This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2294.34 2771.25 5595.06 194.23 378.38 3192.78 495.74 682.45 397.49 389.42 496.68 294.95 8
SED-MVS90.08 290.85 287.77 2495.30 270.98 6193.57 794.06 1077.24 4893.10 195.72 882.99 197.44 589.07 996.63 494.88 12
DVP-MVScopyleft89.60 390.35 387.33 3895.27 571.25 5593.49 992.73 5977.33 4692.12 995.78 480.98 997.40 789.08 796.41 1293.33 77
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 994.28 3073.46 1692.90 1694.11 680.27 891.35 1494.16 3478.35 1396.77 2289.59 394.22 5694.67 22
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1494.80 1172.69 3091.59 4194.10 875.90 8392.29 795.66 1081.67 697.38 987.44 2196.34 1593.95 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS89.15 689.63 687.73 2694.49 1871.69 5093.83 493.96 1375.70 8791.06 1696.03 176.84 1497.03 1589.09 695.65 2794.47 29
SMA-MVScopyleft89.08 789.23 788.61 594.25 3173.73 992.40 2393.63 2174.77 10392.29 795.97 274.28 2997.24 1188.58 1396.91 194.87 14
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 889.15 888.63 495.01 976.03 192.38 2692.85 5480.26 987.78 2894.27 3075.89 1996.81 2187.45 2096.44 993.05 87
CNVR-MVS88.93 989.13 988.33 794.77 1273.82 890.51 5993.00 4380.90 588.06 2694.06 3876.43 1696.84 1988.48 1595.99 1894.34 35
SteuartSystems-ACMMP88.72 1088.86 1088.32 892.14 6972.96 2493.73 593.67 2080.19 1088.10 2594.80 1573.76 3397.11 1387.51 1995.82 2194.90 11
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1188.74 1187.64 3392.78 6171.95 4892.40 2394.74 275.71 8589.16 1995.10 1375.65 2196.19 4187.07 2296.01 1794.79 19
DeepPCF-MVS80.84 188.10 1288.56 1286.73 4892.24 6869.03 9489.57 8393.39 3077.53 4389.79 1894.12 3578.98 1296.58 3385.66 2595.72 2494.58 25
SD-MVS88.06 1388.50 1386.71 4992.60 6672.71 2891.81 4093.19 3577.87 3490.32 1794.00 4074.83 2393.78 13487.63 1894.27 5593.65 64
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1388.01 1788.24 1094.41 2273.62 1091.22 5092.83 5581.50 385.79 3893.47 5073.02 3997.00 1684.90 3094.94 3794.10 43
ACMMP_NAP88.05 1588.08 1687.94 1793.70 4173.05 2190.86 5493.59 2376.27 7788.14 2495.09 1471.06 5396.67 2787.67 1796.37 1494.09 44
TSAR-MVS + MP.88.02 1688.11 1587.72 2893.68 4372.13 4591.41 4592.35 7474.62 10788.90 2093.85 4575.75 2096.00 4787.80 1694.63 4595.04 6
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1787.85 1888.20 1194.39 2473.33 1893.03 1493.81 1776.81 6185.24 4394.32 2971.76 4696.93 1785.53 2795.79 2294.32 36
MP-MVScopyleft87.71 1887.64 2087.93 1994.36 2673.88 692.71 2292.65 6477.57 3983.84 7094.40 2872.24 4296.28 3885.65 2695.30 3393.62 67
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 1987.72 1987.54 3493.64 4472.04 4789.80 7793.50 2575.17 9686.34 3495.29 1270.86 5496.00 4788.78 1296.04 1694.58 25
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2087.47 2287.94 1794.58 1673.54 1493.04 1293.24 3376.78 6384.91 4894.44 2670.78 5596.61 3084.53 3794.89 3993.66 60
ACMMPR87.44 2187.23 2588.08 1394.64 1373.59 1193.04 1293.20 3476.78 6384.66 5594.52 1968.81 7696.65 2884.53 3794.90 3894.00 48
APD-MVScopyleft87.44 2187.52 2187.19 4094.24 3272.39 3891.86 3992.83 5573.01 14288.58 2194.52 1973.36 3496.49 3484.26 4095.01 3592.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2387.26 2387.89 2294.12 3672.97 2392.39 2593.43 2876.89 5984.68 5293.99 4270.67 5796.82 2084.18 4495.01 3593.90 52
region2R87.42 2387.20 2688.09 1294.63 1473.55 1293.03 1493.12 3776.73 6684.45 5994.52 1969.09 7296.70 2584.37 3994.83 4294.03 47
MCST-MVS87.37 2587.25 2487.73 2694.53 1772.46 3789.82 7593.82 1673.07 14084.86 5192.89 6276.22 1796.33 3684.89 3295.13 3494.40 32
MTAPA87.23 2687.00 2787.90 2094.18 3574.25 586.58 17592.02 8579.45 1785.88 3694.80 1568.07 7896.21 4086.69 2495.34 3193.23 80
XVS87.18 2786.91 3188.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7394.17 3367.45 8496.60 3183.06 5194.50 4894.07 45
HPM-MVScopyleft87.11 2886.98 2887.50 3693.88 3972.16 4492.19 3293.33 3176.07 8083.81 7193.95 4469.77 6696.01 4685.15 2894.66 4494.32 36
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 2886.92 3087.68 3294.20 3473.86 793.98 392.82 5876.62 6883.68 7294.46 2367.93 7995.95 5084.20 4394.39 5193.23 80
DeepC-MVS79.81 287.08 3086.88 3287.69 3191.16 8072.32 4290.31 6693.94 1477.12 5382.82 8494.23 3272.13 4497.09 1484.83 3395.37 3093.65 64
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3186.62 3487.76 2593.52 4672.37 4091.26 4693.04 3876.62 6884.22 6393.36 5271.44 5096.76 2380.82 7395.33 3294.16 41
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3286.67 3386.91 4494.11 3772.11 4692.37 2792.56 6774.50 10886.84 3294.65 1867.31 8695.77 5284.80 3492.85 6592.84 94
CS-MVS86.69 3386.95 2985.90 6190.76 9067.57 13092.83 1793.30 3279.67 1584.57 5892.27 7471.47 4995.02 8484.24 4293.46 6195.13 5
PGM-MVS86.68 3486.27 3887.90 2094.22 3373.38 1790.22 6893.04 3875.53 8983.86 6994.42 2767.87 8196.64 2982.70 6094.57 4793.66 60
mPP-MVS86.67 3586.32 3787.72 2894.41 2273.55 1292.74 2092.22 8076.87 6082.81 8594.25 3166.44 9396.24 3982.88 5594.28 5493.38 74
CANet86.45 3686.10 4387.51 3590.09 10170.94 6589.70 8192.59 6681.78 281.32 10091.43 9470.34 5997.23 1284.26 4093.36 6294.37 33
train_agg86.43 3786.20 3987.13 4293.26 5072.96 2488.75 10691.89 9368.69 21985.00 4693.10 5574.43 2695.41 6584.97 2995.71 2593.02 89
PHI-MVS86.43 3786.17 4187.24 3990.88 8770.96 6392.27 3194.07 972.45 14585.22 4491.90 8069.47 6896.42 3583.28 5095.94 1994.35 34
CSCG86.41 3986.19 4087.07 4392.91 5872.48 3690.81 5593.56 2473.95 11983.16 7991.07 10475.94 1895.19 7379.94 8294.38 5293.55 70
CS-MVS-test86.29 4086.48 3585.71 6391.02 8367.21 14092.36 2893.78 1878.97 2683.51 7691.20 9970.65 5895.15 7581.96 6494.89 3994.77 20
EC-MVSNet86.01 4186.38 3684.91 8389.31 12966.27 15492.32 2993.63 2179.37 1884.17 6591.88 8169.04 7595.43 6383.93 4593.77 5993.01 90
casdiffmvs_mvgpermissive85.99 4286.09 4485.70 6487.65 18967.22 13988.69 11093.04 3879.64 1685.33 4292.54 7173.30 3594.50 10583.49 4791.14 8795.37 1
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4385.88 4586.22 5592.69 6369.53 8791.93 3692.99 4573.54 13185.94 3594.51 2265.80 10395.61 5583.04 5392.51 6993.53 72
canonicalmvs85.91 4485.87 4686.04 5889.84 11169.44 9290.45 6493.00 4376.70 6788.01 2791.23 9773.28 3693.91 12981.50 6788.80 11294.77 20
ACMMPcopyleft85.89 4585.39 5087.38 3793.59 4572.63 3292.74 2093.18 3676.78 6380.73 10993.82 4664.33 11396.29 3782.67 6190.69 9193.23 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 4685.61 4886.23 5493.06 5570.63 7191.88 3792.27 7673.53 13285.69 3994.45 2465.00 11195.56 5682.75 5691.87 7792.50 104
CDPH-MVS85.76 4785.29 5587.17 4193.49 4771.08 5988.58 11492.42 7268.32 22584.61 5693.48 4872.32 4196.15 4379.00 8695.43 2994.28 38
TSAR-MVS + GP.85.71 4885.33 5286.84 4591.34 7872.50 3589.07 9587.28 22176.41 7085.80 3790.22 12274.15 3195.37 7081.82 6591.88 7692.65 100
dcpmvs_285.63 4986.15 4284.06 11491.71 7564.94 18586.47 17891.87 9573.63 12786.60 3393.02 6076.57 1591.87 21183.36 4892.15 7395.35 2
alignmvs85.48 5085.32 5385.96 6089.51 11869.47 8989.74 7992.47 6876.17 7887.73 3091.46 9370.32 6093.78 13481.51 6688.95 10994.63 24
3Dnovator+77.84 485.48 5084.47 6388.51 691.08 8173.49 1593.18 1193.78 1880.79 676.66 18393.37 5160.40 17596.75 2477.20 10593.73 6095.29 4
MSLP-MVS++85.43 5285.76 4784.45 9791.93 7270.24 7490.71 5692.86 5377.46 4584.22 6392.81 6667.16 8892.94 17580.36 7894.35 5390.16 179
DELS-MVS85.41 5385.30 5485.77 6288.49 15867.93 12285.52 20793.44 2778.70 2783.63 7589.03 15074.57 2495.71 5480.26 8094.04 5793.66 60
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5484.95 5986.57 5193.69 4270.58 7392.15 3491.62 10373.89 12282.67 8794.09 3662.60 13295.54 5880.93 7192.93 6493.57 69
test_fmvsm_n_192085.29 5585.34 5185.13 7486.12 21969.93 8188.65 11290.78 12669.97 18888.27 2393.98 4371.39 5191.54 21988.49 1490.45 9393.91 50
MVS_111021_HR85.14 5684.75 6086.32 5391.65 7672.70 2985.98 19090.33 13976.11 7982.08 9091.61 8871.36 5294.17 11881.02 7092.58 6892.08 119
casdiffmvspermissive85.11 5785.14 5685.01 7787.20 20465.77 16787.75 14192.83 5577.84 3584.36 6292.38 7372.15 4393.93 12881.27 6990.48 9295.33 3
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 5884.96 5885.45 6692.07 7068.07 12089.78 7890.86 12582.48 184.60 5793.20 5469.35 6995.22 7271.39 16190.88 9093.07 86
DPM-MVS84.93 5984.29 6486.84 4590.20 9973.04 2287.12 15793.04 3869.80 19282.85 8391.22 9873.06 3896.02 4576.72 11394.63 4591.46 136
baseline84.93 5984.98 5784.80 8787.30 20265.39 17687.30 15392.88 5277.62 3784.04 6892.26 7571.81 4593.96 12281.31 6890.30 9595.03 7
ETV-MVS84.90 6184.67 6185.59 6589.39 12368.66 10988.74 10892.64 6579.97 1384.10 6685.71 24069.32 7095.38 6780.82 7391.37 8492.72 95
EI-MVSNet-Vis-set84.19 6283.81 6585.31 6888.18 16867.85 12387.66 14389.73 15680.05 1282.95 8089.59 13470.74 5694.82 9380.66 7784.72 16093.28 79
nrg03083.88 6383.53 6684.96 7986.77 21269.28 9390.46 6392.67 6174.79 10282.95 8091.33 9672.70 4093.09 16980.79 7579.28 23192.50 104
EI-MVSNet-UG-set83.81 6483.38 6885.09 7587.87 17867.53 13187.44 14989.66 15779.74 1482.23 8989.41 14370.24 6194.74 9679.95 8183.92 17092.99 91
CPTT-MVS83.73 6583.33 6984.92 8293.28 4970.86 6792.09 3590.38 13568.75 21879.57 12092.83 6460.60 17193.04 17380.92 7291.56 8290.86 155
EPNet83.72 6682.92 7586.14 5784.22 24769.48 8891.05 5385.27 24781.30 476.83 17891.65 8566.09 9895.56 5676.00 11993.85 5893.38 74
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 6784.54 6280.99 20890.06 10665.83 16384.21 23588.74 19271.60 16085.01 4592.44 7274.51 2583.50 31382.15 6392.15 7393.64 66
HQP_MVS83.64 6883.14 7085.14 7290.08 10268.71 10591.25 4892.44 6979.12 2178.92 12991.00 10860.42 17395.38 6778.71 9086.32 14391.33 137
Effi-MVS+83.62 6983.08 7185.24 7088.38 16367.45 13288.89 10089.15 17375.50 9082.27 8888.28 17269.61 6794.45 10777.81 9987.84 12293.84 55
OPM-MVS83.50 7082.95 7485.14 7288.79 14870.95 6489.13 9491.52 10677.55 4280.96 10791.75 8360.71 16794.50 10579.67 8386.51 14189.97 195
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 7182.80 7785.43 6790.25 9868.74 10390.30 6790.13 14576.33 7680.87 10892.89 6261.00 16494.20 11672.45 15590.97 8893.35 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 7283.45 6783.28 14092.74 6262.28 23588.17 12789.50 16075.22 9481.49 9992.74 7066.75 8995.11 7872.85 14991.58 8192.45 107
EPP-MVSNet83.40 7383.02 7384.57 9190.13 10064.47 19492.32 2990.73 12774.45 11179.35 12391.10 10269.05 7495.12 7672.78 15087.22 13094.13 42
3Dnovator76.31 583.38 7482.31 8386.59 5087.94 17772.94 2790.64 5792.14 8477.21 5075.47 20692.83 6458.56 18294.72 9773.24 14692.71 6792.13 118
EIA-MVS83.31 7582.80 7784.82 8589.59 11465.59 16988.21 12592.68 6074.66 10578.96 12786.42 22769.06 7395.26 7175.54 12590.09 9993.62 67
h-mvs3383.15 7682.19 8486.02 5990.56 9270.85 6888.15 12989.16 17276.02 8184.67 5391.39 9561.54 15095.50 5982.71 5875.48 27591.72 127
MVS_Test83.15 7683.06 7283.41 13786.86 20863.21 22186.11 18892.00 8774.31 11282.87 8289.44 14270.03 6293.21 15877.39 10488.50 11893.81 56
IS-MVSNet83.15 7682.81 7684.18 10789.94 10963.30 21991.59 4188.46 19879.04 2379.49 12192.16 7665.10 10894.28 11067.71 19691.86 7994.95 8
DP-MVS Recon83.11 7982.09 8686.15 5694.44 1970.92 6688.79 10492.20 8170.53 17979.17 12591.03 10764.12 11596.03 4468.39 19390.14 9891.50 133
PAPM_NR83.02 8082.41 8084.82 8592.47 6766.37 15287.93 13691.80 9873.82 12377.32 16790.66 11367.90 8094.90 8970.37 17089.48 10693.19 83
VDD-MVS83.01 8182.36 8284.96 7991.02 8366.40 15188.91 9988.11 20177.57 3984.39 6193.29 5352.19 23193.91 12977.05 10788.70 11494.57 27
MVSFormer82.85 8282.05 8785.24 7087.35 19770.21 7590.50 6090.38 13568.55 22181.32 10089.47 13761.68 14793.46 15178.98 8790.26 9692.05 120
OMC-MVS82.69 8381.97 9084.85 8488.75 15067.42 13387.98 13290.87 12474.92 9979.72 11891.65 8562.19 14293.96 12275.26 12786.42 14293.16 84
PVSNet_Blended_VisFu82.62 8481.83 9284.96 7990.80 8969.76 8588.74 10891.70 10269.39 19978.96 12788.46 16765.47 10594.87 9274.42 13288.57 11590.24 177
MVS_111021_LR82.61 8582.11 8584.11 10888.82 14571.58 5185.15 21086.16 23874.69 10480.47 11191.04 10562.29 13990.55 24480.33 7990.08 10090.20 178
HQP-MVS82.61 8582.02 8884.37 9989.33 12666.98 14389.17 8992.19 8276.41 7077.23 17090.23 12160.17 17695.11 7877.47 10285.99 15091.03 149
CLD-MVS82.31 8781.65 9384.29 10488.47 15967.73 12685.81 19892.35 7475.78 8478.33 14486.58 22264.01 11694.35 10876.05 11887.48 12790.79 156
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 8882.41 8081.62 18890.82 8860.93 24984.47 22689.78 15376.36 7584.07 6791.88 8164.71 11290.26 24670.68 16788.89 11093.66 60
diffmvspermissive82.10 8981.88 9182.76 17083.00 27463.78 20783.68 24389.76 15472.94 14382.02 9189.85 12665.96 10290.79 24082.38 6287.30 12993.71 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 9081.27 9684.50 9489.23 13368.76 10190.22 6891.94 9175.37 9276.64 18491.51 9054.29 21494.91 8678.44 9283.78 17189.83 200
FIs82.07 9182.42 7981.04 20788.80 14758.34 27488.26 12493.49 2676.93 5878.47 14191.04 10569.92 6492.34 19469.87 17784.97 15792.44 108
PS-MVSNAJss82.07 9181.31 9584.34 10286.51 21567.27 13789.27 8791.51 10771.75 15479.37 12290.22 12263.15 12694.27 11177.69 10082.36 19391.49 134
API-MVS81.99 9381.23 9784.26 10590.94 8570.18 8091.10 5189.32 16471.51 16278.66 13588.28 17265.26 10695.10 8164.74 22391.23 8687.51 258
UniMVSNet_NR-MVSNet81.88 9481.54 9482.92 15988.46 16063.46 21587.13 15692.37 7380.19 1078.38 14289.14 14671.66 4893.05 17170.05 17376.46 26092.25 113
MAR-MVS81.84 9580.70 10685.27 6991.32 7971.53 5289.82 7590.92 12169.77 19378.50 13986.21 23162.36 13894.52 10465.36 21792.05 7589.77 203
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 9681.23 9783.57 13291.89 7363.43 21789.84 7481.85 29477.04 5683.21 7793.10 5552.26 23093.43 15371.98 15689.95 10293.85 53
hse-mvs281.72 9780.94 10384.07 11388.72 15167.68 12885.87 19487.26 22276.02 8184.67 5388.22 17561.54 15093.48 14982.71 5873.44 30291.06 147
GeoE81.71 9881.01 10283.80 12789.51 11864.45 19588.97 9788.73 19371.27 16578.63 13689.76 12866.32 9593.20 16169.89 17686.02 14993.74 58
xiu_mvs_v2_base81.69 9981.05 10083.60 13089.15 13668.03 12184.46 22890.02 14770.67 17681.30 10386.53 22563.17 12594.19 11775.60 12488.54 11688.57 240
PS-MVSNAJ81.69 9981.02 10183.70 12989.51 11868.21 11884.28 23490.09 14670.79 17381.26 10485.62 24563.15 12694.29 10975.62 12388.87 11188.59 239
mvsmamba81.69 9980.74 10584.56 9287.45 19666.72 14791.26 4685.89 24274.66 10578.23 14790.56 11554.33 21394.91 8680.73 7683.54 17892.04 122
PAPR81.66 10280.89 10483.99 12190.27 9764.00 20286.76 17191.77 10168.84 21777.13 17689.50 13567.63 8294.88 9167.55 19888.52 11793.09 85
UniMVSNet (Re)81.60 10381.11 9983.09 15088.38 16364.41 19687.60 14493.02 4278.42 3078.56 13888.16 17669.78 6593.26 15769.58 18076.49 25991.60 128
FC-MVSNet-test81.52 10482.02 8880.03 22788.42 16255.97 31187.95 13493.42 2977.10 5477.38 16590.98 11069.96 6391.79 21268.46 19284.50 16292.33 109
VDDNet81.52 10480.67 10784.05 11690.44 9564.13 20189.73 8085.91 24171.11 16883.18 7893.48 4850.54 25493.49 14873.40 14388.25 12094.54 28
ACMP74.13 681.51 10680.57 10884.36 10089.42 12168.69 10889.97 7291.50 11074.46 11075.04 22590.41 11853.82 21994.54 10277.56 10182.91 18589.86 199
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 10780.29 11584.70 8986.63 21469.90 8385.95 19186.77 22963.24 27681.07 10689.47 13761.08 16392.15 20078.33 9590.07 10192.05 120
jason: jason.
lupinMVS81.39 10780.27 11684.76 8887.35 19770.21 7585.55 20386.41 23362.85 28381.32 10088.61 16261.68 14792.24 19878.41 9490.26 9691.83 124
test_yl81.17 10980.47 11183.24 14389.13 13763.62 20886.21 18589.95 15072.43 14881.78 9689.61 13257.50 19293.58 14270.75 16586.90 13492.52 102
DCV-MVSNet81.17 10980.47 11183.24 14389.13 13763.62 20886.21 18589.95 15072.43 14881.78 9689.61 13257.50 19293.58 14270.75 16586.90 13492.52 102
DU-MVS81.12 11180.52 11082.90 16087.80 18263.46 21587.02 16091.87 9579.01 2478.38 14289.07 14865.02 10993.05 17170.05 17376.46 26092.20 115
PVSNet_Blended80.98 11280.34 11382.90 16088.85 14265.40 17484.43 23092.00 8767.62 22978.11 15185.05 25966.02 10094.27 11171.52 15889.50 10589.01 223
FA-MVS(test-final)80.96 11379.91 12084.10 10988.30 16665.01 18384.55 22590.01 14873.25 13779.61 11987.57 18958.35 18494.72 9771.29 16286.25 14592.56 101
QAPM80.88 11479.50 12985.03 7688.01 17668.97 9791.59 4192.00 8766.63 24175.15 22192.16 7657.70 18995.45 6163.52 22788.76 11390.66 162
TranMVSNet+NR-MVSNet80.84 11580.31 11482.42 17587.85 17962.33 23387.74 14291.33 11280.55 777.99 15589.86 12565.23 10792.62 18167.05 20575.24 28492.30 111
UGNet80.83 11679.59 12784.54 9388.04 17468.09 11989.42 8488.16 20076.95 5776.22 19389.46 13949.30 26893.94 12568.48 19190.31 9491.60 128
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 11779.92 11983.47 13388.85 14264.51 19185.53 20589.39 16270.79 17378.49 14085.06 25867.54 8393.58 14267.03 20686.58 13992.32 110
XVG-OURS-SEG-HR80.81 11779.76 12383.96 12385.60 22668.78 10083.54 24990.50 13270.66 17776.71 18291.66 8460.69 16891.26 22776.94 10881.58 20191.83 124
xiu_mvs_v1_base_debu80.80 11979.72 12484.03 11887.35 19770.19 7785.56 20088.77 18869.06 21181.83 9288.16 17650.91 24892.85 17778.29 9687.56 12489.06 218
xiu_mvs_v1_base80.80 11979.72 12484.03 11887.35 19770.19 7785.56 20088.77 18869.06 21181.83 9288.16 17650.91 24892.85 17778.29 9687.56 12489.06 218
xiu_mvs_v1_base_debi80.80 11979.72 12484.03 11887.35 19770.19 7785.56 20088.77 18869.06 21181.83 9288.16 17650.91 24892.85 17778.29 9687.56 12489.06 218
ACMM73.20 880.78 12279.84 12283.58 13189.31 12968.37 11389.99 7191.60 10470.28 18377.25 16889.66 13053.37 22293.53 14774.24 13582.85 18688.85 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 12379.51 12884.20 10694.09 3867.27 13789.64 8291.11 11858.75 31874.08 23690.72 11258.10 18595.04 8369.70 17889.42 10790.30 175
iter_conf_final80.63 12479.35 13384.46 9689.36 12567.70 12789.85 7384.49 25773.19 13878.30 14588.94 15145.98 29294.56 10079.59 8484.48 16491.11 144
CANet_DTU80.61 12579.87 12182.83 16285.60 22663.17 22487.36 15088.65 19476.37 7475.88 20088.44 16853.51 22193.07 17073.30 14489.74 10492.25 113
VPA-MVSNet80.60 12680.55 10980.76 21388.07 17360.80 25286.86 16591.58 10575.67 8880.24 11389.45 14163.34 12090.25 24770.51 16979.22 23291.23 141
PVSNet_BlendedMVS80.60 12680.02 11782.36 17788.85 14265.40 17486.16 18792.00 8769.34 20178.11 15186.09 23566.02 10094.27 11171.52 15882.06 19587.39 260
AdaColmapbinary80.58 12879.42 13084.06 11493.09 5468.91 9889.36 8688.97 18269.27 20275.70 20389.69 12957.20 19695.77 5263.06 23288.41 11987.50 259
EI-MVSNet80.52 12979.98 11882.12 17884.28 24563.19 22386.41 17988.95 18374.18 11678.69 13387.54 19266.62 9092.43 18872.57 15380.57 21490.74 160
XVG-OURS80.41 13079.23 13783.97 12285.64 22569.02 9583.03 25990.39 13471.09 16977.63 16191.49 9254.62 21291.35 22575.71 12183.47 17991.54 130
PCF-MVS73.52 780.38 13178.84 14685.01 7787.71 18668.99 9683.65 24491.46 11163.00 28077.77 15990.28 11966.10 9795.09 8261.40 24988.22 12190.94 153
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 13277.83 16988.00 1594.42 2073.33 1892.78 1892.99 4579.14 1983.67 7312.47 37667.45 8496.60 3183.06 5194.50 4894.07 45
RRT_MVS80.35 13379.22 13883.74 12887.63 19065.46 17391.08 5288.92 18573.82 12376.44 18990.03 12449.05 27394.25 11576.84 10979.20 23391.51 131
test_djsdf80.30 13479.32 13483.27 14183.98 25265.37 17790.50 6090.38 13568.55 22176.19 19488.70 15856.44 20093.46 15178.98 8780.14 22090.97 152
v2v48280.23 13579.29 13583.05 15383.62 25764.14 20087.04 15989.97 14973.61 12878.18 15087.22 20061.10 16293.82 13276.11 11676.78 25791.18 142
NR-MVSNet80.23 13579.38 13182.78 16887.80 18263.34 21886.31 18291.09 11979.01 2472.17 25589.07 14867.20 8792.81 18066.08 21275.65 27192.20 115
Anonymous2024052980.19 13778.89 14584.10 10990.60 9164.75 18888.95 9890.90 12265.97 24980.59 11091.17 10149.97 25993.73 14069.16 18482.70 19093.81 56
IterMVS-LS80.06 13879.38 13182.11 17985.89 22163.20 22286.79 16889.34 16374.19 11575.45 20986.72 21266.62 9092.39 19072.58 15276.86 25490.75 159
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 13978.57 15184.42 9885.13 23568.74 10388.77 10588.10 20274.99 9874.97 22683.49 28157.27 19593.36 15473.53 14080.88 20891.18 142
v114480.03 13979.03 14283.01 15583.78 25564.51 19187.11 15890.57 13171.96 15378.08 15386.20 23261.41 15493.94 12574.93 12877.23 24890.60 165
iter_conf0580.00 14178.70 14783.91 12587.84 18065.83 16388.84 10384.92 25271.61 15978.70 13288.94 15143.88 30794.56 10079.28 8584.28 16791.33 137
v879.97 14279.02 14382.80 16584.09 24964.50 19387.96 13390.29 14274.13 11875.24 21986.81 20962.88 13193.89 13174.39 13375.40 27990.00 191
OpenMVScopyleft72.83 1079.77 14378.33 15884.09 11185.17 23169.91 8290.57 5890.97 12066.70 23772.17 25591.91 7954.70 21093.96 12261.81 24690.95 8988.41 243
v1079.74 14478.67 14882.97 15884.06 25064.95 18487.88 13990.62 12973.11 13975.11 22286.56 22361.46 15394.05 12173.68 13875.55 27389.90 197
ECVR-MVScopyleft79.61 14579.26 13680.67 21590.08 10254.69 32287.89 13877.44 32974.88 10080.27 11292.79 6748.96 27592.45 18768.55 19092.50 7094.86 15
BH-RMVSNet79.61 14578.44 15483.14 14889.38 12465.93 16084.95 21587.15 22473.56 13078.19 14989.79 12756.67 19993.36 15459.53 26386.74 13790.13 181
v119279.59 14778.43 15583.07 15283.55 25964.52 19086.93 16390.58 13070.83 17277.78 15885.90 23659.15 17993.94 12573.96 13777.19 25090.76 158
ab-mvs79.51 14878.97 14481.14 20488.46 16060.91 25083.84 24189.24 16970.36 18179.03 12688.87 15563.23 12490.21 24865.12 21982.57 19192.28 112
WR-MVS79.49 14979.22 13880.27 22388.79 14858.35 27385.06 21288.61 19678.56 2877.65 16088.34 17063.81 11990.66 24364.98 22177.22 24991.80 126
v14419279.47 15078.37 15682.78 16883.35 26263.96 20386.96 16190.36 13869.99 18777.50 16285.67 24360.66 16993.77 13674.27 13476.58 25890.62 163
BH-untuned79.47 15078.60 15082.05 18089.19 13565.91 16186.07 18988.52 19772.18 15075.42 21087.69 18661.15 16193.54 14660.38 25686.83 13686.70 279
test111179.43 15279.18 14080.15 22589.99 10753.31 33587.33 15277.05 33275.04 9780.23 11492.77 6948.97 27492.33 19568.87 18792.40 7294.81 18
mvs_anonymous79.42 15379.11 14180.34 22184.45 24457.97 28082.59 26187.62 21467.40 23276.17 19788.56 16568.47 7789.59 25670.65 16886.05 14893.47 73
thisisatest053079.40 15477.76 17484.31 10387.69 18865.10 18287.36 15084.26 26370.04 18677.42 16488.26 17449.94 26094.79 9570.20 17184.70 16193.03 88
tttt051779.40 15477.91 16683.90 12688.10 17163.84 20588.37 12184.05 26571.45 16376.78 18089.12 14749.93 26294.89 9070.18 17283.18 18392.96 92
V4279.38 15678.24 16082.83 16281.10 30765.50 17185.55 20389.82 15271.57 16178.21 14886.12 23460.66 16993.18 16475.64 12275.46 27789.81 202
jajsoiax79.29 15777.96 16483.27 14184.68 24166.57 15089.25 8890.16 14469.20 20675.46 20889.49 13645.75 29793.13 16776.84 10980.80 21090.11 183
v192192079.22 15878.03 16382.80 16583.30 26463.94 20486.80 16790.33 13969.91 19077.48 16385.53 24658.44 18393.75 13873.60 13976.85 25590.71 161
AUN-MVS79.21 15977.60 17984.05 11688.71 15267.61 12985.84 19687.26 22269.08 21077.23 17088.14 18053.20 22493.47 15075.50 12673.45 30191.06 147
TAPA-MVS73.13 979.15 16077.94 16582.79 16789.59 11462.99 22888.16 12891.51 10765.77 25077.14 17591.09 10360.91 16593.21 15850.26 32387.05 13292.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 16177.77 17383.22 14584.70 24066.37 15289.17 8990.19 14369.38 20075.40 21189.46 13944.17 30593.15 16576.78 11180.70 21290.14 180
UniMVSNet_ETH3D79.10 16278.24 16081.70 18786.85 20960.24 26187.28 15488.79 18774.25 11476.84 17790.53 11749.48 26591.56 21867.98 19482.15 19493.29 78
CDS-MVSNet79.07 16377.70 17683.17 14787.60 19168.23 11784.40 23286.20 23767.49 23176.36 19086.54 22461.54 15090.79 24061.86 24587.33 12890.49 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 16477.88 16882.38 17683.07 27164.80 18784.08 24088.95 18369.01 21478.69 13387.17 20354.70 21092.43 18874.69 12980.57 21489.89 198
v124078.99 16577.78 17282.64 17183.21 26663.54 21286.62 17490.30 14169.74 19677.33 16685.68 24257.04 19793.76 13773.13 14776.92 25290.62 163
Anonymous2023121178.97 16677.69 17782.81 16490.54 9364.29 19890.11 7091.51 10765.01 25976.16 19888.13 18150.56 25393.03 17469.68 17977.56 24791.11 144
v7n78.97 16677.58 18083.14 14883.45 26165.51 17088.32 12291.21 11473.69 12672.41 25286.32 23057.93 18693.81 13369.18 18375.65 27190.11 183
TAMVS78.89 16877.51 18183.03 15487.80 18267.79 12584.72 21985.05 25067.63 22876.75 18187.70 18562.25 14090.82 23958.53 27587.13 13190.49 169
c3_l78.75 16977.91 16681.26 19982.89 27761.56 24484.09 23989.13 17569.97 18875.56 20484.29 26966.36 9492.09 20273.47 14275.48 27590.12 182
tt080578.73 17077.83 16981.43 19385.17 23160.30 26089.41 8590.90 12271.21 16677.17 17488.73 15746.38 28793.21 15872.57 15378.96 23490.79 156
v14878.72 17177.80 17181.47 19282.73 28061.96 23986.30 18388.08 20373.26 13676.18 19585.47 24862.46 13692.36 19271.92 15773.82 29890.09 185
VPNet78.69 17278.66 14978.76 24888.31 16555.72 31384.45 22986.63 23176.79 6278.26 14690.55 11659.30 17889.70 25566.63 20777.05 25190.88 154
ET-MVSNet_ETH3D78.63 17376.63 20184.64 9086.73 21369.47 8985.01 21384.61 25569.54 19766.51 31386.59 22050.16 25791.75 21376.26 11584.24 16892.69 98
anonymousdsp78.60 17477.15 18682.98 15780.51 31367.08 14187.24 15589.53 15965.66 25275.16 22087.19 20252.52 22592.25 19777.17 10679.34 23089.61 207
miper_ehance_all_eth78.59 17577.76 17481.08 20682.66 28261.56 24483.65 24489.15 17368.87 21675.55 20583.79 27766.49 9292.03 20373.25 14576.39 26289.64 206
WR-MVS_H78.51 17678.49 15278.56 25188.02 17556.38 30688.43 11692.67 6177.14 5273.89 23787.55 19166.25 9689.24 26258.92 27073.55 30090.06 189
GBi-Net78.40 17777.40 18281.40 19587.60 19163.01 22588.39 11889.28 16571.63 15675.34 21387.28 19654.80 20691.11 23062.72 23479.57 22590.09 185
test178.40 17777.40 18281.40 19587.60 19163.01 22588.39 11889.28 16571.63 15675.34 21387.28 19654.80 20691.11 23062.72 23479.57 22590.09 185
Vis-MVSNet (Re-imp)78.36 17978.45 15378.07 25988.64 15451.78 34286.70 17279.63 31674.14 11775.11 22290.83 11161.29 15889.75 25358.10 27991.60 8092.69 98
Anonymous20240521178.25 18077.01 18881.99 18291.03 8260.67 25484.77 21883.90 26770.65 17880.00 11691.20 9941.08 32491.43 22365.21 21885.26 15593.85 53
CP-MVSNet78.22 18178.34 15777.84 26187.83 18154.54 32487.94 13591.17 11677.65 3673.48 24088.49 16662.24 14188.43 27662.19 24074.07 29390.55 167
BH-w/o78.21 18277.33 18480.84 21188.81 14665.13 18184.87 21687.85 21069.75 19474.52 23284.74 26361.34 15693.11 16858.24 27885.84 15284.27 313
FMVSNet278.20 18377.21 18581.20 20287.60 19162.89 22987.47 14889.02 17871.63 15675.29 21887.28 19654.80 20691.10 23362.38 23879.38 22989.61 207
MVS78.19 18476.99 19081.78 18585.66 22466.99 14284.66 22090.47 13355.08 33772.02 25785.27 25163.83 11894.11 12066.10 21189.80 10384.24 314
Baseline_NR-MVSNet78.15 18578.33 15877.61 26685.79 22256.21 30986.78 16985.76 24373.60 12977.93 15687.57 18965.02 10988.99 26667.14 20475.33 28187.63 254
CNLPA78.08 18676.79 19581.97 18390.40 9671.07 6087.59 14584.55 25666.03 24872.38 25389.64 13157.56 19186.04 29559.61 26283.35 18088.79 234
cl2278.07 18777.01 18881.23 20082.37 28961.83 24183.55 24887.98 20568.96 21575.06 22483.87 27361.40 15591.88 21073.53 14076.39 26289.98 194
PLCcopyleft70.83 1178.05 18876.37 20683.08 15191.88 7467.80 12488.19 12689.46 16164.33 26769.87 28088.38 16953.66 22093.58 14258.86 27182.73 18887.86 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 18976.49 20282.62 17283.16 27066.96 14586.94 16287.45 21972.45 14571.49 26284.17 27054.79 20991.58 21767.61 19780.31 21789.30 214
PS-CasMVS78.01 19078.09 16277.77 26387.71 18654.39 32688.02 13191.22 11377.50 4473.26 24288.64 16160.73 16688.41 27761.88 24473.88 29790.53 168
HY-MVS69.67 1277.95 19177.15 18680.36 22087.57 19560.21 26283.37 25187.78 21266.11 24575.37 21287.06 20763.27 12290.48 24561.38 25082.43 19290.40 173
eth_miper_zixun_eth77.92 19276.69 19981.61 19083.00 27461.98 23883.15 25489.20 17169.52 19874.86 22884.35 26861.76 14692.56 18471.50 16072.89 30690.28 176
FMVSNet377.88 19376.85 19380.97 20986.84 21062.36 23286.52 17788.77 18871.13 16775.34 21386.66 21854.07 21791.10 23362.72 23479.57 22589.45 210
miper_enhance_ethall77.87 19476.86 19280.92 21081.65 29661.38 24682.68 26088.98 18065.52 25475.47 20682.30 29665.76 10492.00 20572.95 14876.39 26289.39 211
FE-MVS77.78 19575.68 21284.08 11288.09 17266.00 15883.13 25587.79 21168.42 22478.01 15485.23 25345.50 29995.12 7659.11 26785.83 15391.11 144
PEN-MVS77.73 19677.69 17777.84 26187.07 20753.91 32987.91 13791.18 11577.56 4173.14 24488.82 15661.23 15989.17 26359.95 25972.37 30890.43 171
cl____77.72 19776.76 19680.58 21682.49 28660.48 25783.09 25687.87 20869.22 20474.38 23485.22 25462.10 14391.53 22071.09 16375.41 27889.73 205
DIV-MVS_self_test77.72 19776.76 19680.58 21682.48 28760.48 25783.09 25687.86 20969.22 20474.38 23485.24 25262.10 14391.53 22071.09 16375.40 27989.74 204
PAPM77.68 19976.40 20581.51 19187.29 20361.85 24083.78 24289.59 15864.74 26171.23 26388.70 15862.59 13393.66 14152.66 31087.03 13389.01 223
CHOSEN 1792x268877.63 20075.69 21183.44 13489.98 10868.58 11178.70 30487.50 21756.38 33275.80 20286.84 20858.67 18191.40 22461.58 24885.75 15490.34 174
HyFIR lowres test77.53 20175.40 21883.94 12489.59 11466.62 14880.36 28588.64 19556.29 33376.45 18685.17 25557.64 19093.28 15661.34 25183.10 18491.91 123
FMVSNet177.44 20276.12 20881.40 19586.81 21163.01 22588.39 11889.28 16570.49 18074.39 23387.28 19649.06 27291.11 23060.91 25378.52 23790.09 185
TR-MVS77.44 20276.18 20781.20 20288.24 16763.24 22084.61 22386.40 23467.55 23077.81 15786.48 22654.10 21693.15 16557.75 28282.72 18987.20 265
1112_ss77.40 20476.43 20480.32 22289.11 14160.41 25983.65 24487.72 21362.13 29273.05 24586.72 21262.58 13489.97 25062.11 24380.80 21090.59 166
thisisatest051577.33 20575.38 21983.18 14685.27 23063.80 20682.11 26583.27 27865.06 25775.91 19983.84 27549.54 26494.27 11167.24 20286.19 14691.48 135
test250677.30 20676.49 20279.74 23390.08 10252.02 33887.86 14063.10 36674.88 10080.16 11592.79 6738.29 33492.35 19368.74 18992.50 7094.86 15
bld_raw_dy_0_6477.29 20775.98 20981.22 20185.04 23765.47 17288.14 13077.56 32669.20 20673.77 23889.40 14542.24 31888.85 27276.78 11181.64 20089.33 213
pm-mvs177.25 20876.68 20078.93 24684.22 24758.62 27286.41 17988.36 19971.37 16473.31 24188.01 18261.22 16089.15 26464.24 22573.01 30589.03 222
LCM-MVSNet-Re77.05 20976.94 19177.36 26987.20 20451.60 34380.06 28880.46 30775.20 9567.69 29686.72 21262.48 13588.98 26763.44 22989.25 10891.51 131
DTE-MVSNet76.99 21076.80 19477.54 26886.24 21753.06 33787.52 14690.66 12877.08 5572.50 25088.67 16060.48 17289.52 25757.33 28670.74 31990.05 190
baseline176.98 21176.75 19877.66 26488.13 16955.66 31485.12 21181.89 29273.04 14176.79 17988.90 15362.43 13787.78 28463.30 23171.18 31789.55 209
LS3D76.95 21274.82 22583.37 13890.45 9467.36 13689.15 9386.94 22761.87 29469.52 28390.61 11451.71 24294.53 10346.38 34386.71 13888.21 245
GA-MVS76.87 21375.17 22381.97 18382.75 27962.58 23081.44 27486.35 23672.16 15274.74 22982.89 28846.20 29192.02 20468.85 18881.09 20691.30 140
DP-MVS76.78 21474.57 22783.42 13593.29 4869.46 9188.55 11583.70 26963.98 27370.20 27188.89 15454.01 21894.80 9446.66 34081.88 19886.01 291
cascas76.72 21574.64 22682.99 15685.78 22365.88 16282.33 26389.21 17060.85 30072.74 24781.02 30747.28 28293.75 13867.48 19985.02 15689.34 212
131476.53 21675.30 22280.21 22483.93 25362.32 23484.66 22088.81 18660.23 30470.16 27484.07 27255.30 20490.73 24267.37 20083.21 18287.59 257
thres100view90076.50 21775.55 21579.33 24189.52 11756.99 29585.83 19783.23 27973.94 12076.32 19187.12 20451.89 23991.95 20648.33 33183.75 17389.07 216
thres600view776.50 21775.44 21679.68 23589.40 12257.16 29285.53 20583.23 27973.79 12576.26 19287.09 20551.89 23991.89 20948.05 33683.72 17690.00 191
thres40076.50 21775.37 22079.86 23089.13 13757.65 28685.17 20883.60 27073.41 13476.45 18686.39 22852.12 23291.95 20648.33 33183.75 17390.00 191
tfpn200view976.42 22075.37 22079.55 24089.13 13757.65 28685.17 20883.60 27073.41 13476.45 18686.39 22852.12 23291.95 20648.33 33183.75 17389.07 216
Test_1112_low_res76.40 22175.44 21679.27 24289.28 13158.09 27681.69 26987.07 22559.53 31172.48 25186.67 21761.30 15789.33 26060.81 25580.15 21990.41 172
F-COLMAP76.38 22274.33 23282.50 17489.28 13166.95 14688.41 11789.03 17764.05 27166.83 30788.61 16246.78 28592.89 17657.48 28378.55 23687.67 253
LTVRE_ROB69.57 1376.25 22374.54 22981.41 19488.60 15564.38 19779.24 29789.12 17670.76 17569.79 28287.86 18349.09 27193.20 16156.21 29680.16 21886.65 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 22474.46 23181.13 20585.37 22969.79 8484.42 23187.95 20665.03 25867.46 29985.33 25053.28 22391.73 21558.01 28083.27 18181.85 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 22574.27 23381.62 18883.20 26764.67 18983.60 24789.75 15569.75 19471.85 25887.09 20532.78 34792.11 20169.99 17580.43 21688.09 246
ACMH+68.96 1476.01 22674.01 23482.03 18188.60 15565.31 17888.86 10187.55 21570.25 18467.75 29587.47 19441.27 32293.19 16358.37 27675.94 26887.60 255
ACMH67.68 1675.89 22773.93 23581.77 18688.71 15266.61 14988.62 11389.01 17969.81 19166.78 30886.70 21641.95 32191.51 22255.64 29778.14 24387.17 266
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 22873.36 24283.31 13984.76 23966.03 15683.38 25085.06 24970.21 18569.40 28481.05 30645.76 29694.66 9965.10 22075.49 27489.25 215
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 22973.83 23881.30 19883.26 26561.79 24282.57 26280.65 30366.81 23466.88 30583.42 28257.86 18892.19 19963.47 22879.57 22589.91 196
WTY-MVS75.65 23075.68 21275.57 28586.40 21656.82 29777.92 31282.40 28865.10 25676.18 19587.72 18463.13 12980.90 32560.31 25781.96 19689.00 225
thres20075.55 23174.47 23078.82 24787.78 18557.85 28383.07 25883.51 27372.44 14775.84 20184.42 26552.08 23491.75 21347.41 33883.64 17786.86 275
test_vis1_n_192075.52 23275.78 21074.75 29579.84 32057.44 29083.26 25285.52 24562.83 28479.34 12486.17 23345.10 30179.71 32978.75 8981.21 20587.10 272
EPNet_dtu75.46 23374.86 22477.23 27382.57 28454.60 32386.89 16483.09 28271.64 15566.25 31585.86 23855.99 20188.04 28154.92 29986.55 14089.05 221
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 23473.87 23780.11 22682.69 28164.85 18681.57 27183.47 27569.16 20870.49 26884.15 27151.95 23788.15 27969.23 18272.14 31187.34 262
XXY-MVS75.41 23575.56 21474.96 29183.59 25857.82 28480.59 28283.87 26866.54 24274.93 22788.31 17163.24 12380.09 32862.16 24176.85 25586.97 273
TransMVSNet (Re)75.39 23674.56 22877.86 26085.50 22857.10 29486.78 16986.09 24072.17 15171.53 26187.34 19563.01 13089.31 26156.84 29161.83 34487.17 266
CostFormer75.24 23773.90 23679.27 24282.65 28358.27 27580.80 27782.73 28661.57 29575.33 21683.13 28655.52 20291.07 23664.98 22178.34 24288.45 241
D2MVS74.82 23873.21 24379.64 23779.81 32162.56 23180.34 28687.35 22064.37 26668.86 28782.66 29246.37 28890.10 24967.91 19581.24 20486.25 284
pmmvs674.69 23973.39 24178.61 25081.38 30257.48 28986.64 17387.95 20664.99 26070.18 27286.61 21950.43 25589.52 25762.12 24270.18 32188.83 232
tfpnnormal74.39 24073.16 24478.08 25886.10 22058.05 27784.65 22287.53 21670.32 18271.22 26485.63 24454.97 20589.86 25143.03 35275.02 28686.32 283
IterMVS74.29 24172.94 24678.35 25581.53 29963.49 21481.58 27082.49 28768.06 22769.99 27783.69 27951.66 24385.54 29865.85 21471.64 31486.01 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 24272.42 25079.80 23283.76 25659.59 26785.92 19386.64 23066.39 24366.96 30487.58 18839.46 32891.60 21665.76 21569.27 32488.22 244
SCA74.22 24372.33 25179.91 22984.05 25162.17 23679.96 29179.29 31866.30 24472.38 25380.13 31651.95 23788.60 27459.25 26577.67 24688.96 227
miper_lstm_enhance74.11 24473.11 24577.13 27480.11 31659.62 26672.23 33586.92 22866.76 23670.40 26982.92 28756.93 19882.92 31769.06 18572.63 30788.87 230
EG-PatchMatch MVS74.04 24571.82 25480.71 21484.92 23867.42 13385.86 19588.08 20366.04 24764.22 32783.85 27435.10 34392.56 18457.44 28480.83 20982.16 334
pmmvs474.03 24671.91 25380.39 21981.96 29368.32 11481.45 27382.14 29059.32 31269.87 28085.13 25652.40 22888.13 28060.21 25874.74 28984.73 309
MS-PatchMatch73.83 24772.67 24777.30 27183.87 25466.02 15781.82 26684.66 25461.37 29868.61 29082.82 29047.29 28188.21 27859.27 26484.32 16677.68 349
test_cas_vis1_n_192073.76 24873.74 23973.81 30275.90 34059.77 26480.51 28382.40 28858.30 32081.62 9885.69 24144.35 30476.41 34676.29 11478.61 23585.23 301
sss73.60 24973.64 24073.51 30482.80 27855.01 32076.12 31981.69 29562.47 28974.68 23085.85 23957.32 19478.11 33660.86 25480.93 20787.39 260
RPMNet73.51 25070.49 26782.58 17381.32 30565.19 17975.92 32192.27 7657.60 32672.73 24876.45 34152.30 22995.43 6348.14 33577.71 24487.11 270
SixPastTwentyTwo73.37 25171.26 26179.70 23485.08 23657.89 28285.57 19983.56 27271.03 17065.66 31785.88 23742.10 31992.57 18359.11 26763.34 34288.65 238
CR-MVSNet73.37 25171.27 26079.67 23681.32 30565.19 17975.92 32180.30 30959.92 30772.73 24881.19 30452.50 22686.69 29059.84 26077.71 24487.11 270
MSDG73.36 25370.99 26280.49 21884.51 24365.80 16580.71 28086.13 23965.70 25165.46 31883.74 27844.60 30290.91 23851.13 31676.89 25384.74 308
tpm273.26 25471.46 25678.63 24983.34 26356.71 30080.65 28180.40 30856.63 33173.55 23982.02 30151.80 24191.24 22856.35 29578.42 24087.95 247
RPSCF73.23 25571.46 25678.54 25282.50 28559.85 26382.18 26482.84 28558.96 31571.15 26589.41 14345.48 30084.77 30558.82 27271.83 31391.02 151
PatchmatchNetpermissive73.12 25671.33 25978.49 25483.18 26860.85 25179.63 29378.57 32164.13 26871.73 25979.81 32151.20 24685.97 29657.40 28576.36 26588.66 237
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 25770.41 26980.81 21287.13 20665.63 16888.30 12384.19 26462.96 28163.80 33187.69 18638.04 33592.56 18446.66 34074.91 28784.24 314
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 25872.58 24874.25 29984.28 24550.85 34886.41 17983.45 27644.56 35473.23 24387.54 19249.38 26685.70 29765.90 21378.44 23986.19 286
test-LLR72.94 25972.43 24974.48 29681.35 30358.04 27878.38 30577.46 32766.66 23869.95 27879.00 32548.06 27879.24 33066.13 20984.83 15886.15 287
test_040272.79 26070.44 26879.84 23188.13 16965.99 15985.93 19284.29 26165.57 25367.40 30185.49 24746.92 28492.61 18235.88 36174.38 29280.94 340
MVS_030472.48 26170.89 26477.24 27282.20 29059.68 26584.11 23883.49 27467.10 23366.87 30680.59 31235.00 34487.40 28659.07 26979.58 22484.63 310
tpmrst72.39 26272.13 25273.18 30880.54 31249.91 35279.91 29279.08 31963.11 27871.69 26079.95 31855.32 20382.77 31865.66 21673.89 29686.87 274
PatchMatch-RL72.38 26370.90 26376.80 27788.60 15567.38 13579.53 29476.17 33762.75 28669.36 28582.00 30245.51 29884.89 30453.62 30580.58 21378.12 348
CL-MVSNet_self_test72.37 26471.46 25675.09 29079.49 32753.53 33180.76 27985.01 25169.12 20970.51 26782.05 30057.92 18784.13 30852.27 31166.00 33687.60 255
tpm72.37 26471.71 25574.35 29882.19 29152.00 33979.22 29877.29 33064.56 26372.95 24683.68 28051.35 24483.26 31658.33 27775.80 26987.81 251
PVSNet64.34 1872.08 26670.87 26575.69 28386.21 21856.44 30474.37 33180.73 30262.06 29370.17 27382.23 29842.86 31283.31 31554.77 30084.45 16587.32 263
pmmvs571.55 26770.20 27275.61 28477.83 33356.39 30581.74 26880.89 29957.76 32467.46 29984.49 26449.26 26985.32 30157.08 28875.29 28285.11 305
test-mter71.41 26870.39 27074.48 29681.35 30358.04 27878.38 30577.46 32760.32 30369.95 27879.00 32536.08 34179.24 33066.13 20984.83 15886.15 287
K. test v371.19 26968.51 28079.21 24483.04 27357.78 28584.35 23376.91 33372.90 14462.99 33482.86 28939.27 32991.09 23561.65 24752.66 36088.75 235
tpmvs71.09 27069.29 27576.49 27882.04 29256.04 31078.92 30281.37 29864.05 27167.18 30378.28 33149.74 26389.77 25249.67 32672.37 30883.67 321
AllTest70.96 27168.09 28679.58 23885.15 23363.62 20884.58 22479.83 31362.31 29060.32 34186.73 21032.02 34888.96 26950.28 32171.57 31586.15 287
test_fmvs170.93 27270.52 26672.16 31273.71 35055.05 31980.82 27678.77 32051.21 34878.58 13784.41 26631.20 35176.94 34275.88 12080.12 22184.47 312
test_fmvs1_n70.86 27370.24 27172.73 30972.51 35855.28 31781.27 27579.71 31551.49 34778.73 13184.87 26027.54 35577.02 34176.06 11779.97 22285.88 294
Patchmtry70.74 27469.16 27775.49 28780.72 30954.07 32874.94 33080.30 30958.34 31970.01 27581.19 30452.50 22686.54 29153.37 30771.09 31885.87 295
MIMVSNet70.69 27569.30 27474.88 29284.52 24256.35 30775.87 32379.42 31764.59 26267.76 29482.41 29441.10 32381.54 32246.64 34281.34 20286.75 278
tpm cat170.57 27668.31 28277.35 27082.41 28857.95 28178.08 30980.22 31152.04 34368.54 29177.66 33652.00 23687.84 28351.77 31272.07 31286.25 284
OpenMVS_ROBcopyleft64.09 1970.56 27768.19 28377.65 26580.26 31459.41 26985.01 21382.96 28458.76 31765.43 31982.33 29537.63 33791.23 22945.34 34876.03 26782.32 332
pmmvs-eth3d70.50 27867.83 29078.52 25377.37 33666.18 15581.82 26681.51 29658.90 31663.90 33080.42 31442.69 31386.28 29458.56 27465.30 33883.11 327
USDC70.33 27968.37 28176.21 28080.60 31156.23 30879.19 29986.49 23260.89 29961.29 33885.47 24831.78 35089.47 25953.37 30776.21 26682.94 331
Patchmatch-RL test70.24 28067.78 29277.61 26677.43 33559.57 26871.16 33870.33 35062.94 28268.65 28972.77 35050.62 25285.49 29969.58 18066.58 33387.77 252
CMPMVSbinary51.72 2170.19 28168.16 28476.28 27973.15 35557.55 28879.47 29583.92 26648.02 35156.48 35484.81 26143.13 31086.42 29362.67 23781.81 19984.89 306
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 28267.34 29778.14 25779.80 32261.13 24779.19 29980.59 30459.16 31465.27 32079.29 32246.75 28687.29 28749.33 32766.72 33186.00 293
gg-mvs-nofinetune69.95 28367.96 28775.94 28183.07 27154.51 32577.23 31670.29 35163.11 27870.32 27062.33 35943.62 30888.69 27353.88 30487.76 12384.62 311
TESTMET0.1,169.89 28469.00 27872.55 31079.27 33056.85 29678.38 30574.71 34357.64 32568.09 29377.19 33837.75 33676.70 34363.92 22684.09 16984.10 317
test_vis1_n69.85 28569.21 27671.77 31472.66 35755.27 31881.48 27276.21 33652.03 34475.30 21783.20 28528.97 35376.22 34874.60 13078.41 24183.81 320
FMVSNet569.50 28667.96 28774.15 30082.97 27655.35 31680.01 29082.12 29162.56 28863.02 33281.53 30336.92 33881.92 32048.42 33074.06 29485.17 304
PMMVS69.34 28768.67 27971.35 31975.67 34262.03 23775.17 32573.46 34650.00 34968.68 28879.05 32352.07 23578.13 33561.16 25282.77 18773.90 354
our_test_369.14 28867.00 29975.57 28579.80 32258.80 27077.96 31077.81 32459.55 31062.90 33578.25 33247.43 28083.97 30951.71 31367.58 33083.93 319
EPMVS69.02 28968.16 28471.59 31579.61 32549.80 35477.40 31466.93 35962.82 28570.01 27579.05 32345.79 29577.86 33856.58 29375.26 28387.13 269
KD-MVS_self_test68.81 29067.59 29572.46 31174.29 34845.45 36077.93 31187.00 22663.12 27763.99 32978.99 32742.32 31584.77 30556.55 29464.09 34187.16 268
Anonymous2024052168.80 29167.22 29873.55 30374.33 34754.11 32783.18 25385.61 24458.15 32161.68 33780.94 30930.71 35281.27 32457.00 28973.34 30485.28 300
Anonymous2023120668.60 29267.80 29171.02 32180.23 31550.75 34978.30 30880.47 30656.79 33066.11 31682.63 29346.35 28978.95 33243.62 35175.70 27083.36 324
MIMVSNet168.58 29366.78 30173.98 30180.07 31751.82 34180.77 27884.37 25864.40 26559.75 34482.16 29936.47 33983.63 31242.73 35370.33 32086.48 282
EU-MVSNet68.53 29467.61 29471.31 32078.51 33247.01 35884.47 22684.27 26242.27 35766.44 31484.79 26240.44 32683.76 31058.76 27368.54 32983.17 325
PatchT68.46 29567.85 28970.29 32480.70 31043.93 36772.47 33474.88 34060.15 30570.55 26676.57 34049.94 26081.59 32150.58 31774.83 28885.34 299
test_fmvs268.35 29667.48 29670.98 32269.50 36151.95 34080.05 28976.38 33549.33 35074.65 23184.38 26723.30 36175.40 35374.51 13175.17 28585.60 296
test0.0.03 168.00 29767.69 29368.90 32977.55 33447.43 35675.70 32472.95 34866.66 23866.56 30982.29 29748.06 27875.87 35044.97 34974.51 29183.41 323
TDRefinement67.49 29864.34 30776.92 27573.47 35361.07 24884.86 21782.98 28359.77 30858.30 34885.13 25626.06 35687.89 28247.92 33760.59 34981.81 336
test20.0367.45 29966.95 30068.94 32875.48 34444.84 36577.50 31377.67 32566.66 23863.01 33383.80 27647.02 28378.40 33442.53 35468.86 32883.58 322
UnsupCasMVSNet_eth67.33 30065.99 30371.37 31773.48 35251.47 34575.16 32685.19 24865.20 25560.78 34080.93 31142.35 31477.20 34057.12 28753.69 35985.44 298
TinyColmap67.30 30164.81 30574.76 29481.92 29456.68 30180.29 28781.49 29760.33 30256.27 35583.22 28324.77 35887.66 28545.52 34669.47 32379.95 344
dp66.80 30265.43 30470.90 32379.74 32448.82 35575.12 32874.77 34159.61 30964.08 32877.23 33742.89 31180.72 32648.86 32966.58 33383.16 326
MDA-MVSNet-bldmvs66.68 30363.66 31175.75 28279.28 32960.56 25673.92 33278.35 32264.43 26450.13 36179.87 32044.02 30683.67 31146.10 34456.86 35283.03 329
testgi66.67 30466.53 30267.08 33675.62 34341.69 37175.93 32076.50 33466.11 24565.20 32386.59 22035.72 34274.71 35543.71 35073.38 30384.84 307
CHOSEN 280x42066.51 30564.71 30671.90 31381.45 30063.52 21357.98 36668.95 35753.57 33962.59 33676.70 33946.22 29075.29 35455.25 29879.68 22376.88 351
PM-MVS66.41 30664.14 30873.20 30773.92 34956.45 30378.97 30164.96 36463.88 27564.72 32480.24 31519.84 36483.44 31466.24 20864.52 34079.71 345
JIA-IIPM66.32 30762.82 31776.82 27677.09 33761.72 24365.34 35975.38 33858.04 32364.51 32562.32 36042.05 32086.51 29251.45 31569.22 32582.21 333
KD-MVS_2432*160066.22 30863.89 30973.21 30575.47 34553.42 33370.76 34184.35 25964.10 26966.52 31178.52 32934.55 34584.98 30250.40 31950.33 36381.23 338
miper_refine_blended66.22 30863.89 30973.21 30575.47 34553.42 33370.76 34184.35 25964.10 26966.52 31178.52 32934.55 34584.98 30250.40 31950.33 36381.23 338
ADS-MVSNet266.20 31063.33 31274.82 29379.92 31858.75 27167.55 35275.19 33953.37 34065.25 32175.86 34342.32 31580.53 32741.57 35568.91 32685.18 302
YYNet165.03 31162.91 31571.38 31675.85 34156.60 30269.12 34974.66 34457.28 32854.12 35777.87 33445.85 29474.48 35649.95 32461.52 34683.05 328
MDA-MVSNet_test_wron65.03 31162.92 31471.37 31775.93 33956.73 29869.09 35074.73 34257.28 32854.03 35877.89 33345.88 29374.39 35749.89 32561.55 34582.99 330
Patchmatch-test64.82 31363.24 31369.57 32679.42 32849.82 35363.49 36369.05 35651.98 34559.95 34380.13 31650.91 24870.98 36140.66 35773.57 29987.90 249
ADS-MVSNet64.36 31462.88 31668.78 33179.92 31847.17 35767.55 35271.18 34953.37 34065.25 32175.86 34342.32 31573.99 35841.57 35568.91 32685.18 302
LF4IMVS64.02 31562.19 31869.50 32770.90 35953.29 33676.13 31877.18 33152.65 34258.59 34680.98 30823.55 36076.52 34453.06 30966.66 33278.68 347
UnsupCasMVSNet_bld63.70 31661.53 32170.21 32573.69 35151.39 34672.82 33381.89 29255.63 33557.81 35071.80 35238.67 33178.61 33349.26 32852.21 36180.63 341
test_fmvs363.36 31761.82 31967.98 33362.51 36846.96 35977.37 31574.03 34545.24 35367.50 29878.79 32812.16 37272.98 36072.77 15166.02 33583.99 318
mvsany_test162.30 31861.26 32265.41 33869.52 36054.86 32166.86 35449.78 37546.65 35268.50 29283.21 28449.15 27066.28 36756.93 29060.77 34775.11 353
new-patchmatchnet61.73 31961.73 32061.70 34272.74 35624.50 38169.16 34878.03 32361.40 29656.72 35375.53 34638.42 33276.48 34545.95 34557.67 35184.13 316
PVSNet_057.27 2061.67 32059.27 32368.85 33079.61 32557.44 29068.01 35173.44 34755.93 33458.54 34770.41 35544.58 30377.55 33947.01 33935.91 36971.55 357
test_vis1_rt60.28 32158.42 32465.84 33767.25 36455.60 31570.44 34360.94 36844.33 35559.00 34566.64 35724.91 35768.67 36562.80 23369.48 32273.25 355
MVS-HIRNet59.14 32257.67 32563.57 34081.65 29643.50 36871.73 33665.06 36339.59 36151.43 36057.73 36538.34 33382.58 31939.53 35873.95 29564.62 361
pmmvs357.79 32354.26 32768.37 33264.02 36756.72 29975.12 32865.17 36240.20 35952.93 35969.86 35620.36 36375.48 35245.45 34755.25 35872.90 356
DSMNet-mixed57.77 32456.90 32660.38 34467.70 36335.61 37469.18 34753.97 37332.30 36957.49 35179.88 31940.39 32768.57 36638.78 35972.37 30876.97 350
LCM-MVSNet54.25 32549.68 33467.97 33453.73 37645.28 36366.85 35580.78 30135.96 36539.45 36662.23 3618.70 37678.06 33748.24 33451.20 36280.57 342
mvsany_test353.99 32651.45 33061.61 34355.51 37244.74 36663.52 36245.41 37943.69 35658.11 34976.45 34117.99 36563.76 37054.77 30047.59 36576.34 352
FPMVS53.68 32751.64 32959.81 34565.08 36651.03 34769.48 34669.58 35441.46 35840.67 36472.32 35116.46 36870.00 36424.24 37165.42 33758.40 366
APD_test153.31 32849.93 33363.42 34165.68 36550.13 35171.59 33766.90 36034.43 36640.58 36571.56 3538.65 37776.27 34734.64 36355.36 35763.86 362
N_pmnet52.79 32953.26 32851.40 35378.99 3317.68 38469.52 3453.89 38451.63 34657.01 35274.98 34740.83 32565.96 36837.78 36064.67 33980.56 343
test_f52.09 33050.82 33155.90 34953.82 37542.31 37059.42 36558.31 37136.45 36456.12 35670.96 35412.18 37157.79 37253.51 30656.57 35467.60 358
EGC-MVSNET52.07 33147.05 33567.14 33583.51 26060.71 25380.50 28467.75 3580.07 3790.43 38075.85 34524.26 35981.54 32228.82 36562.25 34359.16 364
new_pmnet50.91 33250.29 33252.78 35268.58 36234.94 37663.71 36156.63 37239.73 36044.95 36265.47 35821.93 36258.48 37134.98 36256.62 35364.92 360
ANet_high50.57 33346.10 33763.99 33948.67 37939.13 37270.99 34080.85 30061.39 29731.18 36857.70 36617.02 36773.65 35931.22 36415.89 37679.18 346
test_vis3_rt49.26 33447.02 33656.00 34854.30 37345.27 36466.76 35648.08 37636.83 36344.38 36353.20 3687.17 37964.07 36956.77 29255.66 35558.65 365
testf145.72 33541.96 33857.00 34656.90 37045.32 36166.14 35759.26 36926.19 37030.89 36960.96 3634.14 38070.64 36226.39 36946.73 36755.04 367
APD_test245.72 33541.96 33857.00 34656.90 37045.32 36166.14 35759.26 36926.19 37030.89 36960.96 3634.14 38070.64 36226.39 36946.73 36755.04 367
Gipumacopyleft45.18 33741.86 34055.16 35177.03 33851.52 34432.50 37280.52 30532.46 36827.12 37135.02 3729.52 37575.50 35122.31 37260.21 35038.45 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 33840.28 34155.82 35040.82 38142.54 36965.12 36063.99 36534.43 36624.48 37257.12 3673.92 38276.17 34917.10 37455.52 35648.75 369
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 33938.86 34246.69 35453.84 37416.45 38248.61 36949.92 37437.49 36231.67 36760.97 3628.14 37856.42 37328.42 36630.72 37167.19 359
E-PMN31.77 34030.64 34335.15 35752.87 37727.67 37857.09 36747.86 37724.64 37216.40 37733.05 37311.23 37354.90 37414.46 37618.15 37422.87 373
test_method31.52 34129.28 34538.23 35627.03 3836.50 38520.94 37462.21 3674.05 37722.35 37552.50 36913.33 36947.58 37627.04 36834.04 37060.62 363
EMVS30.81 34229.65 34434.27 35850.96 37825.95 38056.58 36846.80 37824.01 37315.53 37830.68 37412.47 37054.43 37512.81 37717.05 37522.43 374
MVEpermissive26.22 2330.37 34325.89 34743.81 35544.55 38035.46 37528.87 37339.07 38018.20 37418.58 37640.18 3712.68 38347.37 37717.07 37523.78 37348.60 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 34426.61 3460.00 3640.00 3870.00 3880.00 37589.26 1680.00 3820.00 38388.61 16261.62 1490.00 3830.00 3810.00 3810.00 379
tmp_tt18.61 34521.40 34810.23 3614.82 38410.11 38334.70 37130.74 3821.48 37823.91 37426.07 37528.42 35413.41 38027.12 36715.35 3777.17 375
wuyk23d16.82 34615.94 34919.46 36058.74 36931.45 37739.22 3703.74 3856.84 3766.04 3792.70 3791.27 38424.29 37910.54 37814.40 3782.63 376
ab-mvs-re7.23 3479.64 3500.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38386.72 2120.00 3870.00 3830.00 3810.00 3810.00 379
test1236.12 3488.11 3510.14 3620.06 3860.09 38671.05 3390.03 3870.04 3810.25 3821.30 3810.05 3850.03 3820.21 3800.01 3800.29 377
testmvs6.04 3498.02 3520.10 3630.08 3850.03 38769.74 3440.04 3860.05 3800.31 3811.68 3800.02 3860.04 3810.24 3790.02 3790.25 378
pcd_1.5k_mvsjas5.26 3507.02 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38263.15 1260.00 3830.00 3810.00 3810.00 379
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS195.00 1072.39 3895.06 193.84 1574.49 10991.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
PC_three_145268.21 22692.02 1294.00 4082.09 595.98 4984.58 3696.68 294.95 8
No_MVS89.16 194.34 2775.53 292.99 4597.53 189.67 196.44 994.41 30
test_one_060195.07 771.46 5394.14 578.27 3392.05 1195.74 680.83 11
eth-test20.00 387
eth-test0.00 387
ZD-MVS94.38 2572.22 4392.67 6170.98 17187.75 2994.07 3774.01 3296.70 2584.66 3594.84 41
RE-MVS-def85.48 4993.06 5570.63 7191.88 3792.27 7673.53 13285.69 3994.45 2463.87 11782.75 5691.87 7792.50 104
IU-MVS95.30 271.25 5592.95 5166.81 23492.39 688.94 1196.63 494.85 17
OPU-MVS89.06 394.62 1575.42 493.57 794.02 3982.45 396.87 1883.77 4696.48 894.88 12
test_241102_TWO94.06 1077.24 4892.78 495.72 881.26 897.44 589.07 996.58 694.26 39
test_241102_ONE95.30 270.98 6194.06 1077.17 5193.10 195.39 1182.99 197.27 10
9.1488.26 1492.84 6091.52 4494.75 173.93 12188.57 2294.67 1775.57 2295.79 5186.77 2395.76 23
save fliter93.80 4072.35 4190.47 6291.17 11674.31 112
test_0728_THIRD78.38 3192.12 995.78 481.46 797.40 789.42 496.57 794.67 22
test_0728_SECOND87.71 3095.34 171.43 5493.49 994.23 397.49 389.08 796.41 1294.21 40
test072695.27 571.25 5593.60 694.11 677.33 4692.81 395.79 380.98 9
GSMVS88.96 227
test_part295.06 872.65 3191.80 13
sam_mvs151.32 24588.96 227
sam_mvs50.01 258
ambc75.24 28973.16 35450.51 35063.05 36487.47 21864.28 32677.81 33517.80 36689.73 25457.88 28160.64 34885.49 297
MTGPAbinary92.02 85
test_post178.90 3035.43 37848.81 27785.44 30059.25 265
test_post5.46 37750.36 25684.24 307
patchmatchnet-post74.00 34851.12 24788.60 274
GG-mvs-BLEND75.38 28881.59 29855.80 31279.32 29669.63 35367.19 30273.67 34943.24 30988.90 27150.41 31884.50 16281.45 337
MTMP92.18 3332.83 381
gm-plane-assit81.40 30153.83 33062.72 28780.94 30992.39 19063.40 230
test9_res84.90 3095.70 2692.87 93
TEST993.26 5072.96 2488.75 10691.89 9368.44 22385.00 4693.10 5574.36 2895.41 65
test_893.13 5272.57 3488.68 11191.84 9768.69 21984.87 5093.10 5574.43 2695.16 74
agg_prior282.91 5495.45 2892.70 96
agg_prior92.85 5971.94 4991.78 10084.41 6094.93 85
TestCases79.58 23885.15 23363.62 20879.83 31362.31 29060.32 34186.73 21032.02 34888.96 26950.28 32171.57 31586.15 287
test_prior472.60 3389.01 96
test_prior288.85 10275.41 9184.91 4893.54 4774.28 2983.31 4995.86 20
test_prior86.33 5292.61 6569.59 8692.97 5095.48 6093.91 50
旧先验286.56 17658.10 32287.04 3188.98 26774.07 136
新几何286.29 184
新几何183.42 13593.13 5270.71 6985.48 24657.43 32781.80 9591.98 7863.28 12192.27 19664.60 22492.99 6387.27 264
旧先验191.96 7165.79 16686.37 23593.08 5969.31 7192.74 6688.74 236
无先验87.48 14788.98 18060.00 30694.12 11967.28 20188.97 226
原ACMM286.86 165
原ACMM184.35 10193.01 5768.79 9992.44 6963.96 27481.09 10591.57 8966.06 9995.45 6167.19 20394.82 4388.81 233
test22291.50 7768.26 11684.16 23683.20 28154.63 33879.74 11791.63 8758.97 18091.42 8386.77 277
testdata291.01 23762.37 239
segment_acmp73.08 37
testdata79.97 22890.90 8664.21 19984.71 25359.27 31385.40 4192.91 6162.02 14589.08 26568.95 18691.37 8486.63 281
testdata184.14 23775.71 85
test1286.80 4792.63 6470.70 7091.79 9982.71 8671.67 4796.16 4294.50 4893.54 71
plane_prior790.08 10268.51 112
plane_prior689.84 11168.70 10760.42 173
plane_prior592.44 6995.38 6778.71 9086.32 14391.33 137
plane_prior491.00 108
plane_prior368.60 11078.44 2978.92 129
plane_prior291.25 4879.12 21
plane_prior189.90 110
plane_prior68.71 10590.38 6577.62 3786.16 147
n20.00 388
nn0.00 388
door-mid69.98 352
lessismore_v078.97 24581.01 30857.15 29365.99 36161.16 33982.82 29039.12 33091.34 22659.67 26146.92 36688.43 242
LGP-MVS_train84.50 9489.23 13368.76 10191.94 9175.37 9276.64 18491.51 9054.29 21494.91 8678.44 9283.78 17189.83 200
test1192.23 79
door69.44 355
HQP5-MVS66.98 143
HQP-NCC89.33 12689.17 8976.41 7077.23 170
ACMP_Plane89.33 12689.17 8976.41 7077.23 170
BP-MVS77.47 102
HQP4-MVS77.24 16995.11 7891.03 149
HQP3-MVS92.19 8285.99 150
HQP2-MVS60.17 176
NP-MVS89.62 11368.32 11490.24 120
MDTV_nov1_ep13_2view37.79 37375.16 32655.10 33666.53 31049.34 26753.98 30387.94 248
MDTV_nov1_ep1369.97 27383.18 26853.48 33277.10 31780.18 31260.45 30169.33 28680.44 31348.89 27686.90 28951.60 31478.51 238
ACMMP++_ref81.95 197
ACMMP++81.25 203
Test By Simon64.33 113
ITE_SJBPF78.22 25681.77 29560.57 25583.30 27769.25 20367.54 29787.20 20136.33 34087.28 28854.34 30274.62 29086.80 276
DeepMVS_CXcopyleft27.40 35940.17 38226.90 37924.59 38317.44 37523.95 37348.61 3709.77 37426.48 37818.06 37324.47 37228.83 372