This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15088.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14884.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23685.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15385.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19767.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25269.51 9089.62 8690.58 13173.42 13887.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24384.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13186.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29769.39 9689.65 8490.29 14473.31 14187.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 195
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23169.93 8388.65 12190.78 12769.97 20388.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21365.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20782.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 149
baseline84.93 6384.98 6184.80 9287.30 21165.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33769.03 9989.47 8889.65 16173.24 14586.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24168.81 10588.49 12587.26 22968.08 24588.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17267.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24268.40 12088.34 13286.85 23767.48 25287.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26869.37 9788.15 14087.96 21270.01 20183.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
nrg03083.88 7183.53 7584.96 8486.77 22169.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25092.50 114
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18567.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18492.99 100
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22367.31 14789.46 8983.07 29271.09 17886.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23579.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 168
EPNet83.72 7582.92 8786.14 5984.22 26669.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16885.01 5592.44 8474.51 2583.50 33282.15 7592.15 7593.64 71
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 150
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23068.12 12789.43 9082.87 29670.27 19787.27 3793.80 5469.09 7891.58 22488.21 2683.65 19293.14 93
Effi-MVS+83.62 7983.08 8285.24 7588.38 16767.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25467.28 14889.40 9383.01 29370.67 18687.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 211
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18372.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27568.07 12989.34 9582.85 29769.80 20787.36 3694.06 4268.34 8891.56 22687.95 2783.46 19893.21 90
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29791.72 139
MVS_Test83.15 8883.06 8383.41 14986.86 21763.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19179.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 145
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
MVSFormer82.85 9482.05 9985.24 7587.35 20570.21 7790.50 6290.38 13768.55 23881.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21578.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 193
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 194
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 162
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 169
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
diffmvspermissive82.10 10181.88 10382.76 18283.00 29563.78 22083.68 25489.76 15772.94 15182.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22667.27 14989.27 9691.51 10771.75 16279.37 13490.22 13463.15 13894.27 11377.69 11282.36 21291.49 146
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17078.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 277
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28092.25 123
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 20978.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 219
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30777.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32591.06 160
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17478.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18681.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 259
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18381.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 258
mvsmamba81.69 11180.74 11784.56 9787.45 20466.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19692.04 134
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23477.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16764.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 27991.60 140
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16655.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17783.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24190.41 13053.82 23394.54 10477.56 11382.91 20489.86 215
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 11980.29 12784.70 9486.63 22569.90 8585.95 20386.77 23863.24 29981.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
lupinMVS81.39 11980.27 12884.76 9387.35 20570.21 7785.55 21586.41 24262.85 30681.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15681.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DU-MVS81.12 12380.52 12282.90 17287.80 18963.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28092.20 126
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 24978.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 241
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17065.01 19584.55 23790.01 15173.25 14479.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
QAPM80.88 12679.50 14285.03 8188.01 18268.97 10391.59 4392.00 8766.63 26375.15 23792.16 8857.70 20295.45 6363.52 24188.76 12190.66 175
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18662.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30792.30 121
UGNet80.83 12879.59 14084.54 9888.04 18068.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18378.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23868.78 10783.54 26090.50 13470.66 18976.71 19491.66 9660.69 18091.26 23976.94 12081.58 22191.83 136
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20570.19 7985.56 21288.77 19469.06 22881.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 236
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20570.19 7985.56 21288.77 19469.06 22881.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 236
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20570.19 7985.56 21288.77 19469.06 22881.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 236
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19677.25 18089.66 14453.37 23893.53 14974.24 14882.85 20588.85 249
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34374.08 25390.72 12458.10 19895.04 8569.70 19189.42 11390.30 191
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14678.30 15788.94 16545.98 31294.56 10279.59 9684.48 17691.11 157
CANet_DTU80.61 13779.87 13482.83 17485.60 23863.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
VPA-MVSNet80.60 13880.55 12180.76 22688.07 17960.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25191.23 154
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21778.11 16386.09 24966.02 11294.27 11371.52 17182.06 21587.39 279
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21875.70 21789.69 14357.20 20995.77 5463.06 24688.41 12787.50 278
EI-MVSNet80.52 14179.98 13182.12 19084.28 26463.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23490.74 173
XVG-OURS80.41 14279.23 15083.97 13485.64 23769.02 10183.03 27190.39 13671.09 17877.63 17391.49 10454.62 22691.35 23775.71 13483.47 19791.54 142
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30289.40 16675.19 9876.61 19889.98 13760.61 18387.69 30076.83 12383.55 19490.33 189
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19468.99 10283.65 25591.46 11163.00 30377.77 17190.28 13166.10 10995.09 8461.40 26588.22 12990.94 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40267.45 9596.60 3383.06 6394.50 5094.07 47
RRT_MVS80.35 14679.22 15183.74 14087.63 19865.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25291.51 143
test_djsdf80.30 14779.32 14783.27 15383.98 27265.37 18990.50 6290.38 13768.55 23876.19 20888.70 17256.44 21393.46 15378.98 9980.14 24090.97 165
v2v48280.23 14879.29 14883.05 16583.62 27864.14 21387.04 17189.97 15273.61 13278.18 16287.22 21461.10 17493.82 13476.11 12976.78 27791.18 155
NR-MVSNet80.23 14879.38 14482.78 18087.80 18963.34 23186.31 19491.09 12079.01 2672.17 27589.07 16267.20 9892.81 18566.08 22575.65 29392.20 126
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27180.59 12291.17 11349.97 27693.73 14269.16 19782.70 20993.81 60
IterMVS-LS80.06 15179.38 14482.11 19185.89 23363.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27490.75 172
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 24968.74 11088.77 11488.10 20874.99 10274.97 24283.49 30057.27 20893.36 15673.53 15380.88 22891.18 155
v114480.03 15279.03 15583.01 16783.78 27664.51 20487.11 17090.57 13371.96 16178.08 16586.20 24661.41 16693.94 12774.93 14177.23 26890.60 178
iter_conf0580.00 15478.70 16083.91 13787.84 18765.83 17588.84 11284.92 26271.61 16778.70 14488.94 16543.88 32894.56 10279.28 9784.28 18091.33 150
v879.97 15579.02 15682.80 17784.09 26964.50 20687.96 14590.29 14474.13 12275.24 23486.81 22362.88 14393.89 13374.39 14675.40 30290.00 207
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24569.91 8490.57 6090.97 12166.70 25772.17 27591.91 9154.70 22493.96 12461.81 26290.95 9188.41 262
v1079.74 15778.67 16182.97 17084.06 27064.95 19687.88 15190.62 13073.11 14775.11 23886.56 23761.46 16594.05 12373.68 15175.55 29589.90 213
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 33987.89 15077.44 34774.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13478.19 16189.79 14156.67 21293.36 15659.53 27986.74 14590.13 197
v119279.59 16078.43 16883.07 16483.55 28064.52 20386.93 17590.58 13170.83 18277.78 17085.90 25059.15 19293.94 12773.96 15077.19 27090.76 171
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19379.03 13888.87 16963.23 13690.21 26065.12 23282.57 21092.28 122
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 26991.80 138
v14419279.47 16378.37 16982.78 18083.35 28363.96 21686.96 17390.36 14069.99 20277.50 17485.67 25760.66 18193.77 13874.27 14776.58 27890.62 176
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15875.42 22587.69 20061.15 17393.54 14860.38 27286.83 14486.70 298
test111179.43 16579.18 15380.15 23889.99 10853.31 35287.33 16477.05 35075.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
mvs_anonymous79.42 16679.11 15480.34 23484.45 26357.97 29482.59 27387.62 22167.40 25376.17 21188.56 17968.47 8689.59 27070.65 18186.05 15793.47 79
thisisatest053079.40 16777.76 18784.31 10987.69 19665.10 19487.36 16284.26 27370.04 20077.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
tttt051779.40 16777.91 17983.90 13888.10 17763.84 21888.37 13184.05 27571.45 17176.78 19289.12 16149.93 27994.89 9270.18 18583.18 20292.96 101
V4279.38 16978.24 17382.83 17481.10 32965.50 18385.55 21589.82 15571.57 16978.21 16086.12 24860.66 18193.18 16975.64 13575.46 29989.81 218
jajsoiax79.29 17077.96 17783.27 15384.68 25766.57 16289.25 9790.16 14769.20 22375.46 22389.49 15045.75 31793.13 17276.84 12180.80 23090.11 199
v192192079.22 17178.03 17682.80 17783.30 28563.94 21786.80 17990.33 14169.91 20577.48 17585.53 26058.44 19693.75 14073.60 15276.85 27590.71 174
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22777.23 18288.14 19453.20 24093.47 15275.50 13973.45 32491.06 160
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27277.14 18791.09 11560.91 17793.21 16350.26 34087.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 17477.77 18683.22 15784.70 25666.37 16489.17 9890.19 14669.38 21675.40 22689.46 15344.17 32693.15 17076.78 12480.70 23290.14 196
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21860.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21393.29 85
CDS-MVSNet79.07 17677.70 18983.17 15987.60 19968.23 12584.40 24486.20 24667.49 25176.36 20486.54 23861.54 16290.79 25261.86 26187.33 13690.49 183
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 17777.88 18182.38 18883.07 29264.80 20084.08 25188.95 18969.01 23178.69 14587.17 21754.70 22492.43 19374.69 14280.57 23489.89 214
v124078.99 17877.78 18582.64 18383.21 28763.54 22586.62 18690.30 14369.74 21277.33 17885.68 25657.04 21093.76 13973.13 16076.92 27290.62 176
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28176.16 21288.13 19550.56 27093.03 17969.68 19277.56 26791.11 157
v7n78.97 17977.58 19383.14 16083.45 28265.51 18288.32 13391.21 11473.69 13072.41 27286.32 24457.93 19993.81 13569.18 19675.65 29390.11 199
TAMVS78.89 18177.51 19483.03 16687.80 18967.79 13584.72 23185.05 26067.63 24876.75 19387.70 19962.25 15290.82 25158.53 29087.13 13990.49 183
c3_l78.75 18277.91 17981.26 21182.89 29961.56 25784.09 25089.13 18169.97 20375.56 21984.29 28466.36 10692.09 20773.47 15575.48 29790.12 198
tt080578.73 18377.83 18281.43 20585.17 24560.30 27389.41 9290.90 12371.21 17577.17 18688.73 17146.38 30693.21 16372.57 16678.96 25390.79 169
v14878.72 18477.80 18481.47 20482.73 30261.96 25286.30 19588.08 20973.26 14376.18 20985.47 26262.46 14892.36 19771.92 17073.82 32190.09 201
VPNet78.69 18578.66 16278.76 26288.31 16955.72 32884.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 26966.63 22077.05 27190.88 167
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22269.47 9285.01 22584.61 26569.54 21366.51 33686.59 23450.16 27491.75 21976.26 12884.24 18192.69 107
anonymousdsp78.60 18777.15 20082.98 16980.51 33567.08 15387.24 16789.53 16365.66 27475.16 23687.19 21652.52 24192.25 20277.17 11879.34 24989.61 223
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30461.56 25783.65 25589.15 17968.87 23375.55 22083.79 29466.49 10492.03 20873.25 15876.39 28289.64 222
WR-MVS_H78.51 18978.49 16578.56 26688.02 18156.38 32088.43 12692.67 6177.14 5473.89 25487.55 20566.25 10889.24 27658.92 28573.55 32390.06 205
GBi-Net78.40 19077.40 19581.40 20787.60 19963.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24490.09 201
test178.40 19077.40 19581.40 20787.60 19963.01 23888.39 12889.28 17071.63 16475.34 22887.28 21054.80 22091.11 24262.72 24879.57 24490.09 201
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27688.64 15851.78 36186.70 18479.63 33174.14 12175.11 23890.83 12361.29 17089.75 26758.10 29491.60 8292.69 107
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19080.00 12891.20 11141.08 34691.43 23565.21 23185.26 16593.85 57
CP-MVSNet78.22 19478.34 17077.84 27887.83 18854.54 34187.94 14791.17 11677.65 3873.48 25988.49 18062.24 15388.43 29162.19 25674.07 31690.55 180
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21074.52 24984.74 27761.34 16893.11 17358.24 29385.84 16184.27 333
FMVSNet278.20 19677.21 19981.20 21487.60 19962.89 24287.47 16089.02 18471.63 16475.29 23387.28 21054.80 22091.10 24562.38 25379.38 24889.61 223
MVS78.19 19776.99 20481.78 19785.66 23666.99 15484.66 23290.47 13555.08 36372.02 27785.27 26563.83 13094.11 12266.10 22489.80 10984.24 334
Baseline_NR-MVSNet78.15 19878.33 17177.61 28385.79 23456.21 32486.78 18185.76 25373.60 13377.93 16887.57 20365.02 12188.99 28067.14 21775.33 30487.63 273
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27072.38 27389.64 14557.56 20486.04 31159.61 27883.35 19988.79 252
cl2278.07 20077.01 20281.23 21282.37 31161.83 25483.55 25987.98 21168.96 23275.06 24083.87 29061.40 16791.88 21573.53 15376.39 28289.98 210
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 28969.87 30088.38 18353.66 23493.58 14458.86 28682.73 20787.86 269
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29166.96 15786.94 17487.45 22672.45 15371.49 28284.17 28754.79 22391.58 22467.61 21080.31 23789.30 232
PS-CasMVS78.01 20378.09 17577.77 28087.71 19454.39 34388.02 14391.22 11377.50 4673.26 26188.64 17560.73 17888.41 29261.88 26073.88 32090.53 181
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20360.21 27583.37 26287.78 21966.11 26775.37 22787.06 22163.27 13490.48 25761.38 26682.43 21190.40 187
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29561.98 25183.15 26589.20 17769.52 21474.86 24484.35 28361.76 15892.56 18971.50 17372.89 32990.28 192
FMVSNet377.88 20676.85 20780.97 22286.84 21962.36 24586.52 18988.77 19471.13 17675.34 22886.66 23254.07 23191.10 24562.72 24879.57 24489.45 227
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31861.38 25982.68 27288.98 18665.52 27675.47 22182.30 31765.76 11692.00 21072.95 16176.39 28289.39 228
FE-MVS77.78 20875.68 22684.08 12288.09 17866.00 17083.13 26687.79 21868.42 24278.01 16685.23 26745.50 31995.12 7859.11 28385.83 16291.11 157
PEN-MVS77.73 20977.69 19077.84 27887.07 21653.91 34687.91 14991.18 11577.56 4373.14 26388.82 17061.23 17189.17 27759.95 27572.37 33190.43 185
cl____77.72 21076.76 21080.58 22982.49 30860.48 27083.09 26787.87 21569.22 22174.38 25185.22 26862.10 15591.53 22971.09 17675.41 30189.73 221
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 30960.48 27083.09 26787.86 21669.22 22174.38 25185.24 26662.10 15591.53 22971.09 17675.40 30289.74 220
sd_testset77.70 21277.40 19578.60 26589.03 14460.02 27679.00 32085.83 25275.19 9876.61 19889.98 13754.81 21985.46 31862.63 25283.55 19490.33 189
PAPM77.68 21376.40 21981.51 20387.29 21261.85 25383.78 25389.59 16264.74 28371.23 28388.70 17262.59 14593.66 14352.66 32587.03 14189.01 241
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32487.50 22456.38 35875.80 21686.84 22258.67 19491.40 23661.58 26485.75 16390.34 188
HyFIR lowres test77.53 21575.40 23283.94 13689.59 11666.62 16080.36 30388.64 20156.29 35976.45 20085.17 26957.64 20393.28 15861.34 26783.10 20391.91 135
FMVSNet177.44 21676.12 22281.40 20786.81 22063.01 23888.39 12889.28 17070.49 19274.39 25087.28 21049.06 29091.11 24260.91 26978.52 25690.09 201
TR-MVS77.44 21676.18 22181.20 21488.24 17163.24 23384.61 23586.40 24367.55 25077.81 16986.48 24054.10 23093.15 17057.75 29782.72 20887.20 284
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31673.05 26486.72 22662.58 14689.97 26362.11 25980.80 23090.59 179
thisisatest051577.33 21975.38 23383.18 15885.27 24463.80 21982.11 27883.27 28765.06 27975.91 21383.84 29249.54 28194.27 11367.24 21586.19 15491.48 147
test250677.30 22076.49 21679.74 24690.08 10352.02 35587.86 15263.10 39074.88 10480.16 12792.79 7938.29 35992.35 19868.74 20292.50 7294.86 17
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25165.47 18488.14 14277.56 34469.20 22373.77 25589.40 15942.24 34088.85 28676.78 12481.64 22089.33 231
pm-mvs177.25 22276.68 21478.93 26084.22 26658.62 28686.41 19188.36 20571.37 17273.31 26088.01 19661.22 17289.15 27864.24 23973.01 32889.03 240
LCM-MVSNet-Re77.05 22376.94 20577.36 28687.20 21351.60 36280.06 30680.46 32175.20 9767.69 31886.72 22662.48 14788.98 28163.44 24389.25 11491.51 143
DTE-MVSNet76.99 22476.80 20877.54 28586.24 22853.06 35487.52 15890.66 12977.08 5772.50 27088.67 17460.48 18589.52 27157.33 30170.74 34290.05 206
baseline176.98 22576.75 21277.66 28188.13 17555.66 32985.12 22381.89 30573.04 14976.79 19188.90 16762.43 14987.78 29963.30 24571.18 34089.55 225
LS3D76.95 22674.82 24083.37 15090.45 9567.36 14689.15 10286.94 23561.87 31869.52 30390.61 12651.71 25994.53 10546.38 36186.71 14688.21 264
GA-MVS76.87 22775.17 23781.97 19582.75 30162.58 24381.44 28786.35 24572.16 16074.74 24582.89 30946.20 31192.02 20968.85 20181.09 22691.30 153
DP-MVS76.78 22874.57 24283.42 14793.29 4869.46 9488.55 12483.70 27963.98 29570.20 29188.89 16854.01 23294.80 9646.66 35881.88 21886.01 310
cascas76.72 22974.64 24182.99 16885.78 23565.88 17482.33 27589.21 17660.85 32472.74 26681.02 32847.28 30093.75 14067.48 21285.02 16689.34 230
131476.53 23075.30 23680.21 23783.93 27362.32 24784.66 23288.81 19260.23 32870.16 29484.07 28955.30 21790.73 25467.37 21383.21 20187.59 276
thres100view90076.50 23175.55 22979.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 34983.75 18889.07 234
thres600view776.50 23175.44 23079.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35483.72 19190.00 207
thres40076.50 23175.37 23479.86 24389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34983.75 18890.00 207
tfpn200view976.42 23475.37 23479.55 25389.13 13957.65 30085.17 22083.60 28073.41 13976.45 20086.39 24252.12 24891.95 21148.33 34983.75 18889.07 234
Test_1112_low_res76.40 23575.44 23079.27 25589.28 13358.09 29081.69 28287.07 23359.53 33572.48 27186.67 23161.30 16989.33 27460.81 27180.15 23990.41 186
F-COLMAP76.38 23674.33 24782.50 18689.28 13366.95 15888.41 12789.03 18364.05 29366.83 32888.61 17646.78 30492.89 18157.48 29878.55 25587.67 272
LTVRE_ROB69.57 1376.25 23774.54 24481.41 20688.60 15964.38 21079.24 31689.12 18270.76 18569.79 30287.86 19749.09 28993.20 16656.21 31180.16 23886.65 299
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 23874.46 24681.13 21785.37 24369.79 8684.42 24387.95 21365.03 28067.46 32185.33 26453.28 23991.73 22158.01 29583.27 20081.85 358
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 23974.27 24881.62 20083.20 28864.67 20283.60 25889.75 15869.75 21071.85 27887.09 21932.78 37192.11 20669.99 18880.43 23688.09 265
testing9976.09 24075.12 23879.00 25888.16 17355.50 33180.79 29381.40 31173.30 14275.17 23584.27 28544.48 32490.02 26264.28 23884.22 18291.48 147
ACMH+68.96 1476.01 24174.01 24982.03 19388.60 15965.31 19088.86 11087.55 22270.25 19867.75 31787.47 20841.27 34493.19 16858.37 29175.94 29087.60 274
ACMH67.68 1675.89 24273.93 25181.77 19888.71 15666.61 16188.62 12289.01 18569.81 20666.78 32986.70 23041.95 34391.51 23155.64 31278.14 26287.17 285
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 24373.36 25883.31 15184.76 25566.03 16883.38 26185.06 25970.21 19969.40 30481.05 32745.76 31694.66 10165.10 23375.49 29689.25 233
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 24473.83 25481.30 21083.26 28661.79 25582.57 27480.65 31766.81 25466.88 32783.42 30157.86 20192.19 20463.47 24279.57 24489.91 212
WTY-MVS75.65 24575.68 22675.57 30286.40 22756.82 31177.92 33482.40 30165.10 27876.18 20987.72 19863.13 14180.90 34760.31 27381.96 21689.00 243
thres20075.55 24674.47 24578.82 26187.78 19257.85 29783.07 26983.51 28372.44 15575.84 21584.42 27952.08 25191.75 21947.41 35683.64 19386.86 294
test_vis1_n_192075.52 24775.78 22474.75 31279.84 34357.44 30483.26 26385.52 25562.83 30779.34 13686.17 24745.10 32179.71 35178.75 10181.21 22587.10 291
EPNet_dtu75.46 24874.86 23977.23 28982.57 30654.60 34086.89 17683.09 29171.64 16366.25 33885.86 25255.99 21488.04 29654.92 31486.55 14889.05 239
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 24973.87 25380.11 23982.69 30364.85 19981.57 28483.47 28469.16 22570.49 28884.15 28851.95 25488.15 29469.23 19572.14 33487.34 281
XXY-MVS75.41 25075.56 22874.96 30883.59 27957.82 29880.59 29983.87 27866.54 26474.93 24388.31 18563.24 13580.09 35062.16 25776.85 27586.97 292
TransMVSNet (Re)75.39 25174.56 24377.86 27785.50 24057.10 30886.78 18186.09 24972.17 15971.53 28187.34 20963.01 14289.31 27556.84 30661.83 36887.17 285
CostFormer75.24 25273.90 25279.27 25582.65 30558.27 28980.80 29282.73 29961.57 31975.33 23183.13 30555.52 21591.07 24864.98 23478.34 26188.45 260
testing1175.14 25374.01 24978.53 26888.16 17356.38 32080.74 29680.42 32270.67 18672.69 26983.72 29643.61 33089.86 26462.29 25583.76 18789.36 229
D2MVS74.82 25473.21 25979.64 25079.81 34462.56 24480.34 30487.35 22764.37 28868.86 30982.66 31346.37 30790.10 26167.91 20881.24 22486.25 303
pmmvs674.69 25573.39 25778.61 26481.38 32457.48 30386.64 18587.95 21364.99 28270.18 29286.61 23350.43 27289.52 27162.12 25870.18 34488.83 250
tfpnnormal74.39 25673.16 26078.08 27586.10 23258.05 29184.65 23487.53 22370.32 19571.22 28485.63 25854.97 21889.86 26443.03 37275.02 30986.32 302
IterMVS74.29 25772.94 26278.35 27181.53 32163.49 22781.58 28382.49 30068.06 24669.99 29783.69 29751.66 26085.54 31665.85 22771.64 33786.01 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 25872.42 26779.80 24583.76 27759.59 28185.92 20586.64 23966.39 26566.96 32687.58 20239.46 35291.60 22365.76 22869.27 34788.22 263
SCA74.22 25972.33 26879.91 24284.05 27162.17 24979.96 30979.29 33466.30 26672.38 27380.13 33751.95 25488.60 28959.25 28177.67 26688.96 245
miper_lstm_enhance74.11 26073.11 26177.13 29080.11 33959.62 28072.23 36186.92 23666.76 25670.40 28982.92 30856.93 21182.92 33669.06 19872.63 33088.87 248
testing22274.04 26172.66 26478.19 27387.89 18455.36 33281.06 29079.20 33571.30 17374.65 24783.57 29939.11 35588.67 28851.43 33285.75 16390.53 181
EG-PatchMatch MVS74.04 26171.82 27180.71 22784.92 25367.42 14385.86 20788.08 20966.04 26964.22 35083.85 29135.10 36892.56 18957.44 29980.83 22982.16 357
pmmvs474.03 26371.91 27080.39 23281.96 31468.32 12281.45 28682.14 30359.32 33669.87 30085.13 27052.40 24488.13 29560.21 27474.74 31284.73 330
MS-PatchMatch73.83 26472.67 26377.30 28883.87 27466.02 16981.82 27984.66 26461.37 32268.61 31282.82 31147.29 29988.21 29359.27 28084.32 17977.68 372
test_cas_vis1_n_192073.76 26573.74 25573.81 32075.90 36459.77 27880.51 30082.40 30158.30 34581.62 11085.69 25544.35 32576.41 36976.29 12778.61 25485.23 321
sss73.60 26673.64 25673.51 32282.80 30055.01 33776.12 34181.69 30862.47 31274.68 24685.85 25357.32 20778.11 35860.86 27080.93 22787.39 279
RPMNet73.51 26770.49 28782.58 18581.32 32765.19 19175.92 34392.27 7657.60 35172.73 26776.45 36452.30 24595.43 6548.14 35377.71 26487.11 289
SixPastTwentyTwo73.37 26871.26 28079.70 24785.08 25057.89 29685.57 21183.56 28271.03 18065.66 34085.88 25142.10 34192.57 18859.11 28363.34 36688.65 257
CR-MVSNet73.37 26871.27 27979.67 24981.32 32765.19 19175.92 34380.30 32459.92 33172.73 26781.19 32552.50 24286.69 30559.84 27677.71 26487.11 289
MSDG73.36 27070.99 28280.49 23184.51 26265.80 17780.71 29786.13 24865.70 27365.46 34183.74 29544.60 32290.91 25051.13 33376.89 27384.74 329
tpm273.26 27171.46 27578.63 26383.34 28456.71 31480.65 29880.40 32356.63 35773.55 25882.02 32251.80 25891.24 24056.35 31078.42 25987.95 266
RPSCF73.23 27271.46 27578.54 26782.50 30759.85 27782.18 27782.84 29858.96 34071.15 28589.41 15745.48 32084.77 32458.82 28771.83 33691.02 164
PatchmatchNetpermissive73.12 27371.33 27878.49 27083.18 28960.85 26479.63 31178.57 33864.13 29071.73 27979.81 34251.20 26385.97 31257.40 30076.36 28788.66 256
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 27470.41 28980.81 22587.13 21565.63 18088.30 13484.19 27462.96 30463.80 35487.69 20038.04 36092.56 18946.66 35874.91 31084.24 334
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 27572.58 26574.25 31684.28 26450.85 36786.41 19183.45 28544.56 38073.23 26287.54 20649.38 28485.70 31365.90 22678.44 25886.19 305
test-LLR72.94 27672.43 26674.48 31381.35 32558.04 29278.38 32777.46 34566.66 25869.95 29879.00 34848.06 29679.24 35266.13 22284.83 16886.15 306
test_040272.79 27770.44 28879.84 24488.13 17565.99 17185.93 20484.29 27165.57 27567.40 32385.49 26146.92 30392.61 18735.88 38474.38 31580.94 363
tpmrst72.39 27872.13 26973.18 32680.54 33449.91 37179.91 31079.08 33663.11 30171.69 28079.95 33955.32 21682.77 33765.66 22973.89 31986.87 293
PatchMatch-RL72.38 27970.90 28376.80 29388.60 15967.38 14579.53 31276.17 35662.75 30969.36 30582.00 32345.51 31884.89 32353.62 32080.58 23378.12 371
CL-MVSNet_self_test72.37 28071.46 27575.09 30779.49 35053.53 34880.76 29585.01 26169.12 22670.51 28782.05 32157.92 20084.13 32752.27 32766.00 36087.60 274
tpm72.37 28071.71 27274.35 31582.19 31252.00 35679.22 31777.29 34864.56 28572.95 26583.68 29851.35 26183.26 33558.33 29275.80 29187.81 270
ETVMVS72.25 28271.05 28175.84 29887.77 19351.91 35879.39 31474.98 35969.26 21973.71 25682.95 30740.82 34886.14 31046.17 36284.43 17889.47 226
UWE-MVS72.13 28371.49 27474.03 31886.66 22447.70 37581.40 28876.89 35263.60 29875.59 21884.22 28639.94 35185.62 31548.98 34686.13 15688.77 253
PVSNet64.34 1872.08 28470.87 28475.69 30086.21 22956.44 31874.37 35580.73 31662.06 31770.17 29382.23 31942.86 33483.31 33454.77 31584.45 17787.32 282
WB-MVSnew71.96 28571.65 27372.89 32784.67 26051.88 35982.29 27677.57 34362.31 31373.67 25783.00 30653.49 23781.10 34645.75 36582.13 21485.70 315
pmmvs571.55 28670.20 29275.61 30177.83 35756.39 31981.74 28180.89 31357.76 34967.46 32184.49 27849.26 28785.32 32057.08 30375.29 30585.11 325
test-mter71.41 28770.39 29074.48 31381.35 32558.04 29278.38 32777.46 34560.32 32769.95 29879.00 34836.08 36679.24 35266.13 22284.83 16886.15 306
K. test v371.19 28868.51 30079.21 25783.04 29457.78 29984.35 24576.91 35172.90 15262.99 35782.86 31039.27 35391.09 24761.65 26352.66 38488.75 254
dmvs_re71.14 28970.58 28572.80 32881.96 31459.68 27975.60 34779.34 33368.55 23869.27 30780.72 33349.42 28376.54 36652.56 32677.79 26382.19 356
tpmvs71.09 29069.29 29576.49 29482.04 31356.04 32578.92 32281.37 31264.05 29367.18 32578.28 35449.74 28089.77 26649.67 34372.37 33183.67 341
AllTest70.96 29168.09 30679.58 25185.15 24763.62 22184.58 23679.83 32862.31 31360.32 36586.73 22432.02 37288.96 28350.28 33871.57 33886.15 306
test_fmvs170.93 29270.52 28672.16 33273.71 37455.05 33680.82 29178.77 33751.21 37478.58 14984.41 28031.20 37676.94 36475.88 13380.12 24184.47 332
test_fmvs1_n70.86 29370.24 29172.73 32972.51 38455.28 33481.27 28979.71 33051.49 37378.73 14384.87 27427.54 38177.02 36376.06 13079.97 24285.88 313
Patchmtry70.74 29469.16 29775.49 30480.72 33154.07 34574.94 35480.30 32458.34 34470.01 29581.19 32552.50 24286.54 30653.37 32271.09 34185.87 314
MIMVSNet70.69 29569.30 29474.88 30984.52 26156.35 32275.87 34579.42 33264.59 28467.76 31682.41 31541.10 34581.54 34346.64 36081.34 22286.75 297
tpm cat170.57 29668.31 30277.35 28782.41 31057.95 29578.08 33180.22 32652.04 36968.54 31377.66 35952.00 25387.84 29851.77 32872.07 33586.25 303
OpenMVS_ROBcopyleft64.09 1970.56 29768.19 30377.65 28280.26 33659.41 28385.01 22582.96 29558.76 34265.43 34282.33 31637.63 36291.23 24145.34 36876.03 28982.32 354
pmmvs-eth3d70.50 29867.83 31178.52 26977.37 36066.18 16781.82 27981.51 30958.90 34163.90 35380.42 33542.69 33586.28 30958.56 28965.30 36283.11 347
USDC70.33 29968.37 30176.21 29680.60 33356.23 32379.19 31886.49 24160.89 32361.29 36185.47 26231.78 37489.47 27353.37 32276.21 28882.94 351
Patchmatch-RL test70.24 30067.78 31377.61 28377.43 35959.57 28271.16 36470.33 37362.94 30568.65 31172.77 37650.62 26985.49 31769.58 19366.58 35787.77 271
CMPMVSbinary51.72 2170.19 30168.16 30476.28 29573.15 38057.55 30279.47 31383.92 27648.02 37756.48 37884.81 27543.13 33286.42 30862.67 25181.81 21984.89 327
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 30267.34 31978.14 27479.80 34561.13 26079.19 31880.59 31859.16 33865.27 34379.29 34546.75 30587.29 30249.33 34466.72 35586.00 312
gg-mvs-nofinetune69.95 30367.96 30775.94 29783.07 29254.51 34277.23 33870.29 37463.11 30170.32 29062.33 38543.62 32988.69 28753.88 31987.76 13184.62 331
TESTMET0.1,169.89 30469.00 29872.55 33079.27 35356.85 31078.38 32774.71 36357.64 35068.09 31577.19 36137.75 36176.70 36563.92 24084.09 18384.10 337
test_vis1_n69.85 30569.21 29671.77 33472.66 38355.27 33581.48 28576.21 35552.03 37075.30 23283.20 30428.97 37976.22 37174.60 14378.41 26083.81 340
FMVSNet569.50 30667.96 30774.15 31782.97 29855.35 33380.01 30882.12 30462.56 31163.02 35581.53 32436.92 36381.92 34148.42 34874.06 31785.17 324
PMMVS69.34 30768.67 29971.35 33975.67 36662.03 25075.17 34973.46 36650.00 37568.68 31079.05 34652.07 25278.13 35761.16 26882.77 20673.90 378
our_test_369.14 30867.00 32175.57 30279.80 34558.80 28477.96 33277.81 34159.55 33462.90 35878.25 35547.43 29883.97 32851.71 32967.58 35483.93 339
EPMVS69.02 30968.16 30471.59 33579.61 34849.80 37377.40 33666.93 38262.82 30870.01 29579.05 34645.79 31577.86 36056.58 30875.26 30687.13 288
KD-MVS_self_test68.81 31067.59 31772.46 33174.29 37245.45 38077.93 33387.00 23463.12 30063.99 35278.99 35042.32 33784.77 32456.55 30964.09 36587.16 287
Anonymous2024052168.80 31167.22 32073.55 32174.33 37154.11 34483.18 26485.61 25458.15 34661.68 36080.94 33030.71 37781.27 34557.00 30473.34 32785.28 320
Anonymous2023120668.60 31267.80 31271.02 34280.23 33850.75 36878.30 33080.47 32056.79 35666.11 33982.63 31446.35 30878.95 35443.62 37175.70 29283.36 344
MIMVSNet168.58 31366.78 32373.98 31980.07 34051.82 36080.77 29484.37 26864.40 28759.75 36882.16 32036.47 36483.63 33142.73 37370.33 34386.48 301
testing368.56 31467.67 31571.22 34187.33 21042.87 38983.06 27071.54 37170.36 19369.08 30884.38 28130.33 37885.69 31437.50 38375.45 30085.09 326
EU-MVSNet68.53 31567.61 31671.31 34078.51 35647.01 37884.47 23884.27 27242.27 38366.44 33784.79 27640.44 34983.76 32958.76 28868.54 35283.17 345
PatchT68.46 31667.85 30970.29 34580.70 33243.93 38772.47 36074.88 36060.15 32970.55 28676.57 36349.94 27781.59 34250.58 33474.83 31185.34 319
test_fmvs268.35 31767.48 31870.98 34369.50 38751.95 35780.05 30776.38 35449.33 37674.65 24784.38 28123.30 38775.40 37874.51 14475.17 30885.60 316
Syy-MVS68.05 31867.85 30968.67 35484.68 25740.97 39578.62 32573.08 36866.65 26166.74 33079.46 34352.11 25082.30 33932.89 38776.38 28582.75 352
test0.0.03 168.00 31967.69 31468.90 35177.55 35847.43 37675.70 34672.95 37066.66 25866.56 33282.29 31848.06 29675.87 37344.97 36974.51 31483.41 343
TDRefinement67.49 32064.34 33076.92 29173.47 37861.07 26184.86 22982.98 29459.77 33258.30 37285.13 27026.06 38287.89 29747.92 35560.59 37381.81 359
test20.0367.45 32166.95 32268.94 35075.48 36844.84 38577.50 33577.67 34266.66 25863.01 35683.80 29347.02 30278.40 35642.53 37468.86 35183.58 342
UnsupCasMVSNet_eth67.33 32265.99 32671.37 33773.48 37751.47 36475.16 35085.19 25865.20 27760.78 36380.93 33242.35 33677.20 36257.12 30253.69 38385.44 318
TinyColmap67.30 32364.81 32874.76 31181.92 31656.68 31580.29 30581.49 31060.33 32656.27 37983.22 30224.77 38487.66 30145.52 36669.47 34679.95 367
myMVS_eth3d67.02 32466.29 32569.21 34984.68 25742.58 39078.62 32573.08 36866.65 26166.74 33079.46 34331.53 37582.30 33939.43 38076.38 28582.75 352
dp66.80 32565.43 32770.90 34479.74 34748.82 37475.12 35274.77 36159.61 33364.08 35177.23 36042.89 33380.72 34848.86 34766.58 35783.16 346
MDA-MVSNet-bldmvs66.68 32663.66 33575.75 29979.28 35260.56 26973.92 35778.35 33964.43 28650.13 38679.87 34144.02 32783.67 33046.10 36356.86 37683.03 349
testgi66.67 32766.53 32467.08 35975.62 36741.69 39475.93 34276.50 35366.11 26765.20 34686.59 23435.72 36774.71 38043.71 37073.38 32684.84 328
CHOSEN 280x42066.51 32864.71 32971.90 33381.45 32263.52 22657.98 39268.95 38053.57 36562.59 35976.70 36246.22 31075.29 37955.25 31379.68 24376.88 374
PM-MVS66.41 32964.14 33173.20 32573.92 37356.45 31778.97 32164.96 38863.88 29764.72 34780.24 33619.84 39083.44 33366.24 22164.52 36479.71 368
JIA-IIPM66.32 33062.82 34176.82 29277.09 36161.72 25665.34 38575.38 35758.04 34864.51 34862.32 38642.05 34286.51 30751.45 33169.22 34882.21 355
KD-MVS_2432*160066.22 33163.89 33373.21 32375.47 36953.42 35070.76 36784.35 26964.10 29166.52 33478.52 35234.55 36984.98 32150.40 33650.33 38781.23 361
miper_refine_blended66.22 33163.89 33373.21 32375.47 36953.42 35070.76 36784.35 26964.10 29166.52 33478.52 35234.55 36984.98 32150.40 33650.33 38781.23 361
ADS-MVSNet266.20 33363.33 33674.82 31079.92 34158.75 28567.55 37875.19 35853.37 36665.25 34475.86 36742.32 33780.53 34941.57 37568.91 34985.18 322
YYNet165.03 33462.91 33971.38 33675.85 36556.60 31669.12 37574.66 36457.28 35454.12 38177.87 35745.85 31474.48 38149.95 34161.52 37083.05 348
MDA-MVSNet_test_wron65.03 33462.92 33871.37 33775.93 36356.73 31269.09 37674.73 36257.28 35454.03 38277.89 35645.88 31374.39 38249.89 34261.55 36982.99 350
Patchmatch-test64.82 33663.24 33769.57 34779.42 35149.82 37263.49 38969.05 37951.98 37159.95 36780.13 33750.91 26570.98 38740.66 37773.57 32287.90 268
ADS-MVSNet64.36 33762.88 34068.78 35379.92 34147.17 37767.55 37871.18 37253.37 36665.25 34475.86 36742.32 33773.99 38341.57 37568.91 34985.18 322
LF4IMVS64.02 33862.19 34269.50 34870.90 38553.29 35376.13 34077.18 34952.65 36858.59 37080.98 32923.55 38676.52 36753.06 32466.66 35678.68 370
UnsupCasMVSNet_bld63.70 33961.53 34570.21 34673.69 37551.39 36572.82 35981.89 30555.63 36157.81 37471.80 37838.67 35678.61 35549.26 34552.21 38580.63 364
test_fmvs363.36 34061.82 34367.98 35662.51 39446.96 37977.37 33774.03 36545.24 37967.50 32078.79 35112.16 39872.98 38672.77 16466.02 35983.99 338
dmvs_testset62.63 34164.11 33258.19 36978.55 35524.76 40575.28 34865.94 38567.91 24760.34 36476.01 36653.56 23573.94 38431.79 38867.65 35375.88 376
mvsany_test162.30 34261.26 34665.41 36169.52 38654.86 33866.86 38049.78 40146.65 37868.50 31483.21 30349.15 28866.28 39356.93 30560.77 37175.11 377
new-patchmatchnet61.73 34361.73 34461.70 36572.74 38224.50 40669.16 37478.03 34061.40 32056.72 37775.53 37038.42 35776.48 36845.95 36457.67 37584.13 336
PVSNet_057.27 2061.67 34459.27 34768.85 35279.61 34857.44 30468.01 37773.44 36755.93 36058.54 37170.41 38144.58 32377.55 36147.01 35735.91 39371.55 381
test_vis1_rt60.28 34558.42 34865.84 36067.25 39055.60 33070.44 36960.94 39344.33 38159.00 36966.64 38324.91 38368.67 39162.80 24769.48 34573.25 379
MVS-HIRNet59.14 34657.67 34963.57 36381.65 31843.50 38871.73 36265.06 38739.59 38751.43 38457.73 39138.34 35882.58 33839.53 37873.95 31864.62 387
pmmvs357.79 34754.26 35268.37 35564.02 39356.72 31375.12 35265.17 38640.20 38552.93 38369.86 38220.36 38975.48 37645.45 36755.25 38272.90 380
DSMNet-mixed57.77 34856.90 35060.38 36767.70 38935.61 39869.18 37353.97 39932.30 39557.49 37579.88 34040.39 35068.57 39238.78 38172.37 33176.97 373
WB-MVS54.94 34954.72 35155.60 37573.50 37620.90 40774.27 35661.19 39259.16 33850.61 38574.15 37247.19 30175.78 37417.31 39935.07 39470.12 382
LCM-MVSNet54.25 35049.68 36067.97 35753.73 40245.28 38366.85 38180.78 31535.96 39139.45 39262.23 3878.70 40278.06 35948.24 35251.20 38680.57 365
mvsany_test353.99 35151.45 35661.61 36655.51 39844.74 38663.52 38845.41 40543.69 38258.11 37376.45 36417.99 39163.76 39654.77 31547.59 38976.34 375
SSC-MVS53.88 35253.59 35354.75 37772.87 38119.59 40873.84 35860.53 39457.58 35249.18 38773.45 37546.34 30975.47 37716.20 40232.28 39669.20 383
FPMVS53.68 35351.64 35559.81 36865.08 39251.03 36669.48 37269.58 37741.46 38440.67 39072.32 37716.46 39470.00 39024.24 39665.42 36158.40 392
APD_test153.31 35449.93 35963.42 36465.68 39150.13 37071.59 36366.90 38334.43 39240.58 39171.56 3798.65 40376.27 37034.64 38655.36 38163.86 388
N_pmnet52.79 35553.26 35451.40 37978.99 3547.68 41169.52 3713.89 41051.63 37257.01 37674.98 37140.83 34765.96 39437.78 38264.67 36380.56 366
test_f52.09 35650.82 35755.90 37353.82 40142.31 39359.42 39158.31 39736.45 39056.12 38070.96 38012.18 39757.79 39853.51 32156.57 37867.60 384
EGC-MVSNET52.07 35747.05 36167.14 35883.51 28160.71 26680.50 30167.75 3810.07 4050.43 40675.85 36924.26 38581.54 34328.82 39062.25 36759.16 390
new_pmnet50.91 35850.29 35852.78 37868.58 38834.94 40063.71 38756.63 39839.73 38644.95 38865.47 38421.93 38858.48 39734.98 38556.62 37764.92 386
ANet_high50.57 35946.10 36363.99 36248.67 40539.13 39670.99 36680.85 31461.39 32131.18 39457.70 39217.02 39373.65 38531.22 38915.89 40279.18 369
test_vis3_rt49.26 36047.02 36256.00 37254.30 39945.27 38466.76 38248.08 40236.83 38944.38 38953.20 3947.17 40564.07 39556.77 30755.66 37958.65 391
testf145.72 36141.96 36457.00 37056.90 39645.32 38166.14 38359.26 39526.19 39630.89 39560.96 3894.14 40670.64 38826.39 39446.73 39155.04 393
APD_test245.72 36141.96 36457.00 37056.90 39645.32 38166.14 38359.26 39526.19 39630.89 39560.96 3894.14 40670.64 38826.39 39446.73 39155.04 393
Gipumacopyleft45.18 36341.86 36655.16 37677.03 36251.52 36332.50 39880.52 31932.46 39427.12 39735.02 3989.52 40175.50 37522.31 39760.21 37438.45 397
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36440.28 36755.82 37440.82 40742.54 39265.12 38663.99 38934.43 39224.48 39857.12 3933.92 40876.17 37217.10 40055.52 38048.75 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36538.86 36846.69 38053.84 40016.45 40948.61 39549.92 40037.49 38831.67 39360.97 3888.14 40456.42 39928.42 39130.72 39767.19 385
E-PMN31.77 36630.64 36935.15 38352.87 40327.67 40257.09 39347.86 40324.64 39816.40 40333.05 39911.23 39954.90 40014.46 40318.15 40022.87 399
test_method31.52 36729.28 37138.23 38227.03 4096.50 41220.94 40062.21 3914.05 40322.35 40152.50 39513.33 39547.58 40227.04 39334.04 39560.62 389
EMVS30.81 36829.65 37034.27 38450.96 40425.95 40456.58 39446.80 40424.01 39915.53 40430.68 40012.47 39654.43 40112.81 40417.05 40122.43 400
MVEpermissive26.22 2330.37 36925.89 37343.81 38144.55 40635.46 39928.87 39939.07 40618.20 40018.58 40240.18 3972.68 40947.37 40317.07 40123.78 39948.60 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 37026.61 3720.00 3900.00 4130.00 4150.00 40189.26 1730.00 4080.00 40988.61 17661.62 1610.00 4090.00 4080.00 4070.00 405
tmp_tt18.61 37121.40 37410.23 3874.82 41010.11 41034.70 39730.74 4081.48 40423.91 40026.07 40128.42 38013.41 40627.12 39215.35 4037.17 401
wuyk23d16.82 37215.94 37519.46 38658.74 39531.45 40139.22 3963.74 4116.84 4026.04 4052.70 4051.27 41024.29 40510.54 40514.40 4042.63 402
ab-mvs-re7.23 3739.64 3760.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 40986.72 2260.00 4130.00 4090.00 4080.00 4070.00 405
test1236.12 3748.11 3770.14 3880.06 4120.09 41371.05 3650.03 4130.04 4070.25 4081.30 4070.05 4110.03 4080.21 4070.01 4060.29 403
testmvs6.04 3758.02 3780.10 3890.08 4110.03 41469.74 3700.04 4120.05 4060.31 4071.68 4060.02 4120.04 4070.24 4060.02 4050.25 404
pcd_1.5k_mvsjas5.26 3767.02 3790.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 40863.15 1380.00 4090.00 4080.00 4070.00 405
test_blank0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
uanet_test0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
DCPMVS0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
sosnet-low-res0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
sosnet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
uncertanet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
Regformer0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
uanet0.00 3770.00 3800.00 3900.00 4130.00 4150.00 4010.00 4140.00 4080.00 4090.00 4080.00 4130.00 4090.00 4080.00 4070.00 405
WAC-MVS42.58 39039.46 379
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24492.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 413
eth-test0.00 413
ZD-MVS94.38 2572.22 4492.67 6170.98 18187.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13685.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
IU-MVS95.30 271.25 5792.95 5166.81 25492.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 245
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 245
sam_mvs50.01 275
ambc75.24 30673.16 37950.51 36963.05 39087.47 22564.28 34977.81 35817.80 39289.73 26857.88 29660.64 37285.49 317
MTGPAbinary92.02 85
test_post178.90 3235.43 40448.81 29585.44 31959.25 281
test_post5.46 40350.36 27384.24 326
patchmatchnet-post74.00 37351.12 26488.60 289
GG-mvs-BLEND75.38 30581.59 32055.80 32779.32 31569.63 37667.19 32473.67 37443.24 33188.90 28550.41 33584.50 17381.45 360
MTMP92.18 3532.83 407
gm-plane-assit81.40 32353.83 34762.72 31080.94 33092.39 19563.40 244
test9_res84.90 4295.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 24185.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23684.87 6193.10 6774.43 2695.16 76
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24763.62 22179.83 32862.31 31360.32 36586.73 22432.02 37288.96 28350.28 33871.57 33886.15 306
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34787.04 3988.98 28174.07 149
新几何286.29 196
新几何183.42 14793.13 5270.71 7185.48 25657.43 35381.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 283
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 255
无先验87.48 15988.98 18660.00 33094.12 12167.28 21488.97 244
原ACMM286.86 177
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29681.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 251
test22291.50 7768.26 12484.16 24883.20 29054.63 36479.74 12991.63 9958.97 19391.42 8586.77 296
testdata291.01 24962.37 254
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33785.40 5192.91 7362.02 15789.08 27968.95 19991.37 8686.63 300
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 150
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 414
nn0.00 414
door-mid69.98 375
lessismore_v078.97 25981.01 33057.15 30765.99 38461.16 36282.82 31139.12 35491.34 23859.67 27746.92 39088.43 261
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18589.83 216
test1192.23 79
door69.44 378
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 162
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39775.16 35055.10 36266.53 33349.34 28553.98 31887.94 267
MDTV_nov1_ep1369.97 29383.18 28953.48 34977.10 33980.18 32760.45 32569.33 30680.44 33448.89 29486.90 30451.60 33078.51 257
ACMMP++_ref81.95 217
ACMMP++81.25 223
Test By Simon64.33 125
ITE_SJBPF78.22 27281.77 31760.57 26883.30 28669.25 22067.54 31987.20 21536.33 36587.28 30354.34 31774.62 31386.80 295
DeepMVS_CXcopyleft27.40 38540.17 40826.90 40324.59 40917.44 40123.95 39948.61 3969.77 40026.48 40418.06 39824.47 39828.83 398