CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 57 | 76.62 67 | 83.68 75 | 94.46 25 | 67.93 83 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 78 |
|
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 85 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 45 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 47 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 58 | 77.33 45 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 75 |
|
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 71 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 174 | 93.37 57 | 60.40 179 | 96.75 22 | 77.20 105 | 93.73 63 | 95.29 2 |
|
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 32 | 76.78 62 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 57 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 34 | 76.78 62 | 84.66 59 | 94.52 21 | 68.81 79 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 60 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 38 | 76.73 65 | 84.45 62 | 94.52 21 | 69.09 76 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 76 | 94.17 38 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
X-MVStestdata | | | 80.37 137 | 77.83 171 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 45 | 79.14 21 | 83.67 76 | 12.47 352 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 80 | 76.87 59 | 82.81 87 | 94.25 36 | 66.44 97 | 96.24 39 | 82.88 59 | 94.28 58 | 93.38 72 |
|
ACMMP | | | 85.89 52 | 85.39 57 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 36 | 76.78 62 | 80.73 112 | 93.82 50 | 64.33 117 | 96.29 37 | 82.67 63 | 90.69 91 | 93.23 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
MP-MVS | | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 63 | 77.57 38 | 83.84 73 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 64 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 83 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
SMA-MVS | | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 102 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 28 | 76.89 58 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
HPM-MVS++ | | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 53 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 86 |
|
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 66 | 74.50 107 | 86.84 33 | 94.65 18 | 67.31 90 | 95.77 57 | 84.80 34 | 92.85 68 | 92.84 94 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 32 | 75.23 93 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 57 |
|
test_part1 | | | 80.58 132 | 78.97 145 | 85.40 76 | 86.75 206 | 69.46 101 | 92.32 26 | 93.13 37 | 66.72 230 | 76.67 173 | 87.81 178 | 56.73 202 | 95.01 89 | 75.34 123 | 75.27 276 | 91.73 127 |
|
EPP-MVSNet | | | 83.40 81 | 83.02 81 | 84.57 100 | 90.13 103 | 64.47 193 | 92.32 26 | 90.73 131 | 74.45 110 | 79.35 122 | 91.10 100 | 69.05 78 | 95.12 82 | 72.78 146 | 87.22 133 | 94.13 34 |
|
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 28 | 94.07 9 | 72.45 142 | 85.22 48 | 91.90 81 | 69.47 72 | 96.42 35 | 83.28 53 | 95.94 16 | 94.35 26 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 29 | 93.49 25 | 74.75 103 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
HPM-MVS | | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 30 | 93.33 31 | 76.07 80 | 83.81 74 | 93.95 48 | 69.77 70 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
MTMP | | | | | | | | 92.18 31 | 32.83 355 | | | | | | | | |
|
HPM-MVS_fast | | | 85.35 61 | 84.95 66 | 86.57 58 | 93.69 43 | 70.58 79 | 92.15 32 | 91.62 106 | 73.89 122 | 82.67 89 | 94.09 42 | 62.60 138 | 95.54 65 | 80.93 73 | 92.93 66 | 93.57 66 |
|
CPTT-MVS | | | 83.73 74 | 83.33 77 | 84.92 92 | 93.28 50 | 70.86 72 | 92.09 33 | 90.38 140 | 68.75 213 | 79.57 119 | 92.83 70 | 60.60 175 | 93.04 174 | 80.92 74 | 91.56 82 | 90.86 150 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 51 | 86.22 64 | 92.69 67 | 69.53 97 | 91.93 34 | 92.99 45 | 73.54 129 | 85.94 37 | 94.51 24 | 65.80 106 | 95.61 60 | 83.04 57 | 92.51 74 | 93.53 69 |
|
SR-MVS-dyc-post | | | 85.77 53 | 85.61 54 | 86.23 63 | 93.06 57 | 70.63 76 | 91.88 35 | 92.27 76 | 73.53 130 | 85.69 42 | 94.45 26 | 65.00 114 | 95.56 62 | 82.75 60 | 91.87 77 | 92.50 103 |
|
RE-MVS-def | | | | 85.48 55 | | 93.06 57 | 70.63 76 | 91.88 35 | 92.27 76 | 73.53 130 | 85.69 42 | 94.45 26 | 63.87 121 | | 82.75 60 | 91.87 77 | 92.50 103 |
|
APD-MVS | | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 37 | 92.83 54 | 73.01 139 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 96 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 38 | 93.19 35 | 77.87 33 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 138 | 87.63 14 | 94.27 59 | 93.65 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 90 | 91.79 39 | 92.28 75 | 75.07 97 | 86.40 35 | 94.58 20 | 65.00 114 | 95.56 62 | 84.34 41 | 92.60 72 | 92.90 92 |
|
DPE-MVS | | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 40 | 94.10 8 | 75.90 81 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
|
QAPM | | | 80.88 117 | 79.50 133 | 85.03 86 | 88.01 173 | 68.97 109 | 91.59 40 | 92.00 90 | 66.63 235 | 75.15 212 | 92.16 76 | 57.70 191 | 95.45 68 | 63.52 217 | 88.76 114 | 90.66 156 |
|
IS-MVSNet | | | 83.15 84 | 82.81 84 | 84.18 115 | 89.94 108 | 63.30 217 | 91.59 40 | 88.46 201 | 79.04 25 | 79.49 120 | 92.16 76 | 65.10 111 | 94.28 112 | 67.71 185 | 91.86 79 | 94.95 5 |
|
9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 43 | 94.75 1 | 73.93 121 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 56 | 86.77 20 | 95.76 24 | |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 44 | 94.70 3 | 74.47 108 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 45 | 92.35 73 | 74.62 106 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 46 | 93.04 39 | 76.62 67 | 84.22 67 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 75 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
HQP_MVS | | | 83.64 76 | 83.14 78 | 85.14 83 | 90.08 105 | 68.71 117 | 91.25 47 | 92.44 68 | 79.12 23 | 78.92 127 | 91.00 106 | 60.42 177 | 95.38 73 | 78.71 89 | 86.32 146 | 91.33 137 |
|
plane_prior2 | | | | | | | | 91.25 47 | | 79.12 23 | | | | | | | |
|
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 49 | 92.83 54 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
API-MVS | | | 81.99 100 | 81.23 104 | 84.26 113 | 90.94 90 | 70.18 87 | 91.10 50 | 89.32 170 | 71.51 160 | 78.66 132 | 88.28 168 | 65.26 109 | 95.10 86 | 64.74 213 | 91.23 87 | 87.51 253 |
|
EPNet | | | 83.72 75 | 82.92 83 | 86.14 66 | 84.22 241 | 69.48 98 | 91.05 51 | 85.27 245 | 81.30 7 | 76.83 168 | 91.65 85 | 66.09 101 | 95.56 62 | 76.00 117 | 93.85 62 | 93.38 72 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 52 | 93.59 21 | 76.27 77 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 53 | 93.56 22 | 73.95 119 | 83.16 81 | 91.07 102 | 75.94 15 | 95.19 80 | 79.94 83 | 94.38 56 | 93.55 67 |
|
abl_6 | | | 85.23 62 | 84.95 66 | 86.07 68 | 92.23 74 | 70.48 80 | 90.80 54 | 92.08 85 | 73.51 132 | 85.26 46 | 94.16 39 | 62.75 137 | 95.92 53 | 82.46 65 | 91.30 86 | 91.81 125 |
|
MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 104 | 91.93 78 | 70.24 81 | 90.71 55 | 92.86 52 | 77.46 44 | 84.22 67 | 92.81 72 | 67.16 92 | 92.94 176 | 80.36 79 | 94.35 57 | 90.16 175 |
|
3Dnovator | | 76.31 5 | 83.38 82 | 82.31 91 | 86.59 57 | 87.94 174 | 72.94 27 | 90.64 56 | 92.14 84 | 77.21 49 | 75.47 198 | 92.83 70 | 58.56 186 | 94.72 103 | 73.24 142 | 92.71 70 | 92.13 117 |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 57 | 94.05 13 | 70.80 169 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 50 | 95.77 22 | 94.72 15 |
|
OpenMVS | | 72.83 10 | 79.77 147 | 78.33 160 | 84.09 118 | 85.17 226 | 69.91 88 | 90.57 58 | 90.97 126 | 66.70 231 | 72.17 244 | 91.91 80 | 54.70 214 | 93.96 126 | 61.81 236 | 90.95 89 | 88.41 239 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 59 | 93.00 43 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
MVSFormer | | | 82.85 89 | 82.05 94 | 85.24 80 | 87.35 190 | 70.21 82 | 90.50 60 | 90.38 140 | 68.55 216 | 81.32 103 | 89.47 136 | 61.68 153 | 93.46 154 | 78.98 87 | 90.26 97 | 92.05 119 |
|
test_djsdf | | | 80.30 138 | 79.32 138 | 83.27 142 | 83.98 246 | 65.37 177 | 90.50 60 | 90.38 140 | 68.55 216 | 76.19 185 | 88.70 154 | 56.44 204 | 93.46 154 | 78.98 87 | 80.14 217 | 90.97 147 |
|
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 62 | 89.69 162 | 74.31 111 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 62 | 91.17 122 | 74.31 111 | | | | | | | |
|
nrg030 | | | 83.88 72 | 83.53 74 | 84.96 89 | 86.77 205 | 69.28 104 | 90.46 64 | 92.67 60 | 74.79 101 | 82.95 82 | 91.33 95 | 72.70 43 | 93.09 170 | 80.79 77 | 79.28 227 | 92.50 103 |
|
canonicalmvs | | | 85.91 51 | 85.87 52 | 86.04 69 | 89.84 110 | 69.44 103 | 90.45 65 | 93.00 43 | 76.70 66 | 88.01 25 | 91.23 96 | 73.28 38 | 93.91 133 | 81.50 69 | 88.80 113 | 94.77 14 |
|
plane_prior | | | | | | | 68.71 117 | 90.38 66 | | 77.62 36 | | | | | | 86.16 149 | |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 67 | 93.94 15 | 77.12 52 | 82.82 86 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 62 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Vis-MVSNet | | | 83.46 79 | 82.80 85 | 85.43 75 | 90.25 101 | 68.74 115 | 90.30 68 | 90.13 150 | 76.33 76 | 80.87 111 | 92.89 68 | 61.00 168 | 94.20 118 | 72.45 149 | 90.97 88 | 93.35 74 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
CS-MVS | | | 84.76 70 | 84.61 70 | 85.22 82 | 89.66 112 | 66.43 156 | 90.23 69 | 93.56 22 | 76.52 69 | 82.59 90 | 85.93 231 | 70.41 62 | 95.80 55 | 79.93 84 | 92.68 71 | 93.42 71 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 69 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 71 | 93.04 39 | 75.53 87 | 83.86 72 | 94.42 31 | 67.87 85 | 96.64 27 | 82.70 62 | 94.57 51 | 93.66 57 |
|
LPG-MVS_test | | | 82.08 97 | 81.27 103 | 84.50 102 | 89.23 132 | 68.76 113 | 90.22 71 | 91.94 94 | 75.37 91 | 76.64 175 | 91.51 90 | 54.29 217 | 94.91 93 | 78.44 92 | 83.78 169 | 89.83 196 |
|
Anonymous20231211 | | | 78.97 167 | 77.69 178 | 82.81 166 | 90.54 96 | 64.29 196 | 90.11 73 | 91.51 110 | 65.01 254 | 76.16 189 | 88.13 175 | 50.56 255 | 93.03 175 | 69.68 171 | 77.56 239 | 91.11 143 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 74 | 94.37 4 | 71.76 153 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
ACMM | | 73.20 8 | 80.78 127 | 79.84 125 | 83.58 132 | 89.31 129 | 68.37 125 | 89.99 75 | 91.60 107 | 70.28 180 | 77.25 160 | 89.66 129 | 53.37 225 | 93.53 152 | 74.24 130 | 82.85 184 | 88.85 226 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ACMP | | 74.13 6 | 81.51 110 | 80.57 112 | 84.36 108 | 89.42 120 | 68.69 120 | 89.97 76 | 91.50 113 | 74.46 109 | 75.04 216 | 90.41 115 | 53.82 222 | 94.54 105 | 77.56 101 | 82.91 183 | 89.86 195 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
LFMVS | | | 81.82 103 | 81.23 104 | 83.57 133 | 91.89 79 | 63.43 215 | 89.84 77 | 81.85 287 | 77.04 55 | 83.21 79 | 93.10 62 | 52.26 232 | 93.43 156 | 71.98 150 | 89.95 103 | 93.85 49 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 78 | 93.82 16 | 73.07 137 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
MAR-MVS | | | 81.84 102 | 80.70 110 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 78 | 90.92 127 | 69.77 189 | 78.50 134 | 86.21 227 | 62.36 144 | 94.52 107 | 65.36 207 | 92.05 75 | 89.77 199 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 80 | 93.50 24 | 75.17 96 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
UA-Net | | | 85.08 66 | 84.96 65 | 85.45 74 | 92.07 76 | 68.07 132 | 89.78 81 | 90.86 130 | 82.48 2 | 84.60 61 | 93.20 60 | 69.35 73 | 95.22 79 | 71.39 155 | 90.88 90 | 93.07 85 |
|
alignmvs | | | 85.48 57 | 85.32 59 | 85.96 70 | 89.51 118 | 69.47 99 | 89.74 82 | 92.47 67 | 76.17 78 | 87.73 28 | 91.46 93 | 70.32 64 | 93.78 138 | 81.51 68 | 88.95 110 | 94.63 18 |
|
VDDNet | | | 81.52 108 | 80.67 111 | 84.05 120 | 90.44 98 | 64.13 199 | 89.73 83 | 85.91 241 | 71.11 164 | 83.18 80 | 93.48 54 | 50.54 256 | 93.49 153 | 73.40 139 | 88.25 121 | 94.54 22 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 104 | 70.94 69 | 89.70 84 | 92.59 65 | 81.78 4 | 81.32 103 | 91.43 94 | 70.34 63 | 97.23 9 | 84.26 42 | 93.36 64 | 94.37 25 |
|
114514_t | | | 80.68 128 | 79.51 132 | 84.20 114 | 94.09 36 | 67.27 145 | 89.64 85 | 91.11 124 | 58.75 309 | 74.08 226 | 90.72 110 | 58.10 188 | 95.04 88 | 69.70 170 | 89.42 108 | 90.30 171 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 86 | 93.39 30 | 77.53 42 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
UGNet | | | 80.83 121 | 79.59 131 | 84.54 101 | 88.04 171 | 68.09 131 | 89.42 87 | 88.16 203 | 76.95 56 | 76.22 184 | 89.46 138 | 49.30 270 | 93.94 129 | 68.48 180 | 90.31 95 | 91.60 128 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
AdaColmap | | | 80.58 132 | 79.42 134 | 84.06 119 | 93.09 56 | 68.91 110 | 89.36 88 | 88.97 187 | 69.27 198 | 75.70 195 | 89.69 128 | 57.20 199 | 95.77 57 | 63.06 223 | 88.41 120 | 87.50 254 |
|
mvs-test1 | | | 80.88 117 | 79.40 135 | 85.29 78 | 85.13 229 | 69.75 93 | 89.28 89 | 88.10 205 | 74.99 98 | 76.44 180 | 86.72 207 | 57.27 197 | 94.26 117 | 73.53 135 | 83.18 180 | 91.87 122 |
|
PS-MVSNAJss | | | 82.07 98 | 81.31 102 | 84.34 110 | 86.51 209 | 67.27 145 | 89.27 90 | 91.51 110 | 71.75 154 | 79.37 121 | 90.22 119 | 63.15 131 | 94.27 113 | 77.69 100 | 82.36 191 | 91.49 133 |
|
jajsoiax | | | 79.29 159 | 77.96 166 | 83.27 142 | 84.68 235 | 66.57 155 | 89.25 91 | 90.16 149 | 69.20 202 | 75.46 200 | 89.49 135 | 45.75 293 | 93.13 168 | 76.84 110 | 80.80 206 | 90.11 179 |
|
mvs_tets | | | 79.13 162 | 77.77 174 | 83.22 146 | 84.70 234 | 66.37 158 | 89.17 92 | 90.19 148 | 69.38 196 | 75.40 203 | 89.46 138 | 44.17 301 | 93.15 166 | 76.78 111 | 80.70 208 | 90.14 176 |
|
HQP-NCC | | | | | | 89.33 124 | | 89.17 92 | | 76.41 70 | 77.23 162 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 124 | | 89.17 92 | | 76.41 70 | 77.23 162 | | | | | | |
|
HQP-MVS | | | 82.61 92 | 82.02 95 | 84.37 107 | 89.33 124 | 66.98 149 | 89.17 92 | 92.19 82 | 76.41 70 | 77.23 162 | 90.23 118 | 60.17 180 | 95.11 83 | 77.47 102 | 85.99 151 | 91.03 144 |
|
LS3D | | | 76.95 210 | 74.82 222 | 83.37 139 | 90.45 97 | 67.36 144 | 89.15 96 | 86.94 227 | 61.87 285 | 69.52 272 | 90.61 112 | 51.71 244 | 94.53 106 | 46.38 323 | 86.71 141 | 88.21 241 |
|
OPM-MVS | | | 83.50 78 | 82.95 82 | 85.14 83 | 88.79 149 | 70.95 68 | 89.13 97 | 91.52 109 | 77.55 41 | 80.96 110 | 91.75 83 | 60.71 171 | 94.50 108 | 79.67 85 | 86.51 144 | 89.97 191 |
|
TSAR-MVS + GP. | | | 85.71 55 | 85.33 58 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 98 | 87.28 224 | 76.41 70 | 85.80 40 | 90.22 119 | 74.15 34 | 95.37 76 | 81.82 67 | 91.88 76 | 92.65 100 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 99 | | | | | | | | | |
|
Anonymous20240529 | | | 80.19 141 | 78.89 147 | 84.10 117 | 90.60 95 | 64.75 187 | 88.95 100 | 90.90 128 | 65.97 243 | 80.59 113 | 91.17 99 | 49.97 261 | 93.73 144 | 69.16 176 | 82.70 188 | 93.81 53 |
|
VDD-MVS | | | 83.01 88 | 82.36 90 | 84.96 89 | 91.02 89 | 66.40 157 | 88.91 101 | 88.11 204 | 77.57 38 | 84.39 65 | 93.29 59 | 52.19 233 | 93.91 133 | 77.05 107 | 88.70 115 | 94.57 21 |
|
Effi-MVS+ | | | 83.62 77 | 83.08 79 | 85.24 80 | 88.38 162 | 67.45 140 | 88.89 102 | 89.15 178 | 75.50 88 | 82.27 91 | 88.28 168 | 69.61 71 | 94.45 109 | 77.81 99 | 87.84 123 | 93.84 51 |
|
ACMH+ | | 68.96 14 | 76.01 224 | 74.01 231 | 82.03 183 | 88.60 154 | 65.31 178 | 88.86 103 | 87.55 218 | 70.25 181 | 67.75 283 | 87.47 188 | 41.27 315 | 93.19 164 | 58.37 265 | 75.94 261 | 87.60 251 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 95 | 88.85 104 | 92.97 48 | 75.41 89 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 66 | 83.31 50 | 95.86 18 | 93.91 45 |
|
test_prior2 | | | | | | | | 88.85 104 | | 75.41 89 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 50 | 95.86 18 | |
|
DP-MVS Recon | | | 83.11 86 | 82.09 93 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 106 | 92.20 81 | 70.53 176 | 79.17 123 | 91.03 105 | 64.12 119 | 96.03 47 | 68.39 182 | 90.14 99 | 91.50 132 |
|
Effi-MVS+-dtu | | | 80.03 143 | 78.57 152 | 84.42 105 | 85.13 229 | 68.74 115 | 88.77 107 | 88.10 205 | 74.99 98 | 74.97 217 | 83.49 272 | 57.27 197 | 93.36 157 | 73.53 135 | 80.88 204 | 91.18 141 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.44 218 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 71 | | | |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.69 214 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 71 | 84.97 29 | 95.71 26 | 93.02 88 |
|
ETV-MVS | | | 84.90 69 | 84.67 69 | 85.59 73 | 89.39 122 | 68.66 121 | 88.74 110 | 92.64 64 | 79.97 17 | 84.10 69 | 85.71 236 | 69.32 74 | 95.38 73 | 80.82 75 | 91.37 84 | 92.72 95 |
|
PVSNet_Blended_VisFu | | | 82.62 91 | 81.83 99 | 84.96 89 | 90.80 94 | 69.76 92 | 88.74 110 | 91.70 105 | 69.39 195 | 78.96 125 | 88.46 163 | 65.47 108 | 94.87 98 | 74.42 127 | 88.57 116 | 90.24 173 |
|
RRT_MVS | | | 79.88 146 | 78.38 157 | 84.38 106 | 85.42 223 | 70.60 78 | 88.71 112 | 88.75 196 | 72.30 147 | 78.83 129 | 89.14 144 | 44.44 299 | 92.18 199 | 78.50 91 | 79.33 226 | 90.35 169 |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 113 | 91.84 99 | 68.69 214 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 81 | | | |
|
ACMH | | 67.68 16 | 75.89 225 | 73.93 232 | 81.77 188 | 88.71 152 | 66.61 154 | 88.62 114 | 89.01 184 | 69.81 187 | 66.78 295 | 86.70 212 | 41.95 314 | 91.51 220 | 55.64 282 | 78.14 235 | 87.17 262 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 115 | 91.78 102 | 68.96 209 | 84.41 63 | 93.18 61 | 74.94 23 | 94.93 91 | 84.75 35 | 95.33 34 | 93.01 89 |
|
CDPH-MVS | | | 85.76 54 | 85.29 61 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 116 | 92.42 71 | 68.32 219 | 84.61 60 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 86 | 95.43 30 | 94.28 30 |
|
DP-MVS | | | 76.78 212 | 74.57 224 | 83.42 136 | 93.29 49 | 69.46 101 | 88.55 117 | 83.70 262 | 63.98 266 | 70.20 260 | 88.89 151 | 54.01 221 | 94.80 100 | 46.66 320 | 81.88 196 | 86.01 285 |
|
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 124 | 70.93 70 | 88.43 118 | 91.39 115 | 82.14 3 | 86.65 34 | 90.09 121 | 74.39 29 | 95.01 89 | 83.97 47 | 90.63 92 | 93.97 43 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 124 | 71.24 62 | 88.43 118 | 92.05 86 | 82.50 1 | 86.88 32 | 90.09 121 | 74.45 26 | 95.61 60 | 84.38 39 | 90.63 92 | 94.01 41 |
|
WR-MVS_H | | | 78.51 176 | 78.49 153 | 78.56 249 | 88.02 172 | 56.38 302 | 88.43 118 | 92.67 60 | 77.14 51 | 73.89 227 | 87.55 185 | 66.25 99 | 89.24 261 | 58.92 259 | 73.55 293 | 90.06 185 |
|
F-COLMAP | | | 76.38 220 | 74.33 229 | 82.50 176 | 89.28 130 | 66.95 152 | 88.41 121 | 89.03 182 | 64.05 264 | 66.83 294 | 88.61 158 | 46.78 283 | 92.89 177 | 57.48 272 | 78.55 229 | 87.67 249 |
|
GBi-Net | | | 78.40 177 | 77.40 182 | 81.40 196 | 87.60 185 | 63.01 223 | 88.39 122 | 89.28 171 | 71.63 156 | 75.34 205 | 87.28 191 | 54.80 210 | 91.11 228 | 62.72 224 | 79.57 220 | 90.09 181 |
|
test1 | | | 78.40 177 | 77.40 182 | 81.40 196 | 87.60 185 | 63.01 223 | 88.39 122 | 89.28 171 | 71.63 156 | 75.34 205 | 87.28 191 | 54.80 210 | 91.11 228 | 62.72 224 | 79.57 220 | 90.09 181 |
|
FMVSNet1 | | | 77.44 202 | 76.12 208 | 81.40 196 | 86.81 204 | 63.01 223 | 88.39 122 | 89.28 171 | 70.49 177 | 74.39 223 | 87.28 191 | 49.06 273 | 91.11 228 | 60.91 243 | 78.52 230 | 90.09 181 |
|
tttt0517 | | | 79.40 156 | 77.91 168 | 83.90 129 | 88.10 169 | 63.84 203 | 88.37 125 | 84.05 258 | 71.45 161 | 76.78 170 | 89.12 146 | 49.93 264 | 94.89 96 | 70.18 165 | 83.18 180 | 92.96 91 |
|
v7n | | | 78.97 167 | 77.58 180 | 83.14 149 | 83.45 254 | 65.51 172 | 88.32 126 | 91.21 120 | 73.69 125 | 72.41 241 | 86.32 226 | 57.93 189 | 93.81 137 | 69.18 175 | 75.65 264 | 90.11 179 |
|
COLMAP_ROB | | 66.92 17 | 73.01 255 | 70.41 265 | 80.81 212 | 87.13 199 | 65.63 170 | 88.30 127 | 84.19 257 | 62.96 273 | 63.80 315 | 87.69 181 | 38.04 328 | 92.56 186 | 46.66 320 | 74.91 280 | 84.24 303 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
Regformer-3 | | | 85.23 62 | 85.07 63 | 85.70 72 | 88.95 141 | 69.01 107 | 88.29 128 | 89.91 156 | 80.95 8 | 85.01 49 | 90.01 123 | 72.45 45 | 94.19 119 | 82.50 64 | 87.57 125 | 93.90 47 |
|
Regformer-4 | | | 85.68 56 | 85.45 56 | 86.35 59 | 88.95 141 | 69.67 94 | 88.29 128 | 91.29 117 | 81.73 5 | 85.36 45 | 90.01 123 | 72.62 44 | 95.35 77 | 83.28 53 | 87.57 125 | 94.03 39 |
|
FIs | | | 82.07 98 | 82.42 87 | 81.04 208 | 88.80 148 | 58.34 271 | 88.26 130 | 93.49 25 | 76.93 57 | 78.47 136 | 91.04 103 | 69.92 68 | 92.34 194 | 69.87 169 | 84.97 157 | 92.44 107 |
|
EIA-MVS | | | 83.31 83 | 82.80 85 | 84.82 94 | 89.59 114 | 65.59 171 | 88.21 131 | 92.68 59 | 74.66 105 | 78.96 125 | 86.42 223 | 69.06 77 | 95.26 78 | 75.54 122 | 90.09 100 | 93.62 64 |
|
PLC | | 70.83 11 | 78.05 189 | 76.37 206 | 83.08 152 | 91.88 80 | 67.80 136 | 88.19 132 | 89.46 167 | 64.33 262 | 69.87 269 | 88.38 165 | 53.66 223 | 93.58 147 | 58.86 260 | 82.73 186 | 87.86 246 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
MG-MVS | | | 83.41 80 | 83.45 75 | 83.28 141 | 92.74 66 | 62.28 233 | 88.17 133 | 89.50 166 | 75.22 94 | 81.49 102 | 92.74 73 | 66.75 93 | 95.11 83 | 72.85 145 | 91.58 81 | 92.45 106 |
|
TAPA-MVS | | 73.13 9 | 79.15 161 | 77.94 167 | 82.79 169 | 89.59 114 | 62.99 226 | 88.16 134 | 91.51 110 | 65.77 244 | 77.14 165 | 91.09 101 | 60.91 169 | 93.21 161 | 50.26 303 | 87.05 135 | 92.17 116 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
PS-CasMVS | | | 78.01 191 | 78.09 164 | 77.77 261 | 87.71 182 | 54.39 316 | 88.02 135 | 91.22 119 | 77.50 43 | 73.26 231 | 88.64 157 | 60.73 170 | 88.41 275 | 61.88 234 | 73.88 290 | 90.53 163 |
|
OMC-MVS | | | 82.69 90 | 81.97 97 | 84.85 93 | 88.75 151 | 67.42 141 | 87.98 136 | 90.87 129 | 74.92 100 | 79.72 118 | 91.65 85 | 62.19 148 | 93.96 126 | 75.26 124 | 86.42 145 | 93.16 83 |
|
v8 | | | 79.97 145 | 79.02 144 | 82.80 167 | 84.09 243 | 64.50 192 | 87.96 137 | 90.29 147 | 74.13 118 | 75.24 210 | 86.81 204 | 62.88 136 | 93.89 135 | 74.39 128 | 75.40 271 | 90.00 187 |
|
FC-MVSNet-test | | | 81.52 108 | 82.02 95 | 80.03 225 | 88.42 161 | 55.97 307 | 87.95 138 | 93.42 29 | 77.10 53 | 77.38 157 | 90.98 108 | 69.96 67 | 91.79 211 | 68.46 181 | 84.50 162 | 92.33 108 |
|
CP-MVSNet | | | 78.22 182 | 78.34 159 | 77.84 259 | 87.83 177 | 54.54 314 | 87.94 139 | 91.17 122 | 77.65 35 | 73.48 229 | 88.49 162 | 62.24 147 | 88.43 274 | 62.19 230 | 74.07 286 | 90.55 162 |
|
PAPM_NR | | | 83.02 87 | 82.41 88 | 84.82 94 | 92.47 72 | 66.37 158 | 87.93 140 | 91.80 100 | 73.82 123 | 77.32 159 | 90.66 111 | 67.90 84 | 94.90 95 | 70.37 163 | 89.48 107 | 93.19 82 |
|
PEN-MVS | | | 77.73 196 | 77.69 178 | 77.84 259 | 87.07 200 | 53.91 318 | 87.91 141 | 91.18 121 | 77.56 40 | 73.14 233 | 88.82 153 | 61.23 163 | 89.17 262 | 59.95 249 | 72.37 298 | 90.43 166 |
|
v10 | | | 79.74 148 | 78.67 149 | 82.97 159 | 84.06 244 | 64.95 184 | 87.88 142 | 90.62 133 | 73.11 136 | 75.11 213 | 86.56 219 | 61.46 157 | 94.05 125 | 73.68 133 | 75.55 266 | 89.90 193 |
|
casdiffmvs | | | 85.11 65 | 85.14 62 | 85.01 87 | 87.20 197 | 65.77 169 | 87.75 143 | 92.83 54 | 77.84 34 | 84.36 66 | 92.38 74 | 72.15 48 | 93.93 132 | 81.27 71 | 90.48 94 | 95.33 1 |
|
TranMVSNet+NR-MVSNet | | | 80.84 119 | 80.31 118 | 82.42 177 | 87.85 176 | 62.33 231 | 87.74 144 | 91.33 116 | 80.55 11 | 77.99 147 | 89.86 125 | 65.23 110 | 92.62 183 | 67.05 195 | 75.24 278 | 92.30 110 |
|
EI-MVSNet-Vis-set | | | 84.19 71 | 83.81 73 | 85.31 77 | 88.18 166 | 67.85 135 | 87.66 145 | 89.73 161 | 80.05 16 | 82.95 82 | 89.59 133 | 70.74 60 | 94.82 99 | 80.66 78 | 84.72 160 | 93.28 77 |
|
UniMVSNet (Re) | | | 81.60 107 | 81.11 106 | 83.09 151 | 88.38 162 | 64.41 194 | 87.60 146 | 93.02 42 | 78.42 31 | 78.56 133 | 88.16 171 | 69.78 69 | 93.26 160 | 69.58 172 | 76.49 252 | 91.60 128 |
|
CNLPA | | | 78.08 187 | 76.79 196 | 81.97 185 | 90.40 99 | 71.07 64 | 87.59 147 | 84.55 252 | 66.03 242 | 72.38 242 | 89.64 130 | 57.56 193 | 86.04 293 | 59.61 252 | 83.35 177 | 88.79 229 |
|
DTE-MVSNet | | | 76.99 208 | 76.80 195 | 77.54 266 | 86.24 211 | 53.06 322 | 87.52 148 | 90.66 132 | 77.08 54 | 72.50 239 | 88.67 156 | 60.48 176 | 89.52 256 | 57.33 275 | 70.74 309 | 90.05 186 |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 149 | 88.98 185 | 60.00 297 | | | | 94.12 122 | 67.28 190 | | 88.97 221 |
|
FMVSNet2 | | | 78.20 184 | 77.21 186 | 81.20 203 | 87.60 185 | 62.89 227 | 87.47 150 | 89.02 183 | 71.63 156 | 75.29 209 | 87.28 191 | 54.80 210 | 91.10 231 | 62.38 228 | 79.38 224 | 89.61 203 |
|
EI-MVSNet-UG-set | | | 83.81 73 | 83.38 76 | 85.09 85 | 87.87 175 | 67.53 139 | 87.44 151 | 89.66 163 | 79.74 18 | 82.23 92 | 89.41 142 | 70.24 65 | 94.74 102 | 79.95 82 | 83.92 168 | 92.99 90 |
|
thisisatest0530 | | | 79.40 156 | 77.76 175 | 84.31 111 | 87.69 184 | 65.10 183 | 87.36 152 | 84.26 256 | 70.04 183 | 77.42 156 | 88.26 170 | 49.94 262 | 94.79 101 | 70.20 164 | 84.70 161 | 93.03 87 |
|
CANet_DTU | | | 80.61 129 | 79.87 124 | 82.83 164 | 85.60 220 | 63.17 222 | 87.36 152 | 88.65 197 | 76.37 74 | 75.88 192 | 88.44 164 | 53.51 224 | 93.07 171 | 73.30 140 | 89.74 105 | 92.25 112 |
|
baseline | | | 84.93 67 | 84.98 64 | 84.80 96 | 87.30 195 | 65.39 176 | 87.30 154 | 92.88 51 | 77.62 36 | 84.04 71 | 92.26 75 | 71.81 50 | 93.96 126 | 81.31 70 | 90.30 96 | 95.03 4 |
|
UniMVSNet_ETH3D | | | 79.10 163 | 78.24 162 | 81.70 189 | 86.85 202 | 60.24 257 | 87.28 155 | 88.79 191 | 74.25 114 | 76.84 167 | 90.53 114 | 49.48 267 | 91.56 217 | 67.98 183 | 82.15 192 | 93.29 76 |
|
anonymousdsp | | | 78.60 174 | 77.15 187 | 82.98 158 | 80.51 307 | 67.08 147 | 87.24 156 | 89.53 165 | 65.66 246 | 75.16 211 | 87.19 197 | 52.52 227 | 92.25 196 | 77.17 106 | 79.34 225 | 89.61 203 |
|
UniMVSNet_NR-MVSNet | | | 81.88 101 | 81.54 101 | 82.92 160 | 88.46 159 | 63.46 213 | 87.13 157 | 92.37 72 | 80.19 14 | 78.38 137 | 89.14 144 | 71.66 53 | 93.05 172 | 70.05 166 | 76.46 253 | 92.25 112 |
|
DPM-MVS | | | 84.93 67 | 84.29 72 | 86.84 50 | 90.20 102 | 73.04 22 | 87.12 158 | 93.04 39 | 69.80 188 | 82.85 85 | 91.22 97 | 73.06 41 | 96.02 48 | 76.72 112 | 94.63 49 | 91.46 135 |
|
v1144 | | | 80.03 143 | 79.03 143 | 83.01 156 | 83.78 249 | 64.51 190 | 87.11 159 | 90.57 135 | 71.96 152 | 78.08 146 | 86.20 228 | 61.41 158 | 93.94 129 | 74.93 125 | 77.23 241 | 90.60 159 |
|
v2v482 | | | 80.23 139 | 79.29 139 | 83.05 154 | 83.62 251 | 64.14 198 | 87.04 160 | 89.97 153 | 73.61 126 | 78.18 143 | 87.22 195 | 61.10 166 | 93.82 136 | 76.11 115 | 76.78 250 | 91.18 141 |
|
DU-MVS | | | 81.12 115 | 80.52 114 | 82.90 161 | 87.80 178 | 63.46 213 | 87.02 161 | 91.87 98 | 79.01 26 | 78.38 137 | 89.07 147 | 65.02 112 | 93.05 172 | 70.05 166 | 76.46 253 | 92.20 114 |
|
v144192 | | | 79.47 153 | 78.37 158 | 82.78 170 | 83.35 255 | 63.96 201 | 86.96 162 | 90.36 143 | 69.99 184 | 77.50 154 | 85.67 238 | 60.66 173 | 93.77 140 | 74.27 129 | 76.58 251 | 90.62 157 |
|
Fast-Effi-MVS+-dtu | | | 78.02 190 | 76.49 203 | 82.62 174 | 83.16 263 | 66.96 151 | 86.94 163 | 87.45 222 | 72.45 142 | 71.49 251 | 84.17 261 | 54.79 213 | 91.58 216 | 67.61 186 | 80.31 214 | 89.30 209 |
|
v1192 | | | 79.59 150 | 78.43 156 | 83.07 153 | 83.55 253 | 64.52 189 | 86.93 164 | 90.58 134 | 70.83 168 | 77.78 150 | 85.90 232 | 59.15 183 | 93.94 129 | 73.96 132 | 77.19 243 | 90.76 152 |
|
EPNet_dtu | | | 75.46 231 | 74.86 221 | 77.23 271 | 82.57 278 | 54.60 313 | 86.89 165 | 83.09 275 | 71.64 155 | 66.25 300 | 85.86 234 | 55.99 205 | 88.04 279 | 54.92 284 | 86.55 143 | 89.05 216 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
原ACMM2 | | | | | | | | 86.86 166 | | | | | | | | | |
|
VPA-MVSNet | | | 80.60 130 | 80.55 113 | 80.76 213 | 88.07 170 | 60.80 250 | 86.86 166 | 91.58 108 | 75.67 86 | 80.24 115 | 89.45 140 | 63.34 125 | 90.25 245 | 70.51 162 | 79.22 228 | 91.23 140 |
|
v1921920 | | | 79.22 160 | 78.03 165 | 82.80 167 | 83.30 257 | 63.94 202 | 86.80 168 | 90.33 144 | 69.91 186 | 77.48 155 | 85.53 241 | 58.44 187 | 93.75 142 | 73.60 134 | 76.85 248 | 90.71 155 |
|
IterMVS-LS | | | 80.06 142 | 79.38 136 | 82.11 181 | 85.89 215 | 63.20 220 | 86.79 169 | 89.34 169 | 74.19 115 | 75.45 201 | 86.72 207 | 66.62 94 | 92.39 191 | 72.58 147 | 76.86 247 | 90.75 153 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
TransMVSNet (Re) | | | 75.39 234 | 74.56 225 | 77.86 258 | 85.50 222 | 57.10 290 | 86.78 170 | 86.09 240 | 72.17 149 | 71.53 250 | 87.34 190 | 63.01 135 | 89.31 260 | 56.84 278 | 61.83 329 | 87.17 262 |
|
Baseline_NR-MVSNet | | | 78.15 186 | 78.33 160 | 77.61 264 | 85.79 216 | 56.21 305 | 86.78 170 | 85.76 242 | 73.60 127 | 77.93 148 | 87.57 184 | 65.02 112 | 88.99 265 | 67.14 194 | 75.33 273 | 87.63 250 |
|
PAPR | | | 81.66 106 | 80.89 109 | 83.99 125 | 90.27 100 | 64.00 200 | 86.76 172 | 91.77 104 | 68.84 212 | 77.13 166 | 89.50 134 | 67.63 86 | 94.88 97 | 67.55 187 | 88.52 118 | 93.09 84 |
|
Vis-MVSNet (Re-imp) | | | 78.36 180 | 78.45 154 | 78.07 257 | 88.64 153 | 51.78 325 | 86.70 173 | 79.63 308 | 74.14 117 | 75.11 213 | 90.83 109 | 61.29 162 | 89.75 252 | 58.10 268 | 91.60 80 | 92.69 98 |
|
pmmvs6 | | | 74.69 237 | 73.39 237 | 78.61 248 | 81.38 296 | 57.48 286 | 86.64 174 | 87.95 210 | 64.99 255 | 70.18 261 | 86.61 215 | 50.43 257 | 89.52 256 | 62.12 232 | 70.18 311 | 88.83 227 |
|
v1240 | | | 78.99 166 | 77.78 173 | 82.64 173 | 83.21 259 | 63.54 210 | 86.62 175 | 90.30 146 | 69.74 192 | 77.33 158 | 85.68 237 | 57.04 200 | 93.76 141 | 73.13 143 | 76.92 245 | 90.62 157 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 176 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 78 |
|
旧先验2 | | | | | | | | 86.56 177 | | 58.10 311 | 87.04 31 | | | 88.98 266 | 74.07 131 | | |
|
RRT_test8_iter05 | | | 78.38 179 | 77.40 182 | 81.34 199 | 86.00 214 | 58.86 266 | 86.55 178 | 91.26 118 | 72.13 151 | 75.91 190 | 87.42 189 | 44.97 296 | 93.73 144 | 77.02 108 | 75.30 274 | 91.45 136 |
|
FMVSNet3 | | | 77.88 194 | 76.85 194 | 80.97 209 | 86.84 203 | 62.36 230 | 86.52 179 | 88.77 192 | 71.13 163 | 75.34 205 | 86.66 214 | 54.07 220 | 91.10 231 | 62.72 224 | 79.57 220 | 89.45 206 |
|
pm-mvs1 | | | 77.25 206 | 76.68 201 | 78.93 244 | 84.22 241 | 58.62 269 | 86.41 180 | 88.36 202 | 71.37 162 | 73.31 230 | 88.01 176 | 61.22 164 | 89.15 263 | 64.24 215 | 73.01 295 | 89.03 217 |
|
EI-MVSNet | | | 80.52 134 | 79.98 122 | 82.12 180 | 84.28 239 | 63.19 221 | 86.41 180 | 88.95 188 | 74.18 116 | 78.69 130 | 87.54 186 | 66.62 94 | 92.43 189 | 72.57 148 | 80.57 210 | 90.74 154 |
|
CVMVSNet | | | 72.99 256 | 72.58 245 | 74.25 295 | 84.28 239 | 50.85 331 | 86.41 180 | 83.45 269 | 44.56 338 | 73.23 232 | 87.54 186 | 49.38 268 | 85.70 295 | 65.90 203 | 78.44 232 | 86.19 280 |
|
NR-MVSNet | | | 80.23 139 | 79.38 136 | 82.78 170 | 87.80 178 | 63.34 216 | 86.31 183 | 91.09 125 | 79.01 26 | 72.17 244 | 89.07 147 | 67.20 91 | 92.81 182 | 66.08 202 | 75.65 264 | 92.20 114 |
|
v148 | | | 78.72 171 | 77.80 172 | 81.47 194 | 82.73 274 | 61.96 237 | 86.30 184 | 88.08 207 | 73.26 135 | 76.18 186 | 85.47 243 | 62.46 142 | 92.36 193 | 71.92 151 | 73.82 291 | 90.09 181 |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 185 | | | | | | | | | |
|
test_yl | | | 81.17 113 | 80.47 115 | 83.24 144 | 89.13 136 | 63.62 206 | 86.21 186 | 89.95 154 | 72.43 145 | 81.78 99 | 89.61 131 | 57.50 194 | 93.58 147 | 70.75 158 | 86.90 137 | 92.52 101 |
|
DCV-MVSNet | | | 81.17 113 | 80.47 115 | 83.24 144 | 89.13 136 | 63.62 206 | 86.21 186 | 89.95 154 | 72.43 145 | 81.78 99 | 89.61 131 | 57.50 194 | 93.58 147 | 70.75 158 | 86.90 137 | 92.52 101 |
|
PVSNet_BlendedMVS | | | 80.60 130 | 80.02 121 | 82.36 179 | 88.85 143 | 65.40 174 | 86.16 188 | 92.00 90 | 69.34 197 | 78.11 144 | 86.09 230 | 66.02 103 | 94.27 113 | 71.52 152 | 82.06 193 | 87.39 255 |
|
MVS_Test | | | 83.15 84 | 83.06 80 | 83.41 138 | 86.86 201 | 63.21 219 | 86.11 189 | 92.00 90 | 74.31 111 | 82.87 84 | 89.44 141 | 70.03 66 | 93.21 161 | 77.39 104 | 88.50 119 | 93.81 53 |
|
BH-untuned | | | 79.47 153 | 78.60 151 | 82.05 182 | 89.19 134 | 65.91 165 | 86.07 190 | 88.52 200 | 72.18 148 | 75.42 202 | 87.69 181 | 61.15 165 | 93.54 151 | 60.38 246 | 86.83 139 | 86.70 273 |
|
MVS_111021_HR | | | 85.14 64 | 84.75 68 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 191 | 90.33 144 | 76.11 79 | 82.08 93 | 91.61 88 | 71.36 55 | 94.17 121 | 81.02 72 | 92.58 73 | 92.08 118 |
|
jason | | | 81.39 111 | 80.29 119 | 84.70 98 | 86.63 208 | 69.90 89 | 85.95 192 | 86.77 229 | 63.24 269 | 81.07 109 | 89.47 136 | 61.08 167 | 92.15 200 | 78.33 95 | 90.07 102 | 92.05 119 |
jason: jason. |
test_0402 | | | 72.79 258 | 70.44 264 | 79.84 229 | 88.13 167 | 65.99 163 | 85.93 193 | 84.29 254 | 65.57 247 | 67.40 288 | 85.49 242 | 46.92 282 | 92.61 184 | 35.88 341 | 74.38 285 | 80.94 325 |
|
OurMVSNet-221017-0 | | | 74.26 240 | 72.42 247 | 79.80 230 | 83.76 250 | 59.59 262 | 85.92 194 | 86.64 230 | 66.39 237 | 66.96 291 | 87.58 183 | 39.46 322 | 91.60 215 | 65.76 205 | 69.27 313 | 88.22 240 |
|
EG-PatchMatch MVS | | | 74.04 243 | 71.82 252 | 80.71 214 | 84.92 232 | 67.42 141 | 85.86 195 | 88.08 207 | 66.04 241 | 64.22 312 | 83.85 265 | 35.10 336 | 92.56 186 | 57.44 273 | 80.83 205 | 82.16 321 |
|
thres100view900 | | | 76.50 215 | 75.55 212 | 79.33 238 | 89.52 117 | 56.99 291 | 85.83 196 | 83.23 272 | 73.94 120 | 76.32 182 | 87.12 199 | 51.89 241 | 91.95 206 | 48.33 311 | 83.75 171 | 89.07 211 |
|
CLD-MVS | | | 82.31 94 | 81.65 100 | 84.29 112 | 88.47 158 | 67.73 138 | 85.81 197 | 92.35 73 | 75.78 82 | 78.33 139 | 86.58 218 | 64.01 120 | 94.35 110 | 76.05 116 | 87.48 130 | 90.79 151 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
SixPastTwentyTwo | | | 73.37 249 | 71.26 258 | 79.70 231 | 85.08 231 | 57.89 279 | 85.57 198 | 83.56 265 | 71.03 166 | 65.66 302 | 85.88 233 | 42.10 312 | 92.57 185 | 59.11 257 | 63.34 328 | 88.65 233 |
|
xiu_mvs_v1_base_debu | | | 80.80 124 | 79.72 128 | 84.03 122 | 87.35 190 | 70.19 84 | 85.56 199 | 88.77 192 | 69.06 205 | 81.83 95 | 88.16 171 | 50.91 250 | 92.85 178 | 78.29 96 | 87.56 127 | 89.06 213 |
|
xiu_mvs_v1_base | | | 80.80 124 | 79.72 128 | 84.03 122 | 87.35 190 | 70.19 84 | 85.56 199 | 88.77 192 | 69.06 205 | 81.83 95 | 88.16 171 | 50.91 250 | 92.85 178 | 78.29 96 | 87.56 127 | 89.06 213 |
|
xiu_mvs_v1_base_debi | | | 80.80 124 | 79.72 128 | 84.03 122 | 87.35 190 | 70.19 84 | 85.56 199 | 88.77 192 | 69.06 205 | 81.83 95 | 88.16 171 | 50.91 250 | 92.85 178 | 78.29 96 | 87.56 127 | 89.06 213 |
|
V42 | | | 79.38 158 | 78.24 162 | 82.83 164 | 81.10 301 | 65.50 173 | 85.55 202 | 89.82 157 | 71.57 159 | 78.21 141 | 86.12 229 | 60.66 173 | 93.18 165 | 75.64 119 | 75.46 269 | 89.81 198 |
|
lupinMVS | | | 81.39 111 | 80.27 120 | 84.76 97 | 87.35 190 | 70.21 82 | 85.55 202 | 86.41 233 | 62.85 275 | 81.32 103 | 88.61 158 | 61.68 153 | 92.24 197 | 78.41 94 | 90.26 97 | 91.83 123 |
|
Fast-Effi-MVS+ | | | 80.81 122 | 79.92 123 | 83.47 134 | 88.85 143 | 64.51 190 | 85.53 204 | 89.39 168 | 70.79 170 | 78.49 135 | 85.06 252 | 67.54 87 | 93.58 147 | 67.03 196 | 86.58 142 | 92.32 109 |
|
thres600view7 | | | 76.50 215 | 75.44 213 | 79.68 232 | 89.40 121 | 57.16 288 | 85.53 204 | 83.23 272 | 73.79 124 | 76.26 183 | 87.09 200 | 51.89 241 | 91.89 209 | 48.05 316 | 83.72 174 | 90.00 187 |
|
DELS-MVS | | | 85.41 60 | 85.30 60 | 85.77 71 | 88.49 157 | 67.93 134 | 85.52 206 | 93.44 27 | 78.70 28 | 83.63 78 | 89.03 149 | 74.57 25 | 95.71 59 | 80.26 81 | 94.04 61 | 93.66 57 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
tfpn200view9 | | | 76.42 218 | 75.37 217 | 79.55 237 | 89.13 136 | 57.65 283 | 85.17 207 | 83.60 263 | 73.41 133 | 76.45 177 | 86.39 224 | 52.12 234 | 91.95 206 | 48.33 311 | 83.75 171 | 89.07 211 |
|
thres400 | | | 76.50 215 | 75.37 217 | 79.86 228 | 89.13 136 | 57.65 283 | 85.17 207 | 83.60 263 | 73.41 133 | 76.45 177 | 86.39 224 | 52.12 234 | 91.95 206 | 48.33 311 | 83.75 171 | 90.00 187 |
|
MVS_111021_LR | | | 82.61 92 | 82.11 92 | 84.11 116 | 88.82 146 | 71.58 56 | 85.15 209 | 86.16 238 | 74.69 104 | 80.47 114 | 91.04 103 | 62.29 145 | 90.55 242 | 80.33 80 | 90.08 101 | 90.20 174 |
|
baseline1 | | | 76.98 209 | 76.75 199 | 77.66 262 | 88.13 167 | 55.66 310 | 85.12 210 | 81.89 285 | 73.04 138 | 76.79 169 | 88.90 150 | 62.43 143 | 87.78 282 | 63.30 221 | 71.18 307 | 89.55 205 |
|
WR-MVS | | | 79.49 152 | 79.22 141 | 80.27 222 | 88.79 149 | 58.35 270 | 85.06 211 | 88.61 199 | 78.56 29 | 77.65 152 | 88.34 166 | 63.81 123 | 90.66 241 | 64.98 211 | 77.22 242 | 91.80 126 |
|
ET-MVSNet_ETH3D | | | 78.63 173 | 76.63 202 | 84.64 99 | 86.73 207 | 69.47 99 | 85.01 212 | 84.61 251 | 69.54 193 | 66.51 298 | 86.59 216 | 50.16 259 | 91.75 212 | 76.26 114 | 84.24 166 | 92.69 98 |
|
OpenMVS_ROB | | 64.09 19 | 70.56 272 | 68.19 277 | 77.65 263 | 80.26 308 | 59.41 264 | 85.01 212 | 82.96 277 | 58.76 308 | 65.43 304 | 82.33 284 | 37.63 330 | 91.23 227 | 45.34 328 | 76.03 260 | 82.32 319 |
|
BH-RMVSNet | | | 79.61 149 | 78.44 155 | 83.14 149 | 89.38 123 | 65.93 164 | 84.95 214 | 87.15 225 | 73.56 128 | 78.19 142 | 89.79 127 | 56.67 203 | 93.36 157 | 59.53 253 | 86.74 140 | 90.13 177 |
|
BH-w/o | | | 78.21 183 | 77.33 185 | 80.84 211 | 88.81 147 | 65.13 182 | 84.87 215 | 87.85 214 | 69.75 190 | 74.52 222 | 84.74 256 | 61.34 160 | 93.11 169 | 58.24 267 | 85.84 153 | 84.27 302 |
|
TDRefinement | | | 67.49 289 | 64.34 298 | 76.92 273 | 73.47 340 | 61.07 246 | 84.86 216 | 82.98 276 | 59.77 299 | 58.30 331 | 85.13 250 | 26.06 343 | 87.89 280 | 47.92 317 | 60.59 333 | 81.81 323 |
|
Anonymous202405211 | | | 78.25 181 | 77.01 189 | 81.99 184 | 91.03 88 | 60.67 251 | 84.77 217 | 83.90 260 | 70.65 175 | 80.00 116 | 91.20 98 | 41.08 317 | 91.43 221 | 65.21 208 | 85.26 155 | 93.85 49 |
|
TAMVS | | | 78.89 169 | 77.51 181 | 83.03 155 | 87.80 178 | 67.79 137 | 84.72 218 | 85.05 248 | 67.63 221 | 76.75 171 | 87.70 180 | 62.25 146 | 90.82 237 | 58.53 264 | 87.13 134 | 90.49 164 |
|
1314 | | | 76.53 214 | 75.30 219 | 80.21 223 | 83.93 247 | 62.32 232 | 84.66 219 | 88.81 190 | 60.23 295 | 70.16 263 | 84.07 263 | 55.30 208 | 90.73 240 | 67.37 189 | 83.21 179 | 87.59 252 |
|
1121 | | | 80.84 119 | 79.77 126 | 84.05 120 | 93.11 55 | 70.78 73 | 84.66 219 | 85.42 244 | 57.37 317 | 81.76 101 | 92.02 78 | 63.41 124 | 94.12 122 | 67.28 190 | 92.93 66 | 87.26 260 |
|
MVS | | | 78.19 185 | 76.99 191 | 81.78 187 | 85.66 218 | 66.99 148 | 84.66 219 | 90.47 138 | 55.08 327 | 72.02 246 | 85.27 246 | 63.83 122 | 94.11 124 | 66.10 201 | 89.80 104 | 84.24 303 |
|
tfpnnormal | | | 74.39 238 | 73.16 241 | 78.08 256 | 86.10 213 | 58.05 274 | 84.65 222 | 87.53 219 | 70.32 179 | 71.22 253 | 85.63 239 | 54.97 209 | 89.86 250 | 43.03 332 | 75.02 279 | 86.32 277 |
|
TR-MVS | | | 77.44 202 | 76.18 207 | 81.20 203 | 88.24 165 | 63.24 218 | 84.61 223 | 86.40 234 | 67.55 223 | 77.81 149 | 86.48 222 | 54.10 219 | 93.15 166 | 57.75 271 | 82.72 187 | 87.20 261 |
|
AllTest | | | 70.96 268 | 68.09 280 | 79.58 235 | 85.15 227 | 63.62 206 | 84.58 224 | 79.83 306 | 62.31 281 | 60.32 325 | 86.73 205 | 32.02 339 | 88.96 268 | 50.28 301 | 71.57 305 | 86.15 281 |
|
EU-MVSNet | | | 68.53 286 | 67.61 288 | 71.31 308 | 78.51 324 | 47.01 340 | 84.47 225 | 84.27 255 | 42.27 339 | 66.44 299 | 84.79 255 | 40.44 320 | 83.76 304 | 58.76 262 | 68.54 318 | 83.17 312 |
|
VNet | | | 82.21 95 | 82.41 88 | 81.62 190 | 90.82 93 | 60.93 247 | 84.47 225 | 89.78 158 | 76.36 75 | 84.07 70 | 91.88 82 | 64.71 116 | 90.26 244 | 70.68 160 | 88.89 111 | 93.66 57 |
|
xiu_mvs_v2_base | | | 81.69 104 | 81.05 107 | 83.60 131 | 89.15 135 | 68.03 133 | 84.46 227 | 90.02 152 | 70.67 173 | 81.30 106 | 86.53 221 | 63.17 130 | 94.19 119 | 75.60 121 | 88.54 117 | 88.57 235 |
|
VPNet | | | 78.69 172 | 78.66 150 | 78.76 246 | 88.31 164 | 55.72 309 | 84.45 228 | 86.63 231 | 76.79 61 | 78.26 140 | 90.55 113 | 59.30 182 | 89.70 254 | 66.63 197 | 77.05 244 | 90.88 149 |
|
PVSNet_Blended | | | 80.98 116 | 80.34 117 | 82.90 161 | 88.85 143 | 65.40 174 | 84.43 229 | 92.00 90 | 67.62 222 | 78.11 144 | 85.05 253 | 66.02 103 | 94.27 113 | 71.52 152 | 89.50 106 | 89.01 218 |
|
MVP-Stereo | | | 76.12 222 | 74.46 228 | 81.13 206 | 85.37 224 | 69.79 91 | 84.42 230 | 87.95 210 | 65.03 253 | 67.46 286 | 85.33 245 | 53.28 226 | 91.73 214 | 58.01 269 | 83.27 178 | 81.85 322 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
CDS-MVSNet | | | 79.07 164 | 77.70 177 | 83.17 148 | 87.60 185 | 68.23 129 | 84.40 231 | 86.20 237 | 67.49 224 | 76.36 181 | 86.54 220 | 61.54 156 | 90.79 238 | 61.86 235 | 87.33 131 | 90.49 164 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
K. test v3 | | | 71.19 266 | 68.51 274 | 79.21 241 | 83.04 266 | 57.78 282 | 84.35 232 | 76.91 321 | 72.90 141 | 62.99 318 | 82.86 278 | 39.27 323 | 91.09 233 | 61.65 237 | 52.66 341 | 88.75 230 |
|
PS-MVSNAJ | | | 81.69 104 | 81.02 108 | 83.70 130 | 89.51 118 | 68.21 130 | 84.28 233 | 90.09 151 | 70.79 170 | 81.26 107 | 85.62 240 | 63.15 131 | 94.29 111 | 75.62 120 | 88.87 112 | 88.59 234 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 234 | 83.20 274 | 54.63 328 | 79.74 117 | 91.63 87 | 58.97 184 | | | 91.42 83 | 86.77 271 |
|
testdata1 | | | | | | | | 84.14 235 | | 75.71 83 | | | | | | | |
|
MVS_0304 | | | 72.48 259 | 70.89 261 | 77.24 270 | 82.20 284 | 59.68 260 | 84.11 236 | 83.49 267 | 67.10 226 | 66.87 293 | 80.59 300 | 35.00 337 | 87.40 284 | 59.07 258 | 79.58 219 | 84.63 300 |
|
testing_2 | | | 75.73 227 | 73.34 239 | 82.89 163 | 77.37 328 | 65.22 179 | 84.10 237 | 90.54 136 | 69.09 204 | 60.46 324 | 81.15 294 | 40.48 319 | 92.84 181 | 76.36 113 | 80.54 212 | 90.60 159 |
|
cl_fuxian | | | 78.75 170 | 77.91 168 | 81.26 201 | 82.89 271 | 61.56 242 | 84.09 238 | 89.13 180 | 69.97 185 | 75.56 196 | 84.29 260 | 66.36 98 | 92.09 202 | 73.47 138 | 75.48 268 | 90.12 178 |
|
MVSTER | | | 79.01 165 | 77.88 170 | 82.38 178 | 83.07 264 | 64.80 186 | 84.08 239 | 88.95 188 | 69.01 208 | 78.69 130 | 87.17 198 | 54.70 214 | 92.43 189 | 74.69 126 | 80.57 210 | 89.89 194 |
|
ab-mvs | | | 79.51 151 | 78.97 145 | 81.14 205 | 88.46 159 | 60.91 248 | 83.84 240 | 89.24 175 | 70.36 178 | 79.03 124 | 88.87 152 | 63.23 129 | 90.21 246 | 65.12 209 | 82.57 189 | 92.28 111 |
|
PAPM | | | 77.68 199 | 76.40 205 | 81.51 193 | 87.29 196 | 61.85 238 | 83.78 241 | 89.59 164 | 64.74 256 | 71.23 252 | 88.70 154 | 62.59 139 | 93.66 146 | 52.66 293 | 87.03 136 | 89.01 218 |
|
diffmvs | | | 82.10 96 | 81.88 98 | 82.76 172 | 83.00 267 | 63.78 205 | 83.68 242 | 89.76 159 | 72.94 140 | 82.02 94 | 89.85 126 | 65.96 105 | 90.79 238 | 82.38 66 | 87.30 132 | 93.71 56 |
|
miper_ehance_all_eth | | | 78.59 175 | 77.76 175 | 81.08 207 | 82.66 276 | 61.56 242 | 83.65 243 | 89.15 178 | 68.87 211 | 75.55 197 | 83.79 268 | 66.49 96 | 92.03 203 | 73.25 141 | 76.39 255 | 89.64 202 |
|
1112_ss | | | 77.40 204 | 76.43 204 | 80.32 221 | 89.11 140 | 60.41 256 | 83.65 243 | 87.72 216 | 62.13 283 | 73.05 234 | 86.72 207 | 62.58 140 | 89.97 249 | 62.11 233 | 80.80 206 | 90.59 161 |
|
PCF-MVS | | 73.52 7 | 80.38 136 | 78.84 148 | 85.01 87 | 87.71 182 | 68.99 108 | 83.65 243 | 91.46 114 | 63.00 272 | 77.77 151 | 90.28 116 | 66.10 100 | 95.09 87 | 61.40 239 | 88.22 122 | 90.94 148 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
XVG-ACMP-BASELINE | | | 76.11 223 | 74.27 230 | 81.62 190 | 83.20 260 | 64.67 188 | 83.60 246 | 89.75 160 | 69.75 190 | 71.85 247 | 87.09 200 | 32.78 338 | 92.11 201 | 69.99 168 | 80.43 213 | 88.09 242 |
|
cl-mvsnet2 | | | 78.07 188 | 77.01 189 | 81.23 202 | 82.37 283 | 61.83 239 | 83.55 247 | 87.98 209 | 68.96 209 | 75.06 215 | 83.87 264 | 61.40 159 | 91.88 210 | 73.53 135 | 76.39 255 | 89.98 190 |
|
XVG-OURS-SEG-HR | | | 80.81 122 | 79.76 127 | 83.96 127 | 85.60 220 | 68.78 112 | 83.54 248 | 90.50 137 | 70.66 174 | 76.71 172 | 91.66 84 | 60.69 172 | 91.26 225 | 76.94 109 | 81.58 198 | 91.83 123 |
|
IB-MVS | | 68.01 15 | 75.85 226 | 73.36 238 | 83.31 140 | 84.76 233 | 66.03 161 | 83.38 249 | 85.06 247 | 70.21 182 | 69.40 273 | 81.05 295 | 45.76 292 | 94.66 104 | 65.10 210 | 75.49 267 | 89.25 210 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
HY-MVS | | 69.67 12 | 77.95 192 | 77.15 187 | 80.36 219 | 87.57 189 | 60.21 258 | 83.37 250 | 87.78 215 | 66.11 239 | 75.37 204 | 87.06 202 | 63.27 127 | 90.48 243 | 61.38 240 | 82.43 190 | 90.40 168 |
|
eth_miper_zixun_eth | | | 77.92 193 | 76.69 200 | 81.61 192 | 83.00 267 | 61.98 236 | 83.15 251 | 89.20 177 | 69.52 194 | 74.86 219 | 84.35 259 | 61.76 152 | 92.56 186 | 71.50 154 | 72.89 296 | 90.28 172 |
|
cl-mvsnet_ | | | 77.72 197 | 76.76 197 | 80.58 215 | 82.49 280 | 60.48 254 | 83.09 252 | 87.87 212 | 69.22 200 | 74.38 224 | 85.22 248 | 62.10 149 | 91.53 218 | 71.09 156 | 75.41 270 | 89.73 201 |
|
cl-mvsnet1 | | | 77.72 197 | 76.76 197 | 80.58 215 | 82.48 281 | 60.48 254 | 83.09 252 | 87.86 213 | 69.22 200 | 74.38 224 | 85.24 247 | 62.10 149 | 91.53 218 | 71.09 156 | 75.40 271 | 89.74 200 |
|
thres200 | | | 75.55 230 | 74.47 227 | 78.82 245 | 87.78 181 | 57.85 280 | 83.07 254 | 83.51 266 | 72.44 144 | 75.84 193 | 84.42 258 | 52.08 236 | 91.75 212 | 47.41 318 | 83.64 175 | 86.86 269 |
|
XVG-OURS | | | 80.41 135 | 79.23 140 | 83.97 126 | 85.64 219 | 69.02 106 | 83.03 255 | 90.39 139 | 71.09 165 | 77.63 153 | 91.49 92 | 54.62 216 | 91.35 223 | 75.71 118 | 83.47 176 | 91.54 130 |
|
miper_enhance_ethall | | | 77.87 195 | 76.86 193 | 80.92 210 | 81.65 290 | 61.38 244 | 82.68 256 | 88.98 185 | 65.52 248 | 75.47 198 | 82.30 285 | 65.76 107 | 92.00 205 | 72.95 144 | 76.39 255 | 89.39 207 |
|
mvs_anonymous | | | 79.42 155 | 79.11 142 | 80.34 220 | 84.45 238 | 57.97 277 | 82.59 257 | 87.62 217 | 67.40 225 | 76.17 188 | 88.56 161 | 68.47 80 | 89.59 255 | 70.65 161 | 86.05 150 | 93.47 70 |
|
baseline2 | | | 75.70 228 | 73.83 235 | 81.30 200 | 83.26 258 | 61.79 240 | 82.57 258 | 80.65 296 | 66.81 227 | 66.88 292 | 83.42 273 | 57.86 190 | 92.19 198 | 63.47 218 | 79.57 220 | 89.91 192 |
|
DWT-MVSNet_test | | | 73.70 246 | 71.86 251 | 79.21 241 | 82.91 270 | 58.94 265 | 82.34 259 | 82.17 282 | 65.21 249 | 71.05 255 | 78.31 315 | 44.21 300 | 90.17 247 | 63.29 222 | 77.28 240 | 88.53 236 |
|
cascas | | | 76.72 213 | 74.64 223 | 82.99 157 | 85.78 217 | 65.88 166 | 82.33 260 | 89.21 176 | 60.85 291 | 72.74 236 | 81.02 296 | 47.28 280 | 93.75 142 | 67.48 188 | 85.02 156 | 89.34 208 |
|
RPSCF | | | 73.23 253 | 71.46 254 | 78.54 250 | 82.50 279 | 59.85 259 | 82.18 261 | 82.84 278 | 58.96 306 | 71.15 254 | 89.41 142 | 45.48 295 | 84.77 301 | 58.82 261 | 71.83 303 | 91.02 146 |
|
thisisatest0515 | | | 77.33 205 | 75.38 216 | 83.18 147 | 85.27 225 | 63.80 204 | 82.11 262 | 83.27 271 | 65.06 252 | 75.91 190 | 83.84 266 | 49.54 266 | 94.27 113 | 67.24 192 | 86.19 148 | 91.48 134 |
|
pmmvs-eth3d | | | 70.50 273 | 67.83 284 | 78.52 251 | 77.37 328 | 66.18 160 | 81.82 263 | 81.51 289 | 58.90 307 | 63.90 314 | 80.42 302 | 42.69 308 | 86.28 292 | 58.56 263 | 65.30 325 | 83.11 314 |
|
MS-PatchMatch | | | 73.83 245 | 72.67 244 | 77.30 269 | 83.87 248 | 66.02 162 | 81.82 263 | 84.66 250 | 61.37 289 | 68.61 279 | 82.82 279 | 47.29 279 | 88.21 276 | 59.27 254 | 84.32 165 | 77.68 334 |
|
pmmvs5 | | | 71.55 264 | 70.20 267 | 75.61 282 | 77.83 325 | 56.39 301 | 81.74 265 | 80.89 292 | 57.76 313 | 67.46 286 | 84.49 257 | 49.26 271 | 85.32 299 | 57.08 277 | 75.29 275 | 85.11 295 |
|
Test_1112_low_res | | | 76.40 219 | 75.44 213 | 79.27 239 | 89.28 130 | 58.09 273 | 81.69 266 | 87.07 226 | 59.53 302 | 72.48 240 | 86.67 213 | 61.30 161 | 89.33 259 | 60.81 245 | 80.15 216 | 90.41 167 |
|
IterMVS | | | 74.29 239 | 72.94 243 | 78.35 253 | 81.53 293 | 63.49 212 | 81.58 267 | 82.49 280 | 68.06 220 | 69.99 266 | 83.69 270 | 51.66 245 | 85.54 296 | 65.85 204 | 71.64 304 | 86.01 285 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
IterMVS-SCA-FT | | | 75.43 232 | 73.87 234 | 80.11 224 | 82.69 275 | 64.85 185 | 81.57 268 | 83.47 268 | 69.16 203 | 70.49 257 | 84.15 262 | 51.95 239 | 88.15 277 | 69.23 174 | 72.14 301 | 87.34 257 |
|
pmmvs4 | | | 74.03 244 | 71.91 250 | 80.39 218 | 81.96 287 | 68.32 126 | 81.45 269 | 82.14 283 | 59.32 303 | 69.87 269 | 85.13 250 | 52.40 230 | 88.13 278 | 60.21 248 | 74.74 282 | 84.73 299 |
|
GA-MVS | | | 76.87 211 | 75.17 220 | 81.97 185 | 82.75 273 | 62.58 228 | 81.44 270 | 86.35 236 | 72.16 150 | 74.74 220 | 82.89 277 | 46.20 288 | 92.02 204 | 68.85 179 | 81.09 202 | 91.30 139 |
|
CostFormer | | | 75.24 235 | 73.90 233 | 79.27 239 | 82.65 277 | 58.27 272 | 80.80 271 | 82.73 279 | 61.57 286 | 75.33 208 | 83.13 275 | 55.52 206 | 91.07 234 | 64.98 211 | 78.34 234 | 88.45 237 |
|
MIMVSNet1 | | | 68.58 285 | 66.78 292 | 73.98 297 | 80.07 311 | 51.82 324 | 80.77 272 | 84.37 253 | 64.40 260 | 59.75 328 | 82.16 288 | 36.47 332 | 83.63 306 | 42.73 333 | 70.33 310 | 86.48 276 |
|
MSDG | | | 73.36 251 | 70.99 259 | 80.49 217 | 84.51 237 | 65.80 167 | 80.71 273 | 86.13 239 | 65.70 245 | 65.46 303 | 83.74 269 | 44.60 297 | 90.91 236 | 51.13 298 | 76.89 246 | 84.74 298 |
|
tpm2 | | | 73.26 252 | 71.46 254 | 78.63 247 | 83.34 256 | 56.71 296 | 80.65 274 | 80.40 301 | 56.63 321 | 73.55 228 | 82.02 289 | 51.80 243 | 91.24 226 | 56.35 280 | 78.42 233 | 87.95 243 |
|
XXY-MVS | | | 75.41 233 | 75.56 211 | 74.96 288 | 83.59 252 | 57.82 281 | 80.59 275 | 83.87 261 | 66.54 236 | 74.93 218 | 88.31 167 | 63.24 128 | 80.09 319 | 62.16 231 | 76.85 248 | 86.97 267 |
|
HyFIR lowres test | | | 77.53 201 | 75.40 215 | 83.94 128 | 89.59 114 | 66.62 153 | 80.36 276 | 88.64 198 | 56.29 323 | 76.45 177 | 85.17 249 | 57.64 192 | 93.28 159 | 61.34 241 | 83.10 182 | 91.91 121 |
|
D2MVS | | | 74.82 236 | 73.21 240 | 79.64 234 | 79.81 314 | 62.56 229 | 80.34 277 | 87.35 223 | 64.37 261 | 68.86 276 | 82.66 281 | 46.37 285 | 90.10 248 | 67.91 184 | 81.24 201 | 86.25 278 |
|
TinyColmap | | | 67.30 292 | 64.81 296 | 74.76 291 | 81.92 288 | 56.68 297 | 80.29 278 | 81.49 290 | 60.33 293 | 56.27 337 | 83.22 274 | 24.77 344 | 87.66 283 | 45.52 326 | 69.47 312 | 79.95 329 |
|
LCM-MVSNet-Re | | | 77.05 207 | 76.94 192 | 77.36 267 | 87.20 197 | 51.60 326 | 80.06 279 | 80.46 300 | 75.20 95 | 67.69 284 | 86.72 207 | 62.48 141 | 88.98 266 | 63.44 219 | 89.25 109 | 91.51 131 |
|
FMVSNet5 | | | 69.50 280 | 67.96 281 | 74.15 296 | 82.97 269 | 55.35 311 | 80.01 280 | 82.12 284 | 62.56 279 | 63.02 316 | 81.53 291 | 36.92 331 | 81.92 313 | 48.42 310 | 74.06 287 | 85.17 294 |
|
SCA | | | 74.22 241 | 72.33 248 | 79.91 227 | 84.05 245 | 62.17 234 | 79.96 281 | 79.29 310 | 66.30 238 | 72.38 242 | 80.13 304 | 51.95 239 | 88.60 272 | 59.25 255 | 77.67 238 | 88.96 222 |
|
tpmrst | | | 72.39 260 | 72.13 249 | 73.18 300 | 80.54 306 | 49.91 334 | 79.91 282 | 79.08 311 | 63.11 270 | 71.69 249 | 79.95 306 | 55.32 207 | 82.77 311 | 65.66 206 | 73.89 289 | 86.87 268 |
|
PatchmatchNet | | | 73.12 254 | 71.33 256 | 78.49 252 | 83.18 261 | 60.85 249 | 79.63 283 | 78.57 312 | 64.13 263 | 71.73 248 | 79.81 309 | 51.20 248 | 85.97 294 | 57.40 274 | 76.36 258 | 88.66 232 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
PatchMatch-RL | | | 72.38 261 | 70.90 260 | 76.80 275 | 88.60 154 | 67.38 143 | 79.53 284 | 76.17 323 | 62.75 277 | 69.36 274 | 82.00 290 | 45.51 294 | 84.89 300 | 53.62 289 | 80.58 209 | 78.12 333 |
|
CMPMVS | | 51.72 21 | 70.19 276 | 68.16 278 | 76.28 277 | 73.15 342 | 57.55 285 | 79.47 285 | 83.92 259 | 48.02 337 | 56.48 336 | 84.81 254 | 43.13 305 | 86.42 291 | 62.67 227 | 81.81 197 | 84.89 296 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
GG-mvs-BLEND | | | | | 75.38 286 | 81.59 292 | 55.80 308 | 79.32 286 | 69.63 338 | | 67.19 289 | 73.67 332 | 43.24 304 | 88.90 270 | 50.41 300 | 84.50 162 | 81.45 324 |
|
LTVRE_ROB | | 69.57 13 | 76.25 221 | 74.54 226 | 81.41 195 | 88.60 154 | 64.38 195 | 79.24 287 | 89.12 181 | 70.76 172 | 69.79 271 | 87.86 177 | 49.09 272 | 93.20 163 | 56.21 281 | 80.16 215 | 86.65 274 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
tpm | | | 72.37 262 | 71.71 253 | 74.35 294 | 82.19 285 | 52.00 323 | 79.22 288 | 77.29 319 | 64.56 258 | 72.95 235 | 83.68 271 | 51.35 246 | 83.26 309 | 58.33 266 | 75.80 262 | 87.81 247 |
|
ppachtmachnet_test | | | 70.04 277 | 67.34 289 | 78.14 255 | 79.80 315 | 61.13 245 | 79.19 289 | 80.59 297 | 59.16 305 | 65.27 305 | 79.29 310 | 46.75 284 | 87.29 285 | 49.33 307 | 66.72 320 | 86.00 287 |
|
USDC | | | 70.33 274 | 68.37 275 | 76.21 278 | 80.60 305 | 56.23 304 | 79.19 289 | 86.49 232 | 60.89 290 | 61.29 321 | 85.47 243 | 31.78 341 | 89.47 258 | 53.37 290 | 76.21 259 | 82.94 318 |
|
PM-MVS | | | 66.41 297 | 64.14 299 | 73.20 299 | 73.92 337 | 56.45 299 | 78.97 291 | 64.96 347 | 63.88 268 | 64.72 309 | 80.24 303 | 19.84 348 | 83.44 307 | 66.24 198 | 64.52 327 | 79.71 330 |
|
tpmvs | | | 71.09 267 | 69.29 270 | 76.49 276 | 82.04 286 | 56.04 306 | 78.92 292 | 81.37 291 | 64.05 264 | 67.18 290 | 78.28 316 | 49.74 265 | 89.77 251 | 49.67 306 | 72.37 298 | 83.67 308 |
|
test_post1 | | | | | | | | 78.90 293 | | | | 5.43 354 | 48.81 275 | 85.44 298 | 59.25 255 | | |
|
CHOSEN 1792x2688 | | | 77.63 200 | 75.69 209 | 83.44 135 | 89.98 107 | 68.58 123 | 78.70 294 | 87.50 220 | 56.38 322 | 75.80 194 | 86.84 203 | 58.67 185 | 91.40 222 | 61.58 238 | 85.75 154 | 90.34 170 |
|
test-LLR | | | 72.94 257 | 72.43 246 | 74.48 292 | 81.35 297 | 58.04 275 | 78.38 295 | 77.46 317 | 66.66 232 | 69.95 267 | 79.00 313 | 48.06 276 | 79.24 320 | 66.13 199 | 84.83 158 | 86.15 281 |
|
TESTMET0.1,1 | | | 69.89 279 | 69.00 272 | 72.55 301 | 79.27 322 | 56.85 292 | 78.38 295 | 74.71 329 | 57.64 314 | 68.09 281 | 77.19 323 | 37.75 329 | 76.70 331 | 63.92 216 | 84.09 167 | 84.10 306 |
|
test-mter | | | 71.41 265 | 70.39 266 | 74.48 292 | 81.35 297 | 58.04 275 | 78.38 295 | 77.46 317 | 60.32 294 | 69.95 267 | 79.00 313 | 36.08 334 | 79.24 320 | 66.13 199 | 84.83 158 | 86.15 281 |
|
Anonymous20231206 | | | 68.60 284 | 67.80 285 | 71.02 309 | 80.23 309 | 50.75 332 | 78.30 298 | 80.47 299 | 56.79 320 | 66.11 301 | 82.63 282 | 46.35 286 | 78.95 322 | 43.62 331 | 75.70 263 | 83.36 311 |
|
tpm cat1 | | | 70.57 271 | 68.31 276 | 77.35 268 | 82.41 282 | 57.95 278 | 78.08 299 | 80.22 304 | 52.04 333 | 68.54 280 | 77.66 321 | 52.00 238 | 87.84 281 | 51.77 294 | 72.07 302 | 86.25 278 |
|
our_test_3 | | | 69.14 282 | 67.00 290 | 75.57 283 | 79.80 315 | 58.80 267 | 77.96 300 | 77.81 315 | 59.55 301 | 62.90 319 | 78.25 317 | 47.43 278 | 83.97 303 | 51.71 295 | 67.58 319 | 83.93 307 |
|
WTY-MVS | | | 75.65 229 | 75.68 210 | 75.57 283 | 86.40 210 | 56.82 293 | 77.92 301 | 82.40 281 | 65.10 251 | 76.18 186 | 87.72 179 | 63.13 134 | 80.90 316 | 60.31 247 | 81.96 194 | 89.00 220 |
|
test20.03 | | | 67.45 290 | 66.95 291 | 68.94 315 | 75.48 336 | 44.84 342 | 77.50 302 | 77.67 316 | 66.66 232 | 63.01 317 | 83.80 267 | 47.02 281 | 78.40 324 | 42.53 334 | 68.86 317 | 83.58 309 |
|
EPMVS | | | 69.02 283 | 68.16 278 | 71.59 303 | 79.61 318 | 49.80 336 | 77.40 303 | 66.93 343 | 62.82 276 | 70.01 264 | 79.05 311 | 45.79 291 | 77.86 328 | 56.58 279 | 75.26 277 | 87.13 264 |
|
gg-mvs-nofinetune | | | 69.95 278 | 67.96 281 | 75.94 279 | 83.07 264 | 54.51 315 | 77.23 304 | 70.29 336 | 63.11 270 | 70.32 259 | 62.33 339 | 43.62 303 | 88.69 271 | 53.88 288 | 87.76 124 | 84.62 301 |
|
MDTV_nov1_ep13 | | | | 69.97 268 | | 83.18 261 | 53.48 320 | 77.10 305 | 80.18 305 | 60.45 292 | 69.33 275 | 80.44 301 | 48.89 274 | 86.90 287 | 51.60 296 | 78.51 231 | |
|
LF4IMVS | | | 64.02 304 | 62.19 307 | 69.50 314 | 70.90 344 | 53.29 321 | 76.13 306 | 77.18 320 | 52.65 332 | 58.59 329 | 80.98 297 | 23.55 345 | 76.52 332 | 53.06 292 | 66.66 321 | 78.68 332 |
|
sss | | | 73.60 247 | 73.64 236 | 73.51 298 | 82.80 272 | 55.01 312 | 76.12 307 | 81.69 288 | 62.47 280 | 74.68 221 | 85.85 235 | 57.32 196 | 78.11 326 | 60.86 244 | 80.93 203 | 87.39 255 |
|
testgi | | | 66.67 295 | 66.53 293 | 67.08 321 | 75.62 335 | 41.69 346 | 75.93 308 | 76.50 322 | 66.11 239 | 65.20 308 | 86.59 216 | 35.72 335 | 74.71 339 | 43.71 330 | 73.38 294 | 84.84 297 |
|
CR-MVSNet | | | 73.37 249 | 71.27 257 | 79.67 233 | 81.32 299 | 65.19 180 | 75.92 309 | 80.30 302 | 59.92 298 | 72.73 237 | 81.19 292 | 52.50 228 | 86.69 288 | 59.84 250 | 77.71 236 | 87.11 265 |
|
RPMNet | | | 73.51 248 | 70.49 263 | 82.58 175 | 81.32 299 | 65.19 180 | 75.92 309 | 92.27 76 | 57.60 315 | 72.73 237 | 76.45 326 | 52.30 231 | 95.43 70 | 48.14 315 | 77.71 236 | 87.11 265 |
|
MIMVSNet | | | 70.69 270 | 69.30 269 | 74.88 289 | 84.52 236 | 56.35 303 | 75.87 311 | 79.42 309 | 64.59 257 | 67.76 282 | 82.41 283 | 41.10 316 | 81.54 315 | 46.64 322 | 81.34 199 | 86.75 272 |
|
test0.0.03 1 | | | 68.00 288 | 67.69 287 | 68.90 316 | 77.55 326 | 47.43 338 | 75.70 312 | 72.95 333 | 66.66 232 | 66.56 296 | 82.29 286 | 48.06 276 | 75.87 335 | 44.97 329 | 74.51 284 | 83.41 310 |
|
PMMVS | | | 69.34 281 | 68.67 273 | 71.35 307 | 75.67 334 | 62.03 235 | 75.17 313 | 73.46 331 | 50.00 336 | 68.68 277 | 79.05 311 | 52.07 237 | 78.13 325 | 61.16 242 | 82.77 185 | 73.90 337 |
|
UnsupCasMVSNet_eth | | | 67.33 291 | 65.99 294 | 71.37 305 | 73.48 339 | 51.47 328 | 75.16 314 | 85.19 246 | 65.20 250 | 60.78 323 | 80.93 299 | 42.35 309 | 77.20 330 | 57.12 276 | 53.69 340 | 85.44 290 |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 348 | 75.16 314 | | 55.10 326 | 66.53 297 | | 49.34 269 | | 53.98 287 | | 87.94 244 |
|
pmmvs3 | | | 57.79 309 | 54.26 313 | 68.37 319 | 64.02 348 | 56.72 295 | 75.12 316 | 65.17 345 | 40.20 341 | 52.93 340 | 69.86 337 | 20.36 347 | 75.48 337 | 45.45 327 | 55.25 339 | 72.90 338 |
|
dp | | | 66.80 293 | 65.43 295 | 70.90 310 | 79.74 317 | 48.82 337 | 75.12 316 | 74.77 327 | 59.61 300 | 64.08 313 | 77.23 322 | 42.89 306 | 80.72 317 | 48.86 309 | 66.58 322 | 83.16 313 |
|
Patchmtry | | | 70.74 269 | 69.16 271 | 75.49 285 | 80.72 303 | 54.07 317 | 74.94 318 | 80.30 302 | 58.34 310 | 70.01 264 | 81.19 292 | 52.50 228 | 86.54 289 | 53.37 290 | 71.09 308 | 85.87 288 |
|
PVSNet | | 64.34 18 | 72.08 263 | 70.87 262 | 75.69 281 | 86.21 212 | 56.44 300 | 74.37 319 | 80.73 295 | 62.06 284 | 70.17 262 | 82.23 287 | 42.86 307 | 83.31 308 | 54.77 285 | 84.45 164 | 87.32 258 |
|
MDA-MVSNet-bldmvs | | | 66.68 294 | 63.66 300 | 75.75 280 | 79.28 321 | 60.56 253 | 73.92 320 | 78.35 313 | 64.43 259 | 50.13 342 | 79.87 308 | 44.02 302 | 83.67 305 | 46.10 324 | 56.86 336 | 83.03 316 |
|
UnsupCasMVSNet_bld | | | 63.70 305 | 61.53 309 | 70.21 312 | 73.69 338 | 51.39 329 | 72.82 321 | 81.89 285 | 55.63 325 | 57.81 332 | 71.80 335 | 38.67 325 | 78.61 323 | 49.26 308 | 52.21 342 | 80.63 326 |
|
PatchT | | | 68.46 287 | 67.85 283 | 70.29 311 | 80.70 304 | 43.93 343 | 72.47 322 | 74.88 326 | 60.15 296 | 70.55 256 | 76.57 325 | 49.94 262 | 81.59 314 | 50.58 299 | 74.83 281 | 85.34 291 |
|
miper_lstm_enhance | | | 74.11 242 | 73.11 242 | 77.13 272 | 80.11 310 | 59.62 261 | 72.23 323 | 86.92 228 | 66.76 229 | 70.40 258 | 82.92 276 | 56.93 201 | 82.92 310 | 69.06 177 | 72.63 297 | 88.87 225 |
|
MVS-HIRNet | | | 59.14 308 | 57.67 311 | 63.57 323 | 81.65 290 | 43.50 344 | 71.73 324 | 65.06 346 | 39.59 343 | 51.43 341 | 57.73 343 | 38.34 327 | 82.58 312 | 39.53 338 | 73.95 288 | 64.62 342 |
|
Patchmatch-RL test | | | 70.24 275 | 67.78 286 | 77.61 264 | 77.43 327 | 59.57 263 | 71.16 325 | 70.33 335 | 62.94 274 | 68.65 278 | 72.77 333 | 50.62 254 | 85.49 297 | 69.58 172 | 66.58 322 | 87.77 248 |
|
test123 | | | 6.12 326 | 8.11 329 | 0.14 338 | 0.06 360 | 0.09 360 | 71.05 326 | 0.03 361 | 0.04 356 | 0.25 357 | 1.30 357 | 0.05 361 | 0.03 357 | 0.21 355 | 0.01 355 | 0.29 352 |
|
ANet_high | | | 50.57 315 | 46.10 318 | 63.99 322 | 48.67 354 | 39.13 347 | 70.99 327 | 80.85 293 | 61.39 288 | 31.18 347 | 57.70 344 | 17.02 350 | 73.65 343 | 31.22 343 | 15.89 351 | 79.18 331 |
|
testmvs | | | 6.04 327 | 8.02 330 | 0.10 339 | 0.08 359 | 0.03 361 | 69.74 328 | 0.04 360 | 0.05 355 | 0.31 356 | 1.68 356 | 0.02 362 | 0.04 356 | 0.24 354 | 0.02 354 | 0.25 353 |
|
N_pmnet | | | 52.79 313 | 53.26 314 | 51.40 330 | 78.99 323 | 7.68 359 | 69.52 329 | 3.89 358 | 51.63 335 | 57.01 334 | 74.98 330 | 40.83 318 | 65.96 347 | 37.78 340 | 64.67 326 | 80.56 328 |
|
FPMVS | | | 53.68 312 | 51.64 315 | 59.81 326 | 65.08 347 | 51.03 330 | 69.48 330 | 69.58 339 | 41.46 340 | 40.67 344 | 72.32 334 | 16.46 351 | 70.00 345 | 24.24 346 | 65.42 324 | 58.40 343 |
|
DSMNet-mixed | | | 57.77 310 | 56.90 312 | 60.38 325 | 67.70 346 | 35.61 349 | 69.18 331 | 53.97 350 | 32.30 348 | 57.49 333 | 79.88 307 | 40.39 321 | 68.57 346 | 38.78 339 | 72.37 298 | 76.97 335 |
|
new-patchmatchnet | | | 61.73 306 | 61.73 308 | 61.70 324 | 72.74 343 | 24.50 356 | 69.16 332 | 78.03 314 | 61.40 287 | 56.72 335 | 75.53 329 | 38.42 326 | 76.48 333 | 45.95 325 | 57.67 335 | 84.13 305 |
|
YYNet1 | | | 65.03 300 | 62.91 304 | 71.38 304 | 75.85 333 | 56.60 298 | 69.12 333 | 74.66 330 | 57.28 318 | 54.12 338 | 77.87 319 | 45.85 290 | 74.48 340 | 49.95 304 | 61.52 331 | 83.05 315 |
|
MDA-MVSNet_test_wron | | | 65.03 300 | 62.92 303 | 71.37 305 | 75.93 332 | 56.73 294 | 69.09 334 | 74.73 328 | 57.28 318 | 54.03 339 | 77.89 318 | 45.88 289 | 74.39 341 | 49.89 305 | 61.55 330 | 82.99 317 |
|
PVSNet_0 | | 57.27 20 | 61.67 307 | 59.27 310 | 68.85 317 | 79.61 318 | 57.44 287 | 68.01 335 | 73.44 332 | 55.93 324 | 58.54 330 | 70.41 336 | 44.58 298 | 77.55 329 | 47.01 319 | 35.91 345 | 71.55 339 |
|
ADS-MVSNet2 | | | 66.20 299 | 63.33 301 | 74.82 290 | 79.92 312 | 58.75 268 | 67.55 336 | 75.19 325 | 53.37 330 | 65.25 306 | 75.86 327 | 42.32 310 | 80.53 318 | 41.57 335 | 68.91 315 | 85.18 292 |
|
ADS-MVSNet | | | 64.36 303 | 62.88 305 | 68.78 318 | 79.92 312 | 47.17 339 | 67.55 336 | 71.18 334 | 53.37 330 | 65.25 306 | 75.86 327 | 42.32 310 | 73.99 342 | 41.57 335 | 68.91 315 | 85.18 292 |
|
LCM-MVSNet | | | 54.25 311 | 49.68 317 | 67.97 320 | 53.73 351 | 45.28 341 | 66.85 338 | 80.78 294 | 35.96 345 | 39.45 345 | 62.23 341 | 8.70 356 | 78.06 327 | 48.24 314 | 51.20 343 | 80.57 327 |
|
JIA-IIPM | | | 66.32 298 | 62.82 306 | 76.82 274 | 77.09 330 | 61.72 241 | 65.34 339 | 75.38 324 | 58.04 312 | 64.51 310 | 62.32 340 | 42.05 313 | 86.51 290 | 51.45 297 | 69.22 314 | 82.21 320 |
|
PMVS | | 37.38 22 | 44.16 317 | 40.28 320 | 55.82 327 | 40.82 356 | 42.54 345 | 65.12 340 | 63.99 348 | 34.43 346 | 24.48 349 | 57.12 345 | 3.92 358 | 76.17 334 | 17.10 349 | 55.52 338 | 48.75 344 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
new_pmnet | | | 50.91 314 | 50.29 316 | 52.78 329 | 68.58 345 | 34.94 351 | 63.71 341 | 56.63 349 | 39.73 342 | 44.95 343 | 65.47 338 | 21.93 346 | 58.48 348 | 34.98 342 | 56.62 337 | 64.92 341 |
|
Patchmatch-test | | | 64.82 302 | 63.24 302 | 69.57 313 | 79.42 320 | 49.82 335 | 63.49 342 | 69.05 341 | 51.98 334 | 59.95 327 | 80.13 304 | 50.91 250 | 70.98 344 | 40.66 337 | 73.57 292 | 87.90 245 |
|
ambc | | | | | 75.24 287 | 73.16 341 | 50.51 333 | 63.05 343 | 87.47 221 | | 64.28 311 | 77.81 320 | 17.80 349 | 89.73 253 | 57.88 270 | 60.64 332 | 85.49 289 |
|
CHOSEN 280x420 | | | 66.51 296 | 64.71 297 | 71.90 302 | 81.45 294 | 63.52 211 | 57.98 344 | 68.95 342 | 53.57 329 | 62.59 320 | 76.70 324 | 46.22 287 | 75.29 338 | 55.25 283 | 79.68 218 | 76.88 336 |
|
E-PMN | | | 31.77 319 | 30.64 322 | 35.15 333 | 52.87 352 | 27.67 353 | 57.09 345 | 47.86 352 | 24.64 349 | 16.40 353 | 33.05 349 | 11.23 353 | 54.90 350 | 14.46 351 | 18.15 349 | 22.87 348 |
|
EMVS | | | 30.81 320 | 29.65 323 | 34.27 334 | 50.96 353 | 25.95 355 | 56.58 346 | 46.80 353 | 24.01 350 | 15.53 354 | 30.68 350 | 12.47 352 | 54.43 351 | 12.81 352 | 17.05 350 | 22.43 349 |
|
PMMVS2 | | | 40.82 318 | 38.86 321 | 46.69 331 | 53.84 350 | 16.45 357 | 48.61 347 | 49.92 351 | 37.49 344 | 31.67 346 | 60.97 342 | 8.14 357 | 56.42 349 | 28.42 344 | 30.72 346 | 67.19 340 |
|
wuyk23d | | | 16.82 324 | 15.94 327 | 19.46 336 | 58.74 349 | 31.45 352 | 39.22 348 | 3.74 359 | 6.84 353 | 6.04 355 | 2.70 355 | 1.27 360 | 24.29 354 | 10.54 353 | 14.40 353 | 2.63 351 |
|
tmp_tt | | | 18.61 323 | 21.40 326 | 10.23 337 | 4.82 358 | 10.11 358 | 34.70 349 | 30.74 356 | 1.48 354 | 23.91 351 | 26.07 351 | 28.42 342 | 13.41 355 | 27.12 345 | 15.35 352 | 7.17 350 |
|
Gipuma | | | 45.18 316 | 41.86 319 | 55.16 328 | 77.03 331 | 51.52 327 | 32.50 350 | 80.52 298 | 32.46 347 | 27.12 348 | 35.02 348 | 9.52 355 | 75.50 336 | 22.31 347 | 60.21 334 | 38.45 346 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
MVE | | 26.22 23 | 30.37 321 | 25.89 325 | 43.81 332 | 44.55 355 | 35.46 350 | 28.87 351 | 39.07 354 | 18.20 351 | 18.58 352 | 40.18 347 | 2.68 359 | 47.37 352 | 17.07 350 | 23.78 348 | 48.60 345 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
uanet_test | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
cdsmvs_eth3d_5k | | | 19.96 322 | 26.61 324 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 89.26 174 | 0.00 357 | 0.00 358 | 88.61 158 | 61.62 155 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
pcd_1.5k_mvsjas | | | 5.26 328 | 7.02 331 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 63.15 131 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet-low-res | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
sosnet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uncertanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
Regformer | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ab-mvs-re | | | 7.23 325 | 9.64 328 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 86.72 207 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
uanet | | | 0.00 329 | 0.00 332 | 0.00 340 | 0.00 361 | 0.00 362 | 0.00 352 | 0.00 362 | 0.00 357 | 0.00 358 | 0.00 358 | 0.00 363 | 0.00 358 | 0.00 356 | 0.00 356 | 0.00 354 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 60 | 70.98 167 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 50 | 66.81 227 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 47 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 50 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 222 |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 247 | | | | 88.96 222 |
|
sam_mvs | | | | | | | | | | | | | 50.01 260 | | | | |
|
MTGPA | | | | | | | | | 92.02 87 | | | | | | | | |
|
test_post | | | | | | | | | | | | 5.46 353 | 50.36 258 | 84.24 302 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 331 | 51.12 249 | 88.60 272 | | | |
|
gm-plane-assit | | | | | | 81.40 295 | 53.83 319 | | | 62.72 278 | | 80.94 298 | | 92.39 191 | 63.40 220 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 93 |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 58 | 95.45 29 | 92.70 96 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 102 | | 84.41 63 | | | 94.93 91 | | | |
|
TestCases | | | | | 79.58 235 | 85.15 227 | 63.62 206 | | 79.83 306 | 62.31 281 | 60.32 325 | 86.73 205 | 32.02 339 | 88.96 268 | 50.28 301 | 71.57 305 | 86.15 281 |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 95 | | 92.97 48 | | | | | 95.48 66 | | | 93.91 45 |
|
æ–°å‡ ä½•1 | | | | | 83.42 136 | 93.13 53 | 70.71 74 | | 85.48 243 | 57.43 316 | 81.80 98 | 91.98 79 | 63.28 126 | 92.27 195 | 64.60 214 | 92.99 65 | 87.27 259 |
|
旧先验1 | | | | | | 91.96 77 | 65.79 168 | | 86.37 235 | | | 93.08 66 | 69.31 75 | | | 92.74 69 | 88.74 231 |
|
原ACMM1 | | | | | 84.35 109 | 93.01 59 | 68.79 111 | | 92.44 68 | 63.96 267 | 81.09 108 | 91.57 89 | 66.06 102 | 95.45 68 | 67.19 193 | 94.82 47 | 88.81 228 |
|
testdata2 | | | | | | | | | | | | | | 91.01 235 | 62.37 229 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
testdata | | | | | 79.97 226 | 90.90 91 | 64.21 197 | | 84.71 249 | 59.27 304 | 85.40 44 | 92.91 67 | 62.02 151 | 89.08 264 | 68.95 178 | 91.37 84 | 86.63 275 |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 75 | | 91.79 101 | | 82.71 88 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 68 |
|
plane_prior7 | | | | | | 90.08 105 | 68.51 124 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 110 | 68.70 119 | | | | | | 60.42 177 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 68 | | | | | 95.38 73 | 78.71 89 | 86.32 146 | 91.33 137 |
|
plane_prior4 | | | | | | | | | | | | 91.00 106 | | | | | |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 127 | | | | | | |
|
plane_prior1 | | | | | | 89.90 109 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 362 | | | | | | | | |
|
nn | | | | | | | | | 0.00 362 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 337 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 243 | 81.01 302 | 57.15 289 | | 65.99 344 | | 61.16 322 | 82.82 279 | 39.12 324 | 91.34 224 | 59.67 251 | 46.92 344 | 88.43 238 |
|
LGP-MVS_train | | | | | 84.50 102 | 89.23 132 | 68.76 113 | | 91.94 94 | 75.37 91 | 76.64 175 | 91.51 90 | 54.29 217 | 94.91 93 | 78.44 92 | 83.78 169 | 89.83 196 |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 340 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 149 | | | | | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 102 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 161 | | | 95.11 83 | | | 91.03 144 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 151 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 180 | | | | |
|
NP-MVS | | | | | | 89.62 113 | 68.32 126 | | | | | 90.24 117 | | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 195 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 200 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 117 | | | | |
|
ITE_SJBPF | | | | | 78.22 254 | 81.77 289 | 60.57 252 | | 83.30 270 | 69.25 199 | 67.54 285 | 87.20 196 | 36.33 333 | 87.28 286 | 54.34 286 | 74.62 283 | 86.80 270 |
|
DeepMVS_CX | | | | | 27.40 335 | 40.17 357 | 26.90 354 | | 24.59 357 | 17.44 352 | 23.95 350 | 48.61 346 | 9.77 354 | 26.48 353 | 18.06 348 | 24.47 347 | 28.83 347 |
|