This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4793.10 195.72 682.99 197.44 289.07 696.63 294.88 7
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4592.12 895.78 480.98 797.40 489.08 496.41 893.33 75
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
DPE-MVS89.48 489.98 388.01 1294.80 972.69 3091.59 4094.10 875.90 8192.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8591.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
SMA-MVS89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10292.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 5993.00 4380.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8389.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4289.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4494.70 374.47 10888.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3893.19 3577.87 3390.32 1394.00 4674.83 2493.78 13887.63 1494.27 5993.65 62
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4992.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5293.59 2176.27 7788.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4592.35 7374.62 10688.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6085.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6289.69 16274.31 11189.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2993.49 2574.75 10388.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3883.84 7394.40 3272.24 4796.28 3885.65 2595.30 3693.62 64
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2475.17 9686.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6284.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 57
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 6992.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5794.05 1370.80 16987.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6284.66 5994.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3792.83 5473.01 13988.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 5884.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3876.73 6584.45 6294.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 13784.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9384.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 57
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15387.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17692.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7694.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 3093.33 3176.07 8083.81 7493.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6783.68 7594.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6793.94 1577.12 5282.82 8694.23 3772.13 4997.09 1184.83 3395.37 3193.65 62
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4693.04 3976.62 6784.22 6793.36 5871.44 5496.76 2180.82 7595.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 10786.84 3394.65 1867.31 9095.77 5784.80 3492.85 6892.84 94
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9588.85 10492.97 4875.41 8984.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3975.53 8783.86 7294.42 3167.87 8596.64 2782.70 6294.57 5193.66 57
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 5982.81 8794.25 3666.44 9796.24 3982.88 5994.28 5893.38 72
Regformer-286.63 4286.53 4186.95 4889.33 12471.24 6288.43 11892.05 8682.50 186.88 3290.09 12174.45 2695.61 6084.38 3990.63 9294.01 41
CANet86.45 4386.10 4987.51 3790.09 10470.94 6989.70 8492.59 6581.78 481.32 10391.43 9470.34 6397.23 984.26 4293.36 6494.37 25
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10891.89 9668.69 21485.00 5093.10 6274.43 2795.41 7184.97 2995.71 2693.02 88
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2894.07 972.45 14285.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
Regformer-186.41 4686.33 4286.64 5589.33 12470.93 7088.43 11891.39 11582.14 386.65 3490.09 12174.39 2995.01 8983.97 4790.63 9293.97 43
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5393.56 2273.95 11983.16 8191.07 10275.94 1595.19 8079.94 8394.38 5693.55 67
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11591.78 10268.96 20984.41 6393.18 6174.94 2394.93 9184.75 3595.33 3493.01 89
test117286.20 4986.22 4586.12 6793.95 3769.89 9091.79 3992.28 7575.07 9786.40 3594.58 2065.00 11495.56 6284.34 4192.60 7292.90 92
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9791.93 3492.99 4573.54 12985.94 3794.51 2465.80 10695.61 6083.04 5792.51 7493.53 69
canonicalmvs85.91 5185.87 5286.04 6989.84 11069.44 10390.45 6593.00 4376.70 6688.01 2591.23 9673.28 3893.91 13381.50 6988.80 11394.77 14
ACMMPcopyleft85.89 5285.39 5787.38 4193.59 4672.63 3292.74 1793.18 3676.78 6280.73 11293.82 5064.33 11796.29 3782.67 6390.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5385.61 5486.23 6393.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2665.00 11495.56 6282.75 6091.87 7792.50 103
CDPH-MVS85.76 5485.29 6187.17 4593.49 4871.08 6388.58 11692.42 7168.32 21984.61 6093.48 5472.32 4696.15 4579.00 8695.43 3094.28 30
TSAR-MVS + GP.85.71 5585.33 5886.84 5091.34 8472.50 3589.07 9887.28 22476.41 7085.80 4090.22 11974.15 3495.37 7681.82 6791.88 7692.65 100
Regformer-485.68 5685.45 5686.35 5988.95 14169.67 9488.29 12891.29 11781.73 585.36 4590.01 12372.62 4495.35 7783.28 5387.57 12594.03 39
alignmvs85.48 5785.32 5985.96 7089.51 11869.47 9989.74 8292.47 6776.17 7887.73 2891.46 9370.32 6493.78 13881.51 6888.95 11094.63 18
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17493.37 5760.40 17996.75 2277.20 10593.73 6395.29 2
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8190.71 5592.86 5277.46 4484.22 6792.81 7267.16 9292.94 17680.36 7994.35 5790.16 175
DELS-MVS85.41 6085.30 6085.77 7188.49 15767.93 13485.52 20693.44 2778.70 2883.63 7889.03 14974.57 2595.71 5980.26 8194.04 6193.66 57
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 6184.95 6686.57 5893.69 4370.58 7992.15 3291.62 10673.89 12282.67 8994.09 4262.60 13895.54 6580.93 7392.93 6693.57 66
Regformer-385.23 6285.07 6385.70 7288.95 14169.01 10788.29 12889.91 15680.95 885.01 4990.01 12372.45 4594.19 11982.50 6487.57 12593.90 47
abl_685.23 6284.95 6686.07 6892.23 7470.48 8090.80 5492.08 8573.51 13285.26 4694.16 3962.75 13795.92 5382.46 6591.30 8691.81 125
MVS_111021_HR85.14 6484.75 6886.32 6291.65 8172.70 2985.98 19190.33 14476.11 7982.08 9391.61 8871.36 5594.17 12181.02 7292.58 7392.08 118
casdiffmvs85.11 6585.14 6285.01 8787.20 19765.77 16987.75 14392.83 5477.84 3484.36 6692.38 7472.15 4893.93 13281.27 7190.48 9495.33 1
UA-Net85.08 6684.96 6585.45 7492.07 7668.07 13289.78 8190.86 13082.48 284.60 6193.20 6069.35 7395.22 7971.39 15590.88 9093.07 85
DPM-MVS84.93 6784.29 7286.84 5090.20 10273.04 2287.12 15893.04 3969.80 18882.85 8591.22 9773.06 4196.02 4876.72 11294.63 4991.46 135
baseline84.93 6784.98 6484.80 9687.30 19565.39 17687.30 15492.88 5177.62 3684.04 7192.26 7571.81 5093.96 12681.31 7090.30 9695.03 4
ETV-MVS84.90 6984.67 6985.59 7389.39 12268.66 12188.74 11092.64 6479.97 1784.10 6985.71 23669.32 7495.38 7380.82 7591.37 8492.72 95
CS-MVS84.76 7084.61 7085.22 8289.66 11266.43 15690.23 6993.56 2276.52 6982.59 9085.93 23170.41 6295.80 5579.93 8492.68 7193.42 71
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 16667.85 13587.66 14589.73 16180.05 1682.95 8289.59 13370.74 6094.82 9980.66 7884.72 16093.28 77
nrg03083.88 7283.53 7484.96 8986.77 20569.28 10490.46 6492.67 6074.79 10182.95 8291.33 9572.70 4393.09 17080.79 7779.28 22792.50 103
EI-MVSNet-UG-set83.81 7383.38 7685.09 8587.87 17567.53 13987.44 15189.66 16379.74 1882.23 9289.41 14270.24 6594.74 10279.95 8283.92 16892.99 90
CPTT-MVS83.73 7483.33 7784.92 9293.28 5070.86 7292.09 3390.38 14068.75 21379.57 11992.83 7060.60 17593.04 17480.92 7491.56 8290.86 150
EPNet83.72 7582.92 8386.14 6684.22 24169.48 9891.05 5185.27 24581.30 776.83 16891.65 8566.09 10195.56 6276.00 11793.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP_MVS83.64 7683.14 7885.14 8390.08 10568.71 11791.25 4792.44 6879.12 2378.92 12791.00 10660.42 17795.38 7378.71 8986.32 14691.33 137
Effi-MVS+83.62 7783.08 7985.24 8088.38 16267.45 14088.89 10289.15 17875.50 8882.27 9188.28 16869.61 7194.45 10977.81 9987.84 12393.84 51
OPM-MVS83.50 7882.95 8285.14 8388.79 14970.95 6889.13 9791.52 10977.55 4180.96 11091.75 8360.71 17194.50 10879.67 8586.51 14489.97 191
Vis-MVSNetpermissive83.46 7982.80 8585.43 7590.25 10168.74 11590.30 6890.13 15076.33 7680.87 11192.89 6861.00 16894.20 11872.45 14990.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 8083.45 7583.28 14192.74 6662.28 23388.17 13389.50 16675.22 9481.49 10292.74 7366.75 9395.11 8372.85 14591.58 8192.45 106
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10364.47 19392.32 2690.73 13174.45 11079.35 12291.10 10069.05 7895.12 8272.78 14687.22 13394.13 34
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17472.94 2790.64 5692.14 8477.21 4975.47 19892.83 7058.56 18694.72 10373.24 14292.71 7092.13 117
EIA-MVS83.31 8382.80 8584.82 9489.59 11465.59 17188.21 13192.68 5974.66 10578.96 12586.42 22369.06 7795.26 7875.54 12290.09 10093.62 64
MVS_Test83.15 8483.06 8083.41 13886.86 20163.21 21986.11 18992.00 9074.31 11182.87 8489.44 14170.03 6693.21 16177.39 10488.50 11993.81 53
IS-MVSNet83.15 8482.81 8484.18 11589.94 10863.30 21791.59 4088.46 20179.04 2579.49 12092.16 7665.10 11194.28 11267.71 18591.86 7994.95 5
DP-MVS Recon83.11 8682.09 9386.15 6594.44 1970.92 7188.79 10692.20 8170.53 17679.17 12391.03 10564.12 11996.03 4768.39 18290.14 9991.50 132
PAPM_NR83.02 8782.41 8884.82 9492.47 7266.37 15887.93 14091.80 10073.82 12377.32 15990.66 11167.90 8494.90 9570.37 16389.48 10793.19 82
VDD-MVS83.01 8882.36 9084.96 8991.02 8966.40 15788.91 10188.11 20477.57 3884.39 6593.29 5952.19 23393.91 13377.05 10788.70 11594.57 21
MVSFormer82.85 8982.05 9485.24 8087.35 19070.21 8290.50 6090.38 14068.55 21681.32 10389.47 13661.68 15393.46 15478.98 8790.26 9792.05 119
OMC-MVS82.69 9081.97 9784.85 9388.75 15167.42 14187.98 13690.87 12974.92 10079.72 11891.65 8562.19 14893.96 12675.26 12486.42 14593.16 83
PVSNet_Blended_VisFu82.62 9181.83 9984.96 8990.80 9469.76 9288.74 11091.70 10569.39 19578.96 12588.46 16365.47 10894.87 9874.42 12788.57 11690.24 173
MVS_111021_LR82.61 9282.11 9284.11 11688.82 14671.58 5685.15 20986.16 23874.69 10480.47 11491.04 10362.29 14590.55 24280.33 8090.08 10190.20 174
HQP-MVS82.61 9282.02 9584.37 10789.33 12466.98 14989.17 9292.19 8276.41 7077.23 16290.23 11860.17 18095.11 8377.47 10285.99 15191.03 144
CLD-MVS82.31 9481.65 10084.29 11288.47 15867.73 13885.81 19792.35 7375.78 8278.33 13986.58 21864.01 12094.35 11076.05 11687.48 13090.79 151
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 9582.41 8881.62 19090.82 9360.93 24784.47 22589.78 15876.36 7584.07 7091.88 8264.71 11690.26 24470.68 16088.89 11193.66 57
diffmvs82.10 9681.88 9882.76 17283.00 26763.78 20583.68 24289.76 15972.94 14082.02 9489.85 12665.96 10590.79 23882.38 6687.30 13293.71 56
LPG-MVS_test82.08 9781.27 10384.50 10289.23 13268.76 11390.22 7191.94 9475.37 9176.64 17591.51 9054.29 21794.91 9378.44 9283.78 16989.83 196
FIs82.07 9882.42 8781.04 20888.80 14858.34 27188.26 13093.49 2576.93 5778.47 13691.04 10369.92 6892.34 19469.87 16984.97 15792.44 107
PS-MVSNAJss82.07 9881.31 10284.34 11086.51 20967.27 14589.27 9091.51 11071.75 15479.37 12190.22 11963.15 13194.27 11377.69 10082.36 19191.49 133
API-MVS81.99 10081.23 10484.26 11390.94 9070.18 8791.10 5089.32 17071.51 16078.66 13288.28 16865.26 10995.10 8664.74 21391.23 8787.51 253
UniMVSNet_NR-MVSNet81.88 10181.54 10182.92 16088.46 15963.46 21387.13 15792.37 7280.19 1478.38 13789.14 14471.66 5393.05 17270.05 16676.46 25392.25 112
MAR-MVS81.84 10280.70 11085.27 7991.32 8571.53 5789.82 7890.92 12769.77 18978.50 13486.21 22762.36 14494.52 10765.36 20792.05 7589.77 199
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 10381.23 10483.57 13391.89 7963.43 21589.84 7781.85 28777.04 5583.21 7993.10 6252.26 23293.43 15671.98 15089.95 10393.85 49
xiu_mvs_v2_base81.69 10481.05 10783.60 13189.15 13568.03 13384.46 22790.02 15270.67 17381.30 10686.53 22163.17 13094.19 11975.60 12188.54 11788.57 235
PS-MVSNAJ81.69 10481.02 10883.70 13089.51 11868.21 13084.28 23390.09 15170.79 17081.26 10785.62 24063.15 13194.29 11175.62 12088.87 11288.59 234
PAPR81.66 10680.89 10983.99 12590.27 10064.00 20086.76 17291.77 10468.84 21277.13 16689.50 13467.63 8694.88 9767.55 18788.52 11893.09 84
UniMVSNet (Re)81.60 10781.11 10683.09 15188.38 16264.41 19487.60 14693.02 4278.42 3178.56 13388.16 17169.78 6993.26 16069.58 17276.49 25291.60 128
FC-MVSNet-test81.52 10882.02 9580.03 22588.42 16155.97 30787.95 13893.42 2977.10 5377.38 15790.98 10869.96 6791.79 21168.46 18184.50 16292.33 108
VDDNet81.52 10880.67 11184.05 12090.44 9864.13 19989.73 8385.91 24171.11 16483.18 8093.48 5450.54 25693.49 15373.40 13988.25 12194.54 22
ACMP74.13 681.51 11080.57 11284.36 10889.42 12068.69 12089.97 7691.50 11374.46 10975.04 21690.41 11553.82 22294.54 10577.56 10182.91 18389.86 195
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 11180.29 11984.70 9886.63 20869.90 8985.95 19286.77 22963.24 26981.07 10989.47 13661.08 16792.15 20078.33 9590.07 10292.05 119
jason: jason.
lupinMVS81.39 11180.27 12084.76 9787.35 19070.21 8285.55 20286.41 23362.85 27581.32 10388.61 15861.68 15392.24 19778.41 9490.26 9791.83 123
test_yl81.17 11380.47 11583.24 14489.13 13663.62 20686.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15886.90 13792.52 101
DCV-MVSNet81.17 11380.47 11583.24 14489.13 13663.62 20686.21 18689.95 15472.43 14581.78 9989.61 13157.50 19493.58 14770.75 15886.90 13792.52 101
DU-MVS81.12 11580.52 11482.90 16187.80 17863.46 21387.02 16191.87 9879.01 2678.38 13789.07 14765.02 11293.05 17270.05 16676.46 25392.20 114
PVSNet_Blended80.98 11680.34 11782.90 16188.85 14365.40 17484.43 22992.00 9067.62 22278.11 14485.05 25366.02 10394.27 11371.52 15289.50 10689.01 218
mvs-test180.88 11779.40 13585.29 7885.13 22969.75 9389.28 8988.10 20574.99 9876.44 18086.72 20757.27 19794.26 11773.53 13583.18 18091.87 122
QAPM80.88 11779.50 13385.03 8688.01 17368.97 10991.59 4092.00 9066.63 23575.15 21292.16 7657.70 19195.45 6863.52 21788.76 11490.66 156
112180.84 11979.77 12684.05 12093.11 5570.78 7384.66 21985.42 24457.37 31781.76 10192.02 7863.41 12494.12 12267.28 19092.93 6687.26 260
TranMVSNet+NR-MVSNet80.84 11980.31 11882.42 17787.85 17662.33 23187.74 14491.33 11680.55 1177.99 14789.86 12565.23 11092.62 18367.05 19575.24 27892.30 110
UGNet80.83 12179.59 13184.54 10188.04 17168.09 13189.42 8788.16 20376.95 5676.22 18489.46 13849.30 27093.94 12968.48 18090.31 9591.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 12279.92 12383.47 13488.85 14364.51 19085.53 20489.39 16870.79 17078.49 13585.06 25267.54 8793.58 14767.03 19686.58 14292.32 109
XVG-OURS-SEG-HR80.81 12279.76 12783.96 12785.60 22068.78 11283.54 24890.50 13770.66 17476.71 17291.66 8460.69 17291.26 22576.94 10981.58 19891.83 123
xiu_mvs_v1_base_debu80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
xiu_mvs_v1_base80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
xiu_mvs_v1_base_debi80.80 12479.72 12884.03 12287.35 19070.19 8485.56 19988.77 19269.06 20581.83 9588.16 17150.91 25092.85 17878.29 9687.56 12789.06 213
ACMM73.20 880.78 12779.84 12583.58 13289.31 12968.37 12589.99 7591.60 10770.28 18077.25 16089.66 12953.37 22593.53 15274.24 13082.85 18488.85 226
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 12879.51 13284.20 11494.09 3667.27 14589.64 8591.11 12458.75 30974.08 22690.72 11058.10 18895.04 8869.70 17089.42 10890.30 171
CANet_DTU80.61 12979.87 12482.83 16485.60 22063.17 22287.36 15288.65 19776.37 7475.88 19288.44 16453.51 22493.07 17173.30 14089.74 10592.25 112
VPA-MVSNet80.60 13080.55 11380.76 21388.07 17060.80 25086.86 16691.58 10875.67 8680.24 11589.45 14063.34 12590.25 24570.51 16279.22 22891.23 140
PVSNet_BlendedMVS80.60 13080.02 12182.36 17988.85 14365.40 17486.16 18892.00 9069.34 19778.11 14486.09 23066.02 10394.27 11371.52 15282.06 19387.39 255
test_part180.58 13278.97 14585.40 7686.75 20669.46 10192.32 2693.13 3766.72 23076.67 17387.81 17856.73 20295.01 8975.34 12375.27 27691.73 127
AdaColmapbinary80.58 13279.42 13484.06 11993.09 5668.91 11089.36 8888.97 18769.27 19875.70 19589.69 12857.20 19995.77 5763.06 22388.41 12087.50 254
EI-MVSNet80.52 13479.98 12282.12 18084.28 23963.19 22186.41 18088.95 18874.18 11678.69 13087.54 18666.62 9492.43 18972.57 14880.57 21090.74 154
XVG-OURS80.41 13579.23 14083.97 12685.64 21969.02 10683.03 25590.39 13971.09 16577.63 15391.49 9254.62 21691.35 22375.71 11883.47 17691.54 130
PCF-MVS73.52 780.38 13678.84 14885.01 8787.71 18268.99 10883.65 24391.46 11463.00 27277.77 15190.28 11666.10 10095.09 8761.40 23988.22 12290.94 148
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 13777.83 17188.00 1394.42 2073.33 1892.78 1592.99 4579.14 2183.67 7612.47 35267.45 8896.60 3183.06 5594.50 5294.07 37
test_djsdf80.30 13879.32 13883.27 14283.98 24665.37 17790.50 6090.38 14068.55 21676.19 18588.70 15456.44 20493.46 15478.98 8780.14 21790.97 147
v2v48280.23 13979.29 13983.05 15483.62 25164.14 19887.04 16089.97 15373.61 12678.18 14387.22 19561.10 16693.82 13676.11 11576.78 25091.18 141
NR-MVSNet80.23 13979.38 13682.78 17087.80 17863.34 21686.31 18391.09 12579.01 2672.17 24489.07 14767.20 9192.81 18266.08 20275.65 26492.20 114
Anonymous2024052980.19 14178.89 14784.10 11790.60 9564.75 18788.95 10090.90 12865.97 24380.59 11391.17 9949.97 26193.73 14469.16 17682.70 18893.81 53
IterMVS-LS80.06 14279.38 13682.11 18185.89 21563.20 22086.79 16989.34 16974.19 11575.45 20186.72 20766.62 9492.39 19172.58 14776.86 24790.75 153
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 14378.57 15284.42 10585.13 22968.74 11588.77 10788.10 20574.99 9874.97 21783.49 27257.27 19793.36 15773.53 13580.88 20491.18 141
v114480.03 14379.03 14383.01 15683.78 24964.51 19087.11 15990.57 13571.96 15278.08 14686.20 22861.41 15893.94 12974.93 12577.23 24190.60 159
v879.97 14579.02 14482.80 16784.09 24364.50 19287.96 13790.29 14774.13 11875.24 21086.81 20462.88 13693.89 13574.39 12875.40 27190.00 187
RRT_MVS79.88 14678.38 15784.38 10685.42 22370.60 7888.71 11288.75 19672.30 14778.83 12989.14 14444.44 29992.18 19978.50 9179.33 22690.35 169
OpenMVScopyleft72.83 1079.77 14778.33 16084.09 11885.17 22669.91 8890.57 5890.97 12666.70 23172.17 24491.91 8054.70 21493.96 12661.81 23690.95 8988.41 239
v1079.74 14878.67 14982.97 15984.06 24464.95 18487.88 14290.62 13373.11 13675.11 21386.56 21961.46 15794.05 12573.68 13375.55 26689.90 193
BH-RMVSNet79.61 14978.44 15583.14 14989.38 12365.93 16484.95 21487.15 22573.56 12878.19 14289.79 12756.67 20393.36 15759.53 25386.74 14090.13 177
v119279.59 15078.43 15683.07 15383.55 25364.52 18986.93 16490.58 13470.83 16877.78 15085.90 23259.15 18393.94 12973.96 13277.19 24390.76 152
ab-mvs79.51 15178.97 14581.14 20588.46 15960.91 24883.84 24089.24 17570.36 17879.03 12488.87 15263.23 12990.21 24665.12 20982.57 18992.28 111
WR-MVS79.49 15279.22 14180.27 22288.79 14958.35 27085.06 21188.61 19978.56 2977.65 15288.34 16663.81 12390.66 24164.98 21177.22 24291.80 126
v14419279.47 15378.37 15882.78 17083.35 25563.96 20186.96 16290.36 14369.99 18477.50 15485.67 23860.66 17393.77 14074.27 12976.58 25190.62 157
BH-untuned79.47 15378.60 15182.05 18289.19 13465.91 16586.07 19088.52 20072.18 14875.42 20287.69 18161.15 16593.54 15160.38 24686.83 13986.70 273
mvs_anonymous79.42 15579.11 14280.34 22084.45 23857.97 27782.59 25787.62 21767.40 22576.17 18888.56 16168.47 8089.59 25570.65 16186.05 15093.47 70
thisisatest053079.40 15677.76 17584.31 11187.69 18465.10 18387.36 15284.26 25670.04 18377.42 15688.26 17049.94 26294.79 10170.20 16484.70 16193.03 87
tttt051779.40 15677.91 16883.90 12988.10 16963.84 20388.37 12584.05 25871.45 16176.78 17089.12 14649.93 26494.89 9670.18 16583.18 18092.96 91
V4279.38 15878.24 16282.83 16481.10 30165.50 17385.55 20289.82 15771.57 15978.21 14186.12 22960.66 17393.18 16575.64 11975.46 26989.81 198
jajsoiax79.29 15977.96 16683.27 14284.68 23566.57 15589.25 9190.16 14969.20 20275.46 20089.49 13545.75 29393.13 16876.84 11080.80 20690.11 179
v192192079.22 16078.03 16582.80 16783.30 25763.94 20286.80 16890.33 14469.91 18677.48 15585.53 24158.44 18793.75 14273.60 13476.85 24890.71 155
TAPA-MVS73.13 979.15 16177.94 16782.79 16989.59 11462.99 22688.16 13491.51 11065.77 24477.14 16591.09 10160.91 16993.21 16150.26 30387.05 13592.17 116
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 16277.77 17483.22 14684.70 23466.37 15889.17 9290.19 14869.38 19675.40 20389.46 13844.17 30193.15 16676.78 11180.70 20890.14 176
UniMVSNet_ETH3D79.10 16378.24 16281.70 18986.85 20260.24 25787.28 15588.79 19174.25 11476.84 16790.53 11449.48 26791.56 21767.98 18382.15 19293.29 76
CDS-MVSNet79.07 16477.70 17783.17 14887.60 18568.23 12984.40 23186.20 23767.49 22476.36 18186.54 22061.54 15690.79 23861.86 23587.33 13190.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 16577.88 17082.38 17883.07 26464.80 18684.08 23988.95 18869.01 20878.69 13087.17 19854.70 21492.43 18974.69 12680.57 21089.89 194
v124078.99 16677.78 17382.64 17383.21 25963.54 21086.62 17590.30 14669.74 19277.33 15885.68 23757.04 20093.76 14173.13 14376.92 24590.62 157
Anonymous2023121178.97 16777.69 17882.81 16690.54 9664.29 19690.11 7391.51 11065.01 25476.16 18988.13 17550.56 25593.03 17569.68 17177.56 23991.11 143
v7n78.97 16777.58 18083.14 14983.45 25465.51 17288.32 12691.21 12073.69 12572.41 24186.32 22657.93 18993.81 13769.18 17575.65 26490.11 179
TAMVS78.89 16977.51 18183.03 15587.80 17867.79 13784.72 21885.05 24867.63 22176.75 17187.70 18062.25 14690.82 23758.53 26487.13 13490.49 164
cl_fuxian78.75 17077.91 16881.26 20182.89 27161.56 24284.09 23889.13 18069.97 18575.56 19684.29 26066.36 9892.09 20273.47 13875.48 26890.12 178
v14878.72 17177.80 17281.47 19482.73 27461.96 23786.30 18488.08 20773.26 13576.18 18685.47 24362.46 14292.36 19371.92 15173.82 29190.09 181
VPNet78.69 17278.66 15078.76 24688.31 16455.72 30984.45 22886.63 23176.79 6178.26 14090.55 11359.30 18289.70 25466.63 19777.05 24490.88 149
ET-MVSNet_ETH3D78.63 17376.63 20284.64 9986.73 20769.47 9985.01 21284.61 25169.54 19366.51 29886.59 21650.16 25991.75 21276.26 11484.24 16692.69 98
anonymousdsp78.60 17477.15 18782.98 15880.51 30767.08 14787.24 15689.53 16565.66 24675.16 21187.19 19752.52 22792.25 19677.17 10679.34 22589.61 203
miper_ehance_all_eth78.59 17577.76 17581.08 20782.66 27661.56 24283.65 24389.15 17868.87 21175.55 19783.79 26866.49 9692.03 20373.25 14176.39 25589.64 202
WR-MVS_H78.51 17678.49 15378.56 24988.02 17256.38 30288.43 11892.67 6077.14 5173.89 22787.55 18566.25 9989.24 26158.92 25973.55 29390.06 185
GBi-Net78.40 17777.40 18281.40 19687.60 18563.01 22388.39 12289.28 17171.63 15675.34 20587.28 19154.80 21091.11 22862.72 22479.57 22090.09 181
test178.40 17777.40 18281.40 19687.60 18563.01 22388.39 12289.28 17171.63 15675.34 20587.28 19154.80 21091.11 22862.72 22479.57 22090.09 181
RRT_test8_iter0578.38 17977.40 18281.34 19986.00 21458.86 26686.55 17891.26 11872.13 15175.91 19087.42 18944.97 29693.73 14477.02 10875.30 27491.45 136
Vis-MVSNet (Re-imp)78.36 18078.45 15478.07 25788.64 15351.78 32586.70 17379.63 30874.14 11775.11 21390.83 10961.29 16289.75 25258.10 26891.60 8092.69 98
Anonymous20240521178.25 18177.01 18981.99 18491.03 8860.67 25184.77 21783.90 26070.65 17580.00 11691.20 9841.08 31791.43 22165.21 20885.26 15593.85 49
CP-MVSNet78.22 18278.34 15977.84 25987.83 17754.54 31487.94 13991.17 12277.65 3573.48 22988.49 16262.24 14788.43 27462.19 23074.07 28690.55 162
BH-w/o78.21 18377.33 18580.84 21188.81 14765.13 18284.87 21587.85 21469.75 19074.52 22284.74 25661.34 16093.11 16958.24 26785.84 15384.27 302
FMVSNet278.20 18477.21 18681.20 20387.60 18562.89 22787.47 15089.02 18371.63 15675.29 20987.28 19154.80 21091.10 23162.38 22879.38 22489.61 203
MVS78.19 18576.99 19181.78 18785.66 21866.99 14884.66 21990.47 13855.08 32772.02 24685.27 24663.83 12294.11 12466.10 20189.80 10484.24 303
Baseline_NR-MVSNet78.15 18678.33 16077.61 26485.79 21656.21 30586.78 17085.76 24273.60 12777.93 14887.57 18465.02 11288.99 26567.14 19475.33 27387.63 250
CNLPA78.08 18776.79 19681.97 18590.40 9971.07 6487.59 14784.55 25266.03 24272.38 24289.64 13057.56 19386.04 29359.61 25283.35 17788.79 229
cl-mvsnet278.07 18877.01 18981.23 20282.37 28361.83 23983.55 24787.98 20968.96 20975.06 21583.87 26461.40 15991.88 21073.53 13576.39 25589.98 190
PLCcopyleft70.83 1178.05 18976.37 20683.08 15291.88 8067.80 13688.19 13289.46 16764.33 26269.87 26988.38 16553.66 22393.58 14758.86 26082.73 18687.86 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 19076.49 20382.62 17483.16 26366.96 15186.94 16387.45 22272.45 14271.49 25184.17 26154.79 21391.58 21667.61 18680.31 21489.30 209
PS-CasMVS78.01 19178.09 16477.77 26187.71 18254.39 31688.02 13591.22 11977.50 4373.26 23188.64 15760.73 17088.41 27561.88 23473.88 29090.53 163
HY-MVS69.67 1277.95 19277.15 18780.36 21987.57 18960.21 25883.37 25087.78 21566.11 23975.37 20487.06 20263.27 12790.48 24361.38 24082.43 19090.40 168
eth_miper_zixun_eth77.92 19376.69 20081.61 19283.00 26761.98 23683.15 25189.20 17769.52 19474.86 21984.35 25961.76 15292.56 18671.50 15472.89 29690.28 172
FMVSNet377.88 19476.85 19480.97 20986.84 20362.36 23086.52 17988.77 19271.13 16375.34 20586.66 21454.07 22091.10 23162.72 22479.57 22089.45 206
miper_enhance_ethall77.87 19576.86 19380.92 21081.65 29061.38 24482.68 25688.98 18565.52 24875.47 19882.30 28565.76 10792.00 20572.95 14476.39 25589.39 207
PEN-MVS77.73 19677.69 17877.84 25987.07 20053.91 31887.91 14191.18 12177.56 4073.14 23388.82 15361.23 16389.17 26259.95 24972.37 29890.43 166
cl-mvsnet_77.72 19776.76 19780.58 21582.49 28060.48 25483.09 25287.87 21269.22 20074.38 22485.22 24862.10 14991.53 21871.09 15675.41 27089.73 201
cl-mvsnet177.72 19776.76 19780.58 21582.48 28160.48 25483.09 25287.86 21369.22 20074.38 22485.24 24762.10 14991.53 21871.09 15675.40 27189.74 200
PAPM77.68 19976.40 20581.51 19387.29 19661.85 23883.78 24189.59 16464.74 25671.23 25288.70 15462.59 13993.66 14652.66 29387.03 13689.01 218
CHOSEN 1792x268877.63 20075.69 20983.44 13589.98 10768.58 12378.70 29487.50 22056.38 32275.80 19486.84 20358.67 18591.40 22261.58 23885.75 15490.34 170
HyFIR lowres test77.53 20175.40 21583.94 12889.59 11466.62 15380.36 27688.64 19856.29 32376.45 17785.17 24957.64 19293.28 15961.34 24183.10 18291.91 121
FMVSNet177.44 20276.12 20881.40 19686.81 20463.01 22388.39 12289.28 17170.49 17774.39 22387.28 19149.06 27391.11 22860.91 24378.52 23090.09 181
TR-MVS77.44 20276.18 20781.20 20388.24 16563.24 21884.61 22386.40 23467.55 22377.81 14986.48 22254.10 21993.15 16657.75 27182.72 18787.20 261
1112_ss77.40 20476.43 20480.32 22189.11 14060.41 25683.65 24387.72 21662.13 28373.05 23486.72 20762.58 14089.97 24962.11 23380.80 20690.59 161
thisisatest051577.33 20575.38 21683.18 14785.27 22563.80 20482.11 26283.27 27165.06 25275.91 19083.84 26649.54 26694.27 11367.24 19286.19 14891.48 134
pm-mvs177.25 20676.68 20178.93 24484.22 24158.62 26986.41 18088.36 20271.37 16273.31 23088.01 17661.22 16489.15 26364.24 21573.01 29589.03 217
LCM-MVSNet-Re77.05 20776.94 19277.36 26787.20 19751.60 32680.06 27980.46 30075.20 9567.69 28486.72 20762.48 14188.98 26663.44 21989.25 10991.51 131
DTE-MVSNet76.99 20876.80 19577.54 26686.24 21153.06 32287.52 14890.66 13277.08 5472.50 23988.67 15660.48 17689.52 25657.33 27570.74 30990.05 186
baseline176.98 20976.75 19977.66 26288.13 16755.66 31085.12 21081.89 28573.04 13876.79 16988.90 15062.43 14387.78 28263.30 22171.18 30789.55 205
LS3D76.95 21074.82 22283.37 13990.45 9767.36 14489.15 9686.94 22761.87 28569.52 27290.61 11251.71 24494.53 10646.38 32386.71 14188.21 241
GA-MVS76.87 21175.17 22081.97 18582.75 27362.58 22881.44 27086.35 23672.16 15074.74 22082.89 27746.20 28892.02 20468.85 17981.09 20291.30 139
DP-MVS76.78 21274.57 22483.42 13693.29 4969.46 10188.55 11783.70 26263.98 26670.20 26088.89 15154.01 22194.80 10046.66 32081.88 19686.01 285
cascas76.72 21374.64 22382.99 15785.78 21765.88 16682.33 26089.21 17660.85 29172.74 23681.02 29647.28 28093.75 14267.48 18885.02 15689.34 208
131476.53 21475.30 21980.21 22383.93 24762.32 23284.66 21988.81 19060.23 29570.16 26384.07 26355.30 20890.73 24067.37 18983.21 17987.59 252
thres100view90076.50 21575.55 21279.33 23889.52 11756.99 29185.83 19683.23 27273.94 12076.32 18287.12 19951.89 24191.95 20648.33 31183.75 17189.07 211
thres600view776.50 21575.44 21379.68 23289.40 12157.16 28885.53 20483.23 27273.79 12476.26 18387.09 20051.89 24191.89 20948.05 31683.72 17490.00 187
thres40076.50 21575.37 21779.86 22889.13 13657.65 28385.17 20783.60 26373.41 13376.45 17786.39 22452.12 23491.95 20648.33 31183.75 17190.00 187
tfpn200view976.42 21875.37 21779.55 23789.13 13657.65 28385.17 20783.60 26373.41 13376.45 17786.39 22452.12 23491.95 20648.33 31183.75 17189.07 211
Test_1112_low_res76.40 21975.44 21379.27 23989.28 13058.09 27381.69 26687.07 22659.53 30272.48 24086.67 21361.30 16189.33 25960.81 24580.15 21690.41 167
F-COLMAP76.38 22074.33 22982.50 17689.28 13066.95 15288.41 12189.03 18264.05 26466.83 29488.61 15846.78 28392.89 17757.48 27278.55 22987.67 249
LTVRE_ROB69.57 1376.25 22174.54 22681.41 19588.60 15464.38 19579.24 28789.12 18170.76 17269.79 27187.86 17749.09 27293.20 16356.21 28180.16 21586.65 274
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 22274.46 22881.13 20685.37 22469.79 9184.42 23087.95 21065.03 25367.46 28685.33 24553.28 22691.73 21458.01 26983.27 17881.85 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 22374.27 23081.62 19083.20 26064.67 18883.60 24689.75 16069.75 19071.85 24787.09 20032.78 33892.11 20169.99 16880.43 21388.09 242
ACMH+68.96 1476.01 22474.01 23182.03 18388.60 15465.31 17888.86 10387.55 21870.25 18167.75 28387.47 18841.27 31593.19 16458.37 26575.94 26187.60 251
ACMH67.68 1675.89 22573.93 23281.77 18888.71 15266.61 15488.62 11489.01 18469.81 18766.78 29586.70 21241.95 31491.51 22055.64 28278.14 23587.17 262
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 22673.36 23883.31 14084.76 23366.03 16183.38 24985.06 24770.21 18269.40 27381.05 29545.76 29294.66 10465.10 21075.49 26789.25 210
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing_275.73 22773.34 23982.89 16377.37 32865.22 17984.10 23790.54 13669.09 20460.46 32481.15 29440.48 31992.84 18176.36 11380.54 21290.60 159
baseline275.70 22873.83 23581.30 20083.26 25861.79 24082.57 25880.65 29666.81 22766.88 29283.42 27357.86 19092.19 19863.47 21879.57 22089.91 192
WTY-MVS75.65 22975.68 21075.57 28386.40 21056.82 29377.92 30182.40 28165.10 25176.18 18687.72 17963.13 13480.90 31660.31 24781.96 19489.00 220
thres20075.55 23074.47 22778.82 24587.78 18157.85 28083.07 25483.51 26672.44 14475.84 19384.42 25852.08 23691.75 21247.41 31883.64 17586.86 269
EPNet_dtu75.46 23174.86 22177.23 27182.57 27854.60 31386.89 16583.09 27571.64 15566.25 30085.86 23455.99 20588.04 27954.92 28486.55 14389.05 216
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 23273.87 23480.11 22482.69 27564.85 18581.57 26883.47 26869.16 20370.49 25784.15 26251.95 23988.15 27769.23 17472.14 30187.34 257
XXY-MVS75.41 23375.56 21174.96 28883.59 25257.82 28180.59 27583.87 26166.54 23674.93 21888.31 16763.24 12880.09 31962.16 23176.85 24886.97 267
TransMVSNet (Re)75.39 23474.56 22577.86 25885.50 22257.10 29086.78 17086.09 24072.17 14971.53 25087.34 19063.01 13589.31 26056.84 27861.83 32987.17 262
CostFormer75.24 23573.90 23379.27 23982.65 27758.27 27280.80 27182.73 27961.57 28675.33 20883.13 27555.52 20691.07 23464.98 21178.34 23488.45 237
D2MVS74.82 23673.21 24079.64 23479.81 31462.56 22980.34 27787.35 22364.37 26168.86 27682.66 28146.37 28590.10 24867.91 18481.24 20186.25 278
pmmvs674.69 23773.39 23778.61 24881.38 29657.48 28686.64 17487.95 21064.99 25570.18 26186.61 21550.43 25789.52 25662.12 23270.18 31188.83 227
tfpnnormal74.39 23873.16 24178.08 25686.10 21358.05 27484.65 22287.53 21970.32 17971.22 25385.63 23954.97 20989.86 25043.03 33275.02 27986.32 277
IterMVS74.29 23972.94 24378.35 25381.53 29363.49 21281.58 26782.49 28068.06 22069.99 26683.69 27051.66 24585.54 29665.85 20471.64 30486.01 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 24072.42 24779.80 23083.76 25059.59 26285.92 19486.64 23066.39 23766.96 29187.58 18339.46 32291.60 21565.76 20569.27 31388.22 240
SCA74.22 24172.33 24879.91 22784.05 24562.17 23479.96 28179.29 31066.30 23872.38 24280.13 30451.95 23988.60 27259.25 25577.67 23888.96 222
miper_lstm_enhance74.11 24273.11 24277.13 27280.11 31059.62 26172.23 32386.92 22866.76 22970.40 25882.92 27656.93 20182.92 31069.06 17772.63 29788.87 225
EG-PatchMatch MVS74.04 24371.82 25280.71 21484.92 23267.42 14185.86 19588.08 20766.04 24164.22 31283.85 26535.10 33692.56 18657.44 27380.83 20582.16 321
pmmvs474.03 24471.91 25080.39 21881.96 28768.32 12681.45 26982.14 28359.32 30369.87 26985.13 25052.40 23088.13 27860.21 24874.74 28284.73 299
MS-PatchMatch73.83 24572.67 24477.30 26983.87 24866.02 16281.82 26384.66 25061.37 28968.61 27982.82 27947.29 27988.21 27659.27 25484.32 16577.68 334
DWT-MVSNet_test73.70 24671.86 25179.21 24182.91 27058.94 26582.34 25982.17 28265.21 24971.05 25578.31 31544.21 30090.17 24763.29 22277.28 24088.53 236
sss73.60 24773.64 23673.51 29882.80 27255.01 31276.12 30781.69 28862.47 28074.68 22185.85 23557.32 19678.11 32660.86 24480.93 20387.39 255
RPMNet73.51 24870.49 26382.58 17581.32 29965.19 18075.92 30992.27 7657.60 31572.73 23776.45 32652.30 23195.43 7048.14 31577.71 23687.11 265
SixPastTwentyTwo73.37 24971.26 25879.70 23185.08 23157.89 27985.57 19883.56 26571.03 16665.66 30285.88 23342.10 31292.57 18559.11 25763.34 32888.65 233
CR-MVSNet73.37 24971.27 25779.67 23381.32 29965.19 18075.92 30980.30 30259.92 29872.73 23781.19 29252.50 22886.69 28859.84 25077.71 23687.11 265
MSDG73.36 25170.99 25980.49 21784.51 23765.80 16780.71 27386.13 23965.70 24565.46 30383.74 26944.60 29790.91 23651.13 29876.89 24684.74 298
tpm273.26 25271.46 25478.63 24783.34 25656.71 29680.65 27480.40 30156.63 32173.55 22882.02 28951.80 24391.24 22656.35 28078.42 23387.95 243
RPSCF73.23 25371.46 25478.54 25082.50 27959.85 25982.18 26182.84 27858.96 30671.15 25489.41 14245.48 29584.77 30158.82 26171.83 30391.02 146
PatchmatchNetpermissive73.12 25471.33 25678.49 25283.18 26160.85 24979.63 28378.57 31264.13 26371.73 24879.81 30951.20 24885.97 29457.40 27476.36 25888.66 232
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 25570.41 26580.81 21287.13 19965.63 17088.30 12784.19 25762.96 27363.80 31587.69 18138.04 32892.56 18646.66 32074.91 28084.24 303
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 25672.58 24574.25 29584.28 23950.85 33186.41 18083.45 26944.56 33873.23 23287.54 18649.38 26885.70 29565.90 20378.44 23286.19 280
test-LLR72.94 25772.43 24674.48 29281.35 29758.04 27578.38 29577.46 31766.66 23269.95 26779.00 31348.06 27679.24 32066.13 19984.83 15886.15 281
test_040272.79 25870.44 26479.84 22988.13 16765.99 16385.93 19384.29 25465.57 24767.40 28885.49 24246.92 28292.61 18435.88 34174.38 28580.94 325
MVS_030472.48 25970.89 26177.24 27082.20 28459.68 26084.11 23683.49 26767.10 22666.87 29380.59 30035.00 33787.40 28459.07 25879.58 21984.63 300
tpmrst72.39 26072.13 24973.18 30080.54 30649.91 33479.91 28279.08 31163.11 27071.69 24979.95 30655.32 20782.77 31165.66 20673.89 28986.87 268
PatchMatch-RL72.38 26170.90 26076.80 27588.60 15467.38 14379.53 28476.17 32362.75 27769.36 27482.00 29045.51 29484.89 30053.62 28980.58 20978.12 333
tpm72.37 26271.71 25374.35 29482.19 28552.00 32379.22 28877.29 31964.56 25872.95 23583.68 27151.35 24683.26 30958.33 26675.80 26287.81 247
PVSNet64.34 1872.08 26370.87 26275.69 28186.21 21256.44 30074.37 31980.73 29562.06 28470.17 26282.23 28742.86 30783.31 30854.77 28584.45 16487.32 258
pmmvs571.55 26470.20 26775.61 28277.83 32556.39 30181.74 26580.89 29257.76 31367.46 28684.49 25749.26 27185.32 29957.08 27775.29 27585.11 295
test-mter71.41 26570.39 26674.48 29281.35 29758.04 27578.38 29577.46 31760.32 29469.95 26779.00 31336.08 33479.24 32066.13 19984.83 15886.15 281
K. test v371.19 26668.51 27479.21 24183.04 26657.78 28284.35 23276.91 32172.90 14162.99 31882.86 27839.27 32391.09 23361.65 23752.66 34188.75 230
tpmvs71.09 26769.29 27076.49 27682.04 28656.04 30678.92 29281.37 29164.05 26467.18 29078.28 31649.74 26589.77 25149.67 30672.37 29883.67 308
AllTest70.96 26868.09 28079.58 23585.15 22763.62 20684.58 22479.83 30662.31 28160.32 32586.73 20532.02 33988.96 26850.28 30171.57 30586.15 281
Patchmtry70.74 26969.16 27175.49 28580.72 30354.07 31774.94 31880.30 30258.34 31070.01 26481.19 29252.50 22886.54 28953.37 29071.09 30885.87 288
MIMVSNet70.69 27069.30 26974.88 28984.52 23656.35 30375.87 31179.42 30964.59 25767.76 28282.41 28341.10 31681.54 31546.64 32281.34 19986.75 272
tpm cat170.57 27168.31 27677.35 26882.41 28257.95 27878.08 29980.22 30452.04 33368.54 28077.66 32152.00 23887.84 28151.77 29472.07 30286.25 278
OpenMVS_ROBcopyleft64.09 1970.56 27268.19 27777.65 26380.26 30859.41 26485.01 21282.96 27758.76 30865.43 30482.33 28437.63 33091.23 22745.34 32876.03 26082.32 319
pmmvs-eth3d70.50 27367.83 28478.52 25177.37 32866.18 16081.82 26381.51 28958.90 30763.90 31480.42 30242.69 30886.28 29258.56 26365.30 32583.11 314
USDC70.33 27468.37 27576.21 27880.60 30556.23 30479.19 28986.49 23260.89 29061.29 32185.47 24331.78 34189.47 25853.37 29076.21 25982.94 318
Patchmatch-RL test70.24 27567.78 28677.61 26477.43 32759.57 26371.16 32570.33 33562.94 27468.65 27872.77 33350.62 25485.49 29769.58 17266.58 32287.77 248
CMPMVSbinary51.72 2170.19 27668.16 27876.28 27773.15 34257.55 28579.47 28583.92 25948.02 33756.48 33684.81 25443.13 30586.42 29162.67 22781.81 19784.89 296
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 27767.34 28978.14 25579.80 31561.13 24579.19 28980.59 29759.16 30565.27 30579.29 31046.75 28487.29 28549.33 30766.72 32086.00 287
gg-mvs-nofinetune69.95 27867.96 28175.94 27983.07 26454.51 31577.23 30470.29 33663.11 27070.32 25962.33 33943.62 30388.69 27153.88 28887.76 12484.62 301
TESTMET0.1,169.89 27969.00 27272.55 30179.27 32256.85 29278.38 29574.71 32957.64 31468.09 28177.19 32337.75 32976.70 33163.92 21684.09 16784.10 306
FMVSNet569.50 28067.96 28174.15 29682.97 26955.35 31180.01 28082.12 28462.56 27963.02 31681.53 29136.92 33181.92 31348.42 31074.06 28785.17 294
PMMVS69.34 28168.67 27371.35 30775.67 33462.03 23575.17 31373.46 33150.00 33668.68 27779.05 31152.07 23778.13 32561.16 24282.77 18573.90 337
our_test_369.14 28267.00 29075.57 28379.80 31558.80 26777.96 30077.81 31559.55 30162.90 31978.25 31747.43 27883.97 30351.71 29567.58 31983.93 307
EPMVS69.02 28368.16 27871.59 30379.61 31849.80 33677.40 30366.93 34362.82 27670.01 26479.05 31145.79 29177.86 32856.58 27975.26 27787.13 264
Anonymous2023120668.60 28467.80 28571.02 30980.23 30950.75 33278.30 29880.47 29956.79 32066.11 30182.63 28246.35 28678.95 32243.62 33175.70 26383.36 311
MIMVSNet168.58 28566.78 29273.98 29780.07 31151.82 32480.77 27284.37 25364.40 26059.75 32882.16 28836.47 33283.63 30642.73 33370.33 31086.48 276
EU-MVSNet68.53 28667.61 28871.31 30878.51 32447.01 34084.47 22584.27 25542.27 33966.44 29984.79 25540.44 32083.76 30458.76 26268.54 31883.17 312
PatchT68.46 28767.85 28370.29 31180.70 30443.93 34372.47 32274.88 32660.15 29670.55 25676.57 32549.94 26281.59 31450.58 29974.83 28185.34 291
test0.0.03 168.00 28867.69 28768.90 31677.55 32647.43 33875.70 31272.95 33366.66 23266.56 29682.29 28648.06 27675.87 33544.97 32974.51 28483.41 310
TDRefinement67.49 28964.34 29876.92 27373.47 34061.07 24684.86 21682.98 27659.77 29958.30 33185.13 25026.06 34387.89 28047.92 31760.59 33381.81 323
test20.0367.45 29066.95 29168.94 31575.48 33644.84 34277.50 30277.67 31666.66 23263.01 31783.80 26747.02 28178.40 32442.53 33468.86 31783.58 309
UnsupCasMVSNet_eth67.33 29165.99 29471.37 30573.48 33951.47 32875.16 31485.19 24665.20 25060.78 32380.93 29942.35 30977.20 33057.12 27653.69 34085.44 290
TinyColmap67.30 29264.81 29674.76 29181.92 28856.68 29780.29 27881.49 29060.33 29356.27 33783.22 27424.77 34487.66 28345.52 32669.47 31279.95 329
dp66.80 29365.43 29570.90 31079.74 31748.82 33775.12 31674.77 32759.61 30064.08 31377.23 32242.89 30680.72 31748.86 30966.58 32283.16 313
MDA-MVSNet-bldmvs66.68 29463.66 30075.75 28079.28 32160.56 25373.92 32078.35 31364.43 25950.13 34279.87 30844.02 30283.67 30546.10 32456.86 33683.03 316
testgi66.67 29566.53 29367.08 32175.62 33541.69 34675.93 30876.50 32266.11 23965.20 30886.59 21635.72 33574.71 33943.71 33073.38 29484.84 297
CHOSEN 280x42066.51 29664.71 29771.90 30281.45 29463.52 21157.98 34468.95 34253.57 32962.59 32076.70 32446.22 28775.29 33855.25 28379.68 21876.88 336
PM-MVS66.41 29764.14 29973.20 29973.92 33756.45 29978.97 29164.96 34763.88 26864.72 30980.24 30319.84 34883.44 30766.24 19864.52 32779.71 330
JIA-IIPM66.32 29862.82 30676.82 27477.09 33061.72 24165.34 33975.38 32458.04 31264.51 31062.32 34042.05 31386.51 29051.45 29769.22 31482.21 320
ADS-MVSNet266.20 29963.33 30174.82 29079.92 31258.75 26867.55 33675.19 32553.37 33065.25 30675.86 32742.32 31080.53 31841.57 33568.91 31585.18 292
YYNet165.03 30062.91 30471.38 30475.85 33356.60 29869.12 33374.66 33057.28 31854.12 33877.87 31945.85 29074.48 34049.95 30461.52 33183.05 315
MDA-MVSNet_test_wron65.03 30062.92 30371.37 30575.93 33256.73 29469.09 33474.73 32857.28 31854.03 33977.89 31845.88 28974.39 34149.89 30561.55 33082.99 317
Patchmatch-test64.82 30263.24 30269.57 31379.42 32049.82 33563.49 34269.05 34151.98 33459.95 32780.13 30450.91 25070.98 34440.66 33773.57 29287.90 245
ADS-MVSNet64.36 30362.88 30568.78 31879.92 31247.17 33967.55 33671.18 33453.37 33065.25 30675.86 32742.32 31073.99 34241.57 33568.91 31585.18 292
LF4IMVS64.02 30462.19 30769.50 31470.90 34453.29 32176.13 30677.18 32052.65 33258.59 32980.98 29723.55 34576.52 33253.06 29266.66 32178.68 332
UnsupCasMVSNet_bld63.70 30561.53 30970.21 31273.69 33851.39 32972.82 32181.89 28555.63 32557.81 33271.80 33538.67 32578.61 32349.26 30852.21 34280.63 326
new-patchmatchnet61.73 30661.73 30861.70 32472.74 34324.50 35669.16 33278.03 31461.40 28756.72 33575.53 32938.42 32676.48 33345.95 32557.67 33584.13 305
PVSNet_057.27 2061.67 30759.27 31068.85 31779.61 31857.44 28768.01 33573.44 33255.93 32458.54 33070.41 33644.58 29877.55 32947.01 31935.91 34571.55 339
MVS-HIRNet59.14 30857.67 31163.57 32381.65 29043.50 34471.73 32465.06 34639.59 34351.43 34157.73 34338.34 32782.58 31239.53 33873.95 28864.62 342
pmmvs357.79 30954.26 31368.37 31964.02 34856.72 29575.12 31665.17 34540.20 34152.93 34069.86 33720.36 34775.48 33745.45 32755.25 33972.90 338
DSMNet-mixed57.77 31056.90 31260.38 32567.70 34635.61 34969.18 33153.97 35032.30 34857.49 33379.88 30740.39 32168.57 34638.78 33972.37 29876.97 335
LCM-MVSNet54.25 31149.68 31767.97 32053.73 35145.28 34166.85 33880.78 29435.96 34539.45 34562.23 3418.70 35678.06 32748.24 31451.20 34380.57 327
FPMVS53.68 31251.64 31559.81 32665.08 34751.03 33069.48 33069.58 33941.46 34040.67 34472.32 33416.46 35170.00 34524.24 34665.42 32458.40 343
N_pmnet52.79 31353.26 31451.40 33078.99 3237.68 35969.52 3293.89 35851.63 33557.01 33474.98 33040.83 31865.96 34737.78 34064.67 32680.56 328
new_pmnet50.91 31450.29 31652.78 32968.58 34534.94 35163.71 34156.63 34939.73 34244.95 34365.47 33821.93 34658.48 34834.98 34256.62 33764.92 341
ANet_high50.57 31546.10 31863.99 32248.67 35439.13 34770.99 32780.85 29361.39 28831.18 34757.70 34417.02 35073.65 34331.22 34315.89 35179.18 331
Gipumacopyleft45.18 31641.86 31955.16 32877.03 33151.52 32732.50 35080.52 29832.46 34727.12 34835.02 3489.52 35575.50 33622.31 34760.21 33438.45 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 31740.28 32055.82 32740.82 35642.54 34565.12 34063.99 34834.43 34624.48 34957.12 3453.92 35876.17 33417.10 34955.52 33848.75 344
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 31838.86 32146.69 33153.84 35016.45 35748.61 34749.92 35137.49 34431.67 34660.97 3428.14 35756.42 34928.42 34430.72 34667.19 340
E-PMN31.77 31930.64 32235.15 33352.87 35227.67 35357.09 34547.86 35224.64 34916.40 35333.05 34911.23 35354.90 35014.46 35118.15 34922.87 348
EMVS30.81 32029.65 32334.27 33450.96 35325.95 35556.58 34646.80 35324.01 35015.53 35430.68 35012.47 35254.43 35112.81 35217.05 35022.43 349
MVEpermissive26.22 2330.37 32125.89 32543.81 33244.55 35535.46 35028.87 35139.07 35418.20 35118.58 35240.18 3472.68 35947.37 35217.07 35023.78 34848.60 345
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 32226.61 3240.00 3400.00 3610.00 3620.00 35289.26 1740.00 3570.00 35888.61 15861.62 1550.00 3580.00 3560.00 3560.00 354
tmp_tt18.61 32321.40 32610.23 3374.82 35810.11 35834.70 34930.74 3561.48 35423.91 35126.07 35128.42 34213.41 35527.12 34515.35 3527.17 350
wuyk23d16.82 32415.94 32719.46 33658.74 34931.45 35239.22 3483.74 3596.84 3536.04 3552.70 3551.27 36024.29 35410.54 35314.40 3532.63 351
ab-mvs-re7.23 3259.64 3280.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 35886.72 2070.00 3630.00 3580.00 3560.00 3560.00 354
test1236.12 3268.11 3290.14 3380.06 3600.09 36071.05 3260.03 3610.04 3560.25 3571.30 3570.05 3610.03 3570.21 3550.01 3550.29 352
testmvs6.04 3278.02 3300.10 3390.08 3590.03 36169.74 3280.04 3600.05 3550.31 3561.68 3560.02 3620.04 3560.24 3540.02 3540.25 353
pcd_1.5k_mvsjas5.26 3287.02 3310.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 35863.15 1310.00 3580.00 3560.00 3560.00 354
uanet_test0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet-low-res0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
sosnet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uncertanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
Regformer0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
uanet0.00 3290.00 3320.00 3400.00 3610.00 3620.00 3520.00 3620.00 3570.00 3580.00 3580.00 3630.00 3580.00 3560.00 3560.00 354
ZD-MVS94.38 2572.22 4592.67 6070.98 16787.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
RE-MVS-def85.48 5593.06 5770.63 7691.88 3592.27 7673.53 13085.69 4294.45 2663.87 12182.75 6091.87 7792.50 103
IU-MVS95.30 271.25 5992.95 5066.81 22792.39 588.94 896.63 294.85 10
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
test_241102_TWO94.06 1077.24 4792.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6594.06 1077.17 5093.10 195.39 982.99 197.27 7
9.1488.26 1492.84 6391.52 4394.75 173.93 12188.57 2094.67 1775.57 2095.79 5686.77 2095.76 24
save fliter93.80 3972.35 4290.47 6291.17 12274.31 111
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
test072695.27 571.25 5993.60 494.11 677.33 4592.81 395.79 380.98 7
GSMVS88.96 222
test_part295.06 772.65 3191.80 10
sam_mvs151.32 24788.96 222
sam_mvs50.01 260
ambc75.24 28773.16 34150.51 33363.05 34387.47 22164.28 31177.81 32017.80 34989.73 25357.88 27060.64 33285.49 289
MTGPAbinary92.02 87
test_post178.90 2935.43 35448.81 27585.44 29859.25 255
test_post5.46 35350.36 25884.24 302
patchmatchnet-post74.00 33151.12 24988.60 272
GG-mvs-BLEND75.38 28681.59 29255.80 30879.32 28669.63 33867.19 28973.67 33243.24 30488.90 27050.41 30084.50 16281.45 324
MTMP92.18 3132.83 355
gm-plane-assit81.40 29553.83 31962.72 27880.94 29892.39 19163.40 220
test9_res84.90 3095.70 2792.87 93
TEST993.26 5172.96 2488.75 10891.89 9668.44 21885.00 5093.10 6274.36 3095.41 71
test_893.13 5372.57 3488.68 11391.84 9968.69 21484.87 5693.10 6274.43 2795.16 81
agg_prior282.91 5895.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10284.41 6394.93 91
TestCases79.58 23585.15 22763.62 20679.83 30662.31 28160.32 32586.73 20532.02 33988.96 26850.28 30171.57 30586.15 281
test_prior472.60 3389.01 99
test_prior288.85 10475.41 8984.91 5293.54 5174.28 3183.31 5095.86 18
test_prior86.33 6092.61 6969.59 9592.97 4895.48 6693.91 45
旧先验286.56 17758.10 31187.04 3188.98 26674.07 131
新几何286.29 185
新几何183.42 13693.13 5370.71 7485.48 24357.43 31681.80 9891.98 7963.28 12692.27 19564.60 21492.99 6587.27 259
旧先验191.96 7765.79 16886.37 23593.08 6669.31 7592.74 6988.74 231
无先验87.48 14988.98 18560.00 29794.12 12267.28 19088.97 221
原ACMM286.86 166
原ACMM184.35 10993.01 5968.79 11192.44 6863.96 26781.09 10891.57 8966.06 10295.45 6867.19 19394.82 4788.81 228
test22291.50 8368.26 12884.16 23483.20 27454.63 32879.74 11791.63 8758.97 18491.42 8386.77 271
testdata291.01 23562.37 229
segment_acmp73.08 40
testdata79.97 22690.90 9164.21 19784.71 24959.27 30485.40 4492.91 6762.02 15189.08 26468.95 17891.37 8486.63 275
testdata184.14 23575.71 83
test1286.80 5292.63 6870.70 7591.79 10182.71 8871.67 5296.16 4494.50 5293.54 68
plane_prior790.08 10568.51 124
plane_prior689.84 11068.70 11960.42 177
plane_prior592.44 6895.38 7378.71 8986.32 14691.33 137
plane_prior491.00 106
plane_prior368.60 12278.44 3078.92 127
plane_prior291.25 4779.12 23
plane_prior189.90 109
plane_prior68.71 11790.38 6677.62 3686.16 149
n20.00 362
nn0.00 362
door-mid69.98 337
lessismore_v078.97 24381.01 30257.15 28965.99 34461.16 32282.82 27939.12 32491.34 22459.67 25146.92 34488.43 238
LGP-MVS_train84.50 10289.23 13268.76 11391.94 9475.37 9176.64 17591.51 9054.29 21794.91 9378.44 9283.78 16989.83 196
test1192.23 79
door69.44 340
HQP5-MVS66.98 149
HQP-NCC89.33 12489.17 9276.41 7077.23 162
ACMP_Plane89.33 12489.17 9276.41 7077.23 162
BP-MVS77.47 102
HQP4-MVS77.24 16195.11 8391.03 144
HQP3-MVS92.19 8285.99 151
HQP2-MVS60.17 180
NP-MVS89.62 11368.32 12690.24 117
MDTV_nov1_ep13_2view37.79 34875.16 31455.10 32666.53 29749.34 26953.98 28787.94 244
MDTV_nov1_ep1369.97 26883.18 26153.48 32077.10 30580.18 30560.45 29269.33 27580.44 30148.89 27486.90 28751.60 29678.51 231
ACMMP++_ref81.95 195
ACMMP++81.25 200
Test By Simon64.33 117
ITE_SJBPF78.22 25481.77 28960.57 25283.30 27069.25 19967.54 28587.20 19636.33 33387.28 28654.34 28674.62 28386.80 270
DeepMVS_CXcopyleft27.40 33540.17 35726.90 35424.59 35717.44 35223.95 35048.61 3469.77 35426.48 35318.06 34824.47 34728.83 347