17396.14 17288.55 17991.34 33197.51 12089.58 13492.24 14390.50 29786.99 10097.61 20377.64 27792.34 179
QAPM91.41 16589.49 18297.17 5895.66 18693.42 6898.60 14997.51 12080.92 30181.39 26697.41 14772.89 24799.87 4782.33 24598.68 9998.21 173
PAPM_NR95.43 7495.05 7996.57 9599.42 4990.14 14098.58 15397.51 12090.65 10292.44 14198.90 7687.77 8199.90 4090.88 15099.32 7199.68 61
TSAR-MVS + MP.97.44 1597.46 1197.39 4999.12 7293.49 6798.52 15697.50 12394.46 2198.99 1098.64 9591.58 2599.08 13998.49 2499.83 1399.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
alignmvs95.77 7095.00 8098.06 2597.35 12895.68 1699.71 1797.50 12391.50 8596.16 8298.61 9886.28 11999.00 14196.19 7291.74 19099.51 81
9.1496.87 2699.34 5399.50 4097.49 12589.41 14098.59 2299.43 1689.78 5199.69 7598.69 1799.62 47
GST-MVS95.97 6095.66 6796.90 7499.49 4591.22 10899.45 4997.48 12689.69 12995.89 8898.72 8986.37 11899.95 3094.62 10799.22 7999.52 79
DP-MVS Recon95.85 6695.15 7797.95 2899.87 294.38 5099.60 2897.48 12686.58 21694.42 11499.13 4587.36 9299.98 1093.64 12198.33 10899.48 85
DVP-MVS98.07 698.00 598.29 1599.66 1595.20 2699.72 1597.47 12893.95 2999.07 899.46 1193.18 1899.97 2099.64 599.82 1599.69 60
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CPTT-MVS94.60 9894.43 8895.09 14599.66 1586.85 21499.44 5097.47 12883.22 26794.34 11798.96 6882.50 17299.55 9494.81 10199.50 5898.88 131
SF-MVS97.22 2196.92 2498.12 2299.11 7394.88 3299.44 5097.45 13089.60 13398.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
zzz-MVS96.21 5395.96 5596.96 7099.29 6191.19 11098.69 13497.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
MTGPAbinary97.45 130
MTAPA96.09 5595.80 6496.96 7099.29 6191.19 11097.23 24297.45 13092.58 5794.39 11599.24 2786.43 11599.99 596.22 7099.40 6899.71 55
CDPH-MVS96.56 4096.18 4597.70 3699.59 2893.92 5799.13 9097.44 13489.02 14997.90 4599.22 2988.90 6299.49 10494.63 10699.79 2599.68 61
APD-MVScopyleft96.95 2996.72 3297.63 3899.51 4293.58 6399.16 7897.44 13490.08 12098.59 2299.07 5189.06 5999.42 11597.92 4099.66 3999.88 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10697.14 13591.10 11699.32 6897.43 13692.10 7591.53 15296.38 18683.29 15799.68 7893.42 12696.37 13498.25 170
NR-MVSNet87.74 23186.00 23992.96 20291.46 28690.68 13096.65 26597.42 13788.02 18473.42 32293.68 22777.31 21595.83 29084.26 22271.82 32192.36 236
MP-MVScopyleft96.00 5795.82 6096.54 9699.47 4690.13 14299.36 6397.41 13890.64 10395.49 9898.95 7085.51 12999.98 1096.00 7799.59 5499.52 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6495.75 6596.38 10499.58 2989.41 16299.26 7097.41 13890.66 10094.82 10898.95 7086.15 12199.98 1095.24 9399.64 4399.74 51
OpenMVScopyleft85.28 1490.75 17788.84 19496.48 9893.58 25393.51 6698.80 12297.41 13882.59 27878.62 29497.49 14468.00 28099.82 6084.52 22098.55 10496.11 216
ETH3D cwj APD-0.1696.94 3196.58 3698.01 2698.62 9594.73 4199.13 9097.38 14188.44 17098.53 2499.39 1989.66 5599.69 7598.43 2799.61 5199.61 72
SD-MVS97.51 1297.40 1497.81 3299.01 7993.79 6199.33 6797.38 14193.73 4098.83 1599.02 5790.87 3399.88 4498.69 1799.74 2899.77 44
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DWT-MVSNet_test94.36 10293.95 10395.62 12996.99 14389.47 16096.62 26697.38 14190.96 9793.07 13597.27 14993.73 1398.09 16885.86 20793.65 16499.29 97
tpmvs89.16 20187.76 21193.35 19597.19 13384.75 26190.58 33897.36 14481.99 28884.56 21989.31 31583.98 14798.17 16374.85 29890.00 20797.12 197
PS-CasMVS85.81 26084.58 26289.49 28290.77 29482.11 29297.20 24497.36 14484.83 24479.12 29192.84 24867.42 28595.16 30778.39 27473.25 30891.21 279
SR-MVS96.13 5496.16 4996.07 11499.42 4989.04 16598.59 15197.33 14690.44 10796.84 6899.12 4686.75 10399.41 11797.47 4599.44 6399.76 47
PatchmatchNetpermissive92.05 15591.04 15995.06 14796.17 17089.04 16591.26 33297.26 14789.56 13690.64 16590.56 29388.35 7197.11 22279.53 26396.07 14399.03 117
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test-LLR93.11 13692.68 12794.40 16794.94 21987.27 20599.15 8497.25 14890.21 11391.57 14994.04 21584.89 13897.58 20485.94 20496.13 13998.36 166
test-mter93.27 13292.89 12494.40 16794.94 21987.27 20599.15 8497.25 14888.95 15291.57 14994.04 21588.03 7797.58 20485.94 20496.13 13998.36 166
test117295.92 6396.07 5295.46 13499.42 4987.24 20998.51 15997.24 15090.29 11296.56 7899.12 4686.73 10599.36 12197.33 4899.42 6799.78 38
PEN-MVS85.21 26883.93 27089.07 28989.89 30381.31 30097.09 24797.24 15084.45 24978.66 29392.68 25068.44 27694.87 31275.98 29070.92 32591.04 283
ab-mvs91.05 17189.17 18896.69 8995.96 17691.72 9892.62 32397.23 15285.61 22889.74 17993.89 22368.55 27499.42 11591.09 14687.84 21398.92 129
APD-MVS_3200maxsize95.64 7395.65 6995.62 12999.24 6587.80 19098.42 16997.22 15388.93 15496.64 7798.98 6285.49 13099.36 12196.68 5999.27 7599.70 57
SR-MVS-dyc-post95.75 7295.86 5995.41 13799.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6386.73 10599.36 12196.62 6099.31 7299.60 73
RE-MVS-def95.70 6699.22 6687.26 20798.40 17497.21 15489.63 13196.67 7598.97 6385.24 13596.62 6099.31 7299.60 73
SCA90.64 18089.25 18794.83 15394.95 21888.83 17296.26 27697.21 15490.06 12290.03 17590.62 28966.61 29096.81 23483.16 23694.36 15898.84 134
RPMNet85.07 26981.88 28694.64 16093.47 25586.24 22784.97 34897.21 15464.85 35390.76 16378.80 35180.95 19299.27 12953.76 35492.17 18498.41 160
VPNet88.30 22186.57 23093.49 19391.95 27891.35 10698.18 19397.20 15888.61 16084.52 22194.89 20662.21 30896.76 23789.34 16872.26 31792.36 236
TranMVSNet+NR-MVSNet87.75 22986.31 23492.07 22290.81 29388.56 17898.33 18197.18 15987.76 19181.87 25993.90 22272.45 24995.43 30083.13 23871.30 32492.23 241
cdsmvs_eth3d_5k22.52 33530.03 3380.00 3520.00 3730.00 3740.00 36497.17 1600.00 3690.00 37098.77 8374.35 2330.00 3700.00 3680.00 3680.00 366
tpm291.77 15891.09 15793.82 18894.83 22385.56 24792.51 32497.16 16184.00 25493.83 12690.66 28687.54 8597.17 22087.73 18691.55 19498.72 146
MP-MVS-pluss95.80 6895.30 7297.29 5298.95 8392.66 8498.59 15197.14 16288.95 15293.12 13399.25 2585.62 12699.94 3396.56 6499.48 5999.28 99
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PatchMatch-RL91.47 16390.54 17194.26 17298.20 10486.36 22596.94 25297.14 16287.75 19288.98 18595.75 19571.80 25799.40 11880.92 25697.39 12397.02 203
Anonymous2024052987.66 23285.58 24593.92 18497.59 12285.01 25798.13 19697.13 16466.69 35188.47 18996.01 19355.09 33199.51 10187.00 19284.12 23697.23 196
JIA-IIPM85.97 25684.85 25689.33 28493.23 26273.68 33685.05 34797.13 16469.62 34391.56 15168.03 35588.03 7796.96 22877.89 27693.12 16797.34 192
PS-MVSNAJ96.87 3396.40 3998.29 1597.35 12897.29 399.03 9997.11 16695.83 1098.97 1199.14 4382.48 17499.60 9198.60 1999.08 8098.00 178
HPM-MVS_fast94.89 8694.62 8395.70 12899.11 7388.44 18299.14 8797.11 16685.82 22695.69 9598.47 10983.46 15399.32 12793.16 12999.63 4699.35 91
DeepC-MVS91.02 494.56 10093.92 10596.46 9997.16 13490.76 12798.39 17797.11 16693.92 3188.66 18798.33 11478.14 21199.85 5495.02 9798.57 10398.78 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tpmrst92.78 13992.16 13894.65 15996.27 16387.45 19991.83 32797.10 16989.10 14794.68 11190.69 28488.22 7297.73 19689.78 16191.80 18998.77 144
HPM-MVScopyleft95.41 7695.22 7695.99 11799.29 6189.14 16399.17 7797.09 17087.28 20395.40 9998.48 10884.93 13799.38 11995.64 8599.65 4099.47 86
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm cat188.89 20787.27 22093.76 18995.79 17985.32 25190.76 33697.09 17076.14 32585.72 21188.59 31882.92 16598.04 17476.96 28191.43 19597.90 181
dp90.16 18988.83 19594.14 17696.38 16086.42 22191.57 32997.06 17284.76 24588.81 18690.19 30584.29 14497.43 21475.05 29591.35 19898.56 154
xiu_mvs_v2_base96.66 3796.17 4798.11 2497.11 13896.96 499.01 10297.04 17395.51 1698.86 1399.11 5082.19 18099.36 12198.59 2198.14 10998.00 178
3Dnovator+87.72 893.43 12591.84 14698.17 1895.73 18295.08 2998.92 11197.04 17391.42 8981.48 26597.60 13974.60 22799.79 6590.84 15198.97 8599.64 67
CDS-MVSNet93.47 12393.04 12194.76 15494.75 22589.45 16198.82 12097.03 17587.91 18790.97 16096.48 18189.06 5996.36 25889.50 16392.81 17298.49 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test0.0.03 188.96 20588.61 20090.03 26791.09 29084.43 26498.97 10697.02 17690.21 11380.29 27596.31 18784.89 13891.93 34572.98 31185.70 22793.73 224
114514_t94.06 10693.05 12097.06 6099.08 7692.26 9398.97 10697.01 17782.58 27992.57 13998.22 11980.68 19399.30 12889.34 16899.02 8399.63 69
CostFormer92.89 13892.48 13294.12 17794.99 21685.89 23992.89 31997.00 17886.98 20795.00 10790.78 28090.05 4897.51 20992.92 13391.73 19198.96 123
ET-MVSNet_ETH3D92.56 14691.45 15495.88 12296.39 15994.13 5599.46 4796.97 17992.18 7266.94 34498.29 11794.65 1194.28 32294.34 11183.82 24099.24 103
UA-Net93.30 13092.62 12995.34 13996.27 16388.53 18195.88 28996.97 17990.90 9995.37 10097.07 16182.38 17799.10 13883.91 23094.86 15598.38 163
abl_694.63 9794.48 8695.09 14598.61 9686.96 21298.06 20596.97 17989.31 14195.86 9198.56 10079.82 19699.64 8694.53 10998.65 10198.66 152
TAMVS92.62 14392.09 14194.20 17494.10 23687.68 19298.41 17196.97 17987.53 20089.74 17996.04 19284.77 14196.49 25088.97 17592.31 18098.42 159
Vis-MVSNetpermissive92.64 14291.85 14595.03 14995.12 20788.23 18398.48 16496.81 18391.61 8192.16 14497.22 15371.58 26098.00 17785.85 20897.81 11298.88 131
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMMVS93.62 12293.90 10692.79 20696.79 14881.40 29798.85 11796.81 18391.25 9296.82 7198.15 12377.02 21798.13 16593.15 13096.30 13798.83 137
ADS-MVSNet88.99 20487.30 21994.07 17896.21 16687.56 19687.15 34196.78 18583.01 27089.91 17787.27 32778.87 20597.01 22774.20 30292.27 18197.64 184
Vis-MVSNet (Re-imp)93.26 13393.00 12394.06 17996.14 17286.71 21798.68 13696.70 18688.30 17589.71 18197.64 13885.43 13396.39 25688.06 18396.32 13599.08 115
Anonymous2023121184.72 27282.65 28390.91 24397.71 11684.55 26397.28 23896.67 18766.88 35079.18 29090.87 27958.47 31896.60 24282.61 24374.20 29891.59 264
EIA-MVS95.11 8395.27 7594.64 16096.34 16186.51 21899.59 2996.62 18892.51 5994.08 12198.64 9586.05 12298.24 16295.07 9698.50 10599.18 108
ETV-MVS96.00 5796.00 5496.00 11696.56 15491.05 11999.63 2696.61 18993.26 4897.39 5498.30 11686.62 10898.13 16598.07 3797.57 11798.82 138
LS3D90.19 18788.72 19794.59 16298.97 8086.33 22696.90 25496.60 19074.96 32884.06 22598.74 8675.78 22099.83 5774.93 29697.57 11797.62 187
EI-MVSNet89.87 19489.38 18591.36 23594.32 23285.87 24097.61 22896.59 19185.10 23685.51 21397.10 15981.30 19196.56 24483.85 23283.03 24691.64 257
MVSTER92.71 14092.32 13393.86 18697.29 13092.95 8299.01 10296.59 19190.09 11985.51 21394.00 21994.61 1296.56 24490.77 15383.03 24692.08 247
cascas90.93 17489.33 18695.76 12695.69 18493.03 7898.99 10496.59 19180.49 30386.79 20794.45 21265.23 29898.60 15593.52 12392.18 18395.66 219
TAPA-MVS87.50 990.35 18289.05 19094.25 17398.48 10085.17 25498.42 16996.58 19482.44 28387.24 19998.53 10182.77 16898.84 14459.09 34997.88 11198.72 146
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS93.90 11293.62 11094.73 15798.63 9487.00 21198.04 20696.56 19592.19 7192.46 14098.73 8779.49 20199.14 13692.16 13994.34 15998.03 177
test_part188.43 21986.68 22993.67 19297.56 12492.40 9298.12 19896.55 19682.26 28580.31 27493.16 24274.59 22996.62 24185.00 21472.61 31291.99 251
PLCcopyleft91.07 394.23 10594.01 9894.87 15199.17 7087.49 19799.25 7196.55 19688.43 17191.26 15698.21 12185.92 12399.86 5289.77 16297.57 11797.24 195
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TSAR-MVS + GP.96.95 2996.91 2597.07 5998.88 8691.62 10099.58 3096.54 19895.09 1896.84 6898.63 9791.16 2699.77 6799.04 1296.42 13399.81 31
cl-mvsnet289.57 19888.79 19691.91 22397.94 11287.62 19497.98 20896.51 19985.03 23982.37 24691.79 26183.65 14996.50 24885.96 20377.89 27191.61 262
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6595.19 20195.24 2198.62 14596.50 20092.99 5097.52 4998.83 8072.37 25099.15 13397.03 5296.74 12896.58 208
lupinMVS96.32 4995.94 5697.44 4595.05 21494.87 3399.86 296.50 20093.82 3898.04 3898.77 8385.52 12798.09 16896.98 5698.97 8599.37 90
mvs_anonymous92.50 14791.65 15095.06 14796.60 15389.64 15797.06 24896.44 20486.64 21584.14 22393.93 22182.49 17396.17 27391.47 14296.08 14299.35 91
VDDNet90.08 19188.54 20494.69 15894.41 23187.68 19298.21 19196.40 20576.21 32493.33 13197.75 13154.93 33298.77 14694.71 10590.96 19997.61 188
RRT_test8_iter0591.04 17290.40 17492.95 20396.20 16989.75 15598.97 10696.38 20688.52 16382.00 25593.51 23490.69 3696.73 23890.43 15576.91 27992.38 235
HQP3-MVS96.37 20786.29 219
PatchT85.44 26683.19 27392.22 21693.13 26483.00 27983.80 35496.37 20770.62 33890.55 16679.63 35084.81 14094.87 31258.18 35191.59 19398.79 141
HQP-MVS91.50 16291.23 15692.29 21593.95 24086.39 22399.16 7896.37 20793.92 3187.57 19496.67 17773.34 24197.77 18993.82 11986.29 21992.72 229
UnsupCasMVSNet_eth78.90 30876.67 31285.58 31682.81 34974.94 33191.98 32696.31 21084.64 24665.84 34887.71 32151.33 34192.23 34172.89 31256.50 35189.56 318
HQP_MVS91.26 16690.95 16192.16 21993.84 24786.07 23599.02 10096.30 21193.38 4686.99 20196.52 17972.92 24597.75 19493.46 12486.17 22292.67 231
plane_prior596.30 21197.75 19493.46 12486.17 22292.67 231
jason95.40 7794.86 8197.03 6192.91 26794.23 5299.70 1896.30 21193.56 4496.73 7398.52 10381.46 18997.91 17896.08 7598.47 10698.96 123
jason: jason.
CLD-MVS91.06 17090.71 16892.10 22194.05 23986.10 23399.55 3496.29 21494.16 2684.70 21897.17 15769.62 26997.82 18594.74 10386.08 22492.39 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS90.10 19088.69 19894.33 16992.44 27187.97 18999.08 9396.26 21589.65 13086.92 20393.11 24468.09 27896.96 22882.54 24490.15 20698.05 176
DTE-MVSNet84.14 28282.80 27788.14 29888.95 31679.87 31296.81 25796.24 21683.50 26377.60 30292.52 25267.89 28294.24 32372.64 31369.05 32890.32 303
RRT_MVS91.95 15691.09 15794.53 16396.71 15295.12 2898.64 14296.23 21789.04 14885.24 21595.06 20487.71 8296.43 25489.10 17482.06 25392.05 249
LFMVS92.23 15290.84 16496.42 10298.24 10391.08 11898.24 18896.22 21883.39 26594.74 11098.31 11561.12 31398.85 14394.45 11092.82 17099.32 94
baseline192.61 14491.28 15596.58 9497.05 14194.63 4497.72 22396.20 21989.82 12588.56 18896.85 17186.85 10197.82 18588.42 17780.10 26197.30 193
FMVSNet388.81 21387.08 22393.99 18396.52 15694.59 4598.08 20396.20 21985.85 22582.12 25091.60 26574.05 23795.40 30279.04 26780.24 25891.99 251
canonicalmvs95.02 8593.96 10298.20 1797.53 12595.92 1498.71 12996.19 22191.78 7995.86 9198.49 10779.53 20099.03 14096.12 7391.42 19699.66 65
MVSFormer94.71 9494.08 9796.61 9295.05 21494.87 3397.77 21996.17 22286.84 21098.04 3898.52 10385.52 12795.99 27989.83 15998.97 8598.96 123
test_djsdf88.26 22387.73 21289.84 27088.05 32682.21 29197.77 21996.17 22286.84 21082.41 24591.95 26072.07 25395.99 27989.83 15984.50 23391.32 275
MS-PatchMatch86.75 24385.92 24089.22 28591.97 27782.47 29096.91 25396.14 22483.74 25877.73 30193.53 23358.19 31997.37 21876.75 28498.35 10787.84 331
CS-MVS-test95.99 5996.01 5395.93 12195.70 18390.90 12599.86 296.13 22592.45 6298.17 3198.53 10186.43 11597.62 20297.94 3998.88 8999.26 101
CS-MVS95.86 6595.81 6295.98 11895.62 18791.26 10799.80 896.12 22692.15 7497.93 4498.45 11285.88 12597.55 20897.56 4498.80 9599.14 110
VDD-MVS91.24 16990.18 17594.45 16697.08 13985.84 24298.40 17496.10 22786.99 20593.36 13098.16 12254.27 33499.20 13096.59 6390.63 20498.31 169
PCF-MVS89.78 591.26 16689.63 17996.16 11295.44 19491.58 10395.29 29896.10 22785.07 23882.75 23797.45 14578.28 21099.78 6680.60 25995.65 15097.12 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_Test93.67 12092.67 12896.69 8996.72 15092.66 8497.22 24396.03 22987.69 19695.12 10594.03 21781.55 18698.28 16189.17 17296.46 13199.14 110
jajsoiax87.35 23586.51 23289.87 26887.75 33181.74 29497.03 24995.98 23088.47 16480.15 27793.80 22561.47 31096.36 25889.44 16684.47 23491.50 266
PS-MVSNAJss89.54 19989.05 19091.00 24188.77 31784.36 26597.39 23295.97 23188.47 16481.88 25893.80 22582.48 17496.50 24889.34 16883.34 24592.15 244
F-COLMAP92.07 15491.75 14993.02 20198.16 10782.89 28398.79 12695.97 23186.54 21887.92 19297.80 12878.69 20899.65 8485.97 20295.93 14596.53 211
miper_enhance_ethall90.33 18389.70 17892.22 21697.12 13788.93 17098.35 18095.96 23388.60 16183.14 23592.33 25387.38 8896.18 27286.49 19877.89 27191.55 265
TR-MVS90.77 17689.44 18394.76 15496.31 16288.02 18897.92 21095.96 23385.52 22988.22 19197.23 15266.80 28998.09 16884.58 21992.38 17898.17 175
DROMVSNet95.24 8195.28 7495.12 14395.48 19388.95 16999.55 3495.95 23591.59 8397.46 5298.38 11383.18 16297.42 21597.32 4998.58 10298.97 122
CMPMVSbinary58.40 2180.48 30080.11 30081.59 33385.10 34159.56 35694.14 30995.95 23568.54 34660.71 35293.31 23655.35 33097.87 18283.06 23984.85 23187.33 336
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LPG-MVS_test88.86 20888.47 20590.06 26493.35 26080.95 30698.22 18995.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
LGP-MVS_train90.06 26493.35 26080.95 30695.94 23787.73 19483.17 23396.11 19066.28 29397.77 18990.19 15785.19 22891.46 268
OPM-MVS89.76 19589.15 18991.57 23290.53 29685.58 24698.11 20095.93 23992.88 5586.05 20996.47 18267.06 28897.87 18289.29 17186.08 22491.26 278
XVG-OURS-SEG-HR90.95 17390.66 17091.83 22595.18 20481.14 30495.92 28695.92 24088.40 17290.33 17297.85 12570.66 26599.38 11992.83 13488.83 21094.98 220
XVG-OURS90.83 17590.49 17291.86 22495.23 19981.25 30195.79 29495.92 24088.96 15190.02 17698.03 12471.60 25999.35 12591.06 14787.78 21494.98 220
tpm89.67 19688.95 19291.82 22692.54 27081.43 29692.95 31895.92 24087.81 18990.50 16889.44 31284.99 13695.65 29583.67 23382.71 24998.38 163
ACMM86.95 1388.77 21488.22 20890.43 25593.61 25281.34 29998.50 16195.92 24087.88 18883.85 22795.20 20367.20 28697.89 18086.90 19584.90 23092.06 248
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline93.91 11193.30 11495.72 12795.10 21190.07 14497.48 23195.91 24491.03 9593.54 12997.68 13579.58 19898.02 17594.27 11295.14 15299.08 115
mvs_tets87.09 23886.22 23589.71 27387.87 32781.39 29896.73 26395.90 24588.19 17979.99 27993.61 23059.96 31696.31 26689.40 16784.34 23591.43 270
XXY-MVS87.75 22986.02 23892.95 20390.46 29789.70 15697.71 22595.90 24584.02 25380.95 26794.05 21467.51 28497.10 22485.16 21078.41 26892.04 250
nrg03090.23 18588.87 19394.32 17091.53 28593.54 6598.79 12695.89 24788.12 18184.55 22094.61 21178.80 20796.88 23192.35 13875.21 28592.53 233
CNLPA93.64 12192.74 12696.36 10598.96 8290.01 15099.19 7395.89 24786.22 22289.40 18298.85 7980.66 19499.84 5588.57 17696.92 12799.24 103
KD-MVS_2432*160082.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
miper_refine_blended82.98 28980.52 29790.38 25794.32 23288.98 16792.87 32095.87 24980.46 30473.79 32087.49 32482.76 16993.29 32870.56 31946.53 35788.87 326
FMVSNet286.90 24084.79 25893.24 19795.11 20892.54 9097.67 22695.86 25182.94 27280.55 27191.17 27462.89 30595.29 30477.23 27879.71 26491.90 253
casdiffmvs93.98 10993.43 11295.61 13195.07 21389.86 15298.80 12295.84 25290.98 9692.74 13897.66 13779.71 19798.10 16794.72 10495.37 15198.87 133
UniMVSNet_ETH3D85.65 26583.79 27191.21 23690.41 29880.75 30895.36 29795.78 25378.76 31381.83 26294.33 21349.86 34596.66 23984.30 22183.52 24396.22 215
Effi-MVS+93.87 11393.15 11896.02 11595.79 17990.76 12796.70 26495.78 25386.98 20795.71 9497.17 15779.58 19898.01 17694.57 10896.09 14199.31 95
EU-MVSNet84.19 28184.42 26583.52 32688.64 32067.37 35296.04 28595.76 25585.29 23378.44 29793.18 24070.67 26491.48 34775.79 29275.98 28191.70 256
BH-w/o92.32 14991.79 14793.91 18596.85 14586.18 23099.11 9295.74 25688.13 18084.81 21797.00 16477.26 21697.91 17889.16 17398.03 11097.64 184
anonymousdsp86.69 24485.75 24389.53 27986.46 33782.94 28096.39 27095.71 25783.97 25579.63 28490.70 28368.85 27295.94 28286.01 20184.02 23789.72 315
Fast-Effi-MVS+91.72 15990.79 16794.49 16495.89 17787.40 20199.54 3795.70 25885.01 24189.28 18495.68 19677.75 21397.57 20783.22 23595.06 15398.51 156
IS-MVSNet93.00 13792.51 13194.49 16496.14 17287.36 20298.31 18495.70 25888.58 16290.17 17397.50 14383.02 16497.22 21987.06 19096.07 14398.90 130
diffmvs94.59 9994.19 9295.81 12495.54 19090.69 12998.70 13395.68 26091.61 8195.96 8697.81 12780.11 19598.06 17296.52 6595.76 14798.67 149
v7n84.42 27982.75 28089.43 28388.15 32481.86 29396.75 26195.67 26180.53 30278.38 29889.43 31369.89 26696.35 26373.83 30672.13 31890.07 308
ACMP87.39 1088.71 21688.24 20790.12 26393.91 24581.06 30598.50 16195.67 26189.43 13980.37 27395.55 19765.67 29597.83 18490.55 15484.51 23291.47 267
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CL-MVSNet_2432*160079.89 30478.34 30484.54 32281.56 35175.01 33096.88 25595.62 26381.10 29775.86 31085.81 33768.49 27590.26 34963.21 34056.51 35088.35 328
bset_n11_16_dypcd89.07 20387.85 21092.76 20886.16 33990.66 13197.30 23695.62 26389.78 12783.94 22693.15 24374.85 22495.89 28891.34 14478.48 26791.74 255
V4287.00 23985.68 24490.98 24289.91 30186.08 23498.32 18395.61 26583.67 26182.72 23890.67 28574.00 23896.53 24681.94 25074.28 29790.32 303
XVG-ACMP-BASELINE85.86 25884.95 25488.57 29489.90 30277.12 32694.30 30695.60 26687.40 20282.12 25092.99 24753.42 33797.66 19885.02 21383.83 23890.92 286
Anonymous20240521188.84 20987.03 22494.27 17198.14 10884.18 26798.44 16795.58 26776.79 32389.34 18396.88 17053.42 33799.54 9687.53 18987.12 21799.09 114
miper_ehance_all_eth88.94 20688.12 20991.40 23395.32 19786.93 21397.85 21595.55 26884.19 25181.97 25691.50 26784.16 14595.91 28684.69 21777.89 27191.36 273
CANet_DTU94.31 10493.35 11397.20 5797.03 14294.71 4298.62 14595.54 26995.61 1497.21 5698.47 10971.88 25599.84 5588.38 17897.46 12297.04 202
v2v48287.27 23785.76 24291.78 23189.59 30687.58 19598.56 15495.54 26984.53 24782.51 24291.78 26273.11 24496.47 25182.07 24774.14 30091.30 276
BH-untuned91.46 16490.84 16493.33 19696.51 15784.83 26098.84 11995.50 27186.44 22183.50 22896.70 17675.49 22297.77 18986.78 19797.81 11297.40 190
v14886.38 25185.06 25190.37 25989.47 31184.10 26898.52 15695.48 27283.80 25780.93 26890.22 30374.60 22796.31 26680.92 25671.55 32290.69 296
IterMVS-LS88.34 22087.44 21691.04 24094.10 23685.85 24198.10 20195.48 27285.12 23582.03 25491.21 27381.35 19095.63 29683.86 23175.73 28391.63 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xxxxxxxxxxxxxcwj97.51 1297.42 1397.78 3499.34 5393.85 5999.65 2495.45 27495.69 1198.70 1799.42 1790.42 4299.72 7198.47 2599.65 4099.77 44
v114486.83 24285.31 24991.40 23389.75 30487.21 21098.31 18495.45 27483.22 26782.70 23990.78 28073.36 24096.36 25879.49 26474.69 29190.63 298
v119286.32 25284.71 25991.17 23789.53 30986.40 22298.13 19695.44 27682.52 28182.42 24490.62 28971.58 26096.33 26577.23 27874.88 28890.79 290
v14419286.40 25084.89 25590.91 24389.48 31085.59 24598.21 19195.43 27782.45 28282.62 24090.58 29272.79 24896.36 25878.45 27374.04 30190.79 290
Effi-MVS+-dtu89.97 19390.68 16987.81 30195.15 20571.98 34397.87 21495.40 27891.92 7687.57 19491.44 26874.27 23496.84 23289.45 16493.10 16894.60 222
mvs-test191.57 16192.20 13789.70 27495.15 20574.34 33399.51 3995.40 27891.92 7691.02 15997.25 15074.27 23498.08 17189.45 16495.83 14696.67 205
cl_fuxian88.19 22487.23 22191.06 23994.97 21786.17 23197.72 22395.38 28083.43 26481.68 26391.37 26982.81 16795.72 29384.04 22973.70 30291.29 277
eth_miper_zixun_eth87.76 22887.00 22590.06 26494.67 22782.65 28897.02 25195.37 28184.19 25181.86 26191.58 26681.47 18895.90 28783.24 23473.61 30391.61 262
v886.11 25484.45 26391.10 23889.99 30086.85 21497.24 24195.36 28281.99 28879.89 28189.86 30874.53 23096.39 25678.83 27172.32 31690.05 310
v192192086.02 25584.44 26490.77 24889.32 31285.20 25298.10 20195.35 28382.19 28682.25 24890.71 28270.73 26396.30 26976.85 28374.49 29390.80 289
pmmvs487.58 23486.17 23791.80 22789.58 30788.92 17197.25 24095.28 28482.54 28080.49 27293.17 24175.62 22196.05 27882.75 24178.90 26590.42 301
GBi-Net86.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
test186.67 24584.96 25291.80 22795.11 20888.81 17396.77 25895.25 28582.94 27282.12 25090.25 30062.89 30594.97 30979.04 26780.24 25891.62 259
FMVSNet183.94 28581.32 29391.80 22791.94 27988.81 17396.77 25895.25 28577.98 31578.25 29990.25 30050.37 34494.97 30973.27 30977.81 27591.62 259
cl-mvsnet____87.82 22686.79 22890.89 24594.88 22185.43 24897.81 21695.24 28882.91 27680.71 27091.22 27281.97 18395.84 28981.34 25375.06 28691.40 272
miper_lstm_enhance86.90 24086.20 23689.00 29094.53 22981.19 30296.74 26295.24 28882.33 28480.15 27790.51 29681.99 18194.68 31880.71 25873.58 30491.12 281
UnsupCasMVSNet_bld73.85 32170.14 32484.99 31879.44 35575.73 32888.53 33995.24 28870.12 34261.94 35174.81 35241.41 35593.62 32568.65 32551.13 35685.62 345
v124085.77 26284.11 26790.73 24989.26 31385.15 25597.88 21395.23 29181.89 29182.16 24990.55 29469.60 27096.31 26675.59 29374.87 28990.72 295
cl-mvsnet187.82 22686.81 22790.87 24694.87 22285.39 25097.81 21695.22 29282.92 27580.76 26991.31 27181.99 18195.81 29181.36 25275.04 28791.42 271
v1085.73 26384.01 26990.87 24690.03 29986.73 21697.20 24495.22 29281.25 29679.85 28289.75 30973.30 24396.28 27076.87 28272.64 31189.61 317
BH-RMVSNet91.25 16889.99 17695.03 14996.75 14988.55 17998.65 14094.95 29487.74 19387.74 19397.80 12868.27 27798.14 16480.53 26097.49 12198.41 160
GeoE90.60 18189.56 18093.72 19195.10 21185.43 24899.41 5694.94 29583.96 25687.21 20096.83 17274.37 23297.05 22680.50 26193.73 16398.67 149
ACMH83.09 1784.60 27482.61 28490.57 25193.18 26382.94 28096.27 27494.92 29681.01 29972.61 33093.61 23056.54 32397.79 18774.31 30181.07 25790.99 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS85.81 26084.67 26089.22 28593.51 25483.67 27396.32 27394.80 29785.09 23778.69 29290.17 30666.57 29293.17 33079.48 26577.42 27790.81 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB81.71 1984.59 27582.72 28190.18 26192.89 26883.18 27893.15 31794.74 29878.99 31075.14 31592.69 24965.64 29697.63 20069.46 32281.82 25589.74 314
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs184.68 27382.78 27990.40 25689.58 30785.18 25397.31 23594.73 29981.93 29076.05 30792.01 25765.48 29796.11 27678.75 27269.14 32789.91 313
IterMVS-SCA-FT85.73 26384.64 26189.00 29093.46 25782.90 28296.27 27494.70 30085.02 24078.62 29490.35 29866.61 29093.33 32779.38 26677.36 27890.76 292
1112_ss92.71 14091.55 15296.20 10895.56 18991.12 11498.48 16494.69 30188.29 17686.89 20498.50 10587.02 9898.66 15384.75 21689.77 20898.81 139
Test_1112_low_res92.27 15190.97 16096.18 10995.53 19191.10 11698.47 16694.66 30288.28 17786.83 20693.50 23587.00 9998.65 15484.69 21789.74 20998.80 140
Fast-Effi-MVS+-dtu88.84 20988.59 20289.58 27893.44 25878.18 32198.65 14094.62 30388.46 16684.12 22495.37 20268.91 27196.52 24782.06 24891.70 19294.06 223
our_test_384.47 27882.80 27789.50 28089.01 31483.90 27197.03 24994.56 30481.33 29575.36 31490.52 29571.69 25894.54 32068.81 32476.84 28090.07 308
ppachtmachnet_test83.63 28781.57 29089.80 27189.01 31485.09 25697.13 24694.50 30578.84 31176.14 30691.00 27669.78 26794.61 31963.40 33974.36 29589.71 316
YYNet179.64 30677.04 31087.43 30587.80 32979.98 31196.23 27894.44 30673.83 33351.83 35487.53 32367.96 28192.07 34466.00 33467.75 33390.23 305
MDA-MVSNet_test_wron79.65 30577.05 30987.45 30487.79 33080.13 31096.25 27794.44 30673.87 33251.80 35587.47 32668.04 27992.12 34366.02 33367.79 33290.09 306
MIMVSNet84.48 27781.83 28792.42 21491.73 28387.36 20285.52 34494.42 30881.40 29481.91 25787.58 32251.92 34092.81 33373.84 30588.15 21297.08 201
MVP-Stereo86.61 24785.83 24188.93 29288.70 31983.85 27296.07 28494.41 30982.15 28775.64 31291.96 25967.65 28396.45 25377.20 28098.72 9886.51 342
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG88.29 22286.37 23394.04 18196.90 14486.15 23296.52 26894.36 31077.89 31979.22 28996.95 16669.72 26899.59 9273.20 31092.58 17696.37 214
ACMH+83.78 1584.21 28082.56 28589.15 28793.73 25179.16 31396.43 26994.28 31181.09 29874.00 31994.03 21754.58 33397.67 19776.10 28978.81 26690.63 298
Patchmatch-test86.25 25384.06 26892.82 20594.42 23082.88 28482.88 35594.23 31271.58 33679.39 28790.62 28989.00 6196.42 25563.03 34191.37 19799.16 109
CR-MVSNet88.83 21187.38 21893.16 19993.47 25586.24 22784.97 34894.20 31388.92 15590.76 16386.88 33184.43 14294.82 31470.64 31892.17 18498.41 160
Patchmtry83.61 28881.64 28889.50 28093.36 25982.84 28584.10 35194.20 31369.47 34479.57 28586.88 33184.43 14294.78 31568.48 32674.30 29690.88 287
EG-PatchMatch MVS79.92 30277.59 30686.90 30887.06 33577.90 32596.20 28294.06 31574.61 32966.53 34688.76 31740.40 35896.20 27167.02 33083.66 24186.61 340
DIV-MVS_2432*160077.47 31675.88 31582.24 32881.59 35068.93 35092.83 32294.02 31677.03 32173.14 32483.39 34155.44 32990.42 34867.95 32757.53 34987.38 334
K. test v381.04 29879.77 30184.83 31987.41 33270.23 34795.60 29693.93 31783.70 26067.51 34289.35 31455.76 32593.58 32676.67 28568.03 33190.67 297
RPSCF85.33 26785.55 24684.67 32194.63 22862.28 35493.73 31293.76 31874.38 33185.23 21697.06 16264.09 30198.31 15880.98 25486.08 22493.41 228
MVS-HIRNet79.01 30775.13 31790.66 25093.82 24981.69 29585.16 34593.75 31954.54 35574.17 31859.15 35957.46 32196.58 24363.74 33894.38 15793.72 225
pmmvs585.87 25784.40 26690.30 26088.53 32184.23 26698.60 14993.71 32081.53 29380.29 27592.02 25664.51 30095.52 29882.04 24978.34 26991.15 280
pmmvs679.90 30377.31 30887.67 30284.17 34478.13 32295.86 29193.68 32167.94 34872.67 32989.62 31150.98 34395.75 29274.80 29966.04 33689.14 323
OurMVSNet-221017-084.13 28383.59 27285.77 31587.81 32870.24 34694.89 30193.65 32286.08 22376.53 30493.28 23861.41 31196.14 27580.95 25577.69 27690.93 285
Anonymous2024052178.63 31176.90 31183.82 32482.82 34872.86 33995.72 29593.57 32373.55 33472.17 33184.79 33949.69 34692.51 33865.29 33674.50 29286.09 344
DP-MVS88.75 21586.56 23195.34 13998.92 8487.45 19997.64 22793.52 32470.55 33981.49 26497.25 15074.43 23199.88 4471.14 31794.09 16098.67 149
ITE_SJBPF87.93 29992.26 27376.44 32793.47 32587.67 19779.95 28095.49 20056.50 32497.38 21675.24 29482.33 25289.98 312
USDC84.74 27182.93 27590.16 26291.73 28383.54 27495.00 30093.30 32688.77 15873.19 32393.30 23753.62 33697.65 19975.88 29181.54 25689.30 320
ADS-MVSNet287.62 23386.88 22689.86 26996.21 16679.14 31487.15 34192.99 32783.01 27089.91 17787.27 32778.87 20592.80 33474.20 30292.27 18197.64 184
Anonymous2023120680.76 29979.42 30384.79 32084.78 34272.98 33896.53 26792.97 32879.56 30774.33 31688.83 31661.27 31292.15 34260.59 34675.92 28289.24 322
MDA-MVSNet-bldmvs77.82 31574.75 31987.03 30788.33 32278.52 31996.34 27292.85 32975.57 32648.87 35787.89 32057.32 32292.49 33960.79 34564.80 33990.08 307
test20.0378.51 31277.48 30781.62 33283.07 34771.03 34496.11 28392.83 33081.66 29269.31 33589.68 31057.53 32087.29 35558.65 35068.47 32986.53 341
COLMAP_ROBcopyleft82.69 1884.54 27682.82 27689.70 27496.72 15078.85 31595.89 28792.83 33071.55 33777.54 30395.89 19459.40 31799.14 13667.26 32988.26 21191.11 282
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SixPastTwentyTwo82.63 29181.58 28985.79 31488.12 32571.01 34595.17 29992.54 33284.33 25072.93 32892.08 25460.41 31595.61 29774.47 30074.15 29990.75 293
FMVSNet582.29 29280.54 29687.52 30393.79 25084.01 26993.73 31292.47 33376.92 32274.27 31786.15 33663.69 30489.24 35169.07 32374.79 29089.29 321
new-patchmatchnet74.80 32072.40 32381.99 33178.36 35772.20 34294.44 30492.36 33477.06 32063.47 34979.98 34951.04 34288.85 35260.53 34754.35 35384.92 349
new_pmnet76.02 31773.71 32082.95 32783.88 34572.85 34091.26 33292.26 33570.44 34062.60 35081.37 34547.64 34992.32 34061.85 34372.10 31983.68 351
AllTest84.97 27083.12 27490.52 25396.82 14678.84 31695.89 28792.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
TestCases90.52 25396.82 14678.84 31692.17 33677.96 31775.94 30895.50 19855.48 32799.18 13171.15 31587.14 21593.55 226
pmmvs-eth3d78.71 31076.16 31486.38 31080.25 35481.19 30294.17 30892.13 33877.97 31666.90 34582.31 34355.76 32592.56 33773.63 30862.31 34385.38 346
MIMVSNet175.92 31873.30 32183.81 32581.29 35275.57 32992.26 32592.05 33973.09 33567.48 34386.18 33540.87 35787.64 35455.78 35270.68 32688.21 329
ambc79.60 33572.76 35956.61 35876.20 35792.01 34068.25 33880.23 34823.34 36294.73 31673.78 30760.81 34487.48 333
LF4IMVS81.94 29581.17 29484.25 32387.23 33468.87 35193.35 31691.93 34183.35 26675.40 31393.00 24649.25 34896.65 24078.88 27078.11 27087.22 338
TransMVSNet (Re)81.97 29479.61 30289.08 28889.70 30584.01 26997.26 23991.85 34278.84 31173.07 32791.62 26467.17 28795.21 30667.50 32859.46 34788.02 330
Baseline_NR-MVSNet85.83 25984.82 25788.87 29388.73 31883.34 27698.63 14491.66 34380.41 30682.44 24391.35 27074.63 22595.42 30184.13 22571.39 32387.84 331
testgi82.29 29281.00 29586.17 31287.24 33374.84 33297.39 23291.62 34488.63 15975.85 31195.42 20146.07 35191.55 34666.87 33279.94 26292.12 245
TDRefinement78.01 31375.31 31686.10 31370.06 36073.84 33593.59 31591.58 34574.51 33073.08 32691.04 27549.63 34797.12 22174.88 29759.47 34687.33 336
OpenMVS_ROBcopyleft73.86 2077.99 31475.06 31886.77 30983.81 34677.94 32496.38 27191.53 34667.54 34968.38 33787.13 33043.94 35296.08 27755.03 35381.83 25486.29 343
test_040278.81 30976.33 31386.26 31191.18 28978.44 32095.88 28991.34 34768.55 34570.51 33389.91 30752.65 33994.99 30847.14 35779.78 26385.34 348
MTMP99.21 7291.09 348
DeepMVS_CXcopyleft76.08 33690.74 29551.65 36290.84 34986.47 22057.89 35387.98 31935.88 35992.60 33565.77 33565.06 33883.97 350
lessismore_v085.08 31785.59 34069.28 34990.56 35067.68 34190.21 30454.21 33595.46 29973.88 30462.64 34190.50 300
Gipumacopyleft54.77 32852.22 33262.40 34386.50 33659.37 35750.20 36290.35 35136.52 35941.20 36049.49 36118.33 36581.29 35732.10 36065.34 33746.54 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TinyColmap80.42 30177.94 30587.85 30092.09 27678.58 31893.74 31189.94 35274.99 32769.77 33491.78 26246.09 35097.58 20465.17 33777.89 27187.38 334
test_method70.10 32468.66 32774.41 33786.30 33855.84 35994.47 30389.82 35335.18 36066.15 34784.75 34030.54 36077.96 36070.40 32160.33 34589.44 319
FPMVS61.57 32560.32 32865.34 34160.14 36442.44 36591.02 33489.72 35444.15 35742.63 35980.93 34619.02 36380.59 35942.50 35872.76 31073.00 355
LCM-MVSNet60.07 32656.37 32971.18 33854.81 36648.67 36382.17 35689.48 35537.95 35849.13 35669.12 35313.75 36981.76 35659.28 34851.63 35583.10 353
pmmvs372.86 32269.76 32682.17 32973.86 35874.19 33494.20 30789.01 35664.23 35467.72 34080.91 34741.48 35488.65 35362.40 34254.02 35483.68 351
LCM-MVSNet-Re88.59 21788.61 20088.51 29695.53 19172.68 34196.85 25688.43 35788.45 16773.14 32490.63 28875.82 21994.38 32192.95 13195.71 14998.48 158
Patchmatch-RL test81.90 29680.13 29987.23 30680.71 35370.12 34884.07 35288.19 35883.16 26970.57 33282.18 34487.18 9592.59 33682.28 24662.78 34098.98 120
DSMNet-mixed81.60 29781.43 29182.10 33084.36 34360.79 35593.63 31486.74 35979.00 30979.32 28887.15 32963.87 30389.78 35066.89 33191.92 18695.73 218
PM-MVS74.88 31972.85 32280.98 33478.98 35664.75 35390.81 33585.77 36080.95 30068.23 33982.81 34229.08 36192.84 33276.54 28662.46 34285.36 347
door85.30 361
door-mid84.90 362
PMMVS258.97 32755.07 33070.69 34062.72 36155.37 36085.97 34380.52 36349.48 35645.94 35868.31 35415.73 36780.78 35849.79 35637.12 35975.91 354
ANet_high50.71 33046.17 33364.33 34244.27 36852.30 36176.13 35878.73 36464.95 35227.37 36355.23 36014.61 36867.74 36236.01 35918.23 36272.95 356
PMVScopyleft41.42 2345.67 33142.50 33455.17 34534.28 36932.37 36866.24 36078.71 36530.72 36122.04 36659.59 3584.59 37077.85 36127.49 36158.84 34855.29 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt53.66 32952.86 33156.05 34432.75 37041.97 36673.42 35976.12 36621.91 36539.68 36196.39 18542.59 35365.10 36378.00 27514.92 36461.08 357
MVEpermissive44.00 2241.70 33237.64 33753.90 34649.46 36743.37 36465.09 36166.66 36726.19 36425.77 36548.53 3623.58 37263.35 36426.15 36227.28 36054.97 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 33340.93 33541.29 34761.97 36233.83 36784.00 35365.17 36827.17 36227.56 36246.72 36317.63 36660.41 36519.32 36318.82 36129.61 361
EMVS39.96 33439.88 33640.18 34859.57 36532.12 36984.79 35064.57 36926.27 36326.14 36444.18 36618.73 36459.29 36617.03 36417.67 36329.12 362
N_pmnet70.19 32369.87 32571.12 33988.24 32330.63 37095.85 29228.70 37070.18 34168.73 33686.55 33364.04 30293.81 32453.12 35573.46 30688.94 324
wuyk23d16.71 33716.73 34116.65 34960.15 36325.22 37141.24 3635.17 3716.56 3665.48 3693.61 3693.64 37122.72 36715.20 3659.52 3651.99 365
testmvs18.81 33623.05 3396.10 3514.48 3712.29 37397.78 2183.00 3723.27 36718.60 36762.71 3561.53 3742.49 36914.26 3661.80 36613.50 364
test12316.58 33819.47 3407.91 3503.59 3725.37 37294.32 3051.39 3732.49 36813.98 36844.60 3652.91 3732.65 36811.35 3670.57 36715.70 363
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas6.87 3409.16 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37082.48 1740.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
n20.00 374
nn0.00 374
ab-mvs-re8.21 33910.94 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37098.50 1050.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
OPU-MVS99.49 299.64 2098.51 299.77 1099.19 3295.12 699.97 2099.90 199.92 399.99 1
test_0728_THIRD93.01 4999.07 899.46 1194.66 1099.97 2099.25 1199.82 1599.95 11
GSMVS98.84 134
test_part299.54 3695.42 1798.13 33
sam_mvs188.39 7098.84 134
sam_mvs87.08 96
test_post190.74 33741.37 36785.38 13496.36 25883.16 236
test_post46.00 36487.37 8997.11 222
patchmatchnet-post84.86 33888.73 6496.81 234
gm-plane-assit94.69 22688.14 18488.22 17897.20 15498.29 16090.79 152
test9_res98.60 1999.87 799.90 20
agg_prior297.84 4299.87 799.91 18
test_prior492.00 9499.41 56
test_prior299.57 3191.43 8798.12 3598.97 6390.43 4098.33 3099.81 19
旧先验298.67 13885.75 22798.96 1298.97 14293.84 117
新几何298.26 187
原ACMM298.69 134
testdata299.88 4484.16 224
segment_acmp90.56 39
testdata197.89 21192.43 63
plane_prior793.84 24785.73 243
plane_prior693.92 24486.02 23772.92 245
plane_prior496.52 179
plane_prior385.91 23893.65 4186.99 201
plane_prior299.02 10093.38 46
plane_prior193.90 246
plane_prior86.07 23599.14 8793.81 3986.26 221
HQP5-MVS86.39 223
HQP-NCC93.95 24099.16 7893.92 3187.57 194
ACMP_Plane93.95 24099.16 7893.92 3187.57 194
BP-MVS93.82 119
HQP4-MVS87.57 19497.77 18992.72 229
HQP2-MVS73.34 241
NP-MVS93.94 24386.22 22996.67 177
MDTV_nov1_ep13_2view91.17 11391.38 33087.45 20193.08 13486.67 10787.02 19198.95 127
ACMMP++_ref82.64 250
ACMMP++83.83 238
Test By Simon83.62 150