This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3196.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft89.15 689.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 789.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2096.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 889.15 888.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2894.27 3275.89 1996.81 2387.45 3096.44 993.05 96
CNVR-MVS88.93 989.13 988.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2395.99 1894.34 37
SteuartSystems-ACMMP88.72 1088.86 1088.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 2995.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1188.74 1187.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3296.01 1794.79 21
DeepPCF-MVS80.84 188.10 1288.56 1286.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3595.72 2494.58 27
MVS_030488.08 1388.08 1688.08 1489.67 11372.04 4892.26 3389.26 17384.19 285.01 5395.18 1369.93 6797.20 1491.63 295.60 2994.99 9
SD-MVS88.06 1488.50 1386.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 2894.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4693.47 5973.02 3997.00 1884.90 4094.94 3994.10 45
ACMMP_NAP88.05 1688.08 1687.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5696.67 2987.67 2796.37 1494.09 46
TSAR-MVS + MP.88.02 1788.11 1587.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2694.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5194.32 3171.76 4796.93 1985.53 3795.79 2294.32 38
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8094.40 3072.24 4396.28 4085.65 3695.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss87.67 2087.72 2087.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4295.29 1270.86 5796.00 4988.78 1896.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2187.47 2387.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5794.44 2870.78 5896.61 3284.53 4794.89 4193.66 65
ACMMPR87.44 2287.23 2688.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6494.52 2168.81 8296.65 3084.53 4794.90 4094.00 50
APD-MVScopyleft87.44 2287.52 2287.19 4294.24 3272.39 3991.86 4192.83 5573.01 14988.58 2194.52 2173.36 3496.49 3684.26 5095.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2487.26 2487.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6193.99 4870.67 6096.82 2284.18 5495.01 3793.90 55
region2R87.42 2487.20 2788.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 6894.52 2169.09 7696.70 2784.37 4994.83 4494.03 49
MCST-MVS87.37 2687.25 2587.73 2894.53 1772.46 3889.82 7793.82 1673.07 14784.86 6092.89 7276.22 1796.33 3884.89 4295.13 3694.40 34
MTAPA87.23 2787.00 2887.90 2294.18 3574.25 586.58 18592.02 8579.45 1985.88 4494.80 1768.07 8796.21 4286.69 3495.34 3393.23 87
XVS87.18 2886.91 3288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8394.17 3667.45 9396.60 3383.06 6194.50 5094.07 47
HPM-MVScopyleft87.11 2986.98 2987.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8193.95 5169.77 7096.01 4885.15 3894.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 2986.92 3187.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8294.46 2567.93 8895.95 5284.20 5394.39 5393.23 87
DeepC-MVS79.81 287.08 3186.88 3387.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9494.23 3572.13 4597.09 1684.83 4395.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3286.62 3587.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7293.36 6171.44 5396.76 2580.82 8395.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3386.67 3486.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4094.65 2067.31 9595.77 5484.80 4492.85 6792.84 103
CS-MVS86.69 3486.95 3085.90 6390.76 9067.57 13892.83 1793.30 3279.67 1784.57 6792.27 8471.47 5295.02 8684.24 5293.46 6395.13 6
PGM-MVS86.68 3586.27 3987.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 7994.42 2967.87 9096.64 3182.70 7094.57 4993.66 65
mPP-MVS86.67 3686.32 3887.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9594.25 3466.44 10396.24 4182.88 6594.28 5693.38 81
CANet86.45 3786.10 4487.51 3790.09 10170.94 6789.70 8392.59 6681.78 481.32 11091.43 10470.34 6297.23 1384.26 5093.36 6494.37 35
train_agg86.43 3886.20 4087.13 4493.26 5072.96 2588.75 11591.89 9368.69 23285.00 5593.10 6574.43 2695.41 6784.97 3995.71 2593.02 98
PHI-MVS86.43 3886.17 4287.24 4190.88 8770.96 6592.27 3294.07 972.45 15285.22 5291.90 9069.47 7296.42 3783.28 6095.94 1994.35 36
CSCG86.41 4086.19 4187.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 8991.07 11475.94 1895.19 7579.94 9294.38 5493.55 76
CS-MVS-test86.29 4186.48 3685.71 6591.02 8367.21 15092.36 2993.78 1878.97 2883.51 8691.20 10970.65 6195.15 7781.96 7494.89 4194.77 22
EC-MVSNet86.01 4286.38 3784.91 8889.31 13066.27 16492.32 3093.63 2179.37 2084.17 7491.88 9169.04 8095.43 6583.93 5593.77 6193.01 99
casdiffmvs_mvgpermissive85.99 4386.09 4585.70 6687.65 19267.22 14988.69 11993.04 3879.64 1885.33 5092.54 8173.30 3594.50 10783.49 5791.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 4485.88 4786.22 5792.69 6369.53 8991.93 3892.99 4573.54 13585.94 4394.51 2465.80 11395.61 5783.04 6392.51 7193.53 78
test_fmvsmconf_n85.92 4586.04 4685.57 6885.03 24469.51 9089.62 8690.58 13173.42 13887.75 3094.02 4472.85 4093.24 16090.37 390.75 9393.96 51
canonicalmvs85.91 4685.87 4886.04 6089.84 11169.44 9590.45 6693.00 4376.70 6988.01 2791.23 10773.28 3693.91 13181.50 7788.80 11894.77 22
ACMMPcopyleft85.89 4785.39 5387.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 11993.82 5364.33 12396.29 3982.67 7190.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 4885.61 5186.23 5693.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2665.00 12195.56 5882.75 6691.87 7992.50 114
CDPH-MVS85.76 4985.29 5887.17 4393.49 4771.08 6188.58 12392.42 7268.32 23984.61 6593.48 5772.32 4296.15 4579.00 9695.43 3194.28 40
TSAR-MVS + GP.85.71 5085.33 5586.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4590.22 13274.15 3195.37 7281.82 7591.88 7892.65 109
dcpmvs_285.63 5186.15 4384.06 12491.71 7564.94 19586.47 18891.87 9573.63 13186.60 4193.02 7076.57 1591.87 21683.36 5892.15 7595.35 3
test_fmvsmconf0.1_n85.61 5285.65 5085.50 6982.99 28869.39 9689.65 8490.29 14473.31 14187.77 2994.15 3871.72 4893.23 16190.31 490.67 9593.89 56
alignmvs85.48 5385.32 5685.96 6289.51 11969.47 9289.74 8192.47 6876.17 8087.73 3291.46 10370.32 6393.78 13681.51 7688.95 11594.63 26
3Dnovator+77.84 485.48 5384.47 6788.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19393.37 6060.40 18696.75 2677.20 11593.73 6295.29 5
MSLP-MVS++85.43 5585.76 4984.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7292.81 7667.16 9792.94 18080.36 8894.35 5590.16 191
DELS-MVS85.41 5685.30 5785.77 6488.49 16167.93 13085.52 21793.44 2778.70 2983.63 8589.03 16274.57 2495.71 5680.26 9094.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 5784.95 6286.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9794.09 4062.60 14295.54 6080.93 8192.93 6693.57 74
test_fmvsm_n_192085.29 5885.34 5485.13 7986.12 22569.93 8388.65 12190.78 12769.97 20088.27 2393.98 4971.39 5491.54 22688.49 2290.45 9793.91 53
MVS_111021_HR85.14 5984.75 6386.32 5591.65 7672.70 3085.98 20090.33 14176.11 8182.08 10091.61 9871.36 5594.17 12081.02 8092.58 7092.08 129
casdiffmvspermissive85.11 6085.14 5985.01 8287.20 20865.77 17787.75 15192.83 5577.84 3784.36 7192.38 8372.15 4493.93 13081.27 7990.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6184.96 6185.45 7092.07 7068.07 12789.78 8090.86 12682.48 384.60 6693.20 6469.35 7395.22 7471.39 17290.88 9293.07 95
DPM-MVS84.93 6284.29 6886.84 4790.20 9973.04 2387.12 16793.04 3869.80 20482.85 9391.22 10873.06 3896.02 4776.72 12494.63 4791.46 146
baseline84.93 6284.98 6084.80 9287.30 20665.39 18687.30 16392.88 5277.62 3984.04 7792.26 8571.81 4693.96 12481.31 7890.30 9995.03 8
ETV-MVS84.90 6484.67 6485.59 6789.39 12468.66 11588.74 11792.64 6579.97 1584.10 7585.71 25269.32 7495.38 6980.82 8391.37 8692.72 104
test_fmvsmconf0.01_n84.73 6584.52 6685.34 7280.25 32869.03 9989.47 8889.65 16173.24 14486.98 3894.27 3266.62 9993.23 16190.26 589.95 10793.78 62
EI-MVSNet-Vis-set84.19 6683.81 7085.31 7388.18 17167.85 13187.66 15389.73 15980.05 1482.95 9089.59 14670.74 5994.82 9580.66 8784.72 16693.28 86
test_fmvsmvis_n_192084.02 6783.87 6984.49 10184.12 25969.37 9788.15 13887.96 21270.01 19883.95 7893.23 6368.80 8391.51 22988.61 1989.96 10692.57 110
nrg03083.88 6883.53 7284.96 8486.77 21669.28 9890.46 6592.67 6174.79 10682.95 9091.33 10672.70 4193.09 17480.79 8579.28 24292.50 114
EI-MVSNet-UG-set83.81 6983.38 7585.09 8087.87 18167.53 13987.44 15989.66 16079.74 1682.23 9989.41 15570.24 6494.74 9879.95 9183.92 17892.99 100
fmvsm_s_conf0.5_n83.80 7083.71 7184.07 12286.69 21867.31 14589.46 8983.07 29071.09 17686.96 3993.70 5569.02 8191.47 23188.79 1784.62 16893.44 80
CPTT-MVS83.73 7183.33 7784.92 8793.28 4970.86 6992.09 3790.38 13768.75 23179.57 13092.83 7460.60 18293.04 17880.92 8291.56 8490.86 165
EPNet83.72 7282.92 8486.14 5984.22 25769.48 9191.05 5585.27 25581.30 676.83 18891.65 9566.09 10895.56 5876.00 13093.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 7384.54 6580.99 21890.06 10665.83 17384.21 24588.74 19871.60 16785.01 5392.44 8274.51 2583.50 32582.15 7392.15 7593.64 71
HQP_MVS83.64 7483.14 7885.14 7790.08 10268.71 11191.25 5092.44 6979.12 2378.92 13991.00 11860.42 18495.38 6978.71 10086.32 14991.33 147
fmvsm_s_conf0.5_n_a83.63 7583.41 7484.28 11186.14 22468.12 12589.43 9082.87 29470.27 19487.27 3593.80 5469.09 7691.58 22288.21 2483.65 18593.14 93
Effi-MVS+83.62 7683.08 7985.24 7588.38 16667.45 14088.89 10989.15 17975.50 9282.27 9888.28 18469.61 7194.45 10977.81 10987.84 12893.84 59
fmvsm_s_conf0.1_n83.56 7783.38 7584.10 11784.86 24667.28 14689.40 9383.01 29170.67 18487.08 3693.96 5068.38 8591.45 23288.56 2184.50 16993.56 75
OPM-MVS83.50 7882.95 8385.14 7788.79 15170.95 6689.13 10391.52 10677.55 4480.96 11791.75 9360.71 17794.50 10779.67 9386.51 14789.97 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 7982.80 8685.43 7190.25 9868.74 10990.30 6990.13 14876.33 7880.87 11892.89 7261.00 17494.20 11872.45 16690.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 8083.45 7383.28 15092.74 6262.28 24688.17 13689.50 16475.22 9681.49 10992.74 8066.75 9895.11 8072.85 16091.58 8392.45 117
EPP-MVSNet83.40 8183.02 8184.57 9690.13 10064.47 20592.32 3090.73 12874.45 11579.35 13391.10 11269.05 7995.12 7872.78 16187.22 13694.13 44
3Dnovator76.31 583.38 8282.31 9286.59 5287.94 18072.94 2890.64 5992.14 8477.21 5275.47 21892.83 7458.56 19394.72 9973.24 15792.71 6992.13 128
fmvsm_s_conf0.1_n_a83.32 8382.99 8284.28 11183.79 26668.07 12789.34 9582.85 29569.80 20487.36 3494.06 4268.34 8691.56 22487.95 2583.46 19193.21 90
EIA-MVS83.31 8482.80 8684.82 9089.59 11565.59 17988.21 13492.68 6074.66 10978.96 13786.42 23969.06 7895.26 7375.54 13690.09 10393.62 72
h-mvs3383.15 8582.19 9386.02 6190.56 9270.85 7088.15 13889.16 17876.02 8384.67 6291.39 10561.54 16095.50 6182.71 6875.48 28991.72 137
MVS_Test83.15 8583.06 8083.41 14786.86 21263.21 23286.11 19892.00 8774.31 11682.87 9289.44 15470.03 6593.21 16377.39 11488.50 12493.81 60
IS-MVSNet83.15 8582.81 8584.18 11589.94 10963.30 23091.59 4388.46 20479.04 2579.49 13192.16 8665.10 11894.28 11267.71 20791.86 8194.95 10
DP-MVS Recon83.11 8882.09 9586.15 5894.44 1970.92 6888.79 11392.20 8170.53 18879.17 13591.03 11764.12 12596.03 4668.39 20490.14 10291.50 143
PAPM_NR83.02 8982.41 8984.82 9092.47 6766.37 16287.93 14691.80 9873.82 12777.32 17790.66 12367.90 8994.90 9170.37 18189.48 11293.19 91
VDD-MVS83.01 9082.36 9184.96 8491.02 8366.40 16188.91 10888.11 20777.57 4184.39 7093.29 6252.19 24493.91 13177.05 11788.70 12094.57 29
MVSFormer82.85 9182.05 9685.24 7587.35 20070.21 7790.50 6290.38 13768.55 23481.32 11089.47 14961.68 15793.46 15378.98 9790.26 10092.05 130
OMC-MVS82.69 9281.97 9984.85 8988.75 15367.42 14187.98 14290.87 12574.92 10379.72 12891.65 9562.19 15293.96 12475.26 13886.42 14893.16 92
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8490.80 8969.76 8788.74 11791.70 10269.39 21278.96 13788.46 17965.47 11594.87 9474.42 14388.57 12190.24 189
MVS_111021_LR82.61 9482.11 9484.11 11688.82 14871.58 5385.15 22086.16 24574.69 10880.47 12191.04 11562.29 14990.55 25480.33 8990.08 10490.20 190
HQP-MVS82.61 9482.02 9784.37 10589.33 12766.98 15389.17 9892.19 8276.41 7277.23 18090.23 13160.17 18795.11 8077.47 11285.99 15691.03 159
CLD-MVS82.31 9681.65 10284.29 11088.47 16267.73 13485.81 20892.35 7475.78 8678.33 15486.58 23464.01 12694.35 11076.05 12987.48 13390.79 166
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 9782.41 8981.62 19890.82 8860.93 26084.47 23689.78 15676.36 7784.07 7691.88 9164.71 12290.26 25670.68 17888.89 11693.66 65
diffmvspermissive82.10 9881.88 10082.76 18083.00 28663.78 21883.68 25289.76 15772.94 15082.02 10189.85 13865.96 11290.79 25082.38 7287.30 13593.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 9981.27 10584.50 9989.23 13468.76 10790.22 7091.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
FIs82.07 10082.42 8881.04 21788.80 15058.34 28688.26 13393.49 2676.93 6078.47 15191.04 11569.92 6892.34 19969.87 18884.97 16392.44 118
PS-MVSNAJss82.07 10081.31 10484.34 10886.51 22067.27 14789.27 9691.51 10771.75 16179.37 13290.22 13263.15 13694.27 11377.69 11082.36 20591.49 144
API-MVS81.99 10281.23 10684.26 11390.94 8570.18 8291.10 5389.32 16971.51 16978.66 14588.28 18465.26 11695.10 8364.74 23491.23 8887.51 270
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16988.46 16363.46 22687.13 16692.37 7380.19 1278.38 15289.14 15871.66 5193.05 17670.05 18476.46 27292.25 123
MAR-MVS81.84 10480.70 11585.27 7491.32 7971.53 5489.82 7790.92 12269.77 20678.50 14986.21 24362.36 14894.52 10665.36 22892.05 7789.77 215
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 10581.23 10683.57 14291.89 7363.43 22889.84 7681.85 30577.04 5883.21 8793.10 6552.26 24393.43 15571.98 16789.95 10793.85 57
hse-mvs281.72 10680.94 11284.07 12288.72 15467.68 13685.87 20487.26 22976.02 8384.67 6288.22 18761.54 16093.48 15182.71 6873.44 31791.06 157
GeoE81.71 10781.01 11183.80 13789.51 11964.45 20688.97 10688.73 19971.27 17278.63 14689.76 14066.32 10593.20 16669.89 18786.02 15593.74 63
xiu_mvs_v2_base81.69 10881.05 10983.60 14089.15 13768.03 12984.46 23890.02 15070.67 18481.30 11386.53 23763.17 13594.19 11975.60 13588.54 12288.57 252
PS-MVSNAJ81.69 10881.02 11083.70 13989.51 11968.21 12484.28 24490.09 14970.79 18181.26 11485.62 25763.15 13694.29 11175.62 13488.87 11788.59 251
mvsmamba81.69 10880.74 11484.56 9787.45 19966.72 15791.26 4885.89 24974.66 10978.23 15790.56 12554.33 22594.91 8880.73 8683.54 18992.04 132
PAPR81.66 11180.89 11383.99 13190.27 9764.00 21386.76 18191.77 10168.84 23077.13 18689.50 14767.63 9194.88 9367.55 20988.52 12393.09 94
UniMVSNet (Re)81.60 11281.11 10883.09 16088.38 16664.41 20787.60 15493.02 4278.42 3278.56 14888.16 18869.78 6993.26 15969.58 19176.49 27191.60 138
FC-MVSNet-test81.52 11382.02 9780.03 23888.42 16555.97 32387.95 14493.42 2977.10 5677.38 17590.98 12069.96 6691.79 21768.46 20384.50 16992.33 119
VDDNet81.52 11380.67 11684.05 12690.44 9564.13 21289.73 8285.91 24871.11 17583.18 8893.48 5750.54 26893.49 15073.40 15488.25 12694.54 30
ACMP74.13 681.51 11580.57 11784.36 10689.42 12268.69 11489.97 7491.50 11074.46 11475.04 23790.41 12853.82 23194.54 10477.56 11182.91 19789.86 211
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 11680.29 12484.70 9486.63 21969.90 8585.95 20186.77 23663.24 29281.07 11689.47 14961.08 17392.15 20578.33 10590.07 10592.05 130
jason: jason.
lupinMVS81.39 11680.27 12584.76 9387.35 20070.21 7785.55 21386.41 24062.85 29981.32 11088.61 17461.68 15792.24 20378.41 10490.26 10091.83 134
test_yl81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
DCV-MVSNet81.17 11880.47 12083.24 15389.13 13863.62 21986.21 19589.95 15372.43 15581.78 10689.61 14457.50 20393.58 14470.75 17686.90 14092.52 112
DU-MVS81.12 12080.52 11982.90 17087.80 18563.46 22687.02 17091.87 9579.01 2678.38 15289.07 16065.02 11993.05 17670.05 18476.46 27292.20 125
PVSNet_Blended80.98 12180.34 12282.90 17088.85 14565.40 18484.43 24092.00 8767.62 24478.11 16185.05 27166.02 11094.27 11371.52 16989.50 11189.01 235
FA-MVS(test-final)80.96 12279.91 13084.10 11788.30 16965.01 19384.55 23590.01 15173.25 14379.61 12987.57 20158.35 19594.72 9971.29 17386.25 15192.56 111
QAPM80.88 12379.50 13985.03 8188.01 17968.97 10391.59 4392.00 8766.63 25775.15 23392.16 8657.70 20095.45 6363.52 23888.76 11990.66 172
TranMVSNet+NR-MVSNet80.84 12480.31 12382.42 18587.85 18262.33 24487.74 15291.33 11280.55 977.99 16589.86 13765.23 11792.62 18667.05 21675.24 29992.30 121
UGNet80.83 12579.59 13784.54 9888.04 17768.09 12689.42 9188.16 20676.95 5976.22 20589.46 15149.30 28393.94 12768.48 20290.31 9891.60 138
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 12679.92 12983.47 14388.85 14564.51 20285.53 21589.39 16770.79 18178.49 15085.06 27067.54 9293.58 14467.03 21786.58 14592.32 120
XVG-OURS-SEG-HR80.81 12679.76 13383.96 13385.60 23268.78 10683.54 25890.50 13470.66 18676.71 19291.66 9460.69 17891.26 23776.94 11881.58 21391.83 134
xiu_mvs_v1_base_debu80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
xiu_mvs_v1_base_debi80.80 12879.72 13484.03 12887.35 20070.19 7985.56 21088.77 19469.06 22481.83 10288.16 18850.91 26292.85 18278.29 10687.56 13089.06 230
ACMM73.20 880.78 13179.84 13283.58 14189.31 13068.37 11989.99 7391.60 10470.28 19377.25 17889.66 14253.37 23593.53 14974.24 14682.85 19888.85 243
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 13279.51 13884.20 11494.09 3867.27 14789.64 8591.11 11958.75 33574.08 24890.72 12258.10 19695.04 8569.70 18989.42 11390.30 187
iter_conf_final80.63 13379.35 14384.46 10289.36 12667.70 13589.85 7584.49 26573.19 14578.30 15588.94 16345.98 30994.56 10279.59 9484.48 17291.11 154
CANet_DTU80.61 13479.87 13182.83 17285.60 23263.17 23587.36 16088.65 20076.37 7675.88 21288.44 18053.51 23493.07 17573.30 15589.74 11092.25 123
VPA-MVSNet80.60 13580.55 11880.76 22488.07 17660.80 26386.86 17591.58 10575.67 9080.24 12389.45 15363.34 13090.25 25770.51 18079.22 24391.23 151
PVSNet_BlendedMVS80.60 13580.02 12782.36 18788.85 14565.40 18486.16 19792.00 8769.34 21478.11 16186.09 24766.02 11094.27 11371.52 16982.06 20787.39 272
AdaColmapbinary80.58 13779.42 14084.06 12493.09 5468.91 10489.36 9488.97 18869.27 21575.70 21589.69 14157.20 20795.77 5463.06 24388.41 12587.50 271
EI-MVSNet80.52 13879.98 12882.12 18884.28 25563.19 23486.41 18988.95 18974.18 12078.69 14387.54 20466.62 9992.43 19372.57 16480.57 22690.74 170
XVG-OURS80.41 13979.23 14783.97 13285.64 23169.02 10183.03 26990.39 13671.09 17677.63 17191.49 10254.62 22491.35 23575.71 13283.47 19091.54 140
SDMVSNet80.38 14080.18 12680.99 21889.03 14364.94 19580.45 29589.40 16675.19 9876.61 19689.98 13560.61 18187.69 29576.83 12183.55 18790.33 185
PCF-MVS73.52 780.38 14078.84 15685.01 8287.71 18968.99 10283.65 25391.46 11163.00 29677.77 16990.28 12966.10 10795.09 8461.40 26188.22 12790.94 163
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 14277.83 17988.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8312.47 39467.45 9396.60 3383.06 6194.50 5094.07 47
RRT_MVS80.35 14379.22 14883.74 13887.63 19365.46 18391.08 5488.92 19173.82 12776.44 20190.03 13449.05 28894.25 11776.84 11979.20 24491.51 141
test_djsdf80.30 14479.32 14483.27 15183.98 26365.37 18790.50 6290.38 13768.55 23476.19 20688.70 17056.44 21193.46 15378.98 9780.14 23290.97 162
v2v48280.23 14579.29 14583.05 16383.62 26964.14 21187.04 16989.97 15273.61 13278.18 16087.22 21261.10 17293.82 13476.11 12776.78 26991.18 152
NR-MVSNet80.23 14579.38 14182.78 17887.80 18563.34 22986.31 19291.09 12079.01 2672.17 26789.07 16067.20 9692.81 18566.08 22375.65 28592.20 125
Anonymous2024052980.19 14778.89 15584.10 11790.60 9164.75 19988.95 10790.90 12365.97 26580.59 12091.17 11149.97 27393.73 14269.16 19582.70 20293.81 60
IterMVS-LS80.06 14879.38 14182.11 18985.89 22763.20 23386.79 17889.34 16874.19 11975.45 22186.72 22466.62 9992.39 19572.58 16376.86 26690.75 169
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 14978.57 16184.42 10485.13 24168.74 10988.77 11488.10 20874.99 10274.97 23883.49 29457.27 20693.36 15673.53 15180.88 22091.18 152
v114480.03 14979.03 15283.01 16583.78 26764.51 20287.11 16890.57 13371.96 16078.08 16386.20 24461.41 16493.94 12774.93 13977.23 26090.60 175
iter_conf0580.00 15178.70 15783.91 13587.84 18365.83 17388.84 11284.92 26071.61 16678.70 14288.94 16343.88 32494.56 10279.28 9584.28 17591.33 147
v879.97 15279.02 15382.80 17584.09 26064.50 20487.96 14390.29 14474.13 12275.24 23186.81 22162.88 14193.89 13374.39 14475.40 29490.00 203
OpenMVScopyleft72.83 1079.77 15378.33 16884.09 12085.17 23769.91 8490.57 6090.97 12166.70 25172.17 26791.91 8954.70 22293.96 12461.81 25890.95 9188.41 255
v1079.74 15478.67 15882.97 16884.06 26164.95 19487.88 14990.62 13073.11 14675.11 23486.56 23561.46 16394.05 12373.68 14975.55 28789.90 209
ECVR-MVScopyleft79.61 15579.26 14680.67 22690.08 10254.69 33487.89 14877.44 34174.88 10480.27 12292.79 7748.96 29092.45 19268.55 20192.50 7294.86 17
BH-RMVSNet79.61 15578.44 16483.14 15889.38 12565.93 17084.95 22587.15 23173.56 13478.19 15989.79 13956.67 21093.36 15659.53 27586.74 14390.13 193
v119279.59 15778.43 16583.07 16283.55 27164.52 20186.93 17390.58 13170.83 18077.78 16885.90 24859.15 19093.94 12773.96 14877.19 26290.76 168
ab-mvs79.51 15878.97 15481.14 21488.46 16360.91 26183.84 25089.24 17570.36 19079.03 13688.87 16763.23 13490.21 25865.12 23082.57 20392.28 122
WR-MVS79.49 15979.22 14880.27 23488.79 15158.35 28585.06 22288.61 20278.56 3077.65 17088.34 18263.81 12990.66 25364.98 23277.22 26191.80 136
v14419279.47 16078.37 16682.78 17883.35 27463.96 21486.96 17190.36 14069.99 19977.50 17285.67 25560.66 17993.77 13874.27 14576.58 27090.62 173
BH-untuned79.47 16078.60 16082.05 19089.19 13665.91 17186.07 19988.52 20372.18 15775.42 22287.69 19861.15 17193.54 14860.38 26886.83 14286.70 291
test111179.43 16279.18 15080.15 23689.99 10753.31 34787.33 16277.05 34475.04 10180.23 12492.77 7948.97 28992.33 20068.87 19892.40 7494.81 20
mvs_anonymous79.42 16379.11 15180.34 23284.45 25457.97 29282.59 27187.62 22167.40 24776.17 20988.56 17768.47 8489.59 26670.65 17986.05 15493.47 79
thisisatest053079.40 16477.76 18484.31 10987.69 19165.10 19287.36 16084.26 27170.04 19777.42 17488.26 18649.94 27494.79 9770.20 18284.70 16793.03 97
tttt051779.40 16477.91 17683.90 13688.10 17463.84 21688.37 13084.05 27371.45 17076.78 19089.12 15949.93 27694.89 9270.18 18383.18 19592.96 101
V4279.38 16678.24 17082.83 17281.10 32065.50 18185.55 21389.82 15571.57 16878.21 15886.12 24660.66 17993.18 16975.64 13375.46 29189.81 214
jajsoiax79.29 16777.96 17483.27 15184.68 24966.57 16089.25 9790.16 14769.20 21975.46 22089.49 14845.75 31493.13 17276.84 11980.80 22290.11 195
v192192079.22 16878.03 17382.80 17583.30 27663.94 21586.80 17790.33 14169.91 20277.48 17385.53 25858.44 19493.75 14073.60 15076.85 26790.71 171
AUN-MVS79.21 16977.60 18984.05 12688.71 15567.61 13785.84 20687.26 22969.08 22377.23 18088.14 19253.20 23793.47 15275.50 13773.45 31691.06 157
TAPA-MVS73.13 979.15 17077.94 17582.79 17789.59 11562.99 23988.16 13791.51 10765.77 26677.14 18591.09 11360.91 17593.21 16350.26 33587.05 13892.17 127
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 17177.77 18383.22 15584.70 24866.37 16289.17 9890.19 14669.38 21375.40 22389.46 15144.17 32293.15 17076.78 12280.70 22490.14 192
UniMVSNet_ETH3D79.10 17278.24 17081.70 19786.85 21360.24 27287.28 16488.79 19374.25 11876.84 18790.53 12749.48 27991.56 22467.98 20582.15 20693.29 85
CDS-MVSNet79.07 17377.70 18683.17 15787.60 19468.23 12384.40 24286.20 24467.49 24676.36 20286.54 23661.54 16090.79 25061.86 25787.33 13490.49 179
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 17477.88 17882.38 18683.07 28364.80 19884.08 24988.95 18969.01 22778.69 14387.17 21554.70 22292.43 19374.69 14080.57 22689.89 210
v124078.99 17577.78 18282.64 18183.21 27863.54 22386.62 18490.30 14369.74 20977.33 17685.68 25457.04 20893.76 13973.13 15876.92 26490.62 173
Anonymous2023121178.97 17677.69 18782.81 17490.54 9364.29 20990.11 7291.51 10765.01 27576.16 21088.13 19350.56 26793.03 17969.68 19077.56 25991.11 154
v7n78.97 17677.58 19083.14 15883.45 27365.51 18088.32 13191.21 11473.69 13072.41 26486.32 24257.93 19793.81 13569.18 19475.65 28590.11 195
TAMVS78.89 17877.51 19183.03 16487.80 18567.79 13384.72 22985.05 25867.63 24376.75 19187.70 19762.25 15090.82 24958.53 28687.13 13790.49 179
c3_l78.75 17977.91 17681.26 20982.89 29061.56 25584.09 24889.13 18169.97 20075.56 21684.29 28266.36 10492.09 20773.47 15375.48 28990.12 194
tt080578.73 18077.83 17981.43 20385.17 23760.30 27189.41 9290.90 12371.21 17377.17 18488.73 16946.38 30393.21 16372.57 16478.96 24590.79 166
v14878.72 18177.80 18181.47 20282.73 29361.96 25086.30 19388.08 20973.26 14276.18 20785.47 26062.46 14692.36 19771.92 16873.82 31390.09 197
VPNet78.69 18278.66 15978.76 25988.31 16855.72 32584.45 23986.63 23876.79 6478.26 15690.55 12659.30 18989.70 26566.63 21877.05 26390.88 164
ET-MVSNet_ETH3D78.63 18376.63 21284.64 9586.73 21769.47 9285.01 22384.61 26369.54 21066.51 32886.59 23250.16 27191.75 21876.26 12684.24 17692.69 107
anonymousdsp78.60 18477.15 19782.98 16780.51 32667.08 15187.24 16589.53 16365.66 26875.16 23287.19 21452.52 23892.25 20277.17 11679.34 24189.61 219
miper_ehance_all_eth78.59 18577.76 18481.08 21682.66 29561.56 25583.65 25389.15 17968.87 22975.55 21783.79 29066.49 10292.03 20873.25 15676.39 27489.64 218
WR-MVS_H78.51 18678.49 16278.56 26388.02 17856.38 31888.43 12592.67 6177.14 5473.89 24987.55 20366.25 10689.24 27258.92 28173.55 31590.06 201
GBi-Net78.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
test178.40 18777.40 19281.40 20587.60 19463.01 23688.39 12789.28 17071.63 16375.34 22587.28 20854.80 21891.11 24062.72 24579.57 23690.09 197
Vis-MVSNet (Re-imp)78.36 18978.45 16378.07 27188.64 15751.78 35486.70 18279.63 32774.14 12175.11 23490.83 12161.29 16889.75 26358.10 29091.60 8292.69 107
Anonymous20240521178.25 19077.01 19981.99 19291.03 8260.67 26584.77 22883.90 27570.65 18780.00 12691.20 10941.08 34191.43 23365.21 22985.26 16193.85 57
CP-MVSNet78.22 19178.34 16777.84 27387.83 18454.54 33687.94 14591.17 11677.65 3873.48 25288.49 17862.24 15188.43 28662.19 25274.07 30890.55 177
BH-w/o78.21 19277.33 19580.84 22288.81 14965.13 19184.87 22687.85 21769.75 20774.52 24484.74 27561.34 16693.11 17358.24 28985.84 15884.27 325
FMVSNet278.20 19377.21 19681.20 21287.60 19462.89 24087.47 15889.02 18471.63 16375.29 23087.28 20854.80 21891.10 24362.38 25079.38 24089.61 219
MVS78.19 19476.99 20181.78 19585.66 23066.99 15284.66 23090.47 13555.08 35572.02 26985.27 26363.83 12894.11 12266.10 22289.80 10984.24 326
Baseline_NR-MVSNet78.15 19578.33 16877.61 27885.79 22856.21 32186.78 17985.76 25173.60 13377.93 16687.57 20165.02 11988.99 27667.14 21575.33 29687.63 266
CNLPA78.08 19676.79 20681.97 19390.40 9671.07 6287.59 15584.55 26466.03 26472.38 26589.64 14357.56 20286.04 30559.61 27483.35 19288.79 246
cl2278.07 19777.01 19981.23 21082.37 30261.83 25283.55 25787.98 21168.96 22875.06 23683.87 28661.40 16591.88 21573.53 15176.39 27489.98 206
PLCcopyleft70.83 1178.05 19876.37 21783.08 16191.88 7467.80 13288.19 13589.46 16564.33 28369.87 29288.38 18153.66 23293.58 14458.86 28282.73 20087.86 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 19976.49 21382.62 18283.16 28266.96 15586.94 17287.45 22672.45 15271.49 27484.17 28354.79 22191.58 22267.61 20880.31 22989.30 226
PS-CasMVS78.01 20078.09 17277.77 27587.71 18954.39 33888.02 14191.22 11377.50 4673.26 25488.64 17360.73 17688.41 28761.88 25673.88 31290.53 178
HY-MVS69.67 1277.95 20177.15 19780.36 23187.57 19860.21 27383.37 26087.78 21966.11 26175.37 22487.06 21963.27 13290.48 25561.38 26282.43 20490.40 183
eth_miper_zixun_eth77.92 20276.69 21081.61 20083.00 28661.98 24983.15 26389.20 17769.52 21174.86 24084.35 28161.76 15692.56 18971.50 17172.89 32190.28 188
FMVSNet377.88 20376.85 20480.97 22086.84 21462.36 24386.52 18788.77 19471.13 17475.34 22586.66 23054.07 22991.10 24362.72 24579.57 23689.45 222
miper_enhance_ethall77.87 20476.86 20380.92 22181.65 30961.38 25782.68 27088.98 18665.52 27075.47 21882.30 30965.76 11492.00 21072.95 15976.39 27489.39 223
FE-MVS77.78 20575.68 22384.08 12188.09 17566.00 16883.13 26487.79 21868.42 23878.01 16485.23 26545.50 31695.12 7859.11 27985.83 15991.11 154
PEN-MVS77.73 20677.69 18777.84 27387.07 21153.91 34187.91 14791.18 11577.56 4373.14 25688.82 16861.23 16989.17 27359.95 27172.37 32390.43 181
cl____77.72 20776.76 20780.58 22782.49 29960.48 26883.09 26587.87 21569.22 21774.38 24685.22 26662.10 15391.53 22771.09 17475.41 29389.73 217
DIV-MVS_self_test77.72 20776.76 20780.58 22782.48 30060.48 26883.09 26587.86 21669.22 21774.38 24685.24 26462.10 15391.53 22771.09 17475.40 29489.74 216
sd_testset77.70 20977.40 19278.60 26289.03 14360.02 27479.00 31285.83 25075.19 9876.61 19689.98 13554.81 21785.46 31162.63 24983.55 18790.33 185
PAPM77.68 21076.40 21681.51 20187.29 20761.85 25183.78 25189.59 16264.74 27771.23 27588.70 17062.59 14393.66 14352.66 32187.03 13989.01 235
CHOSEN 1792x268877.63 21175.69 22283.44 14489.98 10868.58 11778.70 31687.50 22456.38 35075.80 21486.84 22058.67 19291.40 23461.58 26085.75 16090.34 184
HyFIR lowres test77.53 21275.40 22983.94 13489.59 11566.62 15880.36 29688.64 20156.29 35176.45 19885.17 26757.64 20193.28 15861.34 26383.10 19691.91 133
FMVSNet177.44 21376.12 21981.40 20586.81 21563.01 23688.39 12789.28 17070.49 18974.39 24587.28 20849.06 28791.11 24060.91 26578.52 24890.09 197
TR-MVS77.44 21376.18 21881.20 21288.24 17063.24 23184.61 23386.40 24167.55 24577.81 16786.48 23854.10 22893.15 17057.75 29382.72 20187.20 277
1112_ss77.40 21576.43 21580.32 23389.11 14260.41 27083.65 25387.72 22062.13 30873.05 25786.72 22462.58 14489.97 26062.11 25580.80 22290.59 176
thisisatest051577.33 21675.38 23083.18 15685.27 23663.80 21782.11 27583.27 28565.06 27375.91 21183.84 28849.54 27894.27 11367.24 21386.19 15291.48 145
test250677.30 21776.49 21379.74 24490.08 10252.02 35087.86 15063.10 38274.88 10480.16 12592.79 7738.29 35192.35 19868.74 20092.50 7294.86 17
bld_raw_dy_0_6477.29 21875.98 22081.22 21185.04 24365.47 18288.14 14077.56 33869.20 21973.77 25089.40 15742.24 33588.85 28276.78 12281.64 21289.33 225
pm-mvs177.25 21976.68 21178.93 25784.22 25758.62 28486.41 18988.36 20571.37 17173.31 25388.01 19461.22 17089.15 27464.24 23673.01 32089.03 234
LCM-MVSNet-Re77.05 22076.94 20277.36 28187.20 20851.60 35580.06 29980.46 31875.20 9767.69 31086.72 22462.48 14588.98 27763.44 24089.25 11491.51 141
DTE-MVSNet76.99 22176.80 20577.54 28086.24 22253.06 34987.52 15690.66 12977.08 5772.50 26288.67 17260.48 18389.52 26757.33 29770.74 33490.05 202
baseline176.98 22276.75 20977.66 27688.13 17255.66 32685.12 22181.89 30373.04 14876.79 18988.90 16562.43 14787.78 29463.30 24271.18 33289.55 221
LS3D76.95 22374.82 23683.37 14890.45 9467.36 14489.15 10286.94 23461.87 31069.52 29590.61 12451.71 25694.53 10546.38 35586.71 14488.21 257
GA-MVS76.87 22475.17 23481.97 19382.75 29262.58 24181.44 28486.35 24372.16 15974.74 24182.89 30146.20 30892.02 20968.85 19981.09 21891.30 150
DP-MVS76.78 22574.57 23883.42 14593.29 4869.46 9488.55 12483.70 27763.98 28970.20 28388.89 16654.01 23094.80 9646.66 35281.88 21086.01 303
cascas76.72 22674.64 23782.99 16685.78 22965.88 17282.33 27389.21 17660.85 31672.74 25981.02 32047.28 29793.75 14067.48 21085.02 16289.34 224
131476.53 22775.30 23380.21 23583.93 26462.32 24584.66 23088.81 19260.23 32070.16 28684.07 28555.30 21590.73 25267.37 21183.21 19487.59 269
thres100view90076.50 22875.55 22679.33 25289.52 11856.99 30785.83 20783.23 28673.94 12476.32 20387.12 21651.89 25391.95 21148.33 34383.75 18189.07 228
thres600view776.50 22875.44 22779.68 24689.40 12357.16 30485.53 21583.23 28673.79 12976.26 20487.09 21751.89 25391.89 21448.05 34883.72 18490.00 203
thres40076.50 22875.37 23179.86 24189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18190.00 203
tfpn200view976.42 23175.37 23179.55 25189.13 13857.65 29885.17 21883.60 27873.41 13976.45 19886.39 24052.12 24591.95 21148.33 34383.75 18189.07 228
Test_1112_low_res76.40 23275.44 22779.27 25389.28 13258.09 28881.69 27987.07 23259.53 32772.48 26386.67 22961.30 16789.33 27060.81 26780.15 23190.41 182
F-COLMAP76.38 23374.33 24382.50 18489.28 13266.95 15688.41 12689.03 18364.05 28766.83 32088.61 17446.78 30192.89 18157.48 29478.55 24787.67 265
LTVRE_ROB69.57 1376.25 23474.54 24081.41 20488.60 15864.38 20879.24 30889.12 18270.76 18369.79 29487.86 19549.09 28693.20 16656.21 30780.16 23086.65 292
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 23574.46 24281.13 21585.37 23569.79 8684.42 24187.95 21365.03 27467.46 31385.33 26253.28 23691.73 22058.01 29183.27 19381.85 350
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 23674.27 24481.62 19883.20 27964.67 20083.60 25689.75 15869.75 20771.85 27087.09 21732.78 36392.11 20669.99 18680.43 22888.09 258
ACMH+68.96 1476.01 23774.01 24582.03 19188.60 15865.31 18888.86 11087.55 22270.25 19567.75 30987.47 20641.27 33993.19 16858.37 28775.94 28287.60 267
ACMH67.68 1675.89 23873.93 24681.77 19688.71 15566.61 15988.62 12289.01 18569.81 20366.78 32186.70 22841.95 33891.51 22955.64 30878.14 25487.17 278
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 23973.36 25383.31 14984.76 24766.03 16683.38 25985.06 25770.21 19669.40 29681.05 31945.76 31394.66 10165.10 23175.49 28889.25 227
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 24073.83 24981.30 20883.26 27761.79 25382.57 27280.65 31466.81 24866.88 31983.42 29557.86 19992.19 20463.47 23979.57 23689.91 208
WTY-MVS75.65 24175.68 22375.57 29686.40 22156.82 30977.92 32682.40 29965.10 27276.18 20787.72 19663.13 13980.90 33960.31 26981.96 20889.00 237
thres20075.55 24274.47 24178.82 25887.78 18857.85 29583.07 26783.51 28172.44 15475.84 21384.42 27752.08 24891.75 21847.41 35083.64 18686.86 287
test_vis1_n_192075.52 24375.78 22174.75 30679.84 33457.44 30283.26 26185.52 25362.83 30079.34 13486.17 24545.10 31879.71 34378.75 9981.21 21787.10 284
EPNet_dtu75.46 24474.86 23577.23 28482.57 29754.60 33586.89 17483.09 28971.64 16266.25 33085.86 25055.99 21288.04 29154.92 31086.55 14689.05 233
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 24573.87 24880.11 23782.69 29464.85 19781.57 28183.47 28269.16 22170.49 28084.15 28451.95 25188.15 28969.23 19372.14 32687.34 274
XXY-MVS75.41 24675.56 22574.96 30283.59 27057.82 29680.59 29283.87 27666.54 25874.93 23988.31 18363.24 13380.09 34262.16 25376.85 26786.97 285
TransMVSNet (Re)75.39 24774.56 23977.86 27285.50 23457.10 30686.78 17986.09 24772.17 15871.53 27387.34 20763.01 14089.31 27156.84 30261.83 36087.17 278
CostFormer75.24 24873.90 24779.27 25382.65 29658.27 28780.80 28782.73 29761.57 31175.33 22883.13 29955.52 21391.07 24664.98 23278.34 25388.45 253
D2MVS74.82 24973.21 25479.64 24879.81 33562.56 24280.34 29787.35 22764.37 28268.86 30182.66 30546.37 30490.10 25967.91 20681.24 21686.25 296
pmmvs674.69 25073.39 25278.61 26181.38 31557.48 30186.64 18387.95 21364.99 27670.18 28486.61 23150.43 26989.52 26762.12 25470.18 33688.83 244
tfpnnormal74.39 25173.16 25578.08 27086.10 22658.05 28984.65 23287.53 22370.32 19271.22 27685.63 25654.97 21689.86 26143.03 36475.02 30186.32 295
IterMVS74.29 25272.94 25778.35 26781.53 31263.49 22581.58 28082.49 29868.06 24169.99 28983.69 29251.66 25785.54 30965.85 22571.64 32986.01 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 25372.42 26179.80 24383.76 26859.59 27985.92 20386.64 23766.39 25966.96 31887.58 20039.46 34591.60 22165.76 22669.27 33988.22 256
SCA74.22 25472.33 26279.91 24084.05 26262.17 24779.96 30279.29 33066.30 26072.38 26580.13 32951.95 25188.60 28459.25 27777.67 25888.96 239
miper_lstm_enhance74.11 25573.11 25677.13 28580.11 33059.62 27872.23 35386.92 23566.76 25070.40 28182.92 30056.93 20982.92 32969.06 19672.63 32288.87 242
EG-PatchMatch MVS74.04 25671.82 26580.71 22584.92 24567.42 14185.86 20588.08 20966.04 26364.22 34283.85 28735.10 36092.56 18957.44 29580.83 22182.16 349
pmmvs474.03 25771.91 26480.39 23081.96 30568.32 12081.45 28382.14 30159.32 32869.87 29285.13 26852.40 24188.13 29060.21 27074.74 30484.73 322
MS-PatchMatch73.83 25872.67 25877.30 28383.87 26566.02 16781.82 27684.66 26261.37 31468.61 30482.82 30347.29 29688.21 28859.27 27684.32 17477.68 364
test_cas_vis1_n_192073.76 25973.74 25073.81 31375.90 35559.77 27680.51 29382.40 29958.30 33781.62 10885.69 25344.35 32176.41 36176.29 12578.61 24685.23 313
sss73.60 26073.64 25173.51 31582.80 29155.01 33276.12 33381.69 30662.47 30574.68 24285.85 25157.32 20578.11 35060.86 26680.93 21987.39 272
RPMNet73.51 26170.49 27882.58 18381.32 31865.19 18975.92 33592.27 7657.60 34372.73 26076.45 35652.30 24295.43 6548.14 34777.71 25687.11 282
SixPastTwentyTwo73.37 26271.26 27279.70 24585.08 24257.89 29485.57 20983.56 28071.03 17865.66 33285.88 24942.10 33692.57 18859.11 27963.34 35888.65 250
CR-MVSNet73.37 26271.27 27179.67 24781.32 31865.19 18975.92 33580.30 32059.92 32372.73 26081.19 31752.50 23986.69 30059.84 27277.71 25687.11 282
MSDG73.36 26470.99 27380.49 22984.51 25365.80 17580.71 29086.13 24665.70 26765.46 33383.74 29144.60 31990.91 24851.13 32876.89 26584.74 321
tpm273.26 26571.46 26778.63 26083.34 27556.71 31280.65 29180.40 31956.63 34973.55 25182.02 31451.80 25591.24 23856.35 30678.42 25187.95 259
RPSCF73.23 26671.46 26778.54 26482.50 29859.85 27582.18 27482.84 29658.96 33271.15 27789.41 15545.48 31784.77 31758.82 28371.83 32891.02 161
PatchmatchNetpermissive73.12 26771.33 27078.49 26683.18 28060.85 26279.63 30478.57 33364.13 28471.73 27179.81 33451.20 26085.97 30657.40 29676.36 27988.66 249
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
COLMAP_ROBcopyleft66.92 1773.01 26870.41 28080.81 22387.13 21065.63 17888.30 13284.19 27262.96 29763.80 34687.69 19838.04 35292.56 18946.66 35274.91 30284.24 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 26972.58 25974.25 31084.28 25550.85 36086.41 18983.45 28344.56 37273.23 25587.54 20449.38 28185.70 30765.90 22478.44 25086.19 298
test-LLR72.94 27072.43 26074.48 30781.35 31658.04 29078.38 31977.46 33966.66 25269.95 29079.00 34048.06 29379.24 34466.13 22084.83 16486.15 299
test_040272.79 27170.44 27979.84 24288.13 17265.99 16985.93 20284.29 26965.57 26967.40 31585.49 25946.92 30092.61 18735.88 37674.38 30780.94 355
tpmrst72.39 27272.13 26373.18 31980.54 32549.91 36479.91 30379.08 33163.11 29471.69 27279.95 33155.32 21482.77 33065.66 22773.89 31186.87 286
PatchMatch-RL72.38 27370.90 27476.80 28888.60 15867.38 14379.53 30576.17 34962.75 30269.36 29782.00 31545.51 31584.89 31653.62 31680.58 22578.12 363
CL-MVSNet_self_test72.37 27471.46 26775.09 30179.49 34153.53 34380.76 28985.01 25969.12 22270.51 27982.05 31357.92 19884.13 32052.27 32366.00 35287.60 267
tpm72.37 27471.71 26674.35 30982.19 30352.00 35179.22 30977.29 34264.56 27972.95 25883.68 29351.35 25883.26 32858.33 28875.80 28387.81 263
PVSNet64.34 1872.08 27670.87 27575.69 29486.21 22356.44 31674.37 34780.73 31362.06 30970.17 28582.23 31142.86 32983.31 32754.77 31184.45 17387.32 275
pmmvs571.55 27770.20 28375.61 29577.83 34856.39 31781.74 27880.89 31057.76 34167.46 31384.49 27649.26 28485.32 31357.08 29975.29 29785.11 317
test-mter71.41 27870.39 28174.48 30781.35 31658.04 29078.38 31977.46 33960.32 31969.95 29079.00 34036.08 35879.24 34466.13 22084.83 16486.15 299
K. test v371.19 27968.51 29179.21 25583.04 28557.78 29784.35 24376.91 34572.90 15162.99 34982.86 30239.27 34691.09 24561.65 25952.66 37688.75 247
dmvs_re71.14 28070.58 27672.80 32081.96 30559.68 27775.60 33979.34 32968.55 23469.27 29980.72 32549.42 28076.54 35852.56 32277.79 25582.19 348
tpmvs71.09 28169.29 28676.49 28982.04 30456.04 32278.92 31481.37 30964.05 28767.18 31778.28 34649.74 27789.77 26249.67 33872.37 32383.67 333
AllTest70.96 28268.09 29779.58 24985.15 23963.62 21984.58 23479.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
test_fmvs170.93 28370.52 27772.16 32473.71 36555.05 33180.82 28678.77 33251.21 36678.58 14784.41 27831.20 36876.94 35675.88 13180.12 23384.47 324
test_fmvs1_n70.86 28470.24 28272.73 32172.51 37555.28 32981.27 28579.71 32651.49 36578.73 14184.87 27227.54 37377.02 35576.06 12879.97 23485.88 306
Patchmtry70.74 28569.16 28875.49 29880.72 32254.07 34074.94 34680.30 32058.34 33670.01 28781.19 31752.50 23986.54 30153.37 31871.09 33385.87 307
MIMVSNet70.69 28669.30 28574.88 30384.52 25256.35 31975.87 33779.42 32864.59 27867.76 30882.41 30741.10 34081.54 33646.64 35481.34 21486.75 290
tpm cat170.57 28768.31 29377.35 28282.41 30157.95 29378.08 32380.22 32252.04 36168.54 30577.66 35152.00 25087.84 29351.77 32472.07 32786.25 296
OpenMVS_ROBcopyleft64.09 1970.56 28868.19 29477.65 27780.26 32759.41 28185.01 22382.96 29358.76 33465.43 33482.33 30837.63 35491.23 23945.34 36076.03 28182.32 346
pmmvs-eth3d70.50 28967.83 30278.52 26577.37 35166.18 16581.82 27681.51 30758.90 33363.90 34580.42 32742.69 33086.28 30458.56 28565.30 35483.11 339
USDC70.33 29068.37 29276.21 29180.60 32456.23 32079.19 31086.49 23960.89 31561.29 35385.47 26031.78 36689.47 26953.37 31876.21 28082.94 343
Patchmatch-RL test70.24 29167.78 30477.61 27877.43 35059.57 28071.16 35670.33 36562.94 29868.65 30372.77 36850.62 26685.49 31069.58 19166.58 34987.77 264
CMPMVSbinary51.72 2170.19 29268.16 29576.28 29073.15 37157.55 30079.47 30683.92 27448.02 36956.48 37084.81 27343.13 32786.42 30362.67 24881.81 21184.89 319
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 29367.34 31078.14 26979.80 33661.13 25879.19 31080.59 31559.16 33065.27 33579.29 33746.75 30287.29 29749.33 33966.72 34786.00 305
gg-mvs-nofinetune69.95 29467.96 29875.94 29283.07 28354.51 33777.23 33070.29 36663.11 29470.32 28262.33 37743.62 32588.69 28353.88 31587.76 12984.62 323
TESTMET0.1,169.89 29569.00 28972.55 32279.27 34456.85 30878.38 31974.71 35557.64 34268.09 30777.19 35337.75 35376.70 35763.92 23784.09 17784.10 329
test_vis1_n69.85 29669.21 28771.77 32672.66 37455.27 33081.48 28276.21 34852.03 36275.30 22983.20 29828.97 37176.22 36374.60 14178.41 25283.81 332
FMVSNet569.50 29767.96 29874.15 31182.97 28955.35 32880.01 30182.12 30262.56 30463.02 34781.53 31636.92 35581.92 33448.42 34274.06 30985.17 316
PMMVS69.34 29868.67 29071.35 33175.67 35762.03 24875.17 34173.46 35850.00 36768.68 30279.05 33852.07 24978.13 34961.16 26482.77 19973.90 370
our_test_369.14 29967.00 31275.57 29679.80 33658.80 28277.96 32477.81 33659.55 32662.90 35078.25 34747.43 29583.97 32151.71 32567.58 34683.93 331
EPMVS69.02 30068.16 29571.59 32779.61 33949.80 36677.40 32866.93 37462.82 30170.01 28779.05 33845.79 31277.86 35256.58 30475.26 29887.13 281
KD-MVS_self_test68.81 30167.59 30872.46 32374.29 36345.45 37277.93 32587.00 23363.12 29363.99 34478.99 34242.32 33284.77 31756.55 30564.09 35787.16 280
Anonymous2024052168.80 30267.22 31173.55 31474.33 36254.11 33983.18 26285.61 25258.15 33861.68 35280.94 32230.71 36981.27 33857.00 30073.34 31985.28 312
Anonymous2023120668.60 30367.80 30371.02 33480.23 32950.75 36178.30 32280.47 31756.79 34866.11 33182.63 30646.35 30578.95 34643.62 36375.70 28483.36 336
MIMVSNet168.58 30466.78 31473.98 31280.07 33151.82 35380.77 28884.37 26664.40 28159.75 36082.16 31236.47 35683.63 32442.73 36570.33 33586.48 294
testing368.56 30567.67 30671.22 33387.33 20542.87 38183.06 26871.54 36370.36 19069.08 30084.38 27930.33 37085.69 30837.50 37575.45 29285.09 318
EU-MVSNet68.53 30667.61 30771.31 33278.51 34747.01 37084.47 23684.27 27042.27 37566.44 32984.79 27440.44 34383.76 32258.76 28468.54 34483.17 337
PatchT68.46 30767.85 30070.29 33780.70 32343.93 37972.47 35274.88 35260.15 32170.55 27876.57 35549.94 27481.59 33550.58 32974.83 30385.34 311
test_fmvs268.35 30867.48 30970.98 33569.50 37851.95 35280.05 30076.38 34749.33 36874.65 24384.38 27923.30 37975.40 37074.51 14275.17 30085.60 308
Syy-MVS68.05 30967.85 30068.67 34684.68 24940.97 38778.62 31773.08 36066.65 25566.74 32279.46 33552.11 24782.30 33232.89 37976.38 27782.75 344
test0.0.03 168.00 31067.69 30568.90 34377.55 34947.43 36875.70 33872.95 36266.66 25266.56 32482.29 31048.06 29375.87 36544.97 36174.51 30683.41 335
TDRefinement67.49 31164.34 32176.92 28673.47 36961.07 25984.86 22782.98 29259.77 32458.30 36485.13 26826.06 37487.89 29247.92 34960.59 36581.81 351
test20.0367.45 31266.95 31368.94 34275.48 35944.84 37777.50 32777.67 33766.66 25263.01 34883.80 28947.02 29978.40 34842.53 36668.86 34383.58 334
UnsupCasMVSNet_eth67.33 31365.99 31771.37 32973.48 36851.47 35775.16 34285.19 25665.20 27160.78 35580.93 32442.35 33177.20 35457.12 29853.69 37585.44 310
TinyColmap67.30 31464.81 31974.76 30581.92 30756.68 31380.29 29881.49 30860.33 31856.27 37183.22 29624.77 37687.66 29645.52 35869.47 33879.95 359
myMVS_eth3d67.02 31566.29 31669.21 34184.68 24942.58 38278.62 31773.08 36066.65 25566.74 32279.46 33531.53 36782.30 33239.43 37276.38 27782.75 344
dp66.80 31665.43 31870.90 33679.74 33848.82 36775.12 34474.77 35359.61 32564.08 34377.23 35242.89 32880.72 34048.86 34166.58 34983.16 338
MDA-MVSNet-bldmvs66.68 31763.66 32675.75 29379.28 34360.56 26773.92 34978.35 33464.43 28050.13 37879.87 33344.02 32383.67 32346.10 35656.86 36883.03 341
testgi66.67 31866.53 31567.08 35175.62 35841.69 38675.93 33476.50 34666.11 26165.20 33886.59 23235.72 35974.71 37243.71 36273.38 31884.84 320
CHOSEN 280x42066.51 31964.71 32071.90 32581.45 31363.52 22457.98 38468.95 37253.57 35762.59 35176.70 35446.22 30775.29 37155.25 30979.68 23576.88 366
PM-MVS66.41 32064.14 32273.20 31873.92 36456.45 31578.97 31364.96 38063.88 29164.72 33980.24 32819.84 38283.44 32666.24 21964.52 35679.71 360
JIA-IIPM66.32 32162.82 33276.82 28777.09 35261.72 25465.34 37775.38 35058.04 34064.51 34062.32 37842.05 33786.51 30251.45 32769.22 34082.21 347
KD-MVS_2432*160066.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
miper_refine_blended66.22 32263.89 32473.21 31675.47 36053.42 34570.76 35984.35 26764.10 28566.52 32678.52 34434.55 36184.98 31450.40 33150.33 37981.23 353
ADS-MVSNet266.20 32463.33 32774.82 30479.92 33258.75 28367.55 37075.19 35153.37 35865.25 33675.86 35942.32 33280.53 34141.57 36768.91 34185.18 314
YYNet165.03 32562.91 33071.38 32875.85 35656.60 31469.12 36774.66 35657.28 34654.12 37377.87 34945.85 31174.48 37349.95 33661.52 36283.05 340
MDA-MVSNet_test_wron65.03 32562.92 32971.37 32975.93 35456.73 31069.09 36874.73 35457.28 34654.03 37477.89 34845.88 31074.39 37449.89 33761.55 36182.99 342
Patchmatch-test64.82 32763.24 32869.57 33979.42 34249.82 36563.49 38169.05 37151.98 36359.95 35980.13 32950.91 26270.98 37940.66 36973.57 31487.90 261
ADS-MVSNet64.36 32862.88 33168.78 34579.92 33247.17 36967.55 37071.18 36453.37 35865.25 33675.86 35942.32 33273.99 37541.57 36768.91 34185.18 314
LF4IMVS64.02 32962.19 33369.50 34070.90 37653.29 34876.13 33277.18 34352.65 36058.59 36280.98 32123.55 37876.52 35953.06 32066.66 34878.68 362
UnsupCasMVSNet_bld63.70 33061.53 33670.21 33873.69 36651.39 35872.82 35181.89 30355.63 35357.81 36671.80 37038.67 34878.61 34749.26 34052.21 37780.63 356
test_fmvs363.36 33161.82 33467.98 34862.51 38546.96 37177.37 32974.03 35745.24 37167.50 31278.79 34312.16 39072.98 37872.77 16266.02 35183.99 330
dmvs_testset62.63 33264.11 32358.19 36178.55 34624.76 39775.28 34065.94 37767.91 24260.34 35676.01 35853.56 23373.94 37631.79 38067.65 34575.88 368
mvsany_test162.30 33361.26 33765.41 35369.52 37754.86 33366.86 37249.78 39346.65 37068.50 30683.21 29749.15 28566.28 38556.93 30160.77 36375.11 369
new-patchmatchnet61.73 33461.73 33561.70 35772.74 37324.50 39869.16 36678.03 33561.40 31256.72 36975.53 36238.42 34976.48 36045.95 35757.67 36784.13 328
PVSNet_057.27 2061.67 33559.27 33868.85 34479.61 33957.44 30268.01 36973.44 35955.93 35258.54 36370.41 37344.58 32077.55 35347.01 35135.91 38571.55 373
test_vis1_rt60.28 33658.42 33965.84 35267.25 38155.60 32770.44 36160.94 38544.33 37359.00 36166.64 37524.91 37568.67 38362.80 24469.48 33773.25 371
MVS-HIRNet59.14 33757.67 34063.57 35581.65 30943.50 38071.73 35465.06 37939.59 37951.43 37657.73 38338.34 35082.58 33139.53 37073.95 31064.62 379
pmmvs357.79 33854.26 34368.37 34764.02 38456.72 31175.12 34465.17 37840.20 37752.93 37569.86 37420.36 38175.48 36845.45 35955.25 37472.90 372
DSMNet-mixed57.77 33956.90 34160.38 35967.70 38035.61 39069.18 36553.97 39132.30 38757.49 36779.88 33240.39 34468.57 38438.78 37372.37 32376.97 365
WB-MVS54.94 34054.72 34255.60 36773.50 36720.90 39974.27 34861.19 38459.16 33050.61 37774.15 36447.19 29875.78 36617.31 39135.07 38670.12 374
LCM-MVSNet54.25 34149.68 35167.97 34953.73 39345.28 37566.85 37380.78 31235.96 38339.45 38462.23 3798.70 39478.06 35148.24 34651.20 37880.57 357
mvsany_test353.99 34251.45 34761.61 35855.51 38944.74 37863.52 38045.41 39743.69 37458.11 36576.45 35617.99 38363.76 38854.77 31147.59 38176.34 367
SSC-MVS53.88 34353.59 34454.75 36972.87 37219.59 40073.84 35060.53 38657.58 34449.18 37973.45 36746.34 30675.47 36916.20 39432.28 38869.20 375
FPMVS53.68 34451.64 34659.81 36065.08 38351.03 35969.48 36469.58 36941.46 37640.67 38272.32 36916.46 38670.00 38224.24 38865.42 35358.40 384
APD_test153.31 34549.93 35063.42 35665.68 38250.13 36371.59 35566.90 37534.43 38440.58 38371.56 3718.65 39576.27 36234.64 37855.36 37363.86 380
N_pmnet52.79 34653.26 34551.40 37178.99 3457.68 40369.52 3633.89 40251.63 36457.01 36874.98 36340.83 34265.96 38637.78 37464.67 35580.56 358
test_f52.09 34750.82 34855.90 36553.82 39242.31 38559.42 38358.31 38936.45 38256.12 37270.96 37212.18 38957.79 39053.51 31756.57 37067.60 376
EGC-MVSNET52.07 34847.05 35267.14 35083.51 27260.71 26480.50 29467.75 3730.07 3970.43 39875.85 36124.26 37781.54 33628.82 38262.25 35959.16 382
new_pmnet50.91 34950.29 34952.78 37068.58 37934.94 39263.71 37956.63 39039.73 37844.95 38065.47 37621.93 38058.48 38934.98 37756.62 36964.92 378
ANet_high50.57 35046.10 35463.99 35448.67 39639.13 38870.99 35880.85 31161.39 31331.18 38657.70 38417.02 38573.65 37731.22 38115.89 39479.18 361
test_vis3_rt49.26 35147.02 35356.00 36454.30 39045.27 37666.76 37448.08 39436.83 38144.38 38153.20 3867.17 39764.07 38756.77 30355.66 37158.65 383
testf145.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
APD_test245.72 35241.96 35557.00 36256.90 38745.32 37366.14 37559.26 38726.19 38830.89 38760.96 3814.14 39870.64 38026.39 38646.73 38355.04 385
Gipumacopyleft45.18 35441.86 35755.16 36877.03 35351.52 35632.50 39080.52 31632.46 38627.12 38935.02 3909.52 39375.50 36722.31 38960.21 36638.45 389
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 35540.28 35855.82 36640.82 39842.54 38465.12 37863.99 38134.43 38424.48 39057.12 3853.92 40076.17 36417.10 39255.52 37248.75 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 35638.86 35946.69 37253.84 39116.45 40148.61 38749.92 39237.49 38031.67 38560.97 3808.14 39656.42 39128.42 38330.72 38967.19 377
E-PMN31.77 35730.64 36035.15 37552.87 39427.67 39457.09 38547.86 39524.64 39016.40 39533.05 39111.23 39154.90 39214.46 39518.15 39222.87 391
test_method31.52 35829.28 36238.23 37427.03 4006.50 40420.94 39262.21 3834.05 39522.35 39352.50 38713.33 38747.58 39427.04 38534.04 38760.62 381
EMVS30.81 35929.65 36134.27 37650.96 39525.95 39656.58 38646.80 39624.01 39115.53 39630.68 39212.47 38854.43 39312.81 39617.05 39322.43 392
MVEpermissive26.22 2330.37 36025.89 36443.81 37344.55 39735.46 39128.87 39139.07 39818.20 39218.58 39440.18 3892.68 40147.37 39517.07 39323.78 39148.60 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 36126.61 3630.00 3820.00 4040.00 4070.00 39389.26 1730.00 4000.00 40188.61 17461.62 1590.00 4010.00 4000.00 3990.00 397
tmp_tt18.61 36221.40 36510.23 3794.82 40110.11 40234.70 38930.74 4001.48 39623.91 39226.07 39328.42 37213.41 39827.12 38415.35 3957.17 393
wuyk23d16.82 36315.94 36619.46 37858.74 38631.45 39339.22 3883.74 4036.84 3946.04 3972.70 3971.27 40224.29 39710.54 39714.40 3962.63 394
ab-mvs-re7.23 3649.64 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40186.72 2240.00 4050.00 4010.00 4000.00 3990.00 397
test1236.12 3658.11 3680.14 3800.06 4030.09 40571.05 3570.03 4050.04 3990.25 4001.30 3990.05 4030.03 4000.21 3990.01 3980.29 395
testmvs6.04 3668.02 3690.10 3810.08 4020.03 40669.74 3620.04 4040.05 3980.31 3991.68 3980.02 4040.04 3990.24 3980.02 3970.25 396
pcd_1.5k_mvsjas5.26 3677.02 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40063.15 1360.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM88.97 473.65 1092.66 2391.17 11686.57 187.39 3394.97 1671.70 4997.68 192.19 195.63 2895.57 1
WAC-MVS42.58 38239.46 371
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24092.02 1294.00 4682.09 595.98 5184.58 4696.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 404
eth-test0.00 404
ZD-MVS94.38 2572.22 4492.67 6170.98 17987.75 3094.07 4174.01 3296.70 2784.66 4594.84 43
RE-MVS-def85.48 5293.06 5570.63 7391.88 3992.27 7673.53 13685.69 4794.45 2663.87 12782.75 6691.87 7992.50 114
IU-MVS95.30 271.25 5792.95 5166.81 24892.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5696.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
9.1488.26 1492.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3395.76 23
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 239
test_part295.06 872.65 3291.80 13
sam_mvs151.32 25988.96 239
sam_mvs50.01 272
ambc75.24 30073.16 37050.51 36263.05 38287.47 22564.28 34177.81 35017.80 38489.73 26457.88 29260.64 36485.49 309
MTGPAbinary92.02 85
test_post178.90 3155.43 39648.81 29285.44 31259.25 277
test_post5.46 39550.36 27084.24 319
patchmatchnet-post74.00 36551.12 26188.60 284
GG-mvs-BLEND75.38 29981.59 31155.80 32479.32 30769.63 36867.19 31673.67 36643.24 32688.90 28150.41 33084.50 16981.45 352
MTMP92.18 3532.83 399
gm-plane-assit81.40 31453.83 34262.72 30380.94 32292.39 19563.40 241
test9_res84.90 4095.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 23785.00 5593.10 6574.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23284.87 5993.10 6574.43 2695.16 76
agg_prior282.91 6495.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 6994.93 87
TestCases79.58 24985.15 23963.62 21979.83 32462.31 30660.32 35786.73 22232.02 36488.96 27950.28 33371.57 33086.15 299
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5793.54 5674.28 2983.31 5995.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18658.10 33987.04 3788.98 27774.07 147
新几何286.29 194
新几何183.42 14593.13 5270.71 7185.48 25457.43 34581.80 10591.98 8863.28 13192.27 20164.60 23592.99 6587.27 276
旧先验191.96 7165.79 17686.37 24293.08 6969.31 7592.74 6888.74 248
无先验87.48 15788.98 18660.00 32294.12 12167.28 21288.97 238
原ACMM286.86 175
原ACMM184.35 10793.01 5768.79 10592.44 6963.96 29081.09 11591.57 9966.06 10995.45 6367.19 21494.82 4588.81 245
test22291.50 7768.26 12284.16 24683.20 28854.63 35679.74 12791.63 9758.97 19191.42 8586.77 289
testdata291.01 24762.37 251
segment_acmp73.08 37
testdata79.97 23990.90 8664.21 21084.71 26159.27 32985.40 4992.91 7162.02 15589.08 27568.95 19791.37 8686.63 293
testdata184.14 24775.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9671.67 5096.16 4494.50 5093.54 77
plane_prior790.08 10268.51 118
plane_prior689.84 11168.70 11360.42 184
plane_prior592.44 6995.38 6978.71 10086.32 14991.33 147
plane_prior491.00 118
plane_prior368.60 11678.44 3178.92 139
plane_prior291.25 5079.12 23
plane_prior189.90 110
plane_prior68.71 11190.38 6777.62 3986.16 153
n20.00 406
nn0.00 406
door-mid69.98 367
lessismore_v078.97 25681.01 32157.15 30565.99 37661.16 35482.82 30339.12 34791.34 23659.67 27346.92 38288.43 254
LGP-MVS_train84.50 9989.23 13468.76 10791.94 9175.37 9476.64 19491.51 10054.29 22694.91 8878.44 10283.78 17989.83 212
test1192.23 79
door69.44 370
HQP5-MVS66.98 153
HQP-NCC89.33 12789.17 9876.41 7277.23 180
ACMP_Plane89.33 12789.17 9876.41 7277.23 180
BP-MVS77.47 112
HQP4-MVS77.24 17995.11 8091.03 159
HQP3-MVS92.19 8285.99 156
HQP2-MVS60.17 187
NP-MVS89.62 11468.32 12090.24 130
MDTV_nov1_ep13_2view37.79 38975.16 34255.10 35466.53 32549.34 28253.98 31487.94 260
MDTV_nov1_ep1369.97 28483.18 28053.48 34477.10 33180.18 32360.45 31769.33 29880.44 32648.89 29186.90 29951.60 32678.51 249
ACMMP++_ref81.95 209
ACMMP++81.25 215
Test By Simon64.33 123
ITE_SJBPF78.22 26881.77 30860.57 26683.30 28469.25 21667.54 31187.20 21336.33 35787.28 29854.34 31374.62 30586.80 288
DeepMVS_CXcopyleft27.40 37740.17 39926.90 39524.59 40117.44 39323.95 39148.61 3889.77 39226.48 39618.06 39024.47 39028.83 390