PVSNet_BlendedMVS | | | 98.71 148 | 98.62 147 | 98.98 178 | 99.98 88 | 99.60 114 | 100.00 1 | 100.00 1 | 97.23 162 | 100.00 1 | 99.03 290 | 96.57 183 | 99.99 89 | 100.00 1 | 94.75 247 | 97.35 317 |
|
PVSNet_Blended | | | 99.48 80 | 99.36 81 | 99.83 94 | 99.98 88 | 99.60 114 | 100.00 1 | 100.00 1 | 97.79 110 | 100.00 1 | 100.00 1 | 96.57 183 | 99.99 89 | 100.00 1 | 99.88 124 | 99.90 141 |
|
UGNet | | | 98.41 168 | 98.11 176 | 99.31 157 | 99.54 182 | 98.55 188 | 99.18 309 | 100.00 1 | 98.64 54 | 99.79 156 | 99.04 288 | 87.61 286 | 100.00 1 | 99.30 162 | 99.89 123 | 99.40 212 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
WTY-MVS | | | 99.54 71 | 99.40 74 | 99.95 56 | 99.81 118 | 99.93 41 | 100.00 1 | 100.00 1 | 97.98 92 | 99.84 145 | 100.00 1 | 98.94 107 | 99.98 109 | 99.86 97 | 98.21 181 | 99.94 121 |
|
HY-MVS | | 96.53 9 | 99.50 76 | 99.35 83 | 99.96 45 | 99.81 118 | 99.93 41 | 99.64 268 | 100.00 1 | 97.97 94 | 99.84 145 | 99.85 206 | 98.94 107 | 99.99 89 | 99.86 97 | 98.23 180 | 99.95 118 |
|
EPMVS | | | 99.25 106 | 99.13 105 | 99.60 126 | 99.60 167 | 99.20 151 | 99.60 272 | 100.00 1 | 96.93 178 | 99.92 135 | 99.36 272 | 99.05 89 | 99.71 181 | 98.77 186 | 98.94 151 | 99.90 141 |
|
MVS_111021_HR | | | 99.71 35 | 99.63 42 | 99.93 74 | 99.95 99 | 99.83 87 | 100.00 1 | 100.00 1 | 98.89 36 | 100.00 1 | 100.00 1 | 97.85 145 | 99.95 133 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PatchMatch-RL | | | 99.02 123 | 98.78 134 | 99.74 111 | 99.99 52 | 99.29 140 | 100.00 1 | 100.00 1 | 98.38 66 | 99.89 141 | 99.81 215 | 93.14 229 | 99.99 89 | 97.85 228 | 99.98 111 | 99.95 118 |
|
PVSNet_0 | | 93.57 19 | 96.41 246 | 95.74 260 | 98.41 206 | 99.84 113 | 95.22 278 | 100.00 1 | 100.00 1 | 98.08 84 | 97.55 280 | 99.78 219 | 84.40 307 | 100.00 1 | 100.00 1 | 81.99 332 | 100.00 1 |
|
CHOSEN 1792x2688 | | | 99.00 125 | 98.91 123 | 99.25 162 | 99.90 110 | 97.79 231 | 100.00 1 | 99.99 10 | 98.79 46 | 98.28 246 | 100.00 1 | 93.63 221 | 99.95 133 | 99.66 133 | 99.95 118 | 100.00 1 |
|
HyFIR lowres test | | | 99.32 96 | 99.24 91 | 99.58 132 | 99.95 99 | 99.26 143 | 100.00 1 | 99.99 10 | 96.72 191 | 99.29 183 | 99.91 198 | 99.49 35 | 99.47 213 | 99.74 116 | 98.08 187 | 100.00 1 |
|
AdaColmap | | | 99.44 82 | 99.26 88 | 99.95 56 | 100.00 1 | 99.86 80 | 99.70 260 | 99.99 10 | 98.53 57 | 99.90 138 | 100.00 1 | 95.34 200 | 100.00 1 | 99.92 90 | 100.00 1 | 100.00 1 |
|
CHOSEN 280x420 | | | 99.85 3 | 99.87 1 | 99.80 102 | 99.99 52 | 99.97 17 | 99.97 210 | 99.98 13 | 98.96 28 | 100.00 1 | 100.00 1 | 99.96 3 | 99.42 219 | 100.00 1 | 100.00 1 | 100.00 1 |
|
MVS_111021_LR | | | 99.70 39 | 99.65 34 | 99.88 87 | 99.96 98 | 99.70 106 | 100.00 1 | 99.97 14 | 98.96 28 | 100.00 1 | 100.00 1 | 97.93 143 | 99.95 133 | 99.99 57 | 100.00 1 | 100.00 1 |
|
MSLP-MVS++ | | | 99.89 1 | 99.85 2 | 99.99 9 | 100.00 1 | 99.96 19 | 100.00 1 | 99.95 15 | 99.11 7 | 100.00 1 | 100.00 1 | 99.60 14 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PVSNet_Blended_VisFu | | | 99.33 94 | 99.18 103 | 99.78 108 | 99.82 114 | 99.49 122 | 100.00 1 | 99.95 15 | 97.36 153 | 99.63 167 | 100.00 1 | 96.45 187 | 99.95 133 | 99.79 108 | 99.65 136 | 99.89 147 |
|
MAR-MVS | | | 99.49 78 | 99.36 81 | 99.89 83 | 99.97 92 | 99.66 110 | 99.74 252 | 99.95 15 | 97.89 102 | 100.00 1 | 100.00 1 | 96.71 181 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
thres100view900 | | | 99.25 106 | 99.01 110 | 99.95 56 | 99.81 118 | 99.87 77 | 100.00 1 | 99.94 18 | 97.13 169 | 99.83 147 | 99.96 182 | 97.01 169 | 100.00 1 | 99.59 138 | 97.85 195 | 99.98 105 |
|
tfpn200view9 | | | 99.26 103 | 99.03 108 | 99.96 45 | 99.81 118 | 99.89 64 | 100.00 1 | 99.94 18 | 97.23 162 | 99.83 147 | 99.96 182 | 97.04 165 | 100.00 1 | 99.59 138 | 97.85 195 | 99.98 105 |
|
MVS | | | 99.22 109 | 98.96 115 | 99.98 22 | 99.00 247 | 99.95 28 | 99.24 300 | 99.94 18 | 98.14 78 | 98.88 207 | 100.00 1 | 95.63 198 | 100.00 1 | 99.85 99 | 100.00 1 | 100.00 1 |
|
thres600view7 | | | 99.24 108 | 99.00 111 | 99.95 56 | 99.81 118 | 99.87 77 | 100.00 1 | 99.94 18 | 97.13 169 | 99.83 147 | 99.96 182 | 97.01 169 | 100.00 1 | 99.54 146 | 97.77 201 | 99.97 110 |
|
thres400 | | | 99.26 103 | 99.03 108 | 99.95 56 | 99.81 118 | 99.89 64 | 100.00 1 | 99.94 18 | 97.23 162 | 99.83 147 | 99.96 182 | 97.04 165 | 100.00 1 | 99.59 138 | 97.85 195 | 99.97 110 |
|
thres200 | | | 99.27 101 | 99.04 107 | 99.96 45 | 99.81 118 | 99.90 57 | 100.00 1 | 99.94 18 | 97.31 160 | 99.83 147 | 99.96 182 | 97.04 165 | 100.00 1 | 99.62 137 | 97.88 193 | 99.98 105 |
|
API-MVS | | | 99.72 32 | 99.70 20 | 99.79 104 | 99.97 92 | 99.37 135 | 99.96 213 | 99.94 18 | 98.48 58 | 100.00 1 | 100.00 1 | 98.92 109 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PHI-MVS | | | 99.50 76 | 99.39 76 | 99.82 95 | 100.00 1 | 99.45 127 | 100.00 1 | 99.94 18 | 96.38 213 | 100.00 1 | 100.00 1 | 98.18 136 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
1314 | | | 99.38 86 | 99.19 101 | 99.96 45 | 98.88 258 | 99.89 64 | 99.24 300 | 99.93 26 | 98.88 37 | 98.79 216 | 100.00 1 | 97.02 168 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test0.0.03 1 | | | 98.12 181 | 98.03 181 | 98.39 207 | 99.11 231 | 98.07 215 | 100.00 1 | 99.93 26 | 96.70 193 | 96.91 294 | 99.95 189 | 99.31 59 | 98.19 298 | 91.93 309 | 98.44 164 | 98.91 216 |
|
QAPM | | | 98.99 127 | 98.66 143 | 99.96 45 | 99.01 243 | 99.87 77 | 99.88 233 | 99.93 26 | 97.99 90 | 98.68 221 | 100.00 1 | 93.17 227 | 100.00 1 | 99.32 161 | 100.00 1 | 100.00 1 |
|
3Dnovator | | 95.63 14 | 99.06 116 | 98.76 136 | 99.96 45 | 98.86 261 | 99.90 57 | 99.98 204 | 99.93 26 | 98.95 31 | 98.49 235 | 100.00 1 | 92.91 231 | 100.00 1 | 99.71 119 | 100.00 1 | 100.00 1 |
|
VDDNet | | | 96.39 250 | 95.55 268 | 98.90 183 | 99.27 225 | 97.45 240 | 99.15 317 | 99.92 30 | 91.28 312 | 99.98 98 | 100.00 1 | 73.55 336 | 100.00 1 | 99.85 99 | 96.98 214 | 99.24 213 |
|
sss | | | 99.45 81 | 99.34 85 | 99.80 102 | 99.76 136 | 99.50 119 | 100.00 1 | 99.91 31 | 97.72 114 | 99.98 98 | 99.94 193 | 98.45 130 | 100.00 1 | 99.53 148 | 98.75 154 | 99.89 147 |
|
EPNet | | | 99.62 64 | 99.69 22 | 99.42 145 | 99.99 52 | 98.37 196 | 100.00 1 | 99.89 32 | 98.83 41 | 100.00 1 | 100.00 1 | 98.97 101 | 100.00 1 | 99.90 92 | 99.61 139 | 99.89 147 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS_0304 | | | 95.11 283 | 94.84 284 | 95.91 301 | 99.60 167 | 91.24 327 | 98.64 333 | 99.88 33 | 94.51 266 | 99.62 168 | 98.31 323 | 69.19 342 | 98.82 255 | 95.22 281 | 98.60 156 | 97.66 291 |
|
PVSNet | | 94.91 18 | 99.30 98 | 99.25 89 | 99.44 142 | 100.00 1 | 98.32 202 | 100.00 1 | 99.86 34 | 98.04 87 | 100.00 1 | 100.00 1 | 96.10 190 | 100.00 1 | 99.55 143 | 99.73 132 | 100.00 1 |
|
HPM-MVS++ | | | 99.82 9 | 99.76 12 | 99.99 9 | 99.99 52 | 99.98 13 | 100.00 1 | 99.83 35 | 98.88 37 | 99.96 106 | 100.00 1 | 99.21 77 | 100.00 1 | 100.00 1 | 100.00 1 | 99.99 103 |
|
D2MVS | | | 97.63 197 | 97.83 187 | 97.05 274 | 98.83 264 | 94.60 297 | 100.00 1 | 99.82 36 | 96.89 183 | 98.28 246 | 99.03 290 | 94.05 215 | 99.47 213 | 98.58 200 | 94.97 245 | 97.09 322 |
|
旧先验1 | | | | | | 99.99 52 | 99.88 74 | | 99.82 36 | | | 100.00 1 | 99.27 69 | | | 100.00 1 | 100.00 1 |
|
新几何1 | | | | | 99.99 9 | 100.00 1 | 99.96 19 | | 99.81 38 | 97.89 102 | 100.00 1 | 100.00 1 | 99.20 78 | 100.00 1 | 97.91 226 | 100.00 1 | 100.00 1 |
|
无先验 | | | | | | | | 100.00 1 | 99.80 39 | 97.98 92 | | | | 100.00 1 | 99.33 159 | | 100.00 1 |
|
ZNCC-MVS | | | 99.71 35 | 99.62 46 | 99.97 31 | 99.99 52 | 99.90 57 | 100.00 1 | 99.79 40 | 97.97 94 | 99.97 102 | 100.00 1 | 98.97 101 | 100.00 1 | 99.94 88 | 100.00 1 | 100.00 1 |
|
GST-MVS | | | 99.64 58 | 99.53 65 | 99.95 56 | 100.00 1 | 99.86 80 | 100.00 1 | 99.79 40 | 97.72 114 | 99.95 127 | 100.00 1 | 98.39 132 | 100.00 1 | 99.96 80 | 99.99 103 | 100.00 1 |
|
DELS-MVS | | | 99.62 64 | 99.56 63 | 99.82 95 | 99.92 107 | 99.45 127 | 100.00 1 | 99.78 42 | 98.92 34 | 99.73 162 | 100.00 1 | 97.70 149 | 100.00 1 | 99.93 89 | 100.00 1 | 100.00 1 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CNVR-MVS | | | 99.85 3 | 99.80 4 | 100.00 1 | 100.00 1 | 99.99 3 | 100.00 1 | 99.77 43 | 99.07 9 | 100.00 1 | 100.00 1 | 99.39 53 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
HFP-MVS | | | 99.74 26 | 99.67 30 | 99.96 45 | 100.00 1 | 99.89 64 | 100.00 1 | 99.76 44 | 97.95 99 | 100.00 1 | 100.00 1 | 99.31 59 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
#test# | | | 99.75 21 | 99.68 25 | 99.96 45 | 100.00 1 | 99.89 64 | 100.00 1 | 99.76 44 | 98.07 85 | 100.00 1 | 100.00 1 | 99.31 59 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
ACMMPR | | | 99.74 26 | 99.67 30 | 99.96 45 | 100.00 1 | 99.89 64 | 100.00 1 | 99.76 44 | 97.95 99 | 100.00 1 | 100.00 1 | 99.29 66 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
OpenMVS | | 95.20 17 | 98.76 145 | 98.41 160 | 99.78 108 | 98.89 257 | 99.81 89 | 99.99 186 | 99.76 44 | 98.02 88 | 98.02 260 | 100.00 1 | 91.44 244 | 100.00 1 | 99.63 136 | 99.97 114 | 99.55 207 |
|
XVS | | | 99.79 14 | 99.73 16 | 99.98 22 | 100.00 1 | 99.94 36 | 100.00 1 | 99.75 48 | 98.67 51 | 100.00 1 | 100.00 1 | 99.16 81 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
X-MVStestdata | | | 97.04 222 | 96.06 245 | 99.98 22 | 100.00 1 | 99.94 36 | 100.00 1 | 99.75 48 | 98.67 51 | 100.00 1 | 66.97 351 | 99.16 81 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PAPM | | | 99.78 16 | 99.76 12 | 99.85 91 | 99.01 243 | 99.95 28 | 100.00 1 | 99.75 48 | 99.37 3 | 99.99 93 | 100.00 1 | 99.76 8 | 99.60 184 | 100.00 1 | 100.00 1 | 100.00 1 |
|
region2R | | | 99.72 32 | 99.64 38 | 99.97 31 | 100.00 1 | 99.90 57 | 100.00 1 | 99.74 51 | 97.86 106 | 100.00 1 | 100.00 1 | 99.19 79 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
1121 | | | 99.63 61 | 99.51 67 | 99.99 9 | 99.99 52 | 99.96 19 | 99.24 300 | 99.74 51 | 97.89 102 | 100.00 1 | 100.00 1 | 99.39 53 | 100.00 1 | 99.33 159 | 100.00 1 | 100.00 1 |
|
CANet | | | 99.40 84 | 99.24 91 | 99.89 83 | 99.99 52 | 99.76 94 | 100.00 1 | 99.73 53 | 98.40 63 | 99.78 157 | 100.00 1 | 95.28 201 | 99.96 127 | 100.00 1 | 99.99 103 | 99.96 113 |
|
test_prior3 | | | 99.81 11 | 99.78 6 | 99.90 80 | 100.00 1 | 99.75 96 | 100.00 1 | 99.73 53 | 98.82 43 | 100.00 1 | 100.00 1 | 99.47 39 | 99.97 113 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_prior | | | | | 99.90 80 | 100.00 1 | 99.75 96 | | 99.73 53 | | | | | 99.97 113 | | | 100.00 1 |
|
testdata | | | | | 99.66 119 | 99.99 52 | 98.97 170 | | 99.73 53 | 97.96 98 | 100.00 1 | 100.00 1 | 99.42 49 | 100.00 1 | 99.28 163 | 100.00 1 | 100.00 1 |
|
MCST-MVS | | | 99.85 3 | 99.80 4 | 100.00 1 | 100.00 1 | 99.99 3 | 100.00 1 | 99.73 53 | 99.19 5 | 100.00 1 | 100.00 1 | 99.31 59 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ACMMP | | | 99.65 56 | 99.57 57 | 99.89 83 | 99.99 52 | 99.66 110 | 99.75 251 | 99.73 53 | 98.16 75 | 99.75 161 | 100.00 1 | 98.90 111 | 100.00 1 | 99.96 80 | 99.88 124 | 100.00 1 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
NCCC | | | 99.86 2 | 99.82 3 | 100.00 1 | 100.00 1 | 99.99 3 | 100.00 1 | 99.71 59 | 99.07 9 | 100.00 1 | 100.00 1 | 99.59 16 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test222 | | | | | | 99.99 52 | 99.90 57 | 100.00 1 | 99.69 60 | 97.66 122 | 100.00 1 | 100.00 1 | 99.30 65 | | | 100.00 1 | 100.00 1 |
|
原ACMM1 | | | | | 99.93 74 | 100.00 1 | 99.80 91 | | 99.66 61 | 98.18 74 | 100.00 1 | 100.00 1 | 99.43 47 | 100.00 1 | 99.50 150 | 100.00 1 | 100.00 1 |
|
SR-MVS | | | 99.68 47 | 99.58 54 | 99.98 22 | 100.00 1 | 99.95 28 | 100.00 1 | 99.64 62 | 97.59 131 | 100.00 1 | 100.00 1 | 98.99 98 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ab-mvs | | | 98.42 167 | 98.02 182 | 99.61 124 | 99.71 140 | 99.00 167 | 99.10 322 | 99.64 62 | 96.70 193 | 99.04 200 | 99.81 215 | 90.64 252 | 99.98 109 | 99.64 135 | 97.93 191 | 99.84 167 |
|
PGM-MVS | | | 99.69 43 | 99.61 47 | 99.95 56 | 99.99 52 | 99.85 83 | 100.00 1 | 99.58 64 | 97.69 120 | 100.00 1 | 100.00 1 | 99.44 43 | 100.00 1 | 99.79 108 | 100.00 1 | 100.00 1 |
|
LFMVS | | | 97.42 205 | 96.62 224 | 99.81 98 | 99.80 128 | 99.50 119 | 99.16 315 | 99.56 65 | 94.48 268 | 100.00 1 | 100.00 1 | 79.35 328 | 100.00 1 | 99.89 94 | 97.37 208 | 99.94 121 |
|
PLC | | 98.56 2 | 99.70 39 | 99.74 15 | 99.58 132 | 100.00 1 | 98.79 175 | 100.00 1 | 99.54 66 | 98.58 56 | 99.96 106 | 100.00 1 | 99.59 16 | 100.00 1 | 100.00 1 | 100.00 1 | 99.94 121 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
testtj | | | 99.70 39 | 99.61 47 | 99.99 9 | 100.00 1 | 99.98 13 | 100.00 1 | 99.53 67 | 97.71 117 | 100.00 1 | 100.00 1 | 99.23 73 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
GG-mvs-BLEND | | | | | 99.59 128 | 99.54 182 | 99.49 122 | 99.17 314 | 99.52 68 | | 99.96 106 | 99.68 233 | 100.00 1 | 99.33 225 | 99.71 119 | 99.99 103 | 99.96 113 |
|
gg-mvs-nofinetune | | | 96.95 225 | 96.10 243 | 99.50 138 | 99.41 210 | 99.36 136 | 99.07 326 | 99.52 68 | 83.69 335 | 99.96 106 | 83.60 348 | 100.00 1 | 99.20 229 | 99.68 128 | 99.99 103 | 99.96 113 |
|
DP-MVS Recon | | | 99.76 19 | 99.69 22 | 99.98 22 | 100.00 1 | 99.95 28 | 100.00 1 | 99.52 68 | 97.99 90 | 99.99 93 | 100.00 1 | 99.72 9 | 100.00 1 | 99.96 80 | 100.00 1 | 100.00 1 |
|
DeepC-MVS_fast | | 98.92 1 | 99.75 21 | 99.67 30 | 99.99 9 | 99.99 52 | 99.96 19 | 99.73 255 | 99.52 68 | 99.06 11 | 100.00 1 | 100.00 1 | 98.80 118 | 100.00 1 | 99.95 86 | 100.00 1 | 100.00 1 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
alignmvs | | | 99.38 86 | 99.21 97 | 99.91 77 | 99.73 139 | 99.92 48 | 100.00 1 | 99.51 72 | 97.61 127 | 100.00 1 | 100.00 1 | 99.06 88 | 99.93 146 | 99.83 102 | 97.12 210 | 99.90 141 |
|
3Dnovator+ | | 95.58 15 | 99.03 119 | 98.71 141 | 99.96 45 | 98.99 250 | 99.89 64 | 100.00 1 | 99.51 72 | 98.96 28 | 98.32 243 | 100.00 1 | 92.78 232 | 100.00 1 | 99.87 96 | 100.00 1 | 100.00 1 |
|
APD-MVS_3200maxsize | | | 99.65 56 | 99.55 64 | 99.97 31 | 99.99 52 | 99.91 51 | 100.00 1 | 99.48 74 | 97.54 136 | 100.00 1 | 100.00 1 | 98.97 101 | 99.99 89 | 99.98 71 | 100.00 1 | 100.00 1 |
|
test_yl | | | 99.51 73 | 99.37 79 | 99.95 56 | 99.82 114 | 99.90 57 | 100.00 1 | 99.47 75 | 97.48 143 | 100.00 1 | 100.00 1 | 99.80 4 | 100.00 1 | 99.98 71 | 97.75 202 | 99.94 121 |
|
Anonymous20240529 | | | 96.93 226 | 96.22 239 | 99.05 171 | 99.79 131 | 97.30 248 | 99.16 315 | 99.47 75 | 88.51 325 | 98.69 220 | 100.00 1 | 83.50 314 | 100.00 1 | 99.83 102 | 97.02 213 | 99.83 170 |
|
DCV-MVSNet | | | 99.51 73 | 99.37 79 | 99.95 56 | 99.82 114 | 99.90 57 | 100.00 1 | 99.47 75 | 97.48 143 | 100.00 1 | 100.00 1 | 99.80 4 | 100.00 1 | 99.98 71 | 97.75 202 | 99.94 121 |
|
CVMVSNet | | | 98.56 158 | 98.47 158 | 98.82 187 | 99.11 231 | 97.67 234 | 99.74 252 | 99.47 75 | 97.57 134 | 99.06 198 | 100.00 1 | 95.72 196 | 98.97 242 | 98.21 215 | 97.33 209 | 99.83 170 |
|
EU-MVSNet | | | 96.63 236 | 96.53 226 | 96.94 281 | 97.59 308 | 96.87 260 | 99.76 250 | 99.47 75 | 96.35 214 | 96.85 296 | 99.78 219 | 92.57 236 | 96.27 331 | 95.33 277 | 91.08 291 | 97.68 285 |
|
VNet | | | 99.04 118 | 98.75 137 | 99.90 80 | 99.81 118 | 99.75 96 | 99.50 281 | 99.47 75 | 98.36 68 | 100.00 1 | 99.99 162 | 94.66 210 | 100.00 1 | 99.90 92 | 97.09 211 | 99.96 113 |
|
VPA-MVSNet | | | 97.03 223 | 96.43 231 | 98.82 187 | 98.64 267 | 99.32 138 | 99.38 289 | 99.47 75 | 96.73 190 | 98.91 206 | 98.94 299 | 87.00 292 | 99.40 220 | 99.23 165 | 89.59 303 | 97.76 225 |
|
tpmvs | | | 98.59 155 | 98.38 163 | 99.23 163 | 99.69 143 | 97.90 225 | 99.31 295 | 99.47 75 | 94.52 265 | 99.68 165 | 99.28 276 | 97.64 151 | 99.89 151 | 97.71 231 | 98.17 184 | 99.89 147 |
|
EPNet_dtu | | | 98.53 161 | 98.23 172 | 99.43 144 | 99.92 107 | 99.01 165 | 99.96 213 | 99.47 75 | 98.80 45 | 99.96 106 | 99.96 182 | 98.56 127 | 99.30 226 | 87.78 328 | 99.68 134 | 100.00 1 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PAPM_NR | | | 99.74 26 | 99.66 33 | 99.99 9 | 100.00 1 | 99.96 19 | 100.00 1 | 99.47 75 | 97.87 105 | 100.00 1 | 100.00 1 | 99.60 14 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
PAPR | | | 99.76 19 | 99.68 25 | 99.99 9 | 100.00 1 | 99.96 19 | 100.00 1 | 99.47 75 | 98.16 75 | 100.00 1 | 100.00 1 | 99.51 28 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IB-MVS | | 96.24 12 | 97.54 201 | 96.95 213 | 99.33 155 | 99.67 147 | 98.10 214 | 100.00 1 | 99.47 75 | 97.42 150 | 99.26 184 | 99.69 229 | 98.83 115 | 99.89 151 | 99.43 152 | 78.77 338 | 100.00 1 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
CSCG | | | 99.28 100 | 99.35 83 | 99.05 171 | 99.99 52 | 97.15 253 | 100.00 1 | 99.47 75 | 97.44 148 | 99.42 176 | 100.00 1 | 97.83 146 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
CNLPA | | | 99.72 32 | 99.65 34 | 99.91 77 | 99.97 92 | 99.72 101 | 100.00 1 | 99.47 75 | 98.43 60 | 99.88 143 | 100.00 1 | 99.14 84 | 100.00 1 | 99.97 78 | 100.00 1 | 100.00 1 |
|
MG-MVS | | | 99.75 21 | 99.68 25 | 99.97 31 | 100.00 1 | 99.91 51 | 99.98 204 | 99.47 75 | 99.09 8 | 100.00 1 | 100.00 1 | 98.59 126 | 100.00 1 | 99.95 86 | 100.00 1 | 100.00 1 |
|
thisisatest0530 | | | 99.37 88 | 99.27 87 | 99.69 115 | 99.59 170 | 99.41 130 | 100.00 1 | 99.46 90 | 96.46 208 | 99.90 138 | 100.00 1 | 99.44 43 | 99.85 160 | 98.97 175 | 99.58 140 | 99.80 188 |
|
Anonymous202405211 | | | 97.87 187 | 97.53 196 | 98.90 183 | 99.81 118 | 96.70 264 | 99.35 292 | 99.46 90 | 92.98 303 | 98.83 213 | 99.99 162 | 90.63 253 | 100.00 1 | 99.70 121 | 97.03 212 | 100.00 1 |
|
tttt0517 | | | 99.34 92 | 99.23 94 | 99.67 117 | 99.57 178 | 99.38 132 | 100.00 1 | 99.46 90 | 96.33 216 | 99.89 141 | 100.00 1 | 99.44 43 | 99.84 162 | 98.93 177 | 99.46 143 | 99.78 190 |
|
thisisatest0515 | | | 99.42 83 | 99.31 86 | 99.74 111 | 99.59 170 | 99.55 116 | 100.00 1 | 99.46 90 | 96.65 198 | 99.92 135 | 100.00 1 | 99.44 43 | 99.85 160 | 99.09 172 | 99.63 138 | 99.81 178 |
|
baseline2 | | | 98.99 127 | 98.93 121 | 99.18 167 | 99.26 227 | 99.15 155 | 100.00 1 | 99.46 90 | 96.71 192 | 96.79 298 | 100.00 1 | 99.42 49 | 99.25 228 | 98.75 188 | 99.94 119 | 99.15 215 |
|
MDTV_nov1_ep13 | | | | 98.94 120 | | 99.53 185 | 98.36 198 | 99.39 288 | 99.46 90 | 96.54 204 | 99.99 93 | 99.63 246 | 98.92 109 | 99.86 156 | 98.30 212 | 98.71 155 | |
|
LS3D | | | 99.31 97 | 99.13 105 | 99.87 88 | 99.99 52 | 99.71 102 | 99.55 276 | 99.46 90 | 97.32 158 | 99.82 154 | 100.00 1 | 96.85 178 | 99.97 113 | 99.14 168 | 100.00 1 | 99.92 130 |
|
tfpnnormal | | | 96.36 251 | 95.69 265 | 98.37 209 | 98.55 270 | 98.71 180 | 99.69 263 | 99.45 97 | 93.16 301 | 96.69 302 | 99.71 224 | 88.44 282 | 98.99 239 | 94.17 291 | 91.38 288 | 97.41 314 |
|
SCA | | | 98.30 173 | 97.98 184 | 99.23 163 | 99.41 210 | 98.25 206 | 99.99 186 | 99.45 97 | 96.91 181 | 99.76 160 | 99.58 255 | 89.65 265 | 99.54 201 | 98.31 210 | 98.79 153 | 99.91 132 |
|
UA-Net | | | 99.06 116 | 98.83 129 | 99.74 111 | 99.52 190 | 99.40 131 | 99.08 324 | 99.45 97 | 97.64 125 | 99.83 147 | 100.00 1 | 95.80 194 | 99.94 144 | 98.35 208 | 99.80 131 | 99.88 158 |
|
VPNet | | | 96.41 246 | 95.76 259 | 98.33 213 | 98.61 268 | 98.30 203 | 99.48 282 | 99.45 97 | 96.98 177 | 98.87 208 | 99.88 201 | 81.57 321 | 98.93 244 | 99.22 167 | 87.82 317 | 97.76 225 |
|
test-LLR | | | 99.03 119 | 98.91 123 | 99.40 148 | 99.40 215 | 99.28 141 | 100.00 1 | 99.45 97 | 96.70 193 | 99.42 176 | 99.12 281 | 99.31 59 | 99.01 237 | 96.82 256 | 99.99 103 | 99.91 132 |
|
TESTMET0.1,1 | | | 99.08 114 | 98.96 115 | 99.44 142 | 99.63 159 | 99.38 132 | 100.00 1 | 99.45 97 | 95.53 239 | 99.48 173 | 100.00 1 | 99.71 10 | 99.02 236 | 96.84 255 | 99.99 103 | 99.91 132 |
|
test-mter | | | 98.96 131 | 98.82 130 | 99.40 148 | 99.40 215 | 99.28 141 | 100.00 1 | 99.45 97 | 95.44 248 | 99.42 176 | 99.12 281 | 99.70 11 | 99.01 237 | 96.82 256 | 99.99 103 | 99.91 132 |
|
UniMVSNet_NR-MVSNet | | | 97.16 215 | 96.80 217 | 98.22 220 | 98.38 276 | 98.41 191 | 100.00 1 | 99.45 97 | 96.14 222 | 97.76 268 | 99.64 242 | 95.05 205 | 98.50 285 | 97.98 222 | 86.84 322 | 97.75 235 |
|
PatchmatchNet | | | 99.03 119 | 98.96 115 | 99.26 161 | 99.49 199 | 98.33 200 | 99.38 289 | 99.45 97 | 96.64 199 | 99.96 106 | 99.58 255 | 99.49 35 | 99.50 210 | 97.63 234 | 99.00 150 | 99.93 128 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
EI-MVSNet-UG-set | | | 99.69 43 | 99.63 42 | 99.87 88 | 99.99 52 | 99.64 112 | 99.95 218 | 99.44 106 | 98.35 69 | 100.00 1 | 100.00 1 | 98.98 99 | 99.97 113 | 99.98 71 | 100.00 1 | 100.00 1 |
|
EI-MVSNet-Vis-set | | | 99.70 39 | 99.64 38 | 99.87 88 | 100.00 1 | 99.64 112 | 99.98 204 | 99.44 106 | 98.35 69 | 99.99 93 | 100.00 1 | 99.04 92 | 99.96 127 | 99.98 71 | 100.00 1 | 100.00 1 |
|
Regformer-3 | | | 99.73 29 | 99.65 34 | 99.96 45 | 100.00 1 | 99.89 64 | 100.00 1 | 99.44 106 | 98.40 63 | 100.00 1 | 100.00 1 | 99.03 96 | 99.97 113 | 99.99 57 | 100.00 1 | 100.00 1 |
|
Regformer-4 | | | 99.73 29 | 99.65 34 | 99.95 56 | 100.00 1 | 99.89 64 | 100.00 1 | 99.44 106 | 98.40 63 | 100.00 1 | 100.00 1 | 99.03 96 | 99.97 113 | 99.99 57 | 100.00 1 | 100.00 1 |
|
Regformer-1 | | | 99.75 21 | 99.68 25 | 99.98 22 | 100.00 1 | 99.94 36 | 100.00 1 | 99.44 106 | 98.43 60 | 100.00 1 | 100.00 1 | 99.23 73 | 99.99 89 | 99.99 57 | 100.00 1 | 100.00 1 |
|
Regformer-2 | | | 99.75 21 | 99.68 25 | 99.97 31 | 100.00 1 | 99.94 36 | 100.00 1 | 99.44 106 | 98.42 62 | 100.00 1 | 100.00 1 | 99.22 75 | 99.99 89 | 99.99 57 | 100.00 1 | 100.00 1 |
|
APDe-MVS | | | 99.84 6 | 99.78 6 | 99.99 9 | 100.00 1 | 99.98 13 | 100.00 1 | 99.44 106 | 99.06 11 | 100.00 1 | 100.00 1 | 99.56 19 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ADS-MVSNet | | | 98.70 149 | 98.51 156 | 99.28 159 | 99.51 195 | 98.39 193 | 99.24 300 | 99.44 106 | 95.52 241 | 99.96 106 | 99.70 227 | 97.57 153 | 99.58 188 | 97.11 248 | 98.54 158 | 99.88 158 |
|
baseline1 | | | 98.91 136 | 98.61 148 | 99.81 98 | 99.71 140 | 99.77 93 | 99.78 243 | 99.44 106 | 97.51 141 | 98.81 214 | 99.99 162 | 98.25 134 | 99.76 174 | 98.60 198 | 95.41 225 | 99.89 147 |
|
F-COLMAP | | | 99.64 58 | 99.64 38 | 99.67 117 | 99.99 52 | 99.07 158 | 100.00 1 | 99.44 106 | 98.30 73 | 99.90 138 | 100.00 1 | 99.18 80 | 99.99 89 | 99.91 91 | 100.00 1 | 99.94 121 |
|
DPM-MVS | | | 99.63 61 | 99.51 67 | 100.00 1 | 99.90 110 | 100.00 1 | 100.00 1 | 99.43 116 | 99.00 25 | 100.00 1 | 100.00 1 | 99.58 18 | 100.00 1 | 97.64 233 | 100.00 1 | 100.00 1 |
|
SMA-MVS | | | 99.69 43 | 99.59 50 | 99.98 22 | 99.99 52 | 99.93 41 | 100.00 1 | 99.43 116 | 97.50 142 | 100.00 1 | 100.00 1 | 99.43 47 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
TSAR-MVS + MP. | | | 99.82 9 | 99.77 9 | 99.99 9 | 100.00 1 | 99.96 19 | 100.00 1 | 99.43 116 | 99.05 13 | 100.00 1 | 100.00 1 | 99.45 42 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
FIs | | | 97.95 186 | 97.73 192 | 98.62 196 | 98.53 272 | 99.24 147 | 100.00 1 | 99.43 116 | 96.74 188 | 97.87 266 | 99.82 212 | 95.27 202 | 98.89 249 | 98.78 185 | 93.07 263 | 97.74 258 |
|
FC-MVSNet-test | | | 97.84 188 | 97.63 195 | 98.45 204 | 98.30 281 | 99.05 160 | 100.00 1 | 99.43 116 | 96.63 201 | 97.61 277 | 99.82 212 | 95.19 204 | 98.57 280 | 98.64 194 | 93.05 264 | 97.73 265 |
|
WR-MVS_H | | | 96.73 231 | 96.32 237 | 97.95 246 | 98.26 283 | 97.88 227 | 99.72 257 | 99.43 116 | 95.06 251 | 96.99 291 | 98.68 310 | 93.02 230 | 98.53 283 | 97.43 239 | 88.33 314 | 97.43 313 |
|
JIA-IIPM | | | 97.09 218 | 96.34 235 | 99.36 152 | 98.88 258 | 98.59 186 | 99.81 239 | 99.43 116 | 84.81 333 | 99.96 106 | 90.34 341 | 98.55 128 | 99.52 207 | 97.00 250 | 98.28 178 | 99.98 105 |
|
EPP-MVSNet | | | 99.10 113 | 99.00 111 | 99.40 148 | 99.51 195 | 98.68 182 | 99.92 224 | 99.43 116 | 95.47 245 | 99.65 166 | 100.00 1 | 99.51 28 | 99.76 174 | 99.53 148 | 98.00 188 | 99.75 194 |
|
SED-MVS | | | 99.83 7 | 99.77 9 | 100.00 1 | 100.00 1 | 99.99 3 | 100.00 1 | 99.42 124 | 99.03 19 | 100.00 1 | 100.00 1 | 99.50 33 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
IU-MVS | | | | | | 100.00 1 | 99.99 3 | | 99.42 124 | 99.12 6 | 100.00 1 | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_TWO | | | | | | | | | 99.42 124 | 99.03 19 | 100.00 1 | 100.00 1 | 99.56 19 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_241102_ONE | | | | | | 100.00 1 | 99.99 3 | | 99.42 124 | 99.03 19 | 100.00 1 | 100.00 1 | 99.50 33 | 100.00 1 | | | |
|
SF-MVS | | | 99.66 54 | 99.57 57 | 99.95 56 | 99.99 52 | 99.85 83 | 100.00 1 | 99.42 124 | 97.67 121 | 100.00 1 | 100.00 1 | 99.05 89 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ETH3D cwj APD-0.16 | | | 99.63 61 | 99.53 65 | 99.94 71 | 99.97 92 | 99.82 88 | 100.00 1 | 99.42 124 | 97.39 151 | 100.00 1 | 100.00 1 | 98.98 99 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ETH3 D test6400 | | | 99.68 47 | 99.59 50 | 99.97 31 | 99.99 52 | 99.93 41 | 100.00 1 | 99.42 124 | 97.97 94 | 100.00 1 | 100.00 1 | 98.90 111 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
9.14 | | | | 99.57 57 | | 99.99 52 | | 100.00 1 | 99.42 124 | 97.54 136 | 100.00 1 | 100.00 1 | 99.15 83 | 99.99 89 | 100.00 1 | 100.00 1 | |
|
ETH3D-3000-0.1 | | | 99.66 54 | 99.57 57 | 99.95 56 | 99.99 52 | 99.85 83 | 100.00 1 | 99.42 124 | 97.58 132 | 100.00 1 | 100.00 1 | 99.12 85 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
save fliter | | | | | | 99.99 52 | 99.93 41 | 100.00 1 | 99.42 124 | 98.93 32 | | | | | | | |
|
MSP-MVS | | | 99.83 7 | 99.78 6 | 100.00 1 | 100.00 1 | 99.99 3 | 100.00 1 | 99.42 124 | 99.04 14 | 100.00 1 | 100.00 1 | 99.53 23 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_0728_SECOND | | | | | 100.00 1 | 99.99 52 | 99.99 3 | 100.00 1 | 99.42 124 | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test0726 | | | | | | 100.00 1 | 99.99 3 | 100.00 1 | 99.42 124 | 99.04 14 | 100.00 1 | 100.00 1 | 99.53 23 | | | | |
|
DPE-MVS | | | 99.79 14 | 99.73 16 | 99.99 9 | 99.99 52 | 99.98 13 | 100.00 1 | 99.42 124 | 98.91 35 | 100.00 1 | 100.00 1 | 99.22 75 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_part1 | | | | | 0.00 337 | | 0.00 357 | 0.00 348 | 99.42 124 | | | | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
MP-MVS-pluss | | | 99.61 66 | 99.50 69 | 99.97 31 | 99.98 88 | 99.92 48 | 100.00 1 | 99.42 124 | 97.53 138 | 99.77 158 | 100.00 1 | 98.77 119 | 100.00 1 | 99.99 57 | 100.00 1 | 99.99 103 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
DVP-MVS | | | 99.81 11 | 99.77 9 | 99.94 71 | 100.00 1 | 99.86 80 | 100.00 1 | 99.42 124 | 98.87 39 | 100.00 1 | 100.00 1 | 99.65 12 | 99.96 127 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ACMMP_NAP | | | 99.67 52 | 99.57 57 | 99.97 31 | 99.98 88 | 99.92 48 | 100.00 1 | 99.42 124 | 97.83 107 | 100.00 1 | 100.00 1 | 98.89 113 | 100.00 1 | 99.98 71 | 100.00 1 | 100.00 1 |
|
zzz-MVS | | | 99.68 47 | 99.59 50 | 99.97 31 | 99.99 52 | 99.91 51 | 100.00 1 | 99.42 124 | 98.32 71 | 99.94 129 | 100.00 1 | 98.65 123 | 100.00 1 | 99.96 80 | 100.00 1 | 100.00 1 |
|
MTGPA | | | | | | | | | 99.42 124 | | | | | | | | |
|
MTAPA | | | 99.68 47 | 99.59 50 | 99.97 31 | 99.99 52 | 99.91 51 | 100.00 1 | 99.42 124 | 98.32 71 | 99.94 129 | 100.00 1 | 98.65 123 | 100.00 1 | 99.96 80 | 100.00 1 | 100.00 1 |
|
TEST9 | | | | | | 100.00 1 | 99.95 28 | 100.00 1 | 99.42 124 | 97.65 123 | 100.00 1 | 100.00 1 | 99.53 23 | 99.97 113 | | | |
|
train_agg | | | 99.71 35 | 99.63 42 | 99.97 31 | 100.00 1 | 99.95 28 | 100.00 1 | 99.42 124 | 97.70 118 | 100.00 1 | 100.00 1 | 99.51 28 | 99.97 113 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_8 | | | | | | 100.00 1 | 99.91 51 | 100.00 1 | 99.42 124 | 97.70 118 | 100.00 1 | 100.00 1 | 99.51 28 | 99.98 109 | | | |
|
agg_prior1 | | | 99.71 35 | 99.63 42 | 99.95 56 | 100.00 1 | 99.88 74 | 100.00 1 | 99.42 124 | 97.72 114 | 100.00 1 | 100.00 1 | 99.51 28 | 99.97 113 | 100.00 1 | 100.00 1 | 100.00 1 |
|
agg_prior | | | | | | 100.00 1 | 99.88 74 | | 99.42 124 | | 100.00 1 | | | 99.97 113 | | | |
|
PS-MVSNAJ | | | 99.64 58 | 99.57 57 | 99.85 91 | 99.78 132 | 99.81 89 | 99.95 218 | 99.42 124 | 98.38 66 | 100.00 1 | 100.00 1 | 98.75 120 | 100.00 1 | 99.88 95 | 99.99 103 | 99.74 195 |
|
SD-MVS | | | 99.81 11 | 99.75 14 | 99.99 9 | 99.99 52 | 99.96 19 | 100.00 1 | 99.42 124 | 99.01 24 | 100.00 1 | 100.00 1 | 99.33 55 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS | | | 99.61 66 | 99.49 71 | 99.98 22 | 99.99 52 | 99.94 36 | 100.00 1 | 99.42 124 | 97.82 108 | 99.99 93 | 100.00 1 | 98.20 135 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
CDPH-MVS | | | 99.73 29 | 99.64 38 | 99.99 9 | 100.00 1 | 99.97 17 | 100.00 1 | 99.42 124 | 98.02 88 | 100.00 1 | 100.00 1 | 99.32 58 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test12 | | | | | 99.95 56 | 99.99 52 | 99.89 64 | | 99.42 124 | | 100.00 1 | | 99.24 72 | 99.97 113 | | 100.00 1 | 100.00 1 |
|
UniMVSNet (Re) | | | 97.29 211 | 96.85 216 | 98.59 200 | 98.49 273 | 99.13 156 | 100.00 1 | 99.42 124 | 96.52 206 | 98.24 252 | 98.90 302 | 94.93 207 | 98.89 249 | 97.54 236 | 87.61 318 | 97.75 235 |
|
abl_6 | | | 99.53 72 | 99.40 74 | 99.92 76 | 100.00 1 | 99.76 94 | 100.00 1 | 99.42 124 | 97.21 165 | 100.00 1 | 100.00 1 | 98.12 138 | 100.00 1 | 99.82 107 | 100.00 1 | 100.00 1 |
|
mPP-MVS | | | 99.69 43 | 99.60 49 | 99.97 31 | 100.00 1 | 99.91 51 | 100.00 1 | 99.42 124 | 97.91 101 | 100.00 1 | 100.00 1 | 99.04 92 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
HPM-MVS_fast | | | 99.60 69 | 99.49 71 | 99.91 77 | 99.99 52 | 99.78 92 | 100.00 1 | 99.42 124 | 97.09 171 | 100.00 1 | 100.00 1 | 98.95 105 | 99.96 127 | 99.98 71 | 100.00 1 | 100.00 1 |
|
HPM-MVS | | | 99.59 70 | 99.50 69 | 99.89 83 | 100.00 1 | 99.70 106 | 100.00 1 | 99.42 124 | 97.46 145 | 100.00 1 | 100.00 1 | 98.60 125 | 99.96 127 | 99.99 57 | 100.00 1 | 100.00 1 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test11 | | | | | | | | | 99.42 124 | | | | | | | | |
|
APD-MVS | | | 99.68 47 | 99.58 54 | 99.97 31 | 99.99 52 | 99.96 19 | 100.00 1 | 99.42 124 | 97.53 138 | 100.00 1 | 100.00 1 | 99.27 69 | 99.97 113 | 100.00 1 | 100.00 1 | 100.00 1 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
114514_t | | | 99.39 85 | 99.25 89 | 99.81 98 | 99.97 92 | 99.48 126 | 100.00 1 | 99.42 124 | 95.53 239 | 100.00 1 | 100.00 1 | 98.37 133 | 99.95 133 | 99.97 78 | 100.00 1 | 100.00 1 |
|
CP-MVS | | | 99.67 52 | 99.58 54 | 99.95 56 | 100.00 1 | 99.84 86 | 100.00 1 | 99.42 124 | 97.77 111 | 100.00 1 | 100.00 1 | 99.07 87 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
SteuartSystems-ACMMP | | | 99.78 16 | 99.71 19 | 99.98 22 | 99.76 136 | 99.95 28 | 100.00 1 | 99.42 124 | 98.69 49 | 100.00 1 | 100.00 1 | 99.52 26 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
Skip Steuart: Steuart Systems R&D Blog. |
CPTT-MVS | | | 99.49 78 | 99.38 77 | 99.85 91 | 100.00 1 | 99.54 117 | 100.00 1 | 99.42 124 | 97.58 132 | 99.98 98 | 100.00 1 | 97.43 160 | 100.00 1 | 99.99 57 | 100.00 1 | 100.00 1 |
|
DeepPCF-MVS | | 98.03 4 | 98.54 160 | 99.72 18 | 94.98 306 | 99.99 52 | 84.94 336 | 100.00 1 | 99.42 124 | 99.98 1 | 100.00 1 | 100.00 1 | 98.11 139 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
ADS-MVSNet2 | | | 98.28 176 | 98.51 156 | 97.62 258 | 99.51 195 | 95.03 281 | 99.24 300 | 99.41 167 | 95.52 241 | 99.96 106 | 99.70 227 | 97.57 153 | 97.94 318 | 97.11 248 | 98.54 158 | 99.88 158 |
|
Vis-MVSNet | | | 98.52 162 | 98.25 169 | 99.34 154 | 99.68 146 | 98.55 188 | 99.68 265 | 99.41 167 | 97.34 156 | 99.94 129 | 100.00 1 | 90.38 258 | 99.70 182 | 99.03 174 | 98.84 152 | 99.76 193 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
xiu_mvs_v2_base | | | 99.51 73 | 99.41 73 | 99.82 95 | 99.70 142 | 99.73 100 | 99.92 224 | 99.40 169 | 98.15 77 | 100.00 1 | 100.00 1 | 98.50 129 | 100.00 1 | 99.85 99 | 99.13 145 | 99.74 195 |
|
Anonymous20231211 | | | 96.29 255 | 95.70 262 | 98.07 233 | 99.80 128 | 97.49 239 | 99.15 317 | 99.40 169 | 89.11 322 | 97.75 271 | 99.45 268 | 88.93 275 | 98.98 240 | 98.26 214 | 89.47 305 | 97.73 265 |
|
AllTest | | | 98.55 159 | 98.40 162 | 98.99 176 | 99.93 104 | 97.35 244 | 100.00 1 | 99.40 169 | 97.08 173 | 99.09 194 | 99.98 165 | 93.37 223 | 99.95 133 | 96.94 251 | 99.84 128 | 99.68 202 |
|
TestCases | | | | | 98.99 176 | 99.93 104 | 97.35 244 | | 99.40 169 | 97.08 173 | 99.09 194 | 99.98 165 | 93.37 223 | 99.95 133 | 96.94 251 | 99.84 128 | 99.68 202 |
|
HQP_MVS | | | 97.71 193 | 97.82 188 | 97.37 264 | 99.00 247 | 94.80 288 | 100.00 1 | 99.40 169 | 99.00 25 | 99.08 196 | 99.97 173 | 88.58 280 | 99.55 198 | 99.79 108 | 95.57 223 | 97.76 225 |
|
plane_prior5 | | | | | | | | | 99.40 169 | | | | | 99.55 198 | 99.79 108 | 95.57 223 | 97.76 225 |
|
HQP3-MVS | | | | | | | | | 99.40 169 | | | | | | | 95.58 219 | |
|
DP-MVS | | | 98.86 140 | 98.54 154 | 99.81 98 | 99.97 92 | 99.45 127 | 99.52 279 | 99.40 169 | 94.35 272 | 98.36 239 | 100.00 1 | 96.13 189 | 99.97 113 | 99.12 170 | 100.00 1 | 100.00 1 |
|
HQP-MVS | | | 97.73 191 | 97.85 186 | 97.39 263 | 99.07 235 | 94.82 285 | 100.00 1 | 99.40 169 | 99.04 14 | 99.17 187 | 99.97 173 | 88.61 278 | 99.57 189 | 99.79 108 | 95.58 219 | 97.77 223 |
|
OMC-MVS | | | 99.27 101 | 99.38 77 | 98.96 179 | 99.95 99 | 97.06 257 | 100.00 1 | 99.40 169 | 98.83 41 | 99.88 143 | 100.00 1 | 97.01 169 | 99.86 156 | 99.47 151 | 99.84 128 | 99.97 110 |
|
DeepC-MVS | | 97.84 5 | 99.00 125 | 98.80 133 | 99.60 126 | 99.93 104 | 99.03 162 | 100.00 1 | 99.40 169 | 98.61 55 | 99.33 181 | 100.00 1 | 92.23 238 | 99.95 133 | 99.74 116 | 99.96 116 | 99.83 170 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TAPA-MVS | | 96.40 10 | 97.64 194 | 97.37 202 | 98.45 204 | 99.94 102 | 95.70 275 | 100.00 1 | 99.40 169 | 97.65 123 | 99.53 170 | 100.00 1 | 99.31 59 | 99.66 183 | 80.48 337 | 100.00 1 | 100.00 1 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
COLMAP_ROB | | 97.10 7 | 98.29 175 | 98.17 175 | 98.65 195 | 99.94 102 | 97.39 242 | 99.30 296 | 99.40 169 | 95.64 234 | 97.75 271 | 100.00 1 | 92.69 235 | 99.95 133 | 98.89 180 | 99.92 121 | 98.62 220 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
cdsmvs_eth3d_5k | | | 24.41 323 | 32.55 324 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 99.39 182 | 0.00 352 | 0.00 353 | 100.00 1 | 93.55 222 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
DWT-MVSNet_test | | | 99.22 109 | 99.22 96 | 99.22 165 | 99.56 181 | 97.98 220 | 99.89 230 | 99.39 182 | 97.20 166 | 99.96 106 | 100.00 1 | 99.52 26 | 99.82 166 | 99.11 171 | 98.34 172 | 99.87 164 |
|
dp | | | 98.72 147 | 98.61 148 | 99.03 174 | 99.53 185 | 97.39 242 | 99.45 283 | 99.39 182 | 95.62 236 | 99.94 129 | 99.52 263 | 98.83 115 | 99.82 166 | 96.77 261 | 98.42 166 | 99.89 147 |
|
VDD-MVS | | | 96.58 239 | 95.99 248 | 98.34 212 | 99.52 190 | 95.33 276 | 99.18 309 | 99.38 185 | 96.64 199 | 99.77 158 | 100.00 1 | 72.51 338 | 100.00 1 | 100.00 1 | 96.94 215 | 99.70 200 |
|
RPMNet | | | 95.10 284 | 93.82 287 | 98.93 180 | 99.31 222 | 98.86 173 | 99.13 319 | 99.38 185 | 79.82 338 | 99.96 106 | 95.13 333 | 95.69 197 | 98.10 308 | 77.54 342 | 98.40 167 | 99.84 167 |
|
CMPMVS | | 66.12 22 | 90.65 305 | 92.04 299 | 86.46 324 | 96.18 327 | 66.87 346 | 98.03 338 | 99.38 185 | 83.38 336 | 85.49 337 | 99.55 260 | 77.59 332 | 98.80 258 | 94.44 288 | 94.31 253 | 93.72 338 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
DU-MVS | | | 96.93 226 | 96.49 228 | 98.22 220 | 98.31 279 | 98.41 191 | 100.00 1 | 99.37 188 | 96.41 211 | 97.76 268 | 99.65 238 | 92.14 239 | 98.50 285 | 97.98 222 | 86.84 322 | 97.75 235 |
|
LPG-MVS_test | | | 97.31 209 | 97.32 204 | 97.28 268 | 98.85 262 | 94.60 297 | 100.00 1 | 99.37 188 | 97.35 154 | 98.85 209 | 99.98 165 | 86.66 294 | 99.56 193 | 99.55 143 | 95.26 231 | 97.70 279 |
|
LGP-MVS_train | | | | | 97.28 268 | 98.85 262 | 94.60 297 | | 99.37 188 | 97.35 154 | 98.85 209 | 99.98 165 | 86.66 294 | 99.56 193 | 99.55 143 | 95.26 231 | 97.70 279 |
|
tpm2 | | | 98.64 153 | 98.58 152 | 98.81 189 | 99.42 209 | 97.12 254 | 99.69 263 | 99.37 188 | 93.63 289 | 99.94 129 | 99.67 234 | 98.96 104 | 99.47 213 | 98.62 197 | 97.95 190 | 99.83 170 |
|
CDS-MVSNet | | | 98.96 131 | 98.95 119 | 99.01 175 | 99.48 201 | 98.36 198 | 99.93 223 | 99.37 188 | 96.79 186 | 99.31 182 | 99.83 209 | 99.77 7 | 98.91 246 | 98.07 219 | 97.98 189 | 99.77 191 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MSDG | | | 98.90 138 | 98.63 146 | 99.70 114 | 99.92 107 | 99.25 145 | 100.00 1 | 99.37 188 | 95.71 232 | 99.40 180 | 100.00 1 | 96.58 182 | 99.95 133 | 96.80 258 | 99.94 119 | 99.91 132 |
|
xiu_mvs_v1_base_debu | | | 99.35 89 | 99.21 97 | 99.79 104 | 99.67 147 | 99.71 102 | 99.78 243 | 99.36 194 | 98.13 79 | 100.00 1 | 100.00 1 | 97.00 172 | 100.00 1 | 99.83 102 | 99.07 147 | 99.66 204 |
|
xiu_mvs_v1_base | | | 99.35 89 | 99.21 97 | 99.79 104 | 99.67 147 | 99.71 102 | 99.78 243 | 99.36 194 | 98.13 79 | 100.00 1 | 100.00 1 | 97.00 172 | 100.00 1 | 99.83 102 | 99.07 147 | 99.66 204 |
|
xiu_mvs_v1_base_debi | | | 99.35 89 | 99.21 97 | 99.79 104 | 99.67 147 | 99.71 102 | 99.78 243 | 99.36 194 | 98.13 79 | 100.00 1 | 100.00 1 | 97.00 172 | 100.00 1 | 99.83 102 | 99.07 147 | 99.66 204 |
|
TSAR-MVS + GP. | | | 99.61 66 | 99.69 22 | 99.35 153 | 99.99 52 | 98.06 216 | 100.00 1 | 99.36 194 | 99.83 2 | 100.00 1 | 100.00 1 | 98.95 105 | 99.99 89 | 100.00 1 | 99.11 146 | 100.00 1 |
|
XVG-OURS-SEG-HR | | | 98.27 177 | 98.31 167 | 98.14 227 | 99.59 170 | 95.92 272 | 100.00 1 | 99.36 194 | 98.48 58 | 99.21 186 | 100.00 1 | 89.27 270 | 99.94 144 | 99.76 114 | 99.17 144 | 98.56 221 |
|
XVG-OURS | | | 98.30 173 | 98.36 166 | 98.13 230 | 99.58 175 | 95.91 273 | 100.00 1 | 99.36 194 | 98.69 49 | 99.23 185 | 100.00 1 | 91.20 246 | 99.92 149 | 99.34 158 | 97.82 198 | 98.56 221 |
|
tpmrst | | | 98.98 130 | 98.93 121 | 99.14 168 | 99.61 165 | 97.74 232 | 99.52 279 | 99.36 194 | 96.05 223 | 99.98 98 | 99.64 242 | 99.04 92 | 99.86 156 | 98.94 176 | 98.19 183 | 99.82 174 |
|
UnsupCasMVSNet_eth | | | 94.25 288 | 93.89 286 | 95.34 302 | 97.63 304 | 92.13 320 | 99.73 255 | 99.36 194 | 94.88 254 | 92.78 323 | 98.63 312 | 82.72 316 | 96.53 327 | 94.57 286 | 84.73 329 | 97.36 316 |
|
UniMVSNet_ETH3D | | | 95.28 281 | 94.41 285 | 97.89 251 | 98.91 255 | 95.14 279 | 99.13 319 | 99.35 202 | 92.11 307 | 97.17 289 | 99.66 236 | 70.28 340 | 99.36 222 | 97.88 227 | 95.18 237 | 99.16 214 |
|
NR-MVSNet | | | 96.63 236 | 96.04 246 | 98.38 208 | 98.31 279 | 98.98 168 | 99.22 308 | 99.35 202 | 95.87 226 | 94.43 319 | 99.65 238 | 92.73 234 | 98.40 291 | 96.78 259 | 88.05 315 | 97.75 235 |
|
TranMVSNet+NR-MVSNet | | | 96.45 245 | 96.01 247 | 97.79 254 | 98.00 294 | 97.62 236 | 100.00 1 | 99.35 202 | 95.98 224 | 97.31 285 | 99.64 242 | 90.09 260 | 98.00 316 | 96.89 254 | 86.80 325 | 97.75 235 |
|
CostFormer | | | 98.84 141 | 98.77 135 | 99.04 173 | 99.41 210 | 97.58 237 | 99.67 266 | 99.35 202 | 94.66 260 | 99.96 106 | 99.36 272 | 99.28 68 | 99.74 177 | 99.41 154 | 97.81 199 | 99.81 178 |
|
MIMVSNet | | | 97.06 221 | 96.73 220 | 98.05 240 | 99.38 219 | 96.64 266 | 98.47 335 | 99.35 202 | 93.41 293 | 99.48 173 | 98.53 315 | 89.66 264 | 97.70 322 | 94.16 293 | 98.11 186 | 99.80 188 |
|
TAMVS | | | 98.76 145 | 98.73 138 | 98.86 186 | 99.44 208 | 97.69 233 | 99.57 274 | 99.34 207 | 96.57 202 | 99.12 193 | 99.81 215 | 98.83 115 | 99.16 230 | 97.97 225 | 97.91 192 | 99.73 199 |
|
CLD-MVS | | | 97.64 194 | 97.74 190 | 97.36 265 | 99.01 243 | 94.76 293 | 100.00 1 | 99.34 207 | 99.30 4 | 99.00 201 | 99.97 173 | 87.49 287 | 99.57 189 | 99.96 80 | 95.58 219 | 97.75 235 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
WR-MVS | | | 97.09 218 | 96.64 222 | 98.46 203 | 98.43 274 | 99.09 157 | 99.97 210 | 99.33 209 | 95.62 236 | 97.76 268 | 99.67 234 | 91.17 247 | 98.56 282 | 98.49 202 | 89.28 307 | 97.74 258 |
|
ACMH | | 96.25 11 | 96.77 229 | 96.62 224 | 97.21 271 | 98.96 253 | 94.43 302 | 99.64 268 | 99.33 209 | 97.43 149 | 96.55 303 | 99.97 173 | 83.52 313 | 99.54 201 | 99.07 173 | 95.13 240 | 97.66 291 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PS-CasMVS | | | 96.34 253 | 95.78 258 | 98.03 242 | 98.18 288 | 98.27 205 | 99.71 258 | 99.32 211 | 94.75 256 | 96.82 297 | 99.65 238 | 86.98 293 | 98.15 300 | 97.74 230 | 88.85 311 | 97.66 291 |
|
CP-MVSNet | | | 96.73 231 | 96.25 238 | 98.18 223 | 98.21 286 | 98.67 183 | 99.77 248 | 99.32 211 | 95.06 251 | 97.20 288 | 99.65 238 | 90.10 259 | 98.19 298 | 98.06 220 | 88.90 310 | 97.66 291 |
|
XVG-ACMP-BASELINE | | | 96.60 238 | 96.52 227 | 96.84 286 | 98.41 275 | 93.29 312 | 99.99 186 | 99.32 211 | 97.76 113 | 98.51 233 | 99.29 275 | 81.95 320 | 99.54 201 | 98.40 205 | 95.03 243 | 97.68 285 |
|
PatchT | | | 95.90 272 | 94.95 283 | 98.75 191 | 99.03 241 | 98.39 193 | 99.08 324 | 99.32 211 | 85.52 331 | 99.96 106 | 94.99 335 | 97.94 142 | 98.05 315 | 80.20 338 | 98.47 163 | 99.81 178 |
|
ACMP | | 97.00 8 | 97.19 213 | 97.16 212 | 97.27 270 | 98.97 252 | 94.58 300 | 100.00 1 | 99.32 211 | 97.97 94 | 97.45 282 | 99.98 165 | 85.79 302 | 99.56 193 | 99.70 121 | 95.24 234 | 97.67 290 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
xxxxxxxxxxxxxcwj | | | 99.77 18 | 99.70 20 | 99.97 31 | 99.99 52 | 99.93 41 | 100.00 1 | 99.31 216 | 98.93 32 | 100.00 1 | 100.00 1 | 99.05 89 | 99.99 89 | 100.00 1 | 100.00 1 | 100.00 1 |
|
Vis-MVSNet (Re-imp) | | | 98.99 127 | 98.89 127 | 99.29 158 | 99.64 157 | 98.89 172 | 99.98 204 | 99.31 216 | 96.74 188 | 99.48 173 | 100.00 1 | 98.11 139 | 99.10 232 | 98.39 206 | 98.34 172 | 99.89 147 |
|
ACMH+ | | 96.20 13 | 96.49 244 | 96.33 236 | 97.00 277 | 99.06 239 | 93.80 307 | 99.81 239 | 99.31 216 | 97.32 158 | 95.89 310 | 99.97 173 | 82.62 318 | 99.54 201 | 98.34 209 | 94.63 249 | 97.65 296 |
|
MS-PatchMatch | | | 95.66 276 | 95.87 253 | 95.05 304 | 97.80 300 | 89.25 330 | 98.88 330 | 99.30 219 | 96.35 214 | 96.86 295 | 99.01 292 | 81.35 323 | 99.43 217 | 93.30 300 | 99.98 111 | 96.46 328 |
|
canonicalmvs | | | 99.03 119 | 98.73 138 | 99.94 71 | 99.75 138 | 99.95 28 | 100.00 1 | 99.30 219 | 97.64 125 | 100.00 1 | 100.00 1 | 95.22 203 | 99.97 113 | 99.76 114 | 96.90 216 | 99.91 132 |
|
tpm cat1 | | | 98.05 182 | 97.76 189 | 98.92 182 | 99.50 198 | 97.10 256 | 99.77 248 | 99.30 219 | 90.20 319 | 99.72 163 | 98.71 309 | 97.71 148 | 99.86 156 | 96.75 262 | 98.20 182 | 99.81 178 |
|
PMMVS | | | 99.12 111 | 98.97 114 | 99.58 132 | 99.57 178 | 98.98 168 | 100.00 1 | 99.30 219 | 97.14 168 | 99.96 106 | 100.00 1 | 96.53 186 | 99.82 166 | 99.70 121 | 98.49 161 | 99.94 121 |
|
CANet_DTU | | | 99.02 123 | 98.90 126 | 99.41 146 | 99.88 112 | 98.71 180 | 100.00 1 | 99.29 223 | 98.84 40 | 100.00 1 | 100.00 1 | 94.02 217 | 100.00 1 | 98.08 218 | 99.96 116 | 99.52 209 |
|
EI-MVSNet | | | 97.98 185 | 97.93 185 | 98.16 226 | 99.11 231 | 97.84 230 | 99.74 252 | 99.29 223 | 94.39 271 | 98.65 222 | 100.00 1 | 97.21 163 | 98.88 252 | 97.62 235 | 95.31 229 | 97.75 235 |
|
PEN-MVS | | | 96.01 269 | 95.48 273 | 97.58 260 | 97.74 301 | 97.26 250 | 99.90 227 | 99.29 223 | 94.55 263 | 96.79 298 | 99.55 260 | 87.38 288 | 97.84 320 | 96.92 253 | 87.24 320 | 97.65 296 |
|
MVSTER | | | 98.58 156 | 98.52 155 | 98.77 190 | 99.65 152 | 99.68 108 | 100.00 1 | 99.29 223 | 95.63 235 | 98.65 222 | 99.80 218 | 99.78 6 | 98.88 252 | 98.59 199 | 95.31 229 | 97.73 265 |
|
XXY-MVS | | | 97.14 217 | 96.63 223 | 98.67 194 | 98.65 266 | 98.92 171 | 99.54 277 | 99.29 223 | 95.57 238 | 97.63 274 | 99.83 209 | 87.79 285 | 99.35 224 | 98.39 206 | 92.95 265 | 97.75 235 |
|
cl-mvsnet2 | | | 98.23 179 | 98.11 176 | 98.58 201 | 99.82 114 | 99.01 165 | 100.00 1 | 99.28 228 | 96.92 180 | 98.33 242 | 99.21 278 | 98.09 141 | 98.97 242 | 98.72 189 | 92.61 268 | 97.76 225 |
|
OPM-MVS | | | 97.21 212 | 97.18 211 | 97.32 266 | 98.08 291 | 94.66 294 | 100.00 1 | 99.28 228 | 98.65 53 | 98.92 204 | 99.98 165 | 86.03 300 | 99.56 193 | 98.28 213 | 95.41 225 | 97.72 271 |
|
BH-w/o | | | 98.82 143 | 98.81 132 | 98.88 185 | 99.62 163 | 96.71 263 | 100.00 1 | 99.28 228 | 97.09 171 | 98.81 214 | 100.00 1 | 94.91 208 | 99.96 127 | 99.54 146 | 100.00 1 | 99.96 113 |
|
BH-untuned | | | 98.64 153 | 98.65 144 | 98.60 197 | 99.59 170 | 96.17 269 | 100.00 1 | 99.28 228 | 96.67 197 | 98.41 238 | 100.00 1 | 94.52 212 | 99.83 163 | 99.41 154 | 100.00 1 | 99.81 178 |
|
UnsupCasMVSNet_bld | | | 89.50 308 | 88.00 310 | 93.99 315 | 95.30 332 | 88.86 331 | 98.52 334 | 99.28 228 | 85.50 332 | 87.80 335 | 94.11 336 | 61.63 344 | 96.96 325 | 90.63 317 | 79.26 336 | 96.15 330 |
|
FMVSNet3 | | | 97.30 210 | 96.95 213 | 98.37 209 | 99.65 152 | 99.25 145 | 99.71 258 | 99.28 228 | 94.23 273 | 98.53 230 | 98.91 301 | 93.30 225 | 98.11 305 | 95.31 278 | 93.60 256 | 97.73 265 |
|
BH-RMVSNet | | | 98.46 165 | 98.08 178 | 99.59 128 | 99.61 165 | 99.19 152 | 100.00 1 | 99.28 228 | 97.06 175 | 98.95 203 | 100.00 1 | 88.99 273 | 99.82 166 | 98.83 184 | 100.00 1 | 99.77 191 |
|
LTVRE_ROB | | 95.29 16 | 96.32 254 | 96.10 243 | 96.99 278 | 98.55 270 | 93.88 306 | 99.45 283 | 99.28 228 | 94.50 267 | 96.46 304 | 99.52 263 | 84.86 305 | 99.48 212 | 97.26 245 | 95.03 243 | 97.59 306 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
EIA-MVS | | | 99.26 103 | 99.19 101 | 99.45 141 | 99.63 159 | 98.75 176 | 100.00 1 | 99.27 236 | 96.93 178 | 99.95 127 | 100.00 1 | 97.47 156 | 99.79 170 | 99.74 116 | 99.72 133 | 99.82 174 |
|
CS-MVS | | | 99.33 94 | 99.23 94 | 99.65 120 | 99.63 159 | 99.18 153 | 100.00 1 | 99.27 236 | 97.45 146 | 99.96 106 | 100.00 1 | 97.22 162 | 99.87 155 | 99.67 130 | 99.86 127 | 99.90 141 |
|
GBi-Net | | | 96.07 266 | 95.80 256 | 96.89 283 | 99.53 185 | 94.87 282 | 99.18 309 | 99.27 236 | 93.71 283 | 98.53 230 | 98.81 305 | 84.23 309 | 98.07 311 | 95.31 278 | 93.60 256 | 97.72 271 |
|
test1 | | | 96.07 266 | 95.80 256 | 96.89 283 | 99.53 185 | 94.87 282 | 99.18 309 | 99.27 236 | 93.71 283 | 98.53 230 | 98.81 305 | 84.23 309 | 98.07 311 | 95.31 278 | 93.60 256 | 97.72 271 |
|
FMVSNet2 | | | 96.22 257 | 95.60 267 | 98.06 237 | 99.53 185 | 98.33 200 | 99.45 283 | 99.27 236 | 93.71 283 | 98.03 258 | 98.84 304 | 84.23 309 | 98.10 308 | 93.97 295 | 93.40 260 | 97.73 265 |
|
FMVSNet1 | | | 94.45 286 | 93.63 290 | 96.89 283 | 98.87 260 | 94.87 282 | 99.18 309 | 99.27 236 | 90.95 315 | 97.31 285 | 98.81 305 | 72.89 337 | 98.07 311 | 92.61 303 | 92.81 266 | 97.72 271 |
|
ETV-MVS | | | 99.34 92 | 99.24 91 | 99.64 121 | 99.58 175 | 99.33 137 | 100.00 1 | 99.25 242 | 97.57 134 | 99.96 106 | 100.00 1 | 97.44 159 | 99.79 170 | 99.70 121 | 99.65 136 | 99.81 178 |
|
DTE-MVSNet | | | 95.52 277 | 94.99 282 | 97.08 273 | 97.49 314 | 96.45 268 | 100.00 1 | 99.25 242 | 93.82 282 | 96.17 305 | 99.57 258 | 87.81 284 | 97.18 324 | 94.57 286 | 86.26 327 | 97.62 302 |
|
ACMM | | 97.17 6 | 97.37 207 | 97.40 200 | 97.29 267 | 99.01 243 | 94.64 296 | 100.00 1 | 99.25 242 | 98.07 85 | 98.44 237 | 99.98 165 | 87.38 288 | 99.55 198 | 99.25 164 | 95.19 236 | 97.69 283 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ppachtmachnet_test | | | 96.17 261 | 95.89 252 | 97.02 276 | 97.61 306 | 95.24 277 | 99.99 186 | 99.24 245 | 93.31 297 | 96.71 301 | 99.62 250 | 94.34 214 | 98.07 311 | 89.87 323 | 92.30 275 | 97.75 235 |
|
GA-MVS | | | 97.72 192 | 97.27 208 | 99.06 169 | 99.24 228 | 97.93 224 | 100.00 1 | 99.24 245 | 95.80 231 | 98.99 202 | 99.64 242 | 89.77 263 | 99.36 222 | 95.12 282 | 97.62 207 | 99.89 147 |
|
FMVSNet5 | | | 95.32 280 | 95.43 275 | 94.99 305 | 99.39 218 | 92.99 315 | 99.25 299 | 99.24 245 | 90.45 316 | 97.44 283 | 98.45 317 | 95.78 195 | 94.39 339 | 87.02 329 | 91.88 281 | 97.59 306 |
|
IS-MVSNet | | | 99.08 114 | 98.91 123 | 99.59 128 | 99.65 152 | 99.38 132 | 99.78 243 | 99.24 245 | 96.70 193 | 99.51 171 | 100.00 1 | 98.44 131 | 99.52 207 | 98.47 203 | 98.39 169 | 99.88 158 |
|
PS-MVSNAJss | | | 98.03 183 | 98.06 180 | 97.94 247 | 97.63 304 | 97.33 247 | 99.89 230 | 99.23 249 | 96.27 218 | 98.03 258 | 99.59 254 | 98.75 120 | 98.78 259 | 98.52 201 | 94.61 250 | 97.70 279 |
|
K. test v3 | | | 95.46 279 | 95.14 279 | 96.40 293 | 97.53 311 | 93.40 311 | 99.99 186 | 99.23 249 | 95.49 244 | 92.70 326 | 99.73 221 | 84.26 308 | 98.12 303 | 93.94 296 | 93.38 261 | 97.68 285 |
|
miper_enhance_ethall | | | 98.33 171 | 98.27 168 | 98.51 202 | 99.66 151 | 99.04 161 | 100.00 1 | 99.22 251 | 97.53 138 | 98.51 233 | 99.38 271 | 99.49 35 | 98.75 265 | 98.02 221 | 92.61 268 | 97.76 225 |
|
nrg030 | | | 97.64 194 | 97.27 208 | 98.75 191 | 98.34 277 | 99.53 118 | 100.00 1 | 99.22 251 | 96.21 221 | 98.27 248 | 99.95 189 | 94.40 213 | 98.98 240 | 99.23 165 | 89.78 302 | 97.75 235 |
|
lessismore_v0 | | | | | 96.05 298 | 97.55 310 | 91.80 323 | | 99.22 251 | | 91.87 327 | 99.91 198 | 83.50 314 | 98.68 268 | 92.48 306 | 90.42 299 | 97.68 285 |
|
cascas | | | 98.43 166 | 98.07 179 | 99.50 138 | 99.65 152 | 99.02 163 | 100.00 1 | 99.22 251 | 94.21 275 | 99.72 163 | 99.98 165 | 92.03 241 | 99.93 146 | 99.68 128 | 98.12 185 | 99.54 208 |
|
MIMVSNet1 | | | 91.96 298 | 91.20 300 | 94.23 313 | 94.94 335 | 91.69 324 | 99.34 293 | 99.22 251 | 88.23 326 | 94.18 320 | 98.45 317 | 75.52 335 | 93.41 342 | 79.37 339 | 91.49 285 | 97.60 305 |
|
Patchmatch-test | | | 97.83 189 | 97.42 198 | 99.06 169 | 99.08 234 | 97.66 235 | 98.66 332 | 99.21 256 | 93.65 288 | 98.25 250 | 99.58 255 | 99.47 39 | 99.57 189 | 90.25 322 | 98.59 157 | 99.95 118 |
|
mvs_anonymous | | | 98.80 144 | 98.60 150 | 99.38 151 | 99.57 178 | 99.24 147 | 100.00 1 | 99.21 256 | 95.87 226 | 98.92 204 | 99.82 212 | 96.39 188 | 99.03 235 | 99.13 169 | 98.50 160 | 99.88 158 |
|
TR-MVS | | | 98.14 180 | 97.74 190 | 99.33 155 | 99.59 170 | 98.28 204 | 99.27 297 | 99.21 256 | 96.42 210 | 99.15 191 | 99.94 193 | 88.87 276 | 99.79 170 | 98.88 181 | 98.29 177 | 99.93 128 |
|
jajsoiax | | | 97.07 220 | 96.79 219 | 97.89 251 | 97.28 320 | 97.12 254 | 99.95 218 | 99.19 259 | 96.55 203 | 97.31 285 | 99.69 229 | 87.35 290 | 98.91 246 | 98.70 190 | 95.12 241 | 97.66 291 |
|
MVS_Test | | | 98.93 135 | 98.65 144 | 99.77 110 | 99.62 163 | 99.50 119 | 99.99 186 | 99.19 259 | 95.52 241 | 99.96 106 | 99.86 204 | 96.54 185 | 99.98 109 | 98.65 193 | 98.48 162 | 99.82 174 |
|
MVS-HIRNet | | | 94.12 289 | 92.73 297 | 98.29 215 | 99.33 221 | 95.95 271 | 99.38 289 | 99.19 259 | 74.54 340 | 98.26 249 | 86.34 345 | 86.07 298 | 99.06 234 | 91.60 311 | 99.87 126 | 99.85 166 |
|
MTMP | | | | | | | | 100.00 1 | 99.18 262 | | | | | | | | |
|
mvs_tets | | | 97.00 224 | 96.69 221 | 97.94 247 | 97.41 319 | 97.27 249 | 99.60 272 | 99.18 262 | 96.51 207 | 97.35 284 | 99.69 229 | 86.53 296 | 98.91 246 | 98.84 182 | 95.09 242 | 97.65 296 |
|
pmmvs4 | | | 97.17 214 | 96.80 217 | 98.27 216 | 97.68 303 | 98.64 185 | 100.00 1 | 99.18 262 | 94.22 274 | 98.55 228 | 99.71 224 | 93.67 220 | 98.47 288 | 95.66 272 | 92.57 271 | 97.71 278 |
|
diffmvs | | | 98.96 131 | 98.73 138 | 99.63 122 | 99.54 182 | 99.16 154 | 100.00 1 | 99.18 262 | 97.33 157 | 99.96 106 | 100.00 1 | 94.60 211 | 99.91 150 | 99.66 133 | 98.33 176 | 99.82 174 |
|
DeepMVS_CX | | | | | 89.98 320 | 98.90 256 | 71.46 343 | | 99.18 262 | 97.61 127 | 96.92 292 | 99.83 209 | 86.07 298 | 99.83 163 | 96.02 268 | 97.65 206 | 98.65 219 |
|
baseline | | | 98.69 150 | 98.45 159 | 99.41 146 | 99.52 190 | 98.67 183 | 100.00 1 | 99.17 267 | 97.03 176 | 99.13 192 | 100.00 1 | 93.17 227 | 99.74 177 | 99.70 121 | 98.34 172 | 99.81 178 |
|
Fast-Effi-MVS+-dtu | | | 98.38 170 | 98.56 153 | 97.82 253 | 99.58 175 | 94.44 301 | 100.00 1 | 99.16 268 | 96.75 187 | 99.51 171 | 99.63 246 | 95.03 206 | 99.60 184 | 97.71 231 | 99.67 135 | 99.42 211 |
|
Fast-Effi-MVS+ | | | 98.40 169 | 98.02 182 | 99.55 135 | 99.63 159 | 99.06 159 | 100.00 1 | 99.15 269 | 95.07 250 | 99.42 176 | 99.95 189 | 93.26 226 | 99.73 179 | 97.44 238 | 98.24 179 | 99.87 164 |
|
anonymousdsp | | | 97.16 215 | 96.88 215 | 98.00 243 | 97.08 322 | 98.06 216 | 99.81 239 | 99.15 269 | 94.58 262 | 97.84 267 | 99.62 250 | 90.49 255 | 98.60 275 | 97.98 222 | 95.32 228 | 97.33 318 |
|
casdiffmvs | | | 98.65 152 | 98.38 163 | 99.46 140 | 99.52 190 | 98.74 179 | 100.00 1 | 99.15 269 | 96.91 181 | 99.05 199 | 100.00 1 | 92.75 233 | 99.83 163 | 99.70 121 | 98.38 170 | 99.81 178 |
|
lupinMVS | | | 99.29 99 | 99.16 104 | 99.69 115 | 99.45 206 | 99.49 122 | 100.00 1 | 99.15 269 | 97.45 146 | 99.97 102 | 100.00 1 | 96.76 179 | 99.76 174 | 99.67 130 | 100.00 1 | 99.81 178 |
|
1112_ss | | | 98.91 136 | 98.71 141 | 99.51 136 | 99.69 143 | 98.75 176 | 99.99 186 | 99.15 269 | 96.82 184 | 98.84 211 | 100.00 1 | 97.45 157 | 99.89 151 | 98.66 191 | 97.75 202 | 99.89 147 |
|
IterMVS-SCA-FT | | | 96.72 233 | 96.42 232 | 97.62 258 | 99.40 215 | 96.83 261 | 99.99 186 | 99.14 274 | 94.65 261 | 97.55 280 | 99.72 222 | 89.65 265 | 98.31 294 | 95.62 274 | 92.05 277 | 97.73 265 |
|
testing_2 | | | 90.79 304 | 88.26 309 | 98.35 211 | 89.11 341 | 98.56 187 | 99.70 260 | 99.14 274 | 93.70 286 | 73.80 341 | 94.06 337 | 55.19 345 | 98.76 264 | 97.17 246 | 92.50 272 | 97.74 258 |
|
YYNet1 | | | 92.44 297 | 90.92 303 | 97.03 275 | 96.20 326 | 97.06 257 | 99.99 186 | 99.14 274 | 88.21 327 | 67.93 345 | 98.43 319 | 88.63 277 | 96.28 330 | 90.64 316 | 89.08 309 | 97.74 258 |
|
MDA-MVSNet_test_wron | | | 92.61 296 | 91.09 302 | 97.19 272 | 96.71 324 | 97.26 250 | 100.00 1 | 99.14 274 | 88.61 324 | 67.90 346 | 98.32 322 | 89.03 272 | 96.57 326 | 90.47 320 | 89.59 303 | 97.74 258 |
|
Test_1112_low_res | | | 98.83 142 | 98.60 150 | 99.51 136 | 99.69 143 | 98.75 176 | 99.99 186 | 99.14 274 | 96.81 185 | 98.84 211 | 99.06 285 | 97.45 157 | 99.89 151 | 98.66 191 | 97.75 202 | 99.89 147 |
|
v2v482 | | | 96.70 234 | 96.18 240 | 98.27 216 | 98.04 292 | 98.39 193 | 100.00 1 | 99.13 279 | 94.19 277 | 98.58 227 | 99.08 284 | 90.48 256 | 98.67 269 | 95.69 271 | 90.44 298 | 97.75 235 |
|
MVSFormer | | | 98.94 134 | 98.82 130 | 99.28 159 | 99.45 206 | 99.49 122 | 100.00 1 | 99.13 279 | 95.46 246 | 99.97 102 | 100.00 1 | 96.76 179 | 98.59 277 | 98.63 195 | 100.00 1 | 99.74 195 |
|
jason | | | 99.11 112 | 98.96 115 | 99.59 128 | 99.17 229 | 99.31 139 | 100.00 1 | 99.13 279 | 97.38 152 | 99.83 147 | 100.00 1 | 95.54 199 | 99.72 180 | 99.57 142 | 99.97 114 | 99.74 195 |
jason: jason. |
test_djsdf | | | 97.55 200 | 97.38 201 | 98.07 233 | 97.50 312 | 97.99 219 | 100.00 1 | 99.13 279 | 95.46 246 | 98.47 236 | 99.85 206 | 92.01 242 | 98.59 277 | 98.63 195 | 95.36 227 | 97.62 302 |
|
IterMVS | | | 96.76 230 | 96.46 230 | 97.63 256 | 99.41 210 | 96.89 259 | 99.99 186 | 99.13 279 | 94.74 258 | 97.59 279 | 99.66 236 | 89.63 267 | 98.28 296 | 95.71 270 | 92.31 274 | 97.72 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
tpm | | | 98.24 178 | 98.22 174 | 98.32 214 | 99.13 230 | 95.79 274 | 99.53 278 | 99.12 284 | 95.20 249 | 99.96 106 | 99.36 272 | 97.58 152 | 99.28 227 | 97.41 240 | 96.67 217 | 99.88 158 |
|
miper_ehance_all_eth | | | 97.81 190 | 97.66 194 | 98.23 219 | 99.49 199 | 98.37 196 | 99.99 186 | 99.11 285 | 94.78 255 | 98.25 250 | 99.21 278 | 98.18 136 | 98.57 280 | 97.35 243 | 92.61 268 | 97.76 225 |
|
v7n | | | 96.06 268 | 95.42 276 | 97.99 245 | 97.58 309 | 97.35 244 | 99.86 234 | 99.11 285 | 92.81 305 | 97.91 265 | 99.49 265 | 90.99 250 | 98.92 245 | 92.51 305 | 88.49 313 | 97.70 279 |
|
cl-mvsnet_ | | | 97.54 201 | 97.32 204 | 98.18 223 | 99.47 204 | 98.14 211 | 100.00 1 | 99.10 287 | 94.16 278 | 97.60 278 | 99.63 246 | 97.52 155 | 98.65 271 | 96.47 263 | 91.97 280 | 97.76 225 |
|
cl-mvsnet1 | | | 97.52 203 | 97.35 203 | 98.05 240 | 99.46 205 | 98.11 212 | 100.00 1 | 99.10 287 | 94.21 275 | 97.62 276 | 99.63 246 | 97.65 150 | 98.29 295 | 96.47 263 | 91.98 279 | 97.76 225 |
|
cl_fuxian | | | 97.58 198 | 97.42 198 | 98.06 237 | 99.48 201 | 98.16 209 | 99.96 213 | 99.10 287 | 94.54 264 | 98.13 254 | 99.20 280 | 97.87 144 | 98.25 297 | 97.28 244 | 91.20 290 | 97.75 235 |
|
Effi-MVS+ | | | 98.58 156 | 98.24 170 | 99.61 124 | 99.60 167 | 99.26 143 | 97.85 339 | 99.10 287 | 96.22 220 | 99.97 102 | 99.89 200 | 93.75 219 | 99.77 173 | 99.43 152 | 98.34 172 | 99.81 178 |
|
RRT_MVS | | | 98.48 164 | 98.41 160 | 98.70 193 | 99.64 157 | 99.67 109 | 100.00 1 | 99.10 287 | 96.26 219 | 98.75 217 | 99.96 182 | 99.04 92 | 98.75 265 | 98.42 204 | 94.51 252 | 97.68 285 |
|
IterMVS-LS | | | 97.56 199 | 97.44 197 | 97.92 250 | 99.38 219 | 97.90 225 | 99.89 230 | 99.10 287 | 94.41 270 | 98.32 243 | 99.54 262 | 97.21 163 | 98.11 305 | 97.50 237 | 91.62 283 | 97.75 235 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
V42 | | | 96.65 235 | 96.16 242 | 98.11 232 | 98.17 289 | 98.23 207 | 99.99 186 | 99.09 293 | 93.97 280 | 98.74 219 | 99.05 287 | 91.09 248 | 98.82 255 | 95.46 276 | 89.90 300 | 97.27 319 |
|
RRT_test8_iter05 | | | 98.32 172 | 98.23 172 | 98.60 197 | 99.65 152 | 99.23 150 | 100.00 1 | 99.09 293 | 95.65 233 | 98.07 256 | 99.93 196 | 99.25 71 | 98.82 255 | 98.90 179 | 93.50 259 | 97.75 235 |
|
eth_miper_zixun_eth | | | 97.47 204 | 97.28 206 | 98.06 237 | 99.41 210 | 97.94 223 | 99.62 270 | 99.08 295 | 94.46 269 | 98.19 253 | 99.56 259 | 96.91 177 | 98.50 285 | 96.78 259 | 91.49 285 | 97.74 258 |
|
v1192 | | | 96.18 259 | 95.49 271 | 98.26 218 | 98.01 293 | 98.15 210 | 99.99 186 | 99.08 295 | 93.36 295 | 98.54 229 | 98.97 297 | 89.47 268 | 98.89 249 | 91.15 314 | 90.82 293 | 97.75 235 |
|
v1144 | | | 96.51 241 | 95.97 250 | 98.13 230 | 97.98 295 | 98.04 218 | 99.99 186 | 99.08 295 | 93.51 292 | 98.62 225 | 98.98 294 | 90.98 251 | 98.62 272 | 93.79 297 | 90.79 294 | 97.74 258 |
|
miper_lstm_enhance | | | 97.40 206 | 97.28 206 | 97.75 255 | 99.48 201 | 97.52 238 | 100.00 1 | 99.07 298 | 94.08 279 | 98.01 261 | 99.61 252 | 97.38 161 | 97.98 317 | 96.44 266 | 91.47 287 | 97.76 225 |
|
v1921920 | | | 96.16 262 | 95.50 269 | 98.14 227 | 97.88 299 | 97.96 221 | 99.99 186 | 99.07 298 | 93.33 296 | 98.60 226 | 99.24 277 | 89.37 269 | 98.71 267 | 91.28 312 | 90.74 295 | 97.75 235 |
|
v148 | | | 96.29 255 | 95.84 254 | 97.63 256 | 97.74 301 | 96.53 267 | 100.00 1 | 99.07 298 | 93.52 291 | 98.01 261 | 99.42 270 | 91.22 245 | 98.60 275 | 96.37 267 | 87.22 321 | 97.75 235 |
|
v1240 | | | 95.96 270 | 95.25 277 | 98.07 233 | 97.91 297 | 97.87 229 | 99.96 213 | 99.07 298 | 93.24 299 | 98.64 224 | 98.96 298 | 88.98 274 | 98.61 273 | 89.58 324 | 90.92 292 | 97.75 235 |
|
v8 | | | 96.35 252 | 95.73 261 | 98.21 222 | 98.11 290 | 98.23 207 | 99.94 222 | 99.07 298 | 92.66 306 | 98.29 245 | 99.00 293 | 91.46 243 | 98.77 262 | 94.17 291 | 88.83 312 | 97.62 302 |
|
v10 | | | 96.14 264 | 95.50 269 | 98.07 233 | 98.19 287 | 97.96 221 | 99.83 237 | 99.07 298 | 92.10 308 | 98.07 256 | 98.94 299 | 91.07 249 | 98.61 273 | 92.41 308 | 89.82 301 | 97.63 300 |
|
testgi | | | 96.18 259 | 95.93 251 | 96.93 282 | 98.98 251 | 94.20 305 | 100.00 1 | 99.07 298 | 97.16 167 | 96.06 307 | 99.86 204 | 84.08 312 | 97.79 321 | 90.38 321 | 97.80 200 | 98.81 217 |
|
v144192 | | | 96.40 249 | 95.81 255 | 98.17 225 | 97.89 298 | 98.11 212 | 99.99 186 | 99.06 305 | 93.39 294 | 98.75 217 | 99.09 283 | 90.43 257 | 98.66 270 | 93.10 301 | 90.55 297 | 97.75 235 |
|
PCF-MVS | | 98.23 3 | 98.69 150 | 98.37 165 | 99.62 123 | 99.78 132 | 99.02 163 | 99.23 306 | 99.06 305 | 96.43 209 | 98.08 255 | 100.00 1 | 94.72 209 | 99.95 133 | 98.16 216 | 99.91 122 | 99.90 141 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
RPSCF | | | 97.37 207 | 98.24 170 | 94.76 308 | 99.80 128 | 84.57 337 | 99.99 186 | 99.05 307 | 94.95 253 | 99.82 154 | 100.00 1 | 94.03 216 | 100.00 1 | 98.15 217 | 98.38 170 | 99.70 200 |
|
FPMVS | | | 77.92 315 | 79.45 314 | 73.34 332 | 76.87 349 | 46.81 354 | 98.24 336 | 99.05 307 | 59.89 345 | 73.55 342 | 98.34 321 | 36.81 351 | 86.55 345 | 80.96 336 | 91.35 289 | 86.65 343 |
|
Gipuma | | | 84.73 310 | 83.50 312 | 88.40 322 | 97.50 312 | 82.21 339 | 88.87 344 | 99.05 307 | 65.81 342 | 85.71 336 | 90.49 340 | 53.70 346 | 96.31 329 | 78.64 340 | 91.74 282 | 86.67 342 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
pm-mvs1 | | | 95.76 274 | 95.01 281 | 98.00 243 | 98.23 285 | 97.45 240 | 99.24 300 | 99.04 310 | 93.13 302 | 95.93 309 | 99.72 222 | 86.28 297 | 98.84 254 | 95.62 274 | 87.92 316 | 97.72 271 |
|
ET-MVSNet_ETH3D | | | 96.41 246 | 95.48 273 | 99.20 166 | 99.81 118 | 99.75 96 | 100.00 1 | 99.02 311 | 97.30 161 | 78.33 340 | 100.00 1 | 97.73 147 | 97.94 318 | 99.70 121 | 87.41 319 | 99.92 130 |
|
pmmvs6 | | | 93.64 291 | 92.87 295 | 95.94 300 | 97.47 316 | 91.41 326 | 98.92 328 | 99.02 311 | 87.84 329 | 95.01 314 | 99.61 252 | 77.24 333 | 98.77 262 | 94.33 289 | 86.41 326 | 97.63 300 |
|
our_test_3 | | | 96.51 241 | 96.35 234 | 96.98 279 | 97.61 306 | 95.05 280 | 99.98 204 | 99.01 313 | 94.68 259 | 96.77 300 | 99.06 285 | 95.87 193 | 98.14 301 | 91.81 310 | 92.37 273 | 97.75 235 |
|
CR-MVSNet | | | 98.02 184 | 97.71 193 | 98.93 180 | 99.31 222 | 98.86 173 | 99.13 319 | 99.00 314 | 96.53 205 | 99.96 106 | 98.98 294 | 96.94 175 | 98.10 308 | 91.18 313 | 98.40 167 | 99.84 167 |
|
Patchmtry | | | 96.81 228 | 96.37 233 | 98.14 227 | 99.31 222 | 98.55 188 | 98.91 329 | 99.00 314 | 90.45 316 | 97.92 264 | 98.98 294 | 96.94 175 | 98.12 303 | 94.27 290 | 91.53 284 | 97.75 235 |
|
Effi-MVS+-dtu | | | 98.51 163 | 98.86 128 | 97.47 262 | 99.77 134 | 94.21 304 | 100.00 1 | 98.94 316 | 97.61 127 | 99.91 137 | 98.75 308 | 95.89 191 | 99.51 209 | 99.36 156 | 99.48 142 | 98.68 218 |
|
mvs-test1 | | | 98.89 139 | 98.99 113 | 98.60 197 | 99.77 134 | 95.96 270 | 100.00 1 | 98.94 316 | 97.61 127 | 99.93 134 | 99.92 197 | 95.89 191 | 99.93 146 | 99.36 156 | 99.50 141 | 99.90 141 |
|
MDA-MVSNet-bldmvs | | | 91.65 303 | 89.94 306 | 96.79 288 | 96.72 323 | 96.70 264 | 99.42 286 | 98.94 316 | 88.89 323 | 66.97 348 | 98.37 320 | 81.43 322 | 95.91 334 | 89.24 327 | 89.46 306 | 97.75 235 |
|
new_pmnet | | | 94.11 290 | 93.47 292 | 96.04 299 | 96.60 325 | 92.82 316 | 99.97 210 | 98.91 319 | 90.21 318 | 95.26 312 | 98.05 324 | 85.89 301 | 98.14 301 | 84.28 333 | 92.01 278 | 97.16 321 |
|
test20.03 | | | 93.11 294 | 92.85 296 | 93.88 316 | 95.19 333 | 91.83 322 | 100.00 1 | 98.87 320 | 93.68 287 | 92.76 324 | 98.88 303 | 89.20 271 | 92.71 343 | 77.88 341 | 89.19 308 | 97.09 322 |
|
test_0402 | | | 94.35 287 | 93.70 289 | 96.32 295 | 97.92 296 | 93.60 308 | 99.61 271 | 98.85 321 | 88.19 328 | 94.68 316 | 99.48 266 | 80.01 326 | 98.58 279 | 89.39 325 | 95.15 239 | 96.77 325 |
|
new-patchmatchnet | | | 90.30 307 | 89.46 307 | 92.84 318 | 90.77 339 | 88.55 332 | 99.83 237 | 98.80 322 | 90.07 320 | 87.86 334 | 95.00 334 | 78.77 330 | 94.30 340 | 84.86 332 | 79.15 337 | 95.68 335 |
|
pmmvs-eth3d | | | 91.73 302 | 90.67 304 | 94.92 307 | 91.63 338 | 92.71 317 | 99.90 227 | 98.54 323 | 91.19 313 | 88.08 333 | 95.50 331 | 79.31 329 | 96.13 332 | 90.55 319 | 81.32 335 | 95.91 334 |
|
Anonymous20231206 | | | 93.45 293 | 93.17 294 | 94.30 311 | 95.00 334 | 89.69 329 | 99.98 204 | 98.43 324 | 93.30 298 | 94.50 318 | 98.59 313 | 90.52 254 | 95.73 336 | 77.46 343 | 90.73 296 | 97.48 312 |
|
USDC | | | 95.90 272 | 95.70 262 | 96.50 292 | 98.60 269 | 92.56 319 | 100.00 1 | 98.30 325 | 97.77 111 | 96.92 292 | 99.94 193 | 81.25 324 | 99.45 216 | 93.54 299 | 94.96 246 | 97.49 310 |
|
SixPastTwentyTwo | | | 95.71 275 | 95.49 271 | 96.38 294 | 97.42 317 | 93.01 313 | 99.84 236 | 98.23 326 | 94.75 256 | 95.98 308 | 99.97 173 | 85.35 304 | 98.43 290 | 94.71 285 | 93.17 262 | 97.69 283 |
|
MVP-Stereo | | | 96.51 241 | 96.48 229 | 96.60 291 | 95.65 330 | 94.25 303 | 98.84 331 | 98.16 327 | 95.85 230 | 95.23 313 | 99.04 288 | 92.54 237 | 99.13 231 | 92.98 302 | 99.98 111 | 96.43 329 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
OurMVSNet-221017-0 | | | 96.14 264 | 95.98 249 | 96.62 290 | 97.49 314 | 93.44 310 | 99.92 224 | 98.16 327 | 95.86 228 | 97.65 273 | 99.95 189 | 85.71 303 | 98.78 259 | 94.93 284 | 94.18 254 | 97.64 299 |
|
ITE_SJBPF | | | | | 96.84 286 | 98.96 253 | 93.49 309 | | 98.12 329 | 98.12 82 | 98.35 240 | 99.97 173 | 84.45 306 | 99.56 193 | 95.63 273 | 95.25 233 | 97.49 310 |
|
EG-PatchMatch MVS | | | 92.94 295 | 92.49 298 | 94.29 312 | 95.87 329 | 87.07 334 | 99.07 326 | 98.11 330 | 93.19 300 | 88.98 332 | 98.66 311 | 70.89 339 | 99.08 233 | 92.43 307 | 95.21 235 | 96.72 326 |
|
pmmvs5 | | | 95.94 271 | 95.61 266 | 96.95 280 | 97.42 317 | 94.66 294 | 100.00 1 | 98.08 331 | 93.60 290 | 97.05 290 | 99.43 269 | 87.02 291 | 98.46 289 | 95.76 269 | 92.12 276 | 97.72 271 |
|
LCM-MVSNet | | | 79.01 314 | 76.93 317 | 85.27 325 | 78.28 348 | 68.01 345 | 96.57 341 | 98.03 332 | 55.10 346 | 82.03 339 | 93.27 338 | 31.99 353 | 93.95 341 | 82.72 334 | 74.37 340 | 93.84 337 |
|
OpenMVS_ROB | | 88.34 20 | 91.89 300 | 91.12 301 | 94.19 314 | 95.55 331 | 87.63 333 | 99.26 298 | 98.03 332 | 86.61 330 | 90.65 331 | 96.82 328 | 70.14 341 | 98.78 259 | 86.54 330 | 96.50 218 | 96.15 330 |
|
ambc | | | | | 88.45 321 | 86.84 342 | 70.76 344 | 97.79 340 | 98.02 334 | | 90.91 329 | 95.14 332 | 38.69 350 | 98.51 284 | 94.97 283 | 84.23 330 | 96.09 332 |
|
tmp_tt | | | 75.80 316 | 74.26 318 | 80.43 327 | 52.91 355 | 53.67 353 | 87.42 346 | 97.98 335 | 61.80 344 | 67.04 347 | 100.00 1 | 76.43 334 | 96.40 328 | 96.47 263 | 28.26 348 | 91.23 340 |
|
TransMVSNet (Re) | | | 94.78 285 | 93.72 288 | 97.93 249 | 98.34 277 | 97.88 227 | 99.23 306 | 97.98 335 | 91.60 310 | 94.55 317 | 99.71 224 | 87.89 283 | 98.36 292 | 89.30 326 | 84.92 328 | 97.56 308 |
|
LF4IMVS | | | 96.19 258 | 96.18 240 | 96.23 297 | 98.26 283 | 92.09 321 | 100.00 1 | 97.89 337 | 97.82 108 | 97.94 263 | 99.87 202 | 82.71 317 | 99.38 221 | 97.41 240 | 93.71 255 | 97.20 320 |
|
Baseline_NR-MVSNet | | | 96.16 262 | 95.70 262 | 97.56 261 | 98.28 282 | 96.79 262 | 100.00 1 | 97.86 338 | 91.93 309 | 97.63 274 | 99.47 267 | 92.14 239 | 98.35 293 | 97.13 247 | 86.83 324 | 97.54 309 |
|
TinyColmap | | | 95.50 278 | 95.12 280 | 96.64 289 | 98.69 265 | 93.00 314 | 99.40 287 | 97.75 339 | 96.40 212 | 96.14 306 | 99.87 202 | 79.47 327 | 99.50 210 | 93.62 298 | 94.72 248 | 97.40 315 |
|
TDRefinement | | | 91.93 299 | 90.48 305 | 96.27 296 | 81.60 346 | 92.65 318 | 99.10 322 | 97.61 340 | 93.96 281 | 93.77 321 | 99.85 206 | 80.03 325 | 99.53 206 | 97.82 229 | 70.59 341 | 96.63 327 |
|
PMVS | | 60.66 23 | 65.98 321 | 65.05 321 | 68.75 335 | 55.06 354 | 38.40 355 | 88.19 345 | 96.98 341 | 48.30 350 | 44.82 351 | 88.52 343 | 12.22 356 | 86.49 346 | 67.58 345 | 83.79 331 | 81.35 346 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Patchmatch-RL test | | | 93.49 292 | 93.63 290 | 93.05 317 | 91.78 336 | 83.41 338 | 98.21 337 | 96.95 342 | 91.58 311 | 91.05 328 | 97.64 326 | 99.40 52 | 95.83 335 | 94.11 294 | 81.95 333 | 99.91 132 |
|
pmmvs3 | | | 90.62 306 | 89.36 308 | 94.40 310 | 90.53 340 | 91.49 325 | 100.00 1 | 96.73 343 | 84.21 334 | 93.65 322 | 96.65 329 | 82.56 319 | 94.83 338 | 82.28 335 | 77.62 339 | 96.89 324 |
|
PM-MVS | | | 88.39 309 | 87.41 311 | 91.31 319 | 91.73 337 | 82.02 340 | 99.79 242 | 96.62 344 | 91.06 314 | 90.71 330 | 95.73 330 | 48.60 348 | 95.96 333 | 90.56 318 | 81.91 334 | 95.97 333 |
|
LCM-MVSNet-Re | | | 96.52 240 | 97.21 210 | 94.44 309 | 99.27 225 | 85.80 335 | 99.85 235 | 96.61 345 | 95.98 224 | 92.75 325 | 98.48 316 | 93.97 218 | 97.55 323 | 99.58 141 | 98.43 165 | 99.98 105 |
|
door-mid | | | | | | | | | 96.32 346 | | | | | | | | |
|
door | | | | | | | | | 96.13 347 | | | | | | | | |
|
PMMVS2 | | | 79.15 313 | 77.28 316 | 84.76 326 | 82.34 345 | 72.66 341 | 99.70 260 | 95.11 348 | 71.68 341 | 84.78 338 | 90.87 339 | 32.05 352 | 89.99 344 | 75.53 344 | 63.45 342 | 91.64 339 |
|
DSMNet-mixed | | | 95.18 282 | 95.21 278 | 95.08 303 | 96.03 328 | 90.21 328 | 99.65 267 | 93.64 349 | 92.91 304 | 98.34 241 | 97.40 327 | 90.05 261 | 95.51 337 | 91.02 315 | 97.86 194 | 99.51 210 |
|
E-PMN | | | 70.72 317 | 70.06 319 | 72.69 333 | 83.92 344 | 65.48 349 | 99.95 218 | 92.72 350 | 49.88 348 | 72.30 343 | 86.26 346 | 47.17 349 | 77.43 348 | 53.83 348 | 44.49 345 | 75.17 348 |
|
N_pmnet | | | 91.88 301 | 93.37 293 | 87.40 323 | 97.24 321 | 66.33 347 | 99.90 227 | 91.05 351 | 89.77 321 | 95.65 311 | 98.58 314 | 90.05 261 | 98.11 305 | 85.39 331 | 92.72 267 | 97.75 235 |
|
MVE | | 68.59 21 | 67.22 319 | 64.68 322 | 74.84 329 | 74.67 351 | 62.32 351 | 95.84 342 | 90.87 352 | 50.98 347 | 58.72 349 | 81.05 349 | 12.20 357 | 78.95 347 | 61.06 347 | 56.75 343 | 83.24 345 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
ANet_high | | | 66.05 320 | 63.44 323 | 73.88 331 | 61.14 352 | 63.45 350 | 95.68 343 | 87.18 353 | 79.93 337 | 47.35 350 | 80.68 350 | 22.35 354 | 72.33 352 | 61.24 346 | 35.42 347 | 85.88 344 |
|
testmvs | | | 80.17 311 | 81.95 313 | 74.80 330 | 58.54 353 | 59.58 352 | 100.00 1 | 87.14 354 | 76.09 339 | 99.61 169 | 100.00 1 | 67.06 343 | 74.19 351 | 98.84 182 | 50.30 344 | 90.64 341 |
|
EMVS | | | 69.88 318 | 69.09 320 | 72.24 334 | 84.70 343 | 65.82 348 | 99.96 213 | 87.08 355 | 49.82 349 | 71.51 344 | 84.74 347 | 49.30 347 | 75.32 349 | 50.97 349 | 43.71 346 | 75.59 347 |
|
test123 | | | 79.44 312 | 79.23 315 | 80.05 328 | 80.03 347 | 71.72 342 | 100.00 1 | 77.93 356 | 62.52 343 | 94.81 315 | 99.69 229 | 78.21 331 | 74.53 350 | 92.57 304 | 27.33 349 | 93.90 336 |
|
wuyk23d | | | 28.28 322 | 29.73 325 | 23.92 336 | 75.89 350 | 32.61 356 | 66.50 347 | 12.88 357 | 16.09 351 | 14.59 352 | 16.59 352 | 12.35 355 | 32.36 353 | 39.36 350 | 13.36 350 | 6.79 349 |
|
uanet_test | | | 0.01 326 | 0.02 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
pcd_1.5k_mvsjas | | | 8.24 325 | 10.99 327 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 98.75 120 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet-low-res | | | 0.01 326 | 0.02 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
sosnet | | | 0.01 326 | 0.02 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uncertanet | | | 0.01 326 | 0.02 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
Regformer | | | 0.01 326 | 0.02 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
n2 | | | | | | | | | 0.00 358 | | | | | | | | |
|
nn | | | | | | | | | 0.00 358 | | | | | | | | |
|
ab-mvs-re | | | 8.33 324 | 11.11 326 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 100.00 1 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
uanet | | | 0.01 326 | 0.02 328 | 0.00 337 | 0.00 356 | 0.00 357 | 0.00 348 | 0.00 358 | 0.00 352 | 0.00 353 | 0.14 353 | 0.00 358 | 0.00 354 | 0.00 351 | 0.00 351 | 0.00 350 |
|
OPU-MVS | | | | | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 | | | | 100.00 1 | 99.54 22 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_0728_THIRD | | | | | | | | | | 98.79 46 | 100.00 1 | 100.00 1 | 99.61 13 | 100.00 1 | 100.00 1 | 100.00 1 | 100.00 1 |
|
GSMVS | | | | | | | | | | | | | | | | | 99.91 132 |
|
test_part2 | | | | | | 100.00 1 | 99.99 3 | | | | 100.00 1 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 99.29 66 | | | | 99.91 132 |
|
sam_mvs | | | | | | | | | | | | | 99.33 55 | | | | |
|
test_post1 | | | | | | | | 99.32 294 | | | | 88.24 344 | 99.33 55 | 99.59 186 | 98.31 210 | | |
|
test_post | | | | | | | | | | | | 89.05 342 | 99.49 35 | 99.59 186 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 97.79 325 | 99.41 51 | 99.54 201 | | | |
|
gm-plane-assit | | | | | | 99.52 190 | 97.26 250 | | | 95.86 228 | | 100.00 1 | | 99.43 217 | 98.76 187 | | |
|
test9_res | | | | | | | | | | | | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
agg_prior2 | | | | | | | | | | | | | | | 100.00 1 | 100.00 1 | 100.00 1 |
|
test_prior4 | | | | | | | 99.93 41 | 100.00 1 | | | | | | | | | |
|
test_prior2 | | | | | | | | 100.00 1 | | 98.82 43 | 100.00 1 | 100.00 1 | 99.47 39 | | 100.00 1 | 100.00 1 | |
|
旧先验2 | | | | | | | | 100.00 1 | | 98.11 83 | 100.00 1 | | | 100.00 1 | 99.67 130 | | |
|
新几何2 | | | | | | | | 100.00 1 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 100.00 1 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 100.00 1 | 97.36 242 | | |
|
segment_acmp | | | | | | | | | | | | | 99.55 21 | | | | |
|
testdata1 | | | | | | | | 100.00 1 | | 98.77 48 | | | | | | | |
|
plane_prior7 | | | | | | 99.00 247 | 94.78 292 | | | | | | | | | | |
|
plane_prior6 | | | | | | 99.06 239 | 94.80 288 | | | | | | 88.58 280 | | | | |
|
plane_prior4 | | | | | | | | | | | | 99.97 173 | | | | | |
|
plane_prior3 | | | | | | | 94.79 291 | | | 99.03 19 | 99.08 196 | | | | | | |
|
plane_prior2 | | | | | | | | 100.00 1 | | 99.00 25 | | | | | | | |
|
plane_prior1 | | | | | | 99.02 242 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.80 288 | 100.00 1 | | 99.03 19 | | | | | | 95.58 219 | |
|
HQP5-MVS | | | | | | | 94.82 285 | | | | | | | | | | |
|
HQP-NCC | | | | | | 99.07 235 | | 100.00 1 | | 99.04 14 | 99.17 187 | | | | | | |
|
ACMP_Plane | | | | | | 99.07 235 | | 100.00 1 | | 99.04 14 | 99.17 187 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 99.79 108 | | |
|
HQP4-MVS | | | | | | | | | | | 99.17 187 | | | 99.57 189 | | | 97.77 223 |
|
HQP2-MVS | | | | | | | | | | | | | 88.61 278 | | | | |
|
NP-MVS | | | | | | 99.07 235 | 94.81 287 | | | | | 99.97 173 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 99.24 147 | 99.56 275 | | 96.31 217 | 99.96 106 | | 98.86 114 | | 98.92 178 | | 99.89 147 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 94.58 251 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 95.17 238 | |
|
Test By Simon | | | | | | | | | | | | | 99.10 86 | | | | |
|