DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 22 | 94.34 27 | 71.25 55 | 95.06 1 | 94.23 3 | 78.38 31 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 3 | 89.42 4 | 96.68 2 | 94.95 8 |
|
SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 24 | 95.30 2 | 70.98 61 | 93.57 7 | 94.06 10 | 77.24 48 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 5 | 89.07 9 | 96.63 4 | 94.88 12 |
|
DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 38 | 95.27 5 | 71.25 55 | 93.49 9 | 92.73 59 | 77.33 46 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 7 | 89.08 7 | 96.41 12 | 93.33 77 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 9 | 94.28 30 | 73.46 16 | 92.90 16 | 94.11 6 | 80.27 8 | 91.35 14 | 94.16 34 | 78.35 13 | 96.77 22 | 89.59 3 | 94.22 56 | 94.67 22 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 14 | 94.80 11 | 72.69 30 | 91.59 41 | 94.10 8 | 75.90 83 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 9 | 87.44 21 | 96.34 15 | 93.95 49 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 89.15 6 | 89.63 6 | 87.73 26 | 94.49 18 | 71.69 50 | 93.83 4 | 93.96 13 | 75.70 87 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 15 | 89.09 6 | 95.65 27 | 94.47 29 |
|
SMA-MVS |  | | 89.08 7 | 89.23 7 | 88.61 5 | 94.25 31 | 73.73 9 | 92.40 23 | 93.63 21 | 74.77 103 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 11 | 88.58 13 | 96.91 1 | 94.87 14 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HPM-MVS++ |  | | 89.02 8 | 89.15 8 | 88.63 4 | 95.01 9 | 76.03 1 | 92.38 26 | 92.85 54 | 80.26 9 | 87.78 28 | 94.27 30 | 75.89 19 | 96.81 21 | 87.45 20 | 96.44 9 | 93.05 87 |
|
CNVR-MVS | | | 88.93 9 | 89.13 9 | 88.33 7 | 94.77 12 | 73.82 8 | 90.51 59 | 93.00 43 | 80.90 5 | 88.06 26 | 94.06 38 | 76.43 16 | 96.84 19 | 88.48 15 | 95.99 18 | 94.34 35 |
|
SteuartSystems-ACMMP | | | 88.72 10 | 88.86 10 | 88.32 8 | 92.14 69 | 72.96 24 | 93.73 5 | 93.67 20 | 80.19 10 | 88.10 25 | 94.80 15 | 73.76 33 | 97.11 13 | 87.51 19 | 95.82 21 | 94.90 11 |
Skip Steuart: Steuart Systems R&D Blog. |
SF-MVS | | | 88.46 11 | 88.74 11 | 87.64 33 | 92.78 61 | 71.95 48 | 92.40 23 | 94.74 2 | 75.71 85 | 89.16 19 | 95.10 13 | 75.65 21 | 96.19 41 | 87.07 22 | 96.01 17 | 94.79 19 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 12 | 88.56 12 | 86.73 48 | 92.24 68 | 69.03 94 | 89.57 83 | 93.39 30 | 77.53 43 | 89.79 18 | 94.12 35 | 78.98 12 | 96.58 33 | 85.66 25 | 95.72 24 | 94.58 25 |
|
SD-MVS | | | 88.06 13 | 88.50 13 | 86.71 49 | 92.60 66 | 72.71 28 | 91.81 40 | 93.19 35 | 77.87 34 | 90.32 17 | 94.00 40 | 74.83 23 | 93.78 134 | 87.63 18 | 94.27 55 | 93.65 64 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
NCCC | | | 88.06 13 | 88.01 17 | 88.24 10 | 94.41 22 | 73.62 10 | 91.22 50 | 92.83 55 | 81.50 3 | 85.79 38 | 93.47 50 | 73.02 39 | 97.00 16 | 84.90 30 | 94.94 37 | 94.10 43 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 17 | 93.70 41 | 73.05 21 | 90.86 54 | 93.59 23 | 76.27 77 | 88.14 24 | 95.09 14 | 71.06 53 | 96.67 27 | 87.67 17 | 96.37 14 | 94.09 44 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 28 | 93.68 43 | 72.13 45 | 91.41 45 | 92.35 74 | 74.62 107 | 88.90 20 | 93.85 45 | 75.75 20 | 96.00 47 | 87.80 16 | 94.63 45 | 95.04 6 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ZNCC-MVS | | | 87.94 17 | 87.85 18 | 88.20 11 | 94.39 24 | 73.33 18 | 93.03 14 | 93.81 17 | 76.81 61 | 85.24 43 | 94.32 29 | 71.76 46 | 96.93 17 | 85.53 27 | 95.79 22 | 94.32 36 |
|
MP-MVS |  | | 87.71 18 | 87.64 20 | 87.93 19 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 39 | 83.84 70 | 94.40 28 | 72.24 42 | 96.28 38 | 85.65 26 | 95.30 33 | 93.62 67 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 87.67 19 | 87.72 19 | 87.54 34 | 93.64 44 | 72.04 47 | 89.80 77 | 93.50 25 | 75.17 96 | 86.34 34 | 95.29 12 | 70.86 54 | 96.00 47 | 88.78 12 | 96.04 16 | 94.58 25 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HFP-MVS | | | 87.58 20 | 87.47 22 | 87.94 17 | 94.58 16 | 73.54 14 | 93.04 12 | 93.24 33 | 76.78 63 | 84.91 48 | 94.44 26 | 70.78 55 | 96.61 30 | 84.53 37 | 94.89 39 | 93.66 60 |
|
ACMMPR | | | 87.44 21 | 87.23 25 | 88.08 13 | 94.64 13 | 73.59 11 | 93.04 12 | 93.20 34 | 76.78 63 | 84.66 55 | 94.52 19 | 68.81 76 | 96.65 28 | 84.53 37 | 94.90 38 | 94.00 48 |
|
APD-MVS |  | | 87.44 21 | 87.52 21 | 87.19 40 | 94.24 32 | 72.39 38 | 91.86 39 | 92.83 55 | 73.01 142 | 88.58 21 | 94.52 19 | 73.36 34 | 96.49 34 | 84.26 40 | 95.01 35 | 92.70 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
GST-MVS | | | 87.42 23 | 87.26 23 | 87.89 22 | 94.12 36 | 72.97 23 | 92.39 25 | 93.43 28 | 76.89 59 | 84.68 52 | 93.99 42 | 70.67 57 | 96.82 20 | 84.18 44 | 95.01 35 | 93.90 52 |
|
region2R | | | 87.42 23 | 87.20 26 | 88.09 12 | 94.63 14 | 73.55 12 | 93.03 14 | 93.12 37 | 76.73 66 | 84.45 59 | 94.52 19 | 69.09 72 | 96.70 25 | 84.37 39 | 94.83 42 | 94.03 47 |
|
MCST-MVS | | | 87.37 25 | 87.25 24 | 87.73 26 | 94.53 17 | 72.46 37 | 89.82 75 | 93.82 16 | 73.07 140 | 84.86 51 | 92.89 62 | 76.22 17 | 96.33 36 | 84.89 32 | 95.13 34 | 94.40 32 |
|
MTAPA | | | 87.23 26 | 87.00 27 | 87.90 20 | 94.18 35 | 74.25 5 | 86.58 175 | 92.02 85 | 79.45 17 | 85.88 36 | 94.80 15 | 68.07 78 | 96.21 40 | 86.69 24 | 95.34 31 | 93.23 80 |
|
XVS | | | 87.18 27 | 86.91 31 | 88.00 15 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 19 | 83.67 73 | 94.17 33 | 67.45 84 | 96.60 31 | 83.06 51 | 94.50 48 | 94.07 45 |
|
HPM-MVS |  | | 87.11 28 | 86.98 28 | 87.50 36 | 93.88 39 | 72.16 44 | 92.19 32 | 93.33 31 | 76.07 80 | 83.81 71 | 93.95 44 | 69.77 66 | 96.01 46 | 85.15 28 | 94.66 44 | 94.32 36 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 87.11 28 | 86.92 30 | 87.68 32 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 68 | 83.68 72 | 94.46 23 | 67.93 79 | 95.95 50 | 84.20 43 | 94.39 51 | 93.23 80 |
|
DeepC-MVS | | 79.81 2 | 87.08 30 | 86.88 32 | 87.69 31 | 91.16 80 | 72.32 42 | 90.31 66 | 93.94 14 | 77.12 53 | 82.82 84 | 94.23 32 | 72.13 44 | 97.09 14 | 84.83 33 | 95.37 30 | 93.65 64 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 79.65 3 | 86.91 31 | 86.62 34 | 87.76 25 | 93.52 46 | 72.37 40 | 91.26 46 | 93.04 38 | 76.62 68 | 84.22 63 | 93.36 52 | 71.44 50 | 96.76 23 | 80.82 73 | 95.33 32 | 94.16 41 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 86.73 32 | 86.67 33 | 86.91 44 | 94.11 37 | 72.11 46 | 92.37 27 | 92.56 67 | 74.50 108 | 86.84 32 | 94.65 18 | 67.31 86 | 95.77 52 | 84.80 34 | 92.85 65 | 92.84 94 |
|
CS-MVS | | | 86.69 33 | 86.95 29 | 85.90 61 | 90.76 90 | 67.57 130 | 92.83 17 | 93.30 32 | 79.67 15 | 84.57 58 | 92.27 74 | 71.47 49 | 95.02 84 | 84.24 42 | 93.46 61 | 95.13 5 |
|
PGM-MVS | | | 86.68 34 | 86.27 38 | 87.90 20 | 94.22 33 | 73.38 17 | 90.22 68 | 93.04 38 | 75.53 89 | 83.86 69 | 94.42 27 | 67.87 81 | 96.64 29 | 82.70 60 | 94.57 47 | 93.66 60 |
|
mPP-MVS | | | 86.67 35 | 86.32 37 | 87.72 28 | 94.41 22 | 73.55 12 | 92.74 20 | 92.22 80 | 76.87 60 | 82.81 85 | 94.25 31 | 66.44 93 | 96.24 39 | 82.88 55 | 94.28 54 | 93.38 74 |
|
CANet | | | 86.45 36 | 86.10 43 | 87.51 35 | 90.09 101 | 70.94 65 | 89.70 81 | 92.59 66 | 81.78 2 | 81.32 100 | 91.43 94 | 70.34 59 | 97.23 12 | 84.26 40 | 93.36 62 | 94.37 33 |
|
train_agg | | | 86.43 37 | 86.20 39 | 87.13 42 | 93.26 50 | 72.96 24 | 88.75 106 | 91.89 93 | 68.69 219 | 85.00 46 | 93.10 55 | 74.43 26 | 95.41 65 | 84.97 29 | 95.71 25 | 93.02 89 |
|
PHI-MVS | | | 86.43 37 | 86.17 41 | 87.24 39 | 90.88 87 | 70.96 63 | 92.27 31 | 94.07 9 | 72.45 145 | 85.22 44 | 91.90 80 | 69.47 68 | 96.42 35 | 83.28 50 | 95.94 19 | 94.35 34 |
|
CSCG | | | 86.41 39 | 86.19 40 | 87.07 43 | 92.91 58 | 72.48 36 | 90.81 55 | 93.56 24 | 73.95 119 | 83.16 79 | 91.07 104 | 75.94 18 | 95.19 73 | 79.94 82 | 94.38 52 | 93.55 70 |
|
CS-MVS-test | | | 86.29 40 | 86.48 35 | 85.71 63 | 91.02 83 | 67.21 140 | 92.36 28 | 93.78 18 | 78.97 26 | 83.51 76 | 91.20 99 | 70.65 58 | 95.15 75 | 81.96 64 | 94.89 39 | 94.77 20 |
|
EC-MVSNet | | | 86.01 41 | 86.38 36 | 84.91 83 | 89.31 129 | 66.27 154 | 92.32 29 | 93.63 21 | 79.37 18 | 84.17 65 | 91.88 81 | 69.04 75 | 95.43 63 | 83.93 45 | 93.77 59 | 93.01 90 |
|
casdiffmvs_mvg |  | | 85.99 42 | 86.09 44 | 85.70 64 | 87.65 189 | 67.22 139 | 88.69 110 | 93.04 38 | 79.64 16 | 85.33 42 | 92.54 71 | 73.30 35 | 94.50 105 | 83.49 47 | 91.14 87 | 95.37 1 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
APD-MVS_3200maxsize | | | 85.97 43 | 85.88 45 | 86.22 55 | 92.69 63 | 69.53 87 | 91.93 36 | 92.99 45 | 73.54 131 | 85.94 35 | 94.51 22 | 65.80 103 | 95.61 55 | 83.04 53 | 92.51 69 | 93.53 72 |
|
canonicalmvs | | | 85.91 44 | 85.87 46 | 86.04 58 | 89.84 111 | 69.44 92 | 90.45 64 | 93.00 43 | 76.70 67 | 88.01 27 | 91.23 97 | 73.28 36 | 93.91 129 | 81.50 67 | 88.80 112 | 94.77 20 |
|
ACMMP |  | | 85.89 45 | 85.39 50 | 87.38 37 | 93.59 45 | 72.63 32 | 92.74 20 | 93.18 36 | 76.78 63 | 80.73 109 | 93.82 46 | 64.33 113 | 96.29 37 | 82.67 61 | 90.69 91 | 93.23 80 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS-dyc-post | | | 85.77 46 | 85.61 48 | 86.23 54 | 93.06 55 | 70.63 71 | 91.88 37 | 92.27 76 | 73.53 132 | 85.69 39 | 94.45 24 | 65.00 111 | 95.56 56 | 82.75 56 | 91.87 77 | 92.50 104 |
|
CDPH-MVS | | | 85.76 47 | 85.29 55 | 87.17 41 | 93.49 47 | 71.08 59 | 88.58 114 | 92.42 72 | 68.32 225 | 84.61 56 | 93.48 48 | 72.32 41 | 96.15 43 | 79.00 86 | 95.43 29 | 94.28 38 |
|
TSAR-MVS + GP. | | | 85.71 48 | 85.33 52 | 86.84 45 | 91.34 78 | 72.50 35 | 89.07 95 | 87.28 221 | 76.41 70 | 85.80 37 | 90.22 122 | 74.15 31 | 95.37 70 | 81.82 65 | 91.88 76 | 92.65 100 |
|
dcpmvs_2 | | | 85.63 49 | 86.15 42 | 84.06 114 | 91.71 75 | 64.94 185 | 86.47 178 | 91.87 95 | 73.63 127 | 86.60 33 | 93.02 60 | 76.57 15 | 91.87 211 | 83.36 48 | 92.15 73 | 95.35 2 |
|
alignmvs | | | 85.48 50 | 85.32 53 | 85.96 60 | 89.51 118 | 69.47 89 | 89.74 79 | 92.47 68 | 76.17 78 | 87.73 30 | 91.46 93 | 70.32 60 | 93.78 134 | 81.51 66 | 88.95 109 | 94.63 24 |
|
3Dnovator+ | | 77.84 4 | 85.48 50 | 84.47 63 | 88.51 6 | 91.08 81 | 73.49 15 | 93.18 11 | 93.78 18 | 80.79 6 | 76.66 183 | 93.37 51 | 60.40 175 | 96.75 24 | 77.20 105 | 93.73 60 | 95.29 4 |
|
MSLP-MVS++ | | | 85.43 52 | 85.76 47 | 84.45 97 | 91.93 72 | 70.24 74 | 90.71 56 | 92.86 53 | 77.46 45 | 84.22 63 | 92.81 66 | 67.16 88 | 92.94 175 | 80.36 78 | 94.35 53 | 90.16 179 |
|
DELS-MVS | | | 85.41 53 | 85.30 54 | 85.77 62 | 88.49 158 | 67.93 122 | 85.52 207 | 93.44 27 | 78.70 27 | 83.63 75 | 89.03 150 | 74.57 24 | 95.71 54 | 80.26 80 | 94.04 57 | 93.66 60 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 85.35 54 | 84.95 59 | 86.57 51 | 93.69 42 | 70.58 73 | 92.15 34 | 91.62 103 | 73.89 122 | 82.67 87 | 94.09 36 | 62.60 132 | 95.54 58 | 80.93 71 | 92.93 64 | 93.57 69 |
|
test_fmvsm_n_1920 | | | 85.29 55 | 85.34 51 | 85.13 74 | 86.12 219 | 69.93 81 | 88.65 112 | 90.78 126 | 69.97 188 | 88.27 23 | 93.98 43 | 71.39 51 | 91.54 219 | 88.49 14 | 90.45 93 | 93.91 50 |
|
MVS_111021_HR | | | 85.14 56 | 84.75 60 | 86.32 53 | 91.65 76 | 72.70 29 | 85.98 190 | 90.33 139 | 76.11 79 | 82.08 90 | 91.61 88 | 71.36 52 | 94.17 118 | 81.02 70 | 92.58 68 | 92.08 119 |
|
casdiffmvs |  | | 85.11 57 | 85.14 56 | 85.01 77 | 87.20 204 | 65.77 167 | 87.75 141 | 92.83 55 | 77.84 35 | 84.36 62 | 92.38 73 | 72.15 43 | 93.93 128 | 81.27 69 | 90.48 92 | 95.33 3 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
UA-Net | | | 85.08 58 | 84.96 58 | 85.45 66 | 92.07 70 | 68.07 120 | 89.78 78 | 90.86 125 | 82.48 1 | 84.60 57 | 93.20 54 | 69.35 69 | 95.22 72 | 71.39 161 | 90.88 90 | 93.07 86 |
|
DPM-MVS | | | 84.93 59 | 84.29 64 | 86.84 45 | 90.20 99 | 73.04 22 | 87.12 157 | 93.04 38 | 69.80 192 | 82.85 83 | 91.22 98 | 73.06 38 | 96.02 45 | 76.72 113 | 94.63 45 | 91.46 136 |
|
baseline | | | 84.93 59 | 84.98 57 | 84.80 87 | 87.30 202 | 65.39 176 | 87.30 153 | 92.88 52 | 77.62 37 | 84.04 68 | 92.26 75 | 71.81 45 | 93.96 122 | 81.31 68 | 90.30 95 | 95.03 7 |
|
ETV-MVS | | | 84.90 61 | 84.67 61 | 85.59 65 | 89.39 123 | 68.66 109 | 88.74 108 | 92.64 65 | 79.97 13 | 84.10 66 | 85.71 240 | 69.32 70 | 95.38 67 | 80.82 73 | 91.37 84 | 92.72 95 |
|
EI-MVSNet-Vis-set | | | 84.19 62 | 83.81 65 | 85.31 68 | 88.18 168 | 67.85 123 | 87.66 143 | 89.73 156 | 80.05 12 | 82.95 80 | 89.59 134 | 70.74 56 | 94.82 93 | 80.66 77 | 84.72 160 | 93.28 79 |
|
nrg030 | | | 83.88 63 | 83.53 66 | 84.96 79 | 86.77 212 | 69.28 93 | 90.46 63 | 92.67 61 | 74.79 102 | 82.95 80 | 91.33 96 | 72.70 40 | 93.09 169 | 80.79 75 | 79.28 231 | 92.50 104 |
|
EI-MVSNet-UG-set | | | 83.81 64 | 83.38 68 | 85.09 75 | 87.87 178 | 67.53 131 | 87.44 149 | 89.66 157 | 79.74 14 | 82.23 89 | 89.41 143 | 70.24 61 | 94.74 96 | 79.95 81 | 83.92 170 | 92.99 91 |
|
CPTT-MVS | | | 83.73 65 | 83.33 69 | 84.92 82 | 93.28 49 | 70.86 67 | 92.09 35 | 90.38 135 | 68.75 218 | 79.57 120 | 92.83 64 | 60.60 171 | 93.04 173 | 80.92 72 | 91.56 82 | 90.86 155 |
|
EPNet | | | 83.72 66 | 82.92 75 | 86.14 57 | 84.22 247 | 69.48 88 | 91.05 53 | 85.27 247 | 81.30 4 | 76.83 178 | 91.65 85 | 66.09 98 | 95.56 56 | 76.00 119 | 93.85 58 | 93.38 74 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
patch_mono-2 | | | 83.65 67 | 84.54 62 | 80.99 208 | 90.06 106 | 65.83 163 | 84.21 235 | 88.74 192 | 71.60 160 | 85.01 45 | 92.44 72 | 74.51 25 | 83.50 313 | 82.15 63 | 92.15 73 | 93.64 66 |
|
HQP_MVS | | | 83.64 68 | 83.14 70 | 85.14 72 | 90.08 102 | 68.71 105 | 91.25 48 | 92.44 69 | 79.12 21 | 78.92 129 | 91.00 108 | 60.42 173 | 95.38 67 | 78.71 90 | 86.32 143 | 91.33 137 |
|
Effi-MVS+ | | | 83.62 69 | 83.08 71 | 85.24 70 | 88.38 163 | 67.45 132 | 88.89 100 | 89.15 173 | 75.50 90 | 82.27 88 | 88.28 172 | 69.61 67 | 94.45 107 | 77.81 99 | 87.84 122 | 93.84 55 |
|
OPM-MVS | | | 83.50 70 | 82.95 74 | 85.14 72 | 88.79 148 | 70.95 64 | 89.13 94 | 91.52 106 | 77.55 42 | 80.96 107 | 91.75 83 | 60.71 167 | 94.50 105 | 79.67 83 | 86.51 141 | 89.97 195 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Vis-MVSNet |  | | 83.46 71 | 82.80 77 | 85.43 67 | 90.25 98 | 68.74 103 | 90.30 67 | 90.13 145 | 76.33 76 | 80.87 108 | 92.89 62 | 61.00 164 | 94.20 116 | 72.45 155 | 90.97 88 | 93.35 76 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MG-MVS | | | 83.41 72 | 83.45 67 | 83.28 140 | 92.74 62 | 62.28 235 | 88.17 127 | 89.50 160 | 75.22 94 | 81.49 99 | 92.74 70 | 66.75 89 | 95.11 78 | 72.85 149 | 91.58 81 | 92.45 107 |
|
EPP-MVSNet | | | 83.40 73 | 83.02 73 | 84.57 91 | 90.13 100 | 64.47 194 | 92.32 29 | 90.73 127 | 74.45 111 | 79.35 123 | 91.10 102 | 69.05 74 | 95.12 76 | 72.78 150 | 87.22 130 | 94.13 42 |
|
3Dnovator | | 76.31 5 | 83.38 74 | 82.31 83 | 86.59 50 | 87.94 177 | 72.94 27 | 90.64 57 | 92.14 84 | 77.21 50 | 75.47 206 | 92.83 64 | 58.56 182 | 94.72 97 | 73.24 146 | 92.71 67 | 92.13 118 |
|
EIA-MVS | | | 83.31 75 | 82.80 77 | 84.82 85 | 89.59 114 | 65.59 169 | 88.21 125 | 92.68 60 | 74.66 105 | 78.96 127 | 86.42 227 | 69.06 73 | 95.26 71 | 75.54 125 | 90.09 99 | 93.62 67 |
|
h-mvs33 | | | 83.15 76 | 82.19 84 | 86.02 59 | 90.56 92 | 70.85 68 | 88.15 129 | 89.16 172 | 76.02 81 | 84.67 53 | 91.39 95 | 61.54 150 | 95.50 59 | 82.71 58 | 75.48 275 | 91.72 127 |
|
MVS_Test | | | 83.15 76 | 83.06 72 | 83.41 137 | 86.86 208 | 63.21 221 | 86.11 188 | 92.00 87 | 74.31 112 | 82.87 82 | 89.44 142 | 70.03 62 | 93.21 158 | 77.39 104 | 88.50 118 | 93.81 56 |
|
IS-MVSNet | | | 83.15 76 | 82.81 76 | 84.18 107 | 89.94 109 | 63.30 219 | 91.59 41 | 88.46 198 | 79.04 23 | 79.49 121 | 92.16 76 | 65.10 108 | 94.28 110 | 67.71 196 | 91.86 79 | 94.95 8 |
|
DP-MVS Recon | | | 83.11 79 | 82.09 86 | 86.15 56 | 94.44 19 | 70.92 66 | 88.79 104 | 92.20 81 | 70.53 179 | 79.17 125 | 91.03 107 | 64.12 115 | 96.03 44 | 68.39 193 | 90.14 98 | 91.50 133 |
|
PAPM_NR | | | 83.02 80 | 82.41 80 | 84.82 85 | 92.47 67 | 66.37 152 | 87.93 136 | 91.80 98 | 73.82 123 | 77.32 167 | 90.66 113 | 67.90 80 | 94.90 89 | 70.37 170 | 89.48 106 | 93.19 83 |
|
VDD-MVS | | | 83.01 81 | 82.36 82 | 84.96 79 | 91.02 83 | 66.40 151 | 88.91 99 | 88.11 201 | 77.57 39 | 84.39 61 | 93.29 53 | 52.19 231 | 93.91 129 | 77.05 107 | 88.70 114 | 94.57 27 |
|
MVSFormer | | | 82.85 82 | 82.05 87 | 85.24 70 | 87.35 197 | 70.21 75 | 90.50 60 | 90.38 135 | 68.55 221 | 81.32 100 | 89.47 137 | 61.68 147 | 93.46 151 | 78.98 87 | 90.26 96 | 92.05 120 |
|
OMC-MVS | | | 82.69 83 | 81.97 90 | 84.85 84 | 88.75 150 | 67.42 133 | 87.98 132 | 90.87 124 | 74.92 99 | 79.72 118 | 91.65 85 | 62.19 142 | 93.96 122 | 75.26 127 | 86.42 142 | 93.16 84 |
|
PVSNet_Blended_VisFu | | | 82.62 84 | 81.83 92 | 84.96 79 | 90.80 89 | 69.76 85 | 88.74 108 | 91.70 102 | 69.39 199 | 78.96 127 | 88.46 167 | 65.47 105 | 94.87 92 | 74.42 132 | 88.57 115 | 90.24 177 |
|
MVS_111021_LR | | | 82.61 85 | 82.11 85 | 84.11 108 | 88.82 145 | 71.58 51 | 85.15 210 | 86.16 238 | 74.69 104 | 80.47 111 | 91.04 105 | 62.29 139 | 90.55 244 | 80.33 79 | 90.08 100 | 90.20 178 |
|
HQP-MVS | | | 82.61 85 | 82.02 88 | 84.37 99 | 89.33 126 | 66.98 143 | 89.17 89 | 92.19 82 | 76.41 70 | 77.23 170 | 90.23 121 | 60.17 176 | 95.11 78 | 77.47 102 | 85.99 150 | 91.03 149 |
|
CLD-MVS | | | 82.31 87 | 81.65 93 | 84.29 104 | 88.47 159 | 67.73 126 | 85.81 198 | 92.35 74 | 75.78 84 | 78.33 144 | 86.58 222 | 64.01 116 | 94.35 108 | 76.05 118 | 87.48 127 | 90.79 156 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
VNet | | | 82.21 88 | 82.41 80 | 81.62 188 | 90.82 88 | 60.93 249 | 84.47 226 | 89.78 153 | 76.36 75 | 84.07 67 | 91.88 81 | 64.71 112 | 90.26 246 | 70.68 167 | 88.89 110 | 93.66 60 |
|
diffmvs |  | | 82.10 89 | 81.88 91 | 82.76 170 | 83.00 274 | 63.78 207 | 83.68 243 | 89.76 154 | 72.94 143 | 82.02 91 | 89.85 126 | 65.96 102 | 90.79 240 | 82.38 62 | 87.30 129 | 93.71 59 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
LPG-MVS_test | | | 82.08 90 | 81.27 96 | 84.50 94 | 89.23 133 | 68.76 101 | 90.22 68 | 91.94 91 | 75.37 92 | 76.64 184 | 91.51 90 | 54.29 214 | 94.91 86 | 78.44 92 | 83.78 171 | 89.83 200 |
|
FIs | | | 82.07 91 | 82.42 79 | 81.04 207 | 88.80 147 | 58.34 274 | 88.26 124 | 93.49 26 | 76.93 58 | 78.47 141 | 91.04 105 | 69.92 64 | 92.34 194 | 69.87 177 | 84.97 157 | 92.44 108 |
|
PS-MVSNAJss | | | 82.07 91 | 81.31 95 | 84.34 102 | 86.51 215 | 67.27 137 | 89.27 87 | 91.51 107 | 71.75 154 | 79.37 122 | 90.22 122 | 63.15 126 | 94.27 111 | 77.69 100 | 82.36 193 | 91.49 134 |
|
API-MVS | | | 81.99 93 | 81.23 97 | 84.26 105 | 90.94 85 | 70.18 80 | 91.10 51 | 89.32 164 | 71.51 162 | 78.66 135 | 88.28 172 | 65.26 106 | 95.10 81 | 64.74 223 | 91.23 86 | 87.51 258 |
|
UniMVSNet_NR-MVSNet | | | 81.88 94 | 81.54 94 | 82.92 159 | 88.46 160 | 63.46 215 | 87.13 156 | 92.37 73 | 80.19 10 | 78.38 142 | 89.14 146 | 71.66 48 | 93.05 171 | 70.05 173 | 76.46 260 | 92.25 113 |
|
MAR-MVS | | | 81.84 95 | 80.70 106 | 85.27 69 | 91.32 79 | 71.53 52 | 89.82 75 | 90.92 121 | 69.77 193 | 78.50 139 | 86.21 231 | 62.36 138 | 94.52 104 | 65.36 217 | 92.05 75 | 89.77 203 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LFMVS | | | 81.82 96 | 81.23 97 | 83.57 132 | 91.89 73 | 63.43 217 | 89.84 74 | 81.85 294 | 77.04 56 | 83.21 77 | 93.10 55 | 52.26 230 | 93.43 153 | 71.98 156 | 89.95 102 | 93.85 53 |
|
hse-mvs2 | | | 81.72 97 | 80.94 103 | 84.07 113 | 88.72 151 | 67.68 128 | 85.87 194 | 87.26 222 | 76.02 81 | 84.67 53 | 88.22 175 | 61.54 150 | 93.48 149 | 82.71 58 | 73.44 302 | 91.06 147 |
|
GeoE | | | 81.71 98 | 81.01 102 | 83.80 127 | 89.51 118 | 64.45 195 | 88.97 97 | 88.73 193 | 71.27 165 | 78.63 136 | 89.76 128 | 66.32 95 | 93.20 161 | 69.89 176 | 86.02 149 | 93.74 58 |
|
xiu_mvs_v2_base | | | 81.69 99 | 81.05 100 | 83.60 130 | 89.15 136 | 68.03 121 | 84.46 228 | 90.02 147 | 70.67 176 | 81.30 103 | 86.53 225 | 63.17 125 | 94.19 117 | 75.60 124 | 88.54 116 | 88.57 240 |
|
PS-MVSNAJ | | | 81.69 99 | 81.02 101 | 83.70 129 | 89.51 118 | 68.21 118 | 84.28 234 | 90.09 146 | 70.79 173 | 81.26 104 | 85.62 245 | 63.15 126 | 94.29 109 | 75.62 123 | 88.87 111 | 88.59 239 |
|
mvsmamba | | | 81.69 99 | 80.74 105 | 84.56 92 | 87.45 196 | 66.72 147 | 91.26 46 | 85.89 242 | 74.66 105 | 78.23 147 | 90.56 115 | 54.33 213 | 94.91 86 | 80.73 76 | 83.54 178 | 92.04 122 |
|
PAPR | | | 81.66 102 | 80.89 104 | 83.99 121 | 90.27 97 | 64.00 202 | 86.76 171 | 91.77 101 | 68.84 217 | 77.13 176 | 89.50 135 | 67.63 82 | 94.88 91 | 67.55 198 | 88.52 117 | 93.09 85 |
|
UniMVSNet (Re) | | | 81.60 103 | 81.11 99 | 83.09 150 | 88.38 163 | 64.41 196 | 87.60 144 | 93.02 42 | 78.42 30 | 78.56 138 | 88.16 176 | 69.78 65 | 93.26 157 | 69.58 180 | 76.49 259 | 91.60 128 |
|
FC-MVSNet-test | | | 81.52 104 | 82.02 88 | 80.03 227 | 88.42 162 | 55.97 311 | 87.95 134 | 93.42 29 | 77.10 54 | 77.38 165 | 90.98 110 | 69.96 63 | 91.79 212 | 68.46 192 | 84.50 162 | 92.33 109 |
|
VDDNet | | | 81.52 104 | 80.67 107 | 84.05 116 | 90.44 95 | 64.13 201 | 89.73 80 | 85.91 241 | 71.11 168 | 83.18 78 | 93.48 48 | 50.54 254 | 93.49 148 | 73.40 143 | 88.25 120 | 94.54 28 |
|
ACMP | | 74.13 6 | 81.51 106 | 80.57 108 | 84.36 100 | 89.42 121 | 68.69 108 | 89.97 72 | 91.50 110 | 74.46 110 | 75.04 225 | 90.41 118 | 53.82 219 | 94.54 102 | 77.56 101 | 82.91 185 | 89.86 199 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jason | | | 81.39 107 | 80.29 115 | 84.70 89 | 86.63 214 | 69.90 83 | 85.95 191 | 86.77 229 | 63.24 276 | 81.07 106 | 89.47 137 | 61.08 163 | 92.15 200 | 78.33 95 | 90.07 101 | 92.05 120 |
jason: jason. |
lupinMVS | | | 81.39 107 | 80.27 116 | 84.76 88 | 87.35 197 | 70.21 75 | 85.55 203 | 86.41 233 | 62.85 283 | 81.32 100 | 88.61 162 | 61.68 147 | 92.24 198 | 78.41 94 | 90.26 96 | 91.83 124 |
|
test_yl | | | 81.17 109 | 80.47 111 | 83.24 143 | 89.13 137 | 63.62 208 | 86.21 185 | 89.95 150 | 72.43 148 | 81.78 96 | 89.61 132 | 57.50 192 | 93.58 142 | 70.75 165 | 86.90 134 | 92.52 102 |
|
DCV-MVSNet | | | 81.17 109 | 80.47 111 | 83.24 143 | 89.13 137 | 63.62 208 | 86.21 185 | 89.95 150 | 72.43 148 | 81.78 96 | 89.61 132 | 57.50 192 | 93.58 142 | 70.75 165 | 86.90 134 | 92.52 102 |
|
DU-MVS | | | 81.12 111 | 80.52 110 | 82.90 160 | 87.80 182 | 63.46 215 | 87.02 160 | 91.87 95 | 79.01 24 | 78.38 142 | 89.07 148 | 65.02 109 | 93.05 171 | 70.05 173 | 76.46 260 | 92.20 115 |
|
PVSNet_Blended | | | 80.98 112 | 80.34 113 | 82.90 160 | 88.85 142 | 65.40 174 | 84.43 230 | 92.00 87 | 67.62 229 | 78.11 151 | 85.05 259 | 66.02 100 | 94.27 111 | 71.52 158 | 89.50 105 | 89.01 223 |
|
FA-MVS(test-final) | | | 80.96 113 | 79.91 120 | 84.10 109 | 88.30 166 | 65.01 183 | 84.55 225 | 90.01 148 | 73.25 137 | 79.61 119 | 87.57 189 | 58.35 184 | 94.72 97 | 71.29 162 | 86.25 145 | 92.56 101 |
|
QAPM | | | 80.88 114 | 79.50 129 | 85.03 76 | 88.01 176 | 68.97 97 | 91.59 41 | 92.00 87 | 66.63 241 | 75.15 221 | 92.16 76 | 57.70 189 | 95.45 61 | 63.52 227 | 88.76 113 | 90.66 162 |
|
TranMVSNet+NR-MVSNet | | | 80.84 115 | 80.31 114 | 82.42 175 | 87.85 179 | 62.33 233 | 87.74 142 | 91.33 112 | 80.55 7 | 77.99 155 | 89.86 125 | 65.23 107 | 92.62 181 | 67.05 205 | 75.24 284 | 92.30 111 |
|
UGNet | | | 80.83 116 | 79.59 127 | 84.54 93 | 88.04 174 | 68.09 119 | 89.42 84 | 88.16 200 | 76.95 57 | 76.22 193 | 89.46 139 | 49.30 268 | 93.94 125 | 68.48 191 | 90.31 94 | 91.60 128 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Fast-Effi-MVS+ | | | 80.81 117 | 79.92 119 | 83.47 133 | 88.85 142 | 64.51 191 | 85.53 205 | 89.39 162 | 70.79 173 | 78.49 140 | 85.06 258 | 67.54 83 | 93.58 142 | 67.03 206 | 86.58 139 | 92.32 110 |
|
XVG-OURS-SEG-HR | | | 80.81 117 | 79.76 123 | 83.96 123 | 85.60 226 | 68.78 100 | 83.54 249 | 90.50 132 | 70.66 177 | 76.71 182 | 91.66 84 | 60.69 168 | 91.26 227 | 76.94 108 | 81.58 201 | 91.83 124 |
|
xiu_mvs_v1_base_debu | | | 80.80 119 | 79.72 124 | 84.03 118 | 87.35 197 | 70.19 77 | 85.56 200 | 88.77 188 | 69.06 211 | 81.83 92 | 88.16 176 | 50.91 248 | 92.85 177 | 78.29 96 | 87.56 124 | 89.06 218 |
|
xiu_mvs_v1_base | | | 80.80 119 | 79.72 124 | 84.03 118 | 87.35 197 | 70.19 77 | 85.56 200 | 88.77 188 | 69.06 211 | 81.83 92 | 88.16 176 | 50.91 248 | 92.85 177 | 78.29 96 | 87.56 124 | 89.06 218 |
|
xiu_mvs_v1_base_debi | | | 80.80 119 | 79.72 124 | 84.03 118 | 87.35 197 | 70.19 77 | 85.56 200 | 88.77 188 | 69.06 211 | 81.83 92 | 88.16 176 | 50.91 248 | 92.85 177 | 78.29 96 | 87.56 124 | 89.06 218 |
|
ACMM | | 73.20 8 | 80.78 122 | 79.84 122 | 83.58 131 | 89.31 129 | 68.37 113 | 89.99 71 | 91.60 104 | 70.28 183 | 77.25 168 | 89.66 130 | 53.37 222 | 93.53 147 | 74.24 135 | 82.85 186 | 88.85 231 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
114514_t | | | 80.68 123 | 79.51 128 | 84.20 106 | 94.09 38 | 67.27 137 | 89.64 82 | 91.11 118 | 58.75 318 | 74.08 236 | 90.72 112 | 58.10 185 | 95.04 83 | 69.70 178 | 89.42 107 | 90.30 175 |
|
iter_conf_final | | | 80.63 124 | 79.35 133 | 84.46 96 | 89.36 125 | 67.70 127 | 89.85 73 | 84.49 257 | 73.19 138 | 78.30 145 | 88.94 151 | 45.98 292 | 94.56 100 | 79.59 84 | 84.48 164 | 91.11 144 |
|
CANet_DTU | | | 80.61 125 | 79.87 121 | 82.83 162 | 85.60 226 | 63.17 224 | 87.36 150 | 88.65 194 | 76.37 74 | 75.88 200 | 88.44 168 | 53.51 221 | 93.07 170 | 73.30 144 | 89.74 104 | 92.25 113 |
|
VPA-MVSNet | | | 80.60 126 | 80.55 109 | 80.76 213 | 88.07 173 | 60.80 252 | 86.86 165 | 91.58 105 | 75.67 88 | 80.24 113 | 89.45 141 | 63.34 120 | 90.25 247 | 70.51 169 | 79.22 232 | 91.23 141 |
|
PVSNet_BlendedMVS | | | 80.60 126 | 80.02 117 | 82.36 177 | 88.85 142 | 65.40 174 | 86.16 187 | 92.00 87 | 69.34 201 | 78.11 151 | 86.09 235 | 66.02 100 | 94.27 111 | 71.52 158 | 82.06 195 | 87.39 260 |
|
AdaColmap |  | | 80.58 128 | 79.42 130 | 84.06 114 | 93.09 54 | 68.91 98 | 89.36 86 | 88.97 182 | 69.27 202 | 75.70 203 | 89.69 129 | 57.20 196 | 95.77 52 | 63.06 232 | 88.41 119 | 87.50 259 |
|
EI-MVSNet | | | 80.52 129 | 79.98 118 | 82.12 178 | 84.28 245 | 63.19 223 | 86.41 179 | 88.95 183 | 74.18 116 | 78.69 133 | 87.54 192 | 66.62 90 | 92.43 188 | 72.57 153 | 80.57 214 | 90.74 160 |
|
XVG-OURS | | | 80.41 130 | 79.23 137 | 83.97 122 | 85.64 225 | 69.02 95 | 83.03 259 | 90.39 134 | 71.09 169 | 77.63 161 | 91.49 92 | 54.62 212 | 91.35 225 | 75.71 121 | 83.47 179 | 91.54 130 |
|
PCF-MVS | | 73.52 7 | 80.38 131 | 78.84 146 | 85.01 77 | 87.71 186 | 68.99 96 | 83.65 244 | 91.46 111 | 63.00 280 | 77.77 159 | 90.28 119 | 66.10 97 | 95.09 82 | 61.40 249 | 88.22 121 | 90.94 153 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 80.37 132 | 77.83 169 | 88.00 15 | 94.42 20 | 73.33 18 | 92.78 18 | 92.99 45 | 79.14 19 | 83.67 73 | 12.47 376 | 67.45 84 | 96.60 31 | 83.06 51 | 94.50 48 | 94.07 45 |
|
RRT_MVS | | | 80.35 133 | 79.22 138 | 83.74 128 | 87.63 190 | 65.46 173 | 91.08 52 | 88.92 185 | 73.82 123 | 76.44 189 | 90.03 124 | 49.05 273 | 94.25 115 | 76.84 109 | 79.20 233 | 91.51 131 |
|
test_djsdf | | | 80.30 134 | 79.32 134 | 83.27 141 | 83.98 252 | 65.37 177 | 90.50 60 | 90.38 135 | 68.55 221 | 76.19 194 | 88.70 158 | 56.44 200 | 93.46 151 | 78.98 87 | 80.14 220 | 90.97 152 |
|
v2v482 | | | 80.23 135 | 79.29 135 | 83.05 153 | 83.62 257 | 64.14 200 | 87.04 159 | 89.97 149 | 73.61 128 | 78.18 150 | 87.22 200 | 61.10 162 | 93.82 132 | 76.11 116 | 76.78 257 | 91.18 142 |
|
NR-MVSNet | | | 80.23 135 | 79.38 131 | 82.78 168 | 87.80 182 | 63.34 218 | 86.31 182 | 91.09 119 | 79.01 24 | 72.17 255 | 89.07 148 | 67.20 87 | 92.81 180 | 66.08 212 | 75.65 271 | 92.20 115 |
|
Anonymous20240529 | | | 80.19 137 | 78.89 145 | 84.10 109 | 90.60 91 | 64.75 188 | 88.95 98 | 90.90 122 | 65.97 249 | 80.59 110 | 91.17 101 | 49.97 259 | 93.73 140 | 69.16 184 | 82.70 190 | 93.81 56 |
|
IterMVS-LS | | | 80.06 138 | 79.38 131 | 82.11 179 | 85.89 221 | 63.20 222 | 86.79 168 | 89.34 163 | 74.19 115 | 75.45 209 | 86.72 212 | 66.62 90 | 92.39 190 | 72.58 152 | 76.86 254 | 90.75 159 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 80.03 139 | 78.57 151 | 84.42 98 | 85.13 235 | 68.74 103 | 88.77 105 | 88.10 202 | 74.99 98 | 74.97 226 | 83.49 281 | 57.27 195 | 93.36 154 | 73.53 140 | 80.88 208 | 91.18 142 |
|
v1144 | | | 80.03 139 | 79.03 142 | 83.01 155 | 83.78 255 | 64.51 191 | 87.11 158 | 90.57 131 | 71.96 153 | 78.08 153 | 86.20 232 | 61.41 154 | 93.94 125 | 74.93 128 | 77.23 248 | 90.60 165 |
|
iter_conf05 | | | 80.00 141 | 78.70 147 | 83.91 125 | 87.84 180 | 65.83 163 | 88.84 103 | 84.92 252 | 71.61 159 | 78.70 132 | 88.94 151 | 43.88 307 | 94.56 100 | 79.28 85 | 84.28 167 | 91.33 137 |
|
v8 | | | 79.97 142 | 79.02 143 | 82.80 165 | 84.09 249 | 64.50 193 | 87.96 133 | 90.29 142 | 74.13 118 | 75.24 219 | 86.81 209 | 62.88 131 | 93.89 131 | 74.39 133 | 75.40 279 | 90.00 191 |
|
OpenMVS |  | 72.83 10 | 79.77 143 | 78.33 158 | 84.09 111 | 85.17 231 | 69.91 82 | 90.57 58 | 90.97 120 | 66.70 237 | 72.17 255 | 91.91 79 | 54.70 210 | 93.96 122 | 61.81 246 | 90.95 89 | 88.41 243 |
|
v10 | | | 79.74 144 | 78.67 148 | 82.97 158 | 84.06 250 | 64.95 184 | 87.88 139 | 90.62 129 | 73.11 139 | 75.11 222 | 86.56 223 | 61.46 153 | 94.05 121 | 73.68 138 | 75.55 273 | 89.90 197 |
|
ECVR-MVS |  | | 79.61 145 | 79.26 136 | 80.67 215 | 90.08 102 | 54.69 322 | 87.89 138 | 77.44 329 | 74.88 100 | 80.27 112 | 92.79 67 | 48.96 275 | 92.45 187 | 68.55 190 | 92.50 70 | 94.86 15 |
|
BH-RMVSNet | | | 79.61 145 | 78.44 154 | 83.14 148 | 89.38 124 | 65.93 160 | 84.95 215 | 87.15 224 | 73.56 130 | 78.19 149 | 89.79 127 | 56.67 199 | 93.36 154 | 59.53 263 | 86.74 137 | 90.13 181 |
|
v1192 | | | 79.59 147 | 78.43 155 | 83.07 152 | 83.55 259 | 64.52 190 | 86.93 163 | 90.58 130 | 70.83 172 | 77.78 158 | 85.90 236 | 59.15 179 | 93.94 125 | 73.96 137 | 77.19 250 | 90.76 158 |
|
ab-mvs | | | 79.51 148 | 78.97 144 | 81.14 204 | 88.46 160 | 60.91 250 | 83.84 241 | 89.24 169 | 70.36 181 | 79.03 126 | 88.87 155 | 63.23 124 | 90.21 248 | 65.12 219 | 82.57 191 | 92.28 112 |
|
WR-MVS | | | 79.49 149 | 79.22 138 | 80.27 223 | 88.79 148 | 58.35 273 | 85.06 212 | 88.61 196 | 78.56 28 | 77.65 160 | 88.34 170 | 63.81 119 | 90.66 243 | 64.98 221 | 77.22 249 | 91.80 126 |
|
v144192 | | | 79.47 150 | 78.37 156 | 82.78 168 | 83.35 262 | 63.96 203 | 86.96 161 | 90.36 138 | 69.99 187 | 77.50 162 | 85.67 243 | 60.66 169 | 93.77 136 | 74.27 134 | 76.58 258 | 90.62 163 |
|
BH-untuned | | | 79.47 150 | 78.60 150 | 82.05 180 | 89.19 135 | 65.91 161 | 86.07 189 | 88.52 197 | 72.18 150 | 75.42 210 | 87.69 186 | 61.15 161 | 93.54 146 | 60.38 256 | 86.83 136 | 86.70 279 |
|
test1111 | | | 79.43 152 | 79.18 140 | 80.15 225 | 89.99 107 | 53.31 335 | 87.33 152 | 77.05 332 | 75.04 97 | 80.23 114 | 92.77 69 | 48.97 274 | 92.33 195 | 68.87 187 | 92.40 72 | 94.81 18 |
|
mvs_anonymous | | | 79.42 153 | 79.11 141 | 80.34 221 | 84.45 244 | 57.97 280 | 82.59 261 | 87.62 214 | 67.40 232 | 76.17 197 | 88.56 165 | 68.47 77 | 89.59 256 | 70.65 168 | 86.05 148 | 93.47 73 |
|
thisisatest0530 | | | 79.40 154 | 77.76 174 | 84.31 103 | 87.69 188 | 65.10 182 | 87.36 150 | 84.26 263 | 70.04 186 | 77.42 164 | 88.26 174 | 49.94 260 | 94.79 95 | 70.20 171 | 84.70 161 | 93.03 88 |
|
tttt0517 | | | 79.40 154 | 77.91 166 | 83.90 126 | 88.10 171 | 63.84 205 | 88.37 121 | 84.05 265 | 71.45 163 | 76.78 180 | 89.12 147 | 49.93 262 | 94.89 90 | 70.18 172 | 83.18 183 | 92.96 92 |
|
V42 | | | 79.38 156 | 78.24 160 | 82.83 162 | 81.10 307 | 65.50 171 | 85.55 203 | 89.82 152 | 71.57 161 | 78.21 148 | 86.12 234 | 60.66 169 | 93.18 164 | 75.64 122 | 75.46 277 | 89.81 202 |
|
jajsoiax | | | 79.29 157 | 77.96 164 | 83.27 141 | 84.68 241 | 66.57 150 | 89.25 88 | 90.16 144 | 69.20 206 | 75.46 208 | 89.49 136 | 45.75 297 | 93.13 167 | 76.84 109 | 80.80 210 | 90.11 183 |
|
v1921920 | | | 79.22 158 | 78.03 163 | 82.80 165 | 83.30 264 | 63.94 204 | 86.80 167 | 90.33 139 | 69.91 190 | 77.48 163 | 85.53 246 | 58.44 183 | 93.75 138 | 73.60 139 | 76.85 255 | 90.71 161 |
|
AUN-MVS | | | 79.21 159 | 77.60 179 | 84.05 116 | 88.71 152 | 67.61 129 | 85.84 196 | 87.26 222 | 69.08 210 | 77.23 170 | 88.14 180 | 53.20 224 | 93.47 150 | 75.50 126 | 73.45 301 | 91.06 147 |
|
TAPA-MVS | | 73.13 9 | 79.15 160 | 77.94 165 | 82.79 167 | 89.59 114 | 62.99 228 | 88.16 128 | 91.51 107 | 65.77 250 | 77.14 175 | 91.09 103 | 60.91 165 | 93.21 158 | 50.26 323 | 87.05 132 | 92.17 117 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_tets | | | 79.13 161 | 77.77 173 | 83.22 145 | 84.70 240 | 66.37 152 | 89.17 89 | 90.19 143 | 69.38 200 | 75.40 211 | 89.46 139 | 44.17 305 | 93.15 165 | 76.78 111 | 80.70 212 | 90.14 180 |
|
UniMVSNet_ETH3D | | | 79.10 162 | 78.24 160 | 81.70 187 | 86.85 209 | 60.24 261 | 87.28 154 | 88.79 187 | 74.25 114 | 76.84 177 | 90.53 117 | 49.48 265 | 91.56 218 | 67.98 194 | 82.15 194 | 93.29 78 |
|
CDS-MVSNet | | | 79.07 163 | 77.70 176 | 83.17 147 | 87.60 191 | 68.23 117 | 84.40 232 | 86.20 237 | 67.49 231 | 76.36 190 | 86.54 224 | 61.54 150 | 90.79 240 | 61.86 245 | 87.33 128 | 90.49 169 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSTER | | | 79.01 164 | 77.88 168 | 82.38 176 | 83.07 271 | 64.80 187 | 84.08 240 | 88.95 183 | 69.01 214 | 78.69 133 | 87.17 203 | 54.70 210 | 92.43 188 | 74.69 129 | 80.57 214 | 89.89 198 |
|
v1240 | | | 78.99 165 | 77.78 172 | 82.64 171 | 83.21 266 | 63.54 212 | 86.62 174 | 90.30 141 | 69.74 196 | 77.33 166 | 85.68 242 | 57.04 197 | 93.76 137 | 73.13 147 | 76.92 252 | 90.62 163 |
|
Anonymous20231211 | | | 78.97 166 | 77.69 177 | 82.81 164 | 90.54 93 | 64.29 198 | 90.11 70 | 91.51 107 | 65.01 259 | 76.16 198 | 88.13 181 | 50.56 253 | 93.03 174 | 69.68 179 | 77.56 247 | 91.11 144 |
|
v7n | | | 78.97 166 | 77.58 180 | 83.14 148 | 83.45 261 | 65.51 170 | 88.32 122 | 91.21 114 | 73.69 126 | 72.41 252 | 86.32 230 | 57.93 186 | 93.81 133 | 69.18 183 | 75.65 271 | 90.11 183 |
|
TAMVS | | | 78.89 168 | 77.51 181 | 83.03 154 | 87.80 182 | 67.79 125 | 84.72 219 | 85.05 250 | 67.63 228 | 76.75 181 | 87.70 185 | 62.25 140 | 90.82 239 | 58.53 275 | 87.13 131 | 90.49 169 |
|
c3_l | | | 78.75 169 | 77.91 166 | 81.26 199 | 82.89 277 | 61.56 244 | 84.09 239 | 89.13 175 | 69.97 188 | 75.56 204 | 84.29 269 | 66.36 94 | 92.09 202 | 73.47 142 | 75.48 275 | 90.12 182 |
|
tt0805 | | | 78.73 170 | 77.83 169 | 81.43 193 | 85.17 231 | 60.30 260 | 89.41 85 | 90.90 122 | 71.21 166 | 77.17 174 | 88.73 157 | 46.38 287 | 93.21 158 | 72.57 153 | 78.96 234 | 90.79 156 |
|
v148 | | | 78.72 171 | 77.80 171 | 81.47 192 | 82.73 280 | 61.96 239 | 86.30 183 | 88.08 203 | 73.26 136 | 76.18 195 | 85.47 248 | 62.46 136 | 92.36 192 | 71.92 157 | 73.82 298 | 90.09 185 |
|
VPNet | | | 78.69 172 | 78.66 149 | 78.76 248 | 88.31 165 | 55.72 313 | 84.45 229 | 86.63 231 | 76.79 62 | 78.26 146 | 90.55 116 | 59.30 178 | 89.70 255 | 66.63 207 | 77.05 251 | 90.88 154 |
|
ET-MVSNet_ETH3D | | | 78.63 173 | 76.63 201 | 84.64 90 | 86.73 213 | 69.47 89 | 85.01 213 | 84.61 255 | 69.54 197 | 66.51 313 | 86.59 220 | 50.16 257 | 91.75 213 | 76.26 115 | 84.24 168 | 92.69 98 |
|
anonymousdsp | | | 78.60 174 | 77.15 186 | 82.98 157 | 80.51 313 | 67.08 141 | 87.24 155 | 89.53 159 | 65.66 252 | 75.16 220 | 87.19 202 | 52.52 225 | 92.25 197 | 77.17 106 | 79.34 230 | 89.61 207 |
|
miper_ehance_all_eth | | | 78.59 175 | 77.76 174 | 81.08 206 | 82.66 282 | 61.56 244 | 83.65 244 | 89.15 173 | 68.87 216 | 75.55 205 | 83.79 277 | 66.49 92 | 92.03 203 | 73.25 145 | 76.39 262 | 89.64 206 |
|
WR-MVS_H | | | 78.51 176 | 78.49 152 | 78.56 251 | 88.02 175 | 56.38 306 | 88.43 116 | 92.67 61 | 77.14 52 | 73.89 237 | 87.55 191 | 66.25 96 | 89.24 262 | 58.92 270 | 73.55 300 | 90.06 189 |
|
GBi-Net | | | 78.40 177 | 77.40 182 | 81.40 195 | 87.60 191 | 63.01 225 | 88.39 118 | 89.28 165 | 71.63 156 | 75.34 213 | 87.28 196 | 54.80 206 | 91.11 230 | 62.72 234 | 79.57 225 | 90.09 185 |
|
test1 | | | 78.40 177 | 77.40 182 | 81.40 195 | 87.60 191 | 63.01 225 | 88.39 118 | 89.28 165 | 71.63 156 | 75.34 213 | 87.28 196 | 54.80 206 | 91.11 230 | 62.72 234 | 79.57 225 | 90.09 185 |
|
Vis-MVSNet (Re-imp) | | | 78.36 179 | 78.45 153 | 78.07 259 | 88.64 154 | 51.78 342 | 86.70 172 | 79.63 316 | 74.14 117 | 75.11 222 | 90.83 111 | 61.29 158 | 89.75 253 | 58.10 279 | 91.60 80 | 92.69 98 |
|
Anonymous202405211 | | | 78.25 180 | 77.01 188 | 81.99 182 | 91.03 82 | 60.67 254 | 84.77 218 | 83.90 267 | 70.65 178 | 80.00 116 | 91.20 99 | 41.08 324 | 91.43 223 | 65.21 218 | 85.26 155 | 93.85 53 |
|
CP-MVSNet | | | 78.22 181 | 78.34 157 | 77.84 261 | 87.83 181 | 54.54 324 | 87.94 135 | 91.17 116 | 77.65 36 | 73.48 240 | 88.49 166 | 62.24 141 | 88.43 276 | 62.19 240 | 74.07 293 | 90.55 167 |
|
BH-w/o | | | 78.21 182 | 77.33 184 | 80.84 211 | 88.81 146 | 65.13 181 | 84.87 216 | 87.85 210 | 69.75 194 | 74.52 232 | 84.74 263 | 61.34 156 | 93.11 168 | 58.24 278 | 85.84 152 | 84.27 313 |
|
FMVSNet2 | | | 78.20 183 | 77.21 185 | 81.20 202 | 87.60 191 | 62.89 229 | 87.47 148 | 89.02 178 | 71.63 156 | 75.29 218 | 87.28 196 | 54.80 206 | 91.10 233 | 62.38 238 | 79.38 229 | 89.61 207 |
|
MVS | | | 78.19 184 | 76.99 190 | 81.78 185 | 85.66 224 | 66.99 142 | 84.66 220 | 90.47 133 | 55.08 337 | 72.02 257 | 85.27 251 | 63.83 118 | 94.11 120 | 66.10 211 | 89.80 103 | 84.24 314 |
|
Baseline_NR-MVSNet | | | 78.15 185 | 78.33 158 | 77.61 266 | 85.79 222 | 56.21 309 | 86.78 169 | 85.76 243 | 73.60 129 | 77.93 156 | 87.57 189 | 65.02 109 | 88.99 266 | 67.14 204 | 75.33 281 | 87.63 254 |
|
CNLPA | | | 78.08 186 | 76.79 195 | 81.97 183 | 90.40 96 | 71.07 60 | 87.59 145 | 84.55 256 | 66.03 248 | 72.38 253 | 89.64 131 | 57.56 191 | 86.04 295 | 59.61 262 | 83.35 180 | 88.79 234 |
|
cl22 | | | 78.07 187 | 77.01 188 | 81.23 200 | 82.37 289 | 61.83 241 | 83.55 248 | 87.98 205 | 68.96 215 | 75.06 224 | 83.87 273 | 61.40 155 | 91.88 210 | 73.53 140 | 76.39 262 | 89.98 194 |
|
PLC |  | 70.83 11 | 78.05 188 | 76.37 206 | 83.08 151 | 91.88 74 | 67.80 124 | 88.19 126 | 89.46 161 | 64.33 267 | 69.87 280 | 88.38 169 | 53.66 220 | 93.58 142 | 58.86 271 | 82.73 188 | 87.86 250 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Fast-Effi-MVS+-dtu | | | 78.02 189 | 76.49 202 | 82.62 172 | 83.16 270 | 66.96 145 | 86.94 162 | 87.45 219 | 72.45 145 | 71.49 262 | 84.17 270 | 54.79 209 | 91.58 217 | 67.61 197 | 80.31 217 | 89.30 214 |
|
PS-CasMVS | | | 78.01 190 | 78.09 162 | 77.77 263 | 87.71 186 | 54.39 326 | 88.02 131 | 91.22 113 | 77.50 44 | 73.26 242 | 88.64 161 | 60.73 166 | 88.41 277 | 61.88 244 | 73.88 297 | 90.53 168 |
|
HY-MVS | | 69.67 12 | 77.95 191 | 77.15 186 | 80.36 220 | 87.57 195 | 60.21 262 | 83.37 251 | 87.78 212 | 66.11 245 | 75.37 212 | 87.06 207 | 63.27 122 | 90.48 245 | 61.38 250 | 82.43 192 | 90.40 173 |
|
eth_miper_zixun_eth | | | 77.92 192 | 76.69 199 | 81.61 190 | 83.00 274 | 61.98 238 | 83.15 254 | 89.20 171 | 69.52 198 | 74.86 228 | 84.35 268 | 61.76 146 | 92.56 184 | 71.50 160 | 72.89 306 | 90.28 176 |
|
FMVSNet3 | | | 77.88 193 | 76.85 193 | 80.97 209 | 86.84 210 | 62.36 232 | 86.52 177 | 88.77 188 | 71.13 167 | 75.34 213 | 86.66 218 | 54.07 217 | 91.10 233 | 62.72 234 | 79.57 225 | 89.45 210 |
|
miper_enhance_ethall | | | 77.87 194 | 76.86 192 | 80.92 210 | 81.65 296 | 61.38 246 | 82.68 260 | 88.98 180 | 65.52 254 | 75.47 206 | 82.30 296 | 65.76 104 | 92.00 205 | 72.95 148 | 76.39 262 | 89.39 211 |
|
FE-MVS | | | 77.78 195 | 75.68 212 | 84.08 112 | 88.09 172 | 66.00 158 | 83.13 255 | 87.79 211 | 68.42 224 | 78.01 154 | 85.23 253 | 45.50 299 | 95.12 76 | 59.11 267 | 85.83 153 | 91.11 144 |
|
PEN-MVS | | | 77.73 196 | 77.69 177 | 77.84 261 | 87.07 207 | 53.91 329 | 87.91 137 | 91.18 115 | 77.56 41 | 73.14 244 | 88.82 156 | 61.23 159 | 89.17 263 | 59.95 259 | 72.37 308 | 90.43 171 |
|
cl____ | | | 77.72 197 | 76.76 196 | 80.58 216 | 82.49 286 | 60.48 257 | 83.09 256 | 87.87 208 | 69.22 204 | 74.38 234 | 85.22 254 | 62.10 143 | 91.53 220 | 71.09 163 | 75.41 278 | 89.73 205 |
|
DIV-MVS_self_test | | | 77.72 197 | 76.76 196 | 80.58 216 | 82.48 287 | 60.48 257 | 83.09 256 | 87.86 209 | 69.22 204 | 74.38 234 | 85.24 252 | 62.10 143 | 91.53 220 | 71.09 163 | 75.40 279 | 89.74 204 |
|
PAPM | | | 77.68 199 | 76.40 205 | 81.51 191 | 87.29 203 | 61.85 240 | 83.78 242 | 89.59 158 | 64.74 261 | 71.23 263 | 88.70 158 | 62.59 133 | 93.66 141 | 52.66 310 | 87.03 133 | 89.01 223 |
|
CHOSEN 1792x2688 | | | 77.63 200 | 75.69 211 | 83.44 134 | 89.98 108 | 68.58 111 | 78.70 304 | 87.50 217 | 56.38 332 | 75.80 202 | 86.84 208 | 58.67 181 | 91.40 224 | 61.58 248 | 85.75 154 | 90.34 174 |
|
HyFIR lowres test | | | 77.53 201 | 75.40 218 | 83.94 124 | 89.59 114 | 66.62 148 | 80.36 285 | 88.64 195 | 56.29 333 | 76.45 186 | 85.17 255 | 57.64 190 | 93.28 156 | 61.34 251 | 83.10 184 | 91.91 123 |
|
FMVSNet1 | | | 77.44 202 | 76.12 208 | 81.40 195 | 86.81 211 | 63.01 225 | 88.39 118 | 89.28 165 | 70.49 180 | 74.39 233 | 87.28 196 | 49.06 272 | 91.11 230 | 60.91 253 | 78.52 237 | 90.09 185 |
|
TR-MVS | | | 77.44 202 | 76.18 207 | 81.20 202 | 88.24 167 | 63.24 220 | 84.61 223 | 86.40 234 | 67.55 230 | 77.81 157 | 86.48 226 | 54.10 216 | 93.15 165 | 57.75 282 | 82.72 189 | 87.20 265 |
|
1112_ss | | | 77.40 204 | 76.43 204 | 80.32 222 | 89.11 141 | 60.41 259 | 83.65 244 | 87.72 213 | 62.13 292 | 73.05 245 | 86.72 212 | 62.58 134 | 89.97 250 | 62.11 243 | 80.80 210 | 90.59 166 |
|
thisisatest0515 | | | 77.33 205 | 75.38 219 | 83.18 146 | 85.27 230 | 63.80 206 | 82.11 265 | 83.27 278 | 65.06 257 | 75.91 199 | 83.84 275 | 49.54 264 | 94.27 111 | 67.24 202 | 86.19 146 | 91.48 135 |
|
test2506 | | | 77.30 206 | 76.49 202 | 79.74 233 | 90.08 102 | 52.02 338 | 87.86 140 | 63.10 366 | 74.88 100 | 80.16 115 | 92.79 67 | 38.29 334 | 92.35 193 | 68.74 189 | 92.50 70 | 94.86 15 |
|
bld_raw_dy_0_64 | | | 77.29 207 | 75.98 209 | 81.22 201 | 85.04 237 | 65.47 172 | 88.14 130 | 77.56 326 | 69.20 206 | 73.77 238 | 89.40 145 | 42.24 318 | 88.85 272 | 76.78 111 | 81.64 200 | 89.33 213 |
|
pm-mvs1 | | | 77.25 208 | 76.68 200 | 78.93 246 | 84.22 247 | 58.62 272 | 86.41 179 | 88.36 199 | 71.37 164 | 73.31 241 | 88.01 182 | 61.22 160 | 89.15 264 | 64.24 225 | 73.01 305 | 89.03 222 |
|
LCM-MVSNet-Re | | | 77.05 209 | 76.94 191 | 77.36 269 | 87.20 204 | 51.60 343 | 80.06 288 | 80.46 307 | 75.20 95 | 67.69 296 | 86.72 212 | 62.48 135 | 88.98 267 | 63.44 229 | 89.25 108 | 91.51 131 |
|
DTE-MVSNet | | | 76.99 210 | 76.80 194 | 77.54 268 | 86.24 217 | 53.06 337 | 87.52 146 | 90.66 128 | 77.08 55 | 72.50 250 | 88.67 160 | 60.48 172 | 89.52 257 | 57.33 286 | 70.74 319 | 90.05 190 |
|
baseline1 | | | 76.98 211 | 76.75 198 | 77.66 264 | 88.13 169 | 55.66 314 | 85.12 211 | 81.89 292 | 73.04 141 | 76.79 179 | 88.90 153 | 62.43 137 | 87.78 284 | 63.30 231 | 71.18 317 | 89.55 209 |
|
LS3D | | | 76.95 212 | 74.82 225 | 83.37 138 | 90.45 94 | 67.36 136 | 89.15 93 | 86.94 227 | 61.87 294 | 69.52 283 | 90.61 114 | 51.71 242 | 94.53 103 | 46.38 343 | 86.71 138 | 88.21 245 |
|
GA-MVS | | | 76.87 213 | 75.17 223 | 81.97 183 | 82.75 279 | 62.58 230 | 81.44 274 | 86.35 236 | 72.16 152 | 74.74 229 | 82.89 288 | 46.20 291 | 92.02 204 | 68.85 188 | 81.09 206 | 91.30 140 |
|
DP-MVS | | | 76.78 214 | 74.57 227 | 83.42 135 | 93.29 48 | 69.46 91 | 88.55 115 | 83.70 269 | 63.98 273 | 70.20 271 | 88.89 154 | 54.01 218 | 94.80 94 | 46.66 340 | 81.88 198 | 86.01 291 |
|
cascas | | | 76.72 215 | 74.64 226 | 82.99 156 | 85.78 223 | 65.88 162 | 82.33 263 | 89.21 170 | 60.85 300 | 72.74 247 | 81.02 307 | 47.28 282 | 93.75 138 | 67.48 199 | 85.02 156 | 89.34 212 |
|
1314 | | | 76.53 216 | 75.30 222 | 80.21 224 | 83.93 253 | 62.32 234 | 84.66 220 | 88.81 186 | 60.23 304 | 70.16 274 | 84.07 272 | 55.30 204 | 90.73 242 | 67.37 200 | 83.21 182 | 87.59 257 |
|
thres100view900 | | | 76.50 217 | 75.55 215 | 79.33 241 | 89.52 117 | 56.99 295 | 85.83 197 | 83.23 279 | 73.94 120 | 76.32 191 | 87.12 204 | 51.89 239 | 91.95 206 | 48.33 331 | 83.75 173 | 89.07 216 |
|
thres600view7 | | | 76.50 217 | 75.44 216 | 79.68 235 | 89.40 122 | 57.16 292 | 85.53 205 | 83.23 279 | 73.79 125 | 76.26 192 | 87.09 205 | 51.89 239 | 91.89 209 | 48.05 336 | 83.72 176 | 90.00 191 |
|
thres400 | | | 76.50 217 | 75.37 220 | 79.86 230 | 89.13 137 | 57.65 286 | 85.17 208 | 83.60 270 | 73.41 134 | 76.45 186 | 86.39 228 | 52.12 232 | 91.95 206 | 48.33 331 | 83.75 173 | 90.00 191 |
|
tfpn200view9 | | | 76.42 220 | 75.37 220 | 79.55 240 | 89.13 137 | 57.65 286 | 85.17 208 | 83.60 270 | 73.41 134 | 76.45 186 | 86.39 228 | 52.12 232 | 91.95 206 | 48.33 331 | 83.75 173 | 89.07 216 |
|
Test_1112_low_res | | | 76.40 221 | 75.44 216 | 79.27 242 | 89.28 131 | 58.09 276 | 81.69 269 | 87.07 225 | 59.53 311 | 72.48 251 | 86.67 217 | 61.30 157 | 89.33 260 | 60.81 255 | 80.15 219 | 90.41 172 |
|
F-COLMAP | | | 76.38 222 | 74.33 232 | 82.50 174 | 89.28 131 | 66.95 146 | 88.41 117 | 89.03 177 | 64.05 271 | 66.83 307 | 88.61 162 | 46.78 285 | 92.89 176 | 57.48 283 | 78.55 236 | 87.67 253 |
|
LTVRE_ROB | | 69.57 13 | 76.25 223 | 74.54 229 | 81.41 194 | 88.60 155 | 64.38 197 | 79.24 297 | 89.12 176 | 70.76 175 | 69.79 282 | 87.86 183 | 49.09 271 | 93.20 161 | 56.21 296 | 80.16 218 | 86.65 280 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVP-Stereo | | | 76.12 224 | 74.46 231 | 81.13 205 | 85.37 229 | 69.79 84 | 84.42 231 | 87.95 206 | 65.03 258 | 67.46 299 | 85.33 250 | 53.28 223 | 91.73 215 | 58.01 280 | 83.27 181 | 81.85 335 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
XVG-ACMP-BASELINE | | | 76.11 225 | 74.27 233 | 81.62 188 | 83.20 267 | 64.67 189 | 83.60 247 | 89.75 155 | 69.75 194 | 71.85 258 | 87.09 205 | 32.78 347 | 92.11 201 | 69.99 175 | 80.43 216 | 88.09 246 |
|
ACMH+ | | 68.96 14 | 76.01 226 | 74.01 234 | 82.03 181 | 88.60 155 | 65.31 178 | 88.86 101 | 87.55 215 | 70.25 184 | 67.75 295 | 87.47 194 | 41.27 322 | 93.19 163 | 58.37 276 | 75.94 268 | 87.60 255 |
|
ACMH | | 67.68 16 | 75.89 227 | 73.93 235 | 81.77 186 | 88.71 152 | 66.61 149 | 88.62 113 | 89.01 179 | 69.81 191 | 66.78 308 | 86.70 216 | 41.95 321 | 91.51 222 | 55.64 297 | 78.14 243 | 87.17 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 68.01 15 | 75.85 228 | 73.36 242 | 83.31 139 | 84.76 239 | 66.03 156 | 83.38 250 | 85.06 249 | 70.21 185 | 69.40 284 | 81.05 306 | 45.76 296 | 94.66 99 | 65.10 220 | 75.49 274 | 89.25 215 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
baseline2 | | | 75.70 229 | 73.83 238 | 81.30 198 | 83.26 265 | 61.79 242 | 82.57 262 | 80.65 303 | 66.81 234 | 66.88 305 | 83.42 282 | 57.86 188 | 92.19 199 | 63.47 228 | 79.57 225 | 89.91 196 |
|
WTY-MVS | | | 75.65 230 | 75.68 212 | 75.57 285 | 86.40 216 | 56.82 297 | 77.92 312 | 82.40 288 | 65.10 256 | 76.18 195 | 87.72 184 | 63.13 129 | 80.90 325 | 60.31 257 | 81.96 196 | 89.00 225 |
|
thres200 | | | 75.55 231 | 74.47 230 | 78.82 247 | 87.78 185 | 57.85 283 | 83.07 258 | 83.51 273 | 72.44 147 | 75.84 201 | 84.42 265 | 52.08 234 | 91.75 213 | 47.41 338 | 83.64 177 | 86.86 275 |
|
test_vis1_n_1920 | | | 75.52 232 | 75.78 210 | 74.75 295 | 79.84 320 | 57.44 290 | 83.26 252 | 85.52 245 | 62.83 284 | 79.34 124 | 86.17 233 | 45.10 301 | 79.71 329 | 78.75 89 | 81.21 205 | 87.10 272 |
|
EPNet_dtu | | | 75.46 233 | 74.86 224 | 77.23 273 | 82.57 284 | 54.60 323 | 86.89 164 | 83.09 282 | 71.64 155 | 66.25 315 | 85.86 238 | 55.99 201 | 88.04 281 | 54.92 299 | 86.55 140 | 89.05 221 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-SCA-FT | | | 75.43 234 | 73.87 237 | 80.11 226 | 82.69 281 | 64.85 186 | 81.57 271 | 83.47 275 | 69.16 208 | 70.49 268 | 84.15 271 | 51.95 237 | 88.15 279 | 69.23 182 | 72.14 311 | 87.34 262 |
|
XXY-MVS | | | 75.41 235 | 75.56 214 | 74.96 291 | 83.59 258 | 57.82 284 | 80.59 282 | 83.87 268 | 66.54 242 | 74.93 227 | 88.31 171 | 63.24 123 | 80.09 328 | 62.16 241 | 76.85 255 | 86.97 273 |
|
TransMVSNet (Re) | | | 75.39 236 | 74.56 228 | 77.86 260 | 85.50 228 | 57.10 294 | 86.78 169 | 86.09 240 | 72.17 151 | 71.53 261 | 87.34 195 | 63.01 130 | 89.31 261 | 56.84 291 | 61.83 344 | 87.17 266 |
|
CostFormer | | | 75.24 237 | 73.90 236 | 79.27 242 | 82.65 283 | 58.27 275 | 80.80 277 | 82.73 286 | 61.57 295 | 75.33 216 | 83.13 286 | 55.52 202 | 91.07 236 | 64.98 221 | 78.34 242 | 88.45 241 |
|
D2MVS | | | 74.82 238 | 73.21 243 | 79.64 237 | 79.81 321 | 62.56 231 | 80.34 286 | 87.35 220 | 64.37 266 | 68.86 287 | 82.66 292 | 46.37 288 | 90.10 249 | 67.91 195 | 81.24 204 | 86.25 284 |
|
pmmvs6 | | | 74.69 239 | 73.39 241 | 78.61 250 | 81.38 302 | 57.48 289 | 86.64 173 | 87.95 206 | 64.99 260 | 70.18 272 | 86.61 219 | 50.43 255 | 89.52 257 | 62.12 242 | 70.18 321 | 88.83 232 |
|
tfpnnormal | | | 74.39 240 | 73.16 244 | 78.08 258 | 86.10 220 | 58.05 277 | 84.65 222 | 87.53 216 | 70.32 182 | 71.22 264 | 85.63 244 | 54.97 205 | 89.86 251 | 43.03 352 | 75.02 286 | 86.32 283 |
|
IterMVS | | | 74.29 241 | 72.94 246 | 78.35 255 | 81.53 299 | 63.49 214 | 81.58 270 | 82.49 287 | 68.06 227 | 69.99 277 | 83.69 279 | 51.66 243 | 85.54 298 | 65.85 214 | 71.64 314 | 86.01 291 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OurMVSNet-221017-0 | | | 74.26 242 | 72.42 250 | 79.80 232 | 83.76 256 | 59.59 267 | 85.92 193 | 86.64 230 | 66.39 243 | 66.96 304 | 87.58 188 | 39.46 328 | 91.60 216 | 65.76 215 | 69.27 324 | 88.22 244 |
|
SCA | | | 74.22 243 | 72.33 251 | 79.91 229 | 84.05 251 | 62.17 236 | 79.96 291 | 79.29 318 | 66.30 244 | 72.38 253 | 80.13 316 | 51.95 237 | 88.60 274 | 59.25 265 | 77.67 246 | 88.96 227 |
|
miper_lstm_enhance | | | 74.11 244 | 73.11 245 | 77.13 274 | 80.11 316 | 59.62 266 | 72.23 335 | 86.92 228 | 66.76 236 | 70.40 269 | 82.92 287 | 56.93 198 | 82.92 317 | 69.06 185 | 72.63 307 | 88.87 230 |
|
EG-PatchMatch MVS | | | 74.04 245 | 71.82 254 | 80.71 214 | 84.92 238 | 67.42 133 | 85.86 195 | 88.08 203 | 66.04 247 | 64.22 327 | 83.85 274 | 35.10 343 | 92.56 184 | 57.44 284 | 80.83 209 | 82.16 334 |
|
pmmvs4 | | | 74.03 246 | 71.91 253 | 80.39 219 | 81.96 293 | 68.32 114 | 81.45 273 | 82.14 290 | 59.32 312 | 69.87 280 | 85.13 256 | 52.40 228 | 88.13 280 | 60.21 258 | 74.74 289 | 84.73 309 |
|
MS-PatchMatch | | | 73.83 247 | 72.67 247 | 77.30 271 | 83.87 254 | 66.02 157 | 81.82 266 | 84.66 254 | 61.37 298 | 68.61 290 | 82.82 290 | 47.29 281 | 88.21 278 | 59.27 264 | 84.32 166 | 77.68 349 |
|
test_cas_vis1_n_1920 | | | 73.76 248 | 73.74 239 | 73.81 302 | 75.90 340 | 59.77 264 | 80.51 283 | 82.40 288 | 58.30 320 | 81.62 98 | 85.69 241 | 44.35 304 | 76.41 346 | 76.29 114 | 78.61 235 | 85.23 301 |
|
sss | | | 73.60 249 | 73.64 240 | 73.51 304 | 82.80 278 | 55.01 320 | 76.12 319 | 81.69 295 | 62.47 289 | 74.68 230 | 85.85 239 | 57.32 194 | 78.11 336 | 60.86 254 | 80.93 207 | 87.39 260 |
|
RPMNet | | | 73.51 250 | 70.49 267 | 82.58 173 | 81.32 305 | 65.19 179 | 75.92 321 | 92.27 76 | 57.60 326 | 72.73 248 | 76.45 341 | 52.30 229 | 95.43 63 | 48.14 335 | 77.71 244 | 87.11 270 |
|
SixPastTwentyTwo | | | 73.37 251 | 71.26 261 | 79.70 234 | 85.08 236 | 57.89 282 | 85.57 199 | 83.56 272 | 71.03 170 | 65.66 317 | 85.88 237 | 42.10 319 | 92.57 183 | 59.11 267 | 63.34 342 | 88.65 238 |
|
CR-MVSNet | | | 73.37 251 | 71.27 260 | 79.67 236 | 81.32 305 | 65.19 179 | 75.92 321 | 80.30 309 | 59.92 307 | 72.73 248 | 81.19 304 | 52.50 226 | 86.69 290 | 59.84 260 | 77.71 244 | 87.11 270 |
|
MSDG | | | 73.36 253 | 70.99 262 | 80.49 218 | 84.51 243 | 65.80 165 | 80.71 280 | 86.13 239 | 65.70 251 | 65.46 318 | 83.74 278 | 44.60 302 | 90.91 238 | 51.13 316 | 76.89 253 | 84.74 308 |
|
tpm2 | | | 73.26 254 | 71.46 256 | 78.63 249 | 83.34 263 | 56.71 300 | 80.65 281 | 80.40 308 | 56.63 331 | 73.55 239 | 82.02 301 | 51.80 241 | 91.24 228 | 56.35 295 | 78.42 240 | 87.95 247 |
|
RPSCF | | | 73.23 255 | 71.46 256 | 78.54 252 | 82.50 285 | 59.85 263 | 82.18 264 | 82.84 285 | 58.96 315 | 71.15 265 | 89.41 143 | 45.48 300 | 84.77 305 | 58.82 272 | 71.83 313 | 91.02 151 |
|
PatchmatchNet |  | | 73.12 256 | 71.33 259 | 78.49 254 | 83.18 268 | 60.85 251 | 79.63 293 | 78.57 321 | 64.13 268 | 71.73 259 | 79.81 321 | 51.20 246 | 85.97 296 | 57.40 285 | 76.36 265 | 88.66 237 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB |  | 66.92 17 | 73.01 257 | 70.41 269 | 80.81 212 | 87.13 206 | 65.63 168 | 88.30 123 | 84.19 264 | 62.96 281 | 63.80 331 | 87.69 186 | 38.04 335 | 92.56 184 | 46.66 340 | 74.91 287 | 84.24 314 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CVMVSNet | | | 72.99 258 | 72.58 248 | 74.25 299 | 84.28 245 | 50.85 348 | 86.41 179 | 83.45 276 | 44.56 354 | 73.23 243 | 87.54 192 | 49.38 266 | 85.70 297 | 65.90 213 | 78.44 239 | 86.19 286 |
|
test-LLR | | | 72.94 259 | 72.43 249 | 74.48 296 | 81.35 303 | 58.04 278 | 78.38 305 | 77.46 327 | 66.66 238 | 69.95 278 | 79.00 325 | 48.06 278 | 79.24 330 | 66.13 209 | 84.83 158 | 86.15 287 |
|
test_0402 | | | 72.79 260 | 70.44 268 | 79.84 231 | 88.13 169 | 65.99 159 | 85.93 192 | 84.29 261 | 65.57 253 | 67.40 301 | 85.49 247 | 46.92 284 | 92.61 182 | 35.88 361 | 74.38 292 | 80.94 340 |
|
MVS_0304 | | | 72.48 261 | 70.89 264 | 77.24 272 | 82.20 290 | 59.68 265 | 84.11 238 | 83.49 274 | 67.10 233 | 66.87 306 | 80.59 312 | 35.00 344 | 87.40 286 | 59.07 269 | 79.58 224 | 84.63 310 |
|
tpmrst | | | 72.39 262 | 72.13 252 | 73.18 308 | 80.54 312 | 49.91 352 | 79.91 292 | 79.08 319 | 63.11 278 | 71.69 260 | 79.95 318 | 55.32 203 | 82.77 318 | 65.66 216 | 73.89 296 | 86.87 274 |
|
PatchMatch-RL | | | 72.38 263 | 70.90 263 | 76.80 277 | 88.60 155 | 67.38 135 | 79.53 294 | 76.17 337 | 62.75 286 | 69.36 285 | 82.00 302 | 45.51 298 | 84.89 304 | 53.62 305 | 80.58 213 | 78.12 348 |
|
CL-MVSNet_self_test | | | 72.37 264 | 71.46 256 | 75.09 290 | 79.49 327 | 53.53 331 | 80.76 279 | 85.01 251 | 69.12 209 | 70.51 267 | 82.05 300 | 57.92 187 | 84.13 308 | 52.27 311 | 66.00 336 | 87.60 255 |
|
tpm | | | 72.37 264 | 71.71 255 | 74.35 298 | 82.19 291 | 52.00 339 | 79.22 298 | 77.29 330 | 64.56 263 | 72.95 246 | 83.68 280 | 51.35 244 | 83.26 316 | 58.33 277 | 75.80 269 | 87.81 251 |
|
PVSNet | | 64.34 18 | 72.08 266 | 70.87 265 | 75.69 283 | 86.21 218 | 56.44 304 | 74.37 331 | 80.73 302 | 62.06 293 | 70.17 273 | 82.23 298 | 42.86 312 | 83.31 315 | 54.77 300 | 84.45 165 | 87.32 263 |
|
pmmvs5 | | | 71.55 267 | 70.20 272 | 75.61 284 | 77.83 333 | 56.39 305 | 81.74 268 | 80.89 299 | 57.76 324 | 67.46 299 | 84.49 264 | 49.26 269 | 85.32 301 | 57.08 288 | 75.29 282 | 85.11 305 |
|
test-mter | | | 71.41 268 | 70.39 270 | 74.48 296 | 81.35 303 | 58.04 278 | 78.38 305 | 77.46 327 | 60.32 303 | 69.95 278 | 79.00 325 | 36.08 341 | 79.24 330 | 66.13 209 | 84.83 158 | 86.15 287 |
|
K. test v3 | | | 71.19 269 | 68.51 280 | 79.21 244 | 83.04 273 | 57.78 285 | 84.35 233 | 76.91 333 | 72.90 144 | 62.99 334 | 82.86 289 | 39.27 329 | 91.09 235 | 61.65 247 | 52.66 360 | 88.75 235 |
|
tpmvs | | | 71.09 270 | 69.29 275 | 76.49 278 | 82.04 292 | 56.04 310 | 78.92 302 | 81.37 298 | 64.05 271 | 67.18 303 | 78.28 331 | 49.74 263 | 89.77 252 | 49.67 326 | 72.37 308 | 83.67 321 |
|
AllTest | | | 70.96 271 | 68.09 286 | 79.58 238 | 85.15 233 | 63.62 208 | 84.58 224 | 79.83 313 | 62.31 290 | 60.32 341 | 86.73 210 | 32.02 348 | 88.96 269 | 50.28 321 | 71.57 315 | 86.15 287 |
|
test_fmvs1 | | | 70.93 272 | 70.52 266 | 72.16 312 | 73.71 350 | 55.05 319 | 80.82 276 | 78.77 320 | 51.21 348 | 78.58 137 | 84.41 266 | 31.20 351 | 76.94 342 | 75.88 120 | 80.12 221 | 84.47 312 |
|
test_fmvs1_n | | | 70.86 273 | 70.24 271 | 72.73 309 | 72.51 358 | 55.28 317 | 81.27 275 | 79.71 315 | 51.49 347 | 78.73 131 | 84.87 260 | 27.54 355 | 77.02 341 | 76.06 117 | 79.97 222 | 85.88 294 |
|
Patchmtry | | | 70.74 274 | 69.16 277 | 75.49 287 | 80.72 309 | 54.07 328 | 74.94 330 | 80.30 309 | 58.34 319 | 70.01 275 | 81.19 304 | 52.50 226 | 86.54 291 | 53.37 307 | 71.09 318 | 85.87 295 |
|
MIMVSNet | | | 70.69 275 | 69.30 274 | 74.88 292 | 84.52 242 | 56.35 307 | 75.87 323 | 79.42 317 | 64.59 262 | 67.76 294 | 82.41 294 | 41.10 323 | 81.54 322 | 46.64 342 | 81.34 202 | 86.75 278 |
|
tpm cat1 | | | 70.57 276 | 68.31 282 | 77.35 270 | 82.41 288 | 57.95 281 | 78.08 309 | 80.22 311 | 52.04 343 | 68.54 291 | 77.66 336 | 52.00 236 | 87.84 283 | 51.77 312 | 72.07 312 | 86.25 284 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 277 | 68.19 283 | 77.65 265 | 80.26 314 | 59.41 269 | 85.01 213 | 82.96 284 | 58.76 317 | 65.43 319 | 82.33 295 | 37.63 337 | 91.23 229 | 45.34 348 | 76.03 267 | 82.32 332 |
|
pmmvs-eth3d | | | 70.50 278 | 67.83 290 | 78.52 253 | 77.37 336 | 66.18 155 | 81.82 266 | 81.51 296 | 58.90 316 | 63.90 330 | 80.42 314 | 42.69 313 | 86.28 294 | 58.56 274 | 65.30 338 | 83.11 327 |
|
USDC | | | 70.33 279 | 68.37 281 | 76.21 280 | 80.60 311 | 56.23 308 | 79.19 299 | 86.49 232 | 60.89 299 | 61.29 338 | 85.47 248 | 31.78 350 | 89.47 259 | 53.37 307 | 76.21 266 | 82.94 331 |
|
Patchmatch-RL test | | | 70.24 280 | 67.78 292 | 77.61 266 | 77.43 335 | 59.57 268 | 71.16 338 | 70.33 350 | 62.94 282 | 68.65 289 | 72.77 350 | 50.62 252 | 85.49 299 | 69.58 180 | 66.58 333 | 87.77 252 |
|
CMPMVS |  | 51.72 21 | 70.19 281 | 68.16 284 | 76.28 279 | 73.15 355 | 57.55 288 | 79.47 295 | 83.92 266 | 48.02 351 | 56.48 354 | 84.81 261 | 43.13 310 | 86.42 293 | 62.67 237 | 81.81 199 | 84.89 306 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ppachtmachnet_test | | | 70.04 282 | 67.34 297 | 78.14 257 | 79.80 322 | 61.13 247 | 79.19 299 | 80.59 304 | 59.16 314 | 65.27 320 | 79.29 322 | 46.75 286 | 87.29 287 | 49.33 327 | 66.72 331 | 86.00 293 |
|
gg-mvs-nofinetune | | | 69.95 283 | 67.96 287 | 75.94 281 | 83.07 271 | 54.51 325 | 77.23 316 | 70.29 351 | 63.11 278 | 70.32 270 | 62.33 359 | 43.62 308 | 88.69 273 | 53.88 304 | 87.76 123 | 84.62 311 |
|
TESTMET0.1,1 | | | 69.89 284 | 69.00 278 | 72.55 310 | 79.27 330 | 56.85 296 | 78.38 305 | 74.71 343 | 57.64 325 | 68.09 293 | 77.19 338 | 37.75 336 | 76.70 343 | 63.92 226 | 84.09 169 | 84.10 317 |
|
test_vis1_n | | | 69.85 285 | 69.21 276 | 71.77 314 | 72.66 357 | 55.27 318 | 81.48 272 | 76.21 336 | 52.03 344 | 75.30 217 | 83.20 285 | 28.97 353 | 76.22 348 | 74.60 130 | 78.41 241 | 83.81 320 |
|
FMVSNet5 | | | 69.50 286 | 67.96 287 | 74.15 300 | 82.97 276 | 55.35 316 | 80.01 290 | 82.12 291 | 62.56 288 | 63.02 332 | 81.53 303 | 36.92 338 | 81.92 320 | 48.42 330 | 74.06 294 | 85.17 304 |
|
PMMVS | | | 69.34 287 | 68.67 279 | 71.35 319 | 75.67 342 | 62.03 237 | 75.17 325 | 73.46 346 | 50.00 349 | 68.68 288 | 79.05 323 | 52.07 235 | 78.13 335 | 61.16 252 | 82.77 187 | 73.90 354 |
|
our_test_3 | | | 69.14 288 | 67.00 299 | 75.57 285 | 79.80 322 | 58.80 270 | 77.96 310 | 77.81 324 | 59.55 310 | 62.90 335 | 78.25 332 | 47.43 280 | 83.97 309 | 51.71 313 | 67.58 330 | 83.93 319 |
|
EPMVS | | | 69.02 289 | 68.16 284 | 71.59 315 | 79.61 325 | 49.80 354 | 77.40 314 | 66.93 359 | 62.82 285 | 70.01 275 | 79.05 323 | 45.79 295 | 77.86 338 | 56.58 293 | 75.26 283 | 87.13 269 |
|
KD-MVS_self_test | | | 68.81 290 | 67.59 295 | 72.46 311 | 74.29 348 | 45.45 360 | 77.93 311 | 87.00 226 | 63.12 277 | 63.99 329 | 78.99 327 | 42.32 315 | 84.77 305 | 56.55 294 | 64.09 341 | 87.16 268 |
|
Anonymous20240521 | | | 68.80 291 | 67.22 298 | 73.55 303 | 74.33 347 | 54.11 327 | 83.18 253 | 85.61 244 | 58.15 321 | 61.68 337 | 80.94 309 | 30.71 352 | 81.27 324 | 57.00 289 | 73.34 304 | 85.28 300 |
|
Anonymous20231206 | | | 68.60 292 | 67.80 291 | 71.02 321 | 80.23 315 | 50.75 349 | 78.30 308 | 80.47 306 | 56.79 330 | 66.11 316 | 82.63 293 | 46.35 289 | 78.95 332 | 43.62 351 | 75.70 270 | 83.36 324 |
|
MIMVSNet1 | | | 68.58 293 | 66.78 301 | 73.98 301 | 80.07 317 | 51.82 341 | 80.77 278 | 84.37 258 | 64.40 265 | 59.75 344 | 82.16 299 | 36.47 339 | 83.63 312 | 42.73 353 | 70.33 320 | 86.48 282 |
|
EU-MVSNet | | | 68.53 294 | 67.61 294 | 71.31 320 | 78.51 332 | 47.01 358 | 84.47 226 | 84.27 262 | 42.27 357 | 66.44 314 | 84.79 262 | 40.44 326 | 83.76 310 | 58.76 273 | 68.54 329 | 83.17 325 |
|
PatchT | | | 68.46 295 | 67.85 289 | 70.29 324 | 80.70 310 | 43.93 367 | 72.47 334 | 74.88 340 | 60.15 305 | 70.55 266 | 76.57 340 | 49.94 260 | 81.59 321 | 50.58 317 | 74.83 288 | 85.34 299 |
|
test_fmvs2 | | | 68.35 296 | 67.48 296 | 70.98 322 | 69.50 361 | 51.95 340 | 80.05 289 | 76.38 335 | 49.33 350 | 74.65 231 | 84.38 267 | 23.30 361 | 75.40 353 | 74.51 131 | 75.17 285 | 85.60 296 |
|
test0.0.03 1 | | | 68.00 297 | 67.69 293 | 68.90 329 | 77.55 334 | 47.43 356 | 75.70 324 | 72.95 348 | 66.66 238 | 66.56 309 | 82.29 297 | 48.06 278 | 75.87 350 | 44.97 349 | 74.51 291 | 83.41 323 |
|
TDRefinement | | | 67.49 298 | 64.34 307 | 76.92 275 | 73.47 353 | 61.07 248 | 84.86 217 | 82.98 283 | 59.77 308 | 58.30 348 | 85.13 256 | 26.06 356 | 87.89 282 | 47.92 337 | 60.59 349 | 81.81 336 |
|
test20.03 | | | 67.45 299 | 66.95 300 | 68.94 328 | 75.48 344 | 44.84 365 | 77.50 313 | 77.67 325 | 66.66 238 | 63.01 333 | 83.80 276 | 47.02 283 | 78.40 334 | 42.53 354 | 68.86 328 | 83.58 322 |
|
UnsupCasMVSNet_eth | | | 67.33 300 | 65.99 303 | 71.37 317 | 73.48 352 | 51.47 345 | 75.16 326 | 85.19 248 | 65.20 255 | 60.78 340 | 80.93 311 | 42.35 314 | 77.20 340 | 57.12 287 | 53.69 359 | 85.44 298 |
|
TinyColmap | | | 67.30 301 | 64.81 305 | 74.76 294 | 81.92 294 | 56.68 301 | 80.29 287 | 81.49 297 | 60.33 302 | 56.27 355 | 83.22 283 | 24.77 358 | 87.66 285 | 45.52 346 | 69.47 323 | 79.95 344 |
|
dp | | | 66.80 302 | 65.43 304 | 70.90 323 | 79.74 324 | 48.82 355 | 75.12 328 | 74.77 341 | 59.61 309 | 64.08 328 | 77.23 337 | 42.89 311 | 80.72 326 | 48.86 329 | 66.58 333 | 83.16 326 |
|
MDA-MVSNet-bldmvs | | | 66.68 303 | 63.66 311 | 75.75 282 | 79.28 329 | 60.56 256 | 73.92 332 | 78.35 322 | 64.43 264 | 50.13 361 | 79.87 320 | 44.02 306 | 83.67 311 | 46.10 344 | 56.86 352 | 83.03 329 |
|
testgi | | | 66.67 304 | 66.53 302 | 67.08 336 | 75.62 343 | 41.69 371 | 75.93 320 | 76.50 334 | 66.11 245 | 65.20 323 | 86.59 220 | 35.72 342 | 74.71 355 | 43.71 350 | 73.38 303 | 84.84 307 |
|
CHOSEN 280x420 | | | 66.51 305 | 64.71 306 | 71.90 313 | 81.45 300 | 63.52 213 | 57.98 366 | 68.95 357 | 53.57 339 | 62.59 336 | 76.70 339 | 46.22 290 | 75.29 354 | 55.25 298 | 79.68 223 | 76.88 351 |
|
PM-MVS | | | 66.41 306 | 64.14 308 | 73.20 307 | 73.92 349 | 56.45 303 | 78.97 301 | 64.96 364 | 63.88 275 | 64.72 324 | 80.24 315 | 19.84 364 | 83.44 314 | 66.24 208 | 64.52 340 | 79.71 345 |
|
JIA-IIPM | | | 66.32 307 | 62.82 317 | 76.82 276 | 77.09 337 | 61.72 243 | 65.34 359 | 75.38 338 | 58.04 323 | 64.51 325 | 62.32 360 | 42.05 320 | 86.51 292 | 51.45 315 | 69.22 325 | 82.21 333 |
|
KD-MVS_2432*1600 | | | 66.22 308 | 63.89 309 | 73.21 305 | 75.47 345 | 53.42 333 | 70.76 341 | 84.35 259 | 64.10 269 | 66.52 311 | 78.52 329 | 34.55 345 | 84.98 302 | 50.40 319 | 50.33 363 | 81.23 338 |
|
miper_refine_blended | | | 66.22 308 | 63.89 309 | 73.21 305 | 75.47 345 | 53.42 333 | 70.76 341 | 84.35 259 | 64.10 269 | 66.52 311 | 78.52 329 | 34.55 345 | 84.98 302 | 50.40 319 | 50.33 363 | 81.23 338 |
|
ADS-MVSNet2 | | | 66.20 310 | 63.33 312 | 74.82 293 | 79.92 318 | 58.75 271 | 67.55 352 | 75.19 339 | 53.37 340 | 65.25 321 | 75.86 343 | 42.32 315 | 80.53 327 | 41.57 355 | 68.91 326 | 85.18 302 |
|
YYNet1 | | | 65.03 311 | 62.91 315 | 71.38 316 | 75.85 341 | 56.60 302 | 69.12 349 | 74.66 344 | 57.28 328 | 54.12 357 | 77.87 334 | 45.85 294 | 74.48 356 | 49.95 324 | 61.52 346 | 83.05 328 |
|
MDA-MVSNet_test_wron | | | 65.03 311 | 62.92 314 | 71.37 317 | 75.93 339 | 56.73 298 | 69.09 350 | 74.73 342 | 57.28 328 | 54.03 358 | 77.89 333 | 45.88 293 | 74.39 357 | 49.89 325 | 61.55 345 | 82.99 330 |
|
Patchmatch-test | | | 64.82 313 | 63.24 313 | 69.57 326 | 79.42 328 | 49.82 353 | 63.49 363 | 69.05 356 | 51.98 345 | 59.95 343 | 80.13 316 | 50.91 248 | 70.98 361 | 40.66 357 | 73.57 299 | 87.90 249 |
|
ADS-MVSNet | | | 64.36 314 | 62.88 316 | 68.78 331 | 79.92 318 | 47.17 357 | 67.55 352 | 71.18 349 | 53.37 340 | 65.25 321 | 75.86 343 | 42.32 315 | 73.99 358 | 41.57 355 | 68.91 326 | 85.18 302 |
|
LF4IMVS | | | 64.02 315 | 62.19 318 | 69.50 327 | 70.90 359 | 53.29 336 | 76.13 318 | 77.18 331 | 52.65 342 | 58.59 346 | 80.98 308 | 23.55 360 | 76.52 344 | 53.06 309 | 66.66 332 | 78.68 347 |
|
UnsupCasMVSNet_bld | | | 63.70 316 | 61.53 321 | 70.21 325 | 73.69 351 | 51.39 346 | 72.82 333 | 81.89 292 | 55.63 335 | 57.81 350 | 71.80 352 | 38.67 331 | 78.61 333 | 49.26 328 | 52.21 361 | 80.63 341 |
|
test_fmvs3 | | | 63.36 317 | 61.82 319 | 67.98 333 | 62.51 368 | 46.96 359 | 77.37 315 | 74.03 345 | 45.24 353 | 67.50 298 | 78.79 328 | 12.16 372 | 72.98 360 | 72.77 151 | 66.02 335 | 83.99 318 |
|
mvsany_test1 | | | 62.30 318 | 61.26 322 | 65.41 338 | 69.52 360 | 54.86 321 | 66.86 354 | 49.78 375 | 46.65 352 | 68.50 292 | 83.21 284 | 49.15 270 | 66.28 367 | 56.93 290 | 60.77 347 | 75.11 353 |
|
new-patchmatchnet | | | 61.73 319 | 61.73 320 | 61.70 342 | 72.74 356 | 24.50 381 | 69.16 348 | 78.03 323 | 61.40 296 | 56.72 353 | 75.53 346 | 38.42 332 | 76.48 345 | 45.95 345 | 57.67 351 | 84.13 316 |
|
PVSNet_0 | | 57.27 20 | 61.67 320 | 59.27 323 | 68.85 330 | 79.61 325 | 57.44 290 | 68.01 351 | 73.44 347 | 55.93 334 | 58.54 347 | 70.41 355 | 44.58 303 | 77.55 339 | 47.01 339 | 35.91 369 | 71.55 357 |
|
test_vis1_rt | | | 60.28 321 | 58.42 324 | 65.84 337 | 67.25 364 | 55.60 315 | 70.44 343 | 60.94 368 | 44.33 355 | 59.00 345 | 66.64 357 | 24.91 357 | 68.67 365 | 62.80 233 | 69.48 322 | 73.25 355 |
|
MVS-HIRNet | | | 59.14 322 | 57.67 325 | 63.57 340 | 81.65 296 | 43.50 368 | 71.73 336 | 65.06 363 | 39.59 361 | 51.43 360 | 57.73 365 | 38.34 333 | 82.58 319 | 39.53 358 | 73.95 295 | 64.62 361 |
|
pmmvs3 | | | 57.79 323 | 54.26 327 | 68.37 332 | 64.02 367 | 56.72 299 | 75.12 328 | 65.17 362 | 40.20 359 | 52.93 359 | 69.86 356 | 20.36 363 | 75.48 352 | 45.45 347 | 55.25 358 | 72.90 356 |
|
DSMNet-mixed | | | 57.77 324 | 56.90 326 | 60.38 344 | 67.70 363 | 35.61 374 | 69.18 347 | 53.97 373 | 32.30 369 | 57.49 351 | 79.88 319 | 40.39 327 | 68.57 366 | 38.78 359 | 72.37 308 | 76.97 350 |
|
LCM-MVSNet | | | 54.25 325 | 49.68 334 | 67.97 334 | 53.73 376 | 45.28 363 | 66.85 355 | 80.78 301 | 35.96 365 | 39.45 366 | 62.23 361 | 8.70 376 | 78.06 337 | 48.24 334 | 51.20 362 | 80.57 342 |
|
mvsany_test3 | | | 53.99 326 | 51.45 330 | 61.61 343 | 55.51 372 | 44.74 366 | 63.52 362 | 45.41 379 | 43.69 356 | 58.11 349 | 76.45 341 | 17.99 365 | 63.76 370 | 54.77 300 | 47.59 365 | 76.34 352 |
|
FPMVS | | | 53.68 327 | 51.64 329 | 59.81 345 | 65.08 366 | 51.03 347 | 69.48 346 | 69.58 354 | 41.46 358 | 40.67 364 | 72.32 351 | 16.46 368 | 70.00 364 | 24.24 371 | 65.42 337 | 58.40 366 |
|
APD_test1 | | | 53.31 328 | 49.93 333 | 63.42 341 | 65.68 365 | 50.13 351 | 71.59 337 | 66.90 360 | 34.43 366 | 40.58 365 | 71.56 353 | 8.65 377 | 76.27 347 | 34.64 363 | 55.36 357 | 63.86 362 |
|
N_pmnet | | | 52.79 329 | 53.26 328 | 51.40 353 | 78.99 331 | 7.68 384 | 69.52 345 | 3.89 384 | 51.63 346 | 57.01 352 | 74.98 347 | 40.83 325 | 65.96 368 | 37.78 360 | 64.67 339 | 80.56 343 |
|
test_f | | | 52.09 330 | 50.82 331 | 55.90 349 | 53.82 375 | 42.31 370 | 59.42 365 | 58.31 371 | 36.45 364 | 56.12 356 | 70.96 354 | 12.18 371 | 57.79 372 | 53.51 306 | 56.57 354 | 67.60 358 |
|
EGC-MVSNET | | | 52.07 331 | 47.05 335 | 67.14 335 | 83.51 260 | 60.71 253 | 80.50 284 | 67.75 358 | 0.07 379 | 0.43 380 | 75.85 345 | 24.26 359 | 81.54 322 | 28.82 365 | 62.25 343 | 59.16 364 |
|
new_pmnet | | | 50.91 332 | 50.29 332 | 52.78 352 | 68.58 362 | 34.94 376 | 63.71 361 | 56.63 372 | 39.73 360 | 44.95 362 | 65.47 358 | 21.93 362 | 58.48 371 | 34.98 362 | 56.62 353 | 64.92 360 |
|
ANet_high | | | 50.57 333 | 46.10 337 | 63.99 339 | 48.67 379 | 39.13 372 | 70.99 340 | 80.85 300 | 61.39 297 | 31.18 368 | 57.70 366 | 17.02 367 | 73.65 359 | 31.22 364 | 15.89 376 | 79.18 346 |
|
test_vis3_rt | | | 49.26 334 | 47.02 336 | 56.00 348 | 54.30 373 | 45.27 364 | 66.76 356 | 48.08 376 | 36.83 363 | 44.38 363 | 53.20 368 | 7.17 379 | 64.07 369 | 56.77 292 | 55.66 355 | 58.65 365 |
|
testf1 | | | 45.72 335 | 41.96 338 | 57.00 346 | 56.90 370 | 45.32 361 | 66.14 357 | 59.26 369 | 26.19 370 | 30.89 369 | 60.96 363 | 4.14 380 | 70.64 362 | 26.39 369 | 46.73 367 | 55.04 367 |
|
APD_test2 | | | 45.72 335 | 41.96 338 | 57.00 346 | 56.90 370 | 45.32 361 | 66.14 357 | 59.26 369 | 26.19 370 | 30.89 369 | 60.96 363 | 4.14 380 | 70.64 362 | 26.39 369 | 46.73 367 | 55.04 367 |
|
Gipuma |  | | 45.18 337 | 41.86 340 | 55.16 351 | 77.03 338 | 51.52 344 | 32.50 372 | 80.52 305 | 32.46 368 | 27.12 371 | 35.02 372 | 9.52 375 | 75.50 351 | 22.31 372 | 60.21 350 | 38.45 371 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 37.38 22 | 44.16 338 | 40.28 341 | 55.82 350 | 40.82 381 | 42.54 369 | 65.12 360 | 63.99 365 | 34.43 366 | 24.48 372 | 57.12 367 | 3.92 382 | 76.17 349 | 17.10 374 | 55.52 356 | 48.75 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 40.82 339 | 38.86 342 | 46.69 354 | 53.84 374 | 16.45 382 | 48.61 369 | 49.92 374 | 37.49 362 | 31.67 367 | 60.97 362 | 8.14 378 | 56.42 373 | 28.42 366 | 30.72 371 | 67.19 359 |
|
E-PMN | | | 31.77 340 | 30.64 343 | 35.15 357 | 52.87 377 | 27.67 378 | 57.09 367 | 47.86 377 | 24.64 372 | 16.40 377 | 33.05 373 | 11.23 373 | 54.90 374 | 14.46 376 | 18.15 374 | 22.87 373 |
|
test_method | | | 31.52 341 | 29.28 345 | 38.23 356 | 27.03 383 | 6.50 385 | 20.94 374 | 62.21 367 | 4.05 377 | 22.35 375 | 52.50 369 | 13.33 369 | 47.58 376 | 27.04 368 | 34.04 370 | 60.62 363 |
|
EMVS | | | 30.81 342 | 29.65 344 | 34.27 358 | 50.96 378 | 25.95 380 | 56.58 368 | 46.80 378 | 24.01 373 | 15.53 378 | 30.68 374 | 12.47 370 | 54.43 375 | 12.81 377 | 17.05 375 | 22.43 374 |
|
MVE |  | 26.22 23 | 30.37 343 | 25.89 347 | 43.81 355 | 44.55 380 | 35.46 375 | 28.87 373 | 39.07 380 | 18.20 374 | 18.58 376 | 40.18 371 | 2.68 383 | 47.37 377 | 17.07 375 | 23.78 373 | 48.60 370 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 19.96 344 | 26.61 346 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 89.26 168 | 0.00 382 | 0.00 383 | 88.61 162 | 61.62 149 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
tmp_tt | | | 18.61 345 | 21.40 348 | 10.23 361 | 4.82 384 | 10.11 383 | 34.70 371 | 30.74 382 | 1.48 378 | 23.91 374 | 26.07 375 | 28.42 354 | 13.41 380 | 27.12 367 | 15.35 377 | 7.17 375 |
|
wuyk23d | | | 16.82 346 | 15.94 349 | 19.46 360 | 58.74 369 | 31.45 377 | 39.22 370 | 3.74 385 | 6.84 376 | 6.04 379 | 2.70 379 | 1.27 384 | 24.29 379 | 10.54 378 | 14.40 378 | 2.63 376 |
|
ab-mvs-re | | | 7.23 347 | 9.64 350 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 86.72 212 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test123 | | | 6.12 348 | 8.11 351 | 0.14 362 | 0.06 386 | 0.09 386 | 71.05 339 | 0.03 387 | 0.04 381 | 0.25 382 | 1.30 381 | 0.05 385 | 0.03 382 | 0.21 380 | 0.01 380 | 0.29 377 |
|
testmvs | | | 6.04 349 | 8.02 352 | 0.10 363 | 0.08 385 | 0.03 387 | 69.74 344 | 0.04 386 | 0.05 380 | 0.31 381 | 1.68 380 | 0.02 386 | 0.04 381 | 0.24 379 | 0.02 379 | 0.25 378 |
|
pcd_1.5k_mvsjas | | | 5.26 350 | 7.02 353 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 63.15 126 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
FOURS1 | | | | | | 95.00 10 | 72.39 38 | 95.06 1 | 93.84 15 | 74.49 109 | 91.30 15 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 30 |
|
PC_three_1452 | | | | | | | | | | 68.21 226 | 92.02 12 | 94.00 40 | 82.09 5 | 95.98 49 | 84.58 36 | 96.68 2 | 94.95 8 |
|
No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 1 | 89.67 1 | 96.44 9 | 94.41 30 |
|
test_one_0601 | | | | | | 95.07 7 | 71.46 53 | | 94.14 5 | 78.27 33 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 43 | | 92.67 61 | 70.98 171 | 87.75 29 | 94.07 37 | 74.01 32 | 96.70 25 | 84.66 35 | 94.84 41 | |
|
RE-MVS-def | | | | 85.48 49 | | 93.06 55 | 70.63 71 | 91.88 37 | 92.27 76 | 73.53 132 | 85.69 39 | 94.45 24 | 63.87 117 | | 82.75 56 | 91.87 77 | 92.50 104 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 55 | | 92.95 51 | 66.81 234 | 92.39 6 | | | | 88.94 11 | 96.63 4 | 94.85 17 |
|
OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 39 | 82.45 3 | 96.87 18 | 83.77 46 | 96.48 8 | 94.88 12 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 48 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 5 | 89.07 9 | 96.58 6 | 94.26 39 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 61 | | 94.06 10 | 77.17 51 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 10 | | | |
|
9.14 | | | | 88.26 14 | | 92.84 60 | | 91.52 44 | 94.75 1 | 73.93 121 | 88.57 22 | 94.67 17 | 75.57 22 | 95.79 51 | 86.77 23 | 95.76 23 | |
|
save fliter | | | | | | 93.80 40 | 72.35 41 | 90.47 62 | 91.17 116 | 74.31 112 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 31 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 7 | 89.42 4 | 96.57 7 | 94.67 22 |
|
test_0728_SECOND | | | | | 87.71 30 | 95.34 1 | 71.43 54 | 93.49 9 | 94.23 3 | | | | | 97.49 3 | 89.08 7 | 96.41 12 | 94.21 40 |
|
test0726 | | | | | | 95.27 5 | 71.25 55 | 93.60 6 | 94.11 6 | 77.33 46 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 227 |
|
test_part2 | | | | | | 95.06 8 | 72.65 31 | | | | 91.80 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 245 | | | | 88.96 227 |
|
sam_mvs | | | | | | | | | | | | | 50.01 258 | | | | |
|
ambc | | | | | 75.24 289 | 73.16 354 | 50.51 350 | 63.05 364 | 87.47 218 | | 64.28 326 | 77.81 335 | 17.80 366 | 89.73 254 | 57.88 281 | 60.64 348 | 85.49 297 |
|
MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 303 | | | | 5.43 378 | 48.81 277 | 85.44 300 | 59.25 265 | | |
|
test_post | | | | | | | | | | | | 5.46 377 | 50.36 256 | 84.24 307 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 348 | 51.12 247 | 88.60 274 | | | |
|
GG-mvs-BLEND | | | | | 75.38 288 | 81.59 298 | 55.80 312 | 79.32 296 | 69.63 353 | | 67.19 302 | 73.67 349 | 43.24 309 | 88.90 271 | 50.41 318 | 84.50 162 | 81.45 337 |
|
MTMP | | | | | | | | 92.18 33 | 32.83 381 | | | | | | | | |
|
gm-plane-assit | | | | | | 81.40 301 | 53.83 330 | | | 62.72 287 | | 80.94 309 | | 92.39 190 | 63.40 230 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 26 | 92.87 93 |
|
TEST9 | | | | | | 93.26 50 | 72.96 24 | 88.75 106 | 91.89 93 | 68.44 223 | 85.00 46 | 93.10 55 | 74.36 28 | 95.41 65 | | | |
|
test_8 | | | | | | 93.13 52 | 72.57 34 | 88.68 111 | 91.84 97 | 68.69 219 | 84.87 50 | 93.10 55 | 74.43 26 | 95.16 74 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 54 | 95.45 28 | 92.70 96 |
|
agg_prior | | | | | | 92.85 59 | 71.94 49 | | 91.78 100 | | 84.41 60 | | | 94.93 85 | | | |
|
TestCases | | | | | 79.58 238 | 85.15 233 | 63.62 208 | | 79.83 313 | 62.31 290 | 60.32 341 | 86.73 210 | 32.02 348 | 88.96 269 | 50.28 321 | 71.57 315 | 86.15 287 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 96 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 102 | | 75.41 91 | 84.91 48 | 93.54 47 | 74.28 29 | | 83.31 49 | 95.86 20 | |
|
test_prior | | | | | 86.33 52 | 92.61 65 | 69.59 86 | | 92.97 50 | | | | | 95.48 60 | | | 93.91 50 |
|
旧先验2 | | | | | | | | 86.56 176 | | 58.10 322 | 87.04 31 | | | 88.98 267 | 74.07 136 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 184 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 83.42 135 | 93.13 52 | 70.71 69 | | 85.48 246 | 57.43 327 | 81.80 95 | 91.98 78 | 63.28 121 | 92.27 196 | 64.60 224 | 92.99 63 | 87.27 264 |
|
旧先验1 | | | | | | 91.96 71 | 65.79 166 | | 86.37 235 | | | 93.08 59 | 69.31 71 | | | 92.74 66 | 88.74 236 |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 147 | 88.98 180 | 60.00 306 | | | | 94.12 119 | 67.28 201 | | 88.97 226 |
|
原ACMM2 | | | | | | | | 86.86 165 | | | | | | | | | |
|
原ACMM1 | | | | | 84.35 101 | 93.01 57 | 68.79 99 | | 92.44 69 | 63.96 274 | 81.09 105 | 91.57 89 | 66.06 99 | 95.45 61 | 67.19 203 | 94.82 43 | 88.81 233 |
|
test222 | | | | | | 91.50 77 | 68.26 116 | 84.16 236 | 83.20 281 | 54.63 338 | 79.74 117 | 91.63 87 | 58.97 180 | | | 91.42 83 | 86.77 277 |
|
testdata2 | | | | | | | | | | | | | | 91.01 237 | 62.37 239 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
testdata | | | | | 79.97 228 | 90.90 86 | 64.21 199 | | 84.71 253 | 59.27 313 | 85.40 41 | 92.91 61 | 62.02 145 | 89.08 265 | 68.95 186 | 91.37 84 | 86.63 281 |
|
testdata1 | | | | | | | | 84.14 237 | | 75.71 85 | | | | | | | |
|
test12 | | | | | 86.80 47 | 92.63 64 | 70.70 70 | | 91.79 99 | | 82.71 86 | | 71.67 47 | 96.16 42 | | 94.50 48 | 93.54 71 |
|
plane_prior7 | | | | | | 90.08 102 | 68.51 112 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 111 | 68.70 107 | | | | | | 60.42 173 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 67 | 78.71 90 | 86.32 143 | 91.33 137 |
|
plane_prior4 | | | | | | | | | | | | 91.00 108 | | | | | |
|
plane_prior3 | | | | | | | 68.60 110 | | | 78.44 29 | 78.92 129 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 48 | | 79.12 21 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 110 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 105 | 90.38 65 | | 77.62 37 | | | | | | 86.16 147 | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 352 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 245 | 81.01 308 | 57.15 293 | | 65.99 361 | | 61.16 339 | 82.82 290 | 39.12 330 | 91.34 226 | 59.67 261 | 46.92 366 | 88.43 242 |
|
LGP-MVS_train | | | | | 84.50 94 | 89.23 133 | 68.76 101 | | 91.94 91 | 75.37 92 | 76.64 184 | 91.51 90 | 54.29 214 | 94.91 86 | 78.44 92 | 83.78 171 | 89.83 200 |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 355 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 143 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 126 | | 89.17 89 | | 76.41 70 | 77.23 170 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 126 | | 89.17 89 | | 76.41 70 | 77.23 170 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 102 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 169 | | | 95.11 78 | | | 91.03 149 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 150 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 176 | | | | |
|
NP-MVS | | | | | | 89.62 113 | 68.32 114 | | | | | 90.24 120 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 373 | 75.16 326 | | 55.10 336 | 66.53 310 | | 49.34 267 | | 53.98 303 | | 87.94 248 |
|
MDTV_nov1_ep13 | | | | 69.97 273 | | 83.18 268 | 53.48 332 | 77.10 317 | 80.18 312 | 60.45 301 | 69.33 286 | 80.44 313 | 48.89 276 | 86.90 289 | 51.60 314 | 78.51 238 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 197 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 203 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 113 | | | | |
|
ITE_SJBPF | | | | | 78.22 256 | 81.77 295 | 60.57 255 | | 83.30 277 | 69.25 203 | 67.54 297 | 87.20 201 | 36.33 340 | 87.28 288 | 54.34 302 | 74.62 290 | 86.80 276 |
|
DeepMVS_CX |  | | | | 27.40 359 | 40.17 382 | 26.90 379 | | 24.59 383 | 17.44 375 | 23.95 373 | 48.61 370 | 9.77 374 | 26.48 378 | 18.06 373 | 24.47 372 | 28.83 372 |
|