| DVP-MVS++ | | | 99.08 3 | 98.89 5 | 99.64 3 | 99.17 94 | 99.23 7 | 99.69 1 | 98.88 62 | 97.32 42 | 99.53 23 | 99.47 20 | 97.81 3 | 99.94 8 | 98.47 39 | 99.72 55 | 99.74 37 |
|
| FOURS1 | | | | | | 99.82 1 | 98.66 24 | 99.69 1 | 98.95 46 | 97.46 34 | 99.39 30 | | | | | | |
|
| CS-MVS | | | 98.44 41 | 98.49 21 | 98.31 110 | 99.08 107 | 96.73 113 | 99.67 3 | 98.47 179 | 97.17 55 | 98.94 54 | 99.10 86 | 95.73 44 | 99.13 204 | 98.71 24 | 99.49 100 | 99.09 158 |
|
| CS-MVS-test | | | 98.49 35 | 98.50 20 | 98.46 96 | 99.20 92 | 97.05 99 | 99.64 4 | 98.50 173 | 97.45 35 | 98.88 61 | 99.14 81 | 95.25 64 | 99.15 201 | 98.83 22 | 99.56 90 | 99.20 139 |
|
| EC-MVSNet | | | 98.21 58 | 98.11 56 | 98.49 93 | 98.34 179 | 97.26 91 | 99.61 5 | 98.43 188 | 96.78 74 | 98.87 62 | 98.84 123 | 93.72 98 | 99.01 225 | 98.91 20 | 99.50 98 | 99.19 143 |
|
| mvsmamba | | | 96.57 142 | 96.32 141 | 97.32 187 | 96.60 316 | 96.43 129 | 99.54 6 | 97.98 268 | 96.49 88 | 95.20 224 | 98.64 150 | 90.82 163 | 98.55 275 | 97.97 67 | 93.65 274 | 96.98 266 |
|
| HPM-MVS |  | | 98.36 50 | 98.10 57 | 99.13 48 | 99.74 7 | 97.82 68 | 99.53 7 | 98.80 93 | 94.63 182 | 98.61 84 | 98.97 105 | 95.13 70 | 99.77 106 | 97.65 91 | 99.83 15 | 99.79 19 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVSFormer | | | 97.57 94 | 97.49 84 | 97.84 145 | 98.07 207 | 95.76 168 | 99.47 8 | 98.40 192 | 94.98 165 | 98.79 67 | 98.83 125 | 92.34 119 | 98.41 298 | 96.91 123 | 99.59 80 | 99.34 116 |
|
| test_djsdf | | | 96.00 165 | 95.69 169 | 96.93 212 | 95.72 351 | 95.49 177 | 99.47 8 | 98.40 192 | 94.98 165 | 94.58 238 | 97.86 224 | 89.16 196 | 98.41 298 | 96.91 123 | 94.12 261 | 96.88 280 |
|
| HPM-MVS_fast | | | 98.38 47 | 98.13 54 | 99.12 50 | 99.75 3 | 97.86 64 | 99.44 10 | 98.82 81 | 94.46 191 | 98.94 54 | 99.20 67 | 95.16 68 | 99.74 111 | 97.58 96 | 99.85 6 | 99.77 27 |
|
| nrg030 | | | 96.28 156 | 95.72 163 | 97.96 141 | 96.90 299 | 98.15 54 | 99.39 11 | 98.31 209 | 95.47 136 | 94.42 248 | 98.35 179 | 92.09 131 | 98.69 263 | 97.50 104 | 89.05 337 | 97.04 263 |
|
| APDe-MVS |  | | 99.02 6 | 98.84 8 | 99.55 9 | 99.57 33 | 98.96 16 | 99.39 11 | 98.93 50 | 97.38 39 | 99.41 28 | 99.54 8 | 96.66 18 | 99.84 67 | 98.86 21 | 99.85 6 | 99.87 7 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| 3Dnovator+ | | 94.38 6 | 97.43 103 | 96.78 120 | 99.38 18 | 97.83 227 | 98.52 28 | 99.37 13 | 98.71 116 | 97.09 62 | 92.99 309 | 99.13 82 | 89.36 190 | 99.89 47 | 96.97 120 | 99.57 84 | 99.71 49 |
|
| FIs | | | 96.51 144 | 96.12 148 | 97.67 164 | 97.13 285 | 97.54 76 | 99.36 14 | 99.22 23 | 95.89 114 | 94.03 269 | 98.35 179 | 91.98 134 | 98.44 289 | 96.40 148 | 92.76 291 | 97.01 264 |
|
| FC-MVSNet-test | | | 96.42 148 | 96.05 150 | 97.53 174 | 96.95 294 | 97.27 87 | 99.36 14 | 99.23 20 | 95.83 118 | 93.93 272 | 98.37 177 | 92.00 133 | 98.32 307 | 96.02 160 | 92.72 292 | 97.00 265 |
|
| 3Dnovator | | 94.51 5 | 97.46 98 | 96.93 112 | 99.07 53 | 97.78 230 | 97.64 71 | 99.35 16 | 99.06 34 | 97.02 64 | 93.75 282 | 99.16 77 | 89.25 193 | 99.92 31 | 97.22 113 | 99.75 45 | 99.64 71 |
|
| sasdasda | | | 97.67 83 | 97.23 98 | 98.98 59 | 98.70 143 | 98.38 35 | 99.34 17 | 98.39 194 | 96.76 76 | 97.67 140 | 97.40 266 | 92.26 122 | 99.49 159 | 98.28 52 | 96.28 230 | 99.08 162 |
|
| GeoE | | | 96.58 141 | 96.07 149 | 98.10 132 | 98.35 174 | 95.89 164 | 99.34 17 | 98.12 245 | 93.12 259 | 96.09 204 | 98.87 120 | 89.71 183 | 98.97 227 | 92.95 259 | 98.08 174 | 99.43 109 |
|
| canonicalmvs | | | 97.67 83 | 97.23 98 | 98.98 59 | 98.70 143 | 98.38 35 | 99.34 17 | 98.39 194 | 96.76 76 | 97.67 140 | 97.40 266 | 92.26 122 | 99.49 159 | 98.28 52 | 96.28 230 | 99.08 162 |
|
| CP-MVS | | | 98.57 27 | 98.36 30 | 99.19 40 | 99.66 26 | 97.86 64 | 99.34 17 | 98.87 69 | 95.96 110 | 98.60 85 | 99.13 82 | 96.05 33 | 99.94 8 | 97.77 81 | 99.86 1 | 99.77 27 |
|
| EPP-MVSNet | | | 97.46 98 | 97.28 96 | 97.99 138 | 98.64 152 | 95.38 182 | 99.33 21 | 98.31 209 | 93.61 237 | 97.19 157 | 99.07 95 | 94.05 94 | 99.23 191 | 96.89 127 | 98.43 161 | 99.37 114 |
|
| MGCFI-Net | | | 97.62 88 | 97.19 101 | 98.92 64 | 98.66 149 | 98.20 49 | 99.32 22 | 98.38 198 | 96.69 81 | 97.58 149 | 97.42 265 | 92.10 130 | 99.50 158 | 98.28 52 | 96.25 233 | 99.08 162 |
|
| XVS | | | 98.70 14 | 98.49 21 | 99.34 23 | 99.70 22 | 98.35 42 | 99.29 23 | 98.88 62 | 97.40 36 | 98.46 90 | 99.20 67 | 95.90 41 | 99.89 47 | 97.85 76 | 99.74 49 | 99.78 21 |
|
| X-MVStestdata | | | 94.06 292 | 92.30 315 | 99.34 23 | 99.70 22 | 98.35 42 | 99.29 23 | 98.88 62 | 97.40 36 | 98.46 90 | 43.50 408 | 95.90 41 | 99.89 47 | 97.85 76 | 99.74 49 | 99.78 21 |
|
| tttt0517 | | | 96.07 162 | 95.51 174 | 97.78 151 | 98.41 170 | 94.84 211 | 99.28 25 | 94.33 388 | 94.26 197 | 97.64 145 | 98.64 150 | 84.05 307 | 99.47 166 | 95.34 182 | 97.60 191 | 99.03 169 |
|
| mPP-MVS | | | 98.51 33 | 98.26 43 | 99.25 35 | 99.75 3 | 98.04 59 | 99.28 25 | 98.81 86 | 96.24 99 | 98.35 100 | 99.23 62 | 95.46 51 | 99.94 8 | 97.42 107 | 99.81 16 | 99.77 27 |
|
| test_vis1_n | | | 95.47 192 | 95.13 192 | 96.49 252 | 97.77 231 | 90.41 331 | 99.27 27 | 98.11 248 | 96.58 85 | 99.66 15 | 99.18 73 | 67.00 390 | 99.62 137 | 99.21 15 | 99.40 113 | 99.44 107 |
|
| test_fmvs1_n | | | 95.90 172 | 95.99 154 | 95.63 296 | 98.67 148 | 88.32 367 | 99.26 28 | 98.22 225 | 96.40 94 | 99.67 14 | 99.26 57 | 73.91 377 | 99.70 119 | 99.02 18 | 99.50 98 | 98.87 184 |
|
| MSP-MVS | | | 98.74 13 | 98.55 17 | 99.29 29 | 99.75 3 | 98.23 47 | 99.26 28 | 98.88 62 | 97.52 29 | 99.41 28 | 98.78 131 | 96.00 35 | 99.79 98 | 97.79 80 | 99.59 80 | 99.85 10 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| v7n | | | 94.19 279 | 93.43 292 | 96.47 255 | 95.90 346 | 94.38 235 | 99.26 28 | 98.34 205 | 91.99 298 | 92.76 314 | 97.13 282 | 88.31 219 | 98.52 280 | 89.48 333 | 87.70 351 | 96.52 326 |
|
| iter_conf05_11 | | | 98.04 63 | 97.94 64 | 98.34 107 | 98.60 156 | 96.38 133 | 99.24 31 | 98.57 151 | 95.90 113 | 98.99 52 | 98.79 130 | 92.97 107 | 99.47 166 | 98.58 27 | 99.85 6 | 99.17 149 |
|
| WR-MVS_H | | | 95.05 221 | 94.46 225 | 96.81 221 | 96.86 301 | 95.82 166 | 99.24 31 | 99.24 17 | 93.87 214 | 92.53 322 | 96.84 317 | 90.37 172 | 98.24 317 | 93.24 249 | 87.93 349 | 96.38 339 |
|
| HFP-MVS | | | 98.63 17 | 98.40 26 | 99.32 28 | 99.72 12 | 98.29 45 | 99.23 33 | 98.96 45 | 96.10 107 | 98.94 54 | 99.17 74 | 96.06 32 | 99.92 31 | 97.62 93 | 99.78 33 | 99.75 35 |
|
| region2R | | | 98.61 18 | 98.38 28 | 99.29 29 | 99.74 7 | 98.16 53 | 99.23 33 | 98.93 50 | 96.15 104 | 98.94 54 | 99.17 74 | 95.91 39 | 99.94 8 | 97.55 100 | 99.79 29 | 99.78 21 |
|
| ACMMPR | | | 98.59 21 | 98.36 30 | 99.29 29 | 99.74 7 | 98.15 54 | 99.23 33 | 98.95 46 | 96.10 107 | 98.93 58 | 99.19 72 | 95.70 45 | 99.94 8 | 97.62 93 | 99.79 29 | 99.78 21 |
|
| QAPM | | | 96.29 154 | 95.40 175 | 98.96 62 | 97.85 226 | 97.60 74 | 99.23 33 | 98.93 50 | 89.76 349 | 93.11 306 | 99.02 98 | 89.11 198 | 99.93 25 | 91.99 286 | 99.62 75 | 99.34 116 |
|
| MP-MVS |  | | 98.33 55 | 98.01 61 | 99.28 32 | 99.75 3 | 98.18 51 | 99.22 37 | 98.79 98 | 96.13 105 | 97.92 126 | 99.23 62 | 94.54 80 | 99.94 8 | 96.74 140 | 99.78 33 | 99.73 42 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| Vis-MVSNet |  | | 97.42 104 | 97.11 104 | 98.34 107 | 98.66 149 | 96.23 141 | 99.22 37 | 99.00 39 | 96.63 84 | 98.04 112 | 99.21 65 | 88.05 228 | 99.35 180 | 96.01 161 | 99.21 121 | 99.45 106 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CSCG | | | 97.85 74 | 97.74 71 | 98.20 121 | 99.67 25 | 95.16 194 | 99.22 37 | 99.32 11 | 93.04 262 | 97.02 166 | 98.92 116 | 95.36 57 | 99.91 39 | 97.43 106 | 99.64 72 | 99.52 86 |
|
| SDMVSNet | | | 96.85 130 | 96.42 136 | 98.14 124 | 99.30 68 | 96.38 133 | 99.21 40 | 99.23 20 | 95.92 111 | 95.96 210 | 98.76 137 | 85.88 268 | 99.44 173 | 97.93 70 | 95.59 245 | 98.60 209 |
|
| OpenMVS |  | 93.04 13 | 95.83 176 | 95.00 199 | 98.32 109 | 97.18 282 | 97.32 84 | 99.21 40 | 98.97 42 | 89.96 345 | 91.14 342 | 99.05 97 | 86.64 254 | 99.92 31 | 93.38 245 | 99.47 103 | 97.73 243 |
|
| DTE-MVSNet | | | 93.98 294 | 93.26 297 | 96.14 275 | 96.06 340 | 94.39 234 | 99.20 42 | 98.86 75 | 93.06 261 | 91.78 336 | 97.81 232 | 85.87 269 | 97.58 355 | 90.53 313 | 86.17 367 | 96.46 336 |
|
| Vis-MVSNet (Re-imp) | | | 96.87 129 | 96.55 131 | 97.83 146 | 98.73 138 | 95.46 178 | 99.20 42 | 98.30 215 | 94.96 167 | 96.60 186 | 98.87 120 | 90.05 177 | 98.59 273 | 93.67 239 | 98.60 150 | 99.46 104 |
|
| test_fmvs2 | | | 93.43 301 | 93.58 284 | 92.95 356 | 96.97 293 | 83.91 383 | 99.19 44 | 97.24 325 | 95.74 123 | 95.20 224 | 98.27 191 | 69.65 383 | 98.72 262 | 96.26 151 | 93.73 271 | 96.24 344 |
|
| ZNCC-MVS | | | 98.49 35 | 98.20 52 | 99.35 22 | 99.73 11 | 98.39 34 | 99.19 44 | 98.86 75 | 95.77 120 | 98.31 103 | 99.10 86 | 95.46 51 | 99.93 25 | 97.57 99 | 99.81 16 | 99.74 37 |
|
| IS-MVSNet | | | 97.22 113 | 96.88 114 | 98.25 116 | 98.85 131 | 96.36 136 | 99.19 44 | 97.97 269 | 95.39 140 | 97.23 156 | 98.99 104 | 91.11 159 | 98.93 237 | 94.60 207 | 98.59 151 | 99.47 100 |
|
| PEN-MVS | | | 94.42 265 | 93.73 277 | 96.49 252 | 96.28 331 | 94.84 211 | 99.17 47 | 99.00 39 | 93.51 239 | 92.23 330 | 97.83 230 | 86.10 264 | 97.90 341 | 92.55 272 | 86.92 362 | 96.74 294 |
|
| PS-MVSNAJss | | | 96.43 147 | 96.26 144 | 96.92 215 | 95.84 349 | 95.08 199 | 99.16 48 | 98.50 173 | 95.87 116 | 93.84 278 | 98.34 183 | 94.51 81 | 98.61 270 | 96.88 129 | 93.45 280 | 97.06 262 |
|
| dcpmvs_2 | | | 98.08 60 | 98.59 14 | 96.56 244 | 99.57 33 | 90.34 333 | 99.15 49 | 98.38 198 | 96.82 73 | 99.29 34 | 99.49 17 | 95.78 43 | 99.57 142 | 98.94 19 | 99.86 1 | 99.77 27 |
|
| APD-MVS_3200maxsize | | | 98.53 32 | 98.33 39 | 99.15 46 | 99.50 41 | 97.92 63 | 99.15 49 | 98.81 86 | 96.24 99 | 99.20 38 | 99.37 38 | 95.30 60 | 99.80 88 | 97.73 83 | 99.67 63 | 99.72 45 |
|
| TSAR-MVS + MP. | | | 98.78 11 | 98.62 13 | 99.24 36 | 99.69 24 | 98.28 46 | 99.14 51 | 98.66 131 | 96.84 71 | 99.56 20 | 99.31 51 | 96.34 25 | 99.70 119 | 98.32 50 | 99.73 52 | 99.73 42 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| anonymousdsp | | | 95.42 197 | 94.91 204 | 96.94 211 | 95.10 367 | 95.90 163 | 99.14 51 | 98.41 190 | 93.75 220 | 93.16 302 | 97.46 259 | 87.50 241 | 98.41 298 | 95.63 176 | 94.03 263 | 96.50 331 |
|
| jajsoiax | | | 95.45 195 | 95.03 198 | 96.73 224 | 95.42 363 | 94.63 221 | 99.14 51 | 98.52 166 | 95.74 123 | 93.22 300 | 98.36 178 | 83.87 312 | 98.65 268 | 96.95 122 | 94.04 262 | 96.91 276 |
|
| PS-CasMVS | | | 94.67 245 | 93.99 256 | 96.71 225 | 96.68 313 | 95.26 189 | 99.13 54 | 99.03 37 | 93.68 231 | 92.33 328 | 97.95 217 | 85.35 277 | 98.10 325 | 93.59 241 | 88.16 348 | 96.79 288 |
|
| CPTT-MVS | | | 97.72 79 | 97.32 95 | 98.92 64 | 99.64 28 | 97.10 98 | 99.12 55 | 98.81 86 | 92.34 287 | 98.09 108 | 99.08 94 | 93.01 105 | 99.92 31 | 96.06 158 | 99.77 35 | 99.75 35 |
|
| SR-MVS-dyc-post | | | 98.54 31 | 98.35 32 | 99.13 48 | 99.49 45 | 97.86 64 | 99.11 56 | 98.80 93 | 96.49 88 | 99.17 41 | 99.35 44 | 95.34 58 | 99.82 76 | 97.72 84 | 99.65 68 | 99.71 49 |
|
| RE-MVS-def | | | | 98.34 35 | | 99.49 45 | 97.86 64 | 99.11 56 | 98.80 93 | 96.49 88 | 99.17 41 | 99.35 44 | 95.29 61 | | 97.72 84 | 99.65 68 | 99.71 49 |
|
| CP-MVSNet | | | 94.94 232 | 94.30 233 | 96.83 219 | 96.72 310 | 95.56 173 | 99.11 56 | 98.95 46 | 93.89 212 | 92.42 327 | 97.90 220 | 87.19 245 | 98.12 324 | 94.32 217 | 88.21 346 | 96.82 287 |
|
| SteuartSystems-ACMMP | | | 98.90 9 | 98.75 10 | 99.36 21 | 99.22 89 | 98.43 33 | 99.10 59 | 98.87 69 | 97.38 39 | 99.35 32 | 99.40 31 | 97.78 5 | 99.87 58 | 97.77 81 | 99.85 6 | 99.78 21 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SR-MVS | | | 98.57 27 | 98.35 32 | 99.24 36 | 99.53 36 | 98.18 51 | 99.09 60 | 98.82 81 | 96.58 85 | 99.10 46 | 99.32 49 | 95.39 54 | 99.82 76 | 97.70 89 | 99.63 73 | 99.72 45 |
|
| GST-MVS | | | 98.43 43 | 98.12 55 | 99.34 23 | 99.72 12 | 98.38 35 | 99.09 60 | 98.82 81 | 95.71 126 | 98.73 75 | 99.06 96 | 95.27 62 | 99.93 25 | 97.07 117 | 99.63 73 | 99.72 45 |
|
| K. test v3 | | | 92.55 318 | 91.91 321 | 94.48 336 | 95.64 353 | 89.24 349 | 99.07 62 | 94.88 382 | 94.04 202 | 86.78 374 | 97.59 251 | 77.64 356 | 97.64 352 | 92.08 281 | 89.43 332 | 96.57 316 |
|
| test2506 | | | 94.44 264 | 93.91 261 | 96.04 278 | 99.02 111 | 88.99 355 | 99.06 63 | 79.47 413 | 96.96 67 | 98.36 98 | 99.26 57 | 77.21 358 | 99.52 156 | 96.78 138 | 99.04 127 | 99.59 79 |
|
| test0726 | | | | | | 99.72 12 | 99.25 2 | 99.06 63 | 98.88 62 | 97.62 24 | 99.56 20 | 99.50 15 | 97.42 9 | | | | |
|
| test_vis1_n_1920 | | | 96.71 135 | 96.84 116 | 96.31 269 | 99.11 104 | 89.74 340 | 99.05 65 | 98.58 149 | 98.08 12 | 99.87 1 | 99.37 38 | 78.48 346 | 99.93 25 | 99.29 14 | 99.69 60 | 99.27 129 |
|
| test_fmvs3 | | | 87.17 353 | 87.06 356 | 87.50 371 | 91.21 392 | 75.66 396 | 99.05 65 | 96.61 361 | 92.79 272 | 88.85 363 | 92.78 388 | 43.72 403 | 93.49 394 | 93.95 229 | 84.56 371 | 93.34 388 |
|
| v8 | | | 94.47 262 | 93.77 273 | 96.57 243 | 96.36 328 | 94.83 213 | 99.05 65 | 98.19 230 | 91.92 300 | 93.16 302 | 96.97 305 | 88.82 209 | 98.48 282 | 91.69 294 | 87.79 350 | 96.39 338 |
|
| test1111 | | | 95.94 169 | 95.78 160 | 96.41 262 | 98.99 118 | 90.12 335 | 99.04 68 | 92.45 399 | 96.99 66 | 98.03 113 | 99.27 56 | 81.40 324 | 99.48 164 | 96.87 132 | 99.04 127 | 99.63 73 |
|
| SF-MVS | | | 98.59 21 | 98.32 40 | 99.41 17 | 99.54 35 | 98.71 22 | 99.04 68 | 98.81 86 | 95.12 156 | 99.32 33 | 99.39 32 | 96.22 26 | 99.84 67 | 97.72 84 | 99.73 52 | 99.67 65 |
|
| PHI-MVS | | | 98.34 53 | 98.06 58 | 99.18 42 | 99.15 100 | 98.12 57 | 99.04 68 | 99.09 31 | 93.32 248 | 98.83 66 | 99.10 86 | 96.54 21 | 99.83 69 | 97.70 89 | 99.76 41 | 99.59 79 |
|
| ECVR-MVS |  | | 95.95 167 | 95.71 166 | 96.65 230 | 99.02 111 | 90.86 321 | 99.03 71 | 91.80 400 | 96.96 67 | 98.10 107 | 99.26 57 | 81.31 325 | 99.51 157 | 96.90 126 | 99.04 127 | 99.59 79 |
|
| TranMVSNet+NR-MVSNet | | | 95.14 216 | 94.48 223 | 97.11 200 | 96.45 325 | 96.36 136 | 99.03 71 | 99.03 37 | 95.04 162 | 93.58 285 | 97.93 218 | 88.27 220 | 98.03 331 | 94.13 223 | 86.90 363 | 96.95 270 |
|
| ACMMP |  | | 98.23 57 | 97.95 63 | 99.09 52 | 99.74 7 | 97.62 73 | 99.03 71 | 99.41 6 | 95.98 109 | 97.60 148 | 99.36 42 | 94.45 85 | 99.93 25 | 97.14 114 | 98.85 139 | 99.70 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SED-MVS | | | 99.09 1 | 98.91 4 | 99.63 4 | 99.71 19 | 99.24 5 | 99.02 74 | 98.87 69 | 97.65 22 | 99.73 10 | 99.48 18 | 97.53 7 | 99.94 8 | 98.43 43 | 99.81 16 | 99.70 53 |
|
| OPU-MVS | | | | | 99.37 20 | 99.24 87 | 99.05 14 | 99.02 74 | | | | 99.16 77 | 97.81 3 | 99.37 179 | 97.24 112 | 99.73 52 | 99.70 53 |
|
| EIA-MVS | | | 97.75 77 | 97.58 77 | 98.27 112 | 98.38 171 | 96.44 128 | 99.01 76 | 98.60 141 | 95.88 115 | 97.26 155 | 97.53 256 | 94.97 74 | 99.33 182 | 97.38 109 | 99.20 122 | 99.05 168 |
|
| Anonymous20231211 | | | 94.10 288 | 93.26 297 | 96.61 237 | 99.11 104 | 94.28 238 | 99.01 76 | 98.88 62 | 86.43 373 | 92.81 312 | 97.57 253 | 81.66 323 | 98.68 266 | 94.83 198 | 89.02 339 | 96.88 280 |
|
| test_cas_vis1_n_1920 | | | 97.38 107 | 97.36 93 | 97.45 177 | 98.95 121 | 93.25 280 | 99.00 78 | 98.53 162 | 97.70 20 | 99.77 7 | 99.35 44 | 84.71 292 | 99.85 63 | 98.57 28 | 99.66 65 | 99.26 131 |
|
| mvs_tets | | | 95.41 199 | 95.00 199 | 96.65 230 | 95.58 355 | 94.42 232 | 99.00 78 | 98.55 158 | 95.73 125 | 93.21 301 | 98.38 176 | 83.45 316 | 98.63 269 | 97.09 116 | 94.00 265 | 96.91 276 |
|
| baseline | | | 97.64 86 | 97.44 89 | 98.25 116 | 98.35 174 | 96.20 142 | 99.00 78 | 98.32 207 | 96.33 98 | 98.03 113 | 99.17 74 | 91.35 151 | 99.16 198 | 98.10 61 | 98.29 169 | 99.39 112 |
|
| v10 | | | 94.29 273 | 93.55 286 | 96.51 251 | 96.39 327 | 94.80 215 | 98.99 81 | 98.19 230 | 91.35 317 | 93.02 308 | 96.99 303 | 88.09 225 | 98.41 298 | 90.50 314 | 88.41 345 | 96.33 342 |
|
| PGM-MVS | | | 98.49 35 | 98.23 48 | 99.27 34 | 99.72 12 | 98.08 58 | 98.99 81 | 99.49 5 | 95.43 138 | 99.03 47 | 99.32 49 | 95.56 48 | 99.94 8 | 96.80 137 | 99.77 35 | 99.78 21 |
|
| LPG-MVS_test | | | 95.62 187 | 95.34 181 | 96.47 255 | 97.46 258 | 93.54 264 | 98.99 81 | 98.54 160 | 94.67 180 | 94.36 251 | 98.77 133 | 85.39 275 | 99.11 208 | 95.71 172 | 94.15 259 | 96.76 291 |
|
| test_fmvsmvis_n_1920 | | | 98.44 41 | 98.51 18 | 98.23 118 | 98.33 181 | 96.15 145 | 98.97 84 | 99.15 28 | 98.55 7 | 98.45 93 | 99.55 6 | 94.26 91 | 99.97 1 | 99.65 7 | 99.66 65 | 98.57 214 |
|
| DVP-MVS |  | | 99.03 5 | 98.83 9 | 99.63 4 | 99.72 12 | 99.25 2 | 98.97 84 | 98.58 149 | 97.62 24 | 99.45 25 | 99.46 24 | 97.42 9 | 99.94 8 | 98.47 39 | 99.81 16 | 99.69 56 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 99.71 1 | 99.72 12 | 99.35 1 | 98.97 84 | 98.88 62 | | | | | 99.94 8 | 98.47 39 | 99.81 16 | 99.84 12 |
|
| tfpnnormal | | | 93.66 297 | 92.70 307 | 96.55 248 | 96.94 295 | 95.94 157 | 98.97 84 | 99.19 24 | 91.04 328 | 91.38 340 | 97.34 268 | 84.94 285 | 98.61 270 | 85.45 365 | 89.02 339 | 95.11 367 |
|
| V42 | | | 94.78 238 | 94.14 244 | 96.70 227 | 96.33 330 | 95.22 192 | 98.97 84 | 98.09 255 | 92.32 289 | 94.31 254 | 97.06 294 | 88.39 218 | 98.55 275 | 92.90 261 | 88.87 341 | 96.34 340 |
|
| test_fmvsm_n_1920 | | | 98.87 10 | 99.01 3 | 98.45 97 | 99.42 55 | 96.43 129 | 98.96 89 | 99.36 9 | 98.63 5 | 99.86 2 | 99.51 13 | 95.91 39 | 99.97 1 | 99.72 5 | 99.75 45 | 98.94 179 |
|
| test_fmvsmconf0.01_n | | | 97.86 72 | 97.54 82 | 98.83 69 | 95.48 359 | 96.83 108 | 98.95 90 | 98.60 141 | 98.58 6 | 98.93 58 | 99.55 6 | 88.57 212 | 99.91 39 | 99.54 11 | 99.61 76 | 99.77 27 |
|
| SMA-MVS |  | | 98.58 23 | 98.25 44 | 99.56 8 | 99.51 39 | 99.04 15 | 98.95 90 | 98.80 93 | 93.67 233 | 99.37 31 | 99.52 11 | 96.52 22 | 99.89 47 | 98.06 63 | 99.81 16 | 99.76 34 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| pm-mvs1 | | | 93.94 295 | 93.06 299 | 96.59 240 | 96.49 323 | 95.16 194 | 98.95 90 | 98.03 265 | 92.32 289 | 91.08 343 | 97.84 227 | 84.54 297 | 98.41 298 | 92.16 279 | 86.13 369 | 96.19 347 |
|
| Anonymous20240521 | | | 91.18 330 | 90.44 331 | 93.42 347 | 93.70 382 | 88.47 364 | 98.94 93 | 97.56 295 | 88.46 364 | 89.56 357 | 95.08 369 | 77.15 361 | 96.97 366 | 83.92 374 | 89.55 329 | 94.82 372 |
|
| VPA-MVSNet | | | 95.75 179 | 95.11 195 | 97.69 161 | 97.24 274 | 97.27 87 | 98.94 93 | 99.23 20 | 95.13 155 | 95.51 217 | 97.32 270 | 85.73 270 | 98.91 240 | 97.33 111 | 89.55 329 | 96.89 279 |
|
| MM | | | 98.51 33 | 98.24 46 | 99.33 26 | 99.12 102 | 98.14 56 | 98.93 95 | 97.02 340 | 98.96 1 | 99.17 41 | 99.47 20 | 91.97 136 | 99.94 8 | 99.85 4 | 99.69 60 | 99.91 2 |
|
| LS3D | | | 97.16 118 | 96.66 128 | 98.68 75 | 98.53 162 | 97.19 95 | 98.93 95 | 98.90 57 | 92.83 271 | 95.99 208 | 99.37 38 | 92.12 129 | 99.87 58 | 93.67 239 | 99.57 84 | 98.97 175 |
|
| casdiffmvs_mvg |  | | 97.72 79 | 97.48 86 | 98.44 99 | 98.42 168 | 96.59 121 | 98.92 97 | 98.44 184 | 96.20 101 | 97.76 131 | 99.20 67 | 91.66 142 | 99.23 191 | 98.27 55 | 98.41 162 | 99.49 96 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ACMM | | 93.85 9 | 95.69 184 | 95.38 179 | 96.61 237 | 97.61 245 | 93.84 253 | 98.91 98 | 98.44 184 | 95.25 150 | 94.28 255 | 98.47 167 | 86.04 267 | 99.12 206 | 95.50 180 | 93.95 267 | 96.87 282 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MTAPA | | | 98.58 23 | 98.29 42 | 99.46 14 | 99.76 2 | 98.64 25 | 98.90 99 | 98.74 108 | 97.27 49 | 98.02 115 | 99.39 32 | 94.81 77 | 99.96 4 | 97.91 72 | 99.79 29 | 99.77 27 |
|
| SD-MVS | | | 98.64 16 | 98.68 11 | 98.53 89 | 99.33 59 | 98.36 41 | 98.90 99 | 98.85 78 | 97.28 45 | 99.72 12 | 99.39 32 | 96.63 20 | 97.60 353 | 98.17 58 | 99.85 6 | 99.64 71 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| TransMVSNet (Re) | | | 92.67 317 | 91.51 323 | 96.15 274 | 96.58 318 | 94.65 219 | 98.90 99 | 96.73 354 | 90.86 331 | 89.46 358 | 97.86 224 | 85.62 272 | 98.09 327 | 86.45 357 | 81.12 383 | 95.71 357 |
|
| EPNet | | | 97.28 111 | 96.87 115 | 98.51 90 | 94.98 368 | 96.14 146 | 98.90 99 | 97.02 340 | 98.28 10 | 95.99 208 | 99.11 84 | 91.36 150 | 99.89 47 | 96.98 119 | 99.19 123 | 99.50 91 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_l_conf0.5_n | | | 99.07 4 | 99.05 2 | 99.14 47 | 99.41 56 | 97.54 76 | 98.89 103 | 99.31 12 | 98.49 8 | 99.86 2 | 99.42 29 | 96.45 24 | 99.96 4 | 99.86 1 | 99.74 49 | 99.90 3 |
|
| fmvsm_s_conf0.1_n_a | | | 98.08 60 | 98.04 60 | 98.21 119 | 97.66 242 | 95.39 181 | 98.89 103 | 99.17 26 | 97.24 50 | 99.76 8 | 99.67 1 | 91.13 157 | 99.88 56 | 99.39 13 | 99.41 110 | 99.35 115 |
|
| MTMP | | | | | | | | 98.89 103 | 94.14 391 | | | | | | | | |
|
| UA-Net | | | 97.96 67 | 97.62 75 | 98.98 59 | 98.86 129 | 97.47 80 | 98.89 103 | 99.08 32 | 96.67 82 | 98.72 76 | 99.54 8 | 93.15 104 | 99.81 81 | 94.87 196 | 98.83 140 | 99.65 69 |
|
| OurMVSNet-221017-0 | | | 94.21 277 | 94.00 254 | 94.85 323 | 95.60 354 | 89.22 350 | 98.89 103 | 97.43 314 | 95.29 147 | 92.18 331 | 98.52 164 | 82.86 317 | 98.59 273 | 93.46 244 | 91.76 300 | 96.74 294 |
|
| fmvsm_l_conf0.5_n_a | | | 99.09 1 | 99.08 1 | 99.11 51 | 99.43 54 | 97.48 78 | 98.88 108 | 99.30 13 | 98.47 9 | 99.85 4 | 99.43 28 | 96.71 17 | 99.96 4 | 99.86 1 | 99.80 23 | 99.89 5 |
|
| thisisatest0530 | | | 96.01 164 | 95.36 180 | 97.97 139 | 98.38 171 | 95.52 176 | 98.88 108 | 94.19 390 | 94.04 202 | 97.64 145 | 98.31 186 | 83.82 314 | 99.46 168 | 95.29 186 | 97.70 188 | 98.93 180 |
|
| MVS_0304 | | | 98.47 38 | 98.22 50 | 99.21 39 | 99.00 114 | 97.80 69 | 98.88 108 | 95.32 377 | 98.86 2 | 98.53 88 | 99.44 27 | 94.38 87 | 99.94 8 | 99.86 1 | 99.70 58 | 99.90 3 |
|
| UGNet | | | 96.78 133 | 96.30 142 | 98.19 123 | 98.24 189 | 95.89 164 | 98.88 108 | 98.93 50 | 97.39 38 | 96.81 177 | 97.84 227 | 82.60 319 | 99.90 45 | 96.53 143 | 99.49 100 | 98.79 190 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| fmvsm_s_conf0.1_n | | | 98.18 59 | 98.21 51 | 98.11 131 | 98.54 161 | 95.24 191 | 98.87 112 | 99.24 17 | 97.50 31 | 99.70 13 | 99.67 1 | 91.33 152 | 99.89 47 | 99.47 12 | 99.54 93 | 99.21 138 |
|
| Anonymous20240529 | | | 95.10 218 | 94.22 237 | 97.75 155 | 99.01 113 | 94.26 240 | 98.87 112 | 98.83 80 | 85.79 379 | 96.64 182 | 98.97 105 | 78.73 343 | 99.85 63 | 96.27 150 | 94.89 250 | 99.12 155 |
|
| thres100view900 | | | 95.38 200 | 94.70 213 | 97.41 181 | 98.98 119 | 94.92 208 | 98.87 112 | 96.90 347 | 95.38 141 | 96.61 185 | 96.88 313 | 84.29 299 | 99.56 145 | 88.11 346 | 96.29 227 | 97.76 240 |
|
| fmvsm_s_conf0.5_n_a | | | 98.38 47 | 98.42 25 | 98.27 112 | 99.09 106 | 95.41 180 | 98.86 115 | 99.37 8 | 97.69 21 | 99.78 6 | 99.61 4 | 92.38 118 | 99.91 39 | 99.58 10 | 99.43 108 | 99.49 96 |
|
| XXY-MVS | | | 95.20 213 | 94.45 227 | 97.46 175 | 96.75 308 | 96.56 123 | 98.86 115 | 98.65 135 | 93.30 250 | 93.27 299 | 98.27 191 | 84.85 287 | 98.87 247 | 94.82 199 | 91.26 308 | 96.96 268 |
|
| fmvsm_s_conf0.5_n | | | 98.42 44 | 98.51 18 | 98.13 127 | 99.30 68 | 95.25 190 | 98.85 117 | 99.39 7 | 97.94 14 | 99.74 9 | 99.62 3 | 92.59 115 | 99.91 39 | 99.65 7 | 99.52 96 | 99.25 133 |
|
| VDDNet | | | 95.36 203 | 94.53 220 | 97.86 144 | 98.10 206 | 95.13 197 | 98.85 117 | 97.75 283 | 90.46 336 | 98.36 98 | 99.39 32 | 73.27 379 | 99.64 131 | 97.98 66 | 96.58 215 | 98.81 189 |
|
| thres600view7 | | | 95.49 191 | 94.77 209 | 97.67 164 | 98.98 119 | 95.02 200 | 98.85 117 | 96.90 347 | 95.38 141 | 96.63 183 | 96.90 312 | 84.29 299 | 99.59 140 | 88.65 343 | 96.33 223 | 98.40 220 |
|
| 114514_t | | | 96.93 126 | 96.27 143 | 98.92 64 | 99.50 41 | 97.63 72 | 98.85 117 | 98.90 57 | 84.80 383 | 97.77 130 | 99.11 84 | 92.84 111 | 99.66 128 | 94.85 197 | 99.77 35 | 99.47 100 |
|
| test_fmvsmconf0.1_n | | | 98.58 23 | 98.44 24 | 98.99 57 | 97.73 236 | 97.15 97 | 98.84 121 | 98.97 42 | 98.75 3 | 99.43 27 | 99.54 8 | 93.29 102 | 99.93 25 | 99.64 9 | 99.79 29 | 99.89 5 |
|
| LFMVS | | | 95.86 174 | 94.98 201 | 98.47 95 | 98.87 128 | 96.32 138 | 98.84 121 | 96.02 367 | 93.40 245 | 98.62 83 | 99.20 67 | 74.99 371 | 99.63 134 | 97.72 84 | 97.20 198 | 99.46 104 |
|
| alignmvs | | | 97.56 95 | 97.07 107 | 99.01 56 | 98.66 149 | 98.37 40 | 98.83 123 | 98.06 263 | 96.74 78 | 98.00 119 | 97.65 245 | 90.80 165 | 99.48 164 | 98.37 47 | 96.56 216 | 99.19 143 |
|
| DeepC-MVS | | 95.98 3 | 97.88 71 | 97.58 77 | 98.77 71 | 99.25 81 | 96.93 103 | 98.83 123 | 98.75 106 | 96.96 67 | 96.89 173 | 99.50 15 | 90.46 171 | 99.87 58 | 97.84 78 | 99.76 41 | 99.52 86 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf_n | | | 98.92 7 | 98.87 6 | 99.04 55 | 98.88 126 | 97.25 92 | 98.82 125 | 99.34 10 | 98.75 3 | 99.80 5 | 99.61 4 | 95.16 68 | 99.95 7 | 99.70 6 | 99.80 23 | 99.93 1 |
|
| sd_testset | | | 96.17 159 | 95.76 161 | 97.42 180 | 99.30 68 | 94.34 237 | 98.82 125 | 99.08 32 | 95.92 111 | 95.96 210 | 98.76 137 | 82.83 318 | 99.32 183 | 95.56 177 | 95.59 245 | 98.60 209 |
|
| ACMMP_NAP | | | 98.61 18 | 98.30 41 | 99.55 9 | 99.62 30 | 98.95 17 | 98.82 125 | 98.81 86 | 95.80 119 | 99.16 44 | 99.47 20 | 95.37 56 | 99.92 31 | 97.89 74 | 99.75 45 | 99.79 19 |
|
| casdiffmvs |  | | 97.63 87 | 97.41 90 | 98.28 111 | 98.33 181 | 96.14 146 | 98.82 125 | 98.32 207 | 96.38 96 | 97.95 121 | 99.21 65 | 91.23 156 | 99.23 191 | 98.12 60 | 98.37 163 | 99.48 98 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GBi-Net | | | 94.49 259 | 93.80 270 | 96.56 244 | 98.21 193 | 95.00 201 | 98.82 125 | 98.18 233 | 92.46 280 | 94.09 265 | 97.07 290 | 81.16 326 | 97.95 337 | 92.08 281 | 92.14 295 | 96.72 297 |
|
| test1 | | | 94.49 259 | 93.80 270 | 96.56 244 | 98.21 193 | 95.00 201 | 98.82 125 | 98.18 233 | 92.46 280 | 94.09 265 | 97.07 290 | 81.16 326 | 97.95 337 | 92.08 281 | 92.14 295 | 96.72 297 |
|
| FMVSNet1 | | | 93.19 310 | 92.07 317 | 96.56 244 | 97.54 252 | 95.00 201 | 98.82 125 | 98.18 233 | 90.38 339 | 92.27 329 | 97.07 290 | 73.68 378 | 97.95 337 | 89.36 335 | 91.30 306 | 96.72 297 |
|
| API-MVS | | | 97.41 105 | 97.25 97 | 97.91 142 | 98.70 143 | 96.80 109 | 98.82 125 | 98.69 120 | 94.53 186 | 98.11 106 | 98.28 188 | 94.50 84 | 99.57 142 | 94.12 224 | 99.49 100 | 97.37 256 |
|
| ACMH | | 92.88 16 | 94.55 252 | 93.95 258 | 96.34 267 | 97.63 244 | 93.26 279 | 98.81 133 | 98.49 178 | 93.43 244 | 89.74 354 | 98.53 161 | 81.91 321 | 99.08 214 | 93.69 236 | 93.30 284 | 96.70 301 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_fmvs1 | | | 96.42 148 | 96.67 127 | 95.66 295 | 98.82 133 | 88.53 363 | 98.80 134 | 98.20 228 | 96.39 95 | 99.64 17 | 99.20 67 | 80.35 335 | 99.67 126 | 99.04 17 | 99.57 84 | 98.78 193 |
|
| Effi-MVS+-dtu | | | 96.29 154 | 96.56 130 | 95.51 300 | 97.89 225 | 90.22 334 | 98.80 134 | 98.10 251 | 96.57 87 | 96.45 196 | 96.66 324 | 90.81 164 | 98.91 240 | 95.72 171 | 97.99 175 | 97.40 253 |
|
| HQP_MVS | | | 96.14 161 | 95.90 157 | 96.85 218 | 97.42 263 | 94.60 226 | 98.80 134 | 98.56 155 | 97.28 45 | 95.34 219 | 98.28 188 | 87.09 246 | 99.03 220 | 96.07 155 | 94.27 253 | 96.92 271 |
|
| plane_prior2 | | | | | | | | 98.80 134 | | 97.28 45 | | | | | | | |
|
| APD-MVS |  | | 98.35 52 | 98.00 62 | 99.42 16 | 99.51 39 | 98.72 21 | 98.80 134 | 98.82 81 | 94.52 188 | 99.23 37 | 99.25 61 | 95.54 50 | 99.80 88 | 96.52 144 | 99.77 35 | 99.74 37 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| UniMVSNet (Re) | | | 95.78 178 | 95.19 190 | 97.58 171 | 96.99 292 | 97.47 80 | 98.79 139 | 99.18 25 | 95.60 130 | 93.92 273 | 97.04 297 | 91.68 140 | 98.48 282 | 95.80 168 | 87.66 352 | 96.79 288 |
|
| FMVSNet2 | | | 94.47 262 | 93.61 283 | 97.04 204 | 98.21 193 | 96.43 129 | 98.79 139 | 98.27 218 | 92.46 280 | 93.50 291 | 97.09 287 | 81.16 326 | 98.00 334 | 91.09 303 | 91.93 298 | 96.70 301 |
|
| tt0805 | | | 94.54 253 | 93.85 267 | 96.63 234 | 97.98 217 | 93.06 288 | 98.77 141 | 97.84 279 | 93.67 233 | 93.80 280 | 98.04 208 | 76.88 363 | 98.96 231 | 94.79 201 | 92.86 289 | 97.86 239 |
|
| testgi | | | 93.06 313 | 92.45 313 | 94.88 322 | 96.43 326 | 89.90 337 | 98.75 142 | 97.54 301 | 95.60 130 | 91.63 339 | 97.91 219 | 74.46 375 | 97.02 365 | 86.10 359 | 93.67 272 | 97.72 244 |
|
| LCM-MVSNet-Re | | | 95.22 211 | 95.32 184 | 94.91 319 | 98.18 199 | 87.85 373 | 98.75 142 | 95.66 374 | 95.11 157 | 88.96 360 | 96.85 316 | 90.26 176 | 97.65 351 | 95.65 175 | 98.44 159 | 99.22 137 |
|
| SixPastTwentyTwo | | | 93.34 304 | 92.86 303 | 94.75 327 | 95.67 352 | 89.41 348 | 98.75 142 | 96.67 358 | 93.89 212 | 90.15 352 | 98.25 194 | 80.87 330 | 98.27 316 | 90.90 309 | 90.64 314 | 96.57 316 |
|
| UniMVSNet_ETH3D | | | 94.24 276 | 93.33 294 | 96.97 209 | 97.19 281 | 93.38 274 | 98.74 145 | 98.57 151 | 91.21 326 | 93.81 279 | 98.58 157 | 72.85 380 | 98.77 259 | 95.05 193 | 93.93 268 | 98.77 195 |
|
| MVS_Test | | | 97.28 111 | 97.00 109 | 98.13 127 | 98.33 181 | 95.97 154 | 98.74 145 | 98.07 258 | 94.27 196 | 98.44 95 | 98.07 205 | 92.48 116 | 99.26 187 | 96.43 147 | 98.19 170 | 99.16 150 |
|
| UniMVSNet_NR-MVSNet | | | 95.71 181 | 95.15 191 | 97.40 183 | 96.84 302 | 96.97 101 | 98.74 145 | 99.24 17 | 95.16 154 | 93.88 275 | 97.72 238 | 91.68 140 | 98.31 309 | 95.81 166 | 87.25 358 | 96.92 271 |
|
| NR-MVSNet | | | 94.98 227 | 94.16 242 | 97.44 178 | 96.53 320 | 97.22 94 | 98.74 145 | 98.95 46 | 94.96 167 | 89.25 359 | 97.69 241 | 89.32 191 | 98.18 319 | 94.59 209 | 87.40 355 | 96.92 271 |
|
| MVSMamba_pp | | | 98.02 64 | 97.82 66 | 98.61 80 | 98.25 188 | 97.32 84 | 98.73 149 | 98.56 155 | 96.18 103 | 98.84 63 | 98.72 140 | 92.90 110 | 99.45 170 | 98.37 47 | 99.85 6 | 99.07 166 |
|
| ETV-MVS | | | 97.96 67 | 97.81 67 | 98.40 104 | 98.42 168 | 97.27 87 | 98.73 149 | 98.55 158 | 96.84 71 | 98.38 97 | 97.44 262 | 95.39 54 | 99.35 180 | 97.62 93 | 98.89 135 | 98.58 213 |
|
| baseline1 | | | 95.84 175 | 95.12 194 | 98.01 137 | 98.49 165 | 95.98 149 | 98.73 149 | 97.03 338 | 95.37 143 | 96.22 201 | 98.19 198 | 89.96 179 | 99.16 198 | 94.60 207 | 87.48 353 | 98.90 182 |
|
| MVSTER | | | 96.06 163 | 95.72 163 | 97.08 202 | 98.23 191 | 95.93 160 | 98.73 149 | 98.27 218 | 94.86 172 | 95.07 226 | 98.09 204 | 88.21 221 | 98.54 278 | 96.59 141 | 93.46 278 | 96.79 288 |
|
| ACMP | | 93.49 10 | 95.34 205 | 94.98 201 | 96.43 260 | 97.67 240 | 93.48 268 | 98.73 149 | 98.44 184 | 94.94 170 | 92.53 322 | 98.53 161 | 84.50 298 | 99.14 203 | 95.48 181 | 94.00 265 | 96.66 307 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| mamv4 | | | 97.97 65 | 97.75 70 | 98.63 79 | 98.28 187 | 97.36 83 | 98.72 154 | 98.57 151 | 95.76 121 | 98.76 71 | 98.70 142 | 92.91 109 | 99.45 170 | 98.24 57 | 99.84 13 | 99.07 166 |
|
| HPM-MVS++ |  | | 98.58 23 | 98.25 44 | 99.55 9 | 99.50 41 | 99.08 11 | 98.72 154 | 98.66 131 | 97.51 30 | 98.15 104 | 98.83 125 | 95.70 45 | 99.92 31 | 97.53 102 | 99.67 63 | 99.66 68 |
|
| 9.14 | | | | 98.06 58 | | 99.47 47 | | 98.71 156 | 98.82 81 | 94.36 194 | 99.16 44 | 99.29 53 | 96.05 33 | 99.81 81 | 97.00 118 | 99.71 57 | |
|
| VPNet | | | 94.99 225 | 94.19 239 | 97.40 183 | 97.16 283 | 96.57 122 | 98.71 156 | 98.97 42 | 95.67 128 | 94.84 231 | 98.24 195 | 80.36 334 | 98.67 267 | 96.46 145 | 87.32 357 | 96.96 268 |
|
| MSLP-MVS++ | | | 98.56 29 | 98.57 15 | 98.55 85 | 99.26 80 | 96.80 109 | 98.71 156 | 99.05 36 | 97.28 45 | 98.84 63 | 99.28 54 | 96.47 23 | 99.40 175 | 98.52 37 | 99.70 58 | 99.47 100 |
|
| ACMH+ | | 92.99 14 | 94.30 271 | 93.77 273 | 95.88 288 | 97.81 229 | 92.04 301 | 98.71 156 | 98.37 200 | 93.99 207 | 90.60 348 | 98.47 167 | 80.86 331 | 99.05 216 | 92.75 265 | 92.40 294 | 96.55 320 |
|
| Anonymous202405211 | | | 95.28 208 | 94.49 222 | 97.67 164 | 99.00 114 | 93.75 257 | 98.70 160 | 97.04 337 | 90.66 332 | 96.49 193 | 98.80 128 | 78.13 350 | 99.83 69 | 96.21 154 | 95.36 249 | 99.44 107 |
|
| iter_conf05 | | | 96.47 146 | 96.48 135 | 96.43 260 | 96.72 310 | 93.98 248 | 98.70 160 | 97.88 276 | 95.76 121 | 95.84 213 | 98.67 148 | 93.01 105 | 98.55 275 | 97.71 88 | 94.02 264 | 96.76 291 |
|
| DP-MVS | | | 96.59 139 | 95.93 156 | 98.57 83 | 99.34 57 | 96.19 144 | 98.70 160 | 98.39 194 | 89.45 355 | 94.52 240 | 99.35 44 | 91.85 137 | 99.85 63 | 92.89 263 | 98.88 136 | 99.68 61 |
|
| Fast-Effi-MVS+-dtu | | | 95.87 173 | 95.85 158 | 95.91 285 | 97.74 235 | 91.74 306 | 98.69 163 | 98.15 241 | 95.56 132 | 94.92 229 | 97.68 244 | 88.98 204 | 98.79 257 | 93.19 251 | 97.78 184 | 97.20 260 |
|
| tfpn200view9 | | | 95.32 207 | 94.62 216 | 97.43 179 | 98.94 122 | 94.98 204 | 98.68 164 | 96.93 345 | 95.33 144 | 96.55 189 | 96.53 330 | 84.23 303 | 99.56 145 | 88.11 346 | 96.29 227 | 97.76 240 |
|
| VDD-MVS | | | 95.82 177 | 95.23 188 | 97.61 170 | 98.84 132 | 93.98 248 | 98.68 164 | 97.40 316 | 95.02 163 | 97.95 121 | 99.34 48 | 74.37 376 | 99.78 101 | 98.64 25 | 96.80 208 | 99.08 162 |
|
| thres400 | | | 95.38 200 | 94.62 216 | 97.65 168 | 98.94 122 | 94.98 204 | 98.68 164 | 96.93 345 | 95.33 144 | 96.55 189 | 96.53 330 | 84.23 303 | 99.56 145 | 88.11 346 | 96.29 227 | 98.40 220 |
|
| pmmvs6 | | | 91.77 324 | 90.63 329 | 95.17 312 | 94.69 375 | 91.24 315 | 98.67 167 | 97.92 274 | 86.14 375 | 89.62 355 | 97.56 255 | 75.79 368 | 98.34 305 | 90.75 311 | 84.56 371 | 95.94 353 |
|
| v2v482 | | | 94.69 240 | 94.03 250 | 96.65 230 | 96.17 335 | 94.79 216 | 98.67 167 | 98.08 256 | 92.72 273 | 94.00 270 | 97.16 281 | 87.69 238 | 98.45 287 | 92.91 260 | 88.87 341 | 96.72 297 |
|
| DU-MVS | | | 95.42 197 | 94.76 210 | 97.40 183 | 96.53 320 | 96.97 101 | 98.66 169 | 98.99 41 | 95.43 138 | 93.88 275 | 97.69 241 | 88.57 212 | 98.31 309 | 95.81 166 | 87.25 358 | 96.92 271 |
|
| MAR-MVS | | | 96.91 127 | 96.40 138 | 98.45 97 | 98.69 146 | 96.90 105 | 98.66 169 | 98.68 123 | 92.40 286 | 97.07 163 | 97.96 216 | 91.54 147 | 99.75 109 | 93.68 237 | 98.92 133 | 98.69 200 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| testing3 | | | 93.19 310 | 92.48 312 | 95.30 309 | 98.07 207 | 92.27 294 | 98.64 171 | 97.17 328 | 93.94 211 | 93.98 271 | 97.04 297 | 67.97 387 | 96.01 382 | 88.40 344 | 97.14 199 | 97.63 247 |
|
| patch_mono-2 | | | 98.36 50 | 98.87 6 | 96.82 220 | 99.53 36 | 90.68 326 | 98.64 171 | 99.29 14 | 97.88 15 | 99.19 40 | 99.52 11 | 96.80 15 | 99.97 1 | 99.11 16 | 99.86 1 | 99.82 16 |
|
| h-mvs33 | | | 96.17 159 | 95.62 172 | 97.81 149 | 99.03 110 | 94.45 230 | 98.64 171 | 98.75 106 | 97.48 32 | 98.67 77 | 98.72 140 | 89.76 181 | 99.86 62 | 97.95 68 | 81.59 381 | 99.11 156 |
|
| VNet | | | 97.79 76 | 97.40 91 | 98.96 62 | 98.88 126 | 97.55 75 | 98.63 174 | 98.93 50 | 96.74 78 | 99.02 48 | 98.84 123 | 90.33 174 | 99.83 69 | 98.53 31 | 96.66 212 | 99.50 91 |
|
| PVSNet_Blended_VisFu | | | 97.70 81 | 97.46 87 | 98.44 99 | 99.27 78 | 95.91 162 | 98.63 174 | 99.16 27 | 94.48 190 | 97.67 140 | 98.88 119 | 92.80 112 | 99.91 39 | 97.11 115 | 99.12 125 | 99.50 91 |
|
| PAPM_NR | | | 97.46 98 | 97.11 104 | 98.50 91 | 99.50 41 | 96.41 132 | 98.63 174 | 98.60 141 | 95.18 153 | 97.06 164 | 98.06 206 | 94.26 91 | 99.57 142 | 93.80 235 | 98.87 138 | 99.52 86 |
|
| Baseline_NR-MVSNet | | | 94.35 268 | 93.81 269 | 95.96 283 | 96.20 333 | 94.05 246 | 98.61 177 | 96.67 358 | 91.44 313 | 93.85 277 | 97.60 250 | 88.57 212 | 98.14 322 | 94.39 213 | 86.93 361 | 95.68 358 |
|
| v1144 | | | 94.59 250 | 93.92 259 | 96.60 239 | 96.21 332 | 94.78 217 | 98.59 178 | 98.14 243 | 91.86 303 | 94.21 260 | 97.02 300 | 87.97 229 | 98.41 298 | 91.72 293 | 89.57 327 | 96.61 311 |
|
| AllTest | | | 95.24 210 | 94.65 215 | 96.99 206 | 99.25 81 | 93.21 282 | 98.59 178 | 98.18 233 | 91.36 315 | 93.52 288 | 98.77 133 | 84.67 293 | 99.72 113 | 89.70 328 | 97.87 180 | 98.02 235 |
|
| Fast-Effi-MVS+ | | | 96.28 156 | 95.70 168 | 98.03 136 | 98.29 186 | 95.97 154 | 98.58 180 | 98.25 223 | 91.74 304 | 95.29 223 | 97.23 277 | 91.03 162 | 99.15 201 | 92.90 261 | 97.96 177 | 98.97 175 |
|
| Anonymous20231206 | | | 91.66 325 | 91.10 325 | 93.33 350 | 94.02 381 | 87.35 375 | 98.58 180 | 97.26 324 | 90.48 335 | 90.16 351 | 96.31 335 | 83.83 313 | 96.53 376 | 79.36 387 | 89.90 323 | 96.12 348 |
|
| v144192 | | | 94.39 267 | 93.70 279 | 96.48 254 | 96.06 340 | 94.35 236 | 98.58 180 | 98.16 240 | 91.45 312 | 94.33 253 | 97.02 300 | 87.50 241 | 98.45 287 | 91.08 304 | 89.11 336 | 96.63 309 |
|
| v148 | | | 94.29 273 | 93.76 275 | 95.91 285 | 96.10 338 | 92.93 289 | 98.58 180 | 97.97 269 | 92.59 278 | 93.47 292 | 96.95 309 | 88.53 216 | 98.32 307 | 92.56 271 | 87.06 360 | 96.49 332 |
|
| COLMAP_ROB |  | 93.27 12 | 95.33 206 | 94.87 207 | 96.71 225 | 99.29 73 | 93.24 281 | 98.58 180 | 98.11 248 | 89.92 346 | 93.57 286 | 99.10 86 | 86.37 260 | 99.79 98 | 90.78 310 | 98.10 173 | 97.09 261 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_vis1_rt | | | 91.29 328 | 90.65 328 | 93.19 354 | 97.45 261 | 86.25 379 | 98.57 185 | 90.90 404 | 93.30 250 | 86.94 373 | 93.59 382 | 62.07 396 | 99.11 208 | 97.48 105 | 95.58 247 | 94.22 377 |
|
| FMVSNet3 | | | 94.97 229 | 94.26 235 | 97.11 200 | 98.18 199 | 96.62 116 | 98.56 186 | 98.26 222 | 93.67 233 | 94.09 265 | 97.10 283 | 84.25 301 | 98.01 332 | 92.08 281 | 92.14 295 | 96.70 301 |
|
| F-COLMAP | | | 97.09 122 | 96.80 117 | 97.97 139 | 99.45 52 | 94.95 207 | 98.55 187 | 98.62 140 | 93.02 263 | 96.17 203 | 98.58 157 | 94.01 95 | 99.81 81 | 93.95 229 | 98.90 134 | 99.14 153 |
|
| dmvs_re | | | 94.48 261 | 94.18 241 | 95.37 306 | 97.68 239 | 90.11 336 | 98.54 188 | 97.08 332 | 94.56 184 | 94.42 248 | 97.24 276 | 84.25 301 | 97.76 349 | 91.02 308 | 92.83 290 | 98.24 227 |
|
| v1921920 | | | 94.20 278 | 93.47 290 | 96.40 264 | 95.98 343 | 94.08 245 | 98.52 189 | 98.15 241 | 91.33 318 | 94.25 257 | 97.20 280 | 86.41 259 | 98.42 291 | 90.04 322 | 89.39 333 | 96.69 306 |
|
| EU-MVSNet | | | 93.66 297 | 94.14 244 | 92.25 362 | 95.96 345 | 83.38 386 | 98.52 189 | 98.12 245 | 94.69 178 | 92.61 319 | 98.13 202 | 87.36 244 | 96.39 378 | 91.82 290 | 90.00 322 | 96.98 266 |
|
| TAMVS | | | 97.02 123 | 96.79 119 | 97.70 160 | 98.06 210 | 95.31 188 | 98.52 189 | 98.31 209 | 93.95 209 | 97.05 165 | 98.61 152 | 93.49 100 | 98.52 280 | 95.33 183 | 97.81 182 | 99.29 127 |
|
| LTVRE_ROB | | 92.95 15 | 94.60 248 | 93.90 262 | 96.68 229 | 97.41 266 | 94.42 232 | 98.52 189 | 98.59 144 | 91.69 307 | 91.21 341 | 98.35 179 | 84.87 286 | 99.04 219 | 91.06 305 | 93.44 281 | 96.60 312 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| TDRefinement | | | 91.06 332 | 89.68 337 | 95.21 310 | 85.35 406 | 91.49 311 | 98.51 193 | 97.07 334 | 91.47 311 | 88.83 364 | 97.84 227 | 77.31 357 | 99.09 213 | 92.79 264 | 77.98 394 | 95.04 369 |
|
| v1192 | | | 94.32 270 | 93.58 284 | 96.53 249 | 96.10 338 | 94.45 230 | 98.50 194 | 98.17 238 | 91.54 310 | 94.19 261 | 97.06 294 | 86.95 250 | 98.43 290 | 90.14 317 | 89.57 327 | 96.70 301 |
|
| test_0402 | | | 91.32 327 | 90.27 333 | 94.48 336 | 96.60 316 | 91.12 316 | 98.50 194 | 97.22 326 | 86.10 376 | 88.30 366 | 96.98 304 | 77.65 355 | 97.99 335 | 78.13 391 | 92.94 288 | 94.34 374 |
|
| DeepC-MVS_fast | | 96.70 1 | 98.55 30 | 98.34 35 | 99.18 42 | 99.25 81 | 98.04 59 | 98.50 194 | 98.78 100 | 97.72 17 | 98.92 60 | 99.28 54 | 95.27 62 | 99.82 76 | 97.55 100 | 99.77 35 | 99.69 56 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CNVR-MVS | | | 98.78 11 | 98.56 16 | 99.45 15 | 99.32 62 | 98.87 19 | 98.47 197 | 98.81 86 | 97.72 17 | 98.76 71 | 99.16 77 | 97.05 13 | 99.78 101 | 98.06 63 | 99.66 65 | 99.69 56 |
|
| test_yl | | | 97.22 113 | 96.78 120 | 98.54 87 | 98.73 138 | 96.60 119 | 98.45 198 | 98.31 209 | 94.70 176 | 98.02 115 | 98.42 171 | 90.80 165 | 99.70 119 | 96.81 135 | 96.79 209 | 99.34 116 |
|
| DCV-MVSNet | | | 97.22 113 | 96.78 120 | 98.54 87 | 98.73 138 | 96.60 119 | 98.45 198 | 98.31 209 | 94.70 176 | 98.02 115 | 98.42 171 | 90.80 165 | 99.70 119 | 96.81 135 | 96.79 209 | 99.34 116 |
|
| NCCC | | | 98.61 18 | 98.35 32 | 99.38 18 | 99.28 77 | 98.61 26 | 98.45 198 | 98.76 104 | 97.82 16 | 98.45 93 | 98.93 114 | 96.65 19 | 99.83 69 | 97.38 109 | 99.41 110 | 99.71 49 |
|
| v1240 | | | 94.06 292 | 93.29 296 | 96.34 267 | 96.03 342 | 93.90 251 | 98.44 201 | 98.17 238 | 91.18 327 | 94.13 264 | 97.01 302 | 86.05 265 | 98.42 291 | 89.13 338 | 89.50 331 | 96.70 301 |
|
| plane_prior | | | | | | | 94.60 226 | 98.44 201 | | 96.74 78 | | | | | | 94.22 255 | |
|
| MP-MVS-pluss | | | 98.31 56 | 97.92 65 | 99.49 12 | 99.72 12 | 98.88 18 | 98.43 203 | 98.78 100 | 94.10 200 | 97.69 139 | 99.42 29 | 95.25 64 | 99.92 31 | 98.09 62 | 99.80 23 | 99.67 65 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| OPM-MVS | | | 95.69 184 | 95.33 183 | 96.76 223 | 96.16 337 | 94.63 221 | 98.43 203 | 98.39 194 | 96.64 83 | 95.02 228 | 98.78 131 | 85.15 282 | 99.05 216 | 95.21 190 | 94.20 256 | 96.60 312 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DPE-MVS |  | | 98.92 7 | 98.67 12 | 99.65 2 | 99.58 32 | 99.20 9 | 98.42 205 | 98.91 56 | 97.58 27 | 99.54 22 | 99.46 24 | 97.10 12 | 99.94 8 | 97.64 92 | 99.84 13 | 99.83 13 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MCST-MVS | | | 98.65 15 | 98.37 29 | 99.48 13 | 99.60 31 | 98.87 19 | 98.41 206 | 98.68 123 | 97.04 63 | 98.52 89 | 98.80 128 | 96.78 16 | 99.83 69 | 97.93 70 | 99.61 76 | 99.74 37 |
|
| hse-mvs2 | | | 95.71 181 | 95.30 186 | 96.93 212 | 98.50 163 | 93.53 266 | 98.36 207 | 98.10 251 | 97.48 32 | 98.67 77 | 97.99 213 | 89.76 181 | 99.02 223 | 97.95 68 | 80.91 386 | 98.22 229 |
|
| CANet | | | 98.05 62 | 97.76 69 | 98.90 67 | 98.73 138 | 97.27 87 | 98.35 208 | 98.78 100 | 97.37 41 | 97.72 137 | 98.96 110 | 91.53 148 | 99.92 31 | 98.79 23 | 99.65 68 | 99.51 89 |
|
| AUN-MVS | | | 94.53 255 | 93.73 277 | 96.92 215 | 98.50 163 | 93.52 267 | 98.34 209 | 98.10 251 | 93.83 217 | 95.94 212 | 97.98 215 | 85.59 273 | 99.03 220 | 94.35 215 | 80.94 385 | 98.22 229 |
|
| test20.03 | | | 90.89 334 | 90.38 332 | 92.43 358 | 93.48 383 | 88.14 370 | 98.33 210 | 97.56 295 | 93.40 245 | 87.96 367 | 96.71 323 | 80.69 333 | 94.13 393 | 79.15 388 | 86.17 367 | 95.01 371 |
|
| DP-MVS Recon | | | 97.86 72 | 97.46 87 | 99.06 54 | 99.53 36 | 98.35 42 | 98.33 210 | 98.89 59 | 92.62 276 | 98.05 110 | 98.94 113 | 95.34 58 | 99.65 129 | 96.04 159 | 99.42 109 | 99.19 143 |
|
| RPSCF | | | 94.87 234 | 95.40 175 | 93.26 352 | 98.89 125 | 82.06 390 | 98.33 210 | 98.06 263 | 90.30 341 | 96.56 187 | 99.26 57 | 87.09 246 | 99.49 159 | 93.82 234 | 96.32 224 | 98.24 227 |
|
| TAPA-MVS | | 93.98 7 | 95.35 204 | 94.56 219 | 97.74 156 | 99.13 101 | 94.83 213 | 98.33 210 | 98.64 136 | 86.62 371 | 96.29 200 | 98.61 152 | 94.00 96 | 99.29 185 | 80.00 385 | 99.41 110 | 99.09 158 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| IterMVS-LS | | | 95.46 193 | 95.21 189 | 96.22 273 | 98.12 204 | 93.72 260 | 98.32 214 | 98.13 244 | 93.71 226 | 94.26 256 | 97.31 271 | 92.24 124 | 98.10 325 | 94.63 204 | 90.12 320 | 96.84 285 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| mvs_anonymous | | | 96.70 136 | 96.53 133 | 97.18 194 | 98.19 197 | 93.78 254 | 98.31 215 | 98.19 230 | 94.01 205 | 94.47 242 | 98.27 191 | 92.08 132 | 98.46 286 | 97.39 108 | 97.91 178 | 99.31 122 |
|
| WTY-MVS | | | 97.37 109 | 96.92 113 | 98.72 73 | 98.86 129 | 96.89 107 | 98.31 215 | 98.71 116 | 95.26 149 | 97.67 140 | 98.56 160 | 92.21 126 | 99.78 101 | 95.89 163 | 96.85 207 | 99.48 98 |
|
| D2MVS | | | 95.18 214 | 95.08 196 | 95.48 301 | 97.10 287 | 92.07 299 | 98.30 217 | 99.13 30 | 94.02 204 | 92.90 310 | 96.73 321 | 89.48 186 | 98.73 261 | 94.48 212 | 93.60 277 | 95.65 359 |
|
| EI-MVSNet-Vis-set | | | 98.47 38 | 98.39 27 | 98.69 74 | 99.46 49 | 96.49 126 | 98.30 217 | 98.69 120 | 97.21 52 | 98.84 63 | 99.36 42 | 95.41 53 | 99.78 101 | 98.62 26 | 99.65 68 | 99.80 18 |
|
| DSMNet-mixed | | | 92.52 320 | 92.58 310 | 92.33 360 | 94.15 377 | 82.65 388 | 98.30 217 | 94.26 389 | 89.08 360 | 92.65 318 | 95.73 356 | 85.01 284 | 95.76 384 | 86.24 358 | 97.76 185 | 98.59 211 |
|
| EI-MVSNet-UG-set | | | 98.41 45 | 98.34 35 | 98.61 80 | 99.45 52 | 96.32 138 | 98.28 220 | 98.68 123 | 97.17 55 | 98.74 73 | 99.37 38 | 95.25 64 | 99.79 98 | 98.57 28 | 99.54 93 | 99.73 42 |
|
| OMC-MVS | | | 97.55 96 | 97.34 94 | 98.20 121 | 99.33 59 | 95.92 161 | 98.28 220 | 98.59 144 | 95.52 134 | 97.97 120 | 99.10 86 | 93.28 103 | 99.49 159 | 95.09 191 | 98.88 136 | 99.19 143 |
|
| baseline2 | | | 95.11 217 | 94.52 221 | 96.87 217 | 96.65 315 | 93.56 263 | 98.27 222 | 94.10 392 | 93.45 243 | 92.02 335 | 97.43 263 | 87.45 243 | 99.19 196 | 93.88 232 | 97.41 196 | 97.87 238 |
|
| PVSNet_BlendedMVS | | | 96.73 134 | 96.60 129 | 97.12 199 | 99.25 81 | 95.35 185 | 98.26 223 | 99.26 15 | 94.28 195 | 97.94 123 | 97.46 259 | 92.74 113 | 99.81 81 | 96.88 129 | 93.32 283 | 96.20 346 |
|
| BH-untuned | | | 95.95 167 | 95.72 163 | 96.65 230 | 98.55 160 | 92.26 295 | 98.23 224 | 97.79 281 | 93.73 223 | 94.62 237 | 98.01 211 | 88.97 205 | 99.00 226 | 93.04 256 | 98.51 155 | 98.68 201 |
|
| sss | | | 97.39 106 | 96.98 111 | 98.61 80 | 98.60 156 | 96.61 118 | 98.22 225 | 98.93 50 | 93.97 208 | 98.01 118 | 98.48 166 | 91.98 134 | 99.85 63 | 96.45 146 | 98.15 171 | 99.39 112 |
|
| save fliter | | | | | | 99.46 49 | 98.38 35 | 98.21 226 | 98.71 116 | 97.95 13 | | | | | | | |
|
| WR-MVS | | | 95.15 215 | 94.46 225 | 97.22 190 | 96.67 314 | 96.45 127 | 98.21 226 | 98.81 86 | 94.15 198 | 93.16 302 | 97.69 241 | 87.51 239 | 98.30 311 | 95.29 186 | 88.62 343 | 96.90 278 |
|
| pmmvs5 | | | 93.65 299 | 92.97 302 | 95.68 294 | 95.49 358 | 92.37 293 | 98.20 228 | 97.28 322 | 89.66 351 | 92.58 320 | 97.26 273 | 82.14 320 | 98.09 327 | 93.18 252 | 90.95 312 | 96.58 314 |
|
| thres200 | | | 95.25 209 | 94.57 218 | 97.28 188 | 98.81 134 | 94.92 208 | 98.20 228 | 97.11 330 | 95.24 152 | 96.54 191 | 96.22 341 | 84.58 296 | 99.53 153 | 87.93 350 | 96.50 219 | 97.39 254 |
|
| CDS-MVSNet | | | 96.99 124 | 96.69 125 | 97.90 143 | 98.05 211 | 95.98 149 | 98.20 228 | 98.33 206 | 93.67 233 | 96.95 167 | 98.49 165 | 93.54 99 | 98.42 291 | 95.24 189 | 97.74 186 | 99.31 122 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ETVMVS | | | 94.50 258 | 93.44 291 | 97.68 163 | 98.18 199 | 95.35 185 | 98.19 231 | 97.11 330 | 93.73 223 | 96.40 197 | 95.39 363 | 74.53 373 | 98.84 250 | 91.10 302 | 96.31 225 | 98.84 187 |
|
| WB-MVS | | | 84.86 358 | 85.33 359 | 83.46 379 | 89.48 397 | 69.56 405 | 98.19 231 | 96.42 364 | 89.55 353 | 81.79 389 | 94.67 372 | 84.80 288 | 90.12 401 | 52.44 405 | 80.64 387 | 90.69 392 |
|
| 1314 | | | 96.25 158 | 95.73 162 | 97.79 150 | 97.13 285 | 95.55 175 | 98.19 231 | 98.59 144 | 93.47 242 | 92.03 334 | 97.82 231 | 91.33 152 | 99.49 159 | 94.62 206 | 98.44 159 | 98.32 226 |
|
| MVS | | | 94.67 245 | 93.54 287 | 98.08 133 | 96.88 300 | 96.56 123 | 98.19 231 | 98.50 173 | 78.05 394 | 92.69 317 | 98.02 209 | 91.07 161 | 99.63 134 | 90.09 318 | 98.36 165 | 98.04 234 |
|
| BH-RMVSNet | | | 95.92 171 | 95.32 184 | 97.69 161 | 98.32 184 | 94.64 220 | 98.19 231 | 97.45 312 | 94.56 184 | 96.03 206 | 98.61 152 | 85.02 283 | 99.12 206 | 90.68 312 | 99.06 126 | 99.30 125 |
|
| 1112_ss | | | 96.63 137 | 96.00 153 | 98.50 91 | 98.56 158 | 96.37 135 | 98.18 236 | 98.10 251 | 92.92 267 | 94.84 231 | 98.43 169 | 92.14 128 | 99.58 141 | 94.35 215 | 96.51 218 | 99.56 85 |
|
| EPNet_dtu | | | 95.21 212 | 94.95 203 | 95.99 280 | 96.17 335 | 90.45 330 | 98.16 237 | 97.27 323 | 96.77 75 | 93.14 305 | 98.33 184 | 90.34 173 | 98.42 291 | 85.57 363 | 98.81 142 | 99.09 158 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HY-MVS | | 93.96 8 | 96.82 132 | 96.23 146 | 98.57 83 | 98.46 166 | 97.00 100 | 98.14 238 | 98.21 226 | 93.95 209 | 96.72 180 | 97.99 213 | 91.58 143 | 99.76 107 | 94.51 211 | 96.54 217 | 98.95 178 |
|
| PLC |  | 95.07 4 | 97.20 116 | 96.78 120 | 98.44 99 | 99.29 73 | 96.31 140 | 98.14 238 | 98.76 104 | 92.41 285 | 96.39 198 | 98.31 186 | 94.92 76 | 99.78 101 | 94.06 227 | 98.77 143 | 99.23 135 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| EG-PatchMatch MVS | | | 91.13 331 | 90.12 334 | 94.17 343 | 94.73 374 | 89.00 354 | 98.13 240 | 97.81 280 | 89.22 359 | 85.32 384 | 96.46 332 | 67.71 388 | 98.42 291 | 87.89 351 | 93.82 270 | 95.08 368 |
|
| EI-MVSNet | | | 95.96 166 | 95.83 159 | 96.36 265 | 97.93 222 | 93.70 261 | 98.12 241 | 98.27 218 | 93.70 228 | 95.07 226 | 99.02 98 | 92.23 125 | 98.54 278 | 94.68 202 | 93.46 278 | 96.84 285 |
|
| CVMVSNet | | | 95.43 196 | 96.04 151 | 93.57 346 | 97.93 222 | 83.62 384 | 98.12 241 | 98.59 144 | 95.68 127 | 96.56 187 | 99.02 98 | 87.51 239 | 97.51 358 | 93.56 243 | 97.44 194 | 99.60 77 |
|
| TSAR-MVS + GP. | | | 98.38 47 | 98.24 46 | 98.81 70 | 99.22 89 | 97.25 92 | 98.11 243 | 98.29 217 | 97.19 54 | 98.99 52 | 99.02 98 | 96.22 26 | 99.67 126 | 98.52 37 | 98.56 153 | 99.51 89 |
|
| XVG-ACMP-BASELINE | | | 94.54 253 | 94.14 244 | 95.75 293 | 96.55 319 | 91.65 308 | 98.11 243 | 98.44 184 | 94.96 167 | 94.22 259 | 97.90 220 | 79.18 342 | 99.11 208 | 94.05 228 | 93.85 269 | 96.48 334 |
|
| testing99 | | | 94.83 235 | 94.08 247 | 97.07 203 | 97.94 220 | 93.13 284 | 98.10 245 | 97.17 328 | 94.86 172 | 95.34 219 | 96.00 350 | 76.31 365 | 99.40 175 | 95.08 192 | 95.90 241 | 98.68 201 |
|
| testing11 | | | 95.00 223 | 94.28 234 | 97.16 196 | 97.96 219 | 93.36 276 | 98.09 246 | 97.06 336 | 94.94 170 | 95.33 222 | 96.15 343 | 76.89 362 | 99.40 175 | 95.77 170 | 96.30 226 | 98.72 196 |
|
| SSC-MVS | | | 84.27 359 | 84.71 362 | 82.96 383 | 89.19 399 | 68.83 406 | 98.08 247 | 96.30 366 | 89.04 361 | 81.37 391 | 94.47 373 | 84.60 295 | 89.89 402 | 49.80 407 | 79.52 389 | 90.15 393 |
|
| CNLPA | | | 97.45 101 | 97.03 108 | 98.73 72 | 99.05 108 | 97.44 82 | 98.07 248 | 98.53 162 | 95.32 146 | 96.80 178 | 98.53 161 | 93.32 101 | 99.72 113 | 94.31 218 | 99.31 119 | 99.02 170 |
|
| diffmvs |  | | 97.58 93 | 97.40 91 | 98.13 127 | 98.32 184 | 95.81 167 | 98.06 249 | 98.37 200 | 96.20 101 | 98.74 73 | 98.89 118 | 91.31 154 | 99.25 188 | 98.16 59 | 98.52 154 | 99.34 116 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CHOSEN 1792x2688 | | | 97.12 120 | 96.80 117 | 98.08 133 | 99.30 68 | 94.56 228 | 98.05 250 | 99.71 1 | 93.57 238 | 97.09 160 | 98.91 117 | 88.17 222 | 99.89 47 | 96.87 132 | 99.56 90 | 99.81 17 |
|
| HQP-NCC | | | | | | 97.20 278 | | 98.05 250 | | 96.43 91 | 94.45 243 | | | | | | |
|
| ACMP_Plane | | | | | | 97.20 278 | | 98.05 250 | | 96.43 91 | 94.45 243 | | | | | | |
|
| HQP-MVS | | | 95.72 180 | 95.40 175 | 96.69 228 | 97.20 278 | 94.25 241 | 98.05 250 | 98.46 180 | 96.43 91 | 94.45 243 | 97.73 236 | 86.75 252 | 98.96 231 | 95.30 184 | 94.18 257 | 96.86 284 |
|
| MIMVSNet1 | | | 89.67 343 | 88.28 348 | 93.82 344 | 92.81 387 | 91.08 317 | 98.01 254 | 97.45 312 | 87.95 366 | 87.90 368 | 95.87 352 | 67.63 389 | 94.56 392 | 78.73 390 | 88.18 347 | 95.83 355 |
|
| AdaColmap |  | | 97.15 119 | 96.70 124 | 98.48 94 | 99.16 98 | 96.69 115 | 98.01 254 | 98.89 59 | 94.44 192 | 96.83 174 | 98.68 145 | 90.69 168 | 99.76 107 | 94.36 214 | 99.29 120 | 98.98 174 |
|
| testing91 | | | 94.98 227 | 94.25 236 | 97.20 191 | 97.94 220 | 93.41 271 | 98.00 256 | 97.58 292 | 94.99 164 | 95.45 218 | 96.04 347 | 77.20 359 | 99.42 174 | 94.97 195 | 96.02 240 | 98.78 193 |
|
| FMVSNet5 | | | 91.81 323 | 90.92 326 | 94.49 335 | 97.21 277 | 92.09 298 | 98.00 256 | 97.55 300 | 89.31 358 | 90.86 345 | 95.61 361 | 74.48 374 | 95.32 388 | 85.57 363 | 89.70 325 | 96.07 350 |
|
| CANet_DTU | | | 96.96 125 | 96.55 131 | 98.21 119 | 98.17 202 | 96.07 148 | 97.98 258 | 98.21 226 | 97.24 50 | 97.13 159 | 98.93 114 | 86.88 251 | 99.91 39 | 95.00 194 | 99.37 116 | 98.66 205 |
|
| MVP-Stereo | | | 94.28 275 | 93.92 259 | 95.35 307 | 94.95 369 | 92.60 292 | 97.97 259 | 97.65 287 | 91.61 309 | 90.68 347 | 97.09 287 | 86.32 261 | 98.42 291 | 89.70 328 | 99.34 117 | 95.02 370 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| KD-MVS_self_test | | | 90.38 337 | 89.38 340 | 93.40 349 | 92.85 386 | 88.94 357 | 97.95 260 | 97.94 272 | 90.35 340 | 90.25 350 | 93.96 379 | 79.82 337 | 95.94 383 | 84.62 373 | 76.69 396 | 95.33 362 |
|
| MVS_111021_LR | | | 98.34 53 | 98.23 48 | 98.67 76 | 99.27 78 | 96.90 105 | 97.95 260 | 99.58 3 | 97.14 58 | 98.44 95 | 99.01 102 | 95.03 73 | 99.62 137 | 97.91 72 | 99.75 45 | 99.50 91 |
|
| testing222 | | | 94.12 286 | 93.03 300 | 97.37 186 | 98.02 212 | 94.66 218 | 97.94 262 | 96.65 360 | 94.63 182 | 95.78 214 | 95.76 353 | 71.49 381 | 98.92 238 | 91.17 301 | 95.88 242 | 98.52 215 |
|
| TEST9 | | | | | | 99.31 64 | 98.50 29 | 97.92 263 | 98.73 111 | 92.63 275 | 97.74 134 | 98.68 145 | 96.20 28 | 99.80 88 | | | |
|
| train_agg | | | 97.97 65 | 97.52 83 | 99.33 26 | 99.31 64 | 98.50 29 | 97.92 263 | 98.73 111 | 92.98 264 | 97.74 134 | 98.68 145 | 96.20 28 | 99.80 88 | 96.59 141 | 99.57 84 | 99.68 61 |
|
| Syy-MVS | | | 92.55 318 | 92.61 309 | 92.38 359 | 97.39 267 | 83.41 385 | 97.91 265 | 97.46 308 | 93.16 256 | 93.42 294 | 95.37 364 | 84.75 290 | 96.12 380 | 77.00 393 | 96.99 202 | 97.60 248 |
|
| myMVS_eth3d | | | 92.73 316 | 92.01 318 | 94.89 321 | 97.39 267 | 90.94 319 | 97.91 265 | 97.46 308 | 93.16 256 | 93.42 294 | 95.37 364 | 68.09 386 | 96.12 380 | 88.34 345 | 96.99 202 | 97.60 248 |
|
| CDPH-MVS | | | 97.94 69 | 97.49 84 | 99.28 32 | 99.47 47 | 98.44 31 | 97.91 265 | 98.67 128 | 92.57 279 | 98.77 70 | 98.85 122 | 95.93 38 | 99.72 113 | 95.56 177 | 99.69 60 | 99.68 61 |
|
| MVS_111021_HR | | | 98.47 38 | 98.34 35 | 98.88 68 | 99.22 89 | 97.32 84 | 97.91 265 | 99.58 3 | 97.20 53 | 98.33 101 | 99.00 103 | 95.99 36 | 99.64 131 | 98.05 65 | 99.76 41 | 99.69 56 |
|
| PatchMatch-RL | | | 96.59 139 | 96.03 152 | 98.27 112 | 99.31 64 | 96.51 125 | 97.91 265 | 99.06 34 | 93.72 225 | 96.92 171 | 98.06 206 | 88.50 217 | 99.65 129 | 91.77 292 | 99.00 131 | 98.66 205 |
|
| OpenMVS_ROB |  | 86.42 20 | 89.00 347 | 87.43 355 | 93.69 345 | 93.08 385 | 89.42 347 | 97.91 265 | 96.89 349 | 78.58 393 | 85.86 379 | 94.69 371 | 69.48 384 | 98.29 314 | 77.13 392 | 93.29 285 | 93.36 387 |
|
| test_8 | | | | | | 99.29 73 | 98.44 31 | 97.89 271 | 98.72 113 | 92.98 264 | 97.70 138 | 98.66 149 | 96.20 28 | 99.80 88 | | | |
|
| ab-mvs | | | 96.42 148 | 95.71 166 | 98.55 85 | 98.63 153 | 96.75 112 | 97.88 272 | 98.74 108 | 93.84 215 | 96.54 191 | 98.18 199 | 85.34 278 | 99.75 109 | 95.93 162 | 96.35 222 | 99.15 151 |
|
| jason | | | 97.32 110 | 97.08 106 | 98.06 135 | 97.45 261 | 95.59 171 | 97.87 273 | 97.91 275 | 94.79 175 | 98.55 87 | 98.83 125 | 91.12 158 | 99.23 191 | 97.58 96 | 99.60 78 | 99.34 116 |
| jason: jason. |
| WB-MVSnew | | | 94.19 279 | 94.04 249 | 94.66 330 | 96.82 304 | 92.14 296 | 97.86 274 | 95.96 370 | 93.50 240 | 95.64 216 | 96.77 320 | 88.06 227 | 97.99 335 | 84.87 368 | 96.86 206 | 93.85 385 |
|
| xiu_mvs_v1_base_debu | | | 97.60 90 | 97.56 79 | 97.72 157 | 98.35 174 | 95.98 149 | 97.86 274 | 98.51 168 | 97.13 59 | 99.01 49 | 98.40 173 | 91.56 144 | 99.80 88 | 98.53 31 | 98.68 144 | 97.37 256 |
|
| xiu_mvs_v1_base | | | 97.60 90 | 97.56 79 | 97.72 157 | 98.35 174 | 95.98 149 | 97.86 274 | 98.51 168 | 97.13 59 | 99.01 49 | 98.40 173 | 91.56 144 | 99.80 88 | 98.53 31 | 98.68 144 | 97.37 256 |
|
| xiu_mvs_v1_base_debi | | | 97.60 90 | 97.56 79 | 97.72 157 | 98.35 174 | 95.98 149 | 97.86 274 | 98.51 168 | 97.13 59 | 99.01 49 | 98.40 173 | 91.56 144 | 99.80 88 | 98.53 31 | 98.68 144 | 97.37 256 |
|
| test_prior4 | | | | | | | 98.01 61 | 97.86 274 | | | | | | | | | |
|
| mvsany_test3 | | | 88.80 348 | 88.04 349 | 91.09 366 | 89.78 396 | 81.57 391 | 97.83 279 | 95.49 375 | 93.81 218 | 87.53 369 | 93.95 380 | 56.14 399 | 97.43 359 | 94.68 202 | 83.13 375 | 94.26 375 |
|
| FA-MVS(test-final) | | | 96.41 151 | 95.94 155 | 97.82 148 | 98.21 193 | 95.20 193 | 97.80 280 | 97.58 292 | 93.21 253 | 97.36 153 | 97.70 239 | 89.47 187 | 99.56 145 | 94.12 224 | 97.99 175 | 98.71 199 |
|
| test_prior2 | | | | | | | | 97.80 280 | | 96.12 106 | 97.89 128 | 98.69 144 | 95.96 37 | | 96.89 127 | 99.60 78 | |
|
| XVG-OURS-SEG-HR | | | 96.51 144 | 96.34 139 | 97.02 205 | 98.77 136 | 93.76 255 | 97.79 282 | 98.50 173 | 95.45 137 | 96.94 168 | 99.09 92 | 87.87 233 | 99.55 152 | 96.76 139 | 95.83 244 | 97.74 242 |
|
| MS-PatchMatch | | | 93.84 296 | 93.63 282 | 94.46 338 | 96.18 334 | 89.45 346 | 97.76 283 | 98.27 218 | 92.23 292 | 92.13 332 | 97.49 257 | 79.50 339 | 98.69 263 | 89.75 326 | 99.38 115 | 95.25 363 |
|
| DELS-MVS | | | 98.40 46 | 98.20 52 | 98.99 57 | 99.00 114 | 97.66 70 | 97.75 284 | 98.89 59 | 97.71 19 | 98.33 101 | 98.97 105 | 94.97 74 | 99.88 56 | 98.42 45 | 99.76 41 | 99.42 111 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MG-MVS | | | 97.81 75 | 97.60 76 | 98.44 99 | 99.12 102 | 95.97 154 | 97.75 284 | 98.78 100 | 96.89 70 | 98.46 90 | 99.22 64 | 93.90 97 | 99.68 125 | 94.81 200 | 99.52 96 | 99.67 65 |
|
| test_f | | | 86.07 357 | 85.39 358 | 88.10 370 | 89.28 398 | 75.57 397 | 97.73 286 | 96.33 365 | 89.41 357 | 85.35 383 | 91.56 394 | 43.31 405 | 95.53 385 | 91.32 299 | 84.23 373 | 93.21 389 |
|
| bld_raw_dy_0_64 | | | 97.62 88 | 97.67 74 | 97.46 175 | 98.43 167 | 94.02 247 | 97.71 287 | 98.53 162 | 95.87 116 | 98.78 69 | 98.70 142 | 92.93 108 | 99.46 168 | 98.25 56 | 99.86 1 | 98.90 182 |
|
| Test_1112_low_res | | | 96.34 153 | 95.66 171 | 98.36 106 | 98.56 158 | 95.94 157 | 97.71 287 | 98.07 258 | 92.10 296 | 94.79 235 | 97.29 272 | 91.75 139 | 99.56 145 | 94.17 222 | 96.50 219 | 99.58 83 |
|
| BH-w/o | | | 95.38 200 | 95.08 196 | 96.26 272 | 98.34 179 | 91.79 303 | 97.70 289 | 97.43 314 | 92.87 269 | 94.24 258 | 97.22 278 | 88.66 210 | 98.84 250 | 91.55 296 | 97.70 188 | 98.16 232 |
|
| lupinMVS | | | 97.44 102 | 97.22 100 | 98.12 130 | 98.07 207 | 95.76 168 | 97.68 290 | 97.76 282 | 94.50 189 | 98.79 67 | 98.61 152 | 92.34 119 | 99.30 184 | 97.58 96 | 99.59 80 | 99.31 122 |
|
| 原ACMM2 | | | | | | | | 97.67 291 | | | | | | | | | |
|
| test_vis3_rt | | | 79.22 361 | 77.40 368 | 84.67 376 | 86.44 404 | 74.85 400 | 97.66 292 | 81.43 411 | 84.98 382 | 67.12 404 | 81.91 402 | 28.09 413 | 97.60 353 | 88.96 339 | 80.04 388 | 81.55 402 |
|
| LF4IMVS | | | 93.14 312 | 92.79 305 | 94.20 341 | 95.88 347 | 88.67 360 | 97.66 292 | 97.07 334 | 93.81 218 | 91.71 337 | 97.65 245 | 77.96 352 | 98.81 255 | 91.47 297 | 91.92 299 | 95.12 366 |
|
| EGC-MVSNET | | | 75.22 370 | 69.54 373 | 92.28 361 | 94.81 372 | 89.58 344 | 97.64 294 | 96.50 362 | 1.82 413 | 5.57 414 | 95.74 354 | 68.21 385 | 96.26 379 | 73.80 396 | 91.71 301 | 90.99 391 |
|
| æ–°å‡ ä½•2 | | | | | | | | 97.64 294 | | | | | | | | | |
|
| MDA-MVSNet-bldmvs | | | 89.97 341 | 88.35 347 | 94.83 325 | 95.21 365 | 91.34 312 | 97.64 294 | 97.51 304 | 88.36 365 | 71.17 402 | 96.13 344 | 79.22 341 | 96.63 375 | 83.65 375 | 86.27 366 | 96.52 326 |
|
| pmmvs-eth3d | | | 90.36 338 | 89.05 343 | 94.32 340 | 91.10 393 | 92.12 297 | 97.63 297 | 96.95 344 | 88.86 362 | 84.91 385 | 93.13 387 | 78.32 347 | 96.74 370 | 88.70 341 | 81.81 380 | 94.09 380 |
|
| TR-MVS | | | 94.94 232 | 94.20 238 | 97.17 195 | 97.75 232 | 94.14 244 | 97.59 298 | 97.02 340 | 92.28 291 | 95.75 215 | 97.64 247 | 83.88 311 | 98.96 231 | 89.77 325 | 96.15 237 | 98.40 220 |
|
| æ— å…ˆéªŒ | | | | | | | | 97.58 299 | 98.72 113 | 91.38 314 | | | | 99.87 58 | 93.36 247 | | 99.60 77 |
|
| 旧先验2 | | | | | | | | 97.57 300 | | 91.30 320 | 98.67 77 | | | 99.80 88 | 95.70 174 | | |
|
| mvsany_test1 | | | 97.69 82 | 97.70 72 | 97.66 167 | 98.24 189 | 94.18 243 | 97.53 301 | 97.53 302 | 95.52 134 | 99.66 15 | 99.51 13 | 94.30 89 | 99.56 145 | 98.38 46 | 98.62 149 | 99.23 135 |
|
| CostFormer | | | 94.95 230 | 94.73 212 | 95.60 298 | 97.28 272 | 89.06 352 | 97.53 301 | 96.89 349 | 89.66 351 | 96.82 176 | 96.72 322 | 86.05 265 | 98.95 236 | 95.53 179 | 96.13 238 | 98.79 190 |
|
| UWE-MVS | | | 94.30 271 | 93.89 264 | 95.53 299 | 97.83 227 | 88.95 356 | 97.52 303 | 93.25 394 | 94.44 192 | 96.63 183 | 97.07 290 | 78.70 344 | 99.28 186 | 91.99 286 | 97.56 193 | 98.36 223 |
|
| XVG-OURS | | | 96.55 143 | 96.41 137 | 96.99 206 | 98.75 137 | 93.76 255 | 97.50 304 | 98.52 166 | 95.67 128 | 96.83 174 | 99.30 52 | 88.95 206 | 99.53 153 | 95.88 164 | 96.26 232 | 97.69 245 |
|
| xiu_mvs_v2_base | | | 97.66 85 | 97.70 72 | 97.56 173 | 98.61 155 | 95.46 178 | 97.44 305 | 98.46 180 | 97.15 57 | 98.65 82 | 98.15 200 | 94.33 88 | 99.80 88 | 97.84 78 | 98.66 148 | 97.41 252 |
|
| tpm | | | 94.13 284 | 93.80 270 | 95.12 313 | 96.50 322 | 87.91 372 | 97.44 305 | 95.89 373 | 92.62 276 | 96.37 199 | 96.30 336 | 84.13 306 | 98.30 311 | 93.24 249 | 91.66 303 | 99.14 153 |
|
| DeepPCF-MVS | | 96.37 2 | 97.93 70 | 98.48 23 | 96.30 270 | 99.00 114 | 89.54 345 | 97.43 307 | 98.87 69 | 98.16 11 | 99.26 36 | 99.38 37 | 96.12 31 | 99.64 131 | 98.30 51 | 99.77 35 | 99.72 45 |
|
| test222 | | | | | | 99.23 88 | 97.17 96 | 97.40 308 | 98.66 131 | 88.68 363 | 98.05 110 | 98.96 110 | 94.14 93 | | | 99.53 95 | 99.61 75 |
|
| pmmvs4 | | | 94.69 240 | 93.99 256 | 96.81 221 | 95.74 350 | 95.94 157 | 97.40 308 | 97.67 286 | 90.42 338 | 93.37 296 | 97.59 251 | 89.08 199 | 98.20 318 | 92.97 258 | 91.67 302 | 96.30 343 |
|
| test0.0.03 1 | | | 94.08 290 | 93.51 288 | 95.80 290 | 95.53 357 | 92.89 290 | 97.38 310 | 95.97 369 | 95.11 157 | 92.51 324 | 96.66 324 | 87.71 235 | 96.94 367 | 87.03 354 | 93.67 272 | 97.57 250 |
|
| HyFIR lowres test | | | 96.90 128 | 96.49 134 | 98.14 124 | 99.33 59 | 95.56 173 | 97.38 310 | 99.65 2 | 92.34 287 | 97.61 147 | 98.20 197 | 89.29 192 | 99.10 212 | 96.97 120 | 97.60 191 | 99.77 27 |
|
| Effi-MVS+ | | | 97.12 120 | 96.69 125 | 98.39 105 | 98.19 197 | 96.72 114 | 97.37 312 | 98.43 188 | 93.71 226 | 97.65 144 | 98.02 209 | 92.20 127 | 99.25 188 | 96.87 132 | 97.79 183 | 99.19 143 |
|
| N_pmnet | | | 87.12 355 | 87.77 353 | 85.17 375 | 95.46 360 | 61.92 411 | 97.37 312 | 70.66 416 | 85.83 378 | 88.73 365 | 96.04 347 | 85.33 279 | 97.76 349 | 80.02 384 | 90.48 315 | 95.84 354 |
|
| PAPR | | | 96.84 131 | 96.24 145 | 98.65 77 | 98.72 142 | 96.92 104 | 97.36 314 | 98.57 151 | 93.33 247 | 96.67 181 | 97.57 253 | 94.30 89 | 99.56 145 | 91.05 307 | 98.59 151 | 99.47 100 |
|
| PMMVS | | | 96.60 138 | 96.33 140 | 97.41 181 | 97.90 224 | 93.93 250 | 97.35 315 | 98.41 190 | 92.84 270 | 97.76 131 | 97.45 261 | 91.10 160 | 99.20 195 | 96.26 151 | 97.91 178 | 99.11 156 |
|
| PS-MVSNAJ | | | 97.73 78 | 97.77 68 | 97.62 169 | 98.68 147 | 95.58 172 | 97.34 316 | 98.51 168 | 97.29 44 | 98.66 81 | 97.88 223 | 94.51 81 | 99.90 45 | 97.87 75 | 99.17 124 | 97.39 254 |
|
| SCA | | | 95.46 193 | 95.13 192 | 96.46 258 | 97.67 240 | 91.29 314 | 97.33 317 | 97.60 291 | 94.68 179 | 96.92 171 | 97.10 283 | 83.97 309 | 98.89 244 | 92.59 269 | 98.32 168 | 99.20 139 |
|
| testdata1 | | | | | | | | 97.32 318 | | 96.34 97 | | | | | | | |
|
| ET-MVSNet_ETH3D | | | 94.13 284 | 92.98 301 | 97.58 171 | 98.22 192 | 96.20 142 | 97.31 319 | 95.37 376 | 94.53 186 | 79.56 394 | 97.63 249 | 86.51 255 | 97.53 357 | 96.91 123 | 90.74 313 | 99.02 170 |
|
| tpm2 | | | 94.19 279 | 93.76 275 | 95.46 303 | 97.23 275 | 89.04 353 | 97.31 319 | 96.85 353 | 87.08 370 | 96.21 202 | 96.79 319 | 83.75 315 | 98.74 260 | 92.43 277 | 96.23 235 | 98.59 211 |
|
| PVSNet_Blended | | | 97.38 107 | 97.12 103 | 98.14 124 | 99.25 81 | 95.35 185 | 97.28 321 | 99.26 15 | 93.13 258 | 97.94 123 | 98.21 196 | 92.74 113 | 99.81 81 | 96.88 129 | 99.40 113 | 99.27 129 |
|
| CLD-MVS | | | 95.62 187 | 95.34 181 | 96.46 258 | 97.52 255 | 93.75 257 | 97.27 322 | 98.46 180 | 95.53 133 | 94.42 248 | 98.00 212 | 86.21 262 | 98.97 227 | 96.25 153 | 94.37 251 | 96.66 307 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| EPMVS | | | 94.99 225 | 94.48 223 | 96.52 250 | 97.22 276 | 91.75 305 | 97.23 323 | 91.66 401 | 94.11 199 | 97.28 154 | 96.81 318 | 85.70 271 | 98.84 250 | 93.04 256 | 97.28 197 | 98.97 175 |
|
| miper_lstm_enhance | | | 94.33 269 | 94.07 248 | 95.11 314 | 97.75 232 | 90.97 318 | 97.22 324 | 98.03 265 | 91.67 308 | 92.76 314 | 96.97 305 | 90.03 178 | 97.78 348 | 92.51 274 | 89.64 326 | 96.56 318 |
|
| APD_test1 | | | 88.22 350 | 88.01 350 | 88.86 369 | 95.98 343 | 74.66 401 | 97.21 325 | 96.44 363 | 83.96 386 | 86.66 376 | 97.90 220 | 60.95 397 | 97.84 347 | 82.73 377 | 90.23 319 | 94.09 380 |
|
| dmvs_testset | | | 87.64 352 | 88.93 345 | 83.79 378 | 95.25 364 | 63.36 410 | 97.20 326 | 91.17 402 | 93.07 260 | 85.64 382 | 95.98 351 | 85.30 281 | 91.52 400 | 69.42 399 | 87.33 356 | 96.49 332 |
|
| YYNet1 | | | 90.70 336 | 89.39 339 | 94.62 332 | 94.79 373 | 90.65 327 | 97.20 326 | 97.46 308 | 87.54 368 | 72.54 400 | 95.74 354 | 86.51 255 | 96.66 374 | 86.00 360 | 86.76 365 | 96.54 321 |
|
| MDA-MVSNet_test_wron | | | 90.71 335 | 89.38 340 | 94.68 329 | 94.83 371 | 90.78 324 | 97.19 328 | 97.46 308 | 87.60 367 | 72.41 401 | 95.72 358 | 86.51 255 | 96.71 373 | 85.92 361 | 86.80 364 | 96.56 318 |
|
| IterMVS-SCA-FT | | | 94.11 287 | 93.87 265 | 94.85 323 | 97.98 217 | 90.56 329 | 97.18 329 | 98.11 248 | 93.75 220 | 92.58 320 | 97.48 258 | 83.97 309 | 97.41 360 | 92.48 276 | 91.30 306 | 96.58 314 |
|
| IterMVS | | | 94.09 289 | 93.85 267 | 94.80 326 | 97.99 215 | 90.35 332 | 97.18 329 | 98.12 245 | 93.68 231 | 92.46 326 | 97.34 268 | 84.05 307 | 97.41 360 | 92.51 274 | 91.33 305 | 96.62 310 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| FE-MVS | | | 95.62 187 | 94.90 205 | 97.78 151 | 98.37 173 | 94.92 208 | 97.17 331 | 97.38 318 | 90.95 330 | 97.73 136 | 97.70 239 | 85.32 280 | 99.63 134 | 91.18 300 | 98.33 166 | 98.79 190 |
|
| DPM-MVS | | | 97.55 96 | 96.99 110 | 99.23 38 | 99.04 109 | 98.55 27 | 97.17 331 | 98.35 203 | 94.85 174 | 97.93 125 | 98.58 157 | 95.07 72 | 99.71 118 | 92.60 267 | 99.34 117 | 99.43 109 |
|
| c3_l | | | 94.79 237 | 94.43 229 | 95.89 287 | 97.75 232 | 93.12 286 | 97.16 333 | 98.03 265 | 92.23 292 | 93.46 293 | 97.05 296 | 91.39 149 | 98.01 332 | 93.58 242 | 89.21 335 | 96.53 323 |
|
| new-patchmatchnet | | | 88.50 349 | 87.45 354 | 91.67 364 | 90.31 395 | 85.89 380 | 97.16 333 | 97.33 319 | 89.47 354 | 83.63 387 | 92.77 389 | 76.38 364 | 95.06 390 | 82.70 378 | 77.29 395 | 94.06 382 |
|
| UnsupCasMVSNet_eth | | | 90.99 333 | 89.92 336 | 94.19 342 | 94.08 378 | 89.83 338 | 97.13 335 | 98.67 128 | 93.69 229 | 85.83 380 | 96.19 342 | 75.15 370 | 96.74 370 | 89.14 337 | 79.41 390 | 96.00 351 |
|
| IB-MVS | | 91.98 17 | 93.27 306 | 91.97 319 | 97.19 193 | 97.47 257 | 93.41 271 | 97.09 336 | 95.99 368 | 93.32 248 | 92.47 325 | 95.73 356 | 78.06 351 | 99.53 153 | 94.59 209 | 82.98 376 | 98.62 208 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| cl____ | | | 94.51 257 | 94.01 253 | 96.02 279 | 97.58 247 | 93.40 273 | 97.05 337 | 97.96 271 | 91.73 306 | 92.76 314 | 97.08 289 | 89.06 200 | 98.13 323 | 92.61 266 | 90.29 318 | 96.52 326 |
|
| DIV-MVS_self_test | | | 94.52 256 | 94.03 250 | 95.99 280 | 97.57 251 | 93.38 274 | 97.05 337 | 97.94 272 | 91.74 304 | 92.81 312 | 97.10 283 | 89.12 197 | 98.07 329 | 92.60 267 | 90.30 317 | 96.53 323 |
|
| miper_ehance_all_eth | | | 95.01 222 | 94.69 214 | 95.97 282 | 97.70 238 | 93.31 277 | 97.02 339 | 98.07 258 | 92.23 292 | 93.51 290 | 96.96 307 | 91.85 137 | 98.15 321 | 93.68 237 | 91.16 309 | 96.44 337 |
|
| CMPMVS |  | 66.06 21 | 89.70 342 | 89.67 338 | 89.78 367 | 93.19 384 | 76.56 393 | 97.00 340 | 98.35 203 | 80.97 391 | 81.57 390 | 97.75 235 | 74.75 372 | 98.61 270 | 89.85 324 | 93.63 275 | 94.17 378 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| tpmrst | | | 95.63 186 | 95.69 169 | 95.44 304 | 97.54 252 | 88.54 362 | 96.97 341 | 97.56 295 | 93.50 240 | 97.52 151 | 96.93 311 | 89.49 185 | 99.16 198 | 95.25 188 | 96.42 221 | 98.64 207 |
|
| dp | | | 94.15 283 | 93.90 262 | 94.90 320 | 97.31 271 | 86.82 378 | 96.97 341 | 97.19 327 | 91.22 325 | 96.02 207 | 96.61 329 | 85.51 274 | 99.02 223 | 90.00 323 | 94.30 252 | 98.85 185 |
|
| cl22 | | | 94.68 242 | 94.19 239 | 96.13 276 | 98.11 205 | 93.60 262 | 96.94 343 | 98.31 209 | 92.43 284 | 93.32 298 | 96.87 315 | 86.51 255 | 98.28 315 | 94.10 226 | 91.16 309 | 96.51 329 |
|
| PM-MVS | | | 87.77 351 | 86.55 357 | 91.40 365 | 91.03 394 | 83.36 387 | 96.92 344 | 95.18 380 | 91.28 322 | 86.48 378 | 93.42 383 | 53.27 400 | 96.74 370 | 89.43 334 | 81.97 379 | 94.11 379 |
|
| TinyColmap | | | 92.31 321 | 91.53 322 | 94.65 331 | 96.92 296 | 89.75 339 | 96.92 344 | 96.68 357 | 90.45 337 | 89.62 355 | 97.85 226 | 76.06 367 | 98.81 255 | 86.74 355 | 92.51 293 | 95.41 361 |
|
| our_test_3 | | | 93.65 299 | 93.30 295 | 94.69 328 | 95.45 361 | 89.68 343 | 96.91 346 | 97.65 287 | 91.97 299 | 91.66 338 | 96.88 313 | 89.67 184 | 97.93 340 | 88.02 349 | 91.49 304 | 96.48 334 |
|
| test-LLR | | | 95.10 218 | 94.87 207 | 95.80 290 | 96.77 305 | 89.70 341 | 96.91 346 | 95.21 378 | 95.11 157 | 94.83 233 | 95.72 358 | 87.71 235 | 98.97 227 | 93.06 254 | 98.50 156 | 98.72 196 |
|
| TESTMET0.1,1 | | | 94.18 282 | 93.69 280 | 95.63 296 | 96.92 296 | 89.12 351 | 96.91 346 | 94.78 383 | 93.17 255 | 94.88 230 | 96.45 333 | 78.52 345 | 98.92 238 | 93.09 253 | 98.50 156 | 98.85 185 |
|
| test-mter | | | 94.08 290 | 93.51 288 | 95.80 290 | 96.77 305 | 89.70 341 | 96.91 346 | 95.21 378 | 92.89 268 | 94.83 233 | 95.72 358 | 77.69 353 | 98.97 227 | 93.06 254 | 98.50 156 | 98.72 196 |
|
| USDC | | | 93.33 305 | 92.71 306 | 95.21 310 | 96.83 303 | 90.83 323 | 96.91 346 | 97.50 305 | 93.84 215 | 90.72 346 | 98.14 201 | 77.69 353 | 98.82 254 | 89.51 332 | 93.21 286 | 95.97 352 |
|
| MDTV_nov1_ep13_2view | | | | | | | 84.26 382 | 96.89 351 | | 90.97 329 | 97.90 127 | | 89.89 180 | | 93.91 231 | | 99.18 148 |
|
| ppachtmachnet_test | | | 93.22 308 | 92.63 308 | 94.97 318 | 95.45 361 | 90.84 322 | 96.88 352 | 97.88 276 | 90.60 333 | 92.08 333 | 97.26 273 | 88.08 226 | 97.86 346 | 85.12 367 | 90.33 316 | 96.22 345 |
|
| tpmvs | | | 94.60 248 | 94.36 232 | 95.33 308 | 97.46 258 | 88.60 361 | 96.88 352 | 97.68 285 | 91.29 321 | 93.80 280 | 96.42 334 | 88.58 211 | 99.24 190 | 91.06 305 | 96.04 239 | 98.17 231 |
|
| MDTV_nov1_ep13 | | | | 95.40 175 | | 97.48 256 | 88.34 366 | 96.85 354 | 97.29 321 | 93.74 222 | 97.48 152 | 97.26 273 | 89.18 195 | 99.05 216 | 91.92 289 | 97.43 195 | |
|
| PatchmatchNet |  | | 95.71 181 | 95.52 173 | 96.29 271 | 97.58 247 | 90.72 325 | 96.84 355 | 97.52 303 | 94.06 201 | 97.08 161 | 96.96 307 | 89.24 194 | 98.90 243 | 92.03 285 | 98.37 163 | 99.26 131 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MSDG | | | 95.93 170 | 95.30 186 | 97.83 146 | 98.90 124 | 95.36 183 | 96.83 356 | 98.37 200 | 91.32 319 | 94.43 247 | 98.73 139 | 90.27 175 | 99.60 139 | 90.05 321 | 98.82 141 | 98.52 215 |
|
| thisisatest0515 | | | 95.61 190 | 94.89 206 | 97.76 154 | 98.15 203 | 95.15 196 | 96.77 357 | 94.41 386 | 92.95 266 | 97.18 158 | 97.43 263 | 84.78 289 | 99.45 170 | 94.63 204 | 97.73 187 | 98.68 201 |
|
| GA-MVS | | | 94.81 236 | 94.03 250 | 97.14 197 | 97.15 284 | 93.86 252 | 96.76 358 | 97.58 292 | 94.00 206 | 94.76 236 | 97.04 297 | 80.91 329 | 98.48 282 | 91.79 291 | 96.25 233 | 99.09 158 |
|
| tpm cat1 | | | 93.36 302 | 92.80 304 | 95.07 316 | 97.58 247 | 87.97 371 | 96.76 358 | 97.86 278 | 82.17 390 | 93.53 287 | 96.04 347 | 86.13 263 | 99.13 204 | 89.24 336 | 95.87 243 | 98.10 233 |
|
| eth_miper_zixun_eth | | | 94.68 242 | 94.41 230 | 95.47 302 | 97.64 243 | 91.71 307 | 96.73 360 | 98.07 258 | 92.71 274 | 93.64 283 | 97.21 279 | 90.54 170 | 98.17 320 | 93.38 245 | 89.76 324 | 96.54 321 |
|
| test_post1 | | | | | | | | 96.68 361 | | | | 30.43 412 | 87.85 234 | 98.69 263 | 92.59 269 | | |
|
| pmmvs3 | | | 86.67 356 | 84.86 361 | 92.11 363 | 88.16 400 | 87.19 377 | 96.63 362 | 94.75 384 | 79.88 392 | 87.22 371 | 92.75 390 | 66.56 391 | 95.20 389 | 81.24 382 | 76.56 397 | 93.96 383 |
|
| miper_enhance_ethall | | | 95.10 218 | 94.75 211 | 96.12 277 | 97.53 254 | 93.73 259 | 96.61 363 | 98.08 256 | 92.20 295 | 93.89 274 | 96.65 326 | 92.44 117 | 98.30 311 | 94.21 221 | 91.16 309 | 96.34 340 |
|
| testmvs | | | 21.48 379 | 24.95 382 | 11.09 395 | 14.89 417 | 6.47 420 | 96.56 364 | 9.87 418 | 7.55 411 | 17.93 411 | 39.02 409 | 9.43 418 | 5.90 414 | 16.56 413 | 12.72 411 | 20.91 409 |
|
| test123 | | | 20.95 380 | 23.72 383 | 12.64 394 | 13.54 418 | 8.19 419 | 96.55 365 | 6.13 419 | 7.48 412 | 16.74 412 | 37.98 410 | 12.97 415 | 6.05 413 | 16.69 412 | 5.43 412 | 23.68 408 |
|
| CL-MVSNet_self_test | | | 90.11 339 | 89.14 342 | 93.02 355 | 91.86 390 | 88.23 369 | 96.51 366 | 98.07 258 | 90.49 334 | 90.49 349 | 94.41 374 | 84.75 290 | 95.34 387 | 80.79 383 | 74.95 398 | 95.50 360 |
|
| GG-mvs-BLEND | | | | | 96.59 240 | 96.34 329 | 94.98 204 | 96.51 366 | 88.58 407 | | 93.10 307 | 94.34 378 | 80.34 336 | 98.05 330 | 89.53 331 | 96.99 202 | 96.74 294 |
|
| new_pmnet | | | 90.06 340 | 89.00 344 | 93.22 353 | 94.18 376 | 88.32 367 | 96.42 368 | 96.89 349 | 86.19 374 | 85.67 381 | 93.62 381 | 77.18 360 | 97.10 364 | 81.61 381 | 89.29 334 | 94.23 376 |
|
| PVSNet | | 91.96 18 | 96.35 152 | 96.15 147 | 96.96 210 | 99.17 94 | 92.05 300 | 96.08 369 | 98.68 123 | 93.69 229 | 97.75 133 | 97.80 233 | 88.86 207 | 99.69 124 | 94.26 220 | 99.01 130 | 99.15 151 |
|
| ADS-MVSNet2 | | | 94.58 251 | 94.40 231 | 95.11 314 | 98.00 213 | 88.74 359 | 96.04 370 | 97.30 320 | 90.15 342 | 96.47 194 | 96.64 327 | 87.89 231 | 97.56 356 | 90.08 319 | 97.06 200 | 99.02 170 |
|
| ADS-MVSNet | | | 95.00 223 | 94.45 227 | 96.63 234 | 98.00 213 | 91.91 302 | 96.04 370 | 97.74 284 | 90.15 342 | 96.47 194 | 96.64 327 | 87.89 231 | 98.96 231 | 90.08 319 | 97.06 200 | 99.02 170 |
|
| PAPM | | | 94.95 230 | 94.00 254 | 97.78 151 | 97.04 289 | 95.65 170 | 96.03 372 | 98.25 223 | 91.23 324 | 94.19 261 | 97.80 233 | 91.27 155 | 98.86 249 | 82.61 379 | 97.61 190 | 98.84 187 |
|
| cascas | | | 94.63 247 | 93.86 266 | 96.93 212 | 96.91 298 | 94.27 239 | 96.00 373 | 98.51 168 | 85.55 380 | 94.54 239 | 96.23 339 | 84.20 305 | 98.87 247 | 95.80 168 | 96.98 205 | 97.66 246 |
|
| gg-mvs-nofinetune | | | 92.21 322 | 90.58 330 | 97.13 198 | 96.75 308 | 95.09 198 | 95.85 374 | 89.40 406 | 85.43 381 | 94.50 241 | 81.98 401 | 80.80 332 | 98.40 304 | 92.16 279 | 98.33 166 | 97.88 237 |
|
| FPMVS | | | 77.62 369 | 77.14 369 | 79.05 387 | 79.25 410 | 60.97 412 | 95.79 375 | 95.94 371 | 65.96 401 | 67.93 403 | 94.40 375 | 37.73 407 | 88.88 404 | 68.83 400 | 88.46 344 | 87.29 398 |
|
| CHOSEN 280x420 | | | 97.18 117 | 97.18 102 | 97.20 191 | 98.81 134 | 93.27 278 | 95.78 376 | 99.15 28 | 95.25 150 | 96.79 179 | 98.11 203 | 92.29 121 | 99.07 215 | 98.56 30 | 99.85 6 | 99.25 133 |
|
| MIMVSNet | | | 93.26 307 | 92.21 316 | 96.41 262 | 97.73 236 | 93.13 284 | 95.65 377 | 97.03 338 | 91.27 323 | 94.04 268 | 96.06 346 | 75.33 369 | 97.19 363 | 86.56 356 | 96.23 235 | 98.92 181 |
|
| KD-MVS_2432*1600 | | | 89.61 344 | 87.96 351 | 94.54 333 | 94.06 379 | 91.59 309 | 95.59 378 | 97.63 289 | 89.87 347 | 88.95 361 | 94.38 376 | 78.28 348 | 96.82 368 | 84.83 369 | 68.05 402 | 95.21 364 |
|
| miper_refine_blended | | | 89.61 344 | 87.96 351 | 94.54 333 | 94.06 379 | 91.59 309 | 95.59 378 | 97.63 289 | 89.87 347 | 88.95 361 | 94.38 376 | 78.28 348 | 96.82 368 | 84.83 369 | 68.05 402 | 95.21 364 |
|
| PCF-MVS | | 93.45 11 | 94.68 242 | 93.43 292 | 98.42 103 | 98.62 154 | 96.77 111 | 95.48 380 | 98.20 228 | 84.63 384 | 93.34 297 | 98.32 185 | 88.55 215 | 99.81 81 | 84.80 371 | 98.96 132 | 98.68 201 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| JIA-IIPM | | | 93.35 303 | 92.49 311 | 95.92 284 | 96.48 324 | 90.65 327 | 95.01 381 | 96.96 343 | 85.93 377 | 96.08 205 | 87.33 398 | 87.70 237 | 98.78 258 | 91.35 298 | 95.58 247 | 98.34 224 |
|
| CR-MVSNet | | | 94.76 239 | 94.15 243 | 96.59 240 | 97.00 290 | 93.43 269 | 94.96 382 | 97.56 295 | 92.46 280 | 96.93 169 | 96.24 337 | 88.15 223 | 97.88 345 | 87.38 352 | 96.65 213 | 98.46 218 |
|
| RPMNet | | | 92.81 315 | 91.34 324 | 97.24 189 | 97.00 290 | 93.43 269 | 94.96 382 | 98.80 93 | 82.27 389 | 96.93 169 | 92.12 393 | 86.98 249 | 99.82 76 | 76.32 394 | 96.65 213 | 98.46 218 |
|
| UnsupCasMVSNet_bld | | | 87.17 353 | 85.12 360 | 93.31 351 | 91.94 389 | 88.77 358 | 94.92 384 | 98.30 215 | 84.30 385 | 82.30 388 | 90.04 395 | 63.96 394 | 97.25 362 | 85.85 362 | 74.47 400 | 93.93 384 |
|
| PVSNet_0 | | 88.72 19 | 91.28 329 | 90.03 335 | 95.00 317 | 97.99 215 | 87.29 376 | 94.84 385 | 98.50 173 | 92.06 297 | 89.86 353 | 95.19 366 | 79.81 338 | 99.39 178 | 92.27 278 | 69.79 401 | 98.33 225 |
|
| Patchmatch-test | | | 94.42 265 | 93.68 281 | 96.63 234 | 97.60 246 | 91.76 304 | 94.83 386 | 97.49 307 | 89.45 355 | 94.14 263 | 97.10 283 | 88.99 201 | 98.83 253 | 85.37 366 | 98.13 172 | 99.29 127 |
|
| testf1 | | | 79.02 363 | 77.70 365 | 82.99 381 | 88.10 401 | 66.90 407 | 94.67 387 | 93.11 395 | 71.08 399 | 74.02 397 | 93.41 384 | 34.15 409 | 93.25 395 | 72.25 397 | 78.50 392 | 88.82 395 |
|
| APD_test2 | | | 79.02 363 | 77.70 365 | 82.99 381 | 88.10 401 | 66.90 407 | 94.67 387 | 93.11 395 | 71.08 399 | 74.02 397 | 93.41 384 | 34.15 409 | 93.25 395 | 72.25 397 | 78.50 392 | 88.82 395 |
|
| Patchmtry | | | 93.22 308 | 92.35 314 | 95.84 289 | 96.77 305 | 93.09 287 | 94.66 389 | 97.56 295 | 87.37 369 | 92.90 310 | 96.24 337 | 88.15 223 | 97.90 341 | 87.37 353 | 90.10 321 | 96.53 323 |
|
| kuosan | | | 78.45 366 | 77.69 367 | 80.72 385 | 92.73 388 | 75.32 398 | 94.63 390 | 74.51 414 | 75.96 395 | 80.87 393 | 93.19 386 | 63.23 395 | 79.99 409 | 42.56 409 | 81.56 382 | 86.85 401 |
|
| dongtai | | | 82.47 360 | 81.88 363 | 84.22 377 | 95.19 366 | 76.03 394 | 94.59 391 | 74.14 415 | 82.63 387 | 87.19 372 | 96.09 345 | 64.10 393 | 87.85 405 | 58.91 403 | 84.11 374 | 88.78 397 |
|
| PatchT | | | 93.06 313 | 91.97 319 | 96.35 266 | 96.69 312 | 92.67 291 | 94.48 392 | 97.08 332 | 86.62 371 | 97.08 161 | 92.23 392 | 87.94 230 | 97.90 341 | 78.89 389 | 96.69 211 | 98.49 217 |
|
| LCM-MVSNet | | | 78.70 365 | 76.24 371 | 86.08 373 | 77.26 412 | 71.99 403 | 94.34 393 | 96.72 355 | 61.62 403 | 76.53 395 | 89.33 396 | 33.91 411 | 92.78 398 | 81.85 380 | 74.60 399 | 93.46 386 |
|
| PMMVS2 | | | 77.95 368 | 75.44 372 | 85.46 374 | 82.54 407 | 74.95 399 | 94.23 394 | 93.08 397 | 72.80 398 | 74.68 396 | 87.38 397 | 36.36 408 | 91.56 399 | 73.95 395 | 63.94 404 | 89.87 394 |
|
| MVS-HIRNet | | | 89.46 346 | 88.40 346 | 92.64 357 | 97.58 247 | 82.15 389 | 94.16 395 | 93.05 398 | 75.73 397 | 90.90 344 | 82.52 400 | 79.42 340 | 98.33 306 | 83.53 376 | 98.68 144 | 97.43 251 |
|
| Patchmatch-RL test | | | 91.49 326 | 90.85 327 | 93.41 348 | 91.37 391 | 84.40 381 | 92.81 396 | 95.93 372 | 91.87 302 | 87.25 370 | 94.87 370 | 88.99 201 | 96.53 376 | 92.54 273 | 82.00 378 | 99.30 125 |
|
| ambc | | | | | 89.49 368 | 86.66 403 | 75.78 395 | 92.66 397 | 96.72 355 | | 86.55 377 | 92.50 391 | 46.01 401 | 97.90 341 | 90.32 315 | 82.09 377 | 94.80 373 |
|
| EMVS | | | 64.07 375 | 63.26 378 | 66.53 392 | 81.73 409 | 58.81 415 | 91.85 398 | 84.75 409 | 51.93 407 | 59.09 407 | 75.13 406 | 43.32 404 | 79.09 410 | 42.03 410 | 39.47 407 | 61.69 406 |
|
| E-PMN | | | 64.94 374 | 64.25 376 | 67.02 391 | 82.28 408 | 59.36 414 | 91.83 399 | 85.63 408 | 52.69 405 | 60.22 406 | 77.28 405 | 41.06 406 | 80.12 408 | 46.15 408 | 41.14 406 | 61.57 407 |
|
| ANet_high | | | 69.08 371 | 65.37 375 | 80.22 386 | 65.99 414 | 71.96 404 | 90.91 400 | 90.09 405 | 82.62 388 | 49.93 409 | 78.39 404 | 29.36 412 | 81.75 406 | 62.49 402 | 38.52 408 | 86.95 400 |
|
| tmp_tt | | | 68.90 372 | 66.97 374 | 74.68 389 | 50.78 416 | 59.95 413 | 87.13 401 | 83.47 410 | 38.80 409 | 62.21 405 | 96.23 339 | 64.70 392 | 76.91 411 | 88.91 340 | 30.49 409 | 87.19 399 |
|
| MVE |  | 62.14 22 | 63.28 376 | 59.38 379 | 74.99 388 | 74.33 413 | 65.47 409 | 85.55 402 | 80.50 412 | 52.02 406 | 51.10 408 | 75.00 407 | 10.91 417 | 80.50 407 | 51.60 406 | 53.40 405 | 78.99 403 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 61.03 23 | 65.95 373 | 63.57 377 | 73.09 390 | 57.90 415 | 51.22 417 | 85.05 403 | 93.93 393 | 54.45 404 | 44.32 410 | 83.57 399 | 13.22 414 | 89.15 403 | 58.68 404 | 81.00 384 | 78.91 404 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| test_method | | | 79.03 362 | 78.17 364 | 81.63 384 | 86.06 405 | 54.40 416 | 82.75 404 | 96.89 349 | 39.54 408 | 80.98 392 | 95.57 362 | 58.37 398 | 94.73 391 | 84.74 372 | 78.61 391 | 95.75 356 |
|
| Gipuma |  | | 78.40 367 | 76.75 370 | 83.38 380 | 95.54 356 | 80.43 392 | 79.42 405 | 97.40 316 | 64.67 402 | 73.46 399 | 80.82 403 | 45.65 402 | 93.14 397 | 66.32 401 | 87.43 354 | 76.56 405 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| wuyk23d | | | 30.17 377 | 30.18 381 | 30.16 393 | 78.61 411 | 43.29 418 | 66.79 406 | 14.21 417 | 17.31 410 | 14.82 413 | 11.93 413 | 11.55 416 | 41.43 412 | 37.08 411 | 19.30 410 | 5.76 410 |
|
| test_blank | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet_test | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| DCPMVS | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| cdsmvs_eth3d_5k | | | 23.98 378 | 31.98 380 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 98.59 144 | 0.00 414 | 0.00 415 | 98.61 152 | 90.60 169 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| pcd_1.5k_mvsjas | | | 7.88 382 | 10.50 385 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 94.51 81 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet-low-res | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| sosnet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uncertanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| Regformer | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| ab-mvs-re | | | 8.20 381 | 10.94 384 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 98.43 169 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| uanet | | | 0.00 383 | 0.00 386 | 0.00 396 | 0.00 419 | 0.00 421 | 0.00 407 | 0.00 420 | 0.00 414 | 0.00 415 | 0.00 414 | 0.00 419 | 0.00 415 | 0.00 414 | 0.00 413 | 0.00 411 |
|
| WAC-MVS | | | | | | | 90.94 319 | | | | | | | | 88.66 342 | | |
|
| MSC_two_6792asdad | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 138 | | | | | 99.94 8 | 98.53 31 | 99.80 23 | 99.86 8 |
|
| PC_three_1452 | | | | | | | | | | 95.08 161 | 99.60 19 | 99.16 77 | 97.86 2 | 98.47 285 | 97.52 103 | 99.72 55 | 99.74 37 |
|
| No_MVS | | | | | 99.62 6 | 99.17 94 | 99.08 11 | | 98.63 138 | | | | | 99.94 8 | 98.53 31 | 99.80 23 | 99.86 8 |
|
| test_one_0601 | | | | | | 99.66 26 | 99.25 2 | | 98.86 75 | 97.55 28 | 99.20 38 | 99.47 20 | 97.57 6 | | | | |
|
| eth-test2 | | | | | | 0.00 419 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 419 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 99.46 49 | 98.70 23 | | 98.79 98 | 93.21 253 | 98.67 77 | 98.97 105 | 95.70 45 | 99.83 69 | 96.07 155 | 99.58 83 | |
|
| IU-MVS | | | | | | 99.71 19 | 99.23 7 | | 98.64 136 | 95.28 148 | 99.63 18 | | | | 98.35 49 | 99.81 16 | 99.83 13 |
|
| test_241102_TWO | | | | | | | | | 98.87 69 | 97.65 22 | 99.53 23 | 99.48 18 | 97.34 11 | 99.94 8 | 98.43 43 | 99.80 23 | 99.83 13 |
|
| test_241102_ONE | | | | | | 99.71 19 | 99.24 5 | | 98.87 69 | 97.62 24 | 99.73 10 | 99.39 32 | 97.53 7 | 99.74 111 | | | |
|
| test_0728_THIRD | | | | | | | | | | 97.32 42 | 99.45 25 | 99.46 24 | 97.88 1 | 99.94 8 | 98.47 39 | 99.86 1 | 99.85 10 |
|
| GSMVS | | | | | | | | | | | | | | | | | 99.20 139 |
|
| test_part2 | | | | | | 99.63 29 | 99.18 10 | | | | 99.27 35 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 89.45 188 | | | | 99.20 139 |
|
| sam_mvs | | | | | | | | | | | | | 88.99 201 | | | | |
|
| MTGPA |  | | | | | | | | 98.74 108 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 31.83 411 | 88.83 208 | 98.91 240 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 95.10 368 | 89.42 189 | 98.89 244 | | | |
|
| gm-plane-assit | | | | | | 95.88 347 | 87.47 374 | | | 89.74 350 | | 96.94 310 | | 99.19 196 | 93.32 248 | | |
|
| test9_res | | | | | | | | | | | | | | | 96.39 149 | 99.57 84 | 99.69 56 |
|
| agg_prior2 | | | | | | | | | | | | | | | 95.87 165 | 99.57 84 | 99.68 61 |
|
| agg_prior | | | | | | 99.30 68 | 98.38 35 | | 98.72 113 | | 97.57 150 | | | 99.81 81 | | | |
|
| TestCases | | | | | 96.99 206 | 99.25 81 | 93.21 282 | | 98.18 233 | 91.36 315 | 93.52 288 | 98.77 133 | 84.67 293 | 99.72 113 | 89.70 328 | 97.87 180 | 98.02 235 |
|
| test_prior | | | | | 99.19 40 | 99.31 64 | 98.22 48 | | 98.84 79 | | | | | 99.70 119 | | | 99.65 69 |
|
| æ–°å‡ ä½•1 | | | | | 99.16 45 | 99.34 57 | 98.01 61 | | 98.69 120 | 90.06 344 | 98.13 105 | 98.95 112 | 94.60 79 | 99.89 47 | 91.97 288 | 99.47 103 | 99.59 79 |
|
| 旧先验1 | | | | | | 99.29 73 | 97.48 78 | | 98.70 119 | | | 99.09 92 | 95.56 48 | | | 99.47 103 | 99.61 75 |
|
| 原ACMM1 | | | | | 98.65 77 | 99.32 62 | 96.62 116 | | 98.67 128 | 93.27 252 | 97.81 129 | 98.97 105 | 95.18 67 | 99.83 69 | 93.84 233 | 99.46 106 | 99.50 91 |
|
| testdata2 | | | | | | | | | | | | | | 99.89 47 | 91.65 295 | | |
|
| segment_acmp | | | | | | | | | | | | | 96.85 14 | | | | |
|
| testdata | | | | | 98.26 115 | 99.20 92 | 95.36 183 | | 98.68 123 | 91.89 301 | 98.60 85 | 99.10 86 | 94.44 86 | 99.82 76 | 94.27 219 | 99.44 107 | 99.58 83 |
|
| test12 | | | | | 99.18 42 | 99.16 98 | 98.19 50 | | 98.53 162 | | 98.07 109 | | 95.13 70 | 99.72 113 | | 99.56 90 | 99.63 73 |
|
| plane_prior7 | | | | | | 97.42 263 | 94.63 221 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.35 270 | 94.61 224 | | | | | | 87.09 246 | | | | |
|
| plane_prior5 | | | | | | | | | 98.56 155 | | | | | 99.03 220 | 96.07 155 | 94.27 253 | 96.92 271 |
|
| plane_prior4 | | | | | | | | | | | | 98.28 188 | | | | | |
|
| plane_prior3 | | | | | | | 94.61 224 | | | 97.02 64 | 95.34 219 | | | | | | |
|
| plane_prior1 | | | | | | 97.37 269 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 420 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 420 | | | | | | | | |
|
| door-mid | | | | | | | | | 94.37 387 | | | | | | | | |
|
| lessismore_v0 | | | | | 94.45 339 | 94.93 370 | 88.44 365 | | 91.03 403 | | 86.77 375 | 97.64 247 | 76.23 366 | 98.42 291 | 90.31 316 | 85.64 370 | 96.51 329 |
|
| LGP-MVS_train | | | | | 96.47 255 | 97.46 258 | 93.54 264 | | 98.54 160 | 94.67 180 | 94.36 251 | 98.77 133 | 85.39 275 | 99.11 208 | 95.71 172 | 94.15 259 | 96.76 291 |
|
| test11 | | | | | | | | | 98.66 131 | | | | | | | | |
|
| door | | | | | | | | | 94.64 385 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 94.25 241 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 95.30 184 | | |
|
| HQP4-MVS | | | | | | | | | | | 94.45 243 | | | 98.96 231 | | | 96.87 282 |
|
| HQP3-MVS | | | | | | | | | 98.46 180 | | | | | | | 94.18 257 | |
|
| HQP2-MVS | | | | | | | | | | | | | 86.75 252 | | | | |
|
| NP-MVS | | | | | | 97.28 272 | 94.51 229 | | | | | 97.73 236 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 92.97 287 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 93.61 276 | |
|
| Test By Simon | | | | | | | | | | | | | 94.64 78 | | | | |
|
| ITE_SJBPF | | | | | 95.44 304 | 97.42 263 | 91.32 313 | | 97.50 305 | 95.09 160 | 93.59 284 | 98.35 179 | 81.70 322 | 98.88 246 | 89.71 327 | 93.39 282 | 96.12 348 |
|
| DeepMVS_CX |  | | | | 86.78 372 | 97.09 288 | 72.30 402 | | 95.17 381 | 75.92 396 | 84.34 386 | 95.19 366 | 70.58 382 | 95.35 386 | 79.98 386 | 89.04 338 | 92.68 390 |
|